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John Ly is a board-certified radiologist, currently 
working at Centralsjukhuset Kristianstad in Skåne, 
Sweden. In this thesis he has investigated how artifi-
cial intelligence can add value to PET-CT research and 
clinical applications. It is believed by experts that this 
transformative technology will continuously improve 
medical imaging in many facets such as radiation 
dose, image reconstruction and quality, detection, 
classification, monitoring, reporting, workflows and 
even interventional radiology. The main conclusion 

is that the artificial intelligence algorithms used in this thesis were able to 
function as a complement to and increase the quality of PET-CT examinations.
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Summary 
The rapid growth of positron emission tomography with computed tomography 
(PET-CT) usage and the vast amount of quantifiable data from its examinations have 
led to an increased demand in software which can quickly detect, analyse and 
provide clinical decision support on findings. The aim of this thesis is to investigate 
if the use of various custom-made artificial intelligence (AI) algorithms can enhance 
the diagnostic power of PET-CT in patients with lung cancer and lymphoma. 

Paper I investigated whether a basic AI algorithm had good agreement with and was 
faster than human measurements of maximum standard uptake values (SUVmax) in 
serial PET-CT examinations. In this retrospective study, 26 lesions were included 
from lung cancer and lymphoma patients for manual and semi-automatic SUVmax 
measurements. There was good agreement between the methods and the semi-
automatic method was up to five times faster than the manual method. 

Paper II investigated whether choice of PET reconstruction algorithm affects the 
classification of tumour response, Deauville score (DS). AI was used to segment 
reference organs in which SUVmax was calculated. Three reconstruction methods 
were chosen: Q.Clear (QC, General Electric’s proprietary algorithm), and the 
European Association of Nuclear Medicine (EANM) Research Ltd. (EARL) 
recommendations (pre-2019 update) at its upper and lower limits for the resolution 
recovery coefficient. In this prospective study, 52 patients with non-Hodgkin and 
Hodgkin lymphoma were included. There were significant differences in DS 
between the QC and both EARL reconstructions but not between the upper and 
lower limits of the EARL reconstructions. 

Paper III developed and explored an AI algorithm’s sensitivity in lung tumour 
detection and its ability to calculate total lesion glycolysis (TLG). In this 
retrospective study, 112 patients were recruited. The sensitivity for the AI algorithm 
was 91%. The positive predictive value and negative predictive value was 88% and 
100%, respectively on a patient level. The TLG agreement was good and higher in 
smaller lesions. 

Paper IV used an AI algorithm to enhance PET-CT images. 72 patients were 
recruited for training and 25 for testing of the algorithm. The AI algorithm was able 
to reduce noise and increase contrast compared with standard images whilst keeping 
SUVmax/peak stability. 

In conclusion, the AI algorithms used in this thesis were able to function as a 
complement to and increase the quality of PET-CT examinations. 



12 

Populärvetenskaplig sammanfattning 
(Summary in Swedish) 
PET-CT är en undersökningsmetod som kartlägger anatomisk (CT) och funktionell 
information (PET) samtidigt genom konventionella röntgenstrålar och radioaktiva 
läkemedel som injiceras i kroppen i samband med undersökningen. 
Användningsområdena utgörs framför allt av diagnostik och uppföljning av tumörer 
men kan även användas för t.ex. utredning av inflammatoriska/infektiösa tillstånd 
och demens. 

Den snabba utvecklingen av PET-CT och den stora mängd data som går att utvinna 
från dess undersökningar har lett till en efterfrågan på programvaror som snabbt kan 
upptäcka, analysera och ge kliniska beslutsstöd av fynden. Syftet med 
avhandlingsarbetet är att undersöka om användandet av olika egenutvecklade 
algoritmer som baseras på artificiell intelligens (AI), kan förbättra diagnostiken i 
PET-CT-undersökningar hos patienter med lungcancer och lymfom. 

Studie I undersökte om en enkel AI algoritm hade god samstämdhet och om det 
fanns skillnader i mättiden jämfört med mänskliga mätningar av maximum standard 
uptake value (SUVmax) i seriella PET-CT-undersökningar. I denna retrospektiva 
studie inkluderades tio lungcancer- och sex lymfompatienter som utfört två till fyra 
PET-CT undersökningar. Tjugosex tumörer inkluderades för SUVmax mätning med 
manuell och halvautomatisk metod. Tre granskare mätte SUVmax med båda metoder 
och tidsåtgången för respektive metod. Samstämdheten mellan metoderna och 
mellan granskarna var goda och den halvautomatiska metoden var upp till fem 
gånger snabbare än den manuella metoden. 

Studie II undersökte om olika PET-CT rekonstruktionsalgoritmer påverkar 
indelningen av behandlingssvar hos lymfompatienter på den så kallade Deauville-
skalan. De tre specifika algoritmerna som undersöktes var: Q.Clear (QC, General 
Electrics proprietära algoritm) och rekommenderade inställningar vid övre 
respektive nedre gränsvärde enligt European Association of Nuclear Medicine 
Research Ltd. (EARL). I denna prospektiva studie inkluderades 52 patienter, varav 
18 kvinnor och 34 män, med lymfom. Signifikant skillnad sågs mellan QC och de 
rekommenderade inställningarna enligt EARL, men inte mellan de övre och nedre 
EARL-rekonstruktionerna. Fem patienter som granskats med QC klassificerades 
som icke-responders men vid användning av övre och nedre EARL 
rekonstruktionerna klassificerades dessa som responders vilket hade lett till 
annorlunda klinisk bedömning och handläggning. 

I studie III utvecklades en AI-algoritm i PET-CT-undersökningar för att upptäcka 
lungtumörer och automatiskt beräkna total lesion glycolysis (TLG), en kvantitativ 
mätenhet för tumörbörda, hos patienten. I denna retrospektiva studie inkluderades 
112 patienter, 59 kvinnor och 53 män, som delades in i en träningsgrupp (n = 66), 
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valideringsgrupp (n = 23) och testgrupp (n = 23). AI-algoritmen hade god förmåga 
att hitta individuella lungtumörer och missade inga patienter med lungcancer. Detta 
möjliggör prioritering av vilka undersökningar som bör besvaras först. 

