
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Challenges in Flexible Safety-Critical Software Development -- An Industrial Qualitative
Survey

Holmén Notander, Jesper; Höst, Martin; Runeson, Per

Published in:
Lecture Notes in Computer Science/Product-Focused Software Process Improvement

DOI:
10.1007/978-3-642-39259-7_23

2013

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Holmén Notander, J., Höst, M., & Runeson, P. (2013). Challenges in Flexible Safety-Critical Software
Development -- An Industrial Qualitative Survey. In J. Heidrich, M. Oivo, A. Jedlitschka, & M. T. Baldassarre
(Eds.), Lecture Notes in Computer Science/Product-Focused Software Process Improvement (Vol. 7983, pp.
283-297). Springer. https://doi.org/10.1007/978-3-642-39259-7_23

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-642-39259-7_23
https://portal.research.lu.se/en/publications/a51857e7-6fd5-4a1a-acb7-9094555e545a
https://doi.org/10.1007/978-3-642-39259-7_23

Challenges in Flexible Safety-Critical Software
Development – An Industrial Qualitative Survey

Jesper Pedersen Notander, Martin Höst, and Per Runeson

Software Engineering Research Group, Dept. of Computer Science,
Lund University, Sweden

{jesper.pedersen_notander,martin.host,per.runeson}@cs.lth.se

Abstract. Context. Development of safety-critical systems is mostly
governed by process-heavy paradigms, while increasing demands on flex-
ibility and agility also reach this domain. Objectives. We wanted to
explore in more detail the industrial needs and challenges when facing
this trend. Method. We launched a qualitative survey, interviewing engi-
neers from four companies in four different industry domains. Results.
The survey identifies human factors (skills, experience, and attitudes)
being key in safety-critical systems development, as well as good doc-
umentation. Certification cost is related to change frequency, which is
limiting flexibility. Component reuse and iterative processes were found
to increase adaptability to changing customer needs. Conclusions. We
conclude that agile development and flexibility may co-exist with safety-
critical software development, although there are specific challenges to
address.

Keywords: Software Engineering, Qualitative Survey, Safety-Critical
Software

1 Introduction

The development of safety-critical systems is traditionally governed by document-
driven, process-heavy paradigms. Safety standards, such as IEC61508 for au-
tomation and EN50126 for railways, assume extensive documentation and strictly
defined processes for the product safety certification, including risk analysis,
change control and traceability. Consequently, the pace of change is lower in this
type of systems, making them less flexible with respect to changing requirements
from customers and markets.

In her book “Engineering a Safer World” [8], Leveson identifies several types
of changes to the safety-critical systems we build, for example, fast pace of
technological change, increasing complexity and coupling, and complex relation-
ships between humans and automation. She concludes that there is a need for
a paradigm change in the development to achieve safer systems, which she then
proposes in the book. While we share the general description of the changes, we
see a need for a more systematic exploration of the industrial context and needs
in the development of safety-critical systems in different industry domains.

Published in proceedings of 14:th International Conference of Product Focused Software
Development and Process Improvement (PROFES), Paphos, Cyprus, 12-14 June 2013.
The final publication is available at link.springer.com

2 Jesper Pedersen Notander, Martin Höst, and Per Runeson

Therefore, we launched a qualitative survey on industry practices and prob-
lems. We particularly focus on how the system development and safety certifi-
cation processes relate to each other, when developing safety-critical systems.
A viewpoint of particular interest is the ability to support flexibility in the
development to meet changing customer needs and technological changes. We
interviewed five safety and software engineers from four companies in different in-
dustries: Aerospace, Automation, Robotics and Transportation. The interviews
were transcribed, coded, and qualitatively analyzed. We conclude from the study
that human factors and the quality of requirements are as essential for develop-
ment of safety critical systems, as they are for non-critical systems. In addition,
we observe that the cost of certification is proportional to the number of releases,
thus creating an incentive for few releases with many changes, which adversely
affects flexibility. Furthermore, component reuse and iterative processes were
found to increase adaptability to changing customer needs.

The paper is outlined as follows. We define the problem background and
related work in Section 2. In Section 3 we present the methodology used for the
study, including a characterization of the studied companies. In Section 4 we
present and discuss the resulting findings. Section 5 concludes the paper.

