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1 Introduction 

An examination of the environment that is associated with our modern lifestyle 
reveals that most of us are frequently exposed to materials that could 
potentially give rise to adverse health effects. Yet, many are unconcerned of 
the risks and are rarely affected by their manifestations (OECD 2020a; OECD 
and EU 2018; WHO 2016). The apparent safety of our surroundings is not a 
circumstance that has arisen only by chance but stems from an understanding 
of the toxic properties that can be attributed to different substances and a 
deliberate appliance of that knowledge to enforce public safety. Nevertheless, 
the understanding of toxicological mechanisms is not complete, which when 
combined with a continuous strive towards producing novelty, presents several 
challenges.  

A significant challenge concerns the identification and the characterization of 
potentially harmful effects that can be assigned to chemicals. This task is often 
aided by the utilization of tools and assays designed to assess specific 
properties or hazards, which can be based on e.g. computational analysis or by 
studies examining the exposure induced effects on test animals (Rowan and 
Spielmann 2019). The toxic effects that chemicals can induce are numerous 
and include complex endpoints such as reproductive and developmental 
toxicity, carcinogenicity, or skin sensitization (Parasuraman 2011). 
Traditionally, these endpoints have been evaluated using animal models 
(Council 2006). However, there are several issues associated with the 
application of in vivo assays for toxicological analysis, including ethical 
concerns, high costs, and low throughput. This has led to an increase in the 
scientific aspiration to develop novel non-animal assays, which is further 
fuelled by the growing general opposition towards animal experimentation. 

The publication of the book “The principles of humane experimental 
technique” by Russel and Burch in 1959 (Russell and Burch 1959) constitutes 
an early and important event for conceptualizing guiding principles of animal 
experimentation. In the work, the authors introduce the principles of the 3Rs, 
which emphasize that new test methods should aim towards either Replacing 
existing animal methods, offer a Refinement of current methods (i.e. resulting 
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in less painful and stressful experiments), or Reduce the number of animals 
required for an analysis. The 3Rs have been integrated into scientific, public, 
and regulatory fields, and have come to influence the handling of experimental 
animals, experimental design, and also spurred the development of novel test 
methods (Stephens and Mak 2014). In addition, several legislative incentives 
that promote the development of non-animal assays have been introduced, such 
as restrictions or bans on the use of animal methods within certain industries 
(Taylor and Rego Alvarez 2020). 

Even so, the toxicological endpoints of interest are represented by complex 
biological mechanisms, several of which have yet to be effectively represented 
by alternative test methods, resulting in a persistent need to utilize animal 
models for many purposes. Thus, this should encourage the continued 
development of non-animal assays. Many interesting initiatives have been 
made to increase the understanding of toxicological testing using modern 
technologies and mechanism-based approaches. One of these is the U.S. Tox21 
program (Council 2007; Krewski et al. 2010), which aims to improve the 
development and understanding of toxicological assays by employing high-
throughput screening with computational techniques to enable assessment and 
prediction of chemicals’ hazards. Similarly, another consortium has 
established a database, referred to as the connectivity map (CMAP), that 
contains a large number of gene expression profiles that have been acquired 
following exposure experiments using thousands of perturbagens, which can 
be used to e.g. compare similarities in induced expression profiles between 
chemicals (Lamb et al. 2006; Subramanian et al. 2017).  

The approach and the design principles of the GARD (Genomic Allergen 
Rapid Detection) platform employ a similar mechanistic methodology, where 
induced molecular patterns are used to identify specific hazards of analysed 
chemicals. GARD is a platform that can be used to develop in vitro 
toxicological assays. It is characterized by transcriptomics-based analysis on 
data from cellular exposure experiments that have been performed on a 
purposely selected cell line, which enables the identification of genetic 
biomarkers that are predictive towards a specific hazard endpoint of interest. 
Identified biomarkers are processed using statistical learning to generate 
refined prediction models capable of optimizing discriminatory power. 
Currently, the GARD platform has been used to develop assays for hazard 
assessment of skin sensitizers, respiratory sensitizers, protein allergens, and 
respiratory irritants. 

This thesis aims to describe the technical aspects of the GARD platform, 
including the technologies that it incorporates and discuss how they contribute 
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to its performance. Further, two GARD assays will be presented in more detail. 
GARDskin was developed as an in vitro assay for hazard identification of skin 
sensitizers and papers I and II describe performance measures from two 
separate validation experiments; (I) an experiment where 72 chemicals were 
assayed blindly and (II) a ring trial experiment designed to assess predictive 
performance and reproducibility. The second assay is GARDpotency, which 
was developed for potency assessment of skin sensitizers. Paper III presents 
results from a GARDpotency ring trial experiment where predictive 
performance and reproducibility were examined. Finally, this thesis includes 
paper IV, which describes a novel normalization method that was designed for 
adjustment of batch effects that arise in predictive settings. 
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2 Hazard assessment of skin 
sensitizers 

2.1 Allergic contact dermatitis 

2.1.1 Overview 
Allergic contact dermatitis (ACD) is a delayed type hypersensitivity reaction 
that occurs in the skin upon repeated exposure to chemicals known as skin 
sensitizers (Kimber et al. 2002). The prevalence of ACD is high and figures 
close to 20% are typically reported to describe the fraction of individuals that 
are sensitized to chemicals (Alinaghi et al. 2019). Skin sensitizers can be found 
in common items such as personal care or household products, including 
fragrances, soaps, colouring dyes, jewellery, and cleaning agents (Jongeneel et 
al. 2018; Linauskienė et al. 2017; Minamoto 2010). ACD is also a common 
occupational health disease, where individuals within industries such as health 
care, cosmetology, cleaning, and certain types of manufacturing are at 
increased risk of becoming sensitized (Pacheco 2018). The symptoms 
associated with ACD include eczema and erythema, which typically occur at 
the site of exposure (Esser and Martin 2017), though affected areas can also 
extend beyond the exposure site (Martin et al. 2011). The acquisition of skin 
sensitization occurs in two phases: a sensitization phase and an elicitation 
phase. The sensitization phase occurs first and is a pre-requisite for a 
subsequent elicitation. During sensitization, a chemical skin sensitizer induces 
the engagement of both the innate and the adaptive immune system, leading to 
the generation of allergen-specific memory T-cells. The elicitation phase 
ensues upon repeated exposure to the same chemical and is characterized by 
effects induced by the previously generated memory T-cells that recognize the 
allergen, eventually giving rise to the associated symptoms.  

ACD is a widespread ailment that is accompanied with a set of distressing 
symptoms. Further, once an individual has become sensitized to a chemical, 
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avoidance from exposure to the compound is necessary since the condition 
cannot be cured. These issues make the objective of creating methods capable of 
accurately identifying chemicals with the potential to induce skin sensitization 
important, since it can proactively aid in the reduction of hazardous exposure. 

2.1.2 The skin 
The skin is a multifaceted organ responsible for providing protection against 
exogenous factors and is thus an important component when attempting to gain 
an understanding of the mechanisms influencing the induction of ACD. The 
skin comprises the initial obstacle that a potential skin sensitizer needs to 
penetrate to induce sensitization. In addition, it also constitutes the site where 
several important events transpire during both the sensitization and the 
elicitation phase. 

The skin is typically divided into three distinct layers, the hypodermal-, the 
dermal-, and the epidermal layer (Agarwal and Krishnamurthy 2020). The 
epidermal layer is the outermost layer of the skin and provides the main barrier 
function against external agents (Boer et al. 2016). The epidermis can be 
further divided into sublayers, each with specific properties. The stratum 
corneum is the outward facing layer of the epidermis (Baroni et al. 2012). It is 
comprised of multiple layers of flattened corneocytes that are interspersed in a 
lipid-rich intercellular matrix (Proksch et al. 2008). Corneocytes are terminally 
differentiated keratinocytes that have lost their nucleus via a form of 
programmed cell death and mainly contain keratin and filaggrin enclosed 
within a cornified envelope (Proksch et al. 2008). The stratum corneum forms 
a hydrophobic protective layer that a potential skin sensitizer must penetrate to 
induce sensitization. Indeed, it has been generally believed that skin sensitizers 
must be comprised of small chemicals with molecular weights below 500 
Daltons and with logKow coefficients above 1 (Bos and Meinardi 2000; 
Gerberick et al. 2004a; Smith Pease et al. 2003). However, recent evidence has 
rebutted such stringent thresholds for sensitizing chemicals, and examples of 
chemicals exceeding either limit have been identified (Fitzpatrick et al. 2017a; 
2017b; Roberts et al. 2013). Further, evidence of sensitization towards proteins 
via route of skin exposure has also been observed (Izadi et al. 2015), suggesting 
that most compounds with an inherent ability to induce a sensitization reaction 
will probably do so in some cases. Additional layers of the epidermis are 
collectively referred to as the nucleated- or viable epidermis. These layers also 
mainly consist of keratinocytes, though other cell types can also be found. For 
example, Langerhans cells are present in the viable epidermis (Jaitley and 
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Saraswathi 2012) and are of interest when studying sensitization due to their 
functionality as a professional antigen presenting cell (APC). Indeed, 
Langerhans cells possess the ability to migrate from the epidermis into local 
lymph nodes to present sampled and processed antigens. However, their 
precise role in skin sensitization is still ambiguous (Deckers et al. 2018).  

The dermis is located underneath the epidermis and contains high levels of 
collagen, blood- and lymphatic vessels, and is host to a larger number of cell 
types compared to the epidermis (Tsepkolenko et al. 2019). These cells include 
fibroblasts, dendritic cells, macrophages, and mast cells (Tsepkolenko et al. 
2019). Further, additional cell types, such as neutrophils and T-lymphocytes, 
can migrate into the tissue during conditions where e.g. inflammatory and 
chemotactic molecules are secreted, which arise during exposure to skin 
sensitizers.  

Finally, the hypodermal layer is located beneath the dermis and mainly consists 
of adipose tissues (Fenner and Clark 2016). It forms a protective and isolating 
layer (Fenner and Clark 2016) but is of limited relevance for understanding the 
mechanisms of ACD. 