Studie IV berörde bildförbättring av PET-CT-undersökningar med hjälp av AI, där 
olika inställningar i rekonstruktionsalgoritmen och insamlingstider jämfördes med 
en AI-förbättrad inställning. 97 patienter deltog i studien, varav 72 användes för att 
träna AI-nätverket och 25 patienter utvärderades med olika bildrekonstruktioner 
med och utan AI-förbättring. Det fanns ingen signifikant skillnad i SUVmax eller 
SUVpeak i patologiska fynd mellan standard och AI-förbättrad rekonstruktion med 
standardinsamlingstid. Brus- och kontrastnivån bedömdes vara bättre i de AI-
förbättrade bilderna. Resultaten kan omsättas i förbättrad bildkvalitet, minskad 
insamlingstid och/eller minskad stråldos för patienten. 

Den övergripande slutsatsen i denna avhandling är att AI-algoritmerna i studierna 
kan användas som ett komplement och öka kvaliteten på PET-CT-undersökningar. 
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Introduction 

Artificial intelligence (AI) has made incredible progress in the last decade due to 
continuous advancements in computational power and deep learning algorithms 
such as convolutional neural networks (CNN) which excels in image-recognition 
tasks [1, 2].  The technology can alleviate the need for imaging specialists to perform 
repetitive and time-consuming tasks, which is an inefficient use of intellect that 
could instead be directed towards concluding findings. Although research 
advancements have been made by utilising AI in the medical field, e.g. in image 
enhancement [3-5], segmentation [6-9], classification and prognostication [10-14], 
the actual implementation of these in clinical practise in a fully automated fashion 
pose several challenges, but are nevertheless believed to take place in the future 
[15]. 

[18F]FDG PET has several advantages over CT alone, it provides quantifiable 
metabolic data which is useful in appreciating disease activity, oncological staging 
and follow-up examinations [16]. The added benefit of combining PET with CT is 
the provision of high-resolution anatomic information and attenuation correction 
factors. The drawback of PET is the added ionising activity for the patient, the 
limited availability and additional cost of radiopharmaceutical tracers, but 
advancements have been made in deriving standard-dose CT [17] and PET images 
[18] from low-dose data using CNNs. 

This thesis utilises AI in all of its constituting papers and depicts the departure from 
basic algorithms to modern advanced machine- and deep learning methods. It aims 
to explore the feasibility of using AI, from enhancing imaging studies to calculation 
of total lesion glycolysis, an emerging imaging biomarker, for research and clinical 
application. 

  



16 

  



17 

Background 

Artificial intelligence 
Artificial intelligence is a broad term used to demonstrate computer logic and 
advanced functions. It ranges from simple logic made of if-statements in a 
spreadsheet in Excel to machine learning (ML), which online stores use to 
recommend your next purchase and deep learning (DL) that enables autonomous 
cars to recognise objects on the road. The distinction between ML and DL lies in 
the details. While both methods concern the learning ability of AI, ML algorithms 
are dependent on manually provided features whereas DL can learn features 
independently but requires much larger datasets and is considered as a subset of ML. 

Applications in medical imaging 
The most basic form of AI implementation in medical imaging could be the clinical 
decision support tools ACR Select [19] and iGuide [20]. These tools are tailored by 
experts based on the appropriateness criteria developed by the American College of 
Radiology. Logic programming is used to suggest radiologic examinations 
depending on the patient information that is provided by the physician. Although 
not touted as AI tools in their marketing, perhaps rightfully so, they would fall under 
the broader definition of AI for the layman, whereas experts primarily associate AI 
with machine and deep learning [21]. Other early and basic forms of AI in medical 
imaging are segmentation and co-registration algorithms, which have been refined 
lately with deep learning algorithms. 

Advancements in AI was possible in the 2000s due to increasing computational 
power and access to larger datasets. A breakthrough was made in 2013 when a few 
graphics processing units was able to replace thousands of computer processing 
units to train CNNs [22]. Early ML algorithms were referred to as computer-aided 
detection systems and were typically used to solve pattern-recognition problems 
such as the detection of nodules or calcifications. These have evolved into DL based 
algorithms which are better at generalising disease representations. 

In this thesis, Paper I utilises basic AI whereas Paper II-IV use convolutional neural 
networks which is a DL algorithm that is specialised in image recognition and image 
enhancement tasks. There are many other deep learning algorithms which are used 
in other areas, e.g. face recognition, machine translation and cyber security. 
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The structure of a CNN 
A convolutional neural network imitates how the brain (neurons) is structured 
(network) [1, 2]. Convolution is a mathematical operation that is performed on data 
through filters. CNN architectures vary depending on what task is at hand. For an 
image classification CNN (Figure 1), an image serves as the input to the CNN where 
several convolutions in numerous layers takes place and is passed on to a pooling 
layer where the data are subsampled – this saves computational power and avoids 
overfitting, a modelling error which reduces the CNNs generalisability. The steps 
taken up until now is called feature extraction, e.g. edges and corners. The features 
are sent to the fully connected layers (neurons that are interlinked) where 
classification is performed through the activation of the “neurons”. The combination 
of neurons that are activated decides what the final result will be in the output layer, 
which typically is a set of classifiers e.g. the numbers 0-9, animals, fruits, type of 
organs, lesion or not lesion. 

 

Figure 1. Schematic of a convolutional neural network used for image classification. 
CNN layers between the input and output layers are often referred to as ”hidden layers” because their functions are 
not observable. (”Typical CNN architecture” by Aphex34 is licensed under CC BY-SA 4.0) 

Perceptions of AI in medical imaging  
It is believed by experts that AI will continuously improve medical imaging in many 
facets such as radiation dose, image reconstruction and quality, detection, 
classification, monitoring, reporting, workflows and even interventional radiology 
[15, 21, 23, 24]. Since ML applications are more transparent than their DL 
counterparts, the way to regulatory approval is more rigorous for the latter. A 
common misconception is that AI will replace imaging specialists. This is likely 
founded in low understanding of the current capabilities of AI and the legal 
obstacles that need to be overcome due to the nature of DL algorithms. Ongoing 
education within imaging departments regarding the advancements in AI is 
important to prepare for the inevitable transformation AI will bring. 
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PET-CT imaging 
Imaging technique 
PET-CT is a nuclear medicine technique which combines PET with the x-ray CT, 
which provides functional and anatomical information, respectively. The resulting 
images from the modalities are superimposed to provide superior diagnostic 
accuracy, mostly in oncological applications [25]. 

For PET, the patient is injected with a radiopharmaceutical which is a drug 
containing a radioactive isotope. These are used to diagnose different types of 
conditions and diseases in the body and are also called tracers. The most commonly 
used tracer is fluorodeoxyglucose ([18F]FDG), which is a glucose analogue coupled 
with the radioisotope fluorine-18 ([18F]) and basically shares the same kinetics as 
glucose. Where there is elevated glucose metabolism, such as in 
inflammatory/infectious sites and cancer cells in the body, accumulation of the 
tracer in these cells will happen more than in other normal cells which enables the 
differentiation during interpretation of the PET-studies. 

