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A B S T R A C T

The overarching objective of this study was to produce a disaggregated SMOS Soil Moisture (SM) product using
land surface parameters from a geostationary satellite in a region covering a diverse range of ecosystem types.
SEVIRI data at 15 min temporal resolution were used to derive the Temperature and Vegetation Dryness Index
(TVDI) that served as SM proxy within the disaggregation process. West Africa (3°N 26°W; 28°N 26°E) was
selected as a case study as it presents both an important North-South climate gradient and a diverse range of
ecosystem types. The main challenge was to set up a methodology applicable over a large area that overcomes
the constraints of SMOS (low spatial resolution) and TVDI (requires similar atmospheric forcing and triangular
shape formed when plotting morning rise temperature versus fraction of vegetation cover) in order to produce a
0.05° resolution disaggregated SMOS SM product at the sub-continental scale. Consistent cloud cover appeared
as one of the main constraints for deriving TVDI, especially during the rainy season and in the southern parts of
the region and a large adjustment window (105 × 105 SEVIRI pixels) was therefore deemed necessary. Both the
original and the disaggregated SMOS SM products described well the seasonal dynamics observed at six locations
of in situ observations. However, there was an overestimation in both products for sites in the humid southern
regions; most likely caused by the presence of forest. Both TVDI and the associated disaggregated SM product
were found to be highly sensitive to algorithm input parameters; especially for conditions of high fraction of
vegetation cover. Additionally, seasonal dynamics in TVDI did not follow the seasonal patterns of SM. Still, its
spatial heterogeneity was found to be a good proxy for disaggregating SMOS SM data; main river networks and
spatial patterns of SM extremes (i.e. droughts and floods) not seen in the original SMOS SM product were
revealed in the disaggregated SM product for a test case of July–September 2012. The disaggregation metho-
dology thereby successfully increased the spatial resolution of SMOS SM, with potential application for local
drought/flood monitoring of importance for the livelihood of the population of West Africa.

1. Introduction

Complex interactions of energy exchange are taking place between
different components of the Earth system, notably between the atmo-
sphere, hydrosphere and biosphere (Bonan, 2008). A better

understanding of such interactions is of high societal relevance for
improving assessment of carbon and water fluxes as well as for pre-
venting, monitoring and forecasting extreme events. However, it im-
plies the accurate assessment of essential climate variables, such as soil
moisture (SM) that is key to determining the water fluxes between the
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land surface and the atmosphere (Vinukollu et al., 2011). Since the
1970s, data from Earth Observation (EO) satellite platforms have been
used to overcome the limitations of ground sensors thereby providing
timely information on the spatial distribution of SM. Soil moisture af-
fects the emission and absorption of electromagnetic radiation in dif-
ferent regions of the spectrum: 1) MicroWave (MW) backscattered or
emitted energy from the ground surface, particularly in the low-fre-
quency microwave range, from 1 to 10 GHz, allows the dielectric con-
stant to be related to SM (Schmugge, 1978; Stisen et al., 2008); 2) When
the soil is wet the energy balance of the surface is controlled by eva-
poration from the soil surface and vegetation transpiration and lower
surface temperatures are expected in wet soils than in drier soils during
daytime (Schmugge, 1978). This effect can be captured in the Thermal
InfraRed (TIR) region of the electromagnetic spectrum. Additionally, if
multiple observations of the land surface are acquired at different times
throughout the day, diurnal variability in emitted radiation can be re-
lated to the soil thermal inertia (a property that describes the resistance
of a material to temperature change) (Wang et al., 2006) and conse-
quently serves as a good indicator of evapotranspiration and SM
(Minacapilli et al., 2009; Stisen et al., 2008); and 3) in the optical do-
main (350–2500 nm), an increase of SM produces an overall decrease in
albedo (Bach and Mauser, 1994) and specific absorption features in the
Short-Wave Infrared Region (SWIR) (Sadeghi et al., 2015).

Each of these spectral regions have advantages and disadvantages
for mapping SM (Kerr, 2007; Moran et al., 2004). Microwave sensors
are insensitive to atmospheric disturbances, but they usually require
larger pixel sizes than sensors in the optical or thermal infrared domain,
due to the lower emitted energy in this region. This is the case for the
Soil Moisture and Ocean Salinity (SMOS) (average pixel size 43 km)
(Kerr et al., 2012) and the Soil Moisture Active Passive (SMAP) (30 km)
(Panciera et al., 2014) missions dedicated to monitor SM, rendering
such products less suited for spatially explicit studies of the hydro-
logical cycle at the local scale. Unlike MW sensors, optical and TIR
sensors are greatly affected by the atmosphere, and allows a higher
spatial resolution of measurements. The Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) instrument aboard the geostationary satellite
Meteosat Second Generation (MSG) is an optical and TIR sensor centred
over Africa that scans the full Earth disk every 15 min. This high tem-
poral resolution is a major advantage since it allows estimates of soil
thermal inertia (morning rise temperature; dTS) (Stisen et al., 2008)
and it increases the probability of obtaining cloud free observations for
areas with frequent cloud cover.

Given the advantages/disadvantages of different EO retrievals,
combining high and low spatial resolution data for improving the SM
spatial variability has received considerable scientific attention recently
(Malbéteau et al., 2016; Merlin et al., 2012; Peng et al., 2017; Wang
et al., 2016). Methods for disaggregation of SM products can be clas-
sified into three major groups: (1) satellite based methods; (2) methods
using an array of geoinformation data and (3) model based methods
(Peng et al., 2017). Among satellite based methods, an integration of
coarse spatial resolution microwave observations with optical/thermal
EO retrievals using a downscaling factor is most commonly used (Peng
et al., 2017; Wang et al., 2016). One example of an optical/thermal
remote sensing metric closely related to SM variability is the Tem-
perature-Vegetation Dryness Index (TVDI) (Sandholt et al., 2002) based
on the triangle/trapezoid (hereinafter called triangle) method, since it
empirically delimits the triangle formed when plotting the Land Surface
Temperature (LST) or dTS versus a Vegetation Index (VI) (Fig. 1)
(Carlson et al., 1995; Carlson et al., 1990; Moran et al., 1994; Sandholt
et al., 2002; Stisen et al., 2008; Sun et al., 2012; Tang and Li, 2017).
TVDI is most commonly calculated as:

= −
−

TVDI LST LST
LST LST

min

max min (1)

where LST is the LST for a given pixel; LSTmin is minimum LST extracted
empirically from the lower boundary of the triangle (the wet edge); and

LSTmax is maximum LST extracted empirically from the upper boundary
of the triangle (the dry edge) for the vegetation index value of the
specific pixel (Fig. 1) (Sandholt et al., 2002). The dry edge represents
dry soils with low evaporation rates causing LST to be at its maximum
as a function of the vegetation fraction whereas the wet edge represents
wet soils where the evaporation rate occurs near its potential and thus
LST is at its minimum and close to the air temperature. Between these
two edges, all intermediate conditions can occur, and all SM conditions
can consequently be represented within the LST-VI triangle space
(Fig. 1) (Sandholt et al., 2002).

