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Abstract
By colliding heavy nuclei at high energies, which is done at RHIC and the LHC,
a strongly interacting Quark Gluon Plasma (QGP) is created. This manifests itself
through several different signatures, which until recently was thought to uniquely pro-
be the QGP. Recently, however, similar signatures have been observed also in small
systems, such as pp collisions with high charged-particle multiplicity, which is quite
puzzling since a QGP is not expected to be formed in such dilute systems with short
lifetimes. One such observable is the enhanced relative yields of multistrange baryons,
such as the Ξ baryon, which has been observed in e.g. Pb–Pb collisions. More recently,
this yield enhancement has been observed to scale smoothly with multiplicity also in
pp collisions.

The main analysis presented in this thesis aims at understanding the production
mechanism of strange quarks in pp collisions at

√
s = 13 TeV, and in this way reach an

explanation of the origin of the strangeness enhancement observed there. This is done by
studying angular Ξ−h correlations, where h is either of π, K, p, Λ, or Ξ hadrons, by using
data from the ALICE detector. The results are compared with four phenomenological
models; three flavours of the QCD inspired PYTHIA8 which is based on colour strings,
and the core-corona model EPOS LHC. The PYTHIA tunes are the Monash tune, the
Junction Mode 0 tune, which has an additional mechanism for baryon formation, and
a yet unofficial tune including rope hadronisation, which is a proposed mechanism for
the observed strangeness enhancement. In EPOS, the enhanced strangeness is modelled
by an increasing fraction of a core that behaves like a medium.

The results show that the Ξ−π correlation function is dominated by a narrow near-
side peak. This is not present in any of the other correlations, which on the other hand
have a wide extension in rapidity. This means that pions decouple later in the evolution
from the Ξ baryon compared to the other species, likely within the jet, which was
concluded to be due to charge balance, whereas the other correlations are attributed
to strangeness and baryon decoupling. In all PYTHIA flavours, strong correlations
within the jet are present for all combinations except Ξ − p correlations, meaning that
strangeness and baryon number are produced earlier in the evolution in data than in
PYTHIA. The junction model however gave a description of the Ξ−baryon correlation
that was closer to data than the Monash tune, indicating that the additional baryon
mechanism included there is more likely to be correct. For EPOS, on the other hand, the
correlation function is very dilute for most species, which was concluded to be due to
local conservation of quantum numbers not being properly accounted for. Therefore, it
is not yet possible to use this measurement to test the underlying mechanism provided
by this model. Based on this, the observations in data indicate that the strangeness
production mechanism is likely either due to a core-corona like state, or some hybrid
mechanism where string interactions are also important.

Correlations were also measured as a function of multiplicity, yielding very simi-
lar results across multiplicity classes. Therefore it was concluded that the strangeness
and baryon production mechanisms in pp collisions are likely the same regardless of
multiplicity.
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Populärvetenskaplig sammanfattning
Att vatten övergår till ånga när man hettar upp det är ett välkänt fenomen, men även
materia som bygger upp atomkärnor kommer att genomgå en fasövergång om den hettas
upp tillräckligt mycket. Det som då bildas är ett kvark-gluonplasma (QGP), en exotisk
form av materia där atomkärnans minsta beståndsdelar – kvarkar och gluoner – mer
eller mindre rör sig fritt, vilket radikalt skiljer sig från vanlig materia. Dess egenskaper
kan sammanfattas som ett mycket hett och tätt medium, som i det närmaste beter
sig som en vätska. Detta tillstånd tros ha existerat under den första hundratusendelen
av en sekund efter Big Bang, så genom att studera detta kan vi lära oss mer om hur
universums byggstenar en gång bildades.

Genom att accelerera tunga joner, t.ex. blykärnor, till mycket höga energier och
sedan kollidera dem, kan man skapa ett QGP i labbet. Detta görs bl.a. vid partikelfy-
siklaboratoriet CERN utanför Genève. Det QGP som då bildas existerar endast under
ett extremt kort ögonblick, varefter det sönderfaller och en skur av partiklar bildas.
Genom att studera dessa partiklar, kan vi lära oss om kvark-gluonplasmats egenskaper.
Det har gjorts teoretiska förutsägelser om hur kvark-gluonplasmat förväntas påverka
partiklarnas sammansättning och fördelning i rummet, vilka har visat sig stämma bra
med det som observeras. På senare tid har det däremot gjorts en upptäckt som inte
passar så bra in i bilden, då liknande effekter har observerats också i kollisioner mellan
protoner, vilka är 200 gånger mindre än en blykärna. Enligt gällande modeller så borde
inte ett QGP kunna bildas i så små kollisionssystem – det går helt enkelt för kort tid
innan kollisionen är över. Som forskare vill vi förstås veta vad som egentligen händer i
dessa kollisioner, vilket är syftet med den här avhandlingen. För att förstå vad jag har
studerat, behöver man först förstå hur en atomkärna är uppbyggd.

En atomkärna består av protoner och neutroner, men dessa är inte elementarpartik-
lar, utan är i sin tur uppbyggda av kvarkar och gluoner. En proton består av tre kvarkar
– två uppkvarkar och en nerkvark, vilka har olika laddning – som är sammanbundna
av gluoner. En neutron består istället av en uppkvark och två nerkvarkar. Det finns
också tyngre kvarkar, vilka inte är vanligt förekommande i universum då de snabbt
sönderfaller till upp- eller nerkvarkar, men det hindrar inte dem från att bildas vid hö-
genergetiska partikelkollisioner. Den lättaste (och därmed vanligaste) av dessa tyngre
kvarkar är särkvarken, vilken är som en tyngre version av nerkvarken.

En förutsägelse av kvark-gluonplasmat är att fler särkvarkar bildas i detta medium
än vid partikelkollisioner där inget QGP bildas. Och mycket riktigt bildas fler särkvarkar
i bly-blykollisioner än vid proton-protonkollisioner, men det sker också en tydlig ökning
från protonkollisioner där få partiklar har deltagit till dem där många partiklar har
gjort det. Flera teoretiska modeller har utvecklats för att förklara detta, vilka kan delas
in i två kategorier som sinsemellan är väldigt olika, så andra typer av mätningar måste
göras för att testa vilken som stämmer bäst överens med verkligheten.

För att få en uppfattning om vad som händer i dessa kollisioner har jag studerat
Ξ-baryonen (Xi), vilken består av två särkvarkar och en nerkvark. Denna rör sig några
centimeter innan den sönderfaller i ett väldigt distinkt mönster, vilket relativt lätt kan
detekteras i ALICE-detektorn, vars data har använts till den här studien. Genom att
mäta avståndet i detektorn från Ξ-baryonen till andra partiklar som bildas i kollisionen
(eller mer specifikt fördelningen av avståndet), och i synnerhet till sådana som innehåller
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särkvarkar, kan vi få en uppfattning om när och var särkvarken har bildats under
kollisionen och på så sätt testa modellerna.

Två modeller har testats (plus ytterligare några variationer av den ena), en från var-
dera kategorin. Den ena modellen är en så kallad kärn-koronamodell, vilken förutsäger
att ett QGP bildas även i protonkollisioner, men att den relativa volymen ökar när fler
partiklar deltar. Den andra modellen är en så kallad strängmodell, där observationerna
förklaras genom att det sker andra processer som liknar det man skulle förvänta sig
från ett QGP, utan att ett sådant har bildats. Resultaten från studien visar att ingen
av modellerna beskriver verkligheten särskilt väl. Särkvarkarna verkar bildas tidigare
i kollisionen än vad som förutsägs av strängmodellen, vilket tyder på att den under-
läggande fysiken i den modellen kan vara fel, även om det fortfarande är för tidigt att
säga. För kärn-koronamodellen är problemet ett annat, då den i nuläget saknar vikti-
ga bevarandelagar och därför ger helt felaktiga förutsägelser. Så för att testa om den
modellen i grunden stämmer, behövs mer jobb från utvecklarnas sida.
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Popular Summary
The fact that water transforms into water vapour when heated is a well-known phe-
nomenon, but also the matter building up atomic nuclei will undergo a phase transition
if enough heated. What then is formed is a Quark Gluon Plasma (QGP), an exotic
state of matter where the smallest constituents of the atomic nucleus – quarks and
gluons – more or less can move freely, which is radically different from normal matter.
Its properties can be summarised as a very hot and dense medium, which behaves like
a fluid. This state of matter is believed to have existed during the first one hundred
thousandth of a second after Big Bang, so by studying this we may learn more about
how the building blocks of the Universe once were formed.

By accelerating heavy ions, e.g. lead nuclei, to very high energy, and then collide
them, we may create a QGP in the laboratory. This is for instance done at the particle
physics laboratory CERN outside Geneva. The QGP that is then formed only exists
for an extremely short instance of time, after which it decays into a shower of particles.
By studying these particles, we may learn about the properties of the QGP. Theoretical
predictions have been made of how the QGP is expected to affect the abundances and
spatial distribution of the created particles, which have turned out to agree with what
is observed. More recently, however, there has been a discovery that does not fit so
well into this picture, which is that similar effects have been observed also in collisions
between protons, despite being 200 times smaller than a lead nucleus. According to
current models, a QGP is not expected to form in such small collision systems – the
time frame of the collision is simply too short. As researchers, we naturally want to
understand what is really going on in these collisions, which is the purpose of this
thesis. To understand what I have studied, though, one first needs to understand how
an atomic nucleus is composed.

An atomic nucleus consists of protons and neutrons, but these are not elementary
particles, but are in turn composed of quarks and gluons. A proton consists of three
quarks – two up quarks and one down quark, which have different electric charge –
which are bound together by gluons. A neutron is instead composed of one up quark
and two down quarks. There also exist heavier quarks, which are not very abundant
in the Universe since they quickly decay into up or down quarks, but that does not
prevent them from being created in high-energy particle collisions. The lightest (and
hence most common) of these heavier quark is the strange quark, which is like a heavier
version of the down quark.

One prediction of the QGP is that more strange quarks are produced in this medium
than what would be the case for particle collisions without QGP formation. And as
expected, more strange quarks are produced in lead-lead collisions than in proton-
proton collisions, but there is also a clear enhancement in proton collisions with many
produced particles, compared to those where only a few particles are detected. Several
theoretical models have been developed aiming to explain this, which can be divided
into two categories where the physics is very different, so other types of measurements
are required to test which model agrees best with reality.

To get an idea of what happens in these collisions, I have studied the Ξ baryon
(“Xi”), which consists of two strange quarks and one down quark. This typically moves
a few centimetres before it decays through a very distinct pattern, which makes it
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relatively easy to detect in the ALICE detector, where the data used in this study has
been collected. By measuring the distance between the Ξ baryon and other particles
that are produced in the collision (or more specifically the distribution of this distance),
and in particular particles that contain strange quarks, we may gain some understanding
of the time and position of the formation of strange quarks during the collision, and in
this way test the models.

Two models have been tested (plus a few variations of one of them), one from either
category. One of the models is a so-called core-corona model, which predicts that a
QGP is formed also in proton collisions, but that the relative volume of it increases
when more particles participate. The other model is a so-called string model, where
the observations are explained by other processes that mimic what one expects from
a QGP, but without actually forming such a state. The results from the study show
that neither of the models describes the observations particularly well. The strange
quarks seem to be formed earlier in the collision than what is predicted by the string
model, which indicates that the underlying physics in that model may be incorrect,
although it is still too early to tell for sure. The core-corona model has a different
problem, as currently important conservation laws are not taken into account, resulting
in predictions very far from reality. So in order to test whether the idea behind this
model is correct, more work is required from the developers.

ix
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Chapter 1

Introduction

1.1 General Background
If colliding heavy nuclei which are accelerated to extremely high energies, it is now
widely accepted that the nuclear matter will undergo a phase transition to a very hot
(more than 100 000 times the temperature at the core of the Sun!) and dense state of
matter, called the Quark Gluon Plasma (QGP). This has many exotic properties, since
it is strongly interacting and yet behaves as the most perfect fluid that is known. In
this state, the smallest substituents of nuclei, called quarks, which are normally confined
into composite particles called hadrons1 due to the strongly interacting gluons holding
them together, are liberated – the quarks and gluons are deconfined. The QGP is not
only produced in heavy-ion collisions though, but is thought to have existed during
the first 10 µs or so after the Big Bang, and does likely exist in the cores of neutron
stars. The latter have however much higher baryonic densities, so the matter created
in heavy-ion collisions is more similar to the conditions shortly after Big Bang. And
since this matter eventually evolved into the atoms and nuclei present in the Universe
today, we can perhaps learn more about how it was formed by studying the QGP in
the laboratory. This does however only exist for about 10−23 s, which is much more
short-lived than anything we can detect, so how can we be so sure that a QGP indeed
is formed in these collisions?

The answer to that question is that theoretical models have made many predictions
of what the footprint of a QGP will look like in the detector, which will be described
in detail in Chapter 3 of this thesis. For many years there had not been any conclusive
evidence for finding such signatures, until the heavy-ion programme started at the
Relativistic Heavy-Ion Collider (RHIC) at Brookhaven outside New York in 2000. This
has used a rich collection of heavy-ion systems, with Au–Au collisions at 200 GeV per
nucleon pair being the most dominant one. The data was collected at four detectors,
but only STAR is still operational. While STAR has a main focus on collecting as many
hadrons as possible, the other major experiment, PHENIX, had a larger focus on rare
probes, making them complementary. PHENIX is currently being replaced by a new
detector called sPHENIX, which will enable much larger detection rates.

1These include protons and neutrons, but there are many more.
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From the RHIC data, many properties of the QGP were determined to a good
precision, but several questions still remained. Some of these began to get their answer
in 2010, when the heavy-ion programme started at the Large Hadron Collider (LHC),
which enabled collisions at a much higher energy – it is currently at 5 TeV per nucleon
pair. But instead new discoveries were made, which raised many new questions, which
I will return to in a short while.

First, however, I will give a short introduction to the LHC. The LHC is located at
CERN outside Geneva, and with a circumference of 27 km, it is not only the largest
particle accelerator in the world, but the largest machine overall. It is located in a tunnel
about 100 m below ground, and is outlined in the aerial photo shown in Fig. 1.1. For
most of the year, LHC collides protons, but during a short period each year, typically
either lead ions are collided or protons are collided with lead ions. There are four
major experiments at the LHC – ATLAS, CMS, ALICE, and LHCb. Of these, ATLAS
and CMS are general-purpose detectors aiming at finding rare processes, and in this
way pursuing the frontiers of fundamental physics, whereas LHCb is aimed at flavour
physics, searching for exotic states of hadrons. While all experiments participate in
the heavy-ion programme, ALICE is the only dedicated heavy-ion detector. This is the
experiment where I have been working.

Figure 1.1 – Aerial view of CERN, where the major accelerators SPS and the LHC are
outlined. The main offices are at the Meyrin site. Figure taken from Ref. [1].

The main tracking device of the ALICE detector is the Time Projection Chamber
(TPC), which while its detection rates are quite limited, it is able to record most of the
charged particles traversing it to a very precise position, and identify them – which is
not possible at this scale using any other detector technology. This is possible even for
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a heavy-ion collision with a huge amount of tracks, as is shown in the event display in
Fig. 1.2. To understand what happens in a heavy-ion collision, we need to collect as
much information about the event as possible, and for this the TPC is ideal. Therefore
a TPC is also used by STAR, and will be used in sPHENIX as well. Moreover, the
ALICE TPC is currently being upgraded to enable much higher detection rates, which
will make it possible to study also rarer processes associated with the QGP in great
detail. The ALICE TPC, along with most of the other subdetectors in ALICE, are
described in Chapter 4.

