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Abstract 19 

Remote sensing-derived cropland products have depicted the location and extent of agricultural 20 
lands with an ever increasing accuracy. However, limited attention has been devoted to 21 
distinguishing between actively cropped fields and fallowed fields within agricultural lands, and in 22 
particular so in grass fallow systems of semi-arid areas. In the Sahel, one of the largest dryland 23 
regions worldwide, crop-fallow rotation practices are widely used for soil fertility regeneration. Yet, 24 
little is known about the extent of fallow fields since fallow is not explicitly differentiated within 25 
the cropland class in any existing remote sensing-based land use/cover maps, regardless of the 26 
spatial scale. With a 10 m spatial resolution and a 5-day revisit frequency, Sentinel-2 satellite 27 
imagery made it possible to disentangle agricultural land into cropped and fallow fields, facilitated 28 
by Google Earth Engine (GEE) for big data handling. Here we produce the first Sahelian fallow 29 
field map at a 10 m resolution for the baseline year 2017, accomplished by designing a remote 30 
sensing driven protocol for generating reference data for mapping over large areas. Based on the 31 
2015 Copernicus Dynamic Land Cover map at 100 m resolution, the extent of fallow fields in the 32 
cropland class is estimated to be 63% (403 617 km2) for the Sahel in 2017. Similar results are 33 
obtained for five contemporary cropland products, with fallow fields occupying 57-62% of the 34 
cropland area. Yet, it is noted that the total estimated area coverage depends on the quality of the 35 
different cropland products. The share of cropped fields within the Copernicus cropland area is 36 
found to be higher in the arid regions (200-300 mm rainfall) as compared to the semi-arid regions 37 
(300-600 mm rainfall). The woody cover fraction within cropped and fallow fields is found to have 38 
a reversed pattern between arid (higher woody cover in cropped fields) and semi-arid (higher 39 
woody cover in fallow fields) regions. The method developed, using cloud-based Earth Observation 40 
(EO) data and computation on the GEE platform, is expected to be reproducible for mapping the 41 
extent of fallow fields across global croplands. Future applications based on multi-year time series 42 
is expected to improve our understanding of crop-fallow rotation dynamics in grass fallow systems 43 
being key in teasing apart how cropland intensification and expansion affect environmental 44 
variables, such as soil fertility, crop yields and local livelihoods in low-income regions such as the 45 
Sahel. The mapping result can be visualized via a web viewer 46 
(https://buwuyou.users.earthengine.app/view/fallowinsahel). 47 

Keywords: fallow fields, cropland, satellite image time series, land use/cover mapping, Sentinel-2, 48 
drylands, Sahel  49 



 

3 
 

1.  Introduction 50 

Natural regeneration from multi-year grass and bush fallowing is an integral part of rain-fed 51 
cultivation systems across the Sahel, as fallowing is one of the land management strategies to 52 
restore soil fertility when access to livestock manure or chemical fertilizers is limited (Gandah et 53 
al., 2003; Serpantié et al., 2001; Samaké et al., 2005). While intrinsically linked with the land 54 
use/land cover category “cropland”, Sahelian fallow fields are arguably quite distinct from cropped 55 
fields in form and function. Fallow fields are characterized by a continuous herbaceous vegetation 56 
cover (an increasing cover as a function of the number of years left for fallow), whereas cropped 57 
fields show a dominant fraction of bare soil with an interspersed sparse cereal crop cover (Fig. 1b 58 
and 1c). Differing from seasonal cultivated and fallowed cropland systems as mapped by Wallace et 59 
al. (2017) and Wu et al. (2014), the fallowing in Sahelian cultivation systems typically lasts for two 60 
to five years, to retain satisfactory physical and chemical soil fertility conditions. In fallowing years, 61 
Sahelian fallow fields do not generate crop yields, and hence should be mapped as a separate 62 
category when mapping cropland areas on an annual basis. Moreover, temporal changes in crop-63 
fallow cycles can be indicative of changes in a range of environmental and socio-economic 64 
parameters. For example, shorter rotation cycles might be associated with population pressure and 65 
declining soil fertility (De Ridder et al., 2004; De Rouw and Rajot, 2004). A distinction between 66 
fallow and cropped fields is thus important for assessments related to food security, the 67 
provisioning of ecosystem services, and land degradation, etc. Yet, this distinction has so far only 68 
been adopted when assessing the area cover of fallow and croplands at the plot scale (Hiernaux et 69 
al., 2009; Tong et al., 2017). 70 

Remote sensing techniques have long been used for land use/cover classification, and in particular 71 
so for applications of mapping agricultural lands (Bégué et al., 2018). Specifically, repeated 72 
observations offered by multi-temporal remote sensing can capture the different seasonal cycles of 73 
vegetation types, thereby enabling phenology-based classifications (Dong et al., 2016; Zhong et al., 74 
2016). Seasonal cultivated and fallow cropland mapping in the US has been conducted using e.g. 75 
MODIS or VHR-based automated cropland classification algorithm (Wallace et al., 2017; Wu et al., 76 
2014; Xie et al., 2007). Yet, in spite of the unprecedented advances to monitor the land surface 77 
using remote sensing techniques in recent decades, Sahelian grass fallow land has not been mapped 78 
separately from croplands in any of the existing global and regional land cover products originating 79 
from various Earth Observation (EO) datasets, including Landsat, MODIS (Moderate Resolution 80 
Imaging Spectroradiometer) and PROBA-V (Project for On-Board Autonomy-Végétation) (Chen et 81 
al., 2015; Lambert et al., 2016; Xiong et al., 2017; Copernicus Global Land Service, 2019; Bégué et 82 
al., 2014). Tong et al. (2017) found clear differences between the seasonal patterns of cropped and 83 
fallow fields in western Niger using MODIS time series and employed a sub-pixel method to map 84 
fallow percentage at a 250 m resolution.  However, Sahelian cropped and fallow fields are not only 85 
fragmented in distribution but also small in size (up to only a few hectares) (Raynaut 1998; Fritz et 86 
al., 2015; Mortimore et al., 2001). The sub-pixel approach developed in Tong et al. (2017) did not 87 
resolve the spatial delineation of heterogeneous field objects at a sufficient scale. Therefore, a 88 
scalable approach is needed to allow a direct mapping of fallow fields at a fine resolution covering 89 
large spatial extents like the Sahel. 90 
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Fallow fields in Sahelian croplands (Fig. 1a) can be very different from cropped fields, from a 91 
remote-sensing perspective. Firstly, from a spectral perspective, fallow fields in the Sahel are 92 
generally greener (higher NDVI (Normalized Difference Vegetation Index) values) than cropped 93 
fields during the growing season (Tong et al., 2017). This is caused by the characteristics of the 94 
traditional cropping systems with low inputs of chemical fertilizer and cropping practices such as 95 
land clearing, ploughing, sowing in distant pockets, repeated weeding, and harvest activities in 96 
cropped fields that significantly reduce herbaceous vegetation cover on actively cropped fields. 97 
Contrastingly, fallow fields gradually develop into a continuous coverage of herbaceous and 98 
growing shrub vegetation during consecutive years of fallow (Achar et al., 2001). Secondly, from a 99 
temporal perspective, fallow and cropped fields have different seasonal features with fallow fields 100 
showing an advanced senescence as compared to cropped fields (Fig.1d) (Tong et al., 2017). 101 
Consequently, the challenges in separating fallow fields from croplands, relate to the following: (i) 102 
imagery needs to be acquired at a certain time of the year for optimally capturing the seasonal 103 
NDVI differences between crops and fallow, thus requiring high temporal resolution. For the Sahel, 104 
the optimal time window varies along a north-south gradient but is located around the dry-down 105 
period of the growing season; (ii) The small field size typical of the smallholder agriculture 106 
presented in the region simultaneously requires optical satellite sensor systems that have a high 107 
spatial resolution; and (iii) training samples of cropped and fallow fields adequately representing 108 
the heterogeneous landscapes are needed. As traditional satellite systems have only fulfilled one of 109 
the first two criteria, the Sentinel-2 constellation of two identical Multispectral Imager sensor (MSI) 110 
systems has opened a new avenue for mapping fallow fields at the regional scale by combining a 111 
high spatial resolution (10 m for the visible and near-infrared (NIR) wavelengths) with a high 112 
temporal resolution (5-day revisit time). The Sentinel-2 sensor offers a significant improvement 113 
over the Landsat TM, ETM+ and OLI sensors in relation to aspects (i) and (ii) mentioned above. 114 

Ground data is paramount for land cover classification by providing accurate training inputs and 115 
validating output classes. The collection of ground data is however laborious and time-consuming, 116 
in particular when mapping large areas. Increasing efforts are being devoted to gathering common 117 
reference data for both training and validation purposes on global land cover products (Fritz et al., 118 
2012), with a specific focus on Africa (Tsendbazar et al., 2018b). Yet ground reference data 119 
distinguishing Sahelian cropland and fallow fields is still missing. In the absence of such ground 120 
observations, manually digitized reference data using satellite imagery guided by expert knowledge 121 
is a viable alternative, but is only feasible in the form of a rather sparse distribution across the 122 
region. Also, an uneven distribution of reference data can result in an insufficient representation of 123 
within-class variability of individual land use/cover classes across space (Cracknell and Reading, 124 
2014). It is thus critical to automate the reference data generation for fallow and cropped fields, 125 
with adequate spatial distribution representing the local characteristics of fields.   126 