2.1.3 Mechanisms of skin sensitization 
The major mechanisms underlying the sensitization phase of ACD are 
generally agreed upon and an adverse outcome pathway (AOP) describing 
these events has been defined (OECD 2014). The AOP contains four key 
events, which depict the known steps that are required for sensitization to 
transpire. The first key event (KE1), or the molecular initiating event, describes 
the covalent binding of a low molecular weight chemical, or hapten, to skin-
residing proteins, forming an immunogenic protein-hapten complex. The 
second key event (KE2) describes the activation of keratinocytes, giving rise 
to the production and the release of inflammatory and chemotactic mediators. 
The third key event (KE3) consists of dendritic cell activation and maturation. 
During this step, dermal or epidermal dendritic cells become activated and 
mature, which leads to their migration from the skin tissue to draining local 
lymph nodes where they prime naïve T-cells. The fourth and final key event 
(KE4) of the AOP describes the activation, differentiation, and proliferation of 
T-cells, resulting in the generation of a repertoire of allergen-specific memory 
T-cells that can recognize the specific chemical upon renewed exposure 
(OECD 2014). However, even though a general understanding of the processes 
required for skin sensitization is established, there are still many details that 
remain elusive. 
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In order for sensitization to occur, the skin sensitizer needs to be able to engage 
both the innate and the adaptive immune system (Kimber et al. 2002). As a 
prerequisite for this, given that chemical sensitizers are generally too small to 
be immunologically active in themselves, the chemicals must typically be able 
to react with proteins and form conjugates. Most skin sensitizers are 
electrophilic compounds that can form covalent bonds with skin-residing 
proteins (Karlberg et al. 2008). However, some sensitizers do not initially 
possess this reactive property but can acquire it via either biotic activation (pro-
haptens), which requires the metabolic machinery of the cells, or abiotic (pre-
haptens) activation (Karlberg et al. 2013). Mechanisms that rely on the organic 
anion transport polypeptide family for transportation of pro-haptens into the 
cells, thereby enabling access to metabolic enzymes such as the cytochrome 
P450 enzymes, have been suggested (Martin 2012; Schiffer et al. 2003). 
Further, it has also been suggested that some pro-haptens can activate the aryl-
hydrocarbon receptor, which upregulates the expression of multidrug 
resistance proteins that could potentially facilitate release of the formed 
reactive metabolites (Martin 2012). In fact, the aryl hydrocarbon receptor 
pathway was identified as significantly affected during the discovery 
experiments of GARDskin (Johansson et al. 2011). 

It has been shown that the activation of the innate immune system depends on 
the chemicals’ capacity to generate endogenous danger signals, which usually 
arise as a product of their irritancy properties (Martin et al. 2011). Some of 
these danger signals, referred to as danger-associated molecular patterns 
(DAMPs), can interact with innate pattern recognition receptors (PRRs), which 
are present on multiple cell types including dendritic cells, macrophages, and 
keratinocytes, and trigger downstream signalling cascades. Common DAMPs 
include reactive oxygen species (ROS), low-molecular weight hyaluronic acid 
(HA) fragments, biglycan, and extracellular ATP (Ainscough et al. 2013). The 
mechanisms by which skin sensitizers induce DAMP formation are diverse and 
not fully recognized. For example, the mechanism by which ROS is generated 
is not completely established, but it has been hypothesized that skin sensitizers 
could have a direct effect on the cells’ antioxidant defence systems, i.e. 
abrogation of its function by depletion of intracellular levels of glutathione, 
which could facilitate the accumulation of ROS (Ferreira et al. 2018). Once 
formed however, the presence of ROS can contribute to the degradation of the 
extracellular matrix, giving rise to the production of additional DAMPs such 
as low-molecular weight HA-fragments and potentially also biglycan (Esser et 
al. 2012). Both of these DAMPs have been shown to function as endogenous 
ligands for TLR2 and TLR4 (Esser and Martin 2020; Moreth et al. 2014; 
Schaefer et al. 2005), which induce downstream signalling cascades via e.g. 
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nuclear factor kB (NF-κB), and can lead to the production of pro-inflammatory 
molecules such as pro-IL1B and pro-IL18. Increased extracellular levels of 
ATP is another recognized DAMP, which is thought to arise as a consequence 
of the irritant effect of skin sensitizers. Increased extracellular concentrations 
of ATP, which can be secreted by damaged cells, can be detected by the P2X7 
receptor (Savio et al. 2018). This interaction activates the NLRP3 
inflammasome, which in turn activates caspase-1 that cleaves the pro-
inflammatory molecules pro-IL-1B and pro-IL-18 to generate their active 
forms (Cassel and Sutterwala 2010; Di Virgilio et al. 2017).  

Another well-recognized pathway that has been shown to be activated by 
exposure to chemical skin sensitizers is the nuclear factor erythroid 2 related 
factor (NRF2) pathway, which constitutes a conserved cytoprotective 
mechanism (Baird and Dinkova-Kostova 2011). NRF2 activation can be 
attributed to the protein-reactive property of skin sensitizers (Helou et al. 
2019). In steady state, the repressor protein Kelch ECH associating protein 1 
(KEAP1) promotes the degradation of the transcription factor NRF2 via the 
ubiquitin proteasome system (Villeneuve et al. 2010). However, several 
accessible cysteine residues on the KEAP1 protein are sensitive to electrophilic 
attack, making it a potential target for modification by skin sensitizers (Natsch 
2009). The reaction between skin sensitizers and the keap1 protein disables its 
repressor functionality, enabling NRF2 to translocate and accumulate in the 
nucleus. There it associates with MAF-proteins and initiates transcription of 
several genes containing an antioxidant response element (ARE) domain in 
their promotor sequences, including NAD(P)H quinone oxidoreductase 1 
(nqo1), heme-oxygenase 1 (hmox1 or ho-1), superoxide dismutase (sod) and 
thioredoxin reductase 1 (txnrd1) (Helou et al. 2019; Natsch 2009). 
Interestingly, nqo1, hmox1 and txnrd1 are all present in the GARDskin 
prediction signature (Johansson et al. 2011). Activation of the NRF2 pathway 
has many downstream effects that regulate the inflammatory progression and 
occurs in multiple cell types during sensitization, including keratinocytes and 
dendritic cells. Its activation in keratinocytes are associated with improved 
proliferation and differentiation whereas it downregulates activation and 
maturation in dendritic cells (Helou et al. 2019). 

Following activation of dendritic cells, which is dependent on the generation 
of DAMPs and the succeeding interaction with PRRs, the phenotype of the 
cells is altered, which includes the upregulation of chemokine receptors, 
upregulation of major histocompatibility complex (MHC) II, upregulation of 
costimulatory molecules such as CD80 and CD86, and secretion of interleukins 
such as IL-12 and IL-6 (Blanco et al. 2008; Ryan et al. 2007). Activated 
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dendritic cells migrate to local lymph nodes where the sampled and processed 
antigens are presented to naïve T-lymphocytes (Joffre et al. 2009). A currently 
unresolved mechanism of the sensitization phase relates to the distinct 
differences in T-cell polarization that are observed between the responses 
induced by skin sensitizers and respiratory sensitizers. While both skin- and 
respiratory sensitizers share several attributes, such as protein reactivity and 
irritancy properties, they seem able to induce distinct T-cell populations 
(Kimber et al. 2014). Skin sensitizers are mainly thought to induce Th1/Th17 
and Tc1/Tc17 polarization, whereas respiratory sensitizers mainly induce Th2 
and Tc2 polarization (Kimber et al. 2018; Martin 2012; Sullivan et al. 2017). 
The T-cell polarization is dependent on the characteristics of the inflammatory 
environment and the presence of specific cytokines. For example, it is 
recognized that polarization towards type 1 T-cells is induced by e.g. IL-12 
and IFN-γ and towards type 2 T-cells by e.g. IL-4, cytokines which can be 
secreted by cells such as dendritic cells (Paul 2013). However, the detailed 
molecular mechanisms responsible for inducing the skewness in T-cell 
polarization are still not well-established. 

2.2 Test methods for assessment of skin sensitizers 

2.2.1 In vivo methods 
Traditionally, in vivo methods have been utilized to perform hazard assessment 
of skin sensitizers, and they are still of relevance (Daniel et al. 2018). Of these, 
guinea pig assays were among the earliest to be regularly used, some of which 
were initially proposed more than 50 years ago (Buehler 1965). Two notable 
guinea pig assays are the Buehler test (Buehler 1965) and the guinea pig 
maximization test (Magnusson and Kligman 1969). Both methods evaluate the 
skin sensitizing potential of chemicals by studying the elicitation phase of the 
condition. The Buehler test performs the induction phase (i.e. sensitization) by 
topical application of the test substance. In contrast, the guinea pig 
maximization test performs the sensitization by intradermal injections with or 
without a Freund’s adjuvant and occluded topical application of the test 
chemical. Both assays assess the elicitation reaction by the application of 
closed-patch tests (OECD 1992). However, today, they are typically 
considered superseded by the local lymph node assay (LLNA; (Dean et al. 
2001)).  
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The LLNA shifts the evaluation of the endpoint to the sensitization phase by 
measuring the proliferation of T-cells in local lymph nodes following topical 
application of a test chemical (Kimber and Basketter 1992; Kimber et al. 1994). 
The LLNA provided a step in the direction of the principles of the 3Rs by 
acting as a refinement of existing methodologies while also providing a more 
unbiased detection of positive test cases. The assay is performed by topically 
exposing mice to a test chemical. Following repeated exposures, draining 
lymph nodes are excised and the proliferation of T-cells are measured and 
expressed as a stimulation index (SI; (Frank Gerberick et al. 2007)). The SI is 
defined as a proliferation ratio where challenged samples are compared to 
vehicle controls, and a test is generally considered positive when the SI is 
above 3 (SI ≥ 3). Another advantage of the LLNA, which is also one of the 
attributes that enforces its current relevance, is that it allows for the assessment 
of chemicals’ relative potencies (Frank Gerberick et al. 2007). The relative 
potency of chemicals can be generated from the LLNA by running the assay 
in a dose-dependent manner. The dose-response relationship (response is 
represented by SI) can then be examined to estimate a minimum dose capable 
of rendering a positive outcome, i.e. an EC3 value. The attained EC3 value 
reflects the chemical’s potency, which can be informative for risk assessment. 

2.2.2 Non-animal alternatives 
A surge in the development of non-animal methods have been observed over 
the last decades with the aim of eventually replacing the need for in vivo 
methods (Ezendam et al. 2016). Today, several assays have reached the 
sophistication and level of performance that are required to become 
successfully formally validated and regulatory accepted for the hazard 
identification of skin sensitizers. These assays can be mapped to the key events 
in the AOP by their test principle, and the validated methods currently 
comprise the direct peptide reactivity assay (DPRA; (Gerberick et al. 2004b; 
Gerberick et al. 2007)) and the amino acid derivative reactivity assay (ADRA; 
(Fujita et al. 2014; Yamamoto et al. 2015)) for KE1, KeratinoSens (Emter et 
al. 2010) and LuSens (Ramirez et al. 2014) for KE2, the human cell line 
activation test (h-CLAT; (Ashikaga et al. 2006; Sakaguchi et al. 2006)),  the 
U937 cell line activation test (U-SENS; (Piroird et al. 2015)) and the 
interleukin-8 reporter gene assay (IL-8 Luc assay; (Takahashi et al. 2011)) for 
KE3. However, it is generally believed that none of the assays are in 
themselves sufficiently informative for adequately representing the complete 
system partaking in the processes of skin sensitization. Therefore, it is often 
recommended that several non-animal methods should be combined to ensure 
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that several key events are queried for hazard assessment (Kleinstreuer et al. 
2018; Strickland et al. 2016). Of note, the validated assays are only 
recommended for hazard identification of skin sensitizers, i.e. classification of 
chemicals as either skin sensitizers or non-sensitizers, and cannot be readily 
employed for potency assessment (Barentsen et al. 2019).  