Figure 1.2 – Example of an event display in a central Pb–Pb collision recorded by the
ALICE Collaboration. A total of about 2400 tracks are produced. Figure taken from
Ref. [2].

While the LHC clarified many open questions about QGP physics, the most re-
markable discovery – which has also been hinted at at RHIC – is that most of the
observables thought to be associated with a QGP have now also been found in proton–
proton collisions. This is quite puzzling, since the lifetime of the system formed in
these collisions should be too short to reach thermal equilibrium – a requirement for
a phase transition. Now several phenomenological models are being developed aiming
at understanding this – of which some are described in Section 3.8. These are vastly
different from each other, so more experimental input is needed to give insight into
what happens in these collisions, which is the aim of this thesis.

1.2 Research Goals
One of the signatures previously thought to be associated with QGP formation, is the
enhanced yields of baryons containing more than one strange quark (cf. Section 2.1),
which is known as strangeness enhancement. One such baryon is the Ξ baryon, con-
taining two strange quarks. Now it has been discovered that there is a smooth scaling
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in relative yield of these hadrons when going from collisions where a low number of
particles have been produced to larger collision multiplicities. This does not seem to
depend on which collision system is involved, but the scaling is most prominent in pp
collisions. Therefore, the strangeness production mechanism may be the key to under-
stand what happens in small systems. To get a better understanding of this, particle
correlations with the Ξ baryon are used to determine where the strange quarks are
produced in the system. By comparing this with phenomenological models, this may
give understanding of the mechanisms involved.

This research is closely related to the CLASH project (although not officially part of
it), which is a collaboration between part of the development team behind the PYTHIA
event generator (cf. Section 3.8.2) and the Lund ALICE group. The goal of the project
is to develop both experimental observables that can give a large distinction power
between different models, and give input to the theorists on where further development
is needed.

1.3 Outline of This Thesis
I will start with introducing the Standard Model of particle physics, which is the current
theory for describing all known particles and interactions (except gravity) at a funda-
mental level. From this I will move towards a description of the QGP and describe
all major observables associated with it in heavy-ion collisions. For each observable, I
will assess the current experimental status also in small systems. After introducing the
observables, I will describe some of the phenomenological models aiming at finding a
unified picture of the physics in small and large systems.

In the next part, I will describe the ALICE detector, with a focus on the subsystems
involved in the research presented in this thesis. Then I will move on to my service task,
which every PhD student in the collaboration is required to do. For me, the service
task was to help out with the prototype testing of the chips used for the TPC upgrade.
The detection rates enabled following the upgrade will make it possible to extend the
main analysis topic to rarer processes such as Ω production, so indirectly this work will
be very useful for continuing the research I have started in this thesis. The chips will
however not only be used in the TPC, but also in the muon tracking chambers, where
the specification for the tolerable noise limit was set below the resolution of the chip
itself. I developed a novel way to access this noise level, which is described and tested
in this thesis. This could for instance be of use for quality testing (of electrical shielding
etc.) if not having sensitive enough equipment.

Following the detector description and upgrade, I will describe the main analysis
topics. I will start with a description of a measurement of flow in Xe–Xe collisions that
I was involved in. These ions were collided in the LHC during a single day in 2017.
This analysis aimed at testing initial-state models by comparing flow across multiple
collision systems. Since more experienced members of the analysis group did most of
the contributions to these results, this analysis is described only briefly. Instead the
focus in the thesis is on the main analysis, which is to measure correlations between
the Ξ baryon and five different hadronic species (including Ξ itself) to get a better
understanding of the strangeness production mechanism in pp collisions. The results

6



are compared with the phenomenological models described in Section 3.8. Finally, I
will suggest several analyses for extending the work presented here.

1.4 Own Contributions
The ALICE Collaboration has about 1800 members, which all get their names on the
papers published by the collaboration. Therefore, no one is directly involved in all
studies carried out by the collaboration, and it is therefore only meaningful to include
analyses that I have been directly involved in. These are the publications that I have
contributed to (given in chronological order):

• J. Adolfsson et al. SAMPA Chip: the New 32 Channels ASIC for the ALICE
TPC and MCH Upgrades. JINST 12 C04008, 2017.
Paper summarising the results from the testing of the V2 SAMPA prototype. The
final phase of this testing was done by our group in Lund, which I participated
in. A longer paper on the TPC upgrade, including this work, will be submitted to
JINST soon.

• ALICE Collaboration. Anisotropic flow in Xe–Xe collisions at √
sNN = 5.44 TeV.

Phys. Lett. B 784, 82-95, 2018.
This is the first report of elliptic flow in Xe–Xe collisions. I was a part of the
paper committee and participated in the writing, although my results never made
into the final publication.

• J. Adolfsson. Measurements of Anisotropic Flow in Xe–Xe Collisions at √
sNN =

5.44 TeV Using the ALICE Detector. MDPI Proc. 10, 41, 2019.
Conference proceedings to the Hot Quarks Conference 2018, mainly summarising
the above publication.

• J. Adolfsson et al. QCD Challenges from pp to A-A collisions. arXiv: 2003.10997,
2020. Accepted for publication by Eur. Phys. J. A.
Proceedings to the 3rd International Workshop on QCD Challenges from pp to
A–A, 2019, summarising all ideas which were discussed during the workshop. I
participated actively in the workshop and provided some figures for the final doc-
ument, which I also helped reviewing.

• J. Adolfsson. Studying particle production in small systems through correlation
measurements in ALICE. arXiv: 2005.14675, 2020. Submitted to Acta Phys. Pol.
B Proc. Suppl.
Conference proceedings to Excited QCD 2020, summarising recent correlation
measurement in ALICE, including preliminary results for the main analysis presen-
ted in this thesis.
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The main work in this thesis has not yet made it into a publication. The analysis and
early results have already been approved as ALICE Preliminary results. A publication
is planned for the near future, although it may take a while for it to pass all the approval
steps in the ALICE Collaboration.
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Chapter 2

Fundamental Theory

In this chapter, the Standard Model of particle physics, which is the theory describing
everything we currently understand about interactions at microscopic scales, will be
introduced. Then, some elementary quantum field theory will be introduced starting
from Quantum Electrodynamics (QED). Having laid the foundations, the main focus
will be on Quantum Chromodynamics (QCD), which describes the strong force, the
main topic of this thesis. In particular, the focus will be on how QCD gives rise to a
quark-gluon plasma (QGP) at large temperatures and what properties it predicts for
this QGP.

2.1 The Standard Model of Particle Physics
The Standard Model of particle physics describes all known fundamental particles, as
well as three of the four fundamental forces in nature, namely the strong, electromag-
netic, and weak interactions. The last one, gravity, is too weak to be possible to study
at microscopic levels with current technology1 and the theory governing it, general re-
lativity, has proven to be very difficult to combine with the Standard Model. But that
is a research field on its own and will not be discussed further here.

The strong interaction is what holds nuclear matter together. Effectively, this is by
far the strongest force, but its range is very short, only a few fm. The electromagnetic
interaction is what acts on charged particles. It has infinite range, is the cause of phe-
nomena such as electricity and magnetism, and is the reason why atoms hold together,
but is also important for the interactions at the LHC. The weak force is so weak that it
is not experienced directly in everyday life, but it plays a major role in radioactive decay
and decays of the particles studied in this thesis. Therefore, all of these interactions
will be explained in detail here.

A summary of all particles in the Standard Model is given in Fig. 2.1. These are
usually divided into fermions, which are subdivided into quarks and leptons, and bosons,
which are subdivided into gauge bosons and scalar bosons. The fundamental difference
between the two categories is that fermions have half-integer values (1/2 for fundamental

1The reason why we experience gravity is that it is always attractive and has infinite range, so it
will have a very large impact at macroscopic scales.
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Figure 2.1 – Summary table of all particles included in the Standard Model. See details
in the text. Figure taken from Ref. [3].

particles) of the intrinsic angular momentum, called spin, while bosons have an integer
spin: 1 for gauge bosons and 0 for scalar bosons. This gives them fundamentally
different properties, with the most important one being that two fermions cannot share
the same quantum state, known as the Pauli principle, while bosons can. This means
that the energy levels of fermionic matter are quantised, which limits the number of
different (composite) particles that exist below a certain mass. For bosons, this is not
the case, meaning that it is possible to put an infinite number of bosons at the same
energy, with the consequence that the total number of bosons increases indefinitely with
decreasing energy scale. Moreover, the total net fermion number is conserved (they can
only change from one type of fermion into another, in cases where such mechanisms are
allowed, or be annihilated by their anti-particles), but the boson number is not.

Fermions are matter particles, whereas gauge bosons carry the forces between them.
The fermions further come in three generations, where the first generation build up
(most of) the matter around us and the other two generations consist of heavier versions
of the particles in the first generation. The quarks are the particles which are subject
to the strong force, and thus these are the ones that build up nuclear matter. More
specifically, a proton for instance consists of two up quarks and a down quark – called
valence quarks – but due to quantum fluctuations there are pairs of quark–antiquarks as
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well, called sea quarks, which also include heavier flavours, in particular strange quarks.
When describing bound quark states, known as hadrons, it is usually the valence quarks
that are listed.

The quarks have colour charge, which the massless gluon force mediators couple to,
and come in three colours called red (r), green (g), and blue (b), and corresponding
anticolours for antiquarks. All particles seen in nature are colour neutral, which either
can be formed through an rgb triplet, or by a colour-anticolour pair. Consequently,
there are two kinds of hadrons2: baryons, which consist of three quarks, and mesons,
which consist of a quark–antiquark (qq) pair. The hadrons most important for this
work are summarised in Appendix C.

The electromagnetic interaction is mediated by massless photons, and the weak force
by massive W and Z bosons. These bosons couple together into a unified SU(2) group3

at high enough energy, but due to electroweak symmetry breaking, they have decoupled
into three massive (W+, W−, and Z0) and one massless state [5]. While photons couple
to all charged particles, including W bosons, the massive gauge bosons couple to all
fermions, including neutrinos as well as the W and Z bosons themselves. The weak
interaction can further be divided into the charged current, mediated by the W boson,
and the neutral current, mediated by the Z boson. The neutral current is involved
in scattering processes, but unlike the charged current, it cannot change flavour. The
charge current on the other hand, can change a quark or lepton into another, but only
between species of different charge. This is the process through which heavier fermions
decay into lighter ones, and will be described more closely in Section 2.2.

Finally, there exists one scalar boson within the Standard Model, namely the Higgs
boson. This is an excitation of the Brout-Englert-Higgs field, which provides the mech-
anism for giving fundamental particles (except neutrinos) their mass4, and was pre-
dicted by Peter Higgs in 1964 [6]. This was discovered through a combined effort by
ATLAS and CMS in 2012, making it the most recent fundamental particle to have been
discovered [7, 8].

2.2 The Electroweak Interaction and Feynman Dia-
grams

Quantum Electrodynamics is the theory describing the electroweak interaction, but be-
fore going into this, I will introduce an important tool for calculating and visualising
interactions within the Standard Model, namely the Feynman diagram, which was intro-
duced by Richard Feynman in 1948 [9]. In these, the interaction vertices are combined
graphically, as shown in Fig. 2.2, where each line combining two vertices is being known
as a propagator, which is a representation of the virtual field propagating the interac-

2Excluding more exotic state, such as the pentaquark states Pc(4450) and Pc(4380) discovered by
LHCb in 2015 [4].

3Special unitary group of two dimensions.
4The masses of hadrons are typically much higher than the combined mass of their constituent

quarks – which is a consequence of that fermions only can couple into discrete energy levels and that
the strength of the strong interaction results in quite large confinement energies – but if quarks and
leptons were massless, they would never be able to combine into atoms or even nuclei.
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tion. Fermions are represented by arrows – which have to be connected – photons, W,
and Z bosons by wavy lines, gluons by curly lines, and scalar bosons by dashed lines.

γ∗

e− e−

e− e−

Figure 2.2 – A Feyman diagram showing electron–electron scattering. The interaction
is driven by propagation of a virtual photon (hence the asterisk) which connects to the
fermion fields at the nodes in the diagram. Time is propagated from left to right.

From this, the amplitude of the process – which is a part of the matrix element M
– can be calculated by assigning the interaction strength

√
α to each vertex – entering

as factors in the calculation – and a factor to the propagator, which in lowest-order
perturbation theory is proportional to [10, p. 21]

1
q2 −M2c2 ,

where q is the four-momentum transfer of the interaction, M the mass of the mediator,
and c is the speed of light. The full calculation for this is quite complicated and
will not be done here, but the important results for the time being are that αEM =
e2/(4πε0~c) ' 1/137 for electromagnetic interactions at low energy scales, and that
the electromagnetic force decreases as 1/r2, where r is the distance between the two
charged particles. The total cross section is then proportional to |M|2, and consequently
to (

√
α)4 = α2 since there are two vertices entering into the calculation of the matrix

element. For the weak interaction, the calculation is somewhat different, yielding the
interaction strength αW ' 1/236.

This is comparable to the electromagnetic interaction, so why is the weak interaction
so weak? The answer to this lies in the propagator, since the mass term reduces the
interaction probability significantly. In most practical situations, q2 � M2, so the cross
section falls as 1/M4. With the masses of the W and Z bosons being 80.4 GeV/c2 and
91.2 GeV/c2, respectively [11], the effective range gets reduced to the order of ~c/M ∼
2 · 10−18 m, resulting in a very small interaction probability. Therefore, it is preferred
to use the effective interaction strength GF =

√
2 ·4π~αW/(MWc) = 1.166 ·10−5 GeV−2

instead of αW [10, pp. 36-38]. As a consequence of the low effective interaction strength,
weakly decaying particles are relatively long-lived, which can be derived from the decay
width Γ, which again is proportional to |M|2. The decay time does however have strong
energy dependence. From dimensional arguments alone, one can expect that Γ ∝ G2

FQ
5,

where Q is the energy transfer, which holds as long as one does not consider inhibiting
factors such as mixed states (see below) and changes in spin.
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u

s

µ+

νµ

W+
K+

Figure 2.3 – Feyman diagram describing K+ decay into a muon and a muon neutrino.

An example of a weak process is charged-kaon decay, which is shown in Fig. 2.3.
This particle has a lifetime of 1.24 · 10−8 s, which can be compared to typical strong
interactions with lifetimes of ∼ 10−24 s and electromagnetic interactions where it is
∼ 10−15 s. Here the W boson changes the flavour of the strange (s) quark into an up
(u) quark. The reason why this is possible at all is that flavour and mass states mix.
Thus the weak decay will turn the s quark into a mixed state of (u, c, t), but since the
charm quark is too heavy, it can only change into an up quark. This mixing is described
by the CKM matrix, which is a unitary matrix on the form

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ,

where Vαβ is the relative coupling strength between quark states α and β in the weak
interaction, or more precisely

|gαβ |2 = |Vαβ |2g2
W,

where g2
W = 4παW, so the strength is reduced by |Vαβ |2 compared to lepton interactions

and the decay width by |Vαβ |4. The matrix element describing the coupling between
u and s has an absolute value of |Vus| = 0.2248, meaning that the decay probability is
suppressed by a factor of 2.6 · 10−3 compared to pure quark states. Unitarity implies
that |Vus|2 + |Vcs|2 + |Vts|2 = 1, further implying that the coupling to the charm quark is
much greater (the coupling to the top quark is negligible), but not energetically possible
given the higher c quark mass. This explains why the lifetime of kaons is only about
a factor of two shorter than that of pions, despite the much larger mass (494 MeV/c2

compared to 140 MeV/c2).