In this study, we are aiming to map cropped and fallow land patches (hereafter referred as fallow 127 
and cropped fields) across the entire Sahel at a 10 m spatial resolution. Google Earth Engine (GEE) 128 
and a Random Forest classifier are used to process the Sentinel-2 imagery archived from 2017 to 129 
detect the spatial extent of fallow fields within croplands mapped by Copernicus Dynamic Land 130 
Cover map at 100 m resolution (CGLS-LC100) (Copernicus Global Land Service, 2019). CGLS-131 
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LC100 has been reported to show higher classification accuracy for the Sahel as compared to other 132 
global land cover maps (Tsendbazar et al., 2018a). A comprehensive reference dataset is generated 133 
across Sahelian fields using a two-step automated approach. The Sahel-wide map of cropped/fallow 134 
fields in 2017 is then analyzed in relationship to rainfall and woody cover. Finally, fallow fields 135 
were also mapped in five additional contemporary cropland products (ESA CCI 300 m 2015, 136 
GlobeLand30 2010, GFSAD30 2015, Lambert et al., 2016 and Tappan et al., 2016) to estimate the 137 
extent of Sahelian fallow fields encompassed in the current state-of-the-art mapping of croplands. 138 

 139 

2. Materials and methods 140 

2.1 Study area 141 

The study area covers Sahelian croplands as defined by the CGLS-LC100 land cover map from 142 
2015 (Fig. 1a). The Sahel is an arid and semi-arid region between the Sahara in the north and the 143 
sub-humid tropical savannas in the South. It stretches from Senegal-Mauritania in the West to 144 
Sudan-Eritrea in the East, including parts of Mali, Burkina Faso, Niger, Nigeria, Chad and Southern 145 
Sudan. Most crop systems are rain-fed (93% of all agricultural systems) with pearl millet and 146 
sorghum being the main crops (Sultan et al., 2013; Rasmussen et al., 2012a). Livelihoods are 147 
strongly linked to the exploitation of natural resources, which makes the rural population 148 
particularly susceptible to climate variability, often having deleterious effects on the agricultural 149 
production (Cooper et al., 2008; Sheffield et al., 2014; Douxchamps et al., 2016).  150 

Common farming practices to maintain or improve crop yields include soil tillage, crop residue 151 
management, manuring and fertilizer application, crop association or rotation, choice of drought-152 
resistant breeds, and fallowing (Hiernaux and Turner 2002). The application of mineral fertilizers is 153 
less widespread because of the insufficient economic responses following their application 154 
(Rasmussen et al., 2012a). The farmers normally decide before the onset of the rain which areas to 155 
keep under fallow when the sowing takes place. Yet, in years with low rainfall which is detrimental 156 
to total yields, or badly distributed rainfall with long dry spells farmers might also decide after 157 
sowing to concentrate the weeding in specific areas of their field and leave the remaining areas 158 
fallow (Rasmussen et al., 2012b). The herbaceous vegetation in fallow areas then remains 159 
unmanaged, and the subsequent growth of vegetation depends largely on the rainfall. Grazing 160 
activities, however, might cause a reduction of the vegetation in fallow fields. The extent of 161 
fallowing may, on the one hand, be constrained by limited access to cropland by some families 162 
aggravated by the context of steady rural population growth (van Vliet et al., 2013), that is, farmers 163 
might be trapped in a downward spiral of reduced fallowing and declining crop productivity (de 164 
Rouw and Rajot 2004). On the other hand, outmigration of household members (primarily teenagers 165 
and young adults) might be offsetting rural population growth, which allows farmers to pursue 166 
fallowing. In general, the fallow practices adopted in rain-fed cultivation are comparable across 167 
most parts of the Sahel, where croplands are fragmented into small sized fields (Turner and 168 
Moumouni 2018). 169 



 

6 
 

 170 

 171 

Figure 1. a) The study area of Sahelian croplands from the Copernicus Dynamic Land Cover map of 172 
2015 (CGLS-LC100) with irrigated cropland excluded (see section 2.2.3). The CGLS-LC100 173 
cropland map does not separate fallow fields from cropland. The borders of Sahel were derived 174 
from CHIRPS rainfall data (Funk et al., 2015) with 200 and 600 mm isohyets defining the northern 175 
and southern extent, respectively. The triangle mark the region covering b) and c) in southern 176 
Niger. b) Satellite images showing Sahelian cropland composed of a mixture of cropped fields (C: 177 
outlined by an orange dashed line) and fallowed fields (F: outlined by a blue dashed line) from three 178 
different years (2012; growing season, 2016 and 2017; end of growing season). Left: WorldView-2 179 
(2m resolution) showing fallow fields in red color (false color composite with the near-infrared 180 
band shown as red color) indicating higher vegetation coverage, while cropped fields are shown in 181 
bright white/yellowish color due to the soil cover. Right: same but from Sentinel-2 at 10m 182 
resolution (RGB = bands 8, 4, 3). Middle: Google Earth true-color composite. c) Two field photos 183 
(by Hiernaux, P. in Sept. 2016) showing denser (and greener) vegetation covering fallow fields 184 
(left) as compared to cropped fields (right), covered by a substantial fraction of bare soil. d) 185 
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Sentinel-2 NDVI profiles of cropped and fallow fields based on average values of sample pixels 186 
identified across the study area (see Section 2.3.1) and 95% confidence intervals (Fig. S1 shows the 187 
NDVI profiles of cropped and fallow fields in two rainfall regimes (arid and semi-arid)). 188 

 189 

2.2 Data 190 

2.2.1 Sentinel-2 imagery in Google Earth Engine 191 

We used the GEE archived collection of Top-of-Atmospheric corrected Sentinel-2 (MSI Level-1C) 192 
2017-2018, which includes both Sentinel-2A and 2B, achieving a repeat cycle of five days. NDVI 193 
was calculated for each image in GEE based on the 10 m visible and near-infrared (VNIR) spectral 194 
bands. Clouds were masked using the QA60 band of the S2 L1C product providing cloud state 195 
information. No atmospheric correction was applied on the S2 L1C images, as no server-side 196 
function (optimized for Earth engine data cube processing) is currently available in GEE and the S2 197 
L2A Surface Reflectance product (TOA corrected to Surface Reflectance using sen2cor: 198 
https://step.esa.int/main/third-party-plugins-2/sen2cor/) is only available in GEE for the African 199 
continent with a starting year of 2019. 200 

2.2.2 MODIS NDVI 201 

Given the documented superiority of the MODIS data for mapping plant phenological events due to 202 
the daily temporal resolution (Estel et al., 2015; Massey et al., 2017), we used the MODIS NDVI 203 
seasonality to define the optimal acquisition time window of Sentinel-2 imagery for the separation 204 
of active cropped fields and fallow fields (section 2.3.1). The MODIS 8-day composite land surface 205 
reflectance product (MOD09Q1, collection 6, spatial resolution 250 m) was used to calculate the 206 
NDVI during 2017 (Vermote et al., 2002). MOD09Q1 provides adequate observations for 207 
extracting Sahelian vegetation phenology, as the product minimizes the impacts from viewing 208 
geometry, cloud cover and aerosol loading and retains at the same time a suitable temporal 209 
resolution (Fensholt et al., 2015). 210 

2.2.3 Land cover data 211 

The land cover map of CGLS-LC100 produced by Copernicus Global Land Service (Copernicus 212 
Global Land Service, 2019) is freely available at a global scale and at 100 m spatial resolution 213 
(https://land.copernicus.eu/global/products/lc). In addition to CGLS-LC100, five cropland products 214 
(covering the extent of West Africa, Africa and globally) were selected to assess their respective 215 
fallow extents. We included the ESA land cover map (ESA CCI 300 m produced at a global 216 
scale:http://maps.elie.ucl.ac.be/CCI/viewer/index.php), the GlobeLand30 (Chen et al., 2015; global, 217 
30 m) and GFSAD30 (Xiong et al., 2017; Africa, 30 m: https://croplands.org/downloadLPDAAC) 218 
land cover products, both of which are reported to have a high accuracy (Samasse et al., 2018). 219 
Finally, the Sudano-Sahelian cropland map (Lambert et al., 2016) and the West Africa land cover 220 
map (Tappan et al., 2016) were included, both specifically created for West Africa. Despite a 221 
coarser resolution of 2 km, the West Africa land cover map is considered a valuable land cover 222 
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product for this study, as the cropland extent is assessed from an extensive process based on visual 223 
interpretation of imagery and expert knowledge.  224 

The cropland class of the above-mentioned maps include irrigated cropland (Fig. S1), which was 225 
masked out using the ESA CCI 300 m map of 2015. 226 