The tracer undergoes continuous positron decay while it is distributed in the body. 
The scanning takes place after a delay which depends on which tracer is used. For 
[18F]FDG, an interval of 60 min after injection is recommended [26] but can vary 
for other tracers due to differing pharmacokinetics. 

When the positron interacts with an electron, an annihilation event occurs, from 
which a pair of high-energy photons travel in opposite directions – the photons that 
reach the detectors of the PET scanner within the coincidence time window will 
become the basis of the PET image (Figure 2). Two other types of coincidence 
events can occur. Random coincidence occurs when two annihilation events are 
detected as one due to a lost or undetected photon from each annihilation. Scattered 
coincidence happens due to Compton scattering of the photons in the patient body 
where the photons change direction. Both of these latter types of coincidence events 
lead to incorrect spatial detection of the original annihilation event and needs to be 
corrected. 

The detector consists of scintillation crystals coupled with either photomultiplier 
tubes (PMT) or newer generation silicon photomultipliers (SiPM) (Figure 3). The 
latter are smaller, require less voltage and electromagnetically insensitive – making 
them compatible with PET-magnetic resonance systems. In comparison studies, 
PET-CT systems with SiPM were more sensitive and had higher image quality than 
those without SiPM [27-29]. 

When a photon enters a crystal and interacts, the previous high-energy photon is 
converted into lower energy photons that are measured by the PMT/SiPM. In the 
next step, these measurements are organised in a histogram matrix from which 
image reconstruction can occur.  
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Figure 2. Detection of an annihilation event in a PET scanner. 
The placements of the detectors in rings with the scintillation crystals pointed towards the paitent enables the 
estimation of where the annihilation event occurred. 
(”Positron emission and positron-electron annihilation” by Adriaan Lammertsma is licenced under CC BY 3.0) 

 

 

Figure 3. Images of photomultipliers used in PET. 
Left: A photomultiplier tube. Right: Silicon photomultipliers with different array sizes. 
(The images have been published with courtesy of Hamamatsu Photonics K.K.) 
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Image reconstruction methods 
Filtered back projection was for a long time the most common method for image 
reconstruction which provides fast reconstruction, but does not take noise and 
physical effects into account [30]. It has since been replaced by iterative 
reconstruction methods, which allow modelling of the mentioned weaknesses into 
the reconstruction and are today the most widely used technique for reconstructing 
PET-CT images. In this method, a measured image is compared to the projected 
image which is then updated and used iteratively in several loops until the image 
best represents reality. The number of iterations needed to render objects in the 
image visible depends on the object size with smaller objects requiring more 
iterations. This means that the resolution in the image increases with more iterations. 
The noise in the image, however, also increases with the number of iterations. The 
noise in the image is usually regularized with a post reconstruction smoothing filter, 
often a Gaussian filter, which always reduce the resolution in the image. There is 
thus a trade-off between the resolution and noise when choosing the number 
iterations and post filter used in the reconstruction. Since several advanced 
calculations are performed in each iteration, this technique was not readily available 
in the past nor feasible in a clinical context due to its long processing time. One of 
the first popular iterative reconstruction methods was maximum likelihood 
expectation maximization, which was later replaced by ordered subset expectation 
maximum (OSEM) where the image is divided into subsets for calculations [31]. It 
was found that the image quality was comparable with the added bonus of far less 
computational effort [32]. 

Novel iterative reconstruction methods such as block sequential regularized 
expectation maximization (BSREM), which is used in half of the papers in this 
thesis, has developed the iterative reconstruction method further by taking 
neighbouring voxels into account. Earlier methods would treat each voxel 
independently from each other. Compared to traditional reconstruction algorithms, 
BSREM can maintain a low noise level as the number of iterations increases. The 
algorithm suppresses noise via a penalty factor β, in which higher values suppress 
noise more but also reduce resolution. BSREM has been shown to have better 
quantitative accuracy of SUV, particularly in small lesions [29, 33-36] compared to 
OSEM with post-filtering. Figure 4 demonstrates different iterative reconstruction 
algorithms. 

The use of deep learning in conjunction with image reconstruction in clinical 
practise is limited, but there are studies which uses CNNs to simulate standard-dose 
CT [17] and PET images [18, 37] derived from low-dose data. 
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Figure 4. Transaxial PET images of the liver with different iterative reconstruction algorithms. 
Left: BSREM algorithm. Middle and Right: OSEM algorithm with different iteration, subset and post filter settings. The 
middle image was reconstructed with fewer iterations and filtered with a wider post filter than the right image. 
(Screenshots by Elin Trägårdh.)  
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Segmentation 
Delineating an organ or hotspot, by separating it from the background on an image 
is a process called segmentation. This can be done manually in a computer software 
ranging from free hand tools to circular (two-dimensional) region of interest (ROI) 
or volumetric (three-dimensional) volume of interest (VOI). There are different 
automatic methods utilising AI to choose from, which have varying performance 
depending on the situation. The more basic methods include graph-cut [38] 
(Figure 5), thresholding, clustering, active contours and adaptive region growing. 
The advanced methods utilise CNNs such as DeepMedic and U-Net [39]. 

 

Figure 5. Semi-automatic segmentation of hotspots in PET images. 
A hotspot is segmented in two serial PET-CT examinations (CT not shown) using the graph-cut algorithm. Top row is 
the first examination and bottom row is the follow-up examination. The black dot is a manual indication which helps 
the graph-cut algorithm in finding the borders (black polygonal circuit) of the hotspot and to find the corresponding 
hotspot in the second examination. 

Technical harmonisation 
To ensure image comparability between machine vendors and encourage 
multicentre research, EARL has an accreditation programme with two specification 
standards for [18F]FDG SUV recovery coefficients – the original “standard 1” which 
was published in 2010 [40] and updated recommendations in 2019 “standard 2” [41, 
42], which takes recent advancements in PET hard- and software into consideration 
as these have an effect on SUV as previously described. The need for harmonisation 
in methodology for hotspot segmentation and texture analysis, also known as 
radiomics, is widely recognised and further efforts in these areas have been called 
upon [43-45]. 
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Lymphoma 
Lymphocytes are cells of the immune system which are found most frequently in 
the lymph nodes, spleen, thymus and bone marrow. When lymphocytes are 
genetically changed and grow out of control, which is the definition of cancer, the 
condition is called lymphoma. There are two broad classifications of lymphoma. 
Hodgkin lymphoma has two peak incidences, young people in their 20s and people 
in their 70s. Non-Hodgkin lymphoma is the most prevalent and has an increasing 
incidence with age which peaks around 80 [46]. 