The triangle approach has been used in several attempts to dis-
aggregate low spatial resolution microwave SM retrievals. At a field site
in the north eastern Tibetan plateau, Wang et al. (2016) investigated
the applicability of the TVDI for determining a downscaling factor for
multiple source microwave based SM data from the European Space
Agency (ESA) Climate Change Initiative (CCI) (Dorigo et al., 2012). At
the Iberian peninsula, SMOS SM have been disaggregated using the
triangle technique with MODerate resolution Imaging Spectro-
radiometer (MODIS) LST as input data (Piles et al., 2011; Piles et al.,
2014), and in an attempt to overcome the issue of frequent cloud cover
MSG SEVIRI LST at 15-min temporal resolution was also used (Piles
et al., 2016). Another common approach for disaggregation of SMOS
SM is to use the DisPATCH (Disaggregation based on Physical And
Theoretical scale CHange) model, which combines thermal and optical
imagery in a contextual algorithm to derive Soil Evaporative Efficiency
(SEE), and then relate SEE to SM through a physically based model
(Djamai et al., 2015; Malbéteau et al., 2016; Merlin et al., 2010; Merlin
et al., 2012).

Several assumptions and prerequisites need to be taken into account
when applying the triangle method: 1) the presence of all SM and ve-
getation cover conditions are needed within the spatial domain applied
(Sandholt et al., 2002; Stisen et al., 2008); 2) the dimensions of the
spatial domain have to be large enough to collect a sufficient amount of
LST-VI cases to adequately define the triangle shape (de Tomás et al.,
2014); 3) factors like land cover type and topography should be taken
into account to ensure the applicability of the method (Hassan et al.,
2007); 4) variations in LST must simply reflect variability in SM, which
requires other surface properties and atmospheric forcing to be homo-
geneous; e.g. available energy (net radiation minus ground heat flux),
meteorological conditions over the studied area (solar radiation, total
column water vapour, air temperature, and wind speed) as well as
homogeneous surface roughness to ensure similar conditions affecting
the turbulent heat transport (Gillies and Carlson, 1995; Moran et al.,
1994); and 5) the strong dependence on the endmembers forming the

Fig. 1. Conceptual triangle space with the land surface temperature (LST) or morning rise
temperature (dTS) on the y-axis and Fraction of Vegetation Cover (FVC) on the x-axis. The
blue line is the wet edge (TVDI = 0.00) and the red line is the dry edge (TVDI = 1.00).
The grey dotted lines are TVDI examples of 0.25, 0.50, and 0.75. The figure is adapted
from Peng et al. (2017). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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triangular shape implies that a specific TVDI is only comparable with
TVDI estimates derived with the same endmember values. As taken
together, these preconditions are difficult to fulfil over the entire tri-
angle space (from bare soil to full vegetation cover; from humid to dry
conditions), which limit the applicability of the TVDI approach to lo-
calized (spatially and temporally) scales (de Tomás et al., 2014; Garcia
et al., 2014; Stisen et al., 2008; Tang and Li, 2015) as when attempting
to cover larger regions there is a high risk of violating these stated
preconditions.

Previous studies have used LST directly in the disaggregation pro-
cess; however combining soil thermal inertia (dTS) based on MSG
SEVIRI LST at 15-min temporal resolution with the TVDI approach al-
lows for a more direct estimate of evaporative fraction (Stisen et al.,
2008), which can be implemented in the physically based disaggrega-
tion methodology behind DisPATCH (Merlin et al., 2012). The over-
arching objective of this study was to produce a high-resolution dis-
aggregated SMOS SM product for a region covering a diverse range of
ecosystem types. We aimed at doing so by disaggregation of low spatial
resolution MW data (SMOS) using dTS based on higher spatial and
temporal resolution optical data (SEVIRI). We applied the physically
based disaggregation methodology behind DisPATCH (Merlin et al.,
2012), thereby taking advantage of both types of EO retrievals for SM
assessment and accounting for their respective inherent limitations. The
main research questions addressed were:

How can TVDI derived from SEVIRI based dTS be implemented to
resolve the SM spatial heterogeneity within a SMOS pixel when pro-
duced at sub-continental scale over West Africa? What are the metho-
dological constraints to overcome in order to produce time series of
high-resolution disaggregated SMOS SM product over regions covering
a wide spectrum of ecosystem types ranging from desert to tropical
forests?

To address these research questions, time series of SMOS SM and
time series of LST and Fractional Vegetation Cover (FVC) from the MSG
SEVIRI instrument were acquired for the period 2010–2015. TVDI was
estimated for tile-based adjustment windows on SEVIRI dTS and FVC.
The TVDI estimates were incorporated into a disaggregation metho-
dology to produce high resolution disaggregated SMOS SM product for
West Africa. The sensitivity of TVDI and disaggregated SMOS SM to the
input parameters were quantified. The original and the disaggregated
SMOS SM products were evaluated against in situ SM from sites within
the International Soil Moisture Network (ISMN). Finally, the spatial
patterns of disaggregated SM products were evaluated for a specific
case of extreme SM conditions (droughts and floods) in the Sahel 2012.

2. Materials and methods

2.1. Study area

West Africa was selected as research area for this study (Fig. 2) as
the climate varies from hot desert in the north to tropical forest climate
in the south. The area (3°N 26°W; 28°N 26°E) stretches from Senegal in
the west to Chad in the east. The climate is controlled by the West
African Monsoon and is characterised by a north-south gradient of in-
creasing annual precipitation. The large gradient in precipitation totals
is reflected by increasing biomass from north to south as reflected in the
fractional vegetation cover (Fig. 2). The study area constitutes of
1.06 × 104 SMOS pixels and 5.20 × 105 SEVIRI pixels.

2.2. Data collection and pre-processing

2.2.1. SMOS soil moisture
The SMOS mission includes a passive interferometric radiometer

and is the first satellite mission operating at L-band (1.4 GHz). The L-
band is less sensitive to green vegetation components and the SMOS
multi-angular acquisition capability is additionally used to separate the
soil and vegetation signal (Kerr, 2007; Wigneron et al., 2007). The

SMOS level 2 version-62× SM product was used in this study. We
downloaded the SMOS data from 1 June 2010 until 31 December 2015
for the study area. SMOS SM is an average of SM at 0–5 cm depth. The
revisiting time at the equator is every 3 days for both ascending and
descending passes, which are sun synchronous at 6 am ascending and
6 pm descending. The geolocation accuracy of SMOS is 500 m. The
sampling grid of the SMOS data is the Discrete Global Grid (DGG), and
it has a node separation of 14.99 km. This is higher than the natural
footprint size of SMOS, ranging from 30 to 90 km (average 43 km)
depending on viewing angle. Data were reprojected to WGS-84 geo-
graphic coordinates using a bilinear resampling method. We used a
0.35° grid (~40 km; which is close to the average natural footprint size
of SMOS and is easily dividable with the chosen SEVIRI pixel size) and
averaged the SMOS SM estimates of the DGG nodes falling within
a ± 0.1° area in the centre of each pixel. We only used these central
nodes as these are assumably least influenced by neighbouring pixels.

2.2.2. Land surface temperature
Land surface temperatures from SEVIRI from 1 January 2010 to 31

December 2015 were acquired following the procedure described in
(Nieto et al., 2011; Rasmussen et al., 2011; Stisen et al., 2007). SEVIRI
LST fields are available every 15 min for the entire MSG disk centred at
0° longitude and with a native pixel sampling size of 3 km. For con-
sistency with the retrieved FVC data (see below), it was resampled
using nearest neighbour to a spatial resolution of 0.05°.