Table 1. Characteristics of the applied land cover products. 227 

Product Class Data Resolution Coverage Year 

CGLS-LC100 Cropland PROBA-V 100 m Africa 2015 

ESA CCI 300 m Rainfed cropland PROBA-V 300 m Global 2015 

GlobeLand 30 Cultivated land Landsat 30 m Global 2010 

GFSAD30 Cropland Landsat 30 m Global 2015 

Lambert et al.2016 Cropland PROBA-V 100 m West Africa 2015 

Tappan et al.2016 Cropland Landsat 2 km West Africa 2013 

 228 

2.3 Mapping cropped and fallow fields 229 

The analysis consists of the mapping of cropped and fallow fields and the assessment of the extent 230 
of fallow areas within croplands as classified by contemporary land cover products (Fig. 2). The 231 
mapping was done in two steps: (a) A reference dataset (section 2.3.1) was generated in a 232 
hierarchical manner by first selecting optimal Sentinel-2 imagery from the dry down period of the 233 
growing season (period locally defined by MODIS seasonal metrics for each 0.15° grids) and then 234 
extracting reference data information in a two-stage process. (b) Cropped and fallow fields were 235 
separated using the generated reference data and annual NDVI time series of Sentinel-2 (section 236 
2.3.2) (c) The extent of fallow fields was assessed for selected contemporary cropland products. 237 
The cropped/fallow field ratio was analyzed in relation to rainfall and woody cover (section 2.3.3). 238 

    239 

 240 
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Figure 2. Flowchart of the methods applied: a) Generation of reference data for actively cropped 241 
and fallow fields within each 0.15° grid across the study area. b) Mapping of cropped and fallow 242 
fields using the Sentinel-2 NDVI time series based on enhanced training dataset. Results were 243 
evaluated per Sentinel-2 tile (100x100 km2). c) Assessment of the extent of fallow areas within 244 
croplands as classified by contemporary land cover products, and analysis of the relationship 245 
between rainfall, woody cover and mapped fields. 246 

 247 

2.3.1 Generation of reference data 248 

The generation of reference data was done in three steps: (1) selection of Sentinel-2 images through 249 
seasonal metrics within grid cells, (2) creation of a first reference dataset through unsupervised 250 
classification, (3) refinement of this first reference dataset into an enhanced (second) version of the 251 
reference dataset through a supervised classification. 252 

(1) We derived seasonal metrics from MODIS NDVI for the year 2017 to define the period 253 
representing the maximum spectral difference between cropped and fallow fields, which is located 254 
around dry-down period of the growing season. This period was used to define the start and end 255 
time of the relevant Sentinel-2 imagery acquisition period. The seasonal metrics were extracted 256 
from the MODIS 8-day NDVI composites using the TIMESAT software (Jönsson, & Eklundh, 257 
2004): a tool for parameterization of vegetation phenology from satellite time series data. In 258 
TIMESAT, we set the window size to 4, the seasonal parameter to 0.5 to fit one season per year, the 259 
number of iterations for upper envelope adaptation to 2, and the strength of the envelope adaptation 260 
to 2. The time of the mid of season (MOS) was computed as the average time between the green-up 261 
phase (80 % of the amplitude before the maximum), and the dry-down phase (80 % after maximum) 262 
(Eklundh and Jönsson, 2017). The end of season (EOS) was set to 50% after the maximum (Zhang 263 
et al., 2018).  264 

The study area was segmented into 0.15° x 0.15° grids in which the MOS and EOS dates were 265 
averaged from the MODIS pixels within each grid. The size of the grid cells was selected by trial 266 
and error and is a compromise being big enough to include both crop/fallow classes, but do not 267 
exceed the size beyond which local landscape characteristics disappear. The Sentinel-2 image 268 
acquisition was then guided by the MOS and EOS dates determined for each grid cell individually. 269 
For each grid, Sentinel-2 images with a cloud cover larger than 10% were excluded and to further 270 
reduce the impacts from clouds and burned areas, compositing of the remaining Sentinel-2 image 271 
series (VNIR and NDVI between MOS and EOS) was produced by taking the median value for the 272 
subsequent analysis.  273 

(2) we created a first reference dataset based on the fact that cropped fields generally have a lower 274 
NDVI than fallow fields (Tong et al., 2017). We randomly selected one million pixels (a resolution 275 
of 10m x 10m) within the study area. Out of these one million pixels, we automatically classified 276 
the pixels within each 0.15° x 0.15° grid as follows: A) each pixel was classified into two classes as 277 
either cropped or fallow based on Sentinel-2 visible bands, NIR band and NDVI using WEKA 278 
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(Waikato Environment for Knowledge Analysis) unsupervised classification (Tony & Eibe, 2016). 279 
B) Given that an unsupervised classification normally produces outputs with a rather low accuracy 280 
in cases of spectral similarities, we only used the pixels with the lowest (in respect to NDVI values) 281 
25% of the cropped fields class and the highest 25% of the fallow fields class as the reference 282 
dataset in the first stage.  283 

(3) We created an enhanced second reference dataset generated from the first reference dataset 284 
produced. This step was deemed necessary as the generated reference dataset tended to cluster in 285 
large-size fields, leading to an unbalanced representation of the fallow and cropped fields within 286 
each grid. To overcome the issue of spatial clustering, small field patches (usually evenly scattered 287 
across the landscape) were targeted for selecting an enhanced reference dataset in this second stage. 288 
This was achieved by using the first stage reference dataset from the WEKA unsupervised 289 
classification as input for a Random Forest (RF) classifier, which was applied for each 0.15° grid. 290 
The Random Forest (Breiman 2001) is a non-parametric machine learning classifier widely used for 291 
image classification due to its simple parameterization and high classification accuracy (Pelletier et 292 
al., 2016). For each grid cell, the values of Sentinel-2 spectral bands and NDVI of the reference 293 
pixels were used as predictor variables to predict the crop and fallow classes. RF randomly split the 294 
inputs into user-defined number of trees (=500) as larger values are known to have little influence 295 
on the overall classification accuracy (Breiman and Cutler 2007). RF assign the class labels based 296 
on the majority vote among all bootstrapped classification trees. We then extracted small cropped 297 
and fallow field patches over the entire study area from the RF classification results by applying a 298 
spatial morphological analysis, for which only connected areas within a range of 10-20 Sentinel-2 299 
pixels targeting individual fields of one hectare. The enhanced reference dataset was a stratified 300 
random sample of pixels from those small cropped and fallow field patches. For validation of the 301 
enhanced reference data, we generated 200 pixels (100 within cropped and 100 within fallow fields) 302 
within the CGLS-LC100 cropland extent of the Sahel and visually evaluated the accuracy based on 303 
the Sentinel-2 false-color image composites. These pixels were used to create Figure 1d (only a 304 
total number of 183 true positive pixels were used (93 pixels of cropped fields and 90 pixels of 305 
fallow fields) (see section 3.2)). 306 

2.3.2 Random Forest classification using an enhanced reference dataset 307 

The full-year Sentinel-2 NDVI time series, representing one year of crop phenology, was used as 308 
predictor variables for the final crop/fallow land classification. The Random Forest classifier was 309 
parameterized the same way as outlined in section 2.3.1 and was applied on all individual Sentinel-310 
2 tiles with cloud cover less than 5%. For each Sentinel-2 tile, each decision tree grows on an 311 
independent bootstrap sample from the training data. A total number of 2000 stratified random 312 
sample pixels were generated within the extent of small-size field patches of each tile (1000 within 313 
cropped and 1000 within fallow fields). A total of 80% of the sample data was used for training and 314 
20% for validation. 315 

2.3.3 Spatial distribution of cropped and fallow fields 316 
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We analyzed the associations between the crop-fallow ratio and a) rainfall and b) woody cover (Fig. 317 
S6). Average annual rainfall was calculated using the CHIRPS data (Funk et al., 2015) from 1981 to 318 
2018. The ratio between cropped and fallow fields was calculated for each 50 mm rainfall interval. 319 
The woody cover, predicted as 0-100% at 100 m resolution, was used to characterize differences in 320 
the woody cover in cropped and fallow fields (Brandt et al., 2018). The mean woody cover was 321 
calculated for cropped and fallow fields, respectively, and for the arid (200-300 mm rainfall) and 322 
semi-arid (300-600 mm rainfall) zones, based on woody cover data covering the western Sahel for a 323 
nominal period of 2014-2016. Finally, we examined the spatial distribution of cropped and fallow 324 
fields among the six selected contemporary cropland products. 325 

 326 

3. Results 327 

3.1 Phenology-based selection of Sentinel-2 imagery 328 

The MOS and EOS (defining the start and end date of Sentinel-2 imagery acquisitions) varied 329 
across the Sahel (Fig. 3), with a majority of the croplands characterized by MOS in August. A later 330 
MOS (September) is observed in the westernmost Sahel (Senegal), while an early MOS (July) 331 
appears in smaller areas in the eastern Sahel. The EOS predominantly occurs in October for the 332 
northern Sahel and in November for the southern Sahel, making the period between vegetation peak 333 
and end of the growing season (time between MOS and EOS) relatively shorter in northern Sahel 334 
than southeastern Sahel. The MOS showed generally small variations (as indicated by the standard 335 
deviations (Fig S3)) across the Sahel (0-10 days), while a stronger variation (10-20 days) was 336 
observed in the EOS. 337 