Examining the different methods, DPRA and ADRA are both in chemico 
methods that were developed to assess the protein reactivity of test chemicals 
(OECD 2020b). For DPRA, synthetic heptapeptides containing cysteine or 
lysine residues are incubated with a test chemical, following which the amount 
of peptide depletion is measured using an HPLC system (Gerberick et al. 
2004b; Gerberick et al. 2007). The evaluation procedure for the more recent 
assay ADRA is similar but it evaluates residual concentrations of the cysteine 
derivative NAC (N-(2-(1-naphthyl)acetyl)-L-cysteine) and the lysine 
derivative NAL (α-N-(2-(1-naphthyl)acetyl)-L-lysine) post incubation, also 
using HPLC (Fujita et al. 2014). ADRA was proposed as an alternative to 
DRPA to mitigate certain limitations, including the oxidative sensitivity of the 
heptapeptides and the requirement for using high concentrations of test 
chemicals to enable detection of peptide depletion, which makes it difficult to 
assess chemicals with low solubility (Fujita et al. 2014; OECD 2020b; 
Yamamoto et al. 2015).  

The two methods assigned to KE2, i.e. keratinocyte activation, both monitor 
the activation of the NRF2 pathway by the utilization of a luciferase reporter 
gene (OECD 2018a). Following NRF2 activation, which as described can 
follow from KEAP1 incapacitation due to the interaction between protein 
reactive skin sensitizers and a number of accessible cysteine residues on 
KEAP1, the reporter luciferase gene is transcribed since it contains ARE-
domains in its promotor sequence (OECD 2018a). Produced luciferase can 
then be detected using luminescence analysis. 

Finally, for KE3, U-SENS and h-CLAT evaluate dendritic cell activation and 
maturation by monitoring the expression of dendritic cell maturation markers 
using flow cytometry (OECD 2018b). Specifically, U-SENS measures the 
expression of the costimulatory molecule CD86 (Piroird et al. 2015), and h-
CLAT measures CD86 and the intercellular adhesion molecule CD54 
(Ashikaga et al. 2006; Sakaguchi et al. 2006). Identification of skin sensitizers 
are made when a significant (above pre-specified thresholds) upregulation of 
the surface markers is observed following chemical exposure (OECD 2018b). 
The IL-8 Luc assay uses a THP-1-derived cell line (same as h-CLAT) but 
monitors IL-8 expression following exposure to a test substance (Kimura et al. 
2015; Takahashi et al. 2011). IL-8 is a chemotactic factor and cytokine that has 
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been identified as a dendritic cell maturation marker following exposure to skin 
sensitizers (Toebak et al. 2006). It has been described as transcriptionally 
regulated by several transcription factors including NF-κB and AP-1 
(Hoffmann et al. 2002) and post-translationally by NRF2 (Zhang et al. 2005). 
The IL-8 Luc assay uses a luciferase reporter gene that is under regulatory 
control of IL-8 promotors (Takahashi et al. 2011). 

In addition to the individual assays, several approaches with varying 
complexity for combining the outcomes of two or more assays have been 
examined and proposed, and guidelines for regulatory acceptance of defined 
approaches (DA) are currently under investigation (Kolle et al. 2020). 

2.2.3 GARDskin 
The GARDskin assay was the first assay to be developed using the principles 
of the GARD platform (Johansson et al. 2011). In fact, it was the creation of 
the assay that generated the main procedural steps that are currently associated 
with GARD. Therefore, it has also reached the furthest in terms of external 
validation and regulatory acceptance of the available GARD assays. Paper I 
describes the results from a performance assessment comprising the evaluation 
of 72 blinded test chemicals, and Paper II describes the results from the ring 
trial study that was performed to generate the results required for submission 
to be formally reviewed and validated by the European Centre for Validation 
of Alternative Methods (ECVAM). 

The development and implementation of GARDskin followed the 
methodology currently associated with GARD. An initial discovery study was 
carried out and genes capable of providing information that were predictive of 
skin sensitizing hazard were identified. Prior to the initiation of the experiment, 
a cell line was selected that was deemed suitable for the problem at hand, i.e. 
discernment between non-sensitizers and skin sensitizers. Given the current 
understanding of the sensitization phase, a dendritic-like cell line was selected 
to enable modelling of the dendritic cell activation and maturation step, which 
is key to link the innate response to the subsequent generation of allergen-
specific T-lymphocytes (Benvenuti 2016). Next, the set of reference chemicals 
destined to form the training dataset was selected. Attention was made to 
ensure that the set of chemicals was evenly balanced, i.e. that the dataset 
comprised a similar number of skin sensitizers and non-sensitizers. Further, 
the reactivity mechanisms of the included chemicals were examined to avoid 
selection bias, and it was made sure that both pre-haptens and pro-haptens 
(ethylenediamine, resorcinol, 1,4-phenylenediamine, 2-aminophenol, eugenol) 
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were included among the skin sensitizers. In addition, skin sensitizers were 
selected to include a wide variety of potencies, ranging from relatively weak 
compounds such as resorcinol or hexylcinnamic aldehyde to relatively strong 
sensitizers such as p-phenylenediamine or dinitrochlorobenzene. Finally, of 
the non-sensitizers, chemicals with known irritancy properties (e.g. tween 80, 
sodium dodecyl sulfate, octanoic acid, and phenol) were selected to reduce the 
risk of introducing confoundment among the experimental sources of variation 
in the dataset.  

Transcriptomic profiling was then conducted, using microarray analysis on 
samples acquired from cellular exposure experiments. Quantified data was 
mined for predictive genes and, after having combined a filter method based 
on the significance of evidence of differential expression with a backward 
elimination method to minimize the resampling error based on the Kullback-
Leibler divergence, a biomarker signature comprising 200 genes was identified 
(Johansson et al. 2011). Examining the genes in the signature, the relevance of 
some of the entities could be verified based on already established knowledge 
of the mechanisms associated with the sensitization phase. For example, cd86 
was one of the genes that had a well-established link to dendritic cell activation 
and maturation, since it constitutes a co-stimulatory signal required for T-cell 
activation. Indeed, as already discussed, CD86 expression comprise an 
important biomarker also for other non-animal methods (Ashikaga et al. 2006; 
Piroird et al. 2015; Sakaguchi et al. 2006). In addition to cd86, other examples 
include genes associated with NRF2 activation, such as nqo1, hmox1, and 
txrnd1. However, due to the nature of the experimental design, i.e. hypothesis 
generating, several other genes without clear prior implication in the 
sensitization mechanisms were also selected. In addition to studying individual 
genes, pathway analysis on the transcriptomic data was performed, and several 
pathways reflecting xenobiotic response mechanisms were identified 
(including the aryl hydrocarbon receptor pathway previously mentioned), 
which are relevant when considering the cellular perturbations used to generate 
the data. 

Thus, following establishment of the biomarker signature and initial internal 
validation of the genes’ predictive performance, the assay acquisition 
technology was transferred to the NanoString platform, the data pre-processing 
steps were optimized and defined, and it was shown that the assay was able to 
retain its discriminatory proficiency (Forreryd et al. 2016). Paper I describes 
the first extensive validation, which was performed with the aid of an external 
party, of the assay’s performance on a set of blinded chemicals following the 
transfer to the NanoString platform, and paper II describes the ring trial that 
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was performed in accordance with the OECD guidance documents to generate 
results required for submission to OECD for formal validation of GARDskin.  

Examining the predictive performance estimates obtained in the 
aforementioned papers, the GARDskin assay seems to stand as an efficient 
assay for hazard identification of skin sensitizers. In fact, the performance of 
GARDskin was recently compared to the, at the time, formally validated assays 
and the results indicated that the GARDskin assay performed favourably with 
generally higher performance figures (Roberts 2018). In addition, the assay 
was successfully transferred to two external laboratories and the 
reproducibility measures estimated from the ring trial were found to be similar 
to those of already validated assays (OECD 2018a; 2018b; 2020b), suggesting 
that the experimental protocols and the processing pipeline enable robust 
assessment of test chemicals. 

2.2.4 GARDpotency 
The pursuit of non-animal methods for hazard identification of skin sensitizers 
has led to the proposal and the development of several assays (OECD 2018a; 
2018b; 2020b), as already described. Despite this progress, there is a much 
smaller number of non-animal assays that have been developed for the purpose 
of hazard characterization (Ezendam et al. 2016), i.e. classification of 
compounds’ relative potencies. Because of this, in vivo methods are still 
required and the LLNA is currently recommended for generating potency 
information when other data sources are lacking, when assessing chemicals for 
the purpose of regulatory registration (Daniel et al. 2018). This makes the 
development of non-animal alternatives for potency assessment an important 
objective.  

The development and the design of GARDpotency emerged, in part, from 
observations made on data acquired during the discovery study of GARDskin. 
It was found in an extended data analysis that strong sensitizers tended to 
induce engagement of a larger number of pathways and signalling molecules 
compared to the relatively weak skin sensitizers (Albrekt et al. 2014), which 
gave rise to the hypothesis that this mechanism could potentially be exploited 
to develop an assay for potency assessment.  

The development of GARDpotency slightly strayed from the general 
procedures of the GARD platform. Specifically, the classification endpoint 
was adjusted between the discovery study and the final definition of the assay 
on the NanoString platform. The initial goal, by which the discovery study was 
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designed, was directed towards the development of an assay that could 
discriminate between compounds of different potencies as defined by the three 
potency categories of the Classification Labelling and Packaging regulation 
(CLP), i.e. non-sensitizers (CLP category: No Cat), weak skin sensitizers (CLP 
category: 1B), and strong skin sensitizers (CLP category: 1A) (Zeller et al. 
2017). To this end, a set of 86 chemicals were collected, while being careful to 
consider the chemical’s properties as described above for GARDskin, and their 
induced transcriptomic profiles were acquired using microarray analysis. The 
identification of the genetic biomarker signature was performed using a 
backward elimination algorithm that was based on the random forest 
classification algorithm (Diaz-Uriarte 2007; Díaz-Uriarte and Alvarez de 
Andrés 2006). Briefly, the genes were initially ranked by variable importance 
scores of a random forest model that was trained using all available genes. 
Then, the lowest ranking genes were recursively removed while the predictive 
performance was monitored. Eventually, an optimal performance was 
observed when 52 genes were retained in the prediction signature. The 
performance of the proposed model was assessed on a previously unseen test 
set comprising 18 chemicals resulting in an estimated classification accuracy 
of 78%, which was also very similar to the resampling error rates observed 
during model definition (Zeller et al. 2018). 

Paper III describes the work that was performed following the discovery study, 
which was aimed towards finalizing the definition of the assay and to assess 
its performance in terms of predictability and reproducibility. During the 
technological transfer, it was decided that the modelled endpoint would be 
altered to remove the apparent redundancy of modelling the No Cat category 
given the existence of GARDskin, which would potentially also simplify the 
predictive modelling by allowing the discrimination between two categories 
instead of three. Therefore, a tiered approach was suggested as an alternative 
to the initial design, where a test chemical with unknown skin sensitizing 
hazard property would first be tested in the GARDskin assay to classify it as 
either a non-sensitizer or a skin sensitizer. Whereas non-sensitizers would be 
given the class label No Cat without further testing, sensitizers would enter the 
second tier comprised of assessment in the GARDpotency assay to classify it 
as either a weak skin sensitizer or a strong skin sensitizer. Importantly, the 
combination of the two assays would be simple since the assays share 
experimental protocols and the same RNA sample could be analysed twice, i.e. 
only one experiment with cellular exposures would be required. 