LST was calculated based on SEVIRI channels centred at 10.8 and
12 μm. The EUropean organisation for the exploitation of
METeorological SATellites (EUMETSAT) NoWCasting & very short
range forecasting Satellite Application Facility (NWC SAF) software
(version 2013) was used for converting data to top-of-atmosphere
(TOA) brightness temperatures. TOA brightness temperatures were at-
mospherically corrected for surface emissivity, atmospheric attenuation
along the path and emissivity of downward radiation. Spectral emis-
sivity was estimated based on soil and vegetation emissivity end-
member values, scaled by the Normalized Difference Vegetation Index
(NDVI) and a look-up table (Trigo et al., 2008). SEVIRI NDVI was cal-
culated from daily nadir Bidirectional Reflectance Distribution Function
(BRDF)-adjusted reflectance corrected using the Simplified Method for
Atmospheric Correction (SMAC) (Proud et al., 2010). The atmo-
spherically corrected brightness temperatures were converted to LST
following the generalized split window proposed by Wan and Dozier
(1996) for the Advanced Very High Resolution Radiometer (AVHRR)
and MODIS, but adapted to SEVIRI response functions (Jimenez-Munoz
and Sobrino, 2008; Sobrino and Romaguera, 2004). This data process
was originally produced for (Nieto et al., 2011; Rasmussen et al., 2011;
Stisen et al., 2007), and just applied in this study. For a closer data
description we refer to these publications. Furthermore, a quality flag
was produced for each LST value based on the cloud mask (PGE01)
derived from the NWC SAF software, and quality flags related to clouds,
unreliable data, sun-sensor geometry, and when the BRDF inversion
failed (Proud et al., 2010; Proud et al., 2014).

2.2.3. Fraction of vegetation cover
Daily FVC derived from SEVIRI and distributed by the Land Surface

Analysis Satellite Applications Facility (LSA SAF) were provided by
Instituto Português do Mar e Atmosfera (IPMA), in the GLOBTEMP
harmonised format (0.05° spatial resolution) for 1 January 2010 to 31
December 2015 (GLOBTEMP, 2014; Trigo et al., 2011). The FVC ac-
counts for the amount of vegetation distributed in a horizontal per-
spective and is therefore an important structural property of a plant
canopy, as well as a crucial proxy for studies relying on the partition
between soil and vegetation contribution to surface emissivity and
temperature. The daily FVC products are based on the k0 coefficient of
a BRDF model for the red (600 nm), near infrared (800 nm) and
shortwave infrared (1600 nm) channels, and is generated using an al-
gorithm that relies on an optimised Spectral Mixture Analysis (SMA)
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technique (García-Haro et al., 2005). The products also include quality
control information that were used to mask out pixels that were not
reliable or relevant for this study (i.e. continental water, clouds, snow,
unrealistic input ranges, or failure of the algorithm.

2.2.4. Surface roughness and atmospheric forcing
In order to analyse the homogeneity of surface properties and at-

mospheric forcing in relation to the use of TVDI, we downloaded ERA 5
surface solar radiation downwards (SSRD; J m−2; accumulated at a 3-
hour temporal resolution), forecast surface roughness (FSR; m; in-
stantaneous at 12-hour temporal resolution), total column water vapour
(TCWV; kg m−2; instantaneous at 12-hour temporal resolution), wind
speed at 100 m height (WS; m s−1; u and v wind components in-
stantaneous at 12-hour temporal resolution), and air temperature at
975 hPa level (Tair; K; instantaneous at 12-hour temporal resolution))
with a spatial resolution of 0.1° × 0.1° (interpolated using a bilinear
method from 31 × 31 km spatial resolution) from 1 January 2010–31
December 2015 from the European Centre for Medium-Range Weather
Forecasts (ECMWF, 2017). Collected WS and Tair represents conditions
from above the blending height, since near surface variability in these
parameters is driven by local meteorological conditions and is therefore
allowed to be heterogeneous at the scale required for the triangular
shape to take form. SSRD was converted to W m−2 and all variables
were averaged to daily values.

2.2.5. In situ soil moisture
In order to validate the disaggregation methodology we collected

available in situ measurements of SM from eight sites within ISMN
(Fig. 2) (ISMN, 2016). Available sites in West Africa with data
2010–2015 were from the AMMA-Catch (Niger and Benin sites) and
Dahra (Senegal site) network: Banizoumbou (Niger; 13.53°N 2.66°E),
Belefoungou-Mid (Benin; 9.80°N 1.71°E), Belefoungou-Top (Benin;
9.79°N 1.71°E), Dahra (Senegal; 15.40°N 15.43°E), Nalohou-Mid
(Benin; 9.75°N 1.61°E), Nalohou-Top (Benin; 9.74°N 1.61°E), Tondiki-
boro (Niger; 13.55°N 2.67°E) and Wankama (Niger; 13.65°N 2.63°E). In
situ SM was collected using vertical sampling at all these sites to capture
the rooting zone soil profile. For the best possible intercomparison with
the SMOS SM soil depth (average 0–5 cm), we only used data collected
at the shallowest depths (0.05 m depth for all sites but Nalohou-mid,
where the shallowest depth was 0.10 m). The two locations of Bele-
foungou and Nalohou were averaged before the analysis.

The Niger and Senegal sites are located in the Sahel region char-
acterised by a short rainy season between June and October. The Dahra
field site and the Niger region receives around 400 mm and 500 mm of
rain, respectively (Louvet et al., 2015; Tagesson et al., 2015). The ve-
getation of the Niger sites are typical for cultivated areas of the Sahel,
whereas the Dahra site is composed of open woody savannah (Louvet
et al., 2015; Tagesson et al., 2016). The Benin sites are located further
south in the Soudanian climate zone with an annual precipitation of
~1300 mm (Louvet et al., 2015). These sites are thereby characterised
by significantly denser vegetation, and woody savannah and tropical
forest are typical of these sites (Louvet et al., 2015).

The in situ SM observations are from low density networks con-
sisting of one or two sites per pixel which introduces an uncertainty in
the representativeness of the sites in relation to the validation of the SM
products (Peng et al., 2017). However, sensors at these sites were in-
stalled specifically for satellite product evaluation, hence the location of
the sites were chosen to be representative for the larger area, and they
have previously been used for various satellite product assessments.
The in situ SM measurements are thereby considered representative for
the wider area and applicable in a validation of large-scale satellite
based SM estimates.