 338 

Figure 3. The time window of Sentinel-2 image acquisition defined by the period between (a) MOS 339 
and (b) EOS (averaged per 0.15° grid) within the study area of Sahelian croplands (Fig. 1a). The 340 
exact per-pixel Day-Of-Year and the standard deviation are shown in Fig. S3 and S4. 341 

 342 
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The availability of cloud-free Sentinel-2 imagery ranged from 3 to 40 images during the acquisition 343 
period (from MOS to EOS) for each 0.15° grid (Fig. 4a). The average image availability per grid 344 
was three images, which was sufficient to create high-quality median images for the entire study 345 
area (Fig. 4 b, c, d). The spectral difference between cropped and fallow fields are captured across 346 
space by the median image from the acquisition period. However, the strength of this difference 347 
(expressed by vegetation greenness shown as red color in Fig. 4b-d) varies with rainfall abundance 348 
from southern Sahel (Fig. 4b) to central/northern Sahel (Fig. 4c and 4d) and farming techniques 349 
(such as manure or fertilizer application). 350 

 351 

 352 

Figure 4. a) Number of cloud-free Sentinel-2 images for 2017 within the pheno-defined period for 353 
each grid. b-d) are three example median false-color composite images (RGB = bands 8, 4, 3) 354 
during the pheno-defined period in Senegal (MOS: September, EOS: November), Niger (MOS: 355 
August, EOS: October) and Sudan (MOS: July, EOS: September), respectively. 356 

 357 

3.2 Generating reference data 358 

The reference data from the unsupervised classification provided ~400 000 sample pixels for the 359 
entire study area. Although the initial generation of reference dataset of the two classes (cropped 360 
and fallow fields) revealed a reasonable performance, the spatial distribution of sample pixels was 361 
not homogeneous within the 0.15° grids (Fig. 5a). The generation of enhanced reference dataset 362 
from the RF classification (Fig. 5 b-e) shows the spatial distribution of the final enhanced reference 363 
dataset, which are small-sized cropped and fallow field patches (see section 2.3.1). The validation 364 
based on Sentinel-2 false-color composites yielded an overall accuracy of 84% (153/183) with a 365 
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crop and fallow user’s accuracy of 73% and 91% and a producer’s accuracy of 90% and 79%, 366 
respectively. We found 8.5% (17/200) of the validation sample pixels to be located in bare land 367 
(7/17) or natural vegetation (10/17) due to misclassification in the CGLS-LC100 cropland mask. 368 

  369 

 370 

Figure 5. a) Sentinel-2 false-color composites (RGB = bands 8, 4, 3) of four 0.15° grids. The 371 
crosses show reference data from the unsupervised classification (blue= fallow; orange= cropped). 372 
The sub figures b-e) are zoom-ins (corresponding to the colored blocks in a)). The left-hand side 373 
zoomed images show the reference from the unsupervised classification (as in a), whereas the right-374 
hand side shows the final enhanced reference dataset. The final reference dataset generated 375 
covering the same area is shown in Fig. S5. 376 

 377 

3.3 Mapping cropped and fallow fields 378 

The enhanced reference dataset was used for the final RF classification resulting in a map showing 379 
cropped and fallow fields ubiquitously distributed over the Sahel for the year 2017 at 10 m 380 
resolution (Fig. 6). The overall accuracy of cropped and fallow field map ranged from 73 % to 94 % 381 
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amongst 223 tiles (Fig S7 and Table S1) with an average accuracy of 88%. Larger trees in the 382 
cropped fields with a crown size exceeding 10x10 m were typically mapped as fallow pixels but 383 
were excluded in our assessment by using a filter identifying fallow fields which were smaller than 384 
three connected pixels (considering both trees and tree shadows). The identified trees (15,963 km2) 385 
were added into the class of cropped fields instead as they belong to the extent of active cropland. 386 
Both smaller and larger fields were successfully classified (Fig. 6b-i: darker red areas are fallow 387 
fields and the bright areas represent cropped fields).  388 

Local cases of error also occur where croplands have been missed in the CGLS-LC100 389 
classification (Fig. 6b, d, g) and mapped as non-cropland (in grey color) which can be identified by 390 
visualizing the patterns of the cropped field from false color composites (bright white/yellow color, 391 
Fig. 1b). Occasionally, degraded land (shown as the brighter light green color of Fig. 6f) and natural 392 
vegetation (shown as darker red color on the top-right corner of Fig. 6e) have been included in the 393 
cropland class, leading to misclassified cropped and fallow fields. Some patches of fallow fields 394 
around villages have been mapped as cropped fields (Fig. 6i) since the seasonal NDVI profile of 395 
these fields is similar to that of cropped fields, likely due to poor soil fertility or/and intense 396 
grazing. Furthermore, cropped fields surrounding villages are often manured (see areas around the 397 
village in the central part of Fig. 6b and the lower-right corner of Fig. 6d), leading to increased soil 398 
fertility and thus higher greenness, which can result in misclassifications of these fields as fallow.  399 
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 400 

Figure 6. a) Classification of cropped and fallow fields at 10 m for the Sahel. (b) to (i) show zoom-401 
ins with the false-color composite (RGB = bands 8, 4, 3) Sentinel-2 image on the left-hand side and 402 
the classification results on the right-hand side. b) Example from northern Senegal, c) from 403 
southern Senegal, d) central Mali, e) northern Burkina Faso, f) western Niger, g) eastern Niger, h) 404 



 

16 
 

Chad, i) Sudan. The mapping result can be visualized via a web viewer 405 
(https://buwuyou.users.earthengine.app/view/fallowinsahel). 406 

 407 

3.4 The spatial distribution of cropped and fallow fields 408 

Within the extent of CGLS-LC100 cropland areas, the ratio of cropped to fallow areas decreases 409 
along the rainfall gradient and stabilizes at the level of 0.5-0.6 coinciding with the transition from 410 
the arid to the semi-arid zone (around 300 mm/year) (Fig. 7a). Woody cover is on average 7.6 and 411 
10.6% for cropped and fallow fields, respectively. However, in the arid zone woody cover is higher 412 
in the cropped fields as compared to fallow fields whereas in the semi-arid zone a reversed pattern 413 
is seen (Fig. 7b).  414 

 415 

 416 

 417 

Figure 7. a) The dark line shows the ratio of cropped to fallow area along the rainfall gradient (50 418 
mm steps) from 200 to 600 mm, while the bar plots (blue color) show the fraction of cropland 419 
pixels in Sahel for each rainfall interval (total number of Sentinel-2 pixels = 65 918 900). The 420 
numbers in orange text boxes show the fraction of cropped field within croplands along the rainfall 421 
gradient. b) The average woody cover (%) is shown for cropped and fallow fields, respectively, in 422 
the arid and semi-arid zone. 423 

The areal extent of detected fallow fields for six state-of-the-art land cover products shows that 424 
there were more fallow fields than cropped fields within the cropland class of all examined land 425 
cover products, with fallow land ranging from 57% to 63% (Table 2). Although the cropland 426 
products differ in methodology, spatial pattern and cropland extension, the fallow/cropland 427 
percentage ratio is observed to be relatively stable. 428 
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Table. 2 Sahelian cropland and fallow extent (km2) in selected cropland products. Cropland/fallow 429 
extent was assessed for the area between the 200 and 600 mm isohyets (derived from CHIRPS 430 
rainfall data (Funk et al., 2015)), defining the northern and southern extent of Sahel, respectively.  431 

Product (km2) CGLS-
LC100 

ESA CCI 
300 m 

Globland30 GFSAD30 Lambert et 
al., 2016* 

Tappan 
et al., 
2016* 

Cropland area  403 617 793 332 264 321 340 643 258 985 266 510 

Fallow area  255 572 460 882 163 448 209 108 156 966 152 248 

Cropped area 148 045 332 450 100 873 131 535 102 109 114 262 

Cropped/Fallow 37/63% 42/58% 38/62% 39/61% 39/61% 43/57% 

 432 

* Products only cover the western and central Sahel 433 

 434 

4. Discussion 435 

4.1 Uncertainties in fallow fields mapping at sub-continental scale 436 

Our method relies on a high accuracy cropland map as a starting point. Although cropland mapping 437 
accuracy has improved recently, none of the existing cropland maps consistently reach a 75% 438 
accuracy threshold among Sahelian countries (Samasse et al., 2018), hence errors of commission 439 
and omission are present in the cropland masks, which propagates into the fallow mapping. Some of 440 
the examples shown in Fig. 6 (particularly b from Senegal) show larger contiguous ‘fallow’ areas 441 
around more intensively cultivated areas. These examples can be interpreted as cases causing an 442 
overestimation of the fraction of cropland being fallowed. The CGLS-LC100 “cropland” may 443 
include some misclassified rangelands and eroded bare lands which will then be an error source 444 
propagating to the extraction of cropped and fallow fields. Besides, there are also cases where 445 
cropped fields are not included in the lands mapped as “cropland” (Fig. 6d). The manured fields and 446 
fields with denser tree cover (agroforestry parklands) can be misclassified as fallow fields while 447 
heavily grazed fallow fields can be miss-classified as cropped fields. Such effects will inevitably 448 
also be present in the process of reference data generation. Finally, though using a different land 449 
cover product (MODIS land cover), the study of Leroux et al. (2014) suggested that the user 450 
accuracy of the cropland class varies with different rainfall regimes and the associated cropping 451 
systems (e.g. agropastoral millet/sorghum, cereal-root crop mixed and irrigated farming systems). 452 
Therefore, the statistical analysis between the ratio of cropped to fallow area and rainfall gradients 453 
and woody cover should be interpreted with caution. 454 

