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ABSTRACT 

While imaging optically dense media such as atomizing sprays, the multiple light scattering induces image artifacts 
and blurring effects which limit visibility. Therefore, extracting quantitative spray information such as droplet size 
and concentration from qualitative images becomes very challenging. However, multiple scattering effects can be 
efficiently addressed by means of the SLIPI (Structured Laser Illumination Planar Imaging) technique. Recently, 
using SLIPI in combination with LIF/Mie droplet sizing (ratio of the liquid Laser Induced Fluorescence (LIF) and 
Mie scattering signals), a mapping of absolute Sauter Mean Diameter (SMD or D32) could be extracted. It was 
observed that without SLIPI, reliable measurements of SMD could not be achieved. In another work, a 3D map of 
the droplet extinction-coefficient (µe) in an aerated spray was extracted using the SLIPI-scan technique. In this article, 
SLIPI-LIF/Mie droplet sizing is performed in combination with SLIPI-scan in order to construct a 3D representation 
of droplet SMD in the developed spray region and the corresponding optical depth in 2D.  

 

1. Introduction 
 
Droplet size and concentration are among the most important quantities when it comes to spray 
characterization [1]. Such information helps deciding the suitability of one spray for a given 
application; such as for fuel-air mixing in combustion devices, cooling hot environments, 
powder productions in pharmaceutical and food industry, treating crops in agriculture, applying 
chemicals and paints, drug inhalation in medicine etc. [1]. A fully developed spray forms a cloud 
of polydisperse and spherical droplets which spread within a three-dimensional (3D) volume 
and, thus, getting a 3D measurement of spray quantities is important. The LIF/Mie droplet 
sizing technique for 2D mapping of Sauter mean diameter (SMD) of droplet was first reported by 
Yeh et. al [2]. The extinction coefficient (µe) mapping was demonstrated by Talley and coworkers 
using optical transmission measurements [3]. However, these methods are affected by multiple 
light scattering, as many photons undergo repetitive scattering events prior to detection. This 
generates out-of-focus light that degrades the sharpness of the resulting images and impose 
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challenges for the quantitative imaging of atomizing sprays. To address this issue, Structured 
Laser Illumination Planar Imaging (SLIPI) has been developed in 2008 [4, 5]. SLIPI is based on 
spatially imprinting a sinusoidal modulation on a conventional laser sheet, making the incident 
illumination “tagged”. In a spray illuminated using structured light sheet, the multiply scattered 
photons “forget” the modulation structure while the singly scattered photons preserve it. This 
technique has been applied for extracting quantitative information, e.g. droplets SMD using the 
SLIPI-LIF/Mie ratio [6] and the local extinction coefficient using, for example, SLIPI-scan [7, 8]. 
In this article the two techniques are now combined to reconstruct a 3D image of droplet size and 
2D images of corresponding optical depth of the probed spray droplet. 
To obtain 3D data, using SLIPI-scan, images are recorded with the stepwise movement of the 
spray from its outer edge towards its center while keeping the laser sheet and the focus of the 
camera fixed. Thus, several slices of the LIF/Mie ratio in 2D and optical depth in 2D are 
generated. These 2D images of ratio could be patched together to construct a 3D image of droplet 
SMD. A Phase Doppler Interferometry (PDI) system is used for correlation between non-
calibrated ratio measured by SLIPI-LIF/Mie and absolute SMD measured from PDI [6]. The PDI 
probe volume is coincided with the SLIPI light sheet for a faithful calibration. Here, the 
combined approach is demonstrated for a hollow-cone (HC) water spray at a liquid injection 
pressure of 50 bars. 
 
2. Laser sheet imaging techniques 
 
2.1. SLIPI 
 
SLIPI is a structured light sheet imaging technique developed for mitigating the multiple light 
scattering intensity from the optically dense spray systems [4, 5]. The amplitude of this 
structured modulation usually follows a sine function, and it is realized with the help of a 
Ronchi grating and a spatial filter. In order to deduce a SLIPI image, a minimum three images 
(sub-images) with a subsequent phase difference of 120° is required. This is performed by 
shifting the grating in vertical direction. A detailed description of the SLIPI technique and its 
uses in two dimensional imaging of sprays can be found in [8]. Also, SLIPI images reconstructed 
from one or two sub-images have been demonstrated [9, 10]. The images from one sub-image are 
deduced at the cost of image resolution [9]. However, two sub-image based SLIPI requires a 
structured modulation of very high frequency and nearly the full image resolution is maintained 
[10]. 
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2.2 LIF/Mie ratio imaging 
 