PET-CT is primarily used for staging and assessment of treatment response in 
lymphoma. Malignant lesions are typically characterised by focally elevated activity 
within enlarged lymph nodes but may in some cases have a diffuse pattern within 
organs or in the abdominal fat which is more difficult to detect and appreciate. 

Treatment is usually but not limited to chemotherapy, among other treatments are 
radiation therapy, bone marrow transplantation and immunotherapy. The 5-year 
survival rate is good compared to other cancers, for Hodgkin lymphoma it is 87% 
and for non-Hodgkin lymphoma it is 73% regardless staging [47]. 

Deauville score 
To assess interim or end of treatment response on PET-CT in lymphoma patients, a 
five-point scale was adopted in 2009 at the first international workshop on PET in 
lymphoma which was held in the French city Deauville [48]. Generally, DS 1-3 
signifies metabolic response and DS 4-5 is considered as no metabolic response, see 
Table 1. The benefits of this scale, which was confirmed in large trials [49, 50], is 
the possibility to predict outcome in patients after two cycles of chemotherapy and 
use this knowledge to escalate or de-escalate treatment accordingly [51]. It is also 
useful in predicting 3-year progression-free survival in patients with diffuse large 
B-cell lymphoma [52] and follicular lymphoma [53]. Also, the relapse rate in natural 
killer T cell lymphomas after chemo- and chemoradiotherapy [54]. The scale can be 
used visually or quantitatively comparing the uptake in tumour, liver and 
mediastinal aorta. 

Table 1. Deauville five-point scale. 
A score from 1 to 5 is assigned according to tumour uptake in relation to reference organs. 

Score Definition 
1 No uptake 
2 Uptake < mediastinum 
3 Uptake > mediastinum but < liver 
4 Moderately increased uptake compared to the liver 
5 Markedly increased uptake compared to the liver and/or new lesions 
X New areas of uptake unlikely to be related to lymphoma 
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Lung cancer 
The most preventable cancer disease and the leading cause of cancer deaths in the 
world is lung cancer [55]. Smoking cessation reduces the risk of getting lung cancer 
and premature death [56]. Broadly, lung cancers are divided into two types; small 
cell and non-small cell lung cancers, the latter being the most common. The tumour 
cells almost always arise from the bronchi or alveoli. If detected early, it often has 
an isolated round appearance, with or without additional characteristics such as 
spiculation, within the lung parenchyma or sometimes adjacent to the hila or 
mediastinum. To further characterise these lesions, [18F]FDG PET-CT can be 
performed where elevated metabolic activity can be appreciated but some tumour 
subtypes require other radioactive tracers to be detected. 

Staging of lung cancer is commonly done with PET-CT, which is especially 
beneficial to patients with non-small-cell lung cancer where more than half of the 
patients obtain a different staging [57] and one out of five patients avoid 
unnecessary surgery [58] compared to workups not using PET. TLG, calculated as 
SUVmean x metabolic tumour volume, is an emerging imaging biomarker that can 
predict outcome in patients with NSCLC [59, 60]. 

Treatment is usually but not limited to surgery, among other treatments are 
chemo-, radio-, immuno- and laser therapy. The 5-year survival rate is 21% [47]. 
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Rationale 

The usage of PET-CT examinations has undergone rapid growth since the turn of 
the millennium, the first PET-CT system was used in 1984 at Gunma University in 
Japan [61]. The number of performed [18F]PET-CT examinations per year has been 
growing 5-15% annually in Sweden for the last ten years [62]. Being a quantitative 
modality, physicians need to assess the activity, often comparing with reference 
organs in order to appreciate if the activity corresponds to a pathologic process. 
Sometimes the so-called hotspots of suspected disease have similar uptake 
compared to the reference organs which necessitates more accurate measurement 
and comparisons of SUVs, which is time consuming and require precise 
segmentation. 

In lymphoma monitoring, Deauville score is used to determine the treatment 
response in tumours, the score is based on the comparisons of several SUVs. TLG 
is an emerging tumour marker which has shown to be useful in the prognostication 
and evaluation of treatment response in cancer patients [63]. To calculate TLG, 
precise tumour volume and SUV measurement is needed. 

The repeated use of PET-CT examinations poses a risk for the patient in terms of 
radiation, this is particularly true for patients with malignant melanoma, colorectal 
and anal cancer, who usually undergo multiple scans for staging, treatment response 
and follow-up after end of treatment [64-68]. 

The use of computational power and AI could potentially alleviate these problems 
and is explored upon in this doctoral thesis with the included studies. The focus has 
been placed on investigating feasibility of the usage of custom-made AI methods in 
imaging situations, where physicians can use these tools to make their workflow 
more effective, obtaining precise measurements of SUV and TLG, enhancing image 
quality and provide benefits for the patient by reducing radiation. 
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Objectives 

The main objectives of this thesis were:  

1) To demonstrate the time saving quality and reproducibility using a semi-
automatic AI method for calculation of SUVmax of abnormal lesions in serial 
PET-CT studies compared with manual method. 

2) To investigate whether using a novel state-of-the-art SiPM-based PET-CT 
with QC reconstruction (which complies with the 2019 EARL 
recommendation) affects DS compared with reconstructions meeting the 
previous EARL harmonizing standard in patients with lymphoma. 

3) To develop a completely automated AI method for the detection of lung 
cancer in [18F]FDG PET-CT images and automatically measure the TLG 
compared with manual measurements. 

4) To investigate if image quality of BSREM reconstructed images obtained 
with short and standard acquisition times can be improved using a CNN 
trained on images acquired with a long acquisition time. 
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Materials and methods 

Study populations 
This thesis recruited patients from research databases established by Skåne 
University Hospital Malmö/Lund and Sahlgrenska University Hospital in 
Gothenburg, Sweden. The examinations in the databases consists of clinically 
indicated examinations from patients that have provided written consent to be 
included in the database. 

