
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Control-over-the-cloud: A performance study for cloud-native, critical control systems

Skarin, Per; Tärneberg, William; Årzén, Karl-Erik; Kihl, Maria

Published in:
International Conference on Utility and Cloud Computing (UCC)

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Skarin, P., Tärneberg, W., Årzén, K.-E., & Kihl, M. (2020). Control-over-the-cloud: A performance study for
cloud-native, critical control systems. In International Conference on Utility and Cloud Computing (UCC) IEEE -
Institute of Electrical and Electronics Engineers Inc..

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 20. Jun. 2025

https://portal.research.lu.se/en/publications/f7d4d6e3-d204-4624-bb08-d4e3775fc6e8

Control-over-the-cloud: A performance study for
cloud-native, critical control systems

Per Skarin˚:;, William Tärneberg˚§, Karl-Erik Årzén;, Maria Kihl§
:Ericsson Research, Lund, Sweden

;Dept. of Automatic Control & §Dept. of Electrical and Information Technology, at Lund University, Lund, Sweden
˚Equal contributors

Abstract—In the Industry 4.0 era, time-sensitive and mission-
critical control applications still have a long way to go, from
being tied down and co-located with the systems they control, to
taking full advantage of the cloud. Conservatively keeping appli-
cations local will deprive these complex applications of abundant
compute capacity, wider system integration, and the potential
for collaborative control efforts. Feedback control systems are
unlike other cloud applications - their performance and objectives
can be formally defined, they require timely feedback, and they
are sensitive to variations in system performance and noise.
Although resources are plentiful, the cloud is a noisy and latency
prone execution environment, detrimental to feedback control
system. In this paper, we evaluate a set of cloud platforms and
infrastructures with the intention of hosting feedback control
systems. In lower levels of the software stack, we observe
differences between clouds. Further up in the stack we see
the disadvantages of applying cloud native platforms. With an
understanding of expected performance we proceed to evaluate
a simple control strategy and show how the sensitive nature of
control can cause a seemingly adequate cloud platform to pose a
high risk, while a seemingly inadequate platform can positively
affect the performance of our proposed controller.

Index Terms—Cloud-native, feedback control systems, cyber
physical systems, control over the cloud, Control-as-a-Service

I. INTRODUCTION

In the industry 4.0 era, Industrial Internet-of-things (IIoT)
will enable time-sensitive production processes, that have
previously been shackled to production floors on immutable
software and hardware, to contribute to and take part of
larger site-wide networked systems. Aggregating data and
decisions to a central point, such as the cloud, can enable, for
example, system-wide performance improvements and early
failure detection while also minimizing the infrastructure at
the production floor. We heed the call from [1] and argue that
without compromising robustness and resiliency [3], industrial
feedback control systems can be designed with basic software
and hardware on the production floor and augmented by more
capable feedback controllers in the cloud.

Some control problems will be implemented in the cloud
out of necessity, such as, to enable collaborative control and
satisfy data availability, others because of practicalities, and
yet others to gain access to resource abundance. One path

This work has been partially funded by the Wallenberg AI, Autonomous
Systems and Software Program (WASP), the ELLIIT strategic research area
on IT and mobile communications, Sweden’s Innovation Agency (VINNOVA)
under the 5G-PERFECTA Celtic Next project, the Swedish Foundation for
Strategic Research under the SEC4FACTORY project.

towards deploying ever more challenging control tasks in the
cloud is to mitigate the issue of uncertainty, latency and
jitter [8]. A seemingly competing, but rather complementary,
challenge to control theory and computer engineering, is to
identify a useful trade-off between added latency and the
gains from using cloud technology. Through technologies
such as Time Sensitive Networks (TSN), industry is working
towards the implementation of real-time support in the clouds.
Further, enabling mobility requires unprecedented reliability
in the networks, which is promised by 5G Ultra-Reliable and
Low-Latency Communication (URLLC), network slicing etc.
Techniques are being studied and developed [13], [14] to
bridge the gap between reliability and efficiency gains. Such
quality elastic control is aimed at ways to use resources on-
demand but can also provide relief to the real-time problem.

In a feedback control system, the effects of a lost or ab-
normally delayed message depends heavily on the state of the
process and the constraints of the feedback loop. Inter-message
latency is therefore as great of a challenge as overall reliability.
In addition, to realize the cloud-based systems aimed for the
Industry 4.0 era, at reasonable costs and development effort, a
design criteria is that they rely on tried and trusted Commercial
off-the-shelf (COTS) components. Today, cloud-native is the
culmination of COTS, cloud, and no-ops software development
and deployment. We therefore consider COTS components,
services, and platforms as referring to, for example, public and
private cloud providers (e.g. Amazon Web Services (AWS),
Azure), open-source orchestration and service abstraction plat-
forms (e.g. Kubernetes (K8S), AWS Lambda, Fission) and
the connecting general-purpose networking infrastructure, in
addition to traditional software.

Designing controllers that are augmented by the cloud
requires an awareness of the cloud’s performance properties
and how this affects the process under control. With this
knowledge one can asses the applicability and potential gains
of using cloud technology, and the necessary measures to
sustain reliability. The purpose of this work is to study the
technological step into using cloud-native technology with a
view on high-frequency feedback control systems. What con-
stitutes high-frequency in this context relates to the identified
performance and is application dependent, and as such, has
yet to be defined. To that end, we progressively benchmark
the layers of Information and Communications Technology
(ICT) that constitute a cloud, of two infrastructure providers

Network

Controller

Plant
control signalstate

τcτs

Fig. 1: Networked control.

and then propose and evaluate a feedback control system
aligned in frequency and execution requirements with what
was observed. Specifically, our contributions towards using
cloud-native technology for feedback control systems are:

1) A study of the progression of latency in clouds from the-
oretical lower bounds to cloud-native application layers.

2) A control-contextual benchmark comparison of lower
bound response times from a contemporary private cloud
to a public cloud.

3) A proposed cloud-augmented controller, demonstrated
through a basic example.

4) An identification of the detrimental effects of offloading
feedback control to the cloud. Effects that do not apply
to ordinary bit-pipe applications.