Screening
So far, I have just mentioned Feynman diagrams at tree level, but higher-order processes
also enter into the calculation of the total cross section, such as the ones shown in
Fig. 2.4. These are called loop diagrams. In the case of QED, next-to-leading order
(NLO) diagrams contain processes where a dilepton or diquark pair is formed. In
Fig. 2.4a, the dielectron pair is formed within the virtual photon field surrounding the
electron, and is known as a quantum fluctuation. This increases the effective charge
of the electron, effectively increasing the coupling strength at short distances, which is
known as screening. In quantum field theory, the increased strength comes from NLO
diagrams such as the one shown in Fig. 2.4b. In practice, also processes involving quarks
and other leptons contribute to the screening.
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e− e−

γ∗
e−∗

e+∗ γ∗

(a) γ∗

e−∗ e+∗

γ∗

e− e−

e−e−

(b)

Figure 2.4 – Example of NLO Feynman diagrams of (a) quantum fluctuations and (b)
electron–electron scattering (cf. 2.2), both involving the creation of a virtual dielectron
pair.

In quantum mechanics, shorter distances are equivalent to higher energy, and thus
the electromagnetic interaction strength increases with energy, i.e. αEM is energy de-
pendent. Doing the full calculation leads to the result [13, pp. 234-235]

αEM(q2) = αEM(µ2)
1 + kαEM(µ2)/(3π) ln(µ2/(−q2) , (2.1)

where q2 is the energy scale where we want to measure the coupling strength and −µ2

is some reference energy scale, preferably the one where αEM is normally defined. The
factor k comes from summing the contributions from all fermions, and is

k = nl + 4
3nu + 1

3nd,

where nl is the number of lepton flavours, and nu and nd are the numbers of quark
flavours with charge +2/3 and −1/3, respectively, available at the energy scale µ2. If
|q2| > M2

W, this would also enter into the scaling factor. Coupling strengths which vary
with energy are known as running couplings, and are even more important in QCD, as
will be shown in the next section.

2.3 Quantum Chromodynamics
Two results from QCD make it very different from QED, and these are that there are
three colour charge states, and that the gluon itself has colour charge. Some implications
of the former is that one requires three quarks or an quark-antiquark pair to form a
colour neutral object, as discussed in Section 2.1, and that there exist baryons where
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all valence quarks have the same flavour and occupy the same quantum state, which
would otherwise violate the Pauli principle5. The second result does however have far
more dramatic consequences, which will be described here.

g∗

g∗

q′ q′

qq

Figure 2.5 – NLO diagram of scattering between two quarks (q, q′) in QCD, where a
gluon loop is formed due to self-interaction.

One important implication of the gluon self-interaction is that the screening diagram
in Fig. 2.4b is complemented by diagrams such as the one shown in Fig. 2.5. While
similar diagrams as the QED process also exist (with diquark pairs instead of dilepton
pairs and gluons instead of photons), they turn out to be less important. If increasing
the distance, the number of possible gluon loops increases, leading to an increased
interaction strength with distance, i.e. the screening has been replaced by an anti-
screening effect. The running coupling constant in QED defined in Eq. (2.1) then has
the following analogy in QCD [13, pp. 236-239]:

αs(q2) = αs(µ2)
1 + (33 − 2nf )αs(µ2)/(12π) ln(−q2/µ2) , (2.2)

where αs is the strong coupling constant and nf is the number of flavours accessible at
the measured q2 (this term is what enters from the qq screening mentioned above). A
consequence of the reversal of the factor within the logarithm as compared to QED, is
that αs gets weaker with increasing energy scales. This theory agrees very well with
measured values of αs at different energies, as is shown in Fig. 2.6. The standard
reference for αs is measured at |q| = mZ, where αs = 0.1182 ± 0.0012 [11].

This is only about an order of magnitude greater than αEM, so why is the strong
force so strong? Here one needs to remember that the energy scale associated with
the hadrons observed in the Universe is much lower than this. In particular, there is
an energy scale where the denominator in Eq. (2.2) approaches zero, meaning that the

5The discovery of one such state, the Ω baryon, gave strong evidence that the quark model is
correct [12].
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pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 2.6 – Measured values of αs as a function of energy scale Q (q in text), along
with predictions based on Eq. (2.2). Figure taken from Ref. [11].

strong coupling constant essentially gets very strong. Solving for the measured value
of αs(mZ), where nf = 5, leads to a divergence at q ∼ 90 MeV, but due to additional
higher-order processes, the stated model for the strong coupling constant does not
really hold in this regime. Instead, one defines an energy scale ΛQCD at αs ' 1, which
in some sense is a limit for when the strong coupling gets strong. Again using Eq. (2.2)
leads to ΛQCD ∼ 200 MeV. Well above this value, QCD becomes perturbative, making
calculations much easier (or in many cases even possible).

The energy scale of quarks confined into a hadron is below ΛQCD, and thus QCD
is non-perturbative and dominated by higher-order diagrams. Consequently, the force
between two quarks in a hadron does not decrease if trying to separate them, which
can be seen by looking at the strong potential, which in the non-relativistic case6 can
be approximated as

V (r) ≈ −αs
r

+ κr, (2.3)

where the constant κ ∼ 1 GeV/fm [10, p. 182]. The force is obtained by taking the
derivative of V (r), so the first term is the same as for electromagnetic interactions. The
second term, however, stabilises at a very large value at large r. As a consequence, all
quarks in the Universe are confined into hadrons, which is known as confinement. If

6Strictly speaking, this is only applicable to heavy-flavour quarks, but as will be described in Section
3.8.2, this potential can be used for modelling hadron fragmentation also at relativistic energies.
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trying to separate two quarks, e.g. in a collider experiment, a shower of new hadrons
is formed, which is known as a jet.

Lattice QCD
In general, the approach with Feynman diagrams is successful when the interaction
strength, α, is small since then higher order diagrams become decreasingly import-
ant. For the strong interactions this is in general not the case – the theory is non-
perturbative. Therefore, for instance confinement has never been shown analytically.
One can however get some insights by a technique called lattice QCD, where QCD pro-
cesses are quantised and calculated by numerically solving path-integrals over a fixed
lattice in space [14]. This is very resource demanding, at least if aiming at achieving
reasonably high precision. Here, one has to introduce some cut-off scale 1/a in the
spacing, and to obtain meaningful results, one needs to extrapolate this to the limit
a → 0, which is not trivial.

Despite its limitations, lattice QCD has led to some remarkable results. One of the
results is the strong potential defined in Eq. (2.3), but another one, which is particu-
larly relevant for the research presented in this thesis, is that lattice QCD has given
predictions of the QCD phase diagram, which will be discussed next.

2.4 The QCD Phase Diagram
As has already been argued, due to the large value of αs at the non-perturbative-
QCD energy scale, quarks only exist in confined states. There is however nothing
that prevents us from increasing the energy scale within a hadron or some other QCD
medium, which is what happens during a collision in a collider such as the LHC. This will
cause αs to decrease, and if the energy is high enough, it becomes so weak that quarks
start moving freely within the medium. This is known as asymptotic freedom, and if
reaching such a high energy scale, we are able to study QCD processes experimentally.

The idea of asymptotic freedom at high QCD energies was introduced already in
the 1970s, and in 1975 it was predicted that at high enough temperature or net baryon
density, hadronic matter will transform into another phase of matter, which a few
years later was dubbed the Quark-Gluon Plasma (QGP) [15, 16]. More recently, more
advanced computations using lattice QCD have shown that there is a clear transition
in equation of state in the temperature range Tc ∼ 140 − 190 MeV (in natural units,
~ = c = kB = 1), as is shown in Fig. 2.7 [17, 18]. This should be attributed to the
just mentioned phase transition. Along with other theoretical models, this has provided
input to the full QCD phase diagram, which is shown in Fig. 2.8.

As seen, there are two ways to create a quark-gluon plasma: either one can increase
the baryon density by compressing nuclear matter, which happens naturally in neut-
ron stars, or one can increase the temperature, which would happen if one could go
backwards in time to the first few moments after Big Bang. In the former, a QGP is
expected to exist within the neutron star core, with the possibility of a state of matter
behaving like a colour superconductor7. Two planned experiments – BM@N at NICA,

7It is predicted that if the baryonic density is high enough, colour symmetry will be broken, so the
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Figure 2.7 – Energy density and pressure (scaled by T−4) as a function of temperature
in a hadron gas, calculated using Lattice QCD using two different actions. As seen, there
is a clear transition starting just above 150 MeV. Figure taken from Ref. [17].

Figure 2.8 – Current understanding of the QCD phase diagram as a function of tem-
perature and baryon chemical potential (= net baryon density). Conditions for normal
nuclear matter, neutron stars, and hypothesised conditions just after Big Bang are indic-
ated in the figure, along with a few trajectories mapped by a selection of experiments.
Figure adapted from Ref. [19].

potential of two colours will be different than for the third one [20]. This is analogous to what happens
in an electric superconductor.
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where the commissioning has already started, and CBM at FAIR – are going to study
this regime, which will hopefully shed some more light on the equation of state. In the
latter regime, a QGP is expected to have existed during the first ∼ 10−5 s after Big
Bang [21]. This region is being probed by heavy-ion collisions at the RHIC and LHC
experiments – and in the latter case in particular by ALICE, as will be described later
in this thesis. In this way, the goal is to gain more understanding both of QCD and the
conditions in the early Universe.

An important difference between the high-temperature phase transition and the one
at high baryon density, is that in the former case, there is a 2nd order phase transition
or cross-over, meaning that there is a gradual transition from one phase to the other
(this is the reason for the rather smooth behaviour in Fig. 2.7), while in the latter
case, there is expected to be a 1st order phase transition, i.e. a sharp transition (like
the one between ice and water). If this picture is correct, there has to exist a critical
point somewhere in between, which is being searched for by the Beam Energy Scans at
RHIC. Close to the critical point, there are expected to be large fluctuations in several
observables, and there is a large ongoing effort in trying to discover these and rule other
explanations out.

2.5 Properties of the Quark-Gluon Plasma
In this section, a few of the key features of the QGP in the high-temperature regime
will be described. At first, it should be noted that the picture of asymptotic freedom
may not be entirely correct, since the medium is still strongly interacting (while αs is
small it is still being far from zero) and the quarks and gluons interact with each other
to a large degree. Instead, it is preferred to use the term deconfinement, i.e. the quarks
are no longer in a confined state. As a consequence, hadrons are unlikely to form in this
medium, and due to the strong interactions, it will interact with any hadronic matter
traversing it.

To access some of the medium properties in the QGP, one can make use of a quite
remarkable duality, called the Anti-de-Sitter/Conformal Field Theory (AdS/CFT) con-
jecture, which states that any conformal field theory, such as QCD, can be transformed
into anti-de-Sitter space, which is a quantum-gravity formalism for black holes [22]. In
the latter regime, which is weakly coupled, some problems which are non-perturbative
in the standard formalism can be solved exactly or perturbatively, which has led to
predictions of the transport properties and viscosity of the QGP. One should keep in
mind however that the transformation is somewhat idealised, assuming a few unphys-
ical properties of the QGP such as an infinite number of colours, but nevertheless the
calculations are useful. This has revealed that the QGP is expected to behave like a
near-perfect fluid, with a lower bound of the ratio of shear viscosity to volume entropy
density at [23]

η/s ≥ ~
4πkB

≈ 0.08~
kB

.

As will be discussed in Chapter 3, experimental results have shown that η/s in the
QGP formed in heavy-ion collisions is close to this value. In fact, there are no other
known fluids in the Universe with a lower η/s. As a comparison, superfluid helium has
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a minimum at η/s ≈ 0.7~/kB , and in graphene – which also has proven to behave like
a superfluid – it has been measured to be η/s ≈ 0.2~/kB [24].

These properties give several predictions which can be tested experimentally. These
will be discussed in detail in Chapter 3, along with experimental results.
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Chapter 3

Experimental Signatures of
the Quark Gluon Plasma

The QGP is studied through heavy-ion collisions, where a QGP with a lifetime of the
order of 10 fm/c (∼ 4 · 10−23 s) can be created [25]. Despite this short timescale, we
can learn much about the QGP from heavy-ion data. At the LHC, this has mostly
been limited to Pb–Pb collisions, whereas a larger variety of collision systems have
been available at RHIC, although most of the results produced there are from Au–Au
collisions. Since the QGP has properties of a medium, it needs to have reached some
degree of equilibrium, and therefore a certain system size should be required for it to
form. Therefore, a QGP is not expected to be formed in small systems such as pp
and p–Pb collisions. In this picture, these systems were thought as references to probe
hadron- and cold-nuclear-matter effects1, respectively. More recently, however, many of
the signatures expected to be associated with a QGP have been observed also in these
small systems, which is quite puzzling.

In this chapter, I will go through some of the most important of these signatures,
along with their experimental status both in large in small systems. At the end of the
chapter, I will describe some of the phenomenological models which aim at finding a
unified picture for what happens in both large and small systems.

3.1 The Evolution of a Heavy-Ion Collision
The evolution of a heavy-ion collision can be characterised by four different phases:
the pre-equilibrium phase when the QGP is formed, the hydrodynamic expansion, the
chemical freeze-out when hadrons are formed, and the kinetic freeze-out. These are
summarised in the space-time diagram shown in Fig. 3.1. This picture is used to
illustrate that fast-moving hadrons are produced later in the collision. Thus, the hadron

1Since the colliding proton will only interact with a few of the nucleons in the lead nucleus, data
from p–Pb collisions will reveal effects of interactions between the particles produced in the collision
and the (cold) nuclear medium of non-participating partons.
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Figure 3.1 – Evolution of a heavy-ion collision, shown as expansion along the beam
axis versus time. The different phases discussed in the text are labelled in the figure,
except the pre-equilibrium phase, which is marked by dark grey. The wavy lines mark
thermal photons radiated by the QGP and the straight arrows hadrons released during
kinetic freeze-out. The different temperatures associated with each phase are marked in
the upper right corner. Figure created by Boris Hippolyte; this version is retrieved from
Ref. [26].

formation time scales with the longitudinal proper time τ =
√
t2 − z2, which is the

reason for the behaviour in the figure [27, pp. 73-83].
Several models have been developed aiming at describing the formation of a QGP

in heavy-ion collisions; of these the Color Glass Condensate (CGC) model has been
the most successful. This picture is inspired by the rapidly increasing gluon density
measured at low momentum-fraction x of the proton by the HERA experiment [28].
At some point, the density would be so high that for any further changes (going to
smaller x at the same energy level) the number of extra gluons from splitting and
gluons lost to absorption cancel so that the density saturates. Before the collision,
the ions will be strongly Lorentz contracted, resembling pancakes, resulting in a very
high transverse gluon density in the collision frame. This high density reduces the
interaction strength, hence these low-x gluons move slowly and are trapped in a “glass”.
The words “condensate” and “color” are used due to the high number density and the
coloured nature of gluons, respectively2. During the collision, the two gluonic sheets
will pass through each other, creating strong colour-electric and -magnetic fields in

2The American spelling of colour/color is preferred when describing the CGC, since it has seen most
of its development in the American community.
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the longitudinal direction, not completely different from the string picture described
in Section 3.8.2. The matter created between the two CGC sheets is called a glasma,
which is a highly coherent state [29]. Such a state of matter is not stable, and would in
a short while (< 1 fm/c) decay into a QGP.