In Paper I, patients with lung cancer or lymphoma who had undergone two serial 
[18F]FDG PET-CT studies between July 2008 and January 2010 at Skåne University 
Hospital in Malmö were included retrospectively. Inclusion criteria were defined 
for pathological lesions: 1. Sharp contrast to surrounding areas 2. No formation of 
a large conglomerate mass 3. Presence of lesion in both examinations. 
A total of 16 patients were included, 10 lung cancer and 6 lymphoma patients. Each 
patient had one to four pathological lesions, which in total was 26 lesions. 

In Paper II, patients diagnosed with lymphoma who had undergone an [18F]FDG 
PET-CT study between November 2017 and March 2018 or August 2018 to October 
2018 at Skåne University Hospital in Malmö or Lund were included prospectively. 
The split dates were due to a shortage of cases in the first period and so a decision 
was made to collect more. Furthermore, our research databases do not store 
examinations in list-mode by default, therefore we were unable to recover patients 
between the two time periods. Patients referred for baseline PET, interim PET, end 
of treatment PET and suspicion of recurrence were included. Patients were required 
to have SUV uptake in the lymphoma lesions on PET (DS 2-5) and a corresponding 
lesion on CT. A total of 52 patients were finally included in the study. 

In Paper III, patients who underwent clinically indicated [18F]FDG PET-CT due to 
suspected lung cancer or for the management of known lung cancer between April 
2008 and December 2010 at Sahlgrenska University Hospital in Gothenburg were 
included retrospectively. In the selection process, three patients were excluded 
because of centrally located tumour, likely sarcoid disease and mediastinal tumour. 
A total of 112 patients were included and was divided into a training group (59%; 
n=66), a validation group (20.5%, n=23) and a test group (20.5%; n=23). 

In Paper IV, patients referred for clinical [18F]FDG PET-CT at Skåne University 
Hospital, Malmö or Lund, were included in the study. Seventy-two of the patients 
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were included prospectively (December 2019 to March 2020) and used for training 
the CNNs. A separate set of 25 patients was included retrospectively (April to June 
2018) and were used to evaluate the algorithms. 

PET-CT 
All patients underwent an intravenous injection of 4 MBq/kg body weight of 
[18F]FDG after at least 4 hours fasting and at a glucose level ≤ 10 mM. Imaging was 
performed 60 minutes after administration from the mid-thigh/inguinal region to the 
base of the skull. The patients were scanned with 5-10 bed positions, depending on 
the length of the patient. 

In Paper I, one Philips Gemini TF was used. Acquisition time per bed position was 
2 min with blob-ordered-subset time-of-flight, a row-action maximum-likelihood 
algorithm, as PET reconstruction method. 

In Paper II, three Discovery MI (GE, Healthcare, Milwaukee, WI, USA) were used. 
Acquisition time per bed position was 1.5 min with QC (ß500) as PET 
reconstruction method. 

In Paper III, one Siemens Biograph 64 Truepoint was used. Acquisition time per 
bed position was 1.5 min with OSEM as PET reconstruction method. 

In Paper IV, four Discovery MI (GE, Healthcare, Milwaukee, WI, USA) were used. 
For the CNN training group, one of the bed positions had an acquisition time of 6 
min and the rest were 1.5 min each (the 6 min acquisition was used for training). 
The images of the patients in the test group were acquired with a time per bed 
position of 4 min for all bed positions and stored in list-mode. BSREM was used as 
PET reconstruction method. 

Basic AI 
In Paper I, basic AI-tools were used. To co-register CT images, a rigid registration 
algorithm was used, the CT images were reduced in size, blurred, thresholded and 
then overlaid to compare pixels with the formula:  𝑒𝑟𝑓 (𝑖, 𝑗)( , ) = |𝐼𝑀 (𝑖, 𝑗) − 𝐼𝑀 (𝑖, 𝑗)|  (1) 

One of the images is repositioned and the formula is applied again to calculate the 
pixel error. The process is reiterated with less size reduction and blurring each time.  
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The reader marked an arbitrary pixel of a pre-determined pathological lesion in one 
of the two PET studies. After this manual step, the program automatically detects 
the corresponding lesion in the second PET study. The reader’s mark in the first 
PET study has a corresponding location in the first CT study, provided that PET and 
CT images were correctly aligned from the PET-CT camera. The corresponding 
location in the second CT study was defined using the matching by the software and 
the corresponding location in the second PET study was defined.  
The volumetric segmentation of the pathological lesions was made in the PET 
images. The reader’s mark in the first PET study and the corresponding location in 
the second PET study were used as seed points for the segmentation using the graph-
cut algorithm. SUVmax in the entire lesion was then calculated automatically and the 
segmentations were presented to the reader. Semi-automatic analysis was done on a 
standard laptop computer. 

Advanced AI 
The Research Consortium for Medical Image Analysis (RECOMIA) has an online-
platform which is used to facilitate to collaboration between medical and AI-
researchers with the use of AI-tools to aid in scientific experiments [69]. Among the 
platform’s multiple functions, annotation of organs and pathology, quantification 
and deep learning-based tools were relied upon in Paper II and III. 

For Paper II, the tool was used to semi-automatically segment the liver and 
mediastinal blood pool and manually segment lymphoma lesions in order to 
calculate Deauville scores. For Paper III, manual segmentation of lung lesions was 
used as gold standard and compared with the AI’s segmentation and TLG. 

AI models 
Two CNNs were used in Paper III, one which segments organs and one that detects 
lesions. The organ segmentation CNN (Figure 6) has an architecture inspired by the 
popular U-Net [39]. In the pre-processing step of the CT images, Hounsfield values 
are clamped to [− 800, 800] and divided by 800, resulting in an input with values in 
the range [− 1, 1]. To train the CNN, 339 CT examinations with approximately 
13.000 manual organ segmentations were divided into a training (80%) and 
validation (20%) set. The final post-processing step for all organ labels consists of 
extracting the largest connected component and filling holes in that component. 
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Figure 6. The convolutional neural network structure used in RECOMIA. 
Two different filter sizes are used to compensate for anisotropic voxel sizes and producing an approximately cubic 
field of view. (Image by Olof Enqvist, reproduced with permission.) 

The Detection CNN was trained the same way as the previously described CNN. 
Since exact delineation of lesions is virtually impossible, mimicking the exact 
boundaries of the annotations is not relevant. Thus, any voxels within 10 mm from 
the annotated lesions are marked as “don’t-care”. This means that when computing 
the loss function, there is no loss for these voxels regardless of the output label. For 
the remaining voxels the standard negative log-likelihood loss was used. Naturally, 
this leads to a slight over-segmentation of the lesions, but as detection was the main 
goal, this was considered acceptable. 