Gene expression levels of samples in the training set were acquired on the 
NanoString platform and the signature was deemed to have retained its 
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predictive capability, displaying significant ability to separate the weak from 
the strong skin sensitizers in the dataset using both unsupervised 
dimensionality reduction techniques and resampling methods. However, 
another optimization was implemented during this stage of the development, 
which consisted in the incorporation of an additional predictor, i.e. a feature 
describing the chemicals’ exposure concentrations. Prior to the development 
of GARDpotency, it had already been observed that the chemicals’ exposure 
concentrations seemed to carry information of relevance for potency 
assessment. More specifically, when considering data from historical analyses 
in GARDskin, it was noticed that strong sensitizers tended to be assayed at 
lower concentrations compared to relatively weaker sensitizers (Johansson et 
al. 2017). Thus, with this information at hand, and with the familiar association 
between exposure amount and potency (e.g. EC3 values in the LLNA), it was 
added as an additional predictor for the modelling. Finally, a prediction model 
was defined using a support vector machine (SVM) and the assay was 
considered ready for a more rigorous performance assessment. 

A ring trial experiment was carried out to assess the performance of the 
GARDpotency assay and of the tiered approach comprising the combination 
of GARDskin and GARDpotency. The results revealed predictive accuracies 
that ranged between 76.5% to 94.4% between the participating laboratories 
when attempting to discriminate between weak and strong skin sensitizers (i.e. 
GARDpotency only), and between 75.0% and 92.6% for the tiered approach 
over the three CLP categories. The within laboratory reproducibility ranged 
between 62.5% to 88.9% and the between laboratory reproducibility was 
estimated to 61.1%. In conclusion, the performance estimates suggest that the 
GARDpotency assay could provide a useful tool for hazard characterization of 
skin sensitizers, and that potential future optimizations could favourably aim 
to reduce discrepancies between experiments. 

2.2.5 GARDskin dose-response 
One additional GARD assay has been developed for hazard characterization of 
skin sensitizers. It can be considered as an extension to the existing GARDskin 
assay. However, the objective of the method is, in contrast to either GARDskin 
or GARDpotency, to provide a quantitative endpoint measurement that can be 
used to infer the relative potency of individual chemicals’ potency. The 
proposed assay, termed GARDskin dose-response, is based on the protocols of 
GARDskin but performs the analysis in a concentration-dependent manner. 
The end goal of the analysis is to estimate the smallest chemical-specific 
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concentration capable of rendering a positive GARDskin prediction. This 
approach is in line with common toxicological practices and share the 
methodological principles employed by the LLNA to estimate EC3-values 
(Frank Gerberick et al. 2007). 

The development of the GARDskin dose-response assay comprised both the 
evaluation of the endpoint’s relevance and the adaptation of GARDskin’s 
protocol to enable efficient concentration-dependent acquisition. The protocol 
optimization follows from the need to make the assay viable in terms of time 
and cost expenditures that are associated with the experimental procedure. To 
facilitate the analysis of both queries, a dose-response experiment comprising 
approximately 30 chemicals of varying potency categorization were designed. 
For each chemical, several concentrations were run and GARDskin predictions 
were generated. It was found that linear interpolation between concentration 
levels predicted on adjacent sides of the GARDskin decision border (i.e. the 
SVM’s hyperplane) was effective for estimating the minimum concentration 
where a chemical could induce a positive prediction, henceforth referred to as 
cDV0 concentrations. Further, comparisons between the estimated cDV0 
concentrations with the chemicals’ expected potency measures, comprised of 
both LLNA EC3 values and human potency categories, showed statistically 
significant correlation. These results indicated that cDV0 values, estimated 
from the GARDskin dose-response assay, could indeed be informative of 
chemicals’ skin sensitizing potencies. 

In conclusion, the GARDskin dose-response assay is a method proposed for 
hazard characterization of skin sensitizers. Estimated cDV0 concentrations for 
the chemicals in the study showed significant correlation with existing potency 
properties, suggesting that the method could be a useful tool for generating 
information pertinent for e.g. subsequent risk assessments. Further, though 
additional data is required to substantiate the observed potency-associated 
information generated by the assay, it could provide a potential alternative to 
currently available in vivo assays. At the time of writing, details regarding the 
method, including the above-mentioned results, are being prepared in a 
separate manuscript. 
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3 The GARD platform 

3.1 The principles of GARD 
Today, the GARD platform encompasses a methodological framework for the 
development of toxicological assays. It has been designed via the ongoing 
application of ideas to solve aspects of, and contribute with information aimed 
towards aiding understanding of, relevant toxicological problems. The major 
procedural aspects of the framework were established during the development 
of the GARDskin assay, which was the first assay to be created and associated 
with the term GARD. During its development, many endeavours associated 
with the creation of novel experimental technologies were encountered and, in 
some regards, solved, which has allowed for the continuous forwarding of 
information, facilitating the development of novel assays targeting other 
toxicological endpoints, such as respiratory sensitization (Forreryd et al. 2015) 
or assessment of protein allergens (Zeller et al. 2018). Nevertheless, the field 
is vast and varied, and a multitude of opportunities remain to be explored, and 
the GARD platform could be a useful tool for such tasks. 

As discussed previously, the overarching aim of the development of 
toxicological assays is to provide tools enabling the gathering of knowledge 
regarding the properties associated with a compound, that can be utilized for 
evaluating the risks and hazards attributable to it, thus facilitating the end goal 
of reducing health and environmental hazards. In such a sense, the major tasks 
involved in establishing an assay include the creation of a system that models 
relevant parts for the experimental question at hand. This system can take on a 
variety of appearances and range from models based on animals to purely 
computational systems. However, generally, the understanding and the 
complexity of the endpoint towards which a model is defined does, in part, 
dictate the form that a model can take. For example, this can be observed in 
the progression of toxicological assays for assessment of skin sensitizers, 
where test methods originated as in vivo models (Basketter et al. 2012), only 
to be refined and replaced as acquired knowledge was incorporated into novel 
methods that possess advantageous properties while enabling accurate hazard 
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assessment of the same endpoint (Ezendam et al. 2016; Kleinstreuer et al. 
2018).  

The state of understanding of the biological mechanisms underlying the 
adverse outcomes associated with several complex conditions, such as 
chemical sensitization, are previously unsurpassed and has in numerous 
instances been described in some detail (Brys et al. 2020; Esser and Martin 
2017; Shane et al. 2019; Silvestre et al. 2018). However, there are still many 
mechanisms that remain elusive and not completely understood, though great 
efforts have been made to elucidate them. Therefore, when developing assays 
towards hazard endpoints induced from complex underlying mechanisms, a 
certain amount of ignorance must be admitted, and the model system should 
preferably allow for such levels of ignorance, and perhaps simultaneously 
provide opportunities for improving and furthering the state of current 
understanding.  

When developing assays in accordance with the GARD platform, the initial 
step is to select a cellular system that can be used to model the relevant 
biological aspect of the hazard. All GARD assays hitherto described has been 
in vitro assays aimed towards immunological endpoints, and a cell line acting 
as a surrogate for dendritic cells has been deemed the most appropriate, 
rationalized from the dendritic cell’s central importance in these events. 
However, future assays do not necessarily need to be restricted to these types 
of cells but can be altered to best reflect the understanding of the examined 
endpoint. Having selected a system from which it is expected that relevant 
signals can be generated, the method for monitoring the induction of said 
endpoints should be established. Again, it is often the case that the precise 
mechanisms leading up to the induction of an outcome, or even that the precise 
signals that can be expected from the selected model, is not fully understood. 
Some understanding of the molecular mechanisms might be known, which has 
been successfully utilized to develop several assays (OECD 2018a; 2018b; 
2020b), but it is possible that relevant information is still to be discerned. 
Therefore, the GARD assays have been developed by initially performing 
hypothesis generating discovery experiments on the examined cell system. For 
example, transcriptomic profiling has been employed to identify suitable 
genetic biomarkers that enable accurate discrimination between substances of 
different hazard properties (Forreryd et al. 2015; Johansson et al. 2011; Zeller 
et al. 2017; Zeller et al. 2018). Following identification of promising candidate 
biomarkers, i.e. genes, the development of GARD assays is generally finalized 
by the definition of a prediction model that can, based on the values of the 
observed biomarkers, classify an examined test chemical into appropriate 
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hazard categories. For the current GARD assays, the prediction models were 
developed by using machine learning techniques, which have facilitated the 
establishment of relevant prediction rules without the need for manually 
inspecting the identified biomarkers and their intrinsically complex 
relationships (if even possible) for the purpose of identifying an optimal 
discriminatory prediction rule. However, the exact techniques used to derive 
the prediction models can be open for optimization to allow for models of 
varying complexity, depending on the nature of examined problem. 

Thus, in general, a GARD assay is developed by the deliberate combination of 
a relevant in vitro test system with exploratory analysis and data mining, on 
data originating from high-throughput acquisition techniques, with machine 
learning assisted derivation of prediction rules for hazard classification. 

3.2 The cellular system 
As noted above, an initial step when designing a GARD assay is the selection 
of the cellular system, i.e. selection of a system from which necessary signals 
can be derived for interpretation and subsequent assessment of the 
toxicological endpoint of analysis. Hitherto, the available GARD assays have 
been designed with the SenzaCell cell line (ATCC Depository PTA-123875), 
which has been chosen to act as a surrogate for dendritic cells, a relevant cell 
type for studying the induction of chemical hypersensitivity and protein 
allergenicity (Steinman and Hemmi 2006). But as also discussed, the GARD 
framework does not enforce any particular restrictions on the cell line that is 
utilized as the cellular system in an assay, and it seems plausible that future 
versions of the assay could incorporate other cell types that better mimic the in 
vivo system under investigation. 