The mapping methodologies described in sections 2.3.1 and 2.3.2 are based on slightly different 455 
solutions coping with the challenges of either generating reference data using unsupervised 456 
classification (step ‘a’ in Fig. 2) or predicting cropped and fallow fields with random forest (step ‘b’ 457 
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in Fig. 2). For the unsupervised classification, we used the median value of the Sentinel-2 spectral 458 
bands between the MOS and EOS to make use of spectral information and reduce the high 459 
dimensional feature space. Machine learning algorithms like random forest have shown to work 460 
well with seasonal time series (Brandt et al., 2018) and can deal with a high-dimensional feature 461 
space, so we opted for the use of the full NDVI time series for the random forest classification. As 462 
for the generation of reference data, the suggested method provides a framework for extracting 463 
reference data from small-size field patches without manual digitizing work. No additional steps 464 
were implemented to avoid including >2 pixels from the same patch when generating the 2000 465 
stratified random sample pixels for validation, due to the massive computational workload in 466 
vectorizing small-size patches across Sahel. However, given the large number of patches (SFig.5 467 
shown hundreds of patches within 30 X 30 km2) this is not expected to have implications for the 468 
results. 469 

Finally, some standard image pre-processing procedures are currently not implemented in GEE, 470 
such as atmospheric correction, which is important for large-scale mapping when using multiple 471 
images and particular when building one universal model for mapping the entire study area. This is 472 
however not the case here, as we produced separate random forest models for the geographical 473 
coverages matching the extent of each Sentinel-2 tile. Still, we used NDVI that will be affected by 474 
atmospheric conditions, yet the impact from such perturbations will influence equally on the NDVI 475 
temporal signatures of crop and fallow fields. How big such influence is, depends on the magnitude 476 
of the difference between NDVI of cropped/fallow fields.  477 

4.2 Fallowing in the Sahel 478 

Our study achieves an overall accuracy of 88% and provides a benchmark map of fallow fields 479 
across the Sahel which can facilitate an improved understanding of how crop-fallow rotation cycles 480 
are linked to agricultural management practices, pressure on land, soil fertility and food security. A 481 
surprising finding of this study is the high percentage of fallow in the croplands of the Sahel. This 482 
suggests that regeneration of soil fertility through fallowing plays a greater role – relative to 483 
replenishment of plant nutrients by recycling livestock manure or importing mineral fertilizers – 484 
than previously expected (Schlecht et al., 2004). However, that there are inherent challenges 485 
associated with separating fallow from grazing areas within Sahelian croplands (as introduced in 486 
section 4.1). Most of the areas classified as fallow are used for grazing, both by livestock owned by 487 
local farmers and herds owned by pastoralists from outside, passing through, and part of the manure 488 
from these herds is collected and transported to cropped fields. Hence, we cannot exclude the 489 
possibility of misclassification of rangelands as fallow, caused by the cropland mask (used for 490 
delineation of the area of analysis) being too inclusive. Indeed, a multi-year assessment of grass 491 
fallowing is expected to harness the fallow field mapping in this aspect, since separation of fallow 492 
from grazing areas independently from using a cropland mask, would only be feasible from 493 
analyzing states of multiple years.  Finally, as noted above, intensive manuring of fields close to 494 
villages may give rise to misclassifications, as may intensive grazing close to villages. Whether 495 
some fallows, located within otherwise cultivated areas, are actually semi-permanent grazing 496 
reserves probably cannot be determined without the use of longer time-series of Sentinel-2 data.  497 
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The results show that a considerable extent of what is often mapped as cropland did actually not 498 
produce crop yields in 2017, which needs to be considered when food production is estimated based 499 
on cropland products. The fact that fallow fields dominate over cropped fields contradicts common 500 
narratives that population pressure and increased demand for food have caused a Sahel-wide 501 
extinction of fallow practices leading to unsustainable land management systems (Pieri 1989; 502 
Lüdeke et al., 2004). However, fallowing and cropping of fields vary over time and space, and 503 
monitoring of the dynamics (crop-fallow rotation cycle and trends of changes between cropped and 504 
fallow fields) is essential to fully understand land management in the Sahel. Not only a decreasing 505 
spatial extent of fallow areas but also a shortening of the fallow cycle (for example in western Niger 506 
un-manured sandy soils need at least three years of fallow to recover its fertility after five years of 507 
millet cropping (Hiernaux and Turner, 2002)) is a sign of eroding soil fertility which can lead to 508 
poor crop yield and ultimately to food shortages. Future repeated mapping of fallow/cropped field 509 
dynamics at the Sahelian scale from the Sentinel-2 constellation may thus be used as an indicator to 510 
identify and predict food shortages and emerging land degradation.  511 

The analysis of the relationship between the fraction of agricultural land under fallow and annual 512 
rainfall (Fig. 7a) shows an increasing fraction of fallow with increasing rainfall. This is in 513 
accordance with expectations: Fallows serve as a means of soil regeneration after cropping, and the 514 
importance of soil nutrient limitations on crop yields is expected to increase with rainfall in the 515 
Sahel (Penning de Vries and Djiteye, 1982). Also, nutrients from manure are, all other factors even, 516 
more readily available in the northern part of Sahel, dominated by pastoralism. As expected, woody 517 
cover (including both trees and shrubs) in fallow fields was generally higher than in cropped fields 518 
(Fig. 7b). When a field is left for fallow, bushes and shrubs are not being removed and are able to 519 
spread. These shrubs help regenerating the soil fertility, and serve as a source of wood used as 520 
fuelwood, for construction and medical purposes by the local population. Once a field is changed 521 
from fallow to cropland, shrubs and bushes are typically coppiced and only trees having reached a 522 
certain height are kept. It should be noted that the result is potentially sensitive to the above-523 
mentioned challenges of misclassification of rangelands as fallow (a problem inherited in the 524 
cropland masks used). Since the woody vegetation in fallow fields consists of few individual trees 525 
(as in cropped fields) and a high abundance of bushes turning into shrubs as the fallow gets older, 526 
fallow differs from rangeland woody populations often more gradually distributed in size and 527 
patchier in space. A better separation of fallow from grazing land may be achieved by assessing the 528 
height distribution of the woody vegetation.  529 

4.3 Options for future improvements of fallow mapping 530 

In this study, Sentinel-2 has proved to be useful in separating individual fields. Since 2013, Landsat 531 
8 has collected 30 m images with a global coverage every 16 days. The integration of Landsat and 532 
Sentinel-2 (Claverie et al., 2018; Yan et al., 2016) would significantly increase the temporal 533 
resolution of annual time series, but with known effects of spatial misalignment between images 534 
(Carrasco et al., 2019). However, the increased temporal resolution of a merged dataset has already 535 
been used to separate crop types (Griffiths et al., 2019), which could be the next step in better 536 
characterizing Sahelian land use practices. The fallow mapping presented here is confined by using 537 
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a common ‘cropland’ land cover map. Based upon time series of high resolution satellite data 538 
agricultural land can instead be mapped into different classes characterizing management practices 539 
of cropped fields: permanent, shifting with short, medium, long duration fallow. Ultimately, 540 
continuous mapping of the per-pixel crop/fallow cycle will allow for studies targeting land use 541 
intensification/extensification of areas of smallholder agriculture.  542 

A rapid increase in the number of large-scale and high resolution multi-temporal remote sensing 543 
applications is seen in recent years, based on free cloud platforms, such as GEE, to process 544 
thousands to millions of 10-30 m image tiles (Pekel et al., 2016; Dong et al., 2016; Xiong et al., 545 
2017; Huang et al., 2017). GEE is not only a platform to store large quantities and varieties of 546 
satellite datasets, it also provides an increasing number of image processing algorithms including 547 
machine learning classification algorithms (e.g. support vector machine and RF). The increasing 548 
availability of free and open-source cloud platforms (such as the so-called Earth Observation Data 549 
Cube; https://www.opendatacube.org/) will provide analysis ready data and advanced tools to 550 
advance environmental monitoring using remotely sensed Earth Observations (EO) data (Giuliani et 551 
al., 2017). In recent years, deep learning technology has been increasingly available for image 552 
recognition and object detections. For crop-wise classification, deep learning models do not require 553 
pre-determined curve functions or mathematical assumptions for crop seasonality in specific areas 554 
(Zhong et al., 2019). However, the preparation of training sets is still required for such deep 555 
learning models. Considering the challenging field objects with various shapes, models need to be 556 
tested for the separation of cropped and fallow fields if a suitable architecture is to outperform 557 
traditional machine learning algorithms. 558 