2.3. Data analysis

2.3.1. Temperature and Vegetation Dryness Index (TVDI) as soil moisture
proxy

The TVDI was developed by Price (1990) and later improved no-
tably by Sandholt et al. (2002) and Stisen et al. (2008). It has been
widely used for assessing SM and evapotranspiration (Garcia et al.,
2014; Han et al., 2010; Jiang et al., 2008; Li et al., 2010; Li et al., 2008;
Mallick et al., 2009; Patel et al., 2009; Wang et al., 2004). Several
methodological refinements were applied in this study as compared to
previous approaches to make it applicable for SMOS disaggregation at
the sub-continental scale:

(1) The dTS was used as a substitute for LST as it was demonstrated to
be a strong proxy for sensible heat fluxes, thereby improving the
TVDI estimates as compared to those based on single (hourly or
daily) LST (Stisen et al., 2008). The morning rise temperature was
calculated as the change (i.e. slope coefficient (°C h−1)) in LST
between sunrise and noon. A median Theil-Sen procedure was

Fig. 2. Study area with the location of the in situ validation sites. The averaged fraction of vegetation cover (FVC) for year 2011 is used as background to illustrate the important north-
south gradient in vegetation cover.
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applied since it is known to be robust against non-normality, het-
eroscedasticity, and temporal autocorrelation (Alcaraz-Segura
et al., 2010; Hirsch and Slack, 1984; Vanbelle and Hughes, 1984)
and it is suggested for studies of trends based on time series of data
(de Beurs and Henebry, 2005). Furthermore, it is resistant to out-
liers and therefore suitable for assessing the rate of change in short
or noisy time-series (Eastman et al., 2009). In order to minimise
cloud contamination and erroneous data in the dTS and TVDI cal-
culations, we filtered the FVC and LST data based on provided
quality flags. We also excluded all dTS pixels using the following
criteria: 1) temporal range of daily time-series< 4 h; 2) sample size
used in the fit< 5 cases; 3) dTS> 10 °C h−1 and< 0 °C h−1; and
4) poor LST vs time fit (r < 0.70). Criteria 1 ensured that dTS was
not calculated for pixels with clustered unfiltered data (i.e. only
available for a short window of time during the day). Criteria 2 was
set in order to ensure a sufficient number of observations. Criteria 3
and 4 were set to filter out observations with residual clouds.

(2) We used the algorithm proposed by Tang et al. (2010) to estimate
the dry edge (LSTmax in Eq. 1) due to its low sensitivity to outliers
(cloud residuals). In order to determine the upper edge of the tri-
angle, we divided the dTS-FVC triangular space into bins with a
FVC size of 2.5%. Each bin was separated into 5 subintervals and
the maximum dTS of each subinterval was extracted. All sub-
interval maximum dTS < the average (dTSsub_mean) minus one
standard deviation (δ) of these 5 subinterval maximum dTS were
removed and a new maximum dTS was calculated and used as the
maximum for that specific bin. An ordinary least square linear re-
gression was fitted through the remaining maximum dTS values and
their corresponding FVC bins and used as the dry edge. These were
the main steps in the algorithm; for a closer description we refer to
Tang et al. (2010). The implementation of the algorithm was
slightly modified compared to the original Tang et al. (2010) al-
gorithm in that all bins to the left of the triangular maximum dTS
and all dTS lower than wet edge (see below) were removed before
the fitting.

(3) The wet edge (LSTmin in Eq. 1) was calculated as the median of the
10th percentile dTS of the points included in the ten 2.5% FVC bins
with highest FVC values. The 10th percentile was used instead of
absolute minimum as it is less sensitive to outliers and therefore
provides a more robust assessment of the wet edge.

(4) The study region was separated into different tiles. The size of the
tiles (i.e. the number of SEVIRI pixels considered to adjust the dTS-
FVC triangle for a given SMOS pixel) was set in such way that it
strictly coincided in location and number with a multiple of the
SMOS pixel resolution. This ensured that the information on spatial
heterogeneity within a given SMOS pixel will be based on TVDI
estimates that were derived from the same triangle adjustment. In
this way, a SMOS pixel never over-lapped two different TVDI tiles,
thereby maximizing the accuracy of the downscaling. A tile size of
105 × 105 SEVIRI pixels was selected for the final SMOS dis-
aggregation (see results section).

(5) Furthermore the TVDI values were excluded based on quality of the
dry edge fit (r > −0.7), dry edge intercept values> 15 and< 0,
number of bins for estimating the dry edge< 5, total number of
points in triangle< 500, FVC range < 0.3. These filtering criteria
excluded entire 105 × 105 pixels-tiles. With these criteria we
aimed at ensuring the comparability and temporal consistency of
the data, having representative points over a large enough range of
FVC (FVC range and number of bins), excluding TVDI estimates
influenced by possible residual clouds (dry edge intercept range and
fit), as well as having enough pixels to calculate the edges of the
triangle and removal of those dates in which the cloud mask re-
duces the number of good quality pixels available for edge defini-
tion (total number of points and dry edge fit).

2.3.2. Fulfilment of the preconditions of spatial dimensions and
homogeneity

Surface properties (FSR) and atmospheric forcing (SSRD, TCWV,
WS, Tair) should be homogenous within the triangular space for the dTS
variability to accurately reflect SM variation. To test for homogeneous
surface properties and atmospheric forcing within different sized tiles,
we ran a three-step procedure. Firstly, FSR, SSRD, TCWV, WS, and Tair

data were filtered based on the criteria described under point 1 in
Subsection 2.3.1. Secondly, we estimated the dynamic range of daily
averages of FSR, SSRD, TCWV, WS, and Tair by taking the difference
between the 95th and the 5th percentile for different tile sizes covering
the Dahra and the Nalohou field sites. These 2 sites were assumed to be
representative for the dry and wet parts of the study area, respectively.
The 95th and the 5th percentile were used to avoid influence from
outliers. The analysis of data range as a function of tile sizes started
from 1 × 1 SEVIRI pixels with an increment of 1 pixels up until
200 × 200 SEVIRI pixels. Finally, percentiles (from 1 to the 100th in
steps of 1) from the full time-series were calculated for each analysed
tile size. This was done to analyse the fraction of the time series affected
by heterogeneity in FSR, SSRD, TCWV, WS, and Tair for the different tile
sizes tested.

Thereafter, to test the fulfilment of the stated precondition that the
spatial dimensions was large enough to capture a sufficient amount of
dTS-FVC cases for the triangular shape to take form, we ran the TVDI
analysis for the Dahra and the Nalohou field sites using different tile
sizes. The analysis started from 5 × 5 SMOS pixels (35 × 35 SEVIRI
pixels) with an increment of 5 SMOS pixels to 25 × 25 SMOS pixels
(175 × 175 SEVIRI pixels). The forming of the triangular shape are
dependent on a sufficient number of points included in the triangle, the
quality of the dry edge (r), and the dynamic range in FVC. To analyse
the effect of tile size we estimated percentiles (from 1 to the 100th in
steps of 1) of these parameters from the full time-series for each tile size
analysed.

2.3.3. Gap-filling of TVDI
The calculated time-series of TVDI was gap-filled using two different

approaches: (1) the excluded 105 × 105 SEVIRI pixels-tiles were filled
by using the non-filtered tile nearest in time. This secures gap-filling of
the tiles excluded based on the TVDI statistics according Section 2.3.1
above. (2) Remaining excluded pixels were filled using long-term
average calculated as follow:

=
⟨ ⟩

⟨ ⟩TVDI
TVDI

TVDI
TVDIj,t

j

105
t 105

(2)

where TVDIjt is the TVDI at pixel (j) in a specific point in time (t) which
is needing to be gap-filled; TVDIj is the TVDI for the pixel (j) averaged
for the entire time-series; ⟨TVDIt⟩105is the TVDI averaged for the
105 × 105 pixels-tile for the point in time which needs to be gap-filled;
and ⟨ ⟩TVDI 105 is the TVDI averaged for the 105 × 105 pixels-tile and
averaged for the entire time series. This second gap-filling procedure
fills pixels that were excluded based on quality flags of the input data
(excluded dTS and FVC data).