Additionally, we present a specific control problem to illumi-
nate performance gains but also detrimental and non-intuitive
effects. This comes in two forms, a direct approach which is
useful to examine the cloud deployments but is both unreliable
and creates an excessive load. In contrast, we show results
from an alternative method, with less impressive peak perfor-
mance gains, but with reliable execution and reduced load on
the cloud. Interestingly, response rates are also improved in
this mode, making almost all requests useful and allowing the
same gains from two seemingly very different deployments.
We observe that even when the cloud is unresponsive 87%
of the time, we have a measurable benefit of 12% efficiency
gains, and can reach an ideal gain of 40% on most platforms.
Critical systems may face a reliability issue, and we exemplify
altering the dynamics of the controller, reducing the request
load while maintaining 10% efficiency gain.

II. RELATED WORK

The interest in using ICT as a means to implement net-
worked control using COTS predates the cloud era. An ex-
ample is found in [17], where control is implemented over
two private Local Area Networks (LANs), to balance a steel
ball in a magnetic levitation system. The engineering merit
of COTS, which at the time consisted of the Internet, general
purpose networks, a web server, and the Common Gateway
Interface (CGI), is explicitly acknowledged in this work. More
recently, modern systems such as drones have been considered
[10], and the potential for implementation using high levels
of abstraction. However, such works often focus on single
providers and the tools, rather than the control challenge.

Research on deploying traditional feedback control loops
to a cloud in general, is often focused on making cloud
computing platforms and intermediate networks behave as

real-time systems. Targeted efforts have, for example, been
made in the areas of deterministic dynamic networks [5],
resource allocation in data centers [18], and feedback control
implemented in the network [12]. Nevertheless, successful
attempts at deploying feedback control loops that span a cloud
Virtual Machine (VM) and back, were first made relatively
recently [4]. The work in [4] identified that time-varying
network delays is a key challenge and it was shown that the
availability gap introduced by the cloud could be spanned
reliably across multiple clouds, given comprehensive middle-
ware. With more consideration to control theory, the work in
[7] showed that a cloud-deployed feedback controller can be
a successful agent in a fail-over system, that is both resilient
to feedback control and network failures. On a tangent line
of research, the authors of [16] demonstrate that the delay
incurred by the cloud and the intermediate network can be
accommodated for when designing the feedback control loop.
Also, not to be underestimated, security is a principal concern
when operating in the cloud. On this topic, the authors of
[2] showed that the performance overhead of security was
manageable in a cloud deployed feedback controller. The
above works give credence to the research direction. However,
as stated in the beginning of this section, the current state-of-
the-art typically propose to change the notion of the cloud
in order to fit the needs of feedback control systems, and
are not pursuing an adaptation of feedback control systems
to the reality of the cloud. The research direction this paper
contributes to complements research with the view that there
is important progress to be made by considering unadulterated
clouds, and as such assumes no real-time support in neither
networks nor clouds systems.

III. CHALLENGES AND TARGETED SYSTEM

This section provides an anatomy of feedback control sys-
tems and presents the targeted system architecture.

A. Anatomy of feedback control

In a feedback control system, the subject under control
is referred to as the plant. A plant can be an isolated
system such as the joint of a robotic arm, or a large and
complex combination of hundreds of valves and switches
in a production plant. A controller manipulates the plant in
order to perform a task such as moving a robotic arm from
position A to B or adjusting the rate at which two liquids are
combined. A controller is subject to performance objectives
such as counteracting external forces and friction, or keeping
an optimal production rate based on demand and logistics. To
capture such behaviors and dynamics, a controller often relies
on a model that represents the physical system and possibly
its environment. Model simplifications, parameter estimations,
measurement errors, and unknown disturbances from the envi-
ronment, incur additional complexity in controlling the plant.
The basic control problem consists in deriving a controller
which can manipulate the plant to meet the objectives and
performance goals. In extension, it also involves finding a
representative model, tuning model parameters, formalizing

objectives and performance goals, and handling disturbances
in the environment.

B. Computer controlled systems

From a computer engineering perspective, feedback control
systems are discrete-time synchronous applications that must
run continuously and have strict timing requirements. If the
system’s performance begins to deteriorate, it may be chal-
lenging, or impossible, to recover, without drastic measures
and grave consequences. Consequently, feedback controllers
are conventionally implemented on industrial grade hardware -
proprietary plant-side Programmable Logic Controllers (PLCs)
that have close to deterministic execution times and a long
mean time between failures large mean time to failure. A great
deal of care is taken to ensure that controllers execute timely,
periodically, and that signaling, i.e. sensory input and control
output, is deterministic.

C. Networked control

The notion of networked control implies that the plant
and the controller are separated by a network. In addition to
the non-trivial interplay between the controller and the plant,
networked control is further complicated by network delay and
packet loss. Networked critical control is depicted in Figure 1.
Here, networked control is critical because the control must
function over an unreliable network or the plant objective will
fail. For such a scenario, network control theory studies the
requirements that must apply to the communication channel
in order for the overall system to meet the objectives and not
malfunction. For the Maglev system in [17] it is found that
there must never be more than three lost packets in succession
if the system is to remain operational.

Another type of networked control is shown in Figure 2a.
Here, the critical control is not performed over the network. An
independent local control loop is acting on the plant to fulfill
the current objectives, as defined by a supervisor controller.
The supervisor controller, which can act at a frequency much
lower than what is required to keep the plant operational,
sets the parameters of the local controller, altering its task
and/or changing the performance objectives. With supervisory
control, network latency and packet loss may affect the overall
performance but should not inadvertently cause the plant to
malfunction. An example of supervisory control is also present
in [17], in terms of an implementation that supports manual
configuration of the Maglev controller through a web page.

D. Control-over-the-Cloud

The examples in Section III-C serve to distinguish the type
of control we are concerned with. The target in the paper is
the critical control in Figure 1. However, the proprietary real-
time system at the controller side of the network is replaced
by a cloud infrastructure, as shown in Figure 2b. Further, the
network is a public network. Here we use the term public
network to refer to a network that is shared, and which may
or may not be accessible by unknown external parties, but
importantly, cannot provide formal guarantees. The loss of

Network

Supervisor

Control

Process

τcτs

state

contr. signal

conf.