The ratio of the laser-induced fluorescence (LIF) and the Mie scattered signal (Mie) of spray 
droplets of a dye doped liquid has been used to deduce their relative SMD where, the LIF and 
Mie signals are proportional to droplets volume (d3) and surface area (d2) respectively [1, 8]. 
However, the method is limited within the following conditions: (i) The probed droplets must be 
spherical and (ii) the fluorescence contribution from the gaseous phase should be minimum.  
Also, several studies have been conducted to evaluate the faithfulness of d3 and d2 dependance on 
the LIF and Mie signals, respectively [11-16]. It is found that the exponents varies according to 
the droplet size distribution and when molecular absorption is non negligible.  
 
2.3 SLIPI-scan 
 
In the SLIPI-scan technique the spray is scanned in a bread-slicing manner using a structured 
light sheet [7, 8]. The movement of spray is controlled by a translation stage. The corresponding 
light transmission within the spray is recorded on a cuvette filled with a dyed solution. The light 
intensity reduction due to light extinction and signal attenuation is deduced. Thus, using this 
information for each 2D slice, the technique measures the spatially resolved extinction coefficient 
of a droplet in 3D. Here in this article, SLIPI-scan is only used for optical depth measurements in 
2D. However, the future aim is to use the droplet SMD information from SLIPI-LIF/Mie and 
extinction coefficients from SLIPI-scan for a 3D reconstruction of droplet concentration. 
 
3. Experimental setup 
 
The combined SLIPI-LIF/Mie and SLIPI-scan technique is shown in Figure 1. In (b), the top-view 
of the setup for the simultaneous detection of SLIPI-LIF/Mie and SLIPI-scan signal is shown. A 
PDI (Artrium PDI-TK2 system) is used for calibrating the SLIPI-LIF/Mie ratio with the absolute 
SMD measured from it. In (b), the side-view of the sinusoidally modulated light sheet 
illuminating the spray and the dyed solution in a cuvette (used for transmission measurements 
in SLIPI-Scan) is shown. The optical arrangement for creating the structured light sheet is similar 
to the setup shown in reference [6]. When the incident laser sheet of 448 nm wavelength (from a 
collimated continuous wave diode laser) excites the dye-doped water spray droplets, liquid LIF 
signal peaking at 517 nm is generated. To simultaneously record the LIF and Mie signals for 
SMD mapping, a beam splitter is used to guide the signals towards the two EM-CCD cameras 
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denoted as “LIF” and “Mie” in (a). Then, two band-pass filters F1 and F2 are fixed in front of the 
LIF and Mie cameras, respectively. The F1 is a broadband filter centered at 510 nm with 94 nm 
FWHM (Full Width at Half Maximum) while F2 is a narrow-band filter of the centered 
wavelength 448 nm with 20 nm FWHM.  All images are recorded with exposure time of 0.08 
seconds and 20 accumulations for each sub-image. The f-number of both camera objectives is 
fixed at 5.6. To perform the SLIPI-scan, the spray is moved along the Z-direction with a step 
difference of 500 µm which allows the laser sheet to probe the spray in a “bread-slicing” manner. 
Thus, by combining the SLIPI-LIF/Mie along with the SLIPI-scan measures the SMD of the spray 
droplet in 3D and the resulting attenuation of light for each step can be measured on the cuvette 
in 2D.  
 

 
Fig. 1. (a) Top-view of the combined SLIPI-LIF/Mie and SLIPI-scan experimental setup. (b) Side-view of the setup 

showing the modulated laser sheet crossing the water spray and the dyed cuvette. The spray is fixed on a 

translational stage for a scanning procedure along the Z-direction. 

 

4. Results and discussions 
 
4.1 LIF and Mie images from SLIPI-scan: 
 
The averaged LIF and Mie images recorded by SLIPI-scan at positions from 0 mm at the edge of 
the HC spray to towards its centre at 34 mm along the Z- axis are given in Figure 2. Out of a pair 
of total 69 images, only 8 are shown here. In (a), the conventional and in (b), the SLIPI images are 
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shown. The image background is calculated from the average of 100 pixels located at the top left 
corner of each image. From both the figures, it is evident that the SLIPI-LIF/Mie images gives a 
better representation of the hollow-cone spray. This is due to fact that the unwanted multiple 
scattered light effects are efficiently suppressed both in LIF and Mie images. However, if not 
suppressed, such effects produce blurring due to undesired out-of-focus signal, most visible at 
the top and bottom of the light sheet in the conventional images (e.g. a signal above the light 
sheet up to the nozzle tip is clearly visible).  
 