  559 

5. Conclusion 560 

Enabled by new high-quality Sentinel-2A and -2B images and GEE cloud computing, this study 561 
presents a totally covering, yet very detailed, account of the extent of fallow lands within the Sahel 562 
agricultural lands mapped as “cropland” in global and regional products. We found that fallow 563 
fields, which are often neglected in agricultural land assessments, occupied 57-63% of Sahelian 564 
agricultural lands in 2017 (calculated among six different state-of-the-art remote sensing cropland 565 
products). The accuracy of the cropland products, serving as a point of departure for the numbers 566 
reported here, should however be kept in mind when interpreting the fallow extent, as 567 
misclassifications of natural vegetation in the cropland class will propagate to the estimated extent 568 
of fallow fields. From the combined use of satellite datasets of both high and low spatial resolution 569 
and varying temporal resolution, our designed two-step automated reference data generation 570 
workflow is spatially representative for the landscape studied and highly reproducible. The 571 
proposed method is therefore applicable for continuous fallow mapping based on multiple years of 572 
data to understand the dynamics of crop-fallow rotation cycles in the Sahel and similar agricultural 573 
systems. As such, the EO-based mapping (with publicly available, free data) of cropped and fallow 574 
fields opens new avenues for agricultural monitoring, e.g. for purposes of land use 575 
intensification/extensification, ‘famine early warning’ and agricultural statistics. Finally, our 576 
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findings advance current understandings of agricultural systems in the region as they demonstrate 577 
how fallow plays a greater role than previously assumed as fallow land occupy more than half of 578 
the area included in the ‘cropland masks’ available. 579 

 580 

Acknowledgements 581 

The primary funding of this research is from the China Scholarship Council (CSC, number 201407650011), 582 

the AXA post-doctoral fellowship , and the Danish Council for Independent Research (DFF) Grant ID: DFF 583 

– 6111-00258. We would like to thank the three anonymous reviewers for their thorough and constructive 584 

comments. 585 

 586 

 587 

  588 



 

22 
 

 589 
References 590 

Achard F., P. Hiernaux & M. Banoin, 2001. Les jachères fourragères naturrelle et améliorée en Afrique de 591 
l’Ouest. In Ch. Floret & R. Pontanier (eds) La jachère en Afrique tropicale. De la jachère naturelle à la 592 
jachère améliorée. Le point des connaissances. John Libbey Eurotext, Paris: 201-240 593 

Begue, A., Vintrou, E., Saad, A., Hiernaux, P., 2014. Differences between cropland and rangeland MODIS 594 
phenology (start-of-season) in Mali. Int. J. Appl. Earth Obs. Geoinf. 31, 167–170. 595 
https://doi.org/10.1016/j.jag.2014.03.024 596 

Bégué, A., Arvor, D., Bellon, B., Betbeder, J., de Abelleyra, D., Ferraz, R.P.D., Lebourgeois, V., Lelong, C., 597 
Simões, M., Verón, S.R., 2018. Remote sensing and cropping practices: A review. Remote Sens. 10, 1–32. 598 
https://doi.org/10.3390/rs10010099  599 

Brandt, M., Rasmussen, K., Hiernaux, P., Herrmann, S., Tucker, C.J., Tong, X., Tian, F., Mertz, O., Kergoat, 600 
L., Mbow, C., David, J.L., Melocik, K.A., Dendoncker, M., Vincke, C., Fensholt, R., 2018. Reduction of tree 601 
cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333. 602 
https://doi.org/10.1038/s41561-018-0092-x 603 

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. 604 
https://doi.org/10.1023/A:1010933404324. 605 

Breiman, L., and Cutler, A. 2007. “Random forests - Classification description.” RandomForests, 606 
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed 7 Feburary 2019)  607 

Carrasco, L., O’Neil, A.W., Daniel Morton, R., Rowland, C.S., 2019. Evaluating combinations of temporally 608 
aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote 609 
Sens. 11. https://doi.org/10.3390/rs11030288 610 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, 611 
X., Mills, J., 2015. Global land cover mapping at 30 m resolution: A POK-based operational approach. 612 
ISPRS J. Photogramm. Remote Sens. 103, 7–27. https://doi.org/10.1016/J.ISPRSJPRS.2014.09.002 613 

Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S. V., Justice, C., 2018. 614 
The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 219, 145–161. 615 
https://doi.org/10.1016/j.rse.2018.09.002 616 

Cooper, P.J.M., Dimes, J., Rao, K.P.C., Shapiro, B., Shiferaw, B., Twomlow, S., 2008. Coping better with 617 
current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in 618 
adapting to future climate change? Agric. Ecosyst. Environ. 126, 24–35. 619 
https://doi.org/10.1016/J.AGEE.2008.01.007 620 

Copernicus Global Land Service, 2019. Copernicus Global Land Service Copernicus global land service- 621 
land cover: https://land.copernicus.eu/global/products/lc (accessed on 14 September 2019) 622 

Cracknell, M.J., Reading, A.M., 2014. Geological mapping using remote sensing data: A comparison of five 623 
machine learning algorithms, their response to variations in the spatial distribution of training data and the 624 
use of explicit spatial information. Comput. Geosci. 63, 22–33. 625 
https://doi.org/10.1016/J.CAGEO.2013.10.008 626 



 

23 
 

De Ridder, N., Breman, H., Van Keulen, H., Stomph, T.J., 2004. Revisiting a “cure against land hunger”: 627 
Soil fertility management and farming systems dynamics in the West African Sahel. Agric. Syst. 80, 109–628 
131. https://doi.org/10.1016/j.agsy.2003.06.004 629 

De Rouw, A., Rajot, J.L., 2004. Nutrient availability and pearl millet production in Sahelian farming systems 630 
based on manuring or fallowing. Agric. Ecosyst. Environ. 104, 249–262. 631 
https://doi.org/10.1016/j.agee.2003.12.019 632 

Dong, J., Xiao, X., Menarguez, M.A., Zhang, G., Qin, Y., Thau, D., Biradar, C., Moore, B., 2016. Mapping 633 
paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google 634 
Earth Engine. Remote Sens. Environ. 185, 142–154. https://doi.org/10.1016/j.rse.2016.02.016 635 

Douxchamps, S., Van Wijk, M.T., Silvestri, S., Moussa, A.S., Quiros, C., Ndour, N.Y.B., Buah, S., Somé, L., 636 
Herrero, M., Kristjanson, P., Ouedraogo, M., Thornton, P.K., Van Asten, P., Zougmoré, R., Rufino, M.C., 637 
2016. Linking agricultural adaptation strategies, food security and vulnerability: evidence from West Africa. 638 
Reg. Environ. Chang. 16, 1305–1317. https://doi.org/10.1007/s10113-015-0838-6 639 

Eklundh, L., Jönsson, P., 2017. TIMESAT 3.3 with seasonal trend decomposition and parallel processing 640 
Software Manual. http://web.nateko.lu.se/timesat/docs/TIMESAT33_SoftwareManual.pdf (accessed on 9 641 
October 2019) 642 

Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A., Hostert, P., 2015. Mapping farmland 643 
abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 163, 644 
312–325. https://doi.org/10.1016/j.rse.2015.03.028 645 

Fensholt, R., Horion, S., Tagesson, T., Ehammer, A., Grogan, K., Tian, F., Huber, S., Verbesselt, J., Prince, 646 
S.D., Tucker, C.J., Rasmussen, K., 2015. Assessment of Vegetation Trends in Drylands from Time Series of 647 
Earth Observation Data. pp. 159–182. https://doi.org/10.1007/978-3-319-15967-6_8 648 

Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., Duerauer, M., Albrecht, F., Schill, C., 649 
Perger, C., Havlik, P., Mosnier, A., Thornton, P., Wood-Sichra, U., Herrero, M., Becker-Reshef, I., Justice, 650 
C., Hansen, M., Gong, P., Abdel Aziz, S., Cipriani, A., Cumani, R., Cecchi, G., Conchedda, G., Ferreira, S., 651 
Gomez, A., Haffani, M., Kayitakire, F., Malanding, J., Mueller, R., Newby, T., Nonguierma, A., Olusegun, 652 
A., Ortner, S., Rajak, D.R., Rocha, J., Schepaschenko, D., Schepaschenko, M., Terekhov, A., Tiangwa, A., 653 
Vancutsem, C., Vintrou, E., Wenbin, W., van der Velde, M., Dunwoody, A., Kraxner, F., Obersteiner, M., 654 
2015. Mapping global cropland and field size. Glob. Chang. Biol. 21, 1980–1992. 655 
https://doi.org/10.1111/gcb.12838 656 

Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., van der Velde, M., Kraxner, F., 657 
Obersteiner, M., 2012. Geo-Wiki: An online platform for improving global land cover. Environ. Model. 658 
Softw. 31, 110–123. https://doi.org/10.1016/J.ENVSOFT.2011.11.015 659 