2 Background and Related Work

Developers of safety-critical systems are increasingly using software to implement
system functions, both safety-critical and non-critical. The inherent flexibility of
software, enables system developers to rapidly adapt to changes in customer and
market needs, without paying the high costs associated with hardware. It also
supports reuse of existing functionality in new products as well as evolution of
existing solutions.

Although increasingly used in safety-critical systems, the extent to which soft-
ware is adopted by industry differs between different domains. In some domains,
software has been used extensively for many years in safety-critical parts, e.g.
Aerospace, whereas in other domains it has primarily been used for non-safety
critical parts, e.g. Robotics. The trend, however, clearly points towards using
more software, with increasing complexity, in safety-critical functions.

Safety-critical systems have the potential of causing harm to people and the
environment [8]. Safety-critical software is used in a safety-critical system to
realize a safety-critical function, e.g. the flight control algorithm in an airplane.
Software in itself cannot harm people or the environment but unanticipated
behavior of the software, either resulting from faults in the requirements spec-
ification, failure to implement requirements according to specification or not
following operation requirements, can propagate into the physical world and
there cause harm.

Safety-critical systems are regulated systems in the sense that system devel-
opers are mandated by law or strongly recommended to show compliance with
an applicable standard. For example, in the European Union industrial robots
need to show compliance with the Machinery Directive by following the ISO10218

Challenges in Flexible Safety-Critical Software Development 3

standard. Several industries have their own standards that are applicable for spe-
cific systems, e.g. medical devices, aircraft systems, railway systems etc. Some
standards are general in scope and apply to a broader range of systems, e.g.
ISO61508 that covers electric, electronic and programmable electronic safety-
related systems, whereas other standards are industry or even system specific,
e.g. ISO10218 that only applies to robots and robotic devices.

Standards can be classified, for instance by their scope, generic vs. domain-
specific as mentioned earlier, but also whether they are means-prescriptive or
objective-prescriptive. A means-prescriptive standard, e.g. ISO61508, focuses on
the means to achieve certain high-level safety goals and typically provides lists
of methods and suggestions that a developer would be recommended or forced
to include in their development process. An objective-prescriptive standard on
the other hand, e.g. RTCA/DO-178, defines (low-level) objectives that should
be reached, but does not necessarily define how to reach them. High-level safety
goals are achieved when the objectives are fulfilled.

Common for all standards regarding safety-critical software, which are ap-
plicable in the context of this study, are that they consider software as a de-
terministic artifact, whose failures can only be caused by residual specification,
design or implementation faults. Thus, safety is assured through the application
of a standard-dependent design assurance process consisting of process-based
and product-based development activities [1].

Although we do not claim to have done an extensive literature study, it
would seem that there is a lack of empirical research in safety-critical software
development, which investigates the flexibility aspect of safety-critical software
from a holistic point of view. Land et al. [7], investigated component reuse in
safety-critical systems through an industrial case study as well as action research.
They identified challenges of component reuse with the aim of getting an overall
picture of safety-critical development. They addressed flexibility by means of
component reuse and provide a broad picture of challenges, including component
interfaces and abstraction, traceability and certification, but they do not address
the development process as such.

McHugh et al. [9] address flexibility from a process perspective, basing their
work on an industrial survey, in which they investigated barriers preventing the
adoption of agile practices in safety-critical medical device development. They
found that the barriers they identified were tightly coupled with current regu-
latory constraints on medical software, but they emphasized that the barriers
were not insurmountable even with todays best practices and standards. Kor-
necki and Zalewski [6] approach flexibility through an industrial survey of soft-
ware tool support in the development and verification of safety-critical systems.
Due to the increasing use of software tools in modern, highly complex, safety-
critical systems development, the authors wanted to identify issues and concerns
in software tool qualification and certification.

There exist several papers that present insights, into safety-critical develop-
ment and related areas, which were gained from analytical and design research
performed as academic case studies, sometimes basing the case on real world sit-

4 Jesper Pedersen Notander, Martin Höst, and Per Runeson

Table 1. Research steps

Research step Result

Definition of research questions 3 questions
Planning of interviews 9 main questions
Conducting interviews ∼ 5 × 1 h interview recordings

Interview transcripts
Definition of codes 19 initial codes
Coding Coded transcripts,

13 additional codes
Analysis of coded transcripts Reduced code set to 27 codes,

7 clusters of related codes,
additional areas of interest

Summary of areas of interest Identified themes among clusters,
Thematic conclusions

uations with industrial data but in equal amounts on fabricated, but plausible,
data. For instance, Hawkings et al. [4] present a safety argument pattern catalog,
which was evaluated in two case studies. The two cases were based on indus-
trial data from two real products. The presented pattern catalog is an appealing
way of aiding the construction of safety cases in a repeatable and consistent
way, which might be of benefit in a situation were safety-critical systems are
composed of flexible components.