2.3.4. Disaggregation methodology
The SMOS SM was disaggregated following the methodology in

Merlin et al. (2012) where spatial heterogeneity in surface SM within
the SMOS pixel is linked with a heterogeneity in the soil evaporative
efficiency (SEE). Merlin et al. (2012) chose SEE as high resolution data
within the disaggregation methodology because of the strong correla-
tion to surface SM (Anderson et al., 2007) and its stability during
daytime under clear skies (Crago and Brutsaert, 1996). The dis-
aggregation relationship is expressed as:
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= + ∂
∂

×

− < >

SM SM SM
SEE

(SEE SEE )

disaggregated SMOS
model

SEVIRI SEVIRI SMOS (3)

where SMdisaggregated is the high-resolution SM product disaggregated
from the original SMOS data (SMSMOS); ∂

∂
SM

SEE
model is the partial derivative

of modelled SM on SEE; SEESEVIRI is high-resolution SEE based on SE-
VIRI input data; and 〈SEESEVIRI〉SMOS is SEE averaged at SMOS scale.

Merlin et al. (2010) tested the accuracy and robustness of the ag-
gregation methodology using different formulations for modelling SEE.
They concluded that the formulation of Noilhan and Planton (1989)
was the most applicable when conditions for soil properties were un-
known:

⎜ ⎟= − ⎛
⎝

× ⎞
⎠

SEE 1
2

1
2

cos π SM
SMmodel

p (4)

where SEEmodel is modelled SEE, and SMp is a soil parameter in SM unit.
In Merlin et al. (2012) SMp was estimated by inverting Eq. 4 at SMOS
resolution:

= ×
− 〈 〉

SM π SM
arccos(1 2 SEE )p

SMOS

SEVIRI SMOS (5)

By inverting Eq. 5, we got a model for estimating SM based on SEE:

= −SM
SM

π
arccos(1 2SEE)model

p

(6)

Then, by taking the partial derivative of SM on SEE in Eq. 6, we get:

∂
∂

=
− −

( )SM
SEE

2

1 (1 2SEE)
model

SM
π

2

p

(7)

Merlin et al. (2012) showed a linear relationship between SEE and
surface soil temperature using a physically based dual source energy
budget model (Kustas and Norman, 1999) and a synthetic data set.
Given that TVDI was based on soil thermal inertia (dTS), it should be a
strong proxy of the non-evaporative fraction, and SEE then equals (1-
TVDI). For a description of the mathematical derivation of Eqs. 5 and 7;
we refer to Appendix A. For a mathematical derivation showing that (1-
TVDI) equals SEE in the way it is implemented in the DisPATCH
methodology, we refer to Appendix B. Finally, Eq. 7 was inserted into
Eq. 3 and by setting SEE to (1-TVDI), we obtained a disaggregation
model directly based on TVDI.

= +
− − −

×

− − < − >

− < − >( )
SM SM

2

1 (1 2(1 TVDI))

((1 TVDI) (1 TVDI) )

disaggregated SMOS

SM
arccos(1 2 (1 TVDI) )

2

SMOS

SMOS
SMOS

(8)

2.3.5. Sensitivity of TVDI and disaggregated SMOS soil moisture to input
data

We analysed the sensitivity of TVDI to its input parameters using a
synthetic data set with dTS varying from 0 to 10, and FVC varying from
0 to 1.0. TVDI was estimated by setting the wet edge to 0, dry edge
intercept to 10, and dry edge slope to 0.1 dTS 0.01 FVC−1. We changed
one input parameter at the time with± 10% of the total range included
in the triangle at steps of 0.1% and recalculated TVDI. The input
parameters changed included dTS (± 1 °C), FVC (± 0.10), wet edge
(± 1 °C), dry edge intercept (± 1 °C), and dry edge slope (± 0.1 °C
0.01 FVC−1). The sensitivity of TVDI to the parameters was quantified
by fitting an ordinary least square linear regression between re-
calculated TVDI and % error for each dTS-FVC combination.

To quantify the sensitivity of disaggregated SMOS SM to errors in
TVDI, we disaggregated SMOS SM using Eq. 8 with SMOS SM varying
from 0 to 100%, TVDI varying from 0.0 to 1.0, and mean TVDI for each
SMOS pixel (〈(TVDI)〉SMOS) set to 0.25, 0.50 and 0.75. We changed
TVDI with± 0.1 at steps of 0.01 and repeated the disaggregation

procedure. The sensitivity of disaggregated SMOS SM to errors in TVDI
was quantified by fitting an ordinary least square linear regression
between disaggregated SMOS SM and the TVDI error for each SMOS
SM, TVDI, and (〈(TVDI)〉SMOS) combination.

2.3.6. Evaluation of soil moisture products
We evaluated both the original and the disaggregated SMOS SM

using the in situ based SM data sets from ISMN as independent data. The
agreements between SMOS based SM and the in situ SM were quantified
as the root mean square error (RMSE), the product-in situ ratio, and by
goodness-of-fit when an ordinary least-square linear regression was
fitted between SMOS based SM and daily in situ SM estimates. Spatial
patterns of the disaggregated SMOS SM over West Africa were also
evaluated for a specific case of extreme SM conditions (i.e. drought and
flood). Monthly anomalies of SM were estimated by subtracting the
2010–2015 climatology from the monthly average SM. July to
September (JAS) 2012 was selected as test case because both heavy
rainfall events and dry conditions corresponding to the ending of the
long-lasting drought of 2011–2012 were registered during that period
(de Robert, 2012; FEWSNET, 2012a, 2012b). Beside JAS also corre-
sponds to growing season months in most West Africa, which makes it
an interesting case for evaluating potential monitoring products of
hydrological extremes from a food security and disaster management
point of view.

3. Results

3.1. Tile size selection and spatio-temporal variability of TVDI

The dynamic range of the parameters affecting available energy
within the triangular space differs slightly in their relation to tile size.
The dynamic range in FSR was relatively stable over a large spectrum of
tile sizes. It was found to increase rapidly to a value close to the max-
imum where after it remained stable (at ~0.5 and ~1.6 m for Dahra
and Nalohou, respectively) up to a tile size of ~160 × 160 SEVIRI
pixels (Fig. 3a). The dynamic range in SSRD, TCWV, WS and Tair in-
creased more continuously with tile size (Fig. 3b and c). Up until a tile
size of 100 × 100 SEVIRI pixels, daily averaged SSRD was< 30
W m−2 for ~85% and ~75% of the time series, and daily averaged WS
was< 6 m s−1 for ~80% and ~98% of the time series for Dahra and
Nalohou, respectively, (Fig. 3b and d). TCWV and Tair were more
strongly affected by tile size with a larger fraction of the time series
having a large dynamic range (Fig. 3c and e).

Both the sample size and the FVC range increased strongly with tile
size (Fig. 4). Using the defined filtering criteria for the sample size
(> 500) it can be seen that 40%, 22%, 11%, 4%, and 1% of the time
series for Nalohou and 26%, 12%, 8%, 5%, and 3% of the time series for
Dahra would be rejected for the different tested tile sizes (with in-
creased tile size order). Tile size is thereby a trade-off between having a
large enough sample size allowing for a sufficient amount of dTS-FVC
cases, but keeping it as small as possible not to induce uncertainty
caused by heterogeneity in the available energy within the triangular
space. Reaching a sufficient number of points was challenging during
the rainy season, especially in the Southern parts of the study area due
to the low number of eligible dTS/FVC pixels (e.g. cloud-free data and
good dTS fits) (Fig. 5a). As a compromise, when enlarging the tile size
to 105 × 105 SEVIRI pixels, more pixels passed the filtering criteria
(Fig. 5c), and this tile size was chosen for the final analysis.