There are many different models for the process of going from a glasma-like state into
a thermalised medium, with some of the most common involving parton (i.e. quark,
gluon) rescattering by the built-up colour field [30]. To access the initial state ex-
perimentally, one needs to tie it to some other observable, e.g. anisotropic flow (cf.
Section 3.7), and compare the result to a model prediction. This is far from trivial,
since it involves propagation through the later phases of the collision evolution, and
therefore requires other models describing this.

As the QGP behaves like a nearly perfect fluid (cf. Section 2.5), the hydrodynamic
evolution is modelled by relativistic hydrodynamics [27, p. 80]. The plasma created is
highly collective, meaning that its expansion is dependent on the overall medium rather
than individual partons, which is also the case for liquids in our everyday life. It is also
very hot, and thus it emits black-body radiation in the form of high-energy photons.

As the plasma expands, it cools down. Eventually it reaches the critical temperature
Tc ∼ 165 MeV where the phase transition (cross-over) into hadronic matter occurs (cf.
Section 2.4). Then the plasma will transform into a Hadron Resonance Gas (HRG),
which is a gas that consists of hadrons, i.e. hadronisation has occurred and the system
is no longer deconfined. The HRG behaves like a weakly coupled QCD gas, i.e. the
hadrons still interact with each other, which can change their momenta.

Finally, during the kinetic freeze-out, the system has become so diluted that the
hadrons stop interacting with each other. These hadrons – or their decay products –
are the particles that are observed in the detector.

3.2 Collision Geometry
Since nuclei, as well as protons, are composite objects, they have an extension in space;
for a Pb nucleus the radius is about 6.6 fm [31]. As such, not all nucleons will participate
in the collision and contribute to QGP formation. Nucleons (or partons) that take part

Figure 3.2 – Definitions of impact parameter b, spectators, and participants in a nuclear
collision, where the impact of Lorentz contraction has been reduced for clarity. Figure
taken from Ref. [32].
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in the collision are called participants, whereas the non-participating nucleons are called
spectators. The number of participants depend on the impact parameter b, which is a
measure of the distance between the centres of the nuclei during collision. Therefore
the number of participants scale with decreasing b. These concepts are summarised in
Fig. 3.2.
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Figure 3.3 – Distribution of number of events versus V0 amplitude (the measure used
by ALICE for estimating collision multiplicity) measured for Pb–Pb collisions at 2.76
TeV/nucleon and divided into centrality classes corresponding to a certain fraction of the
total number of events. The inlay shows the most peripheral region. The red line is a fit
to the data using a Glauber model. Figure taken from Ref. [33].

The system size, and consequently the number of produced hadrons, scale with the
number of binary collisions; in a central Pb–Pb collision, this is about 1900 [33]. In
practice, it is convenient to divide the events into centrality classes depending on the
number of produced hadrons, and indirectly the number of binary collisions. Here 0%
means a head-on collision and 100% an ultra-peripheral collision. The distribution is
then fitted to the expected distribution from the Glauber model (see below). The result
of such a fit is shown in Fig. 3.3. Then each event is assigned to a centrality class based
on the measured event activity; for ALICE the procedure is described in Section 4.3.

Similar multiplicity classes can be defined also for small systems, but here the
concept of centrality is less straightforward, given that there are only a few participat-
ing nucleons. Moreover, the events are less isotropic due to larger relative fluctuations,
making a multiplicity measurement more difficult for detectors that have a limited
acceptance, such as ALICE.

3.2.1 The Glauber Model
The Glauber model is a geometrical model used for simulating the number of parti-
cipants in a heavy-ion collision [34]. The idea is to simulate the number of interacting
nucleons based on the nucleon densities of the colliding nuclei, which in a spherically
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symmetric nucleus can be modelled by the Woods-Saxon potential

ρ(r) = ρ0(1 + wr2/R2)
1 + exp((r −R)/a) (3.1)

where ρ0 is the density at the centre of the nucleus, a is the nuclear thickness parameter,
w ≈ 0 is a parameter for characterising deviations from spherical shape, R is the nuclear
radius, and r is the radial coordinate. By assuming that nucleons move independently in
the nucleus and are unaffected by each other, one can use this distribution to randomly
sample the positions of all nucleons. The interaction probability in the collision is given
by the cross-section σNN, which needs to be measured experimentally, e.g. through a
scattering experiment. Then the total cross-section in an AA collision depending on
the impact parameter is

dσAA(b)
d2b = 1 −

∏
i,j

∫
d2rid2rj

(
1 − dσNN(bij

d2b

)
ρ(ri)ρ(rj),

where bij = |b + ri − rj |, and the local positions ri and rj and the global impact
parameter b are given by the MC simulation. In practice, the total cross-section needs
to be separated into an elastic and an inelastic part in order to determine how many
nucleons are participating in the collision.

For a more accurate description at high energies, one needs to include the nuclear
substructure in the simulation, i.e. using nucleons as sources in the MC generation is
not enough. This has been done by using various number of quarks as sources, with
3-5 sources per nucleon yielding the best description of the collision geometry at LHC
energies [35].

3.3 Measuring the Temperature: Thermal Photons
As mentioned, the QGP emits thermal radiation in the form of photons, but can we
measure it? In fact we can, but the measurement is quite challenging. Photons are
abundant, but there is a large background from electromagnetic decays (in particular
from π0), so one has to measure this precisely. Nevertheless, this has successfully been
done at ALICE and the RHIC experiments.

What has been done is to carefully sum the photon spectra from all decay processes
– requiring extensive use of MC generators – into a combined spectrum called the
‘cocktail’. Then the thermal spectrum is obtained by taking the ratio between the
measured spectrum γinc and the cocktail γdecay, or in practice the double ratio

Rγ = γinc/π
0

γdecay/π0 , (3.2)

which is done in order to cancel out systematic uncertainties [36]. The result is shown
for central Pb–Pb collisions at √

sNN = 2.76 TeV 3 in Fig. 3.4. As seen, there is an
excess both at low and high transverse momentum (pT) but the high-pT component

3Centre-of-mass energy per nucleon pair.
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Figure 3.4 – Double ratio Rγ , defined in Eq. (3.2), for Pb–Pb collisions at √
sNN =

2.76 TeV, divided into three different centrality classes starting from the most central
events in the top panel. The results are compared with expectations from three different
perturbative-QCD calculations. Figure taken from Ref. [36].

can be understood from NLO processes not taken into account when measuring the
cocktail. The low-pT component on the other hand, is due to thermal radiation. This
can be fitted to an exponential curve of the form

A exp(−pT/Teff),

corresponding to the tail of the black-body radiation spectrum, to access the effect-
ive temperature Teff averaged over the lifetime of the medium. This yields Teff =
297 ± 14 (stat.) ± 41 (syst.) MeV in the most central bin, or ∼ 3.4 · 1012 K. The peak
temperature will of course be higher than this, although the exact value is model depend-
ent and this measurement has too large uncertainties to distinguish between models.
Nevertheless this result has made it into the Guinness World Records as the highest
achieved artificial temperature [37].

In small systems on the other hand, as well as peripheral Pb–Pb collisions, the
error bars are still too large to find any deviation from the cocktail not consistent with
the NLO calculation, as is shown in Fig. 3.5 and the lower panel of Fig. 3.4. With
more statistics becoming available in ALICE in Run 3 and beyond, the situation might
change, but until then, this observable cannot be used to find evidence for a QGP in
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small systems.
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3.4 Jet Quenching
Perhaps the most striking consequence of the QGP is that due to interactions with the
medium, jets – i.e. showers of hadrons originating from separation of coloured particles
– passing through it start to dissolve. This is known as jet quenching. It should be
pointed out that this phase happens well before hadronisation, so it is the parton(s)
and the colour field itself, which later gives rise to a jet, that are dissolving.

Jets originate from hard (i.e. high-energy) processes where scattering occurs between
two quarks or gluons with large momenta, which results in the build-up of a colour string
(cf. Section 3.8.2). Along this string, energy will be radiated in the form of gluons,
resulting in formation of a collimated hadron shower. If the string is passing through
a strongly-interacting medium, however, it will absorb these gluons and hence the jet
loses energy – it gets quenched. Therefore, jets going back-to-back, which would have
been of similar energy in a pp collision, have a strong momentum imbalance, as shown
in Fig. 3.6.

A simple way to quantify this experimentally, is to make use of the nuclear modific-
ation factor

RAA = d2NAA/dpTdη
Ncolld2Npp/dpTdη , (3.3)

where NAA and Npp are the number of produced particles of interest measured in A–A
and pp collisions, respectively, and η is the pseudorapidity (cf. Section 8.2). This is a
measure of how much the spectra are changed in a heavy-ion collision compared to the
pp reference, i.e. it measures the impact of the QGP medium. This is scaled by the
number of binary collisions Ncoll, since the number of produced particles trivially scales
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Figure 3.6 – CMS event display of a Pb–Pb dijet event with a collision energy of √
sNN =

2.76 TeV, draw as a Lego plot with collected energy on the z axis, pseudorapidity going
from top left to bottom right, and azimuthal angle in the other direction. Due to jet
quenching, there is a large momentum imbalance between the jets. Figure taken from
Ref. [39].

with this number if there are no in-medium effects. While Eq. (3.3) could be modified to
quantify the impact of many different parameters, measuring the spectra is useful since
most of the energy from the fragmenting parton goes into the leading hadron (i.e. the
one with the highest pT). The reverse also holds, i.e. most high-pT hadrons come from
the leading jet, so jet quenching will manifest itself as a drop in the high-pT part of
the inclusive hadron spectrum. A measurement of RAA for inclusive charged hadrons,
as well as separated into pions, kaons, and protons, in Pb–Pb collisions is shown in
Fig. 3.7. The jet quenching effect is very prominent in central collisions and decreases
as one is going towards more peripheral collisions, as expected when the size of the
QGP decreases.

Phenomenologically, jet quenching is far from trivial to model, in particular since
the underlying physics is non-perturbative. There are however a few useful quantities
that can be used to characterise this, with the most universal one being the transport
coefficient

q̂ = (~c)2

r2
DΛ ,

where Λ is the mean free path of gluons in the medium, and rD is the Debye length, or
screening length associated with the QCD (anti)screening described in Sections 2.2–2.34.

4In a QGP, rD is smaller than the separation between quarks, which is another way to explain
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ons, kaons, and protons, measured in Pb–Pb collisions at √

sNN = 2.76 TeV for different
centrality classes. Figure taken from Ref. [40].

This is a particularly useful quantity, since it has been shown that the jet energy loss
approximately follows [41]

∆Ejet ∝ q̂L2, (3.4)

where L is the path length traversed by the jet in the medium. To actually extract the
q̂ parameter is much more complicated (Eq. (3.4) only gives the proportionality), but
can be done by fitting RAA measurements to jet quenching models. The result is [42]

q̂

T 3 ≈
{

4.6 ± 1.2 at RHIC,
3.7 ± 1.4 at the LHC,

in natural units. Inserting approximate values for the temperatures yield

q̂

T 3 ≈
{

1.2 ± 0.3 GeV2/fm, T = 370 MeV,
1.9 ± 0.7 GeV2/fm, T = 470 MeV.

To check how well these values agree with QCD, q̂ cannot be calculated from QCD
directly, but just as for η/s, the AdS/CFT conjecture can give some insight (cf. Sec-
tion 2.5). Even though this makes calculations simpler, one needs to go to at least NLO
to obtain a result which agrees reasonably with data. Keeping in mind that the solution
is obtained from an idealised QGP, one obtains 2.27 . q̂/T 3 . 3.64, which is close to
the fit to experimental results.
deconfinement.
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Jet Quenching in Small Systems
As RAA uses the pp measurement as a reference, Eq. (3.3) cannot be used to measure
jet quenching in pp collisions. Moreover, following Eq. (3.4), the jet energy loss should
scale as N2/3

coll (assuming a spherically symmetric QGP) if the mechanism is the same
as in large systems, meaning that it is a very small effect.

Thus, jet quenching is very challenging to measure in small systems. In order to
measure this in pp, ALICE has made use of another prediction, namely that the number
of recoil jets at moderately high pT will get reduced if there is jet quenching. To quantify
this, the parameter

∆recoil(preco
T ,∆ϕ) = 1

Ntrig

d2Njet
dpreco

T d∆ϕ

∣∣∣∣
ptrig

T ∈TTsig

− cref · 1
Ntrig

d2Njet
dpreco

T d∆ϕ

∣∣∣∣
ptrig

T ∈TTref

(3.5)
has been defined, where Ntrig and Njet are the number of trigger and recoil jets, re-
spectively, ptrig

T and preco
T are the transverse momentum of the trigger and recoil jet,

respectively, and ∆ϕ is the relative distance in azimuthal angle. TTsig and TTref are
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taken from Ref. [43].
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the signal and reference regions, respectively, where TTref is put in a very different
pT interval to estimate the combinatorial background; thus a normalisation factor cref
has been applied to make the two regions compatible. The ALICE analysis was done in
the jet-pT intervals 20 < ptrig

T < 30 GeV/c for the signal and 6 < ptrig
T < 7 GeV/c for the

background (denoted TT{20, 30} and TT{7, 6}, respectively), where a comparison was
made between a high-multiplicity (HM) sample and minimum-bias (MB) events [43].
The results show that there is indeed a suppression of back-to-back jets in the HM
sample with respect to the MB sample, as shown in Fig. 3.8, which indicates that jet
quenching indeed may have occurred. However, when comparing to PYTHIA using a
similar sample (the HM sample is here defined differently, so a quantitative comparison
is not possible), the same effect is observed also here. PYTHIA is a pure QCD event
generator with no medium effects (cf. Section 3.8.2), so this is clearly due to something
else. Therefore, the ALICE results are likely due to some measurement bias, and there
is no conclusive evidence for jet quenching in pp collisions.

So far, jet quenching has not been observed in any other small systems either, but
given the weak signal and challenge to obtain an unbiased result, this is perhaps not
too surprising and so far does definitely not disprove its existence.

3.5 Heavy-Quarkonia Melting
Another expected signature of the QGP is that quarkonium states that exist in the
medium will start to dissolve – or melt – in the QGP, which in particular is expected
for states with low binding energy. This occurs because the long-range confining part
of the QCD potential in Eq. (2.3) is screened in the QGP. Such states can form e.g.
through hard scatterings of partons, i.e. the same process which forms jets. This melting
is particularly evident when studying bottomonium states (bb) in Pb–Pb collisions at
LHC energies, as seen in Fig. 3.9. The Υ(1S) state has a higher binding energy than
the excited states and will thus not be suppressed to the same degree as Υ(2S) and
Υ(3S), when comparing to pp collisions at the same energy. Therefore, the suppression
increases from 62% in Υ(1S) to at least 90% (95% confidence limit) for Υ(3S) [44].