3 Research Method

In this section we present the research method used in the study, the case com-
panies and the interviewees. We also discuss the validity of the study in relation
to the used method and selected companies.

The research is based on a qualitative survey using interviews for data col-
lection [3]. The methodology in a qualitative survey resembles that of a multiple
case study [11, 5], but the cases are not studied in depth in the survey. The objec-
tive of the research was to identify potential conflicts between safety certification
procedures and more flexible methods for composition and development of soft-
ware intensive systems. A significant part was to understand todays practices.
By composition we mean integration and configuration of reusable components
with the specific aim of creating variants of a system, whereas by development
we mean the activities that is undertaken to create the components and the
system design.

Because qualitative methods were used, our conclusions are based on an
understanding of the collected data, created through a structured and systematic
reading-process. The different steps in the research study, which are based on
the guidelines of Runeson et al. [11], are summarized in Table 1, and described
in more detail below.

Challenges in Flexible Safety-Critical Software Development 5

3.1 Definition of research questions

Based on the objective, the following research questions were defined, which were
recorded in a case study protocol:

RQ1 What are the challenges related to flexibility and safety in software devel-
opment for software-intensive safety-critical systems, with respect to agile
practices?

RQ2 What are the challenges related to flexibility and safety in system compo-
sition for software-intensive safety-critical systems, with respect to safety
certification?

RQ3 What is the role of system and software architectures with respect to flexi-
bility and safety in software-intensive safety-critical systems development?

3.2 Planning of interviews

Based on the research questions, a set of interview questions were derived. The
following top-level questions were defined:

IQ1 What is your role at the company, particular in relation to the certification
process?

IQ2 How much experience do you have with the current certification process?
IQ3 Could you describe the product and outline the main challenges regarding

the safety certification of it?
IQ4 Could you give a brief description of the certification process in general and

for software in particular?
IQ5 How does the certification process impact the development process?
IQ6 What is the role of the system and software architecture in the certification

process?
IQ7 What are the main concerns with the current certification process?
IQ8 What are the main driving forces behind the introduction of more flexibil-

ity?
IQ9 What is the next step towards more flexibility in the certification process?

We also derived, for most of the main questions, 3–4 additional sub-questions,
which have more explicit connection to the three research questions (RQ1–3).
These are not presented in detail in this paper due to space constraints.

3.3 Conducting interviews

Interview candidates were selected with the aim of acquiring a diversified view
from different industries and companies, see Section 3.6, as well as different
roles, see Table 2. The identification and selection of interviewees was an ongoing
process throughout the study.

The interviews were semi-structured, which means that open ended questions
were asked about specific areas [11, Chapter 4]. Questions were not necessarily
asked in the same order as presented in Section 3.2 and tended to be more

6 Jesper Pedersen Notander, Martin Höst, and Per Runeson

Table 2. Summary of interviewee characteristics.

ID Role Experience Responsibilities

I1 System Architect 18 years, 5 with
safety

Safety related issues at a system level.

I2 Safety Manager 30 years, 4-5 in
current role

Coordinates the company safety and certi-
fication activities.

I3 Software Architect 14 years Manages the development of a software
based safety framework as well as working
as the project liaison to I2.

I5 Safety Manager 10 years, 5 in
current role

Responsible for the implementing, evolv-
ing and enforcing the software development
process at of the company.

I4 Safety Manager 10 years, 5 in
current role

Manages certification activities and contact
with the certification authorities.

open at the end of the interviews. Interviewees were not interrupted when their
answers diverged from the asked question, as long as the answer was within the
scope of the study. The researchers kept track of the interviewees answers and
tried to take that into account when additional questions were asked, so as not
to ask a question that had already been covered.

In total, five interviews were held with interviewees from four different com-
panies. The five interviewees could roughly be classified into three roles: safety
managers, system architects and software architects. All interviews were con-
ducted with two researchers each except for interview I5, and were recorded and
later transcribed for further analysis.

3.4 Analysis

Definition of codes. Initially, a set of codes was defined based on the interview
questions, the study objective and the knowledge that was gained during the
interviews and from the transcription process. A set of 19 codes were found, see
Column Sci in Table 3.