(a) Supervisory control

Public
Network

Adv. Control

Basic Control

Processstate

τcτs

contr. signal

(b) Control over the cloud

Fig. 2: Supervisory v.s. critical control over the cloud

real-time execution and the possibly unlimited network degra-
dation are both fatal to the reliability of the control system.
To ensure that timely control input is continuously available at
the plant, a basic local feedback control must be present. We
refer to this basic local control as the ancillary controller. The
ancillary controller is switched in to recover when networked
control fails. A more advanced, high performance, controller
is executed in the cloud. While the ancillary control is be
able to fulfill the control objective, this, networked, controller
enables improved performance. As with supervisory control, a
functional network allows the system to reach its full potential.
In contrast to supervisory control, the networked controller is
1) manipulating the plant directly and 2) not necessary for
the ancillary controller to receive and execute new objectives.
Latency imposed by shared networks and cloud infrastructures
has impeding effects in terms of how often the ancillary control
must compensate for the networked controller’s inability to act.

IV. EXPERIMENT SETUP

In this section, we establish a set of experiments to de-
termine how appropriate the cloud is in realizing the system
presented in Section III-D and Figure 2b, based on the
COTS design criteria established in Section I. Additionally, we
present a simple reference feedback control system on which
some of the experiments are based.

A. Objective

The primary goal in this paper is to study the implementa-
tion of an example feedback controller using the architecture in
Figure 2b, on a cloud-native platform executing in an ordinary,
shared cloud. It is assumed that cloud latency will have largely
detrimental effects on the performance of the controller. It is
known that the chosen plant can be controlled with a sample
rate as low as 15Hz, but to improve performance, a higher
frequency is preferable. It is therefore of interest to investigate
the achievable response rate from the cloud. It is also of
interest to understand where latency is introduced and, for
the most effective use of COTS, how much performance that
is lost by choosing technologies at a high level of abstraction.
We believe that assessments of cloud latency often are overly

pessimistic. This can be because judgments are based on
complex applications, obsolete technology, or incorporates
worst case scenario assumptions. We therefore choose to
reduce complexity as much as possible and aim to find the
achievable lower bounds on response times. To make it easier
to refer and reason about the objectives we declare them in
the form of three assumptions.

Assumption 1: Cloud-native platforms are composed of
many systems-of-systems, which results in, for each successive
system or OSI layer, a delay with greater variance. This effect
will from now on be referred to as platform noise.

Assumption 2: Control applications of the type in Figure 2b
can benefit from the cloud using cloud-native services.

Assumption 3: The targeted cloud control system incor-
porates multiple dynamic systems, and cannot be trivially
predicted. In extension, combining results from studies of
individual components is at high risk of leading to incorrect
assessments of the suitability of the cloud.

B. Experiments

A set of experiments were designed to test Assumptions
1-3. They are as follows:
Baseline Round-Trip Time (RTT) Investigates the mini-

mal time it takes to reach the cloud, and go back again,
at each successive layer in an infrastucture’s stack. These
experiments are fundamental to testing Assumptions 1 and
2. In the RTT experiments, we quantify the latency cost of
accessing the cloud and find the latency profiles for a set
of communication technologies and cloud infrastructures. In
extension, we will be able to determine the upper bound
frequency for control.

Computational complexity vs. response time Cloud
resources are subject to varying control-problem complexity,
per request, and the RTT as well as the execution time
is measured. These experiments will explicitly test
Assumption 2 and determine if Assumption 1 is load
dependent. Depending on the state of the plant, the
controller requires different amounts of computations in the
cloud. To solve the control problem, the controller predicts
the plant state over time. The length of this prediction
affects the computational load. To create a varied load,
we alter the state of the plant and the configuration of
the advanced controller’s prediction length. To recreate
identical conditions for each deployment, three static
control-problem workload intensities where determined
through experimentation; light, medium, and high. To create
the different intensities, the state is changed to produce
different degrees of computationally complex problems.

Feedback control Using the findings from the above ex-
periments, we proceed to test Assumption 3 and evaluate
the experimental feedback control system presented in Sec-
tion V. It is constructed using a basic, ancillary, controller
and an advanced, networked, controller as in Figure 2b. We
refer to the combination as simply the controller. A set-
point tells the controller what state the plant should be in.
The controller’s ability to quickly drive the system to a

new state determines its efficiency. As a complication, there
are constraints to the plant state and the input signal. The
networked controller knows about these constraints and takes
them into consideration. The ancillary controller does not
handle constraints and therefore the efficiency of the local
control must be restricted, to reduce the risk and severity of
constraint violations. Our performance evaluation criteria is
the ability of controller to stay within the constraints and to
quickly reach the set-point.

Note that these experiments run in batches, with each batch
run as quickly a possible on a single thread. Although the
cloud can be used for massively parallel computations, it is
important to run single, serialized requests to find the shortest
response times. There are 10 requests in each batch. One
request is sent initially and disregarded to remove cold starts
from the data.

C. Performance metrics

The cloud performance is asserted in terms of a requests
RTT, and execution time, measured in milliseconds. Medians
and percentiles are used to show and compare latency distri-
butions. For the feedback control experiment, we define three
metrics that allow us to assess the control performance over
time. They are all relative to the basic controller. Low values
are desirable for all metrics.

Relative Accumulated Violations (RAV) A measure of the
total violation of constraints. pk is the state at sample k.
c0, c1 are the upper and lower constraints, respectively.

1

T

T
ÿ

k“0

1
ÿ

j“0

maxp0, |pk| ´ |cj |q (1)

Relative Accumulated Error (RAE) A measure of the con-
trollers ability to reach the requested set-point. pk is the state
at sample k and rk is the set-point at sample k.