 
Fig. 2. (a) The averaged conventional LIF and Mie images recorded along the Z-axis are given. Similarly, in (b), the 

averaged SLIPI LIF and Mie images are shown. When comparing (a) with (b), it is clear that the conventional images 

suffers from multiple light scattering effects.  

 
4.2 Non-calibrated LIF/Mie ratio 
 
Figure 3 shows the non-calibrated LIF/Mie ratio extracted after diving the LIF and Mie images 
of figure 2. The conventional and SLIPI LIF/Mie ratio images are shown in figures (a) and (b), 
respectively. Prior to the ratio, a threshold value equal to 0.00001 times the maximum peak 



18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics・LISBON | PORTUGAL ・JULY  4 – 7, 2016 
 

intensity of the image is set in SLIPI images. While for generating an image fairly comparable to 
SLIPI, the conventional require a threshold value 0.0015 times of the maximum peak intensity of 
the image. Any pixel value below this threshold is rejected to avoid numerical errors while 
ratioing the data. It is seen from both the figures that conventional images produce non-reliable 
ratio since it produces ratio gradients in the spray regions which are not illuminated, whereas 
SLIPI depicts an improved representation of the droplet size distribution in the hollow cone 
spray. The ratio producing higher gradients near the spray edges; showing the presence of large 
droplets while gradient decreases in the hollow region where smaller droplets are generated. The 
LIF/Mie ratio both for the conventional and SLIPI detections are found to be consistent with the 
one shown in reference [6]. Only SLIPI-LIF/Mie ratio is further considered for calibration with 
the SMD of droplet measured by the PDI system.  
 

 
Fig. 3. (a) The averaged non-calibrated conventional LIF/Mie ratio images for positions 0 ≤ Z ≤ 34 mm is shown. 

Similarly, in (b), the averaged SLIPI LIF/Mie images are shown. By comparing (a) with (b), it is observed that the 

conventional-LIF/Mie ratio is not reliable since it produces ratio gradients in the spray regions which are not 

illuminated. For example, a non negligible ratio values are appearing from the region residing between the nozzle 

tip and the light sheet illumination.  

 
4.3 PDI measurements and LIF/Mie ratio calibration 
 
Figure 4 shows the PDI measurements performed in order to calibrate SLIPI-LIF/Mie ratio with 
droplet SMD. In (a), the SMD measured at a given vertical position (Y = 7 cm) below the nozzle 
tip and along the X-axis (in dashed red line), from the center (at the X = -1 cm) of the spray to 
towards one of its edges (up to X = -3.7 cm). Note that the LIF/Mie ratio in the rectangular box 
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region is not valid for SMD calibration due to the presence of non spherical droplets. In (b), the 
SMD of droplet against distance along the X-axis is plotted. The large droplets of SMD = 70 µm 
are detected at the spray edge, while small droplet SMD = 12 µm are located in the spray center. 
For each location, 20000 validated size measurements are recorded by PDI and the 
corresponding absolute SMD is calculated. The histogram of the distribution of droplet size used 
to deduce the SMD at X = -1 cm and X = 3.7 cm is shown in figures 5(a) and 5(b), respectively.  It 
is observed in all measurements that the diameter validation percentage was above 97%, 
confirming good sphericity of the droplets at a distance 7 cm below the nozzle tip. 
 

 
Fig. 4. (a) The SLIPI-LIF/Mie image showing the PDI calibration points located at Y = 7 cm and X = -1 to 3.7 cms. (b) 

Droplets SMD measured by PDI along the x-axis from one edge of the spray towards its center. For every millimeter 

measurement point the corresponding droplet size distribution is used to deduce the SMD in µms. (c) The plot of 

the SMD values measured with PDI against the corresponding SLIPI-LIF/Mie ratio. A cubic fit is found to be best fit 

for converting the SLIPI ratio into droplet absolute SMD (see figures 6 and 7).  
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Fig. 5. The histogram of droplet size distributions used for SMD calculation by PDI. (a) The droplet size distribution 

for SMD = 12.2 µm measured by PDI calibration point located at Y = 7 cm and X = -1 cm. Similarly, in (b), the 

resulting SMD is 70 µm which is deduced from the droplet size distribution measured by PDI at X = 3.7 cm.  