Coding. The coding was done in two steps. In the first, the interview transcripts
were compiled into a list of codeable text segments corresponding roughly to a
paragraph in the source transcript. In the second step, each text segment was
assigned a set of codes, i.e. a segment could be given any number of codes
(≤ 19 + 13 = 32). The maximum number of codes assigned to a segment was
7, the minimum 1 and the median 2. The coding was conducted by two of the
researchers. One researcher coded three transcripts and the other two.

While coding the two first interview transcripts, 13 additional codes were
defined, as reported in Column Sce in Table 3. After coding, non-used codes
were removed, as well as specialized codes that were subsets of other codes. The
final set contains 27 codes, see Column Scf in Table 3.

Challenges in Flexible Safety-Critical Software Development 7

Table 3. Code sets during the stages of the analysis, including the code clusters. An x
means the code is member of the set, r and c indicate whether a code was in the row
or column cluster set in the “heat map”, b if in both.

Codes Code Sets Code Clusters
Id Name Sci Sce Scf Substitute C1 C2 C3 C4 C5 C6 C7

C1 Certification Process x x x c b c
C2 Development Process x x x r c c b
C3 Safety-Critical x x x c r
C4 Standard x x x c b c
C5 Stakeholders x x x c b
C6 Safety Analysis x x x r b r
C7 Variants x x x b
C8 System x x x b r
C9 Component x x C14
C10 Software x x x r b r
C11 Challenges x x x c r r
C12 Activity x x x b r
C13 Artifact x x x b r
C14 Architecture & Design x x x b r
C15 Safety x x x c r
C16 Tools & Methods x x x b
C17 Composition x x C7
C18 Flexibility x x x r b r
C19 Future x x C18
C20 Economy x x b r r
C21 Quality x None
C22 Verification & Validation x x b r
C23 Skills & Experience x x b r
C24 Safety Case x x r b r
C25 Requirements x x b c r
C26 Safety Awareness x x r r
C27 Company Culture x x b r
C28 Hardware x x r b
C29 COTS & OSS x x r b c
C30 Late Fault Identification x C11, C22
C31 Legal Responsibility x x b
C32 Roles x x r b

Count: 19 32 27 Unique pairs: 18 15 63 15 24 27 26

Analysis of coded transcripts. When all transcripts were coded, we began
searching for code patterns, i.e. themes, in the coded transcripts. Although, we
already had an impressions of which code patterns were more frequent than
others, we sought a more systematic approach.

To guide our reading, we created an overview of how different codes were
related and to what degree, by calculating a relative overlap score for each

8 Jesper Pedersen Notander, Martin Höst, and Per Runeson

possible pairs of codes, defined for any two codes A and B as:

overlap(A,B) =
text segments with both code A and code B

text segments with code A

The score is a measure of the overlap that describes the number of occurrences
of the pair (A,B) relative the total number of occurrences of code A. An overlap
score of one means that code A is a true subset of B, i.e. A occurs only together
with B.

We visualized the overlap scores for all possible code pairs in a “heat map”,
and identified clusters of pairs, i.e. groups with high pair-wise scores, using hi-
erarchical clustering and manual inspection. In total, 7 clusters were identified,
see Table 3. The clusters were used to select text segments for further analysis.
A segment was selected if it was coded with a pair belonging to the cluster or if
it had only one code and that code was in a pair belonging to the cluster.

By reading the segments thus selected, in-depth and in their context, the aim
was to identify themes for each cluster. In total only four themes were found,
partially due to content overlap between clusters and that some clusters were
lacking in cohesiveness.

Summary of areas of interest. In this last step of the analysis the result of the
previous step was summarized for each area of interest by contrasting different
interviewees’ statements. The result of this step is presented in Section 4.

3.5 Analysis of threats to validity

The validity of the research is discussed based on the design presented above,
based on Runeson et al [11].

Construct validity. The construct validity concerns how well the researchers
and the interviewees are able to communicate the real underlying phenomena
under study. There is a risk of being misunderstood, e.g. if the interviewees
did not have the same construct in mind as we researchers when talking about
terms like ’safety’, ’security’, ’flexibility’, etc. However, during the interviews
we were aware of this risk, and much of the purpose of the interviews was to
understand what the interviewed people and organizations mean with these
constructs, and thus the threat is reduced.