3.3 The acquisition technologies 
Given that an appropriate cell system, assumed capable of generating signals 
informative for evaluating the hazard properties of interest, has been selected, 
the technology used for the monitoring of these signals must be determined. For 
the GARD assays, the most appealing technologies have been those based on 
transcriptomic analysis, and microarrays have been readily applied for the task 
of quantifying the genetic perturbations induced by the stimulating agents during 
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the discovery phase of the experiments (Forreryd et al. 2015; Johansson et al. 
2011; Zeller et al. 2017; Zeller et al. 2018). The reasons for targeting the 
transcriptome when evaluating monitoring technologies have been many. For 
example, the methods available for querying the expression levels of genes of 
cell suspensions has reached a state of maturity that enables consistent 
acquisition (Shi et al. 2006; Su et al. 2014). Further, obtained data offers a 
generally unbiased view of the transcriptome, i.e. the data does not strongly 
depend on a limited selection of targets defined from existing knowledge of the 
examined condition. And finally, methods for processing and analysing 
generated data are widely available, leveraging state-of-the-art methods for 
tackling common obstacles encountered with high-dimensional data, such as 
multiple hypothesis testing from limited sample sizes (Love et al. 2014; Ritchie 
et al. 2015). However, though the advantages are several, some difficulties are 
also evident. The cost of quantifying transcription levels of a sample has 
decreased but it is still noticeable, which limits the number of samples that can 
be examined in an experiment (Wheelan et al. 2008; Xiong et al. 2017). Further, 
depending on the acquisition technique, the obtained data must be adequately 
pre-processed and normalized to permit analysis (Li et al. 2014). Finally, the 
major technologies available for transcriptomic analysis has been observed to be 
somewhat sensitive to the inclusion of non-biological variance, originating from 
e.g. differences in experimental parameters, in the data (Goh et al. 2017). This
can increase the risk of introducing potential confounders, emphasizing the
importance of careful experimental design in these studies. Despite these
potential drawbacks of the transcriptomic technologies, which in many scenarios
can be mitigated, the potential insights that could be extracted from the acquired
data makes it the preferred methodological option of the GARD platform.

The earliest technology that enabled widespread analysis of thousands of 
transcriptomic targets were the microarrays (Bumgarner 2013), which has been 
frequently used during the development of the GARD assays (Forreryd et al. 
2015; Johansson et al. 2011; Zeller et al. 2017; Zeller et al. 2018). Microarrays 
consist of small chips onto which oligonucleotides that are complementary to 
known gene sequences have been attached. RNA samples to be analysed are 
first converted to complementary DNA (cDNA), which is then typically 
labelled and allowed to hybridize with the oligonucleotides. Following 
hybridization, a signal representing the amount of bound cDNA can be 
estimated (Govindarajan et al. 2012). Currently though, the microarray 
technology is often considered surpassed by the more recent method of RNA 
sequencing (RNAseq), which has been shown to provide better dynamic range, 
be better equipped to detect low-abundance genes, and to be more efficient at 
discriminating between different isoforms (Zhao et al. 2014). Instead of 
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printing pre-specified oligonucleotides to a chip, RNAseq allows for 
parallelized high-throughput sequencing of nucleotides in an examined 
sample. Processed sequence data can then be used to infer the expression 
levels. Whereas the quantification of transcript levels in the microarrays are 
performed by studying intensity levels on the gene chip, expression levels from 
RNAseq can be established by mapping the obtained sequences of nucleotides 
to a suitable reference genome (Wang et al. 2009). Thus, quantified microarray 
data consist of gene-specific intensity levels and RNAseq data comprise gene-
specific discrete counts. 

Though both microarrays and RNAseq can be used to study similar endpoints, 
the analytical pipelines employed are fairly different. For microarrays, the 
output from an analysis comprises expression values represented by signal 
intensities. The observed expression values for individual probes are often 
normalized and summarized into gene expression representations, since 
several probes can target different sites of the same gene. Having acquired the 
gene expression values, microarray data can generally be modelled using 
common statistical methods, since it is assumed that the data can be modelled 
as normally distributed. In contrast, the pre-processing of RNAseq can be a bit 
more diverse and computationally more intensive. The output from the analysis 
is typically a sequencing file containing nucleotide calls for individual 
sequences with their associated certainty scores. Several approaches can be 
employed to generate gene expression values from the generated sequences. 
Initial steps can include quality assessments, adaptor sequence trimming, and 
quality trimming to remove low-quality nucleotide calls (Conesa et al. 2016a). 
Depending on the pipeline, the quantification of gene expression can be 
obtained by first mapping acquired reads to a suitable reference genome, 
followed by counting of the number of reads that map to known genes. 
However, these methods are considered fairly computationally intensive, and 
recently, alternative methods have been designed for RNA quantification that 
are faster and requires significantly less memory (Bray et al. 2016; Patro et al. 
2017). Independent of pipeline, once expression levels have been obtained, the 
methods used in downstream analysis also usually differ compared to those 
used for microarrays. This is because the data can no longer be assumed to be 
adequately modelled by the normal distribution (Li et al. 2012). However, 
despite this, several popular methods have been developed to account for this. 
For example, methods have been designed to model the counts using 
alternative distribution assumptions (Love et al. 2014; Robinson et al. 2010), 
while other employ suitable transformations to the data to justify the 
subsequent assumption of modelling it as normally distributed (Law et al. 
2014; Ritchie et al. 2015). 
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3.3.1 Extracting biological understanding 
Due to the nature of the data obtained from transcriptomic profiling 
experiments, there is a possibility to extract information that could provide 
valuable information of the mechanisms underlying the condition of 
examination. Further, the information generated from such experiments does 
not only have to contribute with new knowledge to the field but can also be 
used to enhance the validity of the experimental approach by confirming a 
priori established findings. For example, during the development of the 
GARDskin assay, though 200 genes were included in the final prediction 
signature, several of the identified targets had previously been implicated in 
the mechanistic pathways associated with skin sensitization (Johansson et al. 
2011). 

The most common method for identifying genes or transcripts that could be of 
particular interest in a study is the assessment of differentially expressed genes. 
This can be achieved using a wide variety of methods but one of the most 
common approaches comprise the modelling of the observed expression levels 
using linear regression (Ritchie et al. 2015). By wrapping the procedure of 
differential expression analysis within the framework of linear regression 
analysis, efficient incorporation of e.g. covariates, which can be comprised of 
experimental factors capable of inducing variance in the observed data such as 
cell batch or reagent factors, can be made. This can increase the power to detect 
biological differences of interest (Leek and Storey 2007). Additionally, linear 
models are flexible and can be used to handle certain departures from the 
assumptions generally made by several statistical methods. For example, in 
some situations, experimental factors can be nested within the groups of other 
biologically interesting groups, which could potentially invalidate the 
assumption of independence. However, this issue can be mitigated when 
applying linear regression techniques to the experimental data by allowing for 
the incorporation of factors as random effects (Hoffman and Roussos 2020; Yu 
et al. 2019). In addition to these advantages, several statistical methods have 
been developed on the linear regression framework specifically for the analysis 
of transcriptomic data, which is often characterized by containing thousands of 
measured variables while consisting of a limited number of samples. These 
methods, with the most prominent probably being limma (Ritchie et al. 2015), 
leverage Bayesian statistics to borrow information between genes, making 
estimates required for the statistical inference more stable while also increasing 
the effective degrees of freedom in the statistical comparisons (Ritchie et al. 
2015).  
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While differential expression analysis is often the first step that is performed 
when aiming to extract biological information from a transcriptomic 
experiment, obtained results can be difficult to interpret since the number of 
identified genes can be very large. Therefore, results are often used as input for 
subsequent analyses intended for generating a higher-level understanding of 
the perturbations induced by the experimental conditions, by e.g. examining 
pathway engagement. Several methods with varying complexity have been 
proposed for examining the effects on known pathways or gene sets (Beißbarth 
and Speed 2004; Castillo-Davis and Hartl 2003; Mootha et al. 2003; 
Subramanian et al. 2005; Tarca et al. 2009; Wu and Smyth 2012). A simple 
but common method that utilize the list of identified genes for this purpose is 
the overrepresentation analysis (Beißbarth and Speed 2004; Castillo-Davis and 
Hartl 2003). Here, the enrichment of genes associated with particular 
biological mechanism is assessed by evaluating the statistical significance of 
the overlap between the differentially expressed genes and the gene set, 
compared to what could be expected by chance, which can be tested by e.g. 
applying suitable statistical tests such as the hypergeometric test (Castillo-
Davis and Hartl 2003). Another type of analysis that have been widely 
employed is the gene set enrichment analysis (GSEA; (Mootha et al. 2003; 
Subramanian et al. 2005)). Instead of using the differentially expressed genes 
as input, the method requires gene identifiers with an associated value 
reflective of the evidence of the genes’ quantified differential expression, 
which is usually comprised of some signal to noise measure (Subramanian et 
al. 2005; Zyla et al. 2017). Genes are then ranked by their associated numerical 
values and the significance of the ranked position of genes in specific gene sets 
can be assessed. Different methods for evaluating the significance of the 
obtained rank positions for genes have been proposed (Maciejewski 2013), but 
the method attributed to the original description of GSEA was a Kolmogorov-
Smirnov-based statistic (Mootha et al. 2003). Though both hitherto mentioned 
methods have been readily employed, the area of pathway analysis is still an 
active field of research and new methods are frequently described (Nguyen et 
al. 2019). Today, most novel methods assess pathway perturbations by 
including additional information when examining the significance of observed 
expression changes. For example, it is common to include prior knowledge of 
protein interactions in the analyses (Tarca et al. 2009) or examining 
perturbations in sub-networks of pathways (Hidalgo et al. 2017). Additionally, 
some methods have also been proposed for causal reasoning, i.e. the 
identification of probable sources of perturbations that could have induced the 
observed expression levels (Bradley and Barrett 2017). 
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3.4 Biomarker discovery and model definition 

3.4.1 Identification of relevant predictors 
Having acquired transcriptomic data from an experiment, which has been 
adequately pre-processed and quality controlled, a major step in the process of 
developing predictive assays is to identify the most important features that can 
be effectively used as a biomarker signature. The general term for this process 
is feature selection, which encompasses a wide variety of techniques (Guyon 
and Elisseeff 2003). The overarching goal of feature selection is to identity 
predictive features and simultaneously reduce the dimensionality of the 
modelled dataset thereby decreasing its complexity. The task of feature 
selection can for the purpose of the predictive assay development be both a 
requirement for making the assay feasible to run, but also for contributing with 
additional information of the examined endpoint (as discussed more broadly in 
the context of extracting biological information in the section above). 
Secondly, reducing the dimensionality of the original data can act as an 
important step towards achieving optimal prediction performance when 
attempting to model a hazard endpoint using statistical learning methods. This 
is in part due to the risk of overfitting to uninformative features of very high-
dimensional datasets (Hira and Gillies 2015). Furthermore, transcriptomic data 
also contain highly correlated features, due to co-expression of certain genes 
(Michalak 2008), which could have a negative impact on predictive 
performances (Toloşi and Lengauer 2011).  

Feature selection techniques can broadly be divided into three distinct 
categories depending on their mode of action: filtering methods, wrapper 
methods and embedded methods (Chandrashekar and Sahin 2014). All can be 
effective for finding candidate biomarkers, but constraints imposed by the 
properties of transcriptomic data can skew the selection of which method to 
apply. Filter methods operate independent from any machine learning 
algorithm, and features are selected based on some evaluation criteria that can 
be comprised of, for example, correlation measures or evidence of statistical 
association with the modelled endpoint, or metrices extracted from information 
theory such as mutual information or information gain (Lazar et al. 2012). 
Commonly, these methods are univariate, i.e. the performance of the individual 
features are considered, which can lead to the selection of a suboptimal subset 
of features (Chandrashekar and Sahin 2014). However, methods have been 
proposed where the relationship between features are also taken into account 
during the selection procedure (Bommert et al. 2020; Lazar et al. 2012). 
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Additionally, these methods are usually computationally inexpensive and can 
readily be applied to reduce the dimensionality of large data spaces. 
Nevertheless, it has also been argued that their model-independent approach 
can lead to suboptimal selection of feature subsets (John et al. 1994). 