Given the scaling with binding energy, this melting can in principle be used as
another probe for the QGP temperature. In practice, the situation is however more
complicated. In particular, there might be other processes in the QGP affecting the
production of hadrons in various ways. This is particularly evident when studying J/ψ
(cc) production in heavy ion collisions, which was the first heavy-quarkonium state to
be proposed as a probe for the QGP [45]. This has a lower binding energy than the
excited bottomonium states, so naïvely one would expect a stronger suppression. As
seen in Fig. 3.10a, this is not really the case, with a higher J/ψ RAA at the LHC than
at RHIC [46, 47]. These results can be explained as a recombination effect – due to
the higher temperature at the LHC, more charm quarks are produced in the QGP, and
thus there is a large probability for charm quarks produced in independent processes to
recombine into J/ψ during freeze-out. The pT dependence of RAA (Fig. 3.10b) observed
at LHC energies fits into this picture, with a smaller suppression of J/ψ at low pT, where
most of the recombination is expected to occur. At RHIC energies, the suppression is
uniform, as expected from the lower number of charm quarks produced in the QGP at
this temperature.
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Figure 3.9 – Invariant-mass spectrum in the dimuon channel in the vicinity of the three
Υ(nS) states, measured in Pb–Pb collisions at √

sNN = 5.02 TeV. The dashed line is a
scaling of the spectrum with RAA, i.e. what would be expected from pp collisions with
the same background statistics. Figure taken from Ref. [44].
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In small systems, yields of J/ψ and the excited state ψ(2S) have been measured
as a function of multiplicity in p–Pb collisions, as is shown in Fig. 3.11. While the
J/ψ results are reasonably well understood from scattering effects in the cold nuclear
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matter, the same cannot be said about the suppression of ψ(2S), which would require
some additional mechanism [48]. One possibility which matches the results is that a
QGP has formed, and the suppression is due to interactions with it and the subsequent
HRG following kinetic freeze-out.

Measurements of J/ψ yields have also been carried out in pp collisions, but since
these results are particularly relevant when comparing with predictions by the models
discussed in Section 3.8.5, they are presented there.

3.6 Strangeness Enhancement
Just as the number of charm quarks increases in the nuclear medium as compared
to baryonic matter, the same effect happens also for strange quarks (although the
underlying mechanism is different), where it is even more prominent. This effect is
known as strangeness enhancement, and manifests itself experimentally through an
increase in the relative yields of strange hadrons in heavy-ion collisions, as compared to
the pp reference. This feature is particularly prominent for multistrange baryons, i.e.
Ξ (two strange quarks) and Ω (three strange quarks).

Strangeness enhancement was proposed in 1982 as a signature for detecting a QGP
[49], with the explanation that the strange-quark production is enhanced in the QGP
since this only depends on the masses of the constituent quarks (as opposed to a hadron
gas, where the production would be suppressed since one would need to take into account
the confinement mass of kaons as well5). One can also imagine that this production may

5With the charged-kaon mass being 494 MeV, and the pion mass being 140 MeV, one can estimate
the confined-strange quark mass as ∼ 420MeV/c2, while the constituent-strange quark mass is measured
to ∼ 96 MeV/c2 [11].
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be altered by the hadronisation phase, but one result indicates that this should play a
minor role for the observed strangeness enhancement, namely that the yields of light
hadrons (i.e. hadrons consisting of u, d, and s quarks) measured in heavy-ion collisions
at the SPS and RHIC are accurately predicted over several orders of magnitude by the
thermal model [50], as is shown in Fig. 3.12 for RHIC data. This strongly supports that
an equilibrated QGP is formed in these collisions. Another success of this model is that
the yields of multistrange baryons saturate at high multiplicity, which is an indication
that the medium has become fully thermalised.

What perhaps does not fit so well in the thermal picture, is that a similar en-
hancement is observed also in p–Pb and high-multiplicity pp collisions. Comparing the
different systems, there is even a smooth scaling with multiplicity, which does not seem
to depend on which system is involved [51], as is shown in Fig. 3.13. This suggests a
common origin, and several attempts have been done to develop models for explaining
this, as will be discussed in Section 3.8.5. In a pure thermal picture a similar scaling is
however also possible from canonical suppression, which is a mechanism that suppresses
strangeness production in smaller QGP volumes.

The purpose of the main analysis in this thesis is to use the charged Ξ baryon (se-
lected since it is much more abundant than Ω±) to pinpoint the production mechanism
of strange quarks and hadrons in small systems, and hence the origin of strangeness
enhancement. This is further described in Chapter 8 and onwards.
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Figure 3.13 – Yield ratios between various hadron species and pions as a function of
multiplicity, for pp, p–Pb, Pb–Pb, and Xe–Xe collisions, measured by the ALICE detector.
Figure taken from Ref. [52].

3.7 Collective Flow
So far, I have mainly discussed how the chemical composition and distribution of had-
rons are affected by the QGP medium, but these quantities will also be affected by
the expansion of the medium itself. Such collective effects are known as flow and have
both radial and azimuthal components. I will start with going through the signatures
of radial flow, before moving on to the azimuthal behaviour.

3.7.1 Radial Flow
An important effect of the radial expansion of the medium is that this will give the
created hadrons a boost in radial velocity. As the total momentum is

p = mv√
1 − |v|2/c2

,

where v is the velocity and m the mass, this will result in a scaling in pT with mass.
Thus there is a depletion of heavier particles at low momentum but an enhancement at
intermediate pT, as can be very clearly seen when comparing the proton RAA to other
particles in Fig. 3.7.
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Another consequence of radial flow is that the (charge) balance function gets nar-
rower with increasing radial flow [53]. This is defined as

B(∆y,∆ϕ) = 1
2
(
C(+,−)(∆y,∆ϕ) + C(−,+)(∆y,∆ϕ) − C(+,+)(∆y,∆ϕ)

−C(−,−)(∆y,∆ϕ)
)
, (3.6)

where C(∆y,∆ϕ) is the two-particle correlation function, i.e. the distribution of particle
pairs in relative rapidity (cf. Section 8.2) and azimuthal angle, and the subscripts
denote the signs of the particles; see details on how to measure this in Section 8.3. This
is a measure of the distribution of balancing charges in the event (the subtraction is
done to remove non-charge dependent correlations), which is expected to be a localised
phenomenon due to local charge conservation. Therefore, as the medium expands, the
balancing happens at a larger distance from the collision, resulting in a reduced solid
angle of the balance function.
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Figure 3.14 – Balance function width, projected in ∆ϕ, for Pb–Pb, p–Pb, and pp
collisions measured by ALICE for pairs of low- (0.2 < passoc

T < ptrig
T < 2.0 GeV/c),
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T < 4.0 GeV/c), and high-pT (3.0 < passoc
T <

8.0 < ptrig
T < 15.0 GeV/c) particles, respectively. Figure taken from Ref. [54].

Experimentally, a narrowing of the balance function with increased multiplicity has
been observed both in Pb–Pb, p–Pb, and pp collisions, as is shown in Fig. 3.14, but only
between pairs of low-pT hadrons [54], which indicates that this only affects particles in
the underlying event. When going to high pT, the particle spectra will be dominated
by hard processes, i.e. jets, and then the charge balance will occur within the jet cone
and should not be affected by the expansion of the medium. This suggests that the
observed narrowing is indeed due to radial flow, and that there is flow also in small
systems.
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3.7.2 Anisotropic Flow
Any imbalance in the azimuthal distribution of produced particles which is due to flow
of the expanding medium, is called anisotropic flow. This is an inevitable effect of
an expanding medium starting from a non-uniform initial state, i.e. what will happen
in a non-central collision. The system will then expand along the pressure gradient,
which is strongest in the reaction plane, i.e. the plane cutting through the centre of
the colliding nuclei along the beam direction, as is shown in Fig. 3.15. As the medium
expands, the pressure gradient will continue to flow along the reaction plane, leading
to an elliptic distribution of the final-state hadrons. This flow component is known as
elliptic flow, but for a complete description of the expanding medium, one can make
a Fourier decomposition of the particle distribution in azimuthal angle with respect to
the symmetry planes Ψn:

dN
dϕ = 1

2π

(
1 +

∞∑
n=1

2vn cos (n (ϕ− Ψn))
)
, (3.7)

where vn are Fourier coefficients.
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Figure 3.15 – Illustration of the reaction plane and elliptic flow. The pressure gradient
is the strongest in the reaction plane, and thus the medium expands along this plane. The
left panel shows the initial state, whereas the right panel shows the system when it has
expanded for a while. Figures created by Boris Hippolyte, based on originals by Masashi
Kaneta.

Here, elliptic flow is described by v2, but there are also other components. The
lowest-order component, v1 is called directed flow, but since this is not a signature of
an expanding medium, it will not be discussed here. Of the higher-order components,
the dominant one is v3, called triangular flow, which along with higher vn is due to
more complicated variations in the pressure gradient, as is illustrated in Fig. 3.16. All
vn, n ≥ 2, are also affected by fluctuations in the initial state, and thus there is flow
also in central heavy-ion collisions.

The anisotropic flow is related to the initial geometry through the relation [56]

vn ≈ κnεn, (3.8)
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Figure 3.16 – Illustration of how anisotropies in the initial geometry can give rise to
higher-order vn (here only the triangular geometry component is shown), using input
from a Glauber model. As the medium expands, these flow components still remain.
Participants are drawn in magenta, whereas yellow and orange are used for the spectators.
Figure adapted by Burak Alver, based on the original in Ref. [55].

where εn is the eccentricity, and the proportionality constant κn for n = 2 and n = 3 is
expected to scale with the transverse charged-particle density,

1
S

dNch
dη ,

where S = 4πσxσy is the transverse area and dNch/dη is the charged particle density of
the system. The quantities σx and σy are the standard deviations of the source (parton
or nucleus, depending on which model is used) distribution in the plane transverse to
the reaction plane. These are highly dependent on the initial-state model, and therefore
measurements of anisotropic flow can be used to test this, as is done in Chapter 7.

While it is possible to calculate the symmetry plane, this has a large risk of intro-
ducing a measurement bias. To avoid this, the flow coefficients are calculated through
correlation factors between all combinations of two or more particles in the events. One
can show that if the azimuthal distribution of particles follows the geometry of the
medium at chemical freeze-out, then it holds that [57]

v2
n = 〈〈cos(n(ϕ1 − ϕ2))〉〉 , (3.9)

where the average is taken over all combinations of track pairs in an event, which in
turn is averaged over all events. Evaluating this yields the 2-particle correlator,

〈2〉 ≡ 〈cos(n(ϕ1 − ϕ2))〉 = 1
M(M − 1)

M∑
i=1

M∑
j=1,j 6=i

cos(n(ϕi − ϕj)), (3.10)

where M is the particle multiplicity in the event. Defining the 2-particle cumulant as

cn{2} = 〈〈2〉〉 , (3.11)
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then gives the expression
vn{2} =

√
cn{2}, (3.12)

where the “2” is used to emphasise that this vn is calculated from the 2-particle cumu-
lant.

There is however one problem with this approach, and that is the assumptions
leading to Eq. (3.9). In a real event, contributions from jet fragmentation and weak
decays will also enter into the calculation of 〈2〉. This is known as non-flow, and needs
to be suppressed in order to use cumulants for flow measurements. There are two ways
to do this: either one can introduce a pseudorapidity gap and only use pairs between
particles at either side of the gap in the calculation of vn{2}, which is known as the
scalar product method [58], or one can include more particles when calculating the flow
coefficients. In this way, the 4-particle correlator is defined as

〈4〉 ≡ 〈cos(n(ϕ1 + ϕ2 − ϕ3 − ϕ4))〉 = 1
M(M − 1)(M − 2)(M − 3)

·
M∑

i=1

M∑
j=1,j 6=i

M∑
k=1,k 6=i,j

M∑
l=1,l 6=i,j,k

cos(n(ϕi + ϕj − ϕk − ϕl)). (3.13)

Now defining the 4-particle cumulant as

cn{4} = 〈〈4〉〉 − 2 · 〈〈2〉〉2
, (3.14)

leads to the estimator [59]
vn{4} = (−cn{4})1/4, (3.15)

which is less sensitive to non-flow than vn{2}, even with a rapidity gap.
Trying to evaluate Eq. (3.13) directly would be extremely inefficient, so in practice

this is calculated by decomposing the summation into a combination of flow vectors

Qn =
M∑

k=1
exp(inϕk),

which are calculated iteratively through the generic framework, which also allows ex-
tensions to higher-order cumulants [60], which sometimes can be useful when comparing
results to model predictions. This results for the lowest-order cumulants are given in
Section 7.2.

While vn{4} and the scalar product-vn{2} in their own give non-flow suppressed
estimates of vn – where the latter should be used only if the statistics are low – combining
the two estimators can be used to estimate the contribution to vn from flow fluctuations,
σvn . It has been shown that [61]

vn{2} ≈ 〈vn〉 +
σ2

vn

2 〈vn〉
,

vn{4} ≈ 〈vn〉 −
σ2

vn

2 〈vn〉
, (3.16)
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Figure 3.17 – Anisotropic flow vn measured by ALICE in Pb–Pb collisions at √
sNN =

5.02 and 2.76 TeV, respectively. The lower panels show ratios between results from the
two collision energies, along with hydrodynamical predictions from Refs. [63] and [64]
(note that the references in the figure panels do not follow the enumeration used in this
thesis). Figure taken from Ref. [62].

so

σvn ≈
√

(vn{2})2 − (vn{4})2

2 .

Experimental results for v2{m}, m ≤ 8, v3{2}, and v4{2} as a function of multiplicity
are shown in Fig. 3.17 [62]. The results – including the energy dependence – agree
with a hydrodynamical description of the QGP. The elliptic-flow component increases
when going from central to semi-peripheral collisions, but decreases again in peripheral
collisions. Both of these trends are expected from geometry considerations, and v2{4} <
v2{2} as expected from Eq. (3.16).

One can also measure flow for identified particles. This exhibits a division between
baryons and mesons, with the flow of baryons being pushed toward higher pT. This
roughly scales with the number of constituent quarks, at least at intermediate pT, as
is shown in Fig. 3.18 [65]. This indicates that the flow follows the underlying parton
distribution, rather than that of the hadrons, i.e. it is the partons that flow in the
medium. This model is called the quark coalescence model [66]. In data there is however
a deviation by about 20% from this scaling, so the measured flow is likely affected by
other processes as well.
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Figure 3.18 – Elliptic flow in Pb–Pb collisions at √
sNN = 5.02 TeV, measured for iden-

tified particles as a function of pT/nq, where nq is the number of constituent quarks, and
divided into centrality classes. Figure taken from Ref. [65].

Anisotropic Flow in Small Systems

Just as radial flow, anisotropic flow has been observed in small systems, including
collisions between protons – which are spherically symmetric – ruling out that this is
caused by the geometry of the colliding nuclei. Moreover, the pT dependence of v2, v3,
and v4 in both small and large systems is well reproduced by hydrodynamical models
fitted to all system sizes simultaneously [67], as shown in Fig. 3.19. This strongly
suggests that the origin is hydrodynamical, i.e. that a QGP droplet has been formed

Figure 3.19 – Measured v2, v3, and v4 at the LHC in (left) pp collisions, (middle) p–Pb
collisions, and (right) Pb–Pb collisions at √

sNN = 5.02 TeV, along with predictions by
the superSONIC hydro model. Figure taken from Ref. [67].
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Figure 3.20 – Extracted c2{4} as a function of collision multiplicity in 13 TeV pp colli-
sions for the iEBE-VISHNU hydrodynamic model, using fit parameters reproducing the
observed vn for three different initial-state models using several different parametrisations,
compared with measurements from ATLAS and CMS. Figure taken from Ref. [68].

in small systems.
Recently however, this picture has been challenged. In particular it has been shown

that a hydrodynamical model tuned such that it reproduces vn, 2 ≤ n ≤ 4, results in a
positive c2{4} (Eq. (3.14)) in pp collisions, regardless of initial-state model [68], contrary
to what is observed in data, as is shown in Fig. 3.20. In practice this means that the
flow fluctuations are strongly overestimated, meaning that the mechanism generating
flow in small systems in data might be different than according to these models.