Internal Validity. The internal validity threat is mainly concerned with causal
relationships. Since this study is primarily descriptive, these threats are not
applicable.

External Validity. The external validity threat concerns to what extent the
results are valid in other contexts than the cases that were studied in the
presented research. Since the study is carried out in a limited set of organi-
zations it is not possible to widely generalize to other organizations without
considering the differences. However, the selected organizations represent
different domains that use different safety standards. In addition to this,
the interviewees represent different roles in their organizations. Thus, the
findings must be confirmed in larger studies, before generalizing them.

Challenges in Flexible Safety-Critical Software Development 9

Table 4. Summary of company characteristics.

ID Domain Standard(s) Product

C1 Robotics ISO10218 Industrial robots and service robots. Off-the-
shelf components for system integrators.

C2 Transportation EN50128 Railway signal systems. System and compo-
nent provider. Mainly government customers.

C3 Automation IEC61508 Process controllers. Off-the-shelf components
for system integrators.

C4 Aerospace RTCA/DO-178B Aircraft systems. End-user products. Govern-
ment customers.

Reliability. This concerns how the analysis and the results depend on the re-
searchers. We have followed strict protocols for the conduct and analysis,
which are openly reported. Additionally, all findings that were derived by
one of the researchers were reviewed by the other researchers, which we argue
limits the reliability threat.

3.6 Case Description

In this section, the companies in the survey are described in more detail. Our
classification of the companies and the presented characteristics are based on
data collected during the interviews.

The four companies come from different industries: Robotics (C1), Trans-
portation (C2), Automation (C3) and Aerospace (C4), and are subject to dif-
ferent certification standards. They employ different business models, some are
market driven whereas others work in tight collaboration with governments and
large organizations. See Table 4 for a summary of the characteristics of the four
participating companies. In total, five interviews were held, one at each of the
companies C1, C3 and C4, and two at C2.

C1 belongs to a division of a global company which has long experience devel-
oping industrial robotics and recent experience with service robotics. Ap-
plicable standards for industrial robots are ISO10218. One interview (I1)
was held at this company with a system architect. Software is used exten-
sively by the company for non safety-critical functionality, although not for
safety-critical functions. The development can be seen as system integra-
tion of software and hardware components, either in-house or acquired from
third-party sources. The company does not provide end user certificates for
their products.

C2 belongs to a national branch of a global company. They develop train-
signaling systems for several countries. Applicable and mandatory standards
for railway signaling systems in the European Union is EN50128. At this
company two interviews were held, (I2) and (I3). One with a safety man-
ager and one with a software architect. The company has several years of

10 Jesper Pedersen Notander, Martin Höst, and Per Runeson

experience in developing safety-critical software, and they recently changed
development process from a version diversity based process to a single ver-
sion unit test based process. The company has customers in several countries
all over the world, as a result their products must be able to comply with
different legislation as well as specific customer needs.

C3 belongs to another division of the same corporation as C1 but develops
automation solutions. The company is subject to the ISO61508 standard.
We conducted one interview (I4) at this company with a safety manager
who was responsible for contact with certification authorities and quality
assurance of the development process. They have a strong focus on software,
both non-critical and safety-critical. Their customers are end-users, which
integrate the company’s products into larger systems, e.g. processing plants.

C4 belongs to a multinational company in the defense & aerospace industry.
The company base their development process around the RTCA/DO-178B
standard. One interview (I5) was held at this company, with a safety man-
ager responsible for the software development process. The company has a
long history of developing avionics, i.e. aircraft software, and works in close
collaboration with the national authorities responsible for certifying aircraft
systems. They consider themselves system integrators and deliver a product
that is intended to be used directly by end-users. All customers are govern-
ments.

4 Results and Discussion

This section presents the results from our study, as well as our interpretations of
the result. The four themes presented in this section were identified during the
transcript analysis.

For each theme, we first present our conclusions, then our analysis and fi-
nally the supporting evidence for our claims. References to RQs are given in the
analysis, while the direct responses to RQs are summarized in Section 5.

4.1 Human Factors – Skills, Experiences and Attitudes

This theme covers skills and knowledge among developers and managers, as well
as their attitudes towards safety critical development, and how this impacts the
development and certification process. From a flexibility point of view, human
factors affect team composition and the performance of employees.