Wrapper methods also include a large set of techniques, which are based on 
the concept of selecting features that optimize the predictive performance of a 
specific machine learning algorithm. The technique does not generally inflict 
any restrictions on the type of machine learning algorithm that is used. Instead 
iterative approaches are combined with resampling methods to establish 
performance estimates for different feature subsets (Aboudi and Benhlima 
2016). Commonly described iterative approaches include backward 
elimination and forward selection (Khaire and Dhanalakshmi 2019). As an 
example, the backward elimination starts by estimating a performance measure 
for classifications when all available features are utilized. Next, based on some 
feature performance measure (such as feature weights in an SVM, or perhaps 
more generally from some permutation-based performance score), a set of the 
worst performing features are dropped from the original set and the prediction 
performance is recalculated. This approach can be continued until no more 
variables exists in the set of active features. Then, the optimal feature subset 
can be identified from the elimination path of the algorithm. Due to the nature 
of these types of optimization algorithms, they are generally more 
computationally expensive compared to either filter methods or embedded 
methods. But because they identify a set of features that are specific for a given 
classifier, they are often thought to outperform filter methods (Aboudi and 
Benhlima 2016). 

Finally, embedded methods include techniques where a machine learning 
algorithm performs feature selection internally during training. One of the most 
recognized embedded methods is the lasso, which is a regression technique 
where a regularization term has been added to the loss function (a function that 
describes how well a given model performs on the training set during fitting), 
which automatically shrinks some of the coefficient estimates to zero, 
effectively excluding their contribution to the final prediction model 
(Tibshirani 1996). On a side note, regularization is a general concept in 
machine learning that impacts an algorithm’s solution to a given problem by 
providing measures to inflict e.g. bias into the final solution. For example, the 
regularization term in lasso introduces a penalty that is proportional to the 
absolute value of the coefficient estimates in the model, thereby restricting 
their values (Hastie et al. 2009; Tibshirani 1996). Other methods frequently 
associated with embedded feature selection are tree-based algorithms. During 
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their construction, features are evaluated by their ability to introduce effective 
separation between class labels in the training set, often resulting in the 
utilization of only the most efficient features in the final model (Lal et al. 
2006).  

Though feature selection methods can be very effective, and in certain cases 
necessary for enabling the development of a functional assay, great care must 
be taken to avoid pitfalls that can be encountered during the process. A 
common mistake is to combine feature selection with the overall performance 
estimation in a fashion that leads to overly optimistic performance estimates 
(Krawczuk and Łukaszuk 2016). This can be achieved by using all available 
data for feature selection, and then apply a performance estimation technique 
to the reduced dataset. This can be especially troublesome when the initial 
dataset has a large feature space, which is the case in transcriptomic 
experiments. In fact, randomly generated data with proportions between the 
number of samples and the number of features similar to those observed in 
transcriptomic experiments can produce good performance measures if the 
estimation is inappropriately conducted. In any type of modelling setting, it is 
important to be careful when interpreting performance measures generated 
from data that has in any form been used for some optimization task during the 
modelling, such as hyperparameter optimization or feature selection. 
Therefore, when including feature selection in a pipeline, it should be ensured 
that any data that is used for the performance estimation (either external data 
or resampled) should not have participated in the selection of the features. 

3.4.2 Learning from data 
The task of defining classification heuristics from data is a general problem in 
machine learning, and one which has been highly relevant during the 
development of the GARD assays. The type of learning algorithms deployed 
during the development of the GARD assays are generally termed supervised 
algorithms, meaning that the algorithms learn from annotated data examples 
(Singh et al. 2016). The goal of the learning algorithm thus becomes the 
identification of some function that maps input features to output values. The 
features can comprise a variety of different data types that are generally 
selected for their relevance to the prediction problem at hand and can be 
comprised of e.g. gene expression values. The output values can consist of 
either quantitative or qualitative (including ordinal categories) variables and 
can be e.g. hazard labels such as skin sensitizer or non-sensitizer.  
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Though the overall aim of different supervised learning algorithms is the same, 
the way by which how a given task is solved vary between algorithms 
(Breiman 2001; Cortes and Vapnik 1995; Cover and Hart 1967). Further, there 
is not an obvious solution to the process of identifying an optimal model for a 
specific problem. Given the fact that the performance of different machine 
learning algorithms vary and depend on the properties of the examined data, 
the identification of an accurate classifier for a specific dataset can be a 
laborious task, including the construction and comparison of several different 
models. 

To conceptualize the problem, a simple classification case can be examined. 
For example, given the data in Figure 1, which represent data containing two 
variables that can be used for classification and one output variable (colour of 
the points), the task would be to develop a prediction function that produces 
the most probable category given values for features X1 and X2. For this 
specific dataset and prediction problem, the task seems trivial and a line drawn 
manually would probably constitute a well-performing classification rule. In 
fact, given that the two categories are linearly separable, an infinite number of 
lines that separates the groups can be drawn (Han et al. 2012). Thus, the 
question arises: which line is the optimal line for enabling discrimination 
between the two categories when new data generated from the same process is 
assessed? Or even, is a line the optimal rule or is a non-linear classification 
rule superior? In a situation such as the one depicted in Figure 1, where the 
categories are easily separable and seems well-confined, a simple classification 
heuristic is often preferable compared to a complex model. Nonetheless, the 
definition of classification rules can be achieved by a variety of machine 
learning models, each possibly generating slightly different solutions by 
optimizing classifier-specific functions. The functions optimized when 
constructing classifiers are often referred to as loss functions, which aims to 
describe how well a given classifier performs (Hastie et al. 2009). For example, 
in logistic regression, the loss function can be characterized as penalising 
uncertainties in the predicted probabilities of the samples in the training set 
(Hastie et al. 2009; Hosmer and Lemeshow 2000). In contrast, an SVM bases 
its loss by only considering the samples closest to the separating line while 
attempting to maximize their separation (Burges 1998). Thus, though both 
classification algorithms identify a separating line, the slope and intercept can 
differ and therefore also potentially their performance as the classification rule 
is challenged with previously unseen test samples. 
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Figure 1. Data illustrating the problem of identifying a prediction rule given two measured variables (X1 and 
X2) and one output variable (colour of the points). 

This methodology of optimizing a function for the identification of a 
classification model is not limited to simple scenarios like the one discussed 
above. Indeed, the true effectiveness of statistical learning arises when 
methods are generalized to encompass problems that would not be manageable 
for manual analysis. However, the ability to extend such algorithms to much 
more complex datasets is also associated with certain difficulties. Some are 
perhaps obvious, for example, how does one assess the performance or 
suitability of a model when the classification heuristic can no longer be easily 
visualized or understood? Whereas other difficulties, though related, are more 
inconspicuous. One of the most common and pressing issues when attempting 
to model data is the risk of overfitting. Overfitting is the act of creating a 
classifier that learns to represent the training data, i.e. the data from which the 
model defines its prediction rule, with high fidelity but is unable to classify 
previously unseen samples, which makes the model ineffective for subsequent 
application (Karystinos and Pados 2000). This issue is also further exacerbated 
in datasets with high dimensions, i.e. datasets with many features (Clarke et al. 
2008).  
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Therefore, it is necessary to be able to monitor the presence to tendencies of 
overfitting during modelling and to be able to assess and estimate a model’s 
performance. Several methods exist for assessing the performance of a 
prediction model, where resampling techniques including jack-knife, bootstrap 
and cross validation (Efron and Gong 1983) are common. However, several 
aspects should be taken into consideration when evaluating results from such 
techniques. First, it is not necessary that the resampling techniques are 
unbiased estimators of the performance (Kohavi 1995). Further, the obtained 
results are associated with variance, and parameters of the resampling can 
affect both the bias and the variance of the estimates. Cross validation is one 
of the most common methods for assessing classifier performance by 
resampling, and the main adjustable parameter comprises the number of folds, 
i.e. the number of splits that should be created and evaluated. However, there 
is no real consensus on how the size of the folds affect the variance and the 
bias. For example, in Hastie et al. it is suggested that leave one out cross 
validation constitute an approximately unbiased estimator but that it can 
simultaneously be associated with larger variance (Hastie et al. 2009). In 
contrast, Zhang and Yang argue that such variance inflation for the leave one 
out cross validation is generally not true. However, it has also been suggested 
that repeated cross validation procedures can be employed for model selection 
to attenuate the issue of high variance (Krstajic et al. 2014). 

Even when data is readily available, results from resampling methods are 
important and often comprise, at least, important intermediate results. 
However, in these situations, data can also be split into proper training, 
validation, and test sets. From these, all model fitting steps can be employed 
on the training set, the hyperparameter tuning and optimization on the 
validation set, and performance estimation using the test set (Ripley 2007). 
This is a relatively common approach, but it is still necessary to ensure that the 
splits are made in such a way to ensure proper and unbiased sample selection. 
Despite the possibility to use data in this fashion, many algorithms can 
consume very large sample sizes to identify complex relationships and patterns 
(Touvron et al. 2019), making it attractive to use as much data as possible for 
modelling. 

Overfitting is a real issue when attempting to model data, and a concern that 
should always be considered when attempting to create prediction models 
using machine learning (Hawkins 2004; James et al. 2013). Different learning 
algorithms have different affinities to overfit to a training dataset, which is 
usually associated to the amount of complexity that an algorithm can model 
(Hastie et al. 2009). This issue is often discussed in terms of a bias-variance 
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trade-off, where some models infer more bias compared to others on a specific 
dataset. For example, linear models are generally considered fairly biased as 
they enforce a linear solution to the optimization. However, for certain 
prediction problems, they are too simple and cannot efficiently model complex 
structures in the data. In these situations, where training examples are available 
in sufficient quantities, complex models such as deep neural networks can 
generally outperform simpler models (Emmert-Streib et al. 2020). For many 
learning algorithms, the optimized solution can further be influenced by 
regularization, which are usually adjustable hyperparameters. For example, in 
linear regression, L1 or L2 penalization terms can be added to infer penalties 
on large coefficient estimates, thereby increasing the bias in the estimation 
procedure to further control the modelling (Tibshirani 1996). Similarly, other 
learning algorithms use their own regularization parameters, but generally 
towards the same end. 