In Paper IV, a denoising CNN suitable of image enhancement [70] with 10 
convolution layers with a 256 x 256 x 5 matrix input was used. Each convolution 
layer consists of 68 3 x 3 x 3 filters except the first and last layer which consist of 
one 3 x 3 x 3 filter. A linear rectifier was used after each convolution layer except 
the last one. A mean squared error loss and a stochastic gradient descent optimizer 
was used. 

List-mode data from the bed position with a 6 min scan time were extracted from 
each of the 72 patients in the training group. From the list mode data, 1 image set 
for 6 min and 4 image sets for 1 (first, second, third and fourth minute) and 1.5 min 
(6 min divided in 4 intervals) was reconstructed with the BSREM algorithm, 
respectively. For the 1 and 1.5 min images, a ß of 500 was used, and a ß of 200 was 
used for the 6 min image. Two sets of training pairs were composed, pairs with 1 
and 6 min images and pairs with 1.5 and 6 min images. 10 pairs of training images 
were extracted from the 50 centremost slices from all patients – these were further 
divided into 10 subsets, each comprising a 3D volume sized 
256 x 256 x 5. Furthermore, each reconstruction (1 and 1.5 min) were randomly 
resized, sheared and flipped in two dimensions, resulting in 5 additional samples. 
The total training pairs for each of the two training sets were (subsets x patients x 
reconstructions x samples) 10 x 72 x 4 x 6 = 17.280. Two networks were trained: 
one for images acquired with 1 min and the other for 1.5 min/bed position. 
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Statistical analyses 
All statistical analyses were performed by the principal author aided by the co- 
authors using IBM SPSS Statistics (Armonk, NY, USA). Bland-Altman plots were 
produced in Microsoft Excel (Redmond, WA, USA). In all papers, continuous 
variables and their distributions are presented as means with standard deviations 
(SD) and categorical variables are characterized by percentages or numbers. 

In Paper I, intraclass correlation was used to calculate interobserver reproducibility. 
Bland-Altman analysis was conducted to assess the level of SUVmax agreement 
between segmentation methods. 

In Paper II, Friedman’s test was used to compare DS between the three 
reconstruction methods for SUVmax and SUVpeak, respectively. Significant p-value 
was set at p<0.05. Post-hoc Wilcoxon ranked-mean test was conducted with a 
Bonferroni correction applied, resulting in a significance level set at p < 0.0167. 

In Paper III, Bland-Altman analysis was conducted to assess the level of TLG 
agreement between segmentation methods. Correlation between manual and AI-
based TLG was assessed using Pearson correlation coefficient. The two analyses 
were repeated after removing an outlier. 

In Paper IV, Friedman’s test was used to compare quantitative data for SUVmax, 
SUVpeak and COV measurements in all 5 reconstructions. Significant p-value was 
set at p<0.05. Post-hoc analysis with Wilcoxon signed-rank test was conducted with 
a Bonferroni correction applied, resulting in a significance level set at p<0.005. 
Since there were 5 reconstructions, each measurement group resulted in 10 
comparisons and thus significant p-value was calculated as 0.05/10 = 0.005. 

Kruskal-Wallis test was applied to each investigator’s results for the investigation 
of potential difference between the groups. Post-hoc testing with Mann-Whitney U 
tests were performed on all pairwise groups for each reader which resulted in 10 
comparisons per reader. Thus, when Bonferroni correction was applied significant 
p-value was calculated as less than 0.05/10 = 0.005. 

Ethics 
All the studies presented in this thesis were carried out in accordance with the 
Declaration of Helsinki. Paper I, II and IV were approved by the Regional Ethical 
Review Boards at Lund University. Paper III was approved by the Regional Ethical 
Review Boards at Gothenburg University. All patients provided written informed 
consent.  
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Results 

Main findings of Paper I 
Bland-Altman’s 95% limits of agreement were 0.46 to -1.88; 0.77 to -1.92 and 0.23 
to -1.31 for each reader (Figures 7-9). Manual and semi-automatic method agreed 
in all cases whether SUVmax had increased or decreased between serial studies. The 
average time to measure SUVmax changes in two serial PET-CT examinations was 
four to five times longer for the manual method compared with the semi-automatic 
method for all readers (reader 1: 53.7 vs. 10.5 s; reader 2: 27.3 vs. 6.9 s; reader 3: 
47.5 vs. 9.5 s; p < 0.001 for all). 

 

Figure 7. Bland-Altman plot for reader 1. 
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Figure 8. Bland-Altman plot for reader 2. 

 

Figure 9. Bland-Altman plot for reader 3. 
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Main findings of Paper II  
There was a significant difference in DS between the QC algorithm and 
EARLlower/EARLupper (p < 0.0001 for both) but not between EARLlower and 
EARLupper (p = 0.102) when SUVmax was used. For SUVpeak, there was a significant 
difference between QC and EARLlower (p = 0.001), but not for QC vs EARLupper (p 
= 0.071) or EARLlower vs EARLupper (p = 0.102). Five non-responders (DS 4–5) for 
QC were classified as responders (DS 1–3) when EARLlower/EARLupper was used, 
both when SUVmax and SUVpeak were investigated. A graphical overview is seen in 
Figure 10. 

 

 

Figure 10. Diagrams of pairwise comparisons between reconstruction algorithms. 
Numbers in coloured semi-circles represent n cases that had concordance, discordance and major discordance, 
respectively, when comparing reconstruction algorithms pairwise. For SUVmax, post-hoc analysis with Wilcoxon 
signed-rank test with Bonferroni correction, QC compared to EARLlower and EARLupper respectively yielded significant p 
value but not for EARLlower compared to EARLupper. For SUVpeak, only QC compared to EARLlower yielded significant p 
value.  
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Main findings of Paper III  
The AI-tool’s performance in detecting lesions had a sensitivity of 91%. One small 
lesion was missed in two patients where both had a larger lesion which was correctly 
detected. The positive and negative predictive values were 88% and 100%, 
respectively, on a patient basis. The correlation between manual and AI TLG 
measurements was strong (R2 = 0.74). Bias was 42 g and 95% limits of agreement 
ranged from -736 to 819 g. Agreement was particularly high in smaller lesions. 
Figure 11 shows an example of a tumour that was difficult for the AI to segment, 
probably due to the complex nature of the tumour, including areas of necrosis. 

 

Figure 11. Large lesion with complex necrosis in the right lung. 
a) axial CT with lung window. b) axial PET. c) fused axial PET-CT with overlaying segmentations; manual only (red), 
AI-only (blue) and manual + AI (yellow). d) fused axial PET-CT. 