3.8 Phenomenological Models
3.8.1 Overview
To summarise the results presented in Sections 3.3–3.7, modification of heavy-quarkonia
yields, strangeness enhancement, and radial and anisotropic flow have been observed
in both heavy-ion collisions and small systems, indicating that also the latter exhibit
collective behaviour. Some of the results also indicate that there is a common origin,
although this hypothesis is challenged by others. Moreover, there have neither been any
signs of jet quenching nor thermal photons in small systems, although these signatures
are clearly seen in heavy-ion collisions. These observables are however both challenging
to measure and suffer from a loss in statistics, meaning that one cannot draw any final
conclusions yet from the missing signatures in small systems.

Without enough evidence for either picture, it is not yet possible to conclude whether
the origin of collective effects is the same or different in the two systems, or more
specifically if the small-system effects are due to formation of a medium or if there are
other effects which mimic this behaviour. In this thesis, I will focus on two approaches
aiming to find a unified picture when going from small to large system, starting out
from each of the two pictures. These are the core-corona model and the Lund String
Model.
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The core-corona model assumes that a dense core, behaving like a medium (i.e. a
QGP) is formed in the centre of the interaction, and a more diluted state of QCD matter
where thermal equilibrium has not been reached, called the corona, is formed in the
peripheral regions. As the number of participants increases, the core fraction increases,
resulting in a smoothly increasing collectiveness with system size and multiplicity. The
core-corona model which currently has reached the latest stage in its development is
the EPOS model, and therefore this is the one tested in this thesis. This is described
in Section 3.8.4. The newest public release of EPOS is EPOS LHC [69], but a more
sophisticated model – EPOS3 [70] – is under development.

The Lund String Model is a hadronisation model, i.e. the underlying physics is in
the hadronic phase of QCD. In this model, the gluon field is represented by strings
which break if reaching high enough energy – forming hadrons [71]. While there are
other hadronisation models, such as Herwig (based on clusters) [72] and PHOJET
(based on Pomeron fragmentation) [73], the Lund string model with the event generator
PYTHIA [74] has been the most successful for reproducing many results in data. Until
recently, PYTHIA could only describe pp collisions, but now there is ongoing work to
extend this to heavy-ion collisions, which are described by the Angantyr extension [75].
The idea behind this framework is that the collective behaviour observed in both small
systems and heavy-ion collisions is due to interactions between strings, i.e. there is no
QGP. Thus, it also suggests a common origin for the collective effects. So far, Angantyr
has not been very successful in describing most heavy-ion observables, but it has made
some predictions in small systems which are being tested in this thesis. The Lund string
model, PYTHIA, and Angantyr are described in Sections 3.8.2 and 3.8.3.

3.8.2 The Lund String Model
The basic idea behind the string model is that the proportionality constant κ in the
linear term of the QCD potential described by Eq. (2.3), can be interpreted as a string
tension between two quarks confined into a hadron [71]. Now, if the quarks start
moving away from each other, e.g. as the result of a collision, their kinetic energy will
be converted into potential energy. If the string reaches high enough energy, there is a
chance that a qq pair will form along the string using a mechanism similar to tunnelling
– and the string breaks. In this way mesons are formed, but a diquark pair may also
form, resulting in baryon formation. I will now briefly describe the string evolution in
the centre-of-mass-frame. Although this can fairly easily be converted to other Lorentz
frames, it makes the result less intuitive.

The usual way to describe the evolution of the string is to draw a space-time diagram
as the one shown in Fig. 3.21a. At time t = 0, the quarks are close to each other, and
have a total kinetic energy Ek =

√
s and a potential energy Ep = 0. As the quarks

move apart, the kinetic energy will eventually be fully converted into potential energy
Ep = κ∆x at some distance ∆x ≈ 2ct in the centre-of-mass frame, i.e. this happens
at t =

√
s/(2cκ). At that time, the quarks will again start moving towards each other,

and at t =
√
s/(cκ) they will meet again, but moving in opposite direction. Through

the propagation of time, the quarks follow a yo-yo motion with period τ = 2
√
s/(cκ).

During this motion, when Ep is high enough that it is energetically possible, a qq
or qqqq pair may form along the string. Integrating over the full motion gives the
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(a)

(b)

Figure 3.21 – (a) Space-time diagram of the evolution of a string formed from a qq
pair in the centre-of-mass frame, with the quark drawn in black and the antiquark in
grey. Different times are marked along the trajectory. (b) Space-time diagram of string
fragmentation, where quarks are drawn in blue and antiquarks in green. Figure taken
from Refs. [82] and [83].

following relation for the probability for meson formation:

dP
dmT

∝ exp
(

−π(m2
T

κ

)
,

where mT =
√
m2 + p2

T is the transverse energy. This can be interpreted as a tunnelling
probability, since the quarks need to be displaced by some distance ∆ = 2mTc

2/κ in
order for the string to reach enough potential energy. From this equation follows that
the probability of forming a strange quark is suppressed by a factor

ρ = exp
(

−
π(m2

s −m2
u,d)

κ

)
, (3.17)

where mu,d is the typical mass of either an up or a down quark. It is however not clear
which mass should be used for the strange quark (cf. Section 3.6), so this is one of
many parameters in the string model that needs to be tuned to data, preferably from
e+e− collisions to avoid contamination from interactions with other partons. A fit to
LEP data yields ρ ' 0.217 [84]. For heavy quarks, such as charm, the probability of
formation is essentially zero in this picture, and thus these are formed in other processes
and mostly at high energy, i.e. in the perturbative regime of QCD.

If the initial energy is high enough, there may occur multiple breakings of the string,
i.e. the string fragments, resulting in multiple string. Just as for the single-string
picture, string fragmentation can conveniently be drawn in a space-time diagram, as is
shown in Fig. 3.21b. In this picture, the area of the rectangle enclosed by each half-
revolution of the yo-yo motion is equal to m2

T, so this gives a description of the string
energy.
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Multiparton Interactions and Colour Reconnection

When colliding protons, the fragmentation picture becomes more complicated, since
multiple partons from the colliding protons participate in the reaction. This leads to
two phenomena called multiparton interactions and colour reconnections.

Figure 3.22 – Sketch of colour strings forming between partons in two colliding nuclei,
with (left) CR disabled, and (right) CR enabled. In the latter case, fewer hadrons are
created due to the (colour confined) strings being shorter. Figure taken from Ref. [85].

Multiparton interactions (MPIs) are simply processes where multiple partons parti-
cipate. These are particularly important at small impact parameters (cf. Section 3.2),
where they result in a larger number of produced hadrons, particularly at low pT. This
is now a standard feature included in several event generators, including PYTHIA [74],
but if not including additional mechanisms, the pT spectrum becomes too soft in high-
multiplicity events when comparing to data. The reason is that following a collision,
large colour fields will build up between partons in the beam remnants, as is schem-

Figure 3.23 – Average pT as a function of charged-particle multiplicity in pp collisions
at

√
s = 7 TeV simulated by PYTHIA8 with and without colour reconnection enabled,

compared with ATLAS data. Figure taken from Ref. [86].
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atically shown in the left panel of Fig. 3.22. The number of hadrons created from
this fragmentation scales almost linearly with string energy, resulting in an almost flat
scaling of 〈pT〉 with multiplicity.

The solution to this is colour reconnections (CR), where additional partons from
the beam remnants are allowed to reconnect with these strings, and in this way create
colour neutral objects, as is schematically shown in the right panel of Fig. 3.22. In this
way the strings become shorter and fewer charged particles are created per MPI, and
as a consequence the average pT per hadron increases in harder scatterings. With CR
enabled, the average pT as a function of multiplicity agrees very well with data [86], as
is shown in Fig. 3.23. In PYTHIA8, colour reconnections are included in the default
configuration.

String Junctions

In the standard configuration of PYTHIA, baryons are created through the formation
of diquark pairs along the string, as is shown in Fig. 3.24a. In hadron–hadron colli-
sions however, due to MPIs it is not unlikely that diquark states form from the beam
remnants, i.e. there strings may form between pairs (or clusters) of quarks [87]. These
strings will have two colours associated with them, allowing for more configurations
during colour reconnections. One such possibility is that a junction is formed on the
string. In this way, baryons may form by string breakings on either side of the junction,
as is shown in Fig. 3.24b, i.e. this adds an additional mechanism for baryon formation,
which is available as an extension to PYTHIA8.

(a) (b)

Figure 3.24 – (a) Mechanism for producing baryons in PYTHIA, using a pair of Ξ
baryons as an example. The pair of solid lines is a string, which breaks through the
formation of diquark pairs. (b) Additional mechanism added by the junction model.
Here, the baryon can be formed from a junction between two strings, which breaks into
a single qq pair. Figures taken from Ref. [88].

3.8.3 The Angantyr Model
While PYTHIA does well in describing pp collisions, one piece is missing for it to be
able to describe larger systems – even if assuming that the underlying physics is the
same – namely a geometrical description of the collision. While it is possible to get a
reasonable description of parameters such as parton density from the impact parameter
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alone, this will not be enough for a large system such as a heavy-ion collision. If
desiring to reproduce observables such as flow and strangeness enhancement, one also
needs additional mechanisms.

All these requirements are included or being worked on in the Angantyr package [75],
where the most important difference from PYTHIA is that strings now extend in space.
Therefore, additional interactions are possible between overlapping strings. Two such
mechanisms, which are currently implemented in Angantyr – and also enabled as ex-
tensions to PYTHIA8.2 – are rope hadronisation and string shoving. Moreover, the
nuclear geometry is taken into account in Angantyr through a Glauber simulation (cf.
Section 3.2.1), which describes the interactions with each nucleus.

Rope hadronisation is based on the same idea as the mechanism behind string junc-
tions, namely that strings may form between parton clusters. Such a string is called
a colour rope [78]. Depending on the colour configuration, the effective string tension
then increases from κ to κ̃, which increases the production of strange quarks. Following
Eq. (3.17), the new strangeness suppression factor then becomes

ρ̃ = ρκ/κ̃. (3.18)

A similar modification also occurs for the baryon yields.

r

b

r

b

g

Figure 3.25 – Schematic drawing of how a string between two clusters of incoherent
colours (here r and b) is formed when enabling colour ropes in PYTHIA. The two strings
merge through the junction mechanism into a string with the combined colour, rb = g.

In such a cluster of quarks, a subset of them may have the same colour, forming a
coherent state. This would lead to an increased colour flow along the string, increasing
the string tension. On the other hand, quarks having different colours combine into
an anticolour (e.g. r ⊕ b = g), reducing the colour flow and hence the string tension.
In PYTHIA, such a coupling is modelled through the string junction mechanism as
shown in Fig. 3.25, and thus this mechanism is required to form ropes in PYTHIA.
Consequently, only one string breaking may occur along this string. For generalised
ropes, the number of breakings between clusters of n quarks is ≤ n, with the maximum
number occurring if they are all coherent.

The rope tension in terms of κ is given by the quadratic Casimir operator, leading
to [78]

κ̃

κ
= 1

4
(
p2 + q2 + pq + 3(p+ q)

)
,

where p and q are the number of coherent colour and anti-colour states, respectively,
in the cluster. For example, if forming a rope between a coherent r ⊕ r state and an
r ⊕ r state, p = 2 and q = 0 (there are two coherent colours at each end of the rope,
but we are only looking at one end), so κ̃ = 5/2κ. This rope will break through two
string breakings, reducing the tension to κ in the first breaking, so the effective tension
of this breaking is 3/2κ. Inserting this into Eq. (3.18) leads to a modification of the
strangeness suppression factor from 0.217 to 0.361.
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In Angantyr, ropes are formed when strings form close enough in space to overlap.
Since PYTHIA works in the hadron gas regime of the QCD phase diagram, the effective
string radius should be of the same order of magnitude as the confinement distance, i.e.
∼ 1 fm. An illustration of overlapping strings in a pp collision is shown in Fig. 3.26.
When going from smaller to larger systems (or lower to higher multiplicities), the string
density will increase, effectively increasing p and q, and hence the string tension. This is
the reason for the predicted smooth increase in strange-baryon yields shown in Fig. 3.31.
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Figure 3.26 – Example of a snapshot of overlapping strings from a simulated pp event,
where the colours represent the colour flow. Note that the string radius has been reduced
to 0.1 fm for increased readability. Figure taken from Ref. [78].

While rope hadronisation results in enhanced strangeness yields, it is not able to add
elliptic-flow like effects to the system. That requires string shoving, which is another
effect of overlapping strings [89]. An effect of the enhanced string tension is that this
increases the energy density and consequently the probability of radiating gluons. Such
gluons may interact with the other strings in the overlap region, exerting a force on
them. Thus, the strings will shove each other apart, as is shown in Fig. 3.27. If the
shoving pressure is large enough, which depends on the string density, this will show
up as flow among the produced hadrons.

Figure 3.27 – Mechanism behind string shoving, showing snapshots of the evolution.
Strings closely packed in space exert a pressure on each other, shoving them apart. Figure
taken from Ref. [89].
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3.8.4 The EPOS Model
The EPOS model is a core-corona model, meaning that the system formed is built
up of a dense core part and a more dilute corona. The initial state is modelled by
the formation of parton ladders (a representation of MPIs) which results in colour fields
called flux tubes [69], schematically drawn in Fig. 3.28a, which are not very different from
the strings in the Lund String Model. The core is formed in regions where the density
of flux tubes is above a certain threshold, whereas the rest (typically confined to the
peripheral regions of the collision system) make up the corona. The core part will then
expand hydrodynamically and eventually hadronise through collective hadronisation, as
is schematically shown in Fig. 3.28b, whereas the corona will fragment through string
fragmentation.
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Figure 3.28 – (a) Schematical drawing of how a quasi-longitudinal colour field – called
a flux tube – is formed between two interacting nucleons through MPIs. (b) Simplified
space-time diagram of the evolution of a core-corona state. The central parts which form
the core will expand and subsequently hadronise collectively, whereas the peripheral parts
will decay through string fragmentation. Figures taken from Ref. [69].

In EPOS LHC [69], a full hydrodynamisation has not been carried out, unlike in
EPOS3 (still in development) [70]. Instead a parametrisation is used to simulate flow,
which works reasonably well for small systems, but should be used with care in heavy-
ion collisions. Soft particles are strongly affected by the core, whereas harder particles
survive to a larger extent and will fragment into jets. This is implemented in a way
such that the angular separation from the leading particle very well reproduces what is
seen in data, as is shown in Fig. 3.29, although there are other observables which are
not equally well predicted by the model.

Hadronisation in EPOS LHC is implemented through a micro-canonical picture,
where the phase space is divided into clusters which are sliced in η. In each cluster, the
hadrons are drawn from a micro-canonical ensemble where the probability of drawing

49



0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 1 2 3

 |φ| (w.r.t. leading track) (rad)

 <
d

2
 p

T
/d

η
d
φ>  ATLAS p + p √s = 7 TeV   p

T
trk1 > 1 GeV/c

EPOS LHC
PYTHIA6 AMBT1
PYTHIA8 4Cx
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n hadrons is [90]

dP ∝
∏
α

1
nα!
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i=1

d3pigisi

(2π~)3 · 2Ei

M

εFO
δ

M −
∑

j

Ej

 δ

∑
j

pj

 δf,
∑

j
fj
, (3.19)

where nα is the number of hadrons of species α, pi = (Ei,pi) is the four-momentum of
particle i, gi its degeneracy, fi its quark flavour content, si is a parameter describing
strangeness production, εFO is the energy density at freeze-out (set to 0.22 GeV/fm3),
and M is the cluster mass. Due to radial flow, in the core part M is scaled by a factor
of

k = 0.5y2
rad

yrad sinh yrad − cosh yrad + 1
in order to conserve energy, where yrad is the maximum radial rapidity, which is different
for pp than for heavy-ion collisions. The δ terms (Dirac δ for continuous quantities and
Kronecker δ for discrete ones) ensure that energy, momentum, charge, and flavour
are conserved. In EPOS3, the micro-canonical picture is being replaced by a grand-
canonical ensemble, which gives a full thermal picture for the hadronisation in the core
part.