1

T

T
ÿ

k“0

|pk ´ rk| (2)

Relative Maximum Constraint Violation (RMCV)
Measures the maximum distance from the constraint of
the system state over time. p is an array of all state
samples. c0, c1 are the upper and lower constraints,
respectively. Subtraction and taking the absolute value is
done element-wise.

maxp| #»p | ´ |c0| Y |
#»p | ´ |c1|q (3)

D. Cloud infrastructure

The experiments are conducted on two cloud infrastructures;
1) a public cloud with an expected higher RTT and a very
large and highly tuned infrastructure 2) an edge cloud with an
expected minimal RTT, comprised of a small scale Data Center
(DC). We choose to include both for two reasons. One is to
observe the trade-off between RTT and compute capacity, if
any. The second is to make it possible to distinguish the impact
of the cloud from other system components, such as the client
implementation and intermediate networks. Although this is a

subset of available cloud providers and their service abstrac-
tions and offerings, we deem these two to be representative.
The two cloud infrastructures are as follows:
Edge Data Center (EDC) is an OpenStack-based DC in

Lund, Sweden hosted as a research platform by Ericsson
(1.3km (« 0.8mi) from the plant). It is representative of a
proximal private cloud, alternatively, an Edge DC.

AWS eu-north-1 (a reasonably proximal AWS region) in
Stockholm, Sweden (480km (« 300mi) from the plant)
which is a representative of a COTS public cloud DC.
The plant is connected to the cloud infrastructures with a

high-bandwidth and low-latency national back-bone network.
The RTT is measured for a set of communication and cloud
platform technologies; Internet Control Message Protocol
(ICMP) echo, User Datagram Protocol (UDP), Transmission
Control Protocol (TCP), gRPC (a cross-platform RPC frame-
work), Representational state transfer (REST), and Function
as a Service (FaaS). They are representative of a journey
though the Open Systems Interconnection (OSI) stack and the
progressive value added by a cloud. At the application layer,
Hypertext Transfer Protocol (HTTP) 1.1 and 2 are used in the
form of REST and gRPC. For completeness, at the bottom
on the stack, the RTT for light in fiber is included, and the
theoretical RTT of a single IP packet.

A minimal echo response is implemented for each com-
munication technology and hosted on VMs (EC2 t3.micro
and OpenStack c1m05) and containers (Hosted on equally
dimensioned K8S clusters), when technically permissible. VM
and container deployments will from now on be collectively
referred to as Infrastructure as a Service (IaaS). Henceforth,
we refer to the combination of communication technology,
service abstraction, and run-time paradigm as a deployment.

Finally, the controller is implemented in Python using CVX-
GEN1 [9] and adapted to the above set of deployments, so that
its response time can be compared to the RTT measurements.
The networked controller is implementation using FaaS, i.e. it
is stateless. Its function is requested using REST and native
AWS Boto3 calls. When deployed directly on a VM, Flask is
used to handle incoming requests. The execution of the con-
trollers is inherently single-threaded and is thus reflective of
a lower performance bound. We acknowledge that parallelism
in execution and admission can have a different performance
outcome but also comes at a greater cost to the operator
of a cloud-controlled plant. Further, we have chosen to not
include an assessment of intermediate nodes in the routing
paths because of many non-observable nodes, especially when
entering the cloud infrastructure, and the excessive overhead
such measurements adds to the experiments.

For reproducibility and for conducting the experiments at
scale, a custom, automated deployment platform is provided.
With that platform, we are able to reproduce the experiments
and consistently observe the behavior of the system over long
periods of time. Note that it is not our intention with this paper
to contribute with a universal benchmark of the cloud. Such a

1A code generator for convex optimizations, found at www.cvxgen.com

study would be too large for this context, and the performance
of public and private cloud infrastructures change over time,
quickly making such a study obsolete.

V. FEEDBACK CONTROL DETAILS

In this section, we provide details on the ancillary controller
at the plant and the networked controller in the cloud, used
in the feedback control experiments. The below details can
be read out of interest or as a reference for reproduction, but
are not necessary to understand the bulk of results and the
discussion that follows. With the reference system presented
here, we proceed to realize the targeted system as presented
in Section III-D.

A. Plant

Our example process is the ball and beam, detailed in [15].
The ball and beam process is non-trivial, have many controller
implementations, is observable and intuitive to evaluate, and
can be compactly detailed. The objective is to position and
balance a ball on a rotating beam. The controller sets the
angular velocity of the beam. The controller gets two measure-
ments from the plant, 1) the position of the ball on the beam
2) the angle of beam. Finally, the plant inputs a control signal.
To be able to control the progression of time and eliminate
excessive noise, we simulate the process using the following
simple model

»

–

9p
9v
9θ

fi

fl “

»

–

0 1 0
0 0 ´sinpθq ¨ g ¨m
0 0 0

fi

fl

»

–

p
v
θ

fi

fl`

»

–

0
0
1

fi

flu (4)

Here, p, v denotes the ball’s position and speed, respectively,
while θ denotes the beam’s angle. m “ 5

7 is the mass constant
for the ball that we are controlling on the rotating beam, and
g is the acceleration constant. The beam’s speed is controlled
by the input u and a change of beam speed is assumed to be
instantaneous. The process model is linearized around θ “ 0
and sampled at 20Hz. This rate is chosen based on the results
in Section VI. The minimum feasible control frequency for
the plant is 15Hz. When simulated, the non-linear model
in Equation (4) is used with an Euler approximation of 100
iterations per sample. This creates a small discrepancy between
the simulation and the discretized model of the controller.
The discrepancy is small but ensures that the control problem
cannot be perfectly solved by predicting the discrete response.

B. Ancillary Controller

Two controllers are derived to create the setup in Figure 2b.
The ancillary controller is an unconstrained, Linear–Quadratic
regulator (LQR) [6]. The complexity of computing a control
decision for the Linear Quadratic (LQ) controller is low. It
generates the control signal as u “ Kxe where xe is the state
error and

K “
“

´31.0027 ´13.9077 20.4937
‰

(5)

The gain matrix is the solution to the minimization of Jpx, uq
with respect to u, where Jpx, uq is defined as

Jpx, uq “
8
ÿ

i“´8

xTi Qxi ` u
T
i Rui (6)

The cost matrices for the controller are
Q “ diagpr400, 5, 0sq, R “ 0.25, (7)

where diagpvq represents a matrix with the elements of v in
the diagonal and all other elements set to zero.