It can be seen that the amount of unfiltered input data (dTS and
FVC) increased substantially with latitude (Fig. 5a); the further south
the higher the fraction of cloud cover and an almost linear loss of data is
observed southwards from 20°N (Fig. 5c). The amount of data excluded
based on TVDI tile statistics had the opposite pattern; at the border
between the Sahel and the Sahara the FVC range required for the tri-
angular shape to take form starts to be too low (around 15°N) and above
17.5°N no TVDI retrievals are obtained (Fig. 5c). As a result, the largest
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Fig. 3. Dynamic range in surface properties and atmospheric for-
cing influencing the homogeneity of available energy within the
triangular space. Influence of tile size (y-axis) on the percentiles of
the time series (x-axis) of the dynamic range in daily averaged a)
forecast surface roughness (FSR) (m); b), surface solar radiation
downwards (SSRD) (W m−2); c) total column water vapour
(TCWV) (kg m−2); d) wind speed at 100 m height (WS) (m s−1);
and e) air temperature at the 975 hPa level (Tair) (K) for 1) the
Dahra and 2) the Nalohou field sites. The percentiles on the x-axis
gives an indication of the fraction of the time series for a given tile
size having a dynamic range smaller than the value shown by the
colour. For the z-axis, dark blue indicates high homogeneity (i.e.
small dynamic range) in surface properties or atmospheric forcing,
whereas yellow indicates low homogeneity. (For interpretation of
the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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amount of eligible data for calculating TVDI was observed in the central
part of the study area at ~13.5°N. In the spatial pattern of the average
TVDI for the entire study period, clear borders between the different
tiles can be seen (Fig. 5d). However, when combining TVDI with SMOS
SM using the disaggregation methodology, the blocky structure dis-
appears and SM heterogeneity across the study area is revealed (Fig. 5e;
cf. Subsection 3.3 below).

Clear seasonality was observed in the FVC and dTS time series for
the pixels covering the Dahra and the Nalohou field sites (Fig. 6a,b,)
whereas TVDI did not exhibit any sign of seasonal patterns and had a
relatively large variability (Fig. 6h). The FVC range observed in the
adjustment window varied a lot throughout the year at the semi-arid
Sahelian site; even though no clear seasonality was detected (Fig. 6c1).
For the southern humid Soudanian savanna site, FVC was also highly
variable, but with a clear seasonality decreasing the FVC range during
the rainy season (Fig. 6c2). This was most likely caused by an increased
vegetation cover throughout the tile during this part of the year. The
coefficient of determination (R2) of the dry edge fit remained high the
entire year (> 0.75), but a larger variability was observed during the
rainy season (Fig. 6e).

3.2. Sensitivity of TVDI and soil moisture to input parameters

The sensitivity analysis of TVDI indicated that sensitivity is strongly
dependent on the pixel location within the triangular space. Errors in
the input parameters have a very strong impact on the estimated TVDI
at the peak of the triangle (upper part of the FVC range) whereas TVDI
is less affected close to the vertical catheter of the triangle (lower part of
the FVC range) (Fig. 7). The reason for this is the small dTS range at the
peak of the triangle, resulting in a large sensitivity. An error in the input
dTS data have the same impact throughout the entire TVDI range
(Fig. 7a). As expected, TVDI values close to the dry edge (TVDI = 1.0)
are more sensitive to errors in the FVC, the dry edge slope and the dry
edge intercept (Fig. 7b–d) than TVDI values close to the wet edge
(Fig. 7e). The opposite is the case close to the wet edge (TVDI = 0.0)
where TVDI values are insensitive to errors in the above mentioned
parameters (FVC, the dry edge slope and intercept) but more sensitive
to an error in the wet edge.

For low SMOS SM values, disaggregated SM remain low throughout
the entire TVDI range (Fig. 8a1–c1) and the disaggregation procedure is
thereby rather insensitive to errors in TVDI for this SMOS SM region
(Fig. 8a2–c2). However, as SMOS SM increases the range in

Fig. 4. Influence of tile size (y-axis) on the percentiles of the
time series (x-axis) of the parameters influencing the triangular
shape. a) Number of points including in the triangle (N); b) range
in fraction of vegetation cover (FVC); and c) correlation coeffi-
cient of the dry edge slope (r) for 1) the Dahra and, 2) the
Nalohou field sites. The percentiles on the x-axis gives an in-
dication of the fraction of the time-series for a given tile size
having a range smaller than the value shown by the colour.
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disaggregated SM start to range from 0 to 100% (Fig. 8a1–c1), with
implications for the sensitivity of the disaggregation procedure. The
effect of a change in TVDI is strongest for combinations of low SMOS
SM and low TVDI and high SMOS SM and high TVDI (seen in the colour
change of Fig. 8a1–c1). For example, when 〈(TVDI)〉SMOS is set to 0.75
disaggregated SM goes from 0 to 100%Vol with a TVDI change from 1.0
to 0.8 (Fig. 8c1). This pattern is also visible in the sensitivity of dis-
aggregated SMOS SM to TVDI (Fig. 8c2). The most sensitive parts of the
triangular space for the disaggregation procedure are thereby close to
the wet and dry edges where TVDI approaches 0.0 and 1.0, respectively.

3.3. Evaluation of the SMOS soil moisture products

The original SM product from SMOS generally describes the sea-
sonal dynamics well for the 6 sites (Fig. 9). The SMOS SM were on
average 8.41%Vol whereas in situ SM was on average 6.33%Vol and it
can be seen that SMOS SM is overestimated at some of the sites (Be-
lefoungou and Nalohou). This overestimation generated a relatively
high RMSE (6.26%Vol) between SMOS SM and in situ SM (Table 1). The
sites with the highest overestimation are located in the southern humid
parts of the study area (Fig. 9). The linear function fitted between SMOS
SM and in situ SM also indicated a general overestimation by SMOS, but
high SMOS SM has an even higher overestimation (Fig. 10; Table 1;
slope: 1.26; intercept: 0.77; R2: 0.73).

In order to compare the original SMOS SM with the disaggregated
SMOS SM, we filtered the SM products (original and disaggregated
SMOS SM) so that only days included in both time-series were included
in the evaluation (Fig. 10). Disaggregated SMOS SM had a slightly
lower correlation than original SMOS SM to in situ SM (Fig. 10; R2 in
Table 1). However, disaggregated SMOS had a lower bias, a ratio closer
to 1.0, a lower RMSE, and it was slightly closer to the one-to-one ratio
(slope 1.21 and 1.26) (Table 1, Fig. 10). The largest discrepancy be-
tween SMOS SM and the in situ SM was seen for the sites in the southern
part of the study area (Belefoungou and Nalohou; Table 1, Fig. 10).
These are the sites generating the high SMOS SM in the low in situ SM
region of Fig. 10g. These high SMOS SM values were mainly from the
dry season when in situ SM was relatively low (Fig. 9b, d).