3.8.5 Successful Predictions by PYTHIA, Angantyr, and EPOS
In this section, I will present a few results implicating the partial success of either of
PYTHIA (or in the case of rope hadronisation, also one of its predecessors), Angantyr,
and EPOS, which are related to heavy-quarkonia, strangeness enhancement, and flow.
To begin with, the relative yield of J/ψ increases with multiplicity in pp collisions,
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as is shown in Fig. 3.30 [76]. While not necessarily an impication of a QGP in small
systems, this is expected from several CGC models, i.e. the initial state preceding
QGP formation. The reason is that the relative number of charged hadrons produced
in these models decreases at high multiplicity, which is not the case for quarkonia.
However, a similar effect is observed also in PYTHIA when MPIs are enabled, as well
as in EPOS3, where the prediction becomes close to what is observed in data if enabling
hydrodynamical evolution [77] (not shown in the figure).
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Figure 3.30 – Yield of J/ψ normalised to the event average, as a function of charged-
particle multiplicity likewise normalised to its average, measured by ALICE in pp collisions
at

√
s = 13 TeV, and compared with predictions from several models, including two CGC

models, PYTHIA8.2, and EPOS3. Figure taken from Ref. [76].

Another result – which is of more interest for this thesis – is that the strangeness
enhancement results presented in Fig. 3.13 are reproduced qualitatively by both the
DIPSY model and EPOS LHC, as is shown in Fig. 3.31, although not by PYTHIA8 [51].
Here, DIPSY was a model based on dipole cascades [79], but was abandoned since it
did not reproduce many observables as well as PYTHIA, which is being developed by
the same group. This was the first model where rope hadronisation was enabled [78].
The main idea is that the denser environment found in more central collisions increases
the number of interactions between strange quarks, increasing the yields of multistrange
hadrons. In EPOS on the other hand, the strangeness enhancement is due to an increase
of the core fraction in the system, resulting in a larger size of the thermalised medium.
In the main analysis of this thesis, described in Chapter 8, angular correlations are used
to try to understand which mechanism is responsible for strangeness production in pp
collisions, and hence the origin of strangeness enhancement.

The narrowing of the balance function in pp collisions with increasing multiplicity
shown in Fig. 3.14 is quite well described by the CR mechanism [54], as is shown in
Fig. 3.32a. A more recent result is however clashing with the PYTHIA prediction. If
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ALI-PUB-106878

Figure 3.31 – An older version of Fig. 3.13. Yield ratios between various hadron species
and pions as function of multiplicity, for pp, p–Pb, and Pb–Pb collisions, measured by
the ALICE detector. This version includes predictions from phenomenological models.
Figure taken from Ref. [51].

the narrowing is due to radial flow, the balance function should be narrower for heavier
particles such as protons. This is indeed the case both in data and in PYTHIA, but there
is almost no change with multiplicity in ∆y, which is quite far off from the PYTHIA
prediction [80], as is shown in Fig. 3.32b, suggesting that some other mechanism might
be involved.

Finally, with the string shoving mechanism enabled in PYTHIA, a significant v2 is
generated by the model in pp collisions [81]. While a non-zero v2 is obtained also from
CR, this exhibits a very different multiplicity dependence than what is observed in data.
Comparisons with data for both models are shown in Fig. 3.33a. Another promising
feature of string shoving is that if the string density is allowed to vary with multiplicity,
which is not unreasonable given the different densities of these environments, one can
get quite close to the observed v2 in Pb–Pb collisions (using the Angantyr package), as is
shown in Fig. 3.33b. Moreover, while the flow in pp collisions from the CR mechanism
always produces a positive c2{4}, this problem disappears at high multiplicity with
string shoving enabled, as is shown in Fig. 3.33c.
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s = 5.02 TeV. Figures taken from Refs. [54] and [80].
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Figure 3.33 – (a) v2{2} measured with
the scalar-product method as a function
of multiplicity in pp collisions at

√
s = 13

TeV, for ALICE data and PYTHIA8 pre-
dictions both with and without string
shoving enabled. (b) The same meas-
urement in Pb–Pb collisions at √

sNN =
5.02 TeV, compared with Angantyr pre-
dictions of v2 extracted from the event
plane with non-flow subtracted. Note
that higher centrality = lower multipli-
city. (c) PYTHIA predictions of c2{4}
in pp collisions at

√
s = 13 TeV. Figures

taken from Ref. [81].
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Chapter 4

The ALICE Detector

4.1 Detector Overview
ALICE – A Large Ion Collider Experiment – is the only LHC experiment which is
dedicated to study heavy-ion physics. As such, the aim is not to find rare particles as
is the primary focus of the other three major LHC experiments, but instead to collect
as much data as possible from the full heavy-ion event. This puts strong demands on
the detector. A Pb–Pb collision typically produces ∼ 500 − 1000 charged particles per
pseudorapidity unit (dNch/dη), and it can reach as high as dNch/dη ∼ 2000 in the most
central collisions [91]. Ideally, one wants to individually identify every single particle
in the detector acceptance and measure its position and momentum, and in this way
characterise the QGP. This is not possible yet, but nevertheless ALICE has the best
particle identification (PID) capabilities for charged hadrons of the LHC experiments,
and particularly at low pTwhere the bulk of the particles are produced, which is particu-
larly relevant when studying the QGP. Current limitations in triggering rate, pT range,
and resolution will be considerably improved during the ongoing upgrade (scheduled to
be finished by the start of Run 3), which will be briefly described later in this chapter
and in Chapter 5.

The heavy-ion data is collected during a few weeks at the end of each operational
year. During the rest of the year, data from pp collisions is collected. While – in the
scope of the heavy-ion programme – originally thought as a non-QGP reference to the
heavy-ion data, proton collisions are now also an important part of the ALICE physics
programme. Here, the collision multiplicities are much lower than for a Pb–Pb collision,
so despite a higher interaction rate, this puts a less restrictive demand on the detector1.
During periods of maintenance, some subsystems also collect data from cosmic muons,
which is mainly done to monitor the detector conditions and performance.

An overview of the ALICE detector is given in Fig. 4.1. Its total dimensions are
16 × 16 × 26 m3 [94]. The detector is divided into the central barrel and the muon

1While the pp luminosity at ALICE is more than 1000 times greater than the Pb–Pb luminosity
(derived from Ref. [92]), the large busy times of some detector subsystems cause the recorded event
rates to be similar for the two run types. On the other hand, the radiation is greater during the pp
data taking due to the higher luminosity, which can have a negative impact on the electronics.
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Figure 4.1 – Schematics of the ALICE detector. The subsystems relevant for this thesis
are described in the text. Figure taken from Ref. [93].

spectrometer. The central barrel is contained within the L3 magnet, which is a warm
solenoid magnet with a magnetic field of B = 0.5 T. The muon spectrometer extends
only in the forward region (C side) and contains a dipole magnet (B = 0.67 T) which
bends the muons away from the interaction vertex in the horizontal plane.

Closest to the interaction point, in the middle of the central barrel, is the Inner
Tracking System (ITS), which is used for triggering and high-resolution tracking. This
is further described in Section 4.2. Next to the ITS, in the forward and backward re-
gions, are the T0 and VZERO (usually abbreviated V0) detectors. The T0 detector is
used for measuring the time of the event, whereas the V0 detector is used for measuring
the event multiplicity and additional triggering. The latter is described in Section 4.3.
Surrounding the ITS, is the Time Projection Chamber (TPC), which is the main track-
ing device and is further described in Section 4.4. The next two layers of the central
barrel are the Transition Radiation Detector (TRD), which is used for electron iden-
tification above 1 GeV/c, and the Time-Of-Flight (TOF) detector, which measures the
velocity of the particles and is used to complement the PID information, in particular
at intermediate pT. The TOF detector is described in Section 4.5. Outside the TOF
detector, there is no detector which covers the full azimuthal angle. The most import-
ant detectors here are the electromagnetic calorimeters, EMCal and DCal, which are
placed on the top and bottom of the central barrel, respectively. These measure the
energy of photons and electrons.

The muon spectrometer has a conical shape which extends in the forward direction
from the interaction point. First is an absorber which is used to stop less penetrable
particles, so that mostly muons remain. Further away from the collision vertex are five
double-planed Muon Tracking Chambers (MCH) perpendicular to the cone, which are
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used to determine the momentum of the muons. These are placed both before and after
the magnet. Finally, a second absorber is used to block all remaining particles which
are not muons. Behind this wall are the two Muon Trigger (MTR) stations, using a
similar design. The tracking of a muon is only initialised if it hits both these detectors.
The technology used for the MCH is briefly described in Section 5.1.

Finally, there are a few detector components located outside the detector cavern.
These include the Zero-Degree Calorimeter, ZDC, which is a set of two calorimeters
located on either side of the interaction point, 116 m away along the beam pipe, and
are collecting the spectator remnants of the collision. During heavy-ion collisions, these
are used for triggering.

4.2 Inner Tracking System
The ITS consists of six concentric layers of silicon detectors surrounding the beam pipe
– two layers each of Silicon Pixel Detectors (SPD), Silicon Drift Detectors (SDD), and
Silicon Strip Detectors (SSD) – and covers the pseudorapidity window |η| < 0.9 [94].
A schematic overview is given in Fig. 4.2. The main purposes of this detector are to
accurately find the position of the collision vertex and secondary vertices from weakly
decaying particles (in particular strange hadrons and B and D mesons, which have
typical decay lengths of a couple of cm), to complement the TPC tracking information,
and in the case of the SPD to provide triggering input for the entire detector. This
detector system has a very fine granularity, providing a high tracking and vertexing
resolution also at extremely high multiplicity. The resolution for each subsystem is
summarised in Table 4.1. Moreover, due to its proximity to the beam pipe, a high
momentum resolution and large specific energy loss range, particle identification is

Figure 4.2 – Schematics of the Inner Tracking System and nearby detector components.
The V0 detector is only shown on the C side (a similar detector disk is also mounted on
the A side, but much further from the interaction point). Modified version of figure taken
from Ref. [93].
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Table 4.1 – Coordinate resolution in azimuthal (rϕ) and longtudinal (z) directions for
each subsystem in the ITS [94].

Detector rϕ precision (µm) z precision (µm)
SPD 12 100
SDD 35 25
SSD 20 830

possible below the lower momentum limit of the TPC (which is at ∼ 150 MeV/c)2.
Throughout the ITS, silicon based detector modules are used. Silicon is a semicon-

ductor, and as such it has a valence band and a conduction band, which are separated
by a band gap. When used in a detector, a pn junction is used where a reverse bias
is applied, which depletes the active area of charge carriers [95, pp. 226-232]. When a
charged particle (or photon) hits the detector, this will create electron-hole pairs along
the trajectory3, as shown in Fig. 4.3, which generates a current pulse. This current will
traverse the electric field and eventually be collected at the electrodes, where a current
amplifier is connected. Since the ITS is only used for tracking, the relevant information
is whether a particle has hit the detector. This is ensured by triggering if the pulse
is above a certain threshold. The advantages of using a semiconductor are that this
creates a fast signal, which makes it possible to determine the interaction time at high

Figure 4.3 – Basic principle of a semiconductor detector. When a charged particle
traverses the detector, it excites electrons from the valence band to the conduction band,
which creates electron-hole pairs. These will drift in the applied electric field to the
metal contacts, which generates a current pulse that can be detected. Figure taken from
Ref. [96].

2If the momentum is too low, a charged particle will be trapped in the magnetic field and escape
in the longitudinal direction, but may still be detected in the ITS. For heavier particles – in particular
protons – there is also a large energy loss in the ITS, further reducing the efficiency at low momentum.

3For photons this will require an intermediate step of either Compton scattering or pair production.
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accuracy, and that is makes it possible to achieve a very high tracking resolution, since
the electron diffusion length is only a few µm.

Each subdetector of the ITS uses a different technology. The SPD is built of pixels of
silicon diodes, each measuring 50×425 µm2. These are read out by 1200 chips per layer,
each covering 8192 cells, totalling 9.8 · 106 cells per layer. The fine granularity makes it
possible to detect the position of a charged track traversing the detector to a very high
precision. The layers are located 3.9 and 7.6 cm from the beam axis, respectively, and
extend 282 mm in the longitudinal direction.

The SDDs are built of 260 drift cells distributed over the two layers, where the drift
time of charge carriers is measured in order to precisely determine where the track has
interacted with the cell. To each cell, 256 collection anodes are mounted along the z
axis with a spacing of 294 µm. The drift regions are 35 mm long and extend in the
ϕ direction. To determine the rϕ coordinate, the drift velocity is monitored by MOS
injectors in the substrate (these are triggered during gaps in the LHC bunch crossing
schedule as to not interfere with collisions). The position is determined by integrating
the velocity over the time measured at the anode. The effective cell length is ≤ 202
µm, depending on the temperature. Moreover, these detectors are able to measure the
number of collected charge carriers, which is proportional to the energy deposit, or more
generally dE/dx, which is used for PID (cf. Section 8.5). The SDD layers are located
15.0 and 23.9 cm from the beam axis, respectively, and the lengths of the layers are 443
and 593 mm in the z direction.

Finally, the SSDs are built of double layers of silicon strips, which are put at an
angle of 35 mrad (≈ 2◦) relative to each other. Therefore, a particle crossing one of
the SSDs will give rise to a signal in both strip layers, which gives a detection at the
crossing point. Moreover, the number of collected charge carriers is measured, providing
dE/dx information in the SSD. The strips have a width of 95 µm, but due to the strip
arrangement, the effective resolution is better than this in rϕ but worse in z. In total,
1.15 · 106 strips are used in the inner layer and 1.46 · 106 in the outer one, distributed
on chips with 768 × 2 strips each. The inner and outer SSDs are located at 38 and 43
cm from the beam axis, respectively, and extend 86 and 98 cm in the z direction.

ITS Upgrade
The ITS is currently being upgraded, with the installation taking place during the LHC
Long Shutdown 2, which started in December 2018 and is scheduled to end during
the beginning of 2022. The main purpose of the upgrade is to be able to handle the
increased collision rate during the heavy-ion data taking, or more specifically to match
the readout rate enabled by the TPC upgrade. After the upgrade, the ITS readout rate
will be increased from 1 kHz to 100 kHz during Pb–Pb data taking and 1 MHz during
pp data taking [97, 98]. Moreover, the new ITS will have a much higher tracking and
dE/dx resolution than the old one, and since the innermost layer is closer to the beam
pipe (only 22 mm from the centre), the primary vertex, as well as secondary vertices,
can be determined to a higher precision.