C. Networked Controller

The networked controller is a Model Predictive Controller
(MPC) [11]. The MPC is an optimal controller with the
optimization problem formalized as:

minimize
u

Jpx, uq

subject to xk`1 “ fpxk, ukq

hpxq ď 0, gpuq ď 0

(8)

This controller takes the plant state and control signal con-
straints into account and therefore does not have an analytical
solution. The controller must perform a numerical optimization
online and Jpx, uq is defined over a horizon, N ,

Jpx, uq “
N
ÿ

i“0

xTi Qxi ` u
T
i Rui (9)

Every request sent to the cloud minimizes the cost function
Jpx, uq. Note that xi in (9) is a vector that represents the states
in (4), u is a vector of control signals and ui is a scalar. In
Equation (8), fpxk, ukq is the linear model derived from (4),
and hpxq and gpuq represent state and input constraints, linear
in the implementation. The state and input constraints are

|p| ď 0.53, |v| ď 1.5, |θ| ď 0.7, |u| ď 4.4 (10)
The objective of the controller is again defined in Equation (7).

The MPC solves the control problem on-line by finding a
series of control inputs that represent the optimal control of the
process, based on a prediction of the plant state. In minimizing
Jpx, uq with respect to u, the solver produces a sequence of
control actions. Only the first control actions, up0q, is output
to the process and a new optimization is started for the next
sample. The parameter N determines the number of samples
the controller predicts and calculates. The complexity of the
MPC makes its computational requirements much larger than
for the LQR, which is trivially calculated. In addition, the
numerical optimization is iterative, and the computations vary
over time depending on how many iterations are needed to
solve the control problem for the current state of the system.
This creates a variable load in the cloud.

D. Implementation

To provide a time frame in which the controller can send
requests and receive responses from the cloud, the networked
controller applies a fixed, one sample delay to the control
signal. It accounts for the delay using its built in prediction,
i.e. at time t the networked controller uses a predicted state x̂
to calculate a control signal un for time t` h, where h is the
sample rate. In the basic, straight forward implementation, the

0 25 50 75 100 125 150

Iterations

Fig. 3: Registered number of optimizer iterations. The darker
cluster at the lower end is where the bulk of requests are.

controller always requests support from the network. At every
iteration of the controller, a request is sent to the network and
if the RTT, τ , is less than h, the response, un, is applied in the
next iteration. When the request latency is too large, τ ą h,
it uses the ancillary control. In the second implementation,
the controller doesn’t always send requests to the cloud and it
transitions differently to the local control mode. This version
is a fixed horizon variant of the controller in [13].

A benefit of the MPC is that its computational requirements
can be scaled. The performance and load of the controller
depends on the design parameter N in Equation (9). Adjusting
this parameter scales the problem complexity linearly. The
solver that computes Equation (8) also requires an unknown
and variable number of iterations to find the optimal control
sequence for a given N , depending on the state of the plant.
In our experiments, we observe a range of horizons and
define three load scenarios based on the number of iterations.
Running the feedback controller for some time reveals a range
of iterations that the solver uses with N “ 30, see Figure 3.
Consequently, we define our load scenarios from Section IV-B
as; 1) light with 5 iterations 2) medium with 38-82 iterations
3) heavy with 93-152 iterations. There is a range of iterations
for the medium and heavy cases. Although the system state
is fixed in the optimization, when N changes the number
of iterations can also change. We note that the number of
iterations primarily change from N=5 to N=10. The change is
otherwise insignificant, and does not affect the overall results.

VI. RESULTS

We now proceed to evaluate Assumptions 1-3 through
results from the experiments detailed in Section IV.

A. Upper frequency bounds and noise floor

With the goal of using cloud-native platforms, testing As-
sumption 1 entails answering whether or not a significant
amount of delay and variance is added for each layer in
the cloud. Additionally, evaluating Assumption 2 requires an
assessment of the frequency at which the cloud is able to reply
timely. Figure 4 shows the RTT progression for our two cloud
infrastructures, from the theoretical latency of light in fiber to
highly abstract FaaS deployments.

Although a large portion of the response time is consumed
in flight in the AWS REST deployments, all deployments are
compatible with Assumption 2. Lambda leaves little room for
frequencies above the requirement of Assumption 2, while the
data suggests multiples of improvement across all deployments
in the proximal DC. The platform noise increases when
moving up the stack as assessed by Assumption 1. In the lower
layers, it looks similar for the two infrastructures, and is large

Light
Fiber

Fiber
w. curlin

g

Ethern
et

IP
fra

me

FE ICMP

VF ICMP

K8S UDP

HAp WN
UDP

HAp VF UDP

HAp WN
TCP

HAp VF TCP

K8S TCP

HAp VF gRPC

HAp WN
gRPC

K8S gRPC

HAp VF REST

(A
) HAp WN

REST

(B) Kubele
ss

ELB Kubles
s

(C) Lam
bda0

4

8

12

16

20

24

28

32

36

40

44

48

Theoretical Measured
L

at
en

cy
(m

s)

99th 95th

75th median

EDC, municipal, private DC

500

167

100

71

56

45

38

33

29

26

24

22

20

Fr
eq

ue
nc

y
(H

z)

99th 95th

75th median

AWS, remote, public DC

FE Front-end, i.e. entry point to the DC

VF Virtual-front, the entry point (load balancing VM) of a cluster

WN Worker node, requests to a VM behind the VF

K8S Request to a Kubernetes node

HAp HA-proxy cluster

ELB Requests through an Elastic Load Balancer service

Kubeless Custom Function-as-a-Service on a Kubernetes cluster

Lambda Large scale, Function-as-a-Service

Fig. 4: Echo request progression from theoretical round-trip delays to cloud service response times.

in relative terms for the proximal DC. In absolute terms, in
relation to Assumption 2, the noise looks sufficiently small.

The discrepancy from the theoretical latency in fiber to
ICMP (first entry into the stack) is an indication of the
overhead in the intermediate networks. The increase is 90-
fold and 2-fold, for EDC and AWS eu-north-1, respectively,
with the theoretical values for EDC being in the order of
microseconds. Looking at ICMP, at the bottom end of the
IP-stack, at an almost 370 times greater distance (from EDC
to AWS eu-north-1), the latency is a factor 8 higher. The RTT
over UDP is a factor 4 greater in AWS eu-north-1 compared
to EDC. Note also that the RTT’s variance in the case of EDC
is significantly larger.