In (c), the SLIPI-LIF/Mie ratio is plotted against the droplet SMD measured from PDI. The curve 
shows the experimental data and the calibration fit used for converting the ratio into the absolute 
SMD value.   
 

4.4 Absolute SMD mapping in 2D and 3D 
 
In figure 6, the 2D mapping of calibrated SLIPI-LIF/Mie ratio representing the absolute SMD of 
the droplet is given. These slices of the spray scanning along the Z-direction from 0 mm to up to 
34 mm provide a great insight on how the droplets are distributed within the spray. It is seen that 
near the spray periphery droplet size ranges from 60-73 µm while in the centre of the spray they 
are within the range of 10-12 µm.  
 

 
Fig. 6. The calibrated SLIPI-LIF/Mie ratio representing the map of the absolute SMD of droplet  at different positions 

along the Z-axis are shown. Large droplet of SMD 70-73 µm are found near the two outer edges of the hollow-cone 

spray while in the centre droplet SMD is found to be in the range of 10-12 µm.  

 

Figure 7 shows the 3D representation of droplet SMD from 0 ≤ Z ≤ 34 mm, which corresponds to 
one-half of the HC spray. These 3D images are reconstructed by stitching all the 69 2D slices of 
SMD as shown in figure 6. In (a), the front-view of droplet  SMD in 3D while in (b) and (c), the 
side and top view of the 3D-SMD of the spray is shown.  
In (a), it is seen that droplet SMD starting from the left side along the X-axis is in the range of 73-
70 µm between positions 0 to 3 mm. From  3 mm to 10 mm, the SMD is between 70-55 µm while 
it reduces down from 50-10 µm at X = 10 to 35 mm. When moving further from 35 mm to 65 mm, 
it is clearly visible that droplet SMD distribution on the right side is not identical to that on the 
left. Also from the side-view and top-view shown in figure (b) and (c), respectively it is more 
evident that the HC spray is not symmetrical.  
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Fig. 7. The 3D visualizations of droplet SMD in the hollow cone spray are given here. The front-view of the spray is 

shown in (a) while in (b) and (c), the side and top view, respectively are given. It is seen from the figures that the 

droplet near the spray periphery are large while they reduces down towards its centre. It is also found that the 

droplet SMD distributions on the both sides are not identical and spray is not symmetrical.  

 

4.5 Optical depth measurements  
 
Optical depth (OD) deduces an approximation of the number of scattering events occurring in 
the probed medium [8]. It is also referred to as the optical thickness of the probed sample. Here, it 
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is calculated according to the Beer-Lambert’s law and from the transmission measurements 
similar to the one demonstrated in [6].  Figure 8 shows the 2D slices of the optical depth of 
sprays for each scanning step from 0 ≤ Z ≤ 34 mm. For this plot, the OD value chosen for each Z 
step is a distance of approximately 13.5 mm along the X-axis and 54 mm along the Y–axis of the 
cuvette. Thus, a total of 69 scan steps corresponds to a total distance of 103 mm along the X-axis. 
At Z = 0 mm, it is seen that the OD in the cuvette varies from 0.2 to 0.5 (on the top) to up to 1 
(near the bottom) which shows that on the top there are very few or no droplets and thus the 
number of scattering events is less than 1.  
 

 
Fig. 8. The optical depth of the spray corresponding to each layer from 0 ≤ Z ≤ 34 mm is plotted here. These 2D 

images show that near the outer edge of the spray (Z = 0 mm) the probability of interaction of a majority of photons 

with the droplet is less than 1 however, it increases up to 2 when the spray is intersected in the middle (Z = 34 mm) 

with the light sheet.  