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, 660 
L., Hoell, A., Michaelsen, J., 2015. The climate hazards infrared precipitation with stations—a new 661 
environmental record for monitoring extremes. Sci. Data 2, 150066. https://doi.org/10.1038/sdata.2015.66 662 

Gandah, M., Bouma, J., Brouwer, J., Hiernaux, P., Van Duivenbooden, N., 2003. Strategies to optimize 663 
allocation of limited nutrients to sandy soils of the Sahel: a case study from Niger, west Africa. Agric. 664 
Ecosyst. Environ. 94, 311–319. https://doi.org/10.1016/S0167-8809(02)00035-X 665 

Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H., Peduzzi, P., 666 
2017. Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on 667 
generating Analysis Ready Data (ARD). Big Earth Data 1, 100–117. 668 
https://doi.org/10.1080/20964471.2017.1398903 669 



 

24 
 

Griffiths, P., Nendel, C., Hostert, P., 2019. Intra-annual reflectance composites from Sentinel-2 and Landsat 670 
for national-scale crop and land cover mapping. Remote Sens. Environ. 220, 135–151. 671 
https://doi.org/10.1016/J.RSE.2018.10.031 672 

Hiernaux, P., Ayantunde, A., Kalilou, A., Mougin, E., Gérard, B., Baup, F., Grippa, M., Djaby, B., 2009. 673 
Trends in productivity of crops, fallow and rangelands in Southwest Niger: Impact of land use, management 674 
and variable rainfall. J. Hydrol. 375, 65–77. https://doi.org/10.1016/j.jhydrol.2009.01.032 675 

Hiernaux P. and M.D. Turner, 2002. The influence of farmer and pastoralist management practices on 676 
desertification processes in the Sahel. In ‘Global desertification: do humans cause deserts?’ , Reynolds J.F. 677 
and D.M. Stafford Smith (eds) Dahlem University Press, Berlin: 135-148. 678 

Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., Zhu, 679 
Z., 2017. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. 680 
Remote Sens. Environ. 202, 166–176. https://doi.org/10.1016/j.rse.2017.02.021 681 

Lambert, M.-J., Waldner, F., Defourny, P., Lambert, M.-J., Waldner, F., Defourny, P., 2016. Cropland 682 
Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time 683 
Series at 100-m. Remote Sens. 8, 232. https://doi.org/10.3390/rs8030232 684 

Leroux, L., Jolivot, A., Bégué, A., Seen, D. Lo, Zoungrana, B., 2014. How Reliable is the MODIS Land 685 
Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes? 8541–8564. 686 
https://doi.org/10.3390/rs6098541 687 

Massey, R., Sankey, T.T., Congalton, R.G., Yadav, K., Thenkabail, P.S., Ozdogan, M., Sánchez Meador, 688 
A.J., 2017. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types. Remote 689 
Sens. Environ. 198, 490–503. https://doi.org/10.1016/J.RSE.2017.06.033 690 

Mortimore, M., Tiffen, M., Boubacar, Y., Nelson, J., 2001. SYNTHESIS OF LONG-TERM CHANGE IN 691 
MARADI DEPARTMENT, NIGER, 1960-2000. Drylands Research Working Paper 39e, Drylands Research, 692 
Crewkerne, United Kingdom. 693 

Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface water 694 
and its long-term changes. Nature 540, 418–422. https://doi.org/10.1038/nature20584 695 

Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G., 2016. Assessing the robustness of Random 696 
Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. 697 
Environ. 187, 156–168. https://doi.org/10.1016/J.RSE.2016.10.010 698 

Penning de Vries, F.W.T., Djitèye, M.A., 1982. The Productivity of Sahelian Rangeland: a Study of Soils, 699 
Vegetation and the Exploitation of This Natural Resource 700 
Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands: 547. 701 
 Pieri C. 1989. Fertilité des terres de savanes: bilan de trente ans de recherche et de développement agricole 702 
au sud du Sahara. Ministère de la Coopération, CIRAD-IRAT, Paris, France: 444. 703 

Rasmussen, L.V., Rasmussen, K., Reenberg, A., Proud, S., 2012. A system dynamics approach to land use 704 
changes in agro-pastoral systems on the desert margins of Sahel. Agric. Syst. 107, 56–64. 705 
https://doi.org/10.1016/j.agsy.2011.12.002 706 

Rasmussen, L.V., Reenberg, A., 2012. Land use rationales in desert fringe agriculture. Appl. Geogr. 34, 707 
595–605. https://doi.org/10.1016/j.apgeog.2012.03.005 708 

Raynaut, C., 1998. Diversité et dynamique des relations sociétés—nature au Sahel. Natures Sci. Sociétés 6, 709 
59–62. 710 



 

25 
 

Samaké, O., Smaling, E.M.A., Kropff, M.J., Stomph, T.J., Kodio, A., 2005. Effects of cultivation practices 711 
on spatial variation of soil fertility and millet yields in the Sahel of Mali. Agric. Ecosyst. Environ. 109, 335–712 
345. https://doi.org/10.1016/j.agee.2005.02.024  713 

Samasse, K., Hanan, N., Tappan, G., Diallo, Y., Samasse, K., Hanan, N.P., Tappan, G., Diallo, Y., 2018. 714 
Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sens. 10, 1785. 715 
https://doi.org/10.3390/rs10111785 716 

Serpantié, G., Ouattara, B., Louppe, D., Sougafara, B., Gnahoua, G.M., Ouattara, N., Kolou, O., Yossi, H., 717 
Mallet, B., 2001. Fertilité et jachères en Afrique de l’Ouest. La jachère en Afrique Trop. la jachère Nat. à la 718 
jachère améliorée. Le point des connaissances: 21–83. 719 

Schlecht, E., Hiernaux, P., Achard, F., Turner, M.D., 2004. Livestock related nutrient budgets within village 720 
territories in western Niger. Nutr. Cycl. Agroecosystems 68, 199–211. 721 
https://doi.org/10.1023/B:FRES.0000019453.19364.70 722 

Sheffield, J., Wood, E.F., Chaney, N., Guan, K., Sadri, S., Yuan, X., Olang, L., Amani, A., Ali, A., Demuth, 723 
S., Ogallo, L., 2014. A drought monitoring and forecasting system for sub-sahara african water resources and 724 
food security. Bull. Am. Meteorol. Soc. 95, 861–882. https://doi.org/10.1175/BAMS-D-12-00124.1 725 

Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M., Ciais, P., Guimberteau, M., 726 
Traore, S., Baron, C., 2013. Assessing climate change impacts on sorghum and millet yields in the Sudanian 727 
and Sahelian savannas of West Africa. Environ. Res. Lett. 8, 014040. https://doi.org/10.1088/1748-728 
9326/8/1/014040 729 

Tappan, G. G., Cushing, W.M., Cotillon, S.E., Mathis, M.L., Hutchinson, J.A., and Dalsted, K.J., 2016, West 730 
Africa Land Use Land Cover Time Series: U.S. Geological Survey data release, 731 
http://dx.doi.org/10.5066/F73N21JF 732 

Tong, X., Brandt, M., Hiernaux, P., Herrmann, S.M., Tian, F., Prishchepov, A. V., Fensholt, R., 2017. 733 
Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: A case study in 734 
western Niger. Remote Sens. Environ. 191, 286–296. https://doi.org/10.1016/j.rse.2017.01.030 735 

Tony C. Smith and Eibe Frank, 2016 Statistical Genomics: Methods and Protocols, chapter Introducing 736 
Machine Learning Concepts with WEKA. Springer, New York, NY: 353-378. 737 

Tsendbazar, N., Herold, M., Fritz, S., Lesiv, M., 2018a. Copernicus Global Land Operations: Validation 738 
Report for Moderate Dynamic Land Cover Collection 100m Version 1: Copernicus Global Land Operations. 739 
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_VR_LC100m-V1_I1.20.pdf 740 
(accessed on 9 October 2019) 741 

Tsendbazar, N.-E., Herold, M., de Bruin, S., Lesiv, M., Fritz, S., Van De Kerchove, R., Buchhorn, M., 742 
Duerauer, M., Szantoi, Z., Pekel, J.-F., 2018b. Developing and applying a multi-purpose land cover 743 
validation dataset for Africa. Remote Sens. Environ. 219, 298–309. 744 
https://doi.org/10.1016/J.RSE.2018.10.025 745 

Turner, M.D., Moumouni, O., 2018. Mosaics of property: control of village land in West Africa. J. Peasant 746 
Stud. 1–25. https://doi.org/10.1080/03066150.2018.1439931 747 

van Vliet, N., Reenberg, A., Rasmussen, L.V., Vliet, N. Van, Reenberg, A., Rasmussen, L.V., 2013. 748 
Scientific documentation of crop land changes in the Sahel: A half empty box of knowledge to support 749 
policy? J. Arid Environ. 95, 1–13. https://doi.org/10.1016/j.jaridenv.2013.03.010 750 



 

26 
 

 Vermote, E.F., El Saleous, N.Z., Justice, C.O., 2002. Atmospheric correction of MODIS data in the visible 751 
to middle infrared: first results. Remote Sens. Environ. 83, 97–111. https://doi.org/10.1016/S0034-752 
4257(02)00089-5 753 