Spatial patterns of disaggregated and original SMOS SM were also
evaluated for the entire West Africa (Fig. 11). Major river networks (e.g.
Niger, Senegal, Hadejia, etc.) are visible in the disaggregated product
whereas they are not on the original product (Fig. 11b). To assess the
potential of the disaggregated SM products for monitoring climate ex-
tremes, SM anomalies were estimated for the period July to September
(JAS; growing season months in most of West Africa) 2012 (Fig. 11c).
Both cases of drought and flooding were observed during that period in
West Africa, and negative SM anomalies are seen in most Senegal and
Mali, whereas large patterns of positive SM anomalies are observed in
Central Mali (Fig. 11c).

Fig. 6. Time series of the input parameters, extracts from the TVDI calculation tiles, and final TVDI estimates for (1) Dahra and (2) Nalohou: (a,) fraction of vegetation cover (FVC); (b)
unfiltered (red) and filtered (black) morning rise temperature (dTS); (c) range of FVC in the TVDI tiles; (d) total number of points included in the triangle (N); (e) coefficient of
determination (R2) for the dry edge fit; (f) wet edge; and (g) dry edge slope. Included are also (h) filtered (black) and gap-filled (red) TVDI estimates (black). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

The use of a higher spatial resolution SM proxy to disaggregate
SMOS SM is of high interest as there is a stringent mismatch between
the spatial scale at which SM information is provided (e.g. ~40 km for
SMOS) and the scale of the studied process (Collow et al., 2012). Be-
sides the question of the representability of in situ measurements for
validating such coarse dataset has often been raised (Dorigo et al.,
2015), suggesting that the development of a disaggregated product
would grant a more accurate in situ validation (Malbéteau et al., 2016).
However, if a systematic bias is present in the original SMOS SM (such
as seen for the southern sites (Fig. 9), seen in the blocky structure of the
final disaggregated product (Fig. 5e and Fig. 11), and as reported by
Collow et al. (2012)), the uncertainty will propagate during the dis-
aggregation process, regardless of the quality of the information used
for the disaggregation. One large source of uncertainty for SMOS SM is
the presence of forest, being the most likely explanation to the sys-
tematic bias in the southern sites (Leroux et al., 2013). The dis-
aggregation of SMOS using TVDI as input data improved the relation-
ship for most sites, suggesting that the TVDI spatial heterogeneity is
adequately capturing SM heterogeneity within each SMOS pixel.

One of the major challenges here was to produce a time series of
TVDI estimates at sub-continental scale in order to best serve the dis-
aggregation process. Commonly TVDI has been used to evaluate SM or
evapotranspiration conditions over regions of limited spatial extent (i.e.
hydrological basin, sub-national administrative entities, etc.) (de Tomás
et al., 2014; Garcia et al., 2014; Stisen et al., 2008). Here TVDI was
estimated using a tile approach of 105 by 105 SEVIRI pixels. By fitting

TVDI for such tiles the impact of heterogeneous atmospheric and sur-
face condition were alleviated as much as possible and at the same time
made TVDI applicable across the subcontinental study area.

It is important to note that TVDI values can only be compared within
a given tile (Fig. 5d). The exact TVDI value estimated for a certain pixel
depends on the location of the wet and dry edge and a specific TVDI
value will not represent similar local hydrological conditions when fitted
over a tile covering humid tropical forest as over a tile covering semi-arid
savanna. Besides, TVDI is not only affected by the exact region used for
fitting the triangle, but the size of the tile also has a strong influence
(Long et al., 2012). With an increase in tile size more humid and dry
conditions are included in the triangular space and the wet and dry edge
thereby moves up- and down-wards, respectively, with a strong impact
on the TVDI estimates (Fig. 7) (Long et al., 2012). Additionally, a small
tile size causes large uncertainties in the calculation of the wet and dry
edges due to the low number of available pixels (Fig. 4) (de Tomás et al.,
2014), whereas a large tile size induce uncertainty in relation to het-
erogeneity of surface roughness and atmospheric forcing (Fig. 3). As a
compromise we used a relatively large tile size as this was deemed ne-
cessary to fulfil the requirements of sufficient amount of data-points for
TVDI calculations within parts of the study region (Fig. 5c).

It is not only challenging to compare TVDI values originating from
different tiles but also values derived at the same location but under
different meteorological conditions. Indeed, short-term variability in
meteorological parameters (e.g. rainfall, temperature, incoming radia-
tion, wind, cloud cover) is likely to impact the temporal variability in
TVDI. If we hypothesize that SM temporal variability can be captured
by TVDI time series, rainy season TVDI should be substantially lower

Fig. 6. (continued)
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than dry season TVDI. As this pattern is not observed (Fig. 6), it leads to
the questioning of the applicability of TVDI as proxy for monitoring the
SM temporal variability. This finding however do not disqualify TVDI as
proxy for assessing the spatial variability of SM within a given tile. Here
the tile size was set so that a SMOS pixel is never overlapping two
different tiles; and each pixel only uses the TVDI heterogeneity within a
tile and at a certain point in time for disaggregation of SMOS SM. Fu-
ture research related to the improvement of the temporal patterns of
TVDI could possibly focus on the use of the newly launched geosta-
tionary satellite GOES-R with 1-km spatial resolution which will

improve the ability to acquire pure pixels for a comparable smaller area
or by using data from constellations of polar orbiting sensors (e.g.
MODIS, VIIRS and Sentinel-3) ensuring higher spatial resolution in
combination with an adequate temporal resolution.

The TVDI retrievals were found to be very sensitive to errors in the input
parameters at the upper range of FVC, challenging the applicability of the
TVDI approach for the high FVC regions needed to shape the triangular
space. Indeed, it has previously been shown that DisPATCH in the form that
it was implemented in this study performs better over semi-arid areas than
over temperate zones (Malbéteau et al., 2016). It has also been found that

Fig. 7. Sensitivity of TVDI to input data and equation parameters: a) morning rise temperature (dTS; °C); b) fraction of vegetation cover (FVC); c) dry edge intercept (DI); d) dry edge
slope (DS); and e) wet edge (W). The % for the temperatures (dTS, DI, and W) and the FVC is a % change in relation to the range of the triangle. During the analysis we changed one
parameter at the time and the rest remained stable.
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the triangular method underestimates evapotranspiration because the sur-
face temperature of empirically retrieved dry and wet edges is usually
under- and overestimated, respectively (Tang and Li, 2015). In reality, the
evapotranspiration and SM should reach a minimum and maximum level at
surface temperatures higher than and lower than what the actual observa-
tions show (Tang and Li, 2015). This is specifically the case for the upper
part of the FVC range (Tang et al., 2010). Incorporating a theoretical dry
and wet edge higher and lower than the actual measured level would de-
crease the sensitivity of the disaggregated product to the input parameters,
given that the wet and dry edge would be displaced from the observed

values. Tang and Li (2017) developed a physically based model for esti-
mates of endmembers of a trapezoid for evapotranspiration estimates based
on both data from earth observation and in situ measurements (meteor-
ology, incoming short and longwave radiation, and vegetation height). It is
possible that this approach could be adjusted and applied to earth ob-
servation and gridded meteorological and vegetation data for estimating
endmembers giving such theoretical dry and wet edges. Possibly, this would
also result in larger temporal (seasonal) dynamics in TVDI since high FVC
observations (i.e. growing season conditions) would be more influenced
than low FVC observations (dry season conditions).