Development of safety-critical systems is not about writing code. It is about
understanding the problem that should be solved by the system and be aware
of the special nature of safety-critical systems, i.e. that they can cause harm to
people. For instance, several interviewees mentioned that the quality of testing
was depending on good knowledge about the system, its intended functionality
and about safety-critical development in general. This was exemplified by I2
stating: if you do not ask the right questions you will not get the right answers.
Having employees with the right knowledge profile was explicitly considered by

Challenges in Flexible Safety-Critical Software Development 11

two of the interviewees as the main asset of their company. I5 emphasized, that
there is a big knowledge difference between developers doing normal application
code and those that make safety-critical code. I3 considered that developers
should work across the system-software boundary to get a better understanding
of the product domain and intended system functionality. Agile team practices
help achieving these goals (RQ1).

It is essential to document the knowledge in a way that can be accessed by
the ones using it. Especially in an organization that change process model or
reassigns experienced personnel to other projects and products. For instance, I1
pointed out that undocumented knowledge might be a challenge when going from
one process model to another. This was further supported by I3 who thought
that getting information out about novel development concepts and how to ap-
ply them posed a challenge. I5 strongly emphasized that information should be
documented and be freely accessible by all concerned parties. This is both an
advantage and a challenge of agile practices, which focus on communication, but
not on documentation (RQ1). One key challenge that was identified by several
of the interviewees was to keep the organizations’ safety awareness high and how
to improve it, i.e. that the people in the company should always be aware of that
the product is safety-critical and have the potential of causing harm, and base
their actions on this awareness (RQ2). It was considered to be both difficult and
time consuming. For instance, interviewee I1 said that it cannot be forced upon
the organization; it has to grow with time.

From a managerial perspective, safety awareness, or lack of it, will greatly
impact the development. For instance in one of the case companies, management
pushed for shortcuts and reduced staffing of key personnel, which in the short
term might have led to some reductions in cost but in the long run adversely
affected the company’s ability to certify larger changes in their products. The
reverse case, when management is too aware, is perhaps not ideal either. Al-
though, a low level of safety awareness might lead to costly decisions, a too high
level might result in fear of change, as was implied by I1. Though, the latter
case would probably be better from a safety perspective, however, less so from
a flexibility point of view (RQ2).

Although not directly connected with flexibility, human factors play an im-
portant role in safety-critical development. To be successful, a flexible process
should consider these factors and provide adequate support for knowledge shar-
ing. As identified in [2], agile practices (XP), seems to support developers motiva-
tional needs (RQ1). Their motivational needs included, among others: knowledge
sharing, support for the less experienced and knowledge acquisition.

4.2 Requirements and Verification

This theme is related with testing, requirements engineering and how the re-
quirements are elicited during the development process.

Good requirements and a complete requirement specification is the key to
safety critical software development, or any kind of development for that matter.
Without the right requirements, on the right level, verification and validation

12 Jesper Pedersen Notander, Martin Höst, and Per Runeson

becomes hard to do in any meaningful way. A complete set of requirement is
perhaps not practical or even possible which means that the gaps must be filled
by other means. In this regard, testing plays an important role by finding im-
plementation and design errors. To get good quality test cases the testers need
to be knowledgeable about the system, the problem domain and the develop-
ment process. This view is strongly supported by both I2 and I3. For instance,
I3 described how requirements specifications on the functional level were used
to develop unit test cases, and, as a consequence because the testers needed
more information to adequately test the units, additional data (requirements)
were attached to the function specifications. The result was that testing became
more occupied with finding discrepancies between the code and the specification
rather than finding actual errors in the source code. Agile practices, with their
focus on working code over rigorous documentation may counteract this (RQ1).

From our study we must conclude that formal methods are not used widely
by industry. Only in C2 were formal methods used and only in a specific case.
I2 expressed a wish to increase the use of formal methods because they had
problems finding certain kinds of errors related to logic and combinatorics. When
speaking about the software architecture and system properties, I4 explained
that they did not use formal methods although they followed modeling guidelines
when building their architecture model.

Safety related requirements are described, in all four cases, to be elicited
through an iterative process, starting with a new design or change request. Then
some form of risk analysis technique is applied, e.g. FMEA in the C1 case and
HAZOP in the C2 and C3 cases.

Interviewee I4 explains that they find requirements engineering challenging
because they are required by their standard to finalize the design before starting
to write code. One explanation for this could be that the same engineers do
both design and coding, as explained by I4, which is in sharp contrast to agile
practices (RQ1). No other interviewee reported on having this difficulty.