When communicating with the compute resources inside a
DC, the most significant degradation, in either DC, is when
stepping into the application layer, such as adding an HTTP
1.1 header. REST has twice the RTT when compared to TCP,
the underlying transport protocol employed by HTTP. Further,
gRPC takes advantage of HTTP/2 header compression, and
therefore achieves a lower response time, almost half.

REST Application Program Interfaces (APIs) implemented
with HTTP is a ubiquitous technology among cloud appli-
cations and is the common approach for accessing FaaS
platforms. As a design criteria, FaaS is our targeted service
model and Figure 4 shows that we can continue to investigate
FaaS as an alternative compatible with Assumption 2. It is
clear from Figure 4, that the layers of software platforms
and opaque infrastructure management policies increase the
latency in comparison to ICMP, 5 and 2.5 fold, in EDC and
AWS eu-north-1, respectively.

Based on the observed RTT, the achievable response fre-
quency from the cloud varies between 100Hz to 500Hz and
33Hz to 80Hz, in EDC and AWS eu-north-1, respectively.

The theoretical upper bound is the RTT in fiber, which
allows for 100 kHz and 156Hz, in EDC and AWS eu-north-1,
respectively. However, UDP is the first point of access to the
compute resources in the cloud, and frequencies of 500Hz and
80Hz are achieved for the respective cloud infrastructures.

In conclusion, there is no reason to disqualify any deploy-
ments just yet but it is worth keeping in mind that these
numbers are lower bound since the request payloads are
minimal and no valuable computation is done in the cloud.
Next, we subject the systems to load in order to evaluate
Assumption 1 and the expected RTTs for the experimental
control system.

B. Noise floor and the response to load

Having established the upper bound response frequency and
minimum variance in Section VI-A, we are ready to evaluate
the response frequency and platform noise when executing
the controller. Since the REST and FaaS deployments are our
targets, we proceed with that subset of deployments, namely,
(A) REST over High Availability-proxy (HAp) (B) Kube-
less (C) AWS Lambda on eu-north-1. We are interested in
determining the response rate that can be achieved in these
deployments and how a load affects the platform noise.

The plots in Figure 5 show response times per controller
horizon for each load scenario and deployment. A linear
increase in computation time is expected with an increasing
horizon (N , on the x-axis). This is clearly visible in Figure 5,
and apart from Lambda, there are only small discrepancies
from this linear response.

There are notable differences in response times between the
deployments. Although the execution times visually start off
at a similar level, the gradient on EDC, going from light to
heavy load, is significantly steeper than on AWS, specifically,

0
25
50
75

L
ig

ht
lo

ad
L

at
en

cy
(m

s)
EDC HAp

95th 75th Median response time Median execution time 15 Hz

EDC Kubeless AWS HAp AWS Kubeless

0
25
50
75

Lambda

0
25
50
75

M
ed

iu
m

lo
ad

L
at

en
cy

(m
s)

0

100

200

5 1
5

2
5

3
5

4
5

55

0
25
50
75

MPC N

H
ea

vy
lo

ad
L

at
en

cy
(m

s)

5 15 2
5

35 45 55
MPC N

5 15 25 35 45 55

MPC N

5 15 25 35 45 55

MPC N

5 15 25 3
5

4
5

5
5

0
150
300
450

MPC N

Fig. 5: Latency vs. horizon, showing median and percentiles.

on average 2.3 greater, consistently across the deployments.
EDC variance also increases with the load. This is particularly
evident in the EDC Kubeless deployment. However, on AWS
the trend is not as pronounced. Instead, there is an initial
increase followed by a decline in variance for AWS HAp,
which peeks between N “ 15 and N “ 35 for both execution
and response time in the heavy experiment. It is also clearly
visible that the Kubeless deployment on EDC incurs a large
response time penalty and that execution times are affected
negatively, especially in terms of variance. This is reminiscent
of the aforementioned unavoidable platform noise.

There is a large offset in response time between EDC HAp
and EDC Kubeless. This is in contrast to what is observed
in Figure 4, where Kubeless has a faster response. The same
effect is seen for AWS although less pronounced. Looking at
the light load and small N , the HAp deployment is inline with
what is expected, given Figure 4. The Kubeless deployments
for some reason seems to incur a penalty. This may be related
to a configuration issue but can also be attributed to a form
of platform noise, especially since the Kubeless deployment
is the more complex of the two.

The visually most striking result is observed for Lambda.
In the light load scenario, the execution time is comparable
across all deployments but the Lambda response time has a
clear mode shift between N “ 30 and N “ 40. Note also that
the variance in response time is significantly larger than for
the other deployments. The medium complexity case presents
the same attributes. Here, multiple modes are clearly present,
at around N “ 15 and N “ 35. Also, the execution time is
20 times that of HAp and Kubeless, and Lambda has gained
significant variance, across the range of controller horizons.
These phenomena point to a complex cloud-native platform,
built to be shared by many at a large scale, handle massive
parallel requests, and not carry a single real-time thread.

Except for Lambda and the response time difference be-
tween HAp and FaaS, the results in Figure 5 mostly points
to a performance difference between the allocated VMs in the
two different clouds. To get further insights into the first four
deployments they were subjected to a static load for a few
hours. Figure 6 shows the median of the execution time, using
a sliding window, for a load scenario with N “ 30 and more
than 300 iterations in a single optimization. The median is
accompanied by area plots that show the minimum and maxi-
mum execution time within the window. What is clearly visible
here is that there is a very notable difference in execution
time variation between the HAp and Kubeless deployments.
There also seems to be more platform noise in the EDC HA
deployment than in the AWS HAp deployment. This could
be a direct consequence of the much longer (double) average
execution time. It is also notable that although the median is
almost a straight line for AWS HAp, the brown area plot in
the background shows that there are occasions of extended
execution time. We attribute some variation and sporadic
delays to the non-real-time property of the system, and equate
it to any ordinary general purpose computer. However, the
bump in execution time in AWS HAp at close to 6 hours
is different. Here, the median changes over a longer period
of time which indicates that temporarily (although for several
minutes) the available computation time decreases.