Main findings of Paper IV  
There was no significant difference in hotspot SUVmax/peak between the standard 1.5 
min and 1.5 min CNN images. Coefficient of variation (COV), i.e. the noise level, 
was lower in the CNN enhanced images compared with standard 1 min and 1.5 min 
images. Physicians ranked the 1.5 min CNN and the 4 min images highest regarding 
image quality (noise and contrast) and the standard 1 min images lowest. Examples 
of the image sets are seen in Figure 12. 
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Figure 12. Transaxial PET images of the upper abdomen and midline sagittal images of the image sets in the 
test group. 
Noise in the liver increases as scan time per bed position is decreased, both corresponding CNN series have 
markedly less noise in the liver. (Screenshots by Elin Trägårdh.) 
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General discussion 

There is a demand for objective and standardised methods when it comes to 
quantifying imaging studies [43]. The literature shows that when radiologists 
evaluate findings differently it inevitably leads to divergent patient management 
[71]. The evolvement of new guidelines by international imaging societies may 
sometimes not be fully adopted by the institutes but instead undergo local 
adjustments for different reasons and in the end, there may still be problems with 
individual adoption and compliance [72]. The use of AI-tools could potentially 
ameliorate these problems. 

Since the publication of the first paper of this thesis (8 years ago), computational 
power has continued to increase exponentially in accordance with Moore’s law [73]. 
Quantification of data in PET exams has shown to aid in the characterization of 
morphology, staging, treatment evaluation and prognosis [44, 74]. Some of these 
data cannot be extracted by normal reading of the exam by a physician. AI can 
therefore not only aid the physician with normal tasks but also provide individual 
patient insight that is normally not available. 

Clinical implications 
Manual quantification of SUV metrics in PET-CT examinations is a repetitive and 
time-consuming task. SUV in lesions is often compared with reference organs 
which have variable values intrinsically and in between examinations. Paper I 
showed that AI was both faster and retained interobserver reproducibility and 
showed good agreement for its SUVmax measurements compared with manual 
method. This finding would enable secure and efficient measurements if introduced 
clinically, which was not available at that time. Since the study was published, 
commercial software suites have incorporated this type of functionality. 

With the introduction of newer PET scanners and reconstruction methods, special 
care must be considered with SUV measurements. In Paper II, the comparison 
between old and new EARL recommendations [75] led to different DS scoring 
which in turn could impact clinical management. Clinics that adopt new 
technologies must be aware that the literature surrounding DS is based on old 
technologies and thus the newer reconstruction methods are not validated with the 
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use of DS. Subsequent studies have demonstrated that the newer EARL 
recommendation results in increased SUVs up to 30% [76], which suggests that it 
could lead to changed DS classification compared with older EARL 
recommendations. To date, there is no clear evidence whether it is best to use DS 
obtained by newer hard- and software (such as the new EARL recommendations) 
or with older ones (such as the former EARL recommendations). Further clinical 
studies on patient outcome are needed to answer this question. 

PET-CT examinations are read by physicians that are specialised in radiology and / 
or nuclear medicine, sometimes two specialists read the PET and CT separately – 
this may lead to backlogs of unread examinations which causes a delay in patient 
management. In Paper III, AI was successful in obtaining 100% negative predictive 
value for lung cancer on a patient basis. This is beneficial in situations when 
prioritisation of examinations is needed, which saves time and improves patient 
care. 

The radiation exposure from an [18F]FDG PET-CT examination is higher than what 
a CT examination would be. The limited spatial resolution and inherent noisiness of 
PET images are two factors that can contribute to difficult assessments. In Paper IV 
it was discovered that AI-enhanced PET images compared with standard images 
(ß500, 1.5 min scan time per bed position) outperformed in qualitative metrics (less 
noise and increased contrast) whilst retaining quantitative (SUVmax/peak) metrics. 
This opens up the possibility of providing better images to physicians or reducing 
acquisition time/administered activity. 

Methodological discussion and limitations 
SUV from manual and AI measurements can sometimes have inherent inequalities. 
In Paper I, manual measurements were done on a Philips workstation with 
accompanying Philips software suite where images are interpolated, whereas the 
AI-tool was created in MATLAB without interpolation of images which most likely 
resulted in a systematic error. This is unavoidable as it is not possible to obtain the 
details of the post-processing Philips use in their software. 

Measuring how long it takes to extract SUVmax from pre-defined lesions is only a 
fraction of what it actually takes a physician to read a PET-CT exam but 
demonstrates a common repetitive task for nuclear medicine physicians. A digital 
stopwatch was controlled by each reader to record the time which introduces the 
possibility of small variations between the start of the clock and measurement and 
between obtaining the measurement and stopping the watch. The sample size was 
likely enough to smooth out these variances. Also, the expected difference (more 
than double) allows for the use of a digital stopwatch. 
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Selection bias of lesions that were small to medium in size with clear boundaries 
likely contributed to the almost-perfect reproducibility for both manual and AI 
measurements. Other studies at the time [77, 78] had similar inclusion criteria due 
to the known fact how segmentation tools were functioning at the time. 

Paper II is unique when it comes to calculating Deauville score. AI was used to 
semi-automatically segment the reference organs completely (excluding lesions), 
instead of placing an arbitrary ROI/VOI in reference organs or evaluated visually 
which is usually done clinically. The latter methods may be difficult to assess if 
tumour-to-organ ratio is near 1:1. Complete segmentation of the organs increase the 
probability of calculating the true SUVmax or SUVpeak. 

Similar studies [79, 80] have not found a difference in DS classification when 
comparing OSEM with newer technologies such as PSF and reconstruction 
algorithms e.g. BSREM/QC. The problem is that within older and newer 
reconstruction algorithms it is possible to set parameters that influence the noise 
level and thus also SUV. It is known that BSREM and modern hardware 
improvements such as time-of-flight and point-spread function increase SUV [27], 
so it was natural to suspect that it would also affect DS classification. There are 
limitations in our study, firstly the sample size was small and monocentric. 
Secondly, the indication for the PET-CT exam did not matter for inclusion in order 
to increase sample size even though Deauville score is mostly used in interim PET 
and end of treatment PET exams. 

It would be of interest to compare the upper and lower limits of the new EARL 
recommendations, but for our PET-CT system, longer acquisition times are 
necessary to reach the new upper limit, which was not feasible for the current study. 