Despite these inherent limitations of the TVDI approach, TVDI is found
to be a valuable approach for the purpose of disaggregating SM of a SMOS
pixel as implemented here. The accuracy of the disaggregated products
(RMSE 3.4–10.6%Vol) were at a similar level as previously published
disaggregated SMOS SM products (RMSE varying between 3 and 11%Vol)
for a range of vegetation types covered here (semi-arid woody savannah,
cultivated semi-arid regions, humid woody savannah and tropical forest)
(Djamai et al., 2015; Malbéteau et al., 2016; Merlin et al., 2013; Peng
et al., 2017; Piles et al., 2016; Piles et al., 2014). Increased details related
to major river networks confirms that the disaggregation method driven
by the TVDI spatial heterogeneity was successful in improving the spatial
representation of the hydrological landscape over West Africa (Fig. 11).
SM extremes were depicted adequately for the test case of JAS 2012 that
coincided with a complex food security crisis in the Sahel. During that
year, late, erratic rainfall, together with high food prices and chronic
poverty pushed> 19 million people into food insecurity in the Sahel (de
Robert, 2012). In August countries already affected by the drought were
then hit by heavy rainfall (e.g. in Central Mali, and in several regions in
Niger and Nigeria) causing flooding, destroyed infrastructure and da-
maged crop fields (FEWSNET, 2012a, 2012b). Despite the relatively short
length of available time series (max. 5 years), seasonal anomalies derived
from the disaggregated SM product proved to be an adequate tool to
identify both areas affected by extreme high and low SM content. Further
investigations should focus on the evaluation of potential monitoring and
early warning products at monthly or lower time scale derived from the
disaggregated product.

Overall it can be concluded that the disaggregation methodology suc-
cessfully increased the spatial resolution of SMOS SM and that the dis-
aggregated products can potentially be applied to local SM monitoring for
drought/flood risks which is of significant importance for the livelihood of
the population in West Africa. Initiatives such as the one set by the
European Space Agency (ESA) Data User Element (DUE) GlobTemperature

Fig. 8. Sensitivity of disaggregated SMOS soil moisture
(SM; %Vol) to changes in TVDI. Average TVDI in Eq. 8
was set to a) 0.25, b) 0.50 and c) 0.75. First row (1)
shows the actual disaggregated SM for each original
SMOS SM -TVDI case and second row (2) shows the
changes in disaggregated SM for each 0.01 error in TVDI
for each SM-TVDI case.

Fig. 9. Time series of in situmeasured soil moisture (SM (%Vol)) (thin black line) and Soil
moisture and Ocean Salinity (SMOS) SM (grey dots) for: a) Banizoumbou; b) Belefoungou;
c) Dahra; d) Nalohou e) Tondikiboro; and f) Wankama. The location of the different sites
is shown in Fig. 2.
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Table 1
Comparative statistics for the in situ validation of the original SMOS and disaggregated SMOS soil moisture. The ratio was the product-in-situ ratio and it was calculated as original and
disaggregated SMOS SM divided by the in situ measurements. The analysis was conducted for individual sites and with all data combined.

Validation site Original SMOS Disaggregated SMOS

Slope Intercept
(%Vol)

R2 Mean bias Ratio RMSE (%Vol) Slope Intercept (%Vol) R2 Mean bias Ratio RMSE (%Vol)

(%Vol) (%Vol)

Banizoumbou (BAN) 1.32 0.35 0.58 −1.36 1.44 4.45 1.30 0.19 0.59 −1.13 1.36 4.18
Belefoungou (BEL) 0.95 4.87 0.71 −4.19 1.25 7.81 0.86 4.57 0.67 −2.77 1.10 6.93
Dahra (DAH) 1.03 −1.88 0.58 1.76 0.59 3.21 1.06 −2.03 0.55 1.74 0.59 3.42
Nalohou (NAL) 1.19 6.35 0.68 −8.13 1.80 10.21 1.22 6.44 0.66 −8.39 1.76 10.61
Tondikiboro (TON) 1.07 0.22 0.61 −0.49 1.13 4.03 1.03 0.17 0.61 −0.28 1.07 3.87
Wankama (WAN) 1.11 1.16 0.59 −1.5 1.45 4.41 1.12 1.10 0.59 −1.47 1.43 4.36
All 1.26 0.77 0.73 −2.38 1.33 6.26 1.21 0.86 0.69 −2.09 1.25 6.13

Fig. 10. Relationship between in situ and both original (1) and disaggregated (2) Soil Moisture and Ocean Salinity (SMOS) soil moisture (SM; %Vol) for the pixels used in the evaluation of
the disaggregation methodology. The subplots are: a) Banizoumbou; b) Belefoungou; c) Dahra; d) Nalohou; e) Tondikiboro; f) Wankama; and g) all sites combined. The grey line is the
ordinary least square linear regression and the black line is the one-to-one ratio. Statistics of the slopes are given in Table 1. The location of the sites can be seen in Fig. 2.
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Fig. 11. Average soil moisture (SM) 2010–2015 derived from the disaggregated SMOS product over West Africa (a). Main river networks were not visible in the original (non-
disaggregated) products (b1), whereas they became apparent after disaggregation (b2). SM extremes (flood and drought) were also captured for the test case of JAS 2012 (c). Filtered and
no data are represented in white. The blocky structure observed in the disaggregated products are caused by the original SMOS pixel resolution.
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Project that aims at producing and distributing high quality, consistent LST
dataset are of high value for climate and hydrological studies, especially in
remote areas with low density in situ SM networks. Further research effort
should therefore continue the development and distribution of very high
temporal time series of LST that are essential for specific activities related to
the better understanding of the hydrological cycle, the monitoring, fore-
casting and early warning of extreme events.
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Appendix A. Mathematical derivations of Equations 5 and 7

Equation 5 was derived from Equation 4:

⎜ ⎟= − ⎛
⎝

× ⎞
⎠

SEE 1
2

1
2

cos π SM
SMmodel

p (4)

Multiply both sides with −2:
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2SEE 1 cos π SM
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p

Add 1 to both sides:
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1 2SEE cos π SM
SMmodel

p

Multiply both sides with arccos:
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Put SMp on the left side and put arccos (1 − 2SEEmodel) in the denominator on the right side and Equation 5 is derived:
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Equation 7 was derived by taking the derivative of Equation 6:
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The derivative of arccos(x) is:
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Then, by setting x = (1-2SEE) and taking the derivative of x we get:
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Then by taking the derivative of SEE on x we get:
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Finally, by setting x = (1-2SEE) Equation 7 is derived:
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Appendix B. Mathematical derivations indicating that TVDI is a proxy of SEE

According Merlin et al. (2012) SEE can be calculated as:

= −
−

SEE T T
T T

soil max soil

soil max soil min (B1)

where Tsoil is the soil temperature; Tsoil_min is minimum Tsoil; and Tsoil_max is maximum Tsoil.
Soil temperature and Tsoil_max can be calculated as (Merlin et al., 2010; Merlin et al., 2012):

=
− ×
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If we put these two into Equation B1; we get:
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Given that vegetation temperature (Tvegetation) is approximately the same as minimum soil temperature (Tsoil_min) (Merlin et al., 2010), and that
Tsoil_min can be estimated as minimum LST within a window tile (the wet edge) (Merlin et al., 2010) this leads us to:

≈ −
−

≈ −
−
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