Finally, the assessment of a model’s appropriateness, in terms of how it 
interprets the input variables and how it generates classifications, is not always 
trivial. For certain types of models, it is quite straightforward to assess how a 
model interprets the different variables. For example, in linear models and in 
certain simple classification trees, it is possible to examine how the individual 
features are utilized for generating a prediction. However, for other more 
complex models, including deep neural networks or gradient boosting 
algorithms, it is more difficult to obtain an unambiguous understanding of how 
the features are utilized. Further, it is not always clear or possible to explain 
why a complex model produces a specific classification. Nevertheless, it is an 
important and interesting question and methods have been developed to help 
shed light on the predictions of complex models. One such model is LIME 
(Local Interpretable Model-Agnostic Explanations, (Ribeiro et al. 2016)), 
which tries to create a local approximation of the original classifier close to the 
predicted sample, by modelling simpler linear relationships that can be more 
readily interpreted. This technique has, for example, been demonstrated on 
convolutional neural networks to explain how features in images contribute to 
specific predictions (Palatnik de Sousa et al. 2019; Ribeiro et al. 2016). 
Another notable method that has been developed towards the same end goal, 
i.e. model explainability, is the SHAP-values, which can also be used to e.g.
identify the most important features that drive a specific prediction (Lundberg
and Lee 2017).
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3.4.3 Application to GARD 
During the development of the GARD assays, data is generally scarce, and care 
must first be taken when generating the datasets. A crucial design aspect, which 
can influence a potential assay, is the selection of the samples that will 
constitute the training set, i.e. selection of chemicals from whose induced 
expression patterns the models are created. Given that the sample size is 
limited, attention must be taken to generate a sample that can be generalized to 
the remainder of the sample space. Of note, this is not an issue that is restricted 
to the GARD assays but is a vital design decision for most experiments. If the 
sample is not adequately representative of the sample space, there is a 
possibility that the model learns a pattern that is not effective for classifying 
other test substances. In the case of the GARDskin assay, several properties of 
the chemicals were evaluated prior to their inclusion in the training dataset 
including the chemicals’ reaction mechanisms, their skin sensitizing potencies, 
their necessity of activation prior to being protein reactive (i.e. pre- and pro 
haptens), and other potential confounders such as the chemicals’ abilities to 
induce irritation. 

Once an experiment has been designed and carried out and the data has been 
acquired, the most predictive genes are identified using methods previously 
discussed and a prediction model is defined. Again, immense care must be 
taken to avoid negative effects of selection bias and overfitting. Generally, the 
way both are assessed in the GARD assays are by the utilization of resampling 
techniques and subsequent assessment by independently acquired test sets. For 
example, when a pipeline for feature selection and model definition has been 
defined, the entire pipeline is often evaluated using cross validation. As 
previously discussed, the full pipeline should be included in the cross 
validation, including the steps of the feature selection, in order to be able to 
generate a performance estimate that is not overly optimistic due to flaws in 
the estimation procedure. The machine learning algorithms that are employed 
in the GARD assays are often considered relatively simple but are nonetheless 
selected to decrease the risk of overfitting. Though the learned models are 
simplistic, the learning algorithms are fairly sophisticated. In the case of the 
SVM, which has been utilized to define all hitherto described GARD 
prediction models, the algorithm seeks to identify a hyperplane that 
discriminates between the categories in the output label by maximizing the 
margin between samples from respective category. The generalized solution to 
the SVM was proposed in 1995 by Cortes and Vapnik and is thus a relatively 
recent learning algorithm that has shown proficiency in many dataset 
applications (Cortes and Vapnik 1995; Fernández-Delgado et al. 2014). 
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3.5 The standardization and validation of assays 

3.5.1 Standardization of data acquisition 
The technologies for acquisition of global transcriptional profiles has, as 
already noted, reached a state of maturity enabling them to be routinely used 
in experimental studies (Shi et al. 2006; Su et al. 2014). However, they are still 
associated with high costs and experimental protocols that render them 
suboptimal for routine implementation when aiming to quantify a specific set 
of genes of interest. Therefore, alternative methods enabling more rapid, 
cheaper, and simpler acquisition were sought for the GARD assays (Forreryd 
et al. 2014). Of note, this is not an issue that is isolated to the GARD assays, 
but other research groups and consortia have also evaluated and developed 
methods for rapid acquisition of specific sets of genes. For example, the L1000 
assay was developed specifically for high-throughput and cost-effective 
acquisition. It quantifies the expression levels of approximately 1000 genes 
and has been used to generate more than 1.5 million expression profiles 
(Subramanian et al. 2017). 

For GARDskin, different quantification platforms were examined in Forreryd 
et al. 2014, and it was found that the NanoString platform fulfilled the 
requirements in terms of efficiency and correlation with historical data 
obtained from the previous acquisition platform. The NanoString platform 
allows for the acquisition of expression levels via direct quantification of 
mRNA levels, i.e. no cDNA generation is required which reduces the 
complexity of the experimental protocols. Further, acquired data consist of 
digital counts which require little pre-processing in order to be analysed. The 
acquisition is enabled by the utilization of sets of probes, which are 
complementary to target genes, which then binds and labels individual mRNA 
sequences, enabling their subsequent quantification. 

3.5.2 Definition of a processing pipeline 
The processing pipeline is here defined as the steps taken from having acquired 
data, in the form of expression levels, to having generated a prediction with an 
already defined prediction model. In the GARD assays, the pre-processing 
steps include quality control of the quantified data, normalization of individual 
samples, and adjustment of batch effects. One of the most important tasks of 
the pre-processing pipeline is to enhance the signal to noise ratio by reducing 
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variation introduced by technical variance, i.e. non-biological variance that is 
not of interest for the assessment of the biological condition. In genomic 
technologies, non-biological variance is fairly common and can arise from 
small differences incorporated during the experimental procedure, including 
minor variations in pipetting, utilization of different reagents, or by having 
different laboratory persons performing the experiments (Goh et al. 2017; Leek 
et al. 2010). Many of these potential sources of undesired variance should be 
mitigated during the design phase of the experiment, which can consist of 
taking steps to ensure that e.g. necessary reagents are available in sufficient 
quantity so that the experiment can be completed with materials from a single 
lot. However, some residual variation attributable to experimental parameters 
will certainly always be present. Therefore, the processing pipelines in the 
GARD assays are designed with consideration to alleviate such instances of 
variance. First, during the initial transfer experiment, it was shown that a 
single-sample normalization procedure was effective at reducing technical 
variance, enabling accurate predictions (Forreryd et al. 2016). Today, this 
procedure has been further examined and its effectiveness has been confirmed 
by additional experiments aimed at assessing variation between technical 
replicates, which should be minimized, and between different test chemicals. 
Though this normalization procedure is effective at reducing technical variance 
that arise during experiments, larger sources of variation that can be observed 
between experiments separated by time cannot be completely accounted for, 
requiring the use of more rigorous correction methods. 

Batch effects are another general issue that has been observed in data acquired 
from multiple genomic technologies including microarrays, RNAseq, qPCR, 
and NanoString (Goh et al. 2017; Talhouk et al. 2016). As already noted, batch 
effects can have a variety of sources and many can and should be mitigated by 
careful experimental design (Nygaard et al. 2016). However, some sources of 
variation cannot be removed by such interventions and will affect the generated 
data. Therefore, it is of particular importance to try to anticipate such sources 
of variation to ensure that the design is sufficiently robust to facilitate 
biological discovery despite their inclusion. Otherwise, batch effects can 
become confounded with the experimental details of interest, making the 
identification of the biologically relevant effects difficult and potentially bias 
downstream results (Nygaard et al. 2016; Soneson et al. 2014).  

For discovery studies, where an experiment is carried out in a consistent and 
controlled manner, it is often possible to anticipate the major sources of 
technical variation. For example, it is common to observe batch effects in 
RNAseq and microarray studies that are attributable to either sequencing run 
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or hybridization date, respectively (Conesa et al. 2016b; Luo et al. 2010). 
Because they are known, the experimental design can be made to ensure that 
they are not confounded with the biologically interesting sources of variation, 
and thereby facilitate downstream analysis. Non-confounded batch effects can 
be accounted for during differential expression analysis, which can increase 
the statistical power of detecting biologically relevant changes (Leek and 
Storey 2007).  

In these types of studies, it is also possible to try to create a cleaned dataset 
that is relieved of the batch effects that can be used for other downstream 
analytical tasks, including predictive modelling. A variety of methods have 
been proposed to carry this out. One broad term of adjustment methods is the 
location and scale methods (Johnson et al. 2006). As the name suggest, these 
methods attempt to correct for batch effects by estimating the gene-wise 
location- and scale shifts that are attributable to different batches, and then to 
adjust for them. Due to issues similar to the ones associated with differential 
expression analysis of high-dimensional data, the small sample sizes can make 
the original location and scale methods instable, which enforces certain 
constraints on the experimental design in order for the methods to be applied. 
For example, batches should comprise a moderate number of samples to allow 
more stable estimates (Johnson et al. 2006). However, also in this case, the 
empirical Bayes method has facilitated the development of procedures to 
alleviate these issues. ComBat is one of the most well-known batch correction 
techniques (Johnson et al. 2006). By borrowing information between genes, it 
enables more stable estimates of batch-associated variation even in small 
sample sizes. Despite the popularity of ComBat, this is also still an active field 
of research and methods are frequently being proposed to alleviate the issue of 
batch effects in discovery studies (Hornung et al. 2016; Li et al. 2019; Oytam 
et al. 2016). 

Even though batch effects can be adjusted for in well-designed discovery 
studies, a larger issue arises when batch effects are considered in prediction 
problems, i.e. when a prediction model has been defined on a fixed set of data 
that is used to classify subsequently acquired test samples. In these scenarios, 
the biological condition of the test sample is generally unknown and 
simultaneously confounded with batch. This confoundment can, if left 
unadjusted for, lead to severely reduced predictive performances. Depending 
on the size of the test set, the application of certain types of methods similar to 
the ones used in discovery studies could perhaps be justified. If the test set and 
the training set are large and if it is also assumed that the proportions of 
biological groups within the datasets in both datasets are similar, global 
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location and scale adjustment methods could perhaps be employed (Luo et al. 
2010). However, in most situations, such methods are not applicable. Further, 
to allow for routine testing, the normalization method should preferably not 
infer too stringent restrictions on experimental designs. For a testing platform 
such as GARD, the ideal normalization procedure should allow for testing of 
individual test substances (with the appropriate assay controls).  

Batch correction in predictive modelling is a pressing and difficult issue. Due 
to the complexities associated with the confoundment, one of the prevailing 
methods for alleviating the negative impact on the predictive performance is 
to include reference samples in the test sets from which estimates of batch 
effects can be obtained (Luo et al. 2010). We have proposed a method called 
BARA, which is described in paper IV, for the adjustment of batch effects in 
prediction problems. The method performs the adjustment in a latent data 
space spanned by the training dataset, by adjusting the test set via alignment of 
the reference samples that are present in both datasets. The latent data space 
where the correction is performed is defined by the principal components of 
the training dataset. The method was designed to leverage the fact that the 
variance important for establishing accurate predictions can often be explained 
by transforming the original data space into a few latent factors (for datasets 
like the ones used in the GARD assays where feature selection has been used 
to select the most predictive biomarkers). The latent data space in BARA is 
obtained by decomposing the training dataset using singular value 
decomposition (Eckart and Young 1939; Golub and Reinsch 1970), thus 
enabling the identification of the right singular vectors, which can be used to 
obtain the principal components of the training dataset. By projecting both the 
training set and the test set into the data space (spanned by the right singular 
vectors), the batch correction can be made in a few components, and the 
normalized data can be reconstructed to the original feature space. The number 
of right singular vectors retained during the normalization is an adjustable 
hyperparameter that can be optimized using, for example, a validation set. In 
paper IV we show that the predictive performance of data normalized with 
BARA is competitive with state-of-the-art methods for batch adjustment in 
prediction problems. 