Another interesting feature of Figure 6 is the difference
between the HA Proxy and the Kubeless deployments. Since
these deployments are all on different VMs, it is possible
that differences in hardware and over-provisioning (i.e. sharing
with other users) give rise to such discrepancies. However,
note that the effect is consistent and equally present on both
infrastructures. This enforces Assumption 1. Even though the
experiments execute one service at a time, the additional
installed routing, software, monitoring etc that goes into a

0 1 2 3 4 5 6

30

40

50

60

70

Sample time (hours)

E
xe

cu
tio

n
tim

e
(m

s)
EDC HAp EDC Kubeless

AWS Kubeless AWS HAp

Fig. 6: Execution time of a static load evaluated with two
requests every 3 minutes, separated by a 0.5 seconds delay.
Solid lines show a sliding window median over 10 samples.
Shaded areas show the max and min values in the window.

Kubeless deployment incurs a distinguishable overhead.
To sum up, there is a performance gap between Lambda and

the other deployments. In a large scale public service such as
Lambda, we expect variations over time, due to for example
congestion, but we have also observed service dynamics in
the short term, based on our request rate and load. Due
to the rapidly diminishing usefulness as the load increases,
Assumption 2 does not seem to hold for Lambda. If control
frequencies are selected close to the median, Assumption 1
should be relevant for the end result, in which case our cloud
native FaaS is at a disadvantage compared to HAp, as seen
from the variance observed in Figure 6.

In terms of the example control application, when requir-
ing only a few iterations (light load), the controller can be
actuated at a rate of between 25Hz to 90Hz depending on
the deployment, across all N . With the medium and high load
scenarios the response rates are between 4Hz to 90Hz and
2Hz to 66Hz, respectively. This assessment does not take into
account the probability of consecutive long delays or the effect
that the variance causes. In the final experiments, we keep all
deployments, also Lambda, run at 20Hz and use N “ 50 to
add some degree of loss, not only attributed to network delay.

C. Examining the closed loop control

We proceed to evaluate the example in Section V, con-
structed as in Section III-D, and conducted as detailed in
Section IV. Kubeless and AWS Lambda represent our cloud-
native FaaS, the primary target of interest. In the set we also
include the IaaS deployment for REST since this a compatible
and comparable service. The local ancillary LQ controller
acts as our performance baseline, i.e., the system presented
in Section V, with no connectivity to the cloud. We choose to
maintain the operating frequency at 20Hz, i.e. a sample rate

and response deadline of 50ms, from [15]. Further, the MPC
horizon is N “ 50. Based on the findings so far, this should
allow successful operation on all IaaS services, while Lambda
should be able to provide support for the lower loads.

The experiment results should tell us at least three things;
1) whether the reference system works as expected in terms
of meeting expectations from the benchmarks. 2) the response
of the system when only the lower loads are able to respond
timely, which is what we expect to see from Lambda. 3) how
well the switching mechanism works.

Table I provides an overview of the control outcome for
the five deployments, in relation to using only the ancillary
controller. The second column shows the fraction of time the
networked controller was used. Networked control is requested
continuously in the first five cases and this column thereby
shows the ratio of successful requests. In the last two cases,
requests seldom fail, and the number can be directly related to
the fraction of time that the controller requests cloud support.

To put results from Section VI-A in context, using the
load profile from Figure 3 and the measured response time
in Figure 5, we can calculate the expected response rate for
each deployment, Epτq, presented in Table I’s 3rd column.
From Table I, most noteworthy is the AWS Lambda deploy-
ment. Here, only 16% of the requests get responses from the
networked controller. This is in line with the results from
Section VI-B, where the response times for AWS Lambda
were often well above 50ms, Epτq “ 60.82. Further, the EDC
and AWS HA deployments utilized the cloud 95% and 96%
of the time. These numbers are 82% and 85% for EDC and
AWS FaaS. Three metrics follow, detailed in Section IV-B.

The RAE in Table I, which shows the long term efficiency
of the controller, is improved by all cloud-based networked
controllers, as expected. In fact, the EDC Kubeless deployment
scores a 40% improvement, same as the ideal network, at 82%
response rate. Even Lambda, with its low response rate, scores
a 12% improvement.

The networked controller knows the system’s constraints
and consequently attempts to strictly enforce them. There
are two complicating disturbances that may cause this to
fail: a small model error and network loss. The RAV metric
measures the extent to which the controller fails to enforce the
constraints by summing up the amount of constraint violation
over the course of the experiment. A RAV value above zero is
undesirable and could be risky. Being worse than the baseline
would be strictly unacceptable. AWS Lambda makes extensive
use of the local controller and therefore gets a relatively high
RAV. The following four deployments score almost perfectly
due to the high response rates from the networked controller.

Several deployments perform on par with ideal values
(RAE of 0.6 and zero RAV). Observed with the same metric,
Lambda also performs satisfactory compared to the baseline.
However, it is important that the controller achieves a low
maximum constraint violation. This is measured by the RMCV
metric, which tells us whether temporary degradation can
cause system failure. As seen in the table, this is where the
basic cloud controller architecture fails. A simulated RMCV

System Cloud Epτq RAE RAV RMCV

Baseline 0.00 0.00 1.00 1.00 1.00
Lambda 0.16 60.82 0.88 0.68 2.47
EDC HAp 0.95 15.66 0.60 0.01 2.28
EDC Kubeless 0.82 34.67 0.59 0.01 1.90
AWS HAp 0.96 31.95 0.60 0.01 2.28
AWS Kubeless 0.85 39.78 0.59 0.01 2.28
AWS HAp* 0.40 15.40 0.90 0.09 0.31
Lambda* 0.40 14.40 0.90 0.09 0.50
Ideal Network 1.00 0.00 0.60 0.00 0.00

TABLE I: Performance measures for feedback control system.
All measures are in relation to the local LQ regulator. A *
marks the second controller implementation as described in
Section V-D.

above 2 indicates an unrecoverable error in the real plant, and
out of the first six cases in Table I, only the baseline looks safe.
In part, Assumption 3 states that switching cannot be assumed
safe just because the two individual systems are reliable, as is
the case with the baseline and the ideal networked controller.
Even the limited loss of 4% for AWS HAp is enough to cause
repeated failure during an experiment of 3.5 hours.