 

However, on the bottom, due to the presence of droplets the number of scattering events is close 
to 1. When moving inside the spray towards Z ˃ 0 mm, the OD value increases up to 2.5. At 23 ≤ 
Z ≤ 34 mm, the OD value throughout the spray is approximately in the range of 1.5 to 2.5, 
however, it is more than 2 on the top and the bottom of the spray due to the presence of 
ligaments and non spherical droplets near the nozzle and large droplet density at the bottom.                               
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5. Conclusions  
 
SLIPI techniques are used in combination with LIF/Mie ratio imaging for 3D droplet sizing and 
transmission measurements for 2D mapping of the optical depth of a hollow-cone spray. The 
conventional approach suffers from multiple light scattering effects. The 3D representation of 
SMD of spray provides a great insight into the distribution of droplet within the spray. It is 
found that the spray is not symmetrical. The optical depth mapping shows that the majority of 
photons within the spray have interacted more than twice with the droplet prior to their exit. 
The presented results show a way forward to the new possibilities for faithful droplet size and 
concentration mapping in sprays.  
 
Acknowledgements 
 
This project has received funding from the European Research Council (ERC) under the 
European Union’s Horizon 2020 research and innovation programme (Agreement No 638546 - 
ERC starting grant “Spray-Imaging”). The funding support from the Project 2011-4272 from the  
Swedish Research Council is greatly acknowledged. 
 
References 
1. Chigier N (1993) An assessment of spray technology-editorial. Atomization Sprays 3(4):365–
371.  
2. Yeh CN, Kosaka H, Kamimoto T (1993) A fluorescence/scattering imaging technique for 
instantaneous 2-D measurements of particle size distribution in a transient spray. Proceedings of 
the 3rd Congress on Optical Particle Sizing, Japan pp. 355–361. 
3. Talley DG, Verdieck JF, Lee SW, McDonnell VG, Samuelsen GS (1996) Accounting for laser 
sheet extinction in applying PLLIF to sprays. Proceeding of the 34th Aerospace Sciences Meeting, 
USA, paper AIAA:96–0469.     
4. Berrocal E, Kristensson E, Richter M, Linne M, Aldén M (2008) Application of structured 
illumination for multiple scattering suppression in planar laser imaging of dense sprays. Opt. 
Exp. 16(22):17870-1788.  
5. Kristensson E, Berrocal E, Richter M, Pettersson S G, Aldén M (2008) High-speed structured 
planar laser illumination for contrast improvement of two-phase flow images. Opt. Lett. 33(23): 
2752–2754. 



18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics・LISBON | PORTUGAL ・JULY  4 – 7, 2016 
 

6. Mishra YN, Kristensson E, Berrocal E (2014) Reliable LIF/Mie droplet sizing in sprays using 
structured laser illumination planar imaging. Opt. Exp. 22(4):4480-4492. 
7. Wellander R, Berrocal E, Kristensson E, Richter M, Aldén M (2011) Three-dimensional 
measurement of the local extinction coefficient in a dense spray. Meas. Sci. Technol. 22:855–861. 
8. Kristensson E (2012) Structured Laser IlluminationPlanar Imaging SLIPI: Applications for 
spray diagnostics.  Doctoral Thesis, Lund University. 
9. Berrocal E, Kristensson E, Johnsson J, Aldén M (2012) Single scattering detection in turbid 
media using single-phase structured illumination filtering. J. Euro. Opt. Soc. Rap. Pub. 7: 12015. 
10.  Kristensson E, Berrocal E, Aldén M  (2014) Two-pulse structured illumination imaging. Opt. 
Lett. 39(9):2584–2587. 
11. Domann R, Hardalupas Y (2001) A study of parameters that influence the accuracy of the 
planar droplet sizing (PDS) technique. Particle & Particle Systems Characterization 18 (1):3–11. 
12. Domann R, Hardalupas Y (2003) Quantitative measurement of planar droplet sauter mean 
diameter in sprays using Planar droplet sizing. Particle & Particle Systems Characterization 
20(3):209–218. 
13. Frackowiak B, Tropea C (2010) Numerical analysis of diameter influence on droplet 
fluorescence. Applied Optics 49(12):2363–2370. 
14. Frackowiak B, Tropea C (2010) Fluorescence modeling of droplets intersecting a focused laser 
beam. Opt. Lett. 35:1386–1388. 
15. Charalampous G, Hardalupas Y (2011) Method to reduce errors of droplet sizing based on the 
ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique). 
Applied Optics 50(20):3622- 3637. 
16. Charalampous G, Hardalupas Y (2011) Numerical evaluation of droplet sizing based on the 
ratio of fluorescent and scattered light intensities (LIF/Mie technique). Applied Optics 50(9): 
1197–1209. 
 

 