Wallace, C.S.A., Thenkabail, P., Rodriguez, J.R., Brown, M.K., 2017. Fallow-land Algorithm based on 754 
Neighborhood and Temporal Anomalies (FANTA) to map planted versus fallowed croplands using MODIS 755 
data to assist in drought studies leading to water and food security assessments. GIScience Remote Sens. 54, 756 
258–282. https://doi.org/10.1080/15481603.2017.1290913 757 

Wu, Z., Thenkabail, P.S., Mueller, R., Zakzeski, A., Melton, F., Johnson, L., Rosevelt, C., Dwyer, J., Jones, 758 
J., Verdin, J.P., 2014. Seasonal cultivated and fallow cropland mapping using MODIS-based automated 759 
cropland classification algorithm. J. Appl. Remote Sens. 8, 083685. https://doi.org/10.1117/1.JRS.8.083685 760 

Xie, H., Tian, Y.Q., Granillo, J.A., Keller, G.R., 2007. Suitable remote sensing method and data for mapping 761 
and measuring active crop fields. Int. J. Remote Sens. 28, 395–411. 762 
https://doi.org/10.1080/01431160600702673 763 

Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, R.G., 764 
Yadav, K., Gorelick, N., 2017. Nominal 30-m cropland extent map of continental Africa by integrating 765 
pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote 766 
Sens. 9, 1–27. https://doi.org/10.3390/rs9101065 767 

Yan, L., Roy, D.P., Zhang, H., Li, J., Huang, H., 2016. An automated approach for sub-pixel registration of 768 
Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote 769 
Sens. 8. https://doi.org/10.3390/rs8060520 770 

Zhang, W., Brandt, M., Tong, X., Tian, Q., Fensholt, R., 2018. Impacts of the seasonal distribution of 771 
rainfall on vegetation productivity across the Sahel. Biogeosciences 15, 319–330. https://doi.org/10.5194/bg-772 
15-319-2018 773 

Zhong, L., Hu, L., Yu, L., Gong, P., Biging, G.S., 2016. Automated mapping of soybean and corn using 774 
phenology. ISPRS J. Photogramm. Remote Sens. 119, 151–164. 775 
https://doi.org/10.1016/j.isprsjprs.2016.05.014 776 

Zhong, L., Hu, L., Zhou, H., 2019. Deep learning based multi-temporal crop classification. Remote Sens. 777 
Environ. 221, 430–443. https://doi.org/10.1016/J.RSE.2018.11.032 778 

 779 

 780 

  781 



 

27 
 

Supplementary material: 782 

 783 

 784 

Figure S1.  Temporal NDVI profiles of cropped and fallow fields in the arid and semi-arid regime 785 
of the Sahel based on average values of sample pixels identified across the study area (see Section 786 
2.3.1) and 95% confidence intervals. 787 

 788 

Figure S2. Mask of irrigated areas from the ESA CCI 300 m data. 789 

 (http://maps.elie.ucl.ac.be/CCI/viewer/index.php) 790 

 791 
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Figure S3. MODIS 250 m a) mid of season and b) end of season (day of year) for 2017, within the 792 
extent of the CGLS-LC100 cropland class.  793 

 794 

Figure S4. Standard deviation in number of days for a) start month of image acquisition and b) end 795 
month of image acquisition, calculated per grid cell. 796 

 797 

 798 



 

29 
 

Figure S5. Example of the spatial distribution of the final reference data generated in Senegal, 799 
covering the same area as Figure 5. 800 

 801 

 802 

Figure S6. a) CHIRPS annual mean rainfall (1982-2018). b) Woody cover (2014-2016) (Brandt et 803 
al., 2018) covering western Sahel, (woody cover for eastern Chad and Sudan was not mapped). 804 

 805 

Figure S7. Overall accuracy (OA) of the crop/fallow classification at the Sentinel-2 tile level. 806 

 807 

Table S1. Overall accuracy (OA) of the crop/fallow classification at Sentinel-2 tile level. 808 

Name OA Name OA Name OA Name OA Name OA Name OA 

27PZS 0.94 29PRS 0.90 31PGQ 0.91 33PWP 0.91 35PKR 0.85 36PVA 0.91 

28PBA 0.90 29PRS 0.93 31PGR 0.92 33PWQ 0.91 35PKS 0.94 36PVT 0.86 

28PBB 0.90 30PTA 0.92 31PGR 0.91 33PXN 0.92 35PLM 0.92 36PVU 0.86 

28PCA 0.91 30PTB 0.91 31PGS 0.91 33PXP 0.86 35PLN 0.86 36PVV 0.87 

28PCB 0.91 30PTV 0.90 31PHQ 0.88 33PXQ 0.91 35PLP 0.85 36PWA 0.88 

28PCC 0.89 30PUA 0.93 31PHR 0.85 33PYP 0.89 35PLQ 0.80 36PWB 0.90 

28PDA 0.89 30PUB 0.94 31PHS 0.87 33PYQ 0.92 35PLR 0.85 36PWC 0.91 

28PDB 0.90 30PUC 0.93 31PHT 0.92 33PZQ 0.85 35PLS 0.90 36PWT 0.83 
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28PDC 0.90 30PVA 0.90 32PKA 0.88 33PZR 0.82 35PMM 0.90 36PWU 0.86 

28PEA 0.91 30PVB 0.90 32PKB 0.88 34PBA 0.87 35PMN 0.90 36PWV 0.85 

28PEB 0.94 30PVC 0.92 32PKC 0.92 34PBU 0.95 35PMP 0.86 36PXA 0.85 

28PFA 0.87 30PWA 0.89 32PKV 0.91 34PBV 0.84 35PMQ 0.87 36PXB 0.82 

28PFB 0.93 30PWB 0.87 32PLA 0.87 34PCA 0.86 35PMR 0.88 36PXC 0.89 

28PFC 0.94 30PWC 0.91 32PLB 0.90 34PCU 0.92 35PNM 0.92 36PXU 0.91 

28PGA 0.91 30PWV 0.94 32PLV 0.88 34PCV 0.91 35PNN 0.93 36PXV 0.93 

28PGB 0.90 30PXA 0.93 32PMA 0.87 34PDA 0.90 35PNP 0.89 36PYA 0.90 

28PGC 0.91 30PXV 0.90 32PMB 0.90 34PDB 0.92 35PNQ 0.87 36PYB 0.82 

28PHA 0.84 30PYA 0.91 32PMU 0.93 34PDU 0.91 35PNR 0.89 36PYC 0.92 

28PHB 0.85 30PYB 0.93 32PMV 0.92 34PDV 0.88 35PPM 0.94 36PZA 0.88 

28PHC 0.94 30PYV 0.90 32PNA 0.83 34PEA 0.91 35PPN 0.93 36PZB 0.83 

29PKR 0.90 30PZA 0.87 32PNB 0.88 34PEB 0.94 35PPP 0.91 36PZC 0.88 

29PKS 0.92 30PZB 0.84 32PNU 0.85 34PEU 0.90 35PPQ 0.82 37PBR 0.93 

29PLS 0.91 30PZC 0.91 32PNV 0.84 34PEV 0.93 35PPR 0.87 37PBS 0.91 

29PLT 0.90 30QVD 0.90 32PPA 0.82 34PFA 0.86 35PQP 0.93 37PBT 0.94 

29PMR 0.93 31PBQ 0.92 32PPB 0.87 34PFU 0.90 35PQP 0.90   

29PMS 0.90 31PBR 0.91 32PPU 0.86 34PFV 0.89 35PQQ 0.86   

29PMT 0.89 31PBS 0.86 32PPV 0.84 34PGA 0.92 35PQR 0.81   

29PNR 0.93 31PBT 0.93 32PQA 0.84 34PGT 0.92 35PRP 0.81   

29PNS 0.90 31PCQ 0.90 32PQU 0.87 34PGU 0.90 35PRQ 0.80   

29PNT 0.87 31PCR 0.92 32PQV 0.90 34PGV 0.94 35PRR 0.81   

29PPR 0.93 31PCS 0.93 32PRA 0.90 34PHA 0.83 35PRS 0.91   

29PPS 0.92 31PDQ 0.90 32PRU 0.85 34PHB 0.89 36PTA 0.88   

29PPT 0.94 31PDR 0.92 32PRV 0.80 34PHT 0.91 36PTB 0.90   

29PQQ 0.90 31PDS 0.89 33PTP 0.86 34PHT 0.79 36PTU 0.89   

29PQR 0.90 31PEQ 0.94 33PTQ 0.73 34PHU 0.80 36PTV 0.85   

29PQS 0.91 31PER 0.90 33PUP 0.87 34PHV 0.84 36PUA 0.88   

29PQT 0.90 31PES 0.91 33PUQ 0.84 35PKM 0.88 36PUB 0.90   

29PRQ 0.91 31PFQ 0.92 33PVN 0.90 35PKN 0.84 36PUT 0.87   

29PRR 0.91 31PFR 0.93 33PVP 0.90 35PKP 0.88 36PUU 0.87   
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  31PFS 0.90 33PWN 0.93 35PKQ 0.84 36PUV 0.83   

 809 