A closely related topic is requirements traceability. Traceability is mandated
by the safety standards and must be maintained for safety-critical systems
(RQ2). I4 described traceability as a time consuming and labor intensive task
that would probably not have been performed if the standard did not require
it. In contrast, I5 gave the impression that traceability was a well integrated
activity, but also agreed that it was time consuming. In both cases tool support
existed as well as a functional specification that traced product requirements
through system functions down to components, but in the C3 case the specifica-
tion was seen as making tracing harder as opposed to the view of it as a helpful
tool in the C4 case. One explanation of the different views might be that the
level of detail in the functional specification is too high in the C3 case.

From a flexibility point of view requirements engineering and verification &
validation are essential. If these activities are not aligned with the process or
the architecture, flexible development or composition of system variants might
not be feasible. For instance, one limiting factor today, that was reported by I4,
is that the cost, in terms of certification overhead, of changing a safety-critical

Challenges in Flexible Safety-Critical Software Development 13

system, i.e. make a new release, is proportional to the number of releases rather
than the implementation effort of the releases (RQ2). This means that there is
an incentive to have few releases with many changes, which is in conflict with
the idea behind agile processes (RQ1).

4.3 Agile Development

This theme covers the trend towards more iterative and agile development pro-
cesses and standard related challenges.

Agile processes, at least agile inspired processes, are being introduced or
have been used for some time in safety-critical development. Although, only
the C4 case explicitly followed an agile process model both the C2 and C3
cases made use of iterative development processes that seemed to share some
characteristics of an agile process (RQ1). Interviewee I2 described their process
as working back and forth in 14 days test release cycles. This agile interpretation
is further supported by interviewee I3, who had previous experiences of working
with Scrum, at another company, and did not think that the development process
of C2 was any different from previous experiences. The C4 case used Scrum in
their project teams.

Some challenges were identified by the interviewees. For instance intervie-
wee I4 stated that there is a conflict between their need to adopt a more agile
process and their certifier’s insistence on conformance with the standard, which
is means-prescriptive and prescribes a waterfall-based process (RQ2). Another
challenge that was identified by interviewee I5 is maintaining independence in
the development teams, i.e. a person is not allowed to produce and review the
same artifact. This was resolved by keeping track of who did what.

A common belief is that agile processes are in conflict with the requirements
of safety standards [12]. Our conclusion is that this might be the case when it
comes to means-prescriptive standards, e.g. C3, but not for objective-prescriptive
standards, e.g. C4. In fact, interviewee I5 saw Scrum primarily as a project
management tool for work planning and did not seem to think that it was, in
any way, in conflict with RTCA/DO-178 (RQ2).

4.4 Variants and Components

The last theme we identified covers system variants and how reusable compo-
nents are handled by the case companies.

Reusable software components have the potential of reducing development
time and the cost of certification, at least in the presence of system variants. In
both case companies that had variants, C2 and C4, efforts were made to isolated
software functions into reusable components or frameworks (RQ3). In the two
other cases, C1 and C3, variants did not exist and little or no effort was put into
creating reusable components.

There are different approaches towards creating reusable software compo-
nents. For instance, interviewee I2 described their layered software architecture

14 Jesper Pedersen Notander, Martin Höst, and Per Runeson

that has a generic bottom layer and more specific adaptation layers at the top
(RQ3). Each layer can be considered as a reusable component that can be certi-
fied and reused in other situations, although it would still be necessary to certify
the integrated system finally delivered to the customer. A change to a higher
layer does not force a re-certification of a lower level, however, the reverse is
not true (RQ2). Interviewee I5 explained another approach, where they consid-
ered a solution with a main system containing all functions for all variants. A
variant would then be an instance of the main system with some functions deac-
tivated. They also considered a solution where common functions were put into
components that were declared to a suitable criticality level. Sufficient evidence
could then be collected for each component and be used repeatedly whenever
the component was integrated into a system variant.

Reusable components seem to be one of the keys to enable flexibility in
safety-critical development (RQ3). At least interviewee I5 states this directly
but it is evident that in the C2 case the fact that they can reuse their layers
in different variants enables them to be very flexible when it comes to system
composition and to meet the needs of their customers. It is also interesting
to note that component reuse is encourage by, at least, the RTCA/DO-178B
standard (RQ2).