The situation is remedied in the last two cases in the table.
Here, we have partially applied the technique in [13] and
let the experiment run for 7 hours. Ideal performance isn’t
reached with this controller, in terms of RAE, but in return it
keeps RAV and RMCV low. The controller also sends fewer
requests to the cloud and, due to different dynamics, does not
require the high load scenarios under ordinary circumstances.
For this reason, it remains reliable and achieves efficiency
gains, even when deployed on Lambda. We see also that
Lambda is better utilized in terms of successful requests but
achieves a slightly lower RAE. AWS HAp makes less use of
the networked controller but also scores a significantly higher
RAE than its previous counterpart. One thing that sets these
two deployments apart is that if a situation is created which
requires a heavy computation, which can happen due to an
external disturbance, we now know from the previous results
that AWS Lambda is likely to fail while AWS HAp has a good
chance of retaining good performance.

VII. CONCLUSIONS

In this paper, we advocate a return to core performance
assessments of cloud latency and platform noise, to determine
the effects and limitations of cloud-based critical control of
constrained dynamic systems, stemming from the loss of real-
time support. We provide a measure of latency and noise
through the software stack of two clouds, from fiber up to
the cloud native service. With knowledge of the limitations of
the request frequency at various levels, we deploy a reference
feedback control system, implemented using FaaS. Results
show that the basic latency assessment holds in practice,
with distinctly measurable efficiency improvements, but it also
identifies a challenge to provide techniques that eliminate or
reduces the impact of an increased RMCV. This metric relates
to system constraints, which are not always present in the
control solution but of general relevance in practice. Through
an improved design we reduce the request load of the cloud

controller and, while retaining measurable efficiency gains,
provide a reliable closed-loop system. The results speak for
the idea of using the cloud for temporary performance boosts
in critical control loops, also at relatively high frequency and
without real-time guarantees.

We examined the usefulness of a set of cloud platforms
and presented a strategy towards enabling the use of cloud
for demanding real-time systems. Our view is that this builds
confidence in a COTS-like use of the cloud, for control over
the cloud, as a way forward in Industry 4.0.

REFERENCES

[1] Tarek Abdelzaher, Yifan Hao, Kasthuri Jayarajah, Archan Misra,
Shuochao Yao, Per Skarin, Dulanga Weerakoon, and Karl-Erik Årzén.
Five challenges in cloud-enabled intelligence and control. ACM Trans-
actions on Internet Technology (TOIT), Oct. 2019.

[2] Andreea B Alexandru, Manfred Morari, and George J Pappas. Cloud-
based MPC with encrypted data. In IEEE Conference on Decision and
Control (CDC), 2018.

[3] Hongyu Pei Breivold and Kristian Sandström. Internet of things for
industrial automation–challenges and technical solutions. In Int. Conf.
on Data Science and Data Intensive Systems. IEEE, 2015.

[4] Hasan Esen, Masakazu Adachi, Daniele Bernardini, Alberto Bemporad,
Dominik Rost, and Jens Knodel. Control as a service (CaaS) cloud-based
software architecture for automotive control applications. In ACM Int.
Workshop on the Swarm at the Edge of the Cloud, 2015.

[5] Rachana A Gupta and Mo-Yuen Chow. Networked Control Systems:
Theory and Applications. Springer-Verlag London, 2008.

[6] Rudolf E Kalman. Contributions to the theory of optimal control. Boletin
de la Sociedad Matematica Mexicana, 1960.

[7] Yu Kaneko and Toshio Ito. A reliable cloud-based feedback control
system. In IEEE Int. Conference on Cloud Computing (CLOUD), 2016.

[8] Philipp Leitner and Jürgen Cito. Patterns in the chaos—a study of
performance variation and predictability in public IaaS clouds. ACM
Transactions on Internet Technology (TOIT), Apr. 2016.

[9] Jacob Mattingley and Stephen Boyd. CVXGEN: A code generator for
embedded convex optimization. Optimization and Engineering, Mar.
2012.

[10] István Pelle, János Czentye, János Dóka, and Balázs Sonkoly. Towards
latency sensitive cloud native applications: A performance study on
AWS. In IEEE Int. Conference on Cloud Computing (CLOUD), 2019.

[11] James B Rawlings and David Q Mayne. Model Predictive Control:
Theory and Design. Nob Hill Pub., 2009.

[12] Jan Rüth, René Glebke, Klaus Wehrle, Vedad Causevic, and Sandra
Hirche. Towards in-network industrial feedback control. In ACM
Morning Workshop on In-Network Computing, 2018.

[13] Per Skarin, Johan Eker, and Karl-Erik Årzén. Cloud-based model
predictive control with variable horizon. In Elsevier Int. Federation
of Automatic Control (IFAC), 2020.

[14] Per Skarin, Johan Eker, and Karl-Erik Årzen. A cloud-enabled rate-
switching MPC architecture. In IEEE Conference on Decision and
Control (CDC), 2020.

[15] Per Skarin, William Tärneberg, Karl-Erik Årzen, and Maria Kihl.
Towards mission-critical control at the edge and over 5G. In IEEE
Int. Conference on Edge Computing (EDGE), 2018.

[16] Axel Vick, Jan Guhl, and Jorg Krüger. Model predictive control as a
service—concept and architecture for use in cloud-based robot control.
In IEEE Int. Conference on Methods and Models in Automation and
Robotics (MMAR), 2016.

[17] Won-jong Kim, Kun Ji, and A. Srivastava. Network-based control with
real-time prediction of delayed/lost sensor data. IEEE Transactions on
Control Systems Technology, Jan. 2006.

[18] Yong woon Ahn and Albert Mo Kim Cheng. Mirra: Rule-based
resource management for heterogeneous real-time applications running
in cloud computing infrastructures. In Presented at the Int. Workshop
on Feedback Computing, 2015.