3.5.3 Validation 
One of the final phases of assay development comprises the validation of the 
assay’s performance, which should constitute an unbiased opportunity to 
assess the predictive performance and to evaluate the assay’s robustness. 
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Depending on the intended use and future plans for the assay, the rigorousness 
of the validation experiments can vary. For example, for the predictive assays 
GARDskin and GARDpotency, there exists incentives for having the assays 
evaluated in accordance with the OECD guidelines for validation of non-
animal methods. However, the formal process of having an assay validated and 
accepted by the OECD is extensive and not always a requirement. 
Nevertheless, validation of an assay’s performance should be carefully 
performed to ensure the possibility of assessing the aspects of the assay that 
are important for its implementation. This should at least include assessment 
of predictive performance in terms of both accuracy and class-specific 
metrices, and also the assessment of the reproducibility of the assay. These 
aspects can be examined by e.g. ring trial experiments where individual 
laboratories evaluate sets of blinded compounds that can provide a fair 
description of the assay’s performance. Therefore, the selection of the 
reference chemicals used for validation must also be made with careful 
consideration. For example, attributes of the chemicals that can be considered 
during the design of validation experiment include whether or not they were 
part of the definition of the prediction model (i.e. the training set or validation 
sets for hyperparameter tuning), the quality and certainty of the annotations for 
them, and that they allow the estimation of representative performance figures. 

Papers II and III describe ring trial experiments carried out to assess the 
performance and reproducibility of the GARDskin assay and the 
GARDpotency assay, respectively. To allow for such estimations, a set of well-
annotated chemicals were assayed blindly in three independent experiments at 
each of three participating laboratories. To ensure the blinded nature of either 
study, a validation management group was created and declared responsible 
for selection, encoding, and distribution of the chemicals to respective 
laboratory. Further, predictions were reported from respective laboratory to the 
validation management group to ensure unbiased handling of the result and 
impartial reporting of the performance. The results from the studies indicated 
that GARDskin was both predictive of skin sensitizer hazard and reproducible. 
Further, GARDpotency was found to be predictive of skin sensitizer potency 
but a potential for improving the reproducibility was also observed. 
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4 Prospects and concluding 
remarks 

The availability of tools that enable accurate hazard assessment of specific 
toxicological endpoints are important to ensure and improve human and 
environmental health. However, the development of such tools remains 
challenging, especially when a toxicological hazard endpoint of interest is 
constructed of complex biological mechanisms. Indeed, in some cases, the 
mechanistic underpinnings are not even well understood, which introduces 
additional challenges for reducing the complexity into a viable test method. 
This challenge has historically been met by the utilization of in vivo methods, 
but several concerns associated with these methods aspire researchers towards 
developing non-animal methods capable of eventually replacing them. 

The GARD platform has been developed as a framework for the development 
of toxicological in vitro assays by monitoring the exposure-induced 
transcriptional changes in a suitable cell line by machine learning methods to 
provide accurate hazard assessments. The test methods described in this thesis 
have all been concerned with the identification and characterization of skin 
sensitizers. But as previously mentioned, the concepts of GARD are 
generalizable and can be applied to larger suits of problems. For example, 
assays for assessing respiratory sensitization, protein allergenicity, and 
respiratory irritation have been proposed. The discovery study for the 
respiratory sensitization assay was published in Forreryd et al. 2015, which 
suggested that a genetic biomarker signature could accurately identify 
respiratory sensitizers and discriminate them from both skin sensitizers and 
non-sensitizers. Respiratory sensitization is a serious condition with 
potentially fatal effects. However, the toxicological endpoint currently lacks 
any generally accepted test method, which makes the continued development 
and availability of the GARD assay important. Since the discovery study, 
additional efforts have recently been made to make it into an accessible assay, 
which included transfer experiment to the NanoString platform (to be 
published). Similarly, there is a lack of methods that can be used to infer the 
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ability of novel proteins to induce allergenic potential. Zeller et al. recently 
described an initial discovery study in accordance with the GARD procedures 
where transcriptomic alterations were identified that could be used for 
predictive purposes (Zeller et al. 2018). Though the results from this study 
remains to be further explored and validated, the findings are interesting. 
Finally, attempts have been made to develop an assay for the recognition of 
respiratory irritants. The ability to identify respiratory irritants is an important 
objective for certain industries, including in pharmaceutical development 
where a large fraction of inhaled therapeutic projects is closed due to toxicity 
(Cook et al. 2014). The GARD approach was also recently applied to this 
toxicological endpoint, where a dataset comprising 19 chemicals with known 
effects were used to stimulate the SenzaCell cell line. Following gene 
expression acquisition using microarray analysis, several strong candidate 
genes predictive of the examined endpoint were identified. These results were 
only recently obtained, and though work remains to advance the evolution and 
validation of these assays, it lies beyond the scope of this thesis.  

In summary, the GARD platform has been applied to a variety of toxicological 
endpoints but several opportunities for optimization of assays that are currently 
in early developmental stages and for further refinement of methodological 
choices remain. For example, it seems reasonable to assume that data that are 
acquired when the existing assays are run could eventually provide a large 
database of information for exploratory analysis. This could aid the 
understanding of xenobiotics’ effects on the cell line and subsequently be 
incorporated in the development of future assays to increase robustness and 
performance. However, though a thrilling prospect, current assays acquire data 
in distinct sets of genes that comprise their respective biomarker signature, 
which makes it impossible to merge data acquired from the different assays on 
distinct chemicals. Furthermore, by selectively querying sets of genes, the 
majority of the genes in the transcriptome are ignored. Though these design 
choices were deliberately made to facilitate routine acquisition, it is possible 
that continued development of techniques such as RNAseq could eventually 
make it reasonable to acquire transcriptomic data for all assays, further 
harmonizing the acquisition and possibly making it conceivable to acquire a 
coherent expression database. In addition, given that the expression levels 
obtained using RNAseq possess similar discrete count distributions as the 
NanoString data, a potential transition phase could potentially allow for 
acquisition on either platform. In fact, unpublished data generated in-house 
seem to suggest that the current prediction models defined on NanoString data 
could be used to classify expression levels acquired using RNAseq.  
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In conclusion, the aim to create a safer environment by using test methods that 
are ethically justifiable but still accurate spurs the development of non-animal 
assays. The GARD platform comprises a framework of methodological 
choices that can be applied to aid the development of such assays. 
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Populärvetenskaplig 
sammanfattning 

Möjligheten att kunna identifiera och karakterisera hälsopåverkande effekter 
associerade med specifika kemikalier är en viktig komponent i arbetet med att 
säkerställa individers välmående i samhället. Detta grundar sig till viss del i att 
vi frekvent exponeras mot ett stort antal kemikalier genom interaktioner med 
vardagliga produkter som till exempel kosmetika, tvål, eller städprodukter, 
eller kemikalier vars egenskaper gör dem nödvändiga inom vissa industrier. 
Eftersom somliga kemikalier kan ge upphov till negativa hälsoeffekter är det 
viktigt att kunna identifiera och karakterisera dessa, så att produkter kan 
utformas som är säkra att användas av befolkningen.  

Vanliga tillstånd som kan uppstå vid kontakt med potentiellt skadliga 
kemikalier inkluderar irritation eller allergiska reaktioner i hud eller luftvägar. 
Då mekanismerna som utgör dessa hälsotillstånd är komplexa, introduceras 
vissa svårigheter när man vill testa huruvida en viss substans har potentialen 
att orsaka en sådan åkomma. Traditionellt har ofta djurmodeller används för 
att representera de biologiska funktionerna och de effekter som en kemikalie 
kan åstadkomma vid exponering. Dessa tester är dock problematiska ur flera 
aspekter, inte minst de etiska. De är också ineffektiva sett ur kostnads- och 
tidsperspektiv och inte alltid heller representativa för den effekt som induceras 
i människor. Detta har gett upphov till en strävan att utveckla alternativa 
testmetoder som effektivt, etiskt, och träffsäkert kan ersätta djurmodeller som 
vi tidigare varit beroende av för att utvinna säkerhetsinformation från 
kemikalier.  

GARD är en teknologisk plattform som har utvecklats för att främja skapandet 
av sådana testmetoder. Konceptet bygger på att biologisk förståelse för ett 
särskilt hälsotillstånd driver valet av ett experimentellt system som förväntas 
kunna förmedla relevanta signaler vid exponering mot en testkemikalie. Detta 
kan, till exempel, bestå av celler som har en viktig funktion när åkomman 
framkallas i människor. Det som skiljer GARD från många andra testmetoder 
är att nästa steg i utvecklingen av ett test inte kräver fullständig förståelse för 
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de interna stegen som sker vid induceringen av hälsotillståndet. Istället 
utnyttjas modern tekniks förmåga att i ett enda experiment kunna avläsa 
tusentals geners uttryck. Genom att exponera cellerna mot flera olika 
kemikalier, där vissa är kända att kunna orsaka den särskilda hälsopåverkande 
effekten, kan specifika genuttryck som har förmågan att särskilja mellan de 
undersökta grupperna av kemikalier identifieras. Sedan används 
maskininlärningsmetoder, för att baserat på de observerade nivåerna av 
uttryckta gener, definiera klassifikationsmodeller. För att undersöka den 
hälsopåverkande effekten hos en tidigare okänd kemikalie, exponeras samma 
celler i det experimentella systemet mot testkemikalien. Därefter avläses 
uttrycket av de tidigare identifierade generna och resultatet matas vidare till 
den definierade klassifikationsmodellen. Denna avgör huruvida det är troligt 
att kemikalien utgör en fara och potentiellt kan orsaka den undersökta 
hälsoeffekten. 

GARD har använts för att skapa ett antal tester, vilka inkluderar metoderna 
GARDskin och GARDpotency. Båda dessa tester har utformats för att 
undersöka kemikaliers egenskaper med avseende på hudsensibilisering. 
GARDskin har skapats för att ge ett Ja- eller Nej-svar med avseende på ifall en 
kemikalie kan orsaka hudsensibilisering, medan GARDpotency konstruerats 
för att undersöka styrkan hos kända hudsensibiliserande kemikalier. Båda 
dessa metoder har funnits effektiva för respektive ändamål. Under en 
valideringsstudie för GARDskin, där både träffsäkerhet och robusthet 
undersöktes, fann man att testet var stabilt med en tillförlitlighet på 94%. 
Samma siffra för GARDpotency uppskattades i en liknande studie till 88%. 
Dessa värden tyder på att båda testerna är väl lämpade för sina ändamål och 
presterar mycket bra i jämförelse med både existerande djurmodeller och andra 
alternativa metoder. Detta visar också att GARD är en effektiv plattform för 
utveckling av alternativa testmetoder och att redan framtagna tester utgör 
attraktiva alternativ för att slutligen avlägsna behovet av djurtester. 
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