5 Conclusions and Future Work

We launched a qualitative survey of companies developing safety-critical systems
with software, in four different industry domains. Although governed by differ-
ent standards, the characteristics are very similar across the domains. Based on
interviews with five practitioners (safety managers, system and software archi-
tects) we conclude that human factors and quality of requirements are central
for safety-critical systems, as they are for non-critical systems.

We conclude that issues related to agile methods (RQ1) include aspects,
which are in line with safety goals, for example, their focus on communication,
teamwork across boundaries, developer motivation and good code. Challenging
issues of combining agility and safety include less focus on documentation, tight
collaboration between development and test, in contrast to independent test
teams, and many releases, which conflicts with certification procedures required
for each release. Practice demonstrated the feasibility of combining agile and
safety. One of the surveyed companies, C4, used agile processes, while C2 and
C3 cases used iterative development processes.

Regarding system composition and safety certification (RQ2) we observe that
safety awareness is a key human aspect. However, a challenge is that it may
lead to fear of change, hindering flexibility. Traceability, as mandated by the
safety standards, may support flexibility since it helps identifying dependencies
to handle during evolution. The cost of maintaining traceability is high, as is
the costs for safety certification, although both being a necessary condition for
making safety-critical systems. The use of agile processes is possible to combine
with safety standards, although some implicitly assume waterfall processes.

Challenges in Flexible Safety-Critical Software Development 15

The role of the software and system architectures (RQ3) is primarily to har-
ness reusable components, which is a key strategy to make safety-critical sys-
tems development and composition more efficient. A layered architecture may
also help isolate changes, and thus the need for re-certification.

We conclude that agile development and flexibility may co-exist with safety-
critical software development, although there are specific challenges to address
by research and industry practice. Future work includes e.g. designing modeling
concepts that may reduce the certification overhead for software changes, under
kept standard compliance [10].

Acknowledgements. The work in this paper was funded by the Swedish Foun-
dation for Strategic Research under a grant to Lund University for ENGROSS-
ENabling GROwing Software Systems.

References

1. Baufreton, P., Blanquart, J.P., Boulanger, J.L., Delseny, H., Derrien, J.C., Gassino,
J., Ladier, G., Ledinot, E., Leeman, M., Quéré, P., Ricque, B.: Multi-domain com-
parison of safety standards. In: Proceedings of the 5th International Conference on
Embedded Real Time Software and Systems (ERTS2), Toulouse, France (2010)

2. Beecham, S., Sharp, H., Baddoo, N., Hall, T., Robinson, H.: Does the XP environ-
ment meet the motivational needs of the software developer? An empirical study.
In: AGILE 2007. pp. 37–48. IEEE CS (2007)

3. Flink, A.: The survey handbook. SAGE Publications, 2nd edn. (2003)
4. Hawkins, R., Clegg, K., Alexander, R., Kelly, T.: Using a software safety argument

pattern catalogue: Two case studies. In: Proc. SAFECOMP. pp. 185–98. Springer
(2011)

5. Jansen, H.: The logic of qualitative survey research and its position in the field of
social research methods. Forum Qualitative Sozialforschung / Forum: Qualitative
Social Research 11(2) (2010)

6. Kornecki, A., Zalewski, J.: Software certification for safety-critical systems: A sta-
tus report. In: International Multiconference on Computer Science and Information
Technology. vol. 3, pp. 665–672. IEEE Computer Society (2008)

7. Land, R., Akerholm, M., Carlson, J.: Efficient software component reuse in safety-
critical systems – an empirical study. In: Proc. SAFECOMP. LNCS, vol. 7612
LNCS, pp. 388–399. Springer (2012)

8. Leveson, N.: Engineering a safer world: systems thinking applied to safety. MIT
Press, Cambridge, Mass. (2011)

9. McHugh, M., McCaffery, F., Casey, V.: Barriers to adopting agile practices when
developing medical device software. In: 12th Int. Conf. on Software Process Impr.
and Capability Determination. CCIS, vol. 290, pp. 141–147. Springer (2012)

10. Pederson Notander, J., Runeson, P., Höst, M.: A model-based framework for flex-
ible safety-critical software development – a design study. In: Proceedings 28th
Symposium On Applied Computing. Coimbra, Portugal (2013)

11. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering – Guidelines and Examples. Wiley (2012)

12. Turk, D., France, R., Rumpe, B.: Assumptions underlying agile software develop-
ment processes. Journal of Database Management 16(4), 62–87 (2005)