In Paper III, TLG agreement between AI and manual calculation was analysed with 
Bland-Altman plots in order to visualise if agreement was dependent on TLG levels. 
Disparities may arise if the AI has included FDG-avid structures adjacent to the 
lesion or in tumours with complex necrosis pattern. We chose to opt-out tumours 
that had a large portion growing into the hila and mediastinum but kept tumours that 
were growing slightly into the hila and tumours with complex necrosis. One way to 
compare segmentation correlation between a proposed new technology (AI) and 
ground truth (manual segmentation) is to calculate the intersection over union (IoU) 
or Dice’s coefficient. Arguably, if the AI’s segmentation has excellent correlation 
with the manual segmentation, then TLG should also have similar correlation. 
Optimally, a fully automatic AI would have correlation scores close to 1 (perfect 
overlap) for both IoU and Dice’s coefficient. However, most lung tumours detected 
with PET-CT are relatively small and might skew these correlative analyses. In 
reality, manual segmentations by expert readers do not have perfect overlap. 

In Paper IV, AI was used to improve the PET image as a post-processing step after 
reconstruction. Evaluating image quality visually can only be done with readers and 
with that comes subjectivity. In order to mitigate this, a training/calibration session 
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was held before individual scoring. Readers used the clinical reconstruction as 
baseline (score = 3) and scored the reconstructions on a scale from 1 to 5. A senior 
radiology resident was included as a reader, in contrast to two senior nuclear 
medicine physicians, but ranked the reconstructions similarly. 
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Conclusions 

Paper I 
AI measurement of SUVmax is up to 5 times faster, has almost-perfect reproducibility 
and good agreement compared with manual methods. 

Paper II 
DS classification can change depending on the choice of reconstruction method, 
specifically between the old and new EARL recommendations. The latter was more 
prone to classify patients as non-responders. 

Paper III 
AI can be used to detect lung lesions with high sensitivity and has high negative 
predictive value on a patient basis. 

Paper IV 
AI can enhance BSREM reconstructed [18F]FDG PET examinations to reduce noise 
and increase contrast compared with standard images whilst keeping SUVmax/peak 
stability and decreasing the COV. The improved image quality can potentially be 
used either to provide better images to physicians or to reduce acquisition 
time/administered activity. 

  



48 

  



49 

Future perspectives 

Although feasibility of using AI to aid nuclear medicine physicians has been shown 
in multiple studies, implementation into major software suites is slow. The number 
of PET-CT exams is increasing yearly, but the amount of expert readers is not 
keeping up with the growth. Therefore, it is important that work is also progressing 
in other domains such as software development, laws and education to facilitate the 
use of AI in clinical practise. 

New hardware and reconstruction methods will continuously improve the spatial 
resolution of PET exams. When these technological upgrades have an impact on 
grading systems such as Deauville score, it would be interesting to see if these 
predict overall survivability with greater accuracy in larger cohorts. Quantification 
of underlying parameters should also be standardised and used more often instead 
of visual interpretation. 

Further investigation into AI-models that are capable of segmenting complex 
tumours with growth into the mediastinum or with necrosis is needed. Calculation 
of TLG in these tumours remains a difficult and time-consuming task if done 
manually. An automatic solution could provide individual prognosis in the future. 
Guidelines and prognostic biomarkers like TLG which rely on quantitative rather 
than visual measurement will likely have a greater chance at adoption by image 
reading experts. 

The feasibility of enhancing PET images with AI in different ways, enabling lower 
injected dose of radioactive tracers is positive and may lead to wider application of 
the modality. But the progress must be accompanied with validation studies that 
compare the sensitivity and specificity of these novel methods with the current 
standard. 

The state of AI research today in imaging is focused on solving specific problems 
or tasks aimed at specific datasets. A general AI which is able to independently 
formulate research questions, analyse and solve these on its own is commonly 
referred to as technological singularity – such technology would not only make 
researchers and imaging specialists obsolete but also give rise to existential risks for 
humankind. 
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Errata 

Paper I 
The authors have discovered that the wrong abstract was published and that there 
was a mistake regarding the limits of agreement in Figure 2 (in the manuscript of 
Paper I). Please find the correct abstract below and the correct limits of agreement 
in Figures 7-9 in this thesis. The correct results further strengthen the conclusion.  

Correct abstract 
Background: Changes in maximum standardised uptake values (SUVmax) between 
serial PET-CT studies are used to determine disease progression or regression in 
oncologic patients. To measure these changes manually can be time consuming in a 
clinical routine. A semi-automatic method for calculation of SUVmax in serial PET-
CT studies was developed and compared to a conventional manual method. The 
semi-automatic method first aligns the serial PET-CT studies based on the CT 
images. Thereafter, the reader selects an abnormal lesion in one of the PET studies. 
After this manual step, the program automatically detects the corresponding lesion 
in the other PET study, segments the two lesions and calculates the SUVmax in both 
studies as well as the difference between the SUVmax values. The results of the semi-
automatic analysis were compared to that of a manual SUVmax analysis using a 
Philips PET-CT workstation. Three readers did the SUVmax readings in both 
methods. Sixteen patients with lung cancer or lymphoma who had undergone two 
PET-CT studies were included. There was a total of 26 lesions.  

Results: Bland-Altman’s 95% limits of agreement were 0.46 to -1.88; 0.77 to -1.92 
and 0.23 to -1.31 for each reader. Manual and semi-automatic method agreed in all 
cases whether SUVmax had increased or decreased between serial studies. The 
average time to measure SUVmax changes in two serial PET-CT examinations was 
four to five times longer for the manual method compared to the semi-automatic 
method for all readers (reader 1: 53.7 vs. 10.5 s; reader 2: 27.3 vs. 6.9 s; reader 3: 
47.5 vs. 9.5 s; p < 0.001 for all).  

Conclusions: Good agreement was shown in assessment of SUVmax changes 
between manual and semi-automatic method. The semi-automatic analysis was four 
to five times faster to perform than the manual analysis. These findings show the 
feasibility of using semi-automatic methods for calculation of SUVmax in clinical 
routine and encourage further development of programs using this type of methods.  
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Correct Bland-Altman’s limits of agreement 
Fig. 2A: Reader 1, 95% limits of agreement 0.46 to -1.88. 

Fig. 2B: Reader 2, 95% limits of agreement 0.77 to -1.92. 

Fig. 2C: Reader 3, 95% limits of agreement 0.23 to -1.31. 

Paper II 
In Paper II, it was stated that patients were recruited retrospectively, which is 
incorrect – the study was done prospectively. 
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