Opposed to the current ITS, the upgraded detector will use a single technology
throughout, namely light-weight high-resolution pixel detectors. These are distributed
over seven layers, and a total number of ∼ 12.5 · 109 pixels are being used.
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4.3 V0 Detector
The V0 detector consists of two circular arrays of scintillator counters, one in each
of the forward regions [94]. The array on the A side (V0A; opposite to the muon
arm) is placed 300 cm from the collision vertex, covering the pseudorapidity region
2.8 < η < 5.1, but in order to accommodate the muon absorber, the V0C array is
placed only 90 cm from the vertex, covering −3.7 < η < −1.7 (cf. Fig. 4.2). Each array
consists of 4 layers with 8 scintillators each, each covering a circular segment spanning
45◦ in azimuthal direction. This results in quite poor granularity, but is useful for
multiplicity measurements (and for some observables, the resolution in azimuthal angle
is good enough that also this information can be used in measurements, as will be
described in Chapter 7).

A scintillator detector makes use of a scintillating material, meaning that it will
get excited by charged particles traversing it, which generates a light pulse [95, pp.
157-159, 177-180]. In the V0 detector, a plastic scintillator is used. The generated
light is guided to photomultiplier tubes at the detector edges, where the photons are
converted to electrons and multiplied in a strong electric field. The resulting voltage
pulse can now be detected by the detector electronics. Plastic scintillator detectors are
fast detectors with a good timing resolution (in the V0 better than 1 ns). When used in
counting mode, such as in the V0, the number of pulses surpassing a certain threshold
is measured, which here gives a measure of the event multiplicity in the forward regions.
Since this is strongly correlated with the total event multiplicity4 and hence the collision
centrality, the V0 multiplicity is used for dividing the events into centrality classes, cf.
Section 3.2. Moreover, the V0 detector is used for triggering, as decribed in Section 4.7.

4.4 Time Projection Chamber
The TPC is the main tracking device of the ALICE detector. This is a gaseous ionisation
detector, or gas detector for brevity, meaning that it uses ionisation of a noble gas for
detecting charged particles.

When charged particles traverse a gas, they will cause ionisations within it, creating
electron-ion pairs. In a gas detector, an electric field is applied, which causes the
electrons to drift towards the anode and ions towards the cathode [95, pp. 127-143]. In
most detector setups, including a TPC, thin wires are used as anodes. Therefore, in the
vicinity of the anode, the electric field is inversely proportional to the distance to the
anode, resulting in a very strong electric field near the wire. Consequently, electrons
accelerated in the field will gain enough energy to cause secondary ionisations, giving rise
to a chain reaction. This is known as avalanche multiplication, cf. Fig. 4.4. Therefore,
a few initial electrons can give rise to a substantial voltage pulse induced at the cathode
readout plane, which is what is detected by the system. The voltage pulse will however

4Due to event anisotropies, in particular resulting from jets, there is not a complete correlation
between the multiplicity in the forward region and the total multiplicity, but in heavy-ion collisions
the correlation is very strong. In pp collisions on the other hand, with lower multiplicities and hence
stronger fluctuations within the event, this correlation is not as pronounced. Nevertheless, it is a good
idea to measure the event multiplicity in a different region than the one used for the analysis (in this
thesis mid-rapidity), since that may bias the results.
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Figure 4.4 – Principle of avalanche multiplication in a gas detector. Electrons released
during ionisation by an energetic particle will start a chain reaction of ionisations – ava-
lanches – near the anode wire. In reality, avalanches may overlap however, which is not
indicated by the figure. Figure taken from Ref. [99].

not stop until the ions are collected at the cathode. Since these have a much lower drift
velocity than the electrons, gas detectors are quite slow.

If the voltage is not too high, the deposited energy at the electrodes is proportional
to the number of initial ionisations, which in turn is proportional to the energy deposit
in the gas, giving dE/dx information of the ionising particle. This is the operational
mode of the TPC, and is known as proportional mode. The voltage should not be too
high, though, since then the gas atoms may get excited during avalanches. The photons
released in the deexcitation process may then trigger additional avalanches. Another
issue is that during recombination at the electrodes, the gas atoms may again enter an
excited state, which in a similar process may cause secondary ionisations or at least
prolong the avalanche. To prevent this, a molecular component – usually CO2 or an
organic molecule – is added as a quencher to the gas. Due to vibration and rotation
modes, this component has more excitation levels than the noble gas, and thus these
will dissipate absorbed energy without liberating further electron-ion pairs.

The ALICE TPC has a cylindrical geometry surrounding the ITS, as shown in
Figs. 4.1, 4.5, and 4.6 [100]. Full tracking information is possible in the window
|η| < 0.9. A longitudinal electric field is applied over the cylinder, and it is divided in
the centre by a cathode plate, where the ions released during the initial ionisation are
collected. At the endcaps are Multi-Wire Proportional Chambers (MWPCs), which are
arrays of anode wires operating in proportional mode. When a charged particle from
the collision traverses the gas, electron-ion pairs will be created along its trajectory.
Since the field is longitudinal with minimal space charge distortions, the electrons will
be projected onto the endcaps, giving precise information about the (r, ϕ) coordinates of
the trajectory. Since the drift velocity is being monitored (see below), the z coordinate
is obtained by measuring the arrival time of the electrons.
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Figure 4.5 – Sketch of the TPC field cage. The electrons are collected at the readout
chambers at the endcaps, whereas the ions released in the initial ionisation events are
collected at the central high-voltage electrode. Figure taken from Ref. [100].

The ALICE TPC has an inner radius of 85 cm, an outer radius of 250 cm, and an
overall length of 500 cm. With a voltage of 100 kV between the centre and endcaps, the
resulting field strength within the detector volume is 400 V/cm. For the most frequently
used TPC gas mixture – 85.7% Ne, 9.5% CO2, and 4.8% N2

5 – this results in an average
drift velocity of 2.65 cm/µs for the electrons, or an overall drift time of 94 µs for the
longest drift distances.

The endcaps are divided into 18 sectors, with four readout chambers each – two
inner readout chambers (IROCs) and two outer readout chambers (OROCs). Being
closer to the beam pipe, the wire density is higher for the IROCs, and the voltage
slightly lower. There are no anode wires between the sectors, resulting in gaps in the
detector acceptance. The readout chambers have three layers of wires. The innermost
wires are thin anode wires spaced 2.5 mm from each other. The middle layer consists
of thicker cathode wires, where the ions released during avalanches are collected. The
signal is read out from cathode pad planes, with a size in (r, rϕ) space ranging from
4 × 7.5 mm2 in the IROCs to 6 × 15 mm2 in the outermost OROC sector. This results
in a total number of 159 radial clusters.

The outermost layer is a gating grid consisting of thicker wires spaced by 1.25 mm,
which can either be in “open” or “closed” mode. This is required since the field gets
distorted by the avalanche ions, preventing further avalanches. Consequently, these
ions must not enter the detector volume, which is ensured by blocking the MWPCs
until the ions are collected, adding dead time to the system. This is done by applying
an alternating voltage between the wires, which deflects the ions from the positively

5In recent years, argon has sometimes been used as the primary component, but neon is preferred
since its higher drift velocity reduces space charge distortions. CO2 was chosen as a quenching gas,
since organic quenchers may dissolve during detector use, producing by-products which may impair
the detector performance. They are also flammable, which would have been hazardous in such a large
detector volume. The reason for including nitrogen is that this results in more stable conditions, since
some nitrogen from the surrounding air will inevitably diffuse into the detector volume.
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Figure 4.6 – Photograph of the TPC, when it had been taken out from the ALICE
cavern for the upgrade. At this stage, the old readout chambers had been removed and
the TPC was about to be moved to a cleanroom for installation of the new ones, so only
the field cage (and the wire chambers, which were not yet removed) remained.

charged wires and collects them at the negatively charged ones (and vice versa for
electrons originating from subsequent collisions). As a consequence, the maximum
detection rate is limited to 3.3 kHz, although the data acquisition (DAQ) system further
limits the recording rate to ∼ 1 kHz for Pb–Pb collisions. Therefore, the gating grid is
synchronised with the trigger, which is described in Section 4.7.

In order to determine the z coordinate accurately, the drift velocity is carefully
monitored using a laser system, which also detects inhomogeneities in the electric field.
Variations can be due to e.g. temperature fluctuations and space-charge effects. The
laser system, which is run every half an hour between bunches in the LHC schedule,
produces planes of tracks in the detector perpendicular to the electric field, which makes
it easy to measure drift time as well as deviations caused by distortions. The lasers
produce UV photons with an energy slightly lower than the ionisation potentials of the
gas components. Instead, organic impurities in the gas are ionised in the process.
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TPC Upgrade
The TPC is currently being upgraded, with the installation taking place during Long
Shutdown 2, just as for the ITS upgrade. The main purpose of the upgrade is to avoid
the greatest bottleneck in the detection system, namely the gating grid. Therefore,
the MWPCs are being replaced by Gas Electron Multipliers (GEMs), which allow for
continuous operation [101]. Including a major upgrade in the DAQ and readout system,
this makes it possible to record tracks piled up from several events simultaneously,
significantly increasing the detection rate. During Run 3, the design detection frequency
is 50 kHz for Pb–Pb and 500 kHz for pp collisions, with the latter possibly being able
to increase to 1 MHz6.

Figure 4.7 – Simulation of an avalanche in a hole in a GEM foil, originating from two
electrons, projected onto the cross section plane. The green dots mark places where
ionisation takes place. The dark lines mark the drift of ions and the fair lines the drift of
electrons. Figure taken from Ref. [102].

A GEM consists of a thin (∼ 50 µm) foil made by an insulator material, in ALICE
polyimide, coated by even thinner conducting layers (copper) at the top and bottom.
This is perforated by small holes, which replace the wires in the MWPCs. The layer
facing the detector volume has a lower potential than the surrounding volume, whereas
the other layer has a higher potential. With a potential difference of 200 − 400 V,
the electric field strength within the hole is large enough for avalanche multiplication.
Following this, the released electrons will then drift towards the outer surface, whereas
the ions will be collected at the inner surface, see Fig. 4.7. One important aspect which
is ensured by this design is that less than 1% of the ions flow back into the detector,
which is a rough limit for tolerable field distortions. In order to stabilise the operations,
e.g. by reducing the risk of discharges, and to increase the gain, the GEM foils are

6For pp collisions, the limitation will rather be the primary vertex resolution from the ITS than the
number of tracks in the TPC. If the pileup gets too large, it will not be possible to accurately assign
all tracks to the right event.
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stacked into four layers, with varying spacing between the holes in the foil, in order to
ensure that they are not aligned.

4.5 Time-Of-Flight Detector
The working principle of the TOF detector is to measure the time-of-flight from the
interaction point of a particle7, and thus determine its velocity. Combined with the
momentum information, one can extract the mass of the particle, cf. Section 8.5. The
arrival time measurement is achieved by an array of Multi-gap Resistive-Plate Chambers
(MRPCs), which are thin gaseous detector cells over which a high and uniform voltage
is applied [94, and refs. therein]. These are divided into two half cells, each divided into
five smaller modules blocked by resistive glass plates, cf. Fig. 4.8. The field is strong
enough for avalanche multiplication, thus a particle traversing the cell gives rise to a
detectable signal. The glass plates effectively block the avalanches, so this setup reduces
the time jitter, which scales with the propagation distance. The signals from each gap
sum up to the total signal, so using multiple gaps increases the signal strength. The
achieved time resolution is about 40 ps.

Figure 4.8 – Working principle of a TOF detector cell. A charged particle entering the
cell will give rise to avalanches in the gas, which are blocked by glass plates mounted
inside the cell. The resulting electrons will be picked up at the anode, which divides the
cell into two half cells (in practice, there are two anode plates separated by an insulating
layer). Figure taken from Ref. [103].

The TOF detector covers the full azimuthal angle and the pseudorapidity region
|η| < 0.9. The inner radius is 370 cm and the active length is 741 cm. A total of
157 000 cells are used, which are arranged into strips of dimensions 122 × 13 cm2, put
in 18 × 5 modules (in (ϕ, z) space). The azimuthal sector boundaries are aligned with
the dead areas of the TPC. The strips overlap each other to achieve full coverage within
each module. Moreover, in order to minimise the path length of particles coming from
the collision, the modules are tilted so that each strip is facing the interaction point
perpendicularly.

7The collision time is measured by the T0 detector.
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4.6 Tracking in the Central Barrel
To reconstruct the particle tracks from the hits in the detector, a tracking algorithm is
used. A pedagogic overview is shown in Fig. 4.9. The technique used is a Kalman filter
algorithm, which uses a parametrisation of the track and successively optimises the
trajectories through addition of more and more space points [94]. The algorithm starts
out from a seed consisting of a few clusters in the TPC. From these, an initial guess of
the track is made based on the constraint that the track originates from the collision
vertex, which in turn is extrapolated from the tracks in the SPD. The process is later
repeated by removing this constraint, which would imply that the track originates from
a secondary vertex following a decay. The tracking information is then improved by
propagating the track inwards and adding space points within 4σ (standard deviations
of the trajectory) from the best guess, taking into account effects from scattering and
energy loss. The parameters as well as the covariance matrix of the parametrisation are
updated in each iteration, improving the accuracy. If more than one detector hit fulfils
the criterion, several different propagations are tested. Not until the end, the tracks
with the lowest χ2 (highest significance) are selected.

When reaching the edge of the TPC, the tracking is improved by adding space points
from the ITS. For tracks where the constraint of a primary vertex is not lifted, this is
first used also as a constraint for the ITS tracking. Due to the higher precision of the
ITS, making it possible to find secondary vertices closer to the primary vertex, the
procedure is repeated without this constraint. For tracks where the constraint has been
lifted in the TPC, the ITS procedure is only done without imposing it.

When the track propagation is done in both the TPC and the ITS, the Kalman
filtering is reversed by using the track parameters found in the first iteration as an
initial guess, and repeating the procedure starting from the innermost layer of the ITS
and propagating outwards. This is done to remove outliers from the track propagation.
When reaching the edge of the TPC, there is an option to include space points from the
TRD as well (not done in the analyses included in this thesis due to the low efficiency
of this detector) and eventually the TOF (and in some analyses HMPID and/or CPV
which however do not cover the full azimuthal angle). In the main analysis of this
thesis both tracks with and without an associated TOF hit are used. Finally, a final
refit is being done starting from the outer detectors and propagating inwards in order to
further optimise the track parameters. While a successful TPC refit is usually required,
tracks without a successful ITS refit can be used if the track has a TOF hit, or precise
timing information is not required (more about this in Chapter 8).

4.7 Triggering and Data Aquisition
As already has been mentioned, the ALICE subsystems can handle an event rate of up
to a few kHz. However, the LHC bunch crossing rate is 40 MHz, so even though not
all bunch crossings result in a collision8, extensive triggering is required to reduce the

8During pp collisions, the accelerator is tuned such that the luminosity at ALICE is much lower
than at ATLAS or CMS (L ' 1030 − 1031 cm−2s−1 at ALICE compared to L ' 1034 cm−2s−1 at
ATLAS and CMS [92]). This reduces pile-up, but also the effective collision rate.
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details. Figure taken from Ref. [104].
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event rate and ensure that all particles detected during a single event indeed are from
the same collision.

The most important detectors for triggering are the V0 and SPD detectors, although
the ZDC is also used in Pb–Pb collisions and several others are used for specific signals
such as dimuons, photons, or jets [94]. The trigger input is handled by the Central Trig-
ger Processor (CTP), which sends a command to all active detectors upon a successful
trigger. There are three levels of triggers, L0, L1, and L2. Only events accepted by
the highest level, L2, are read out. The L0 trigger is synchronised with the LHC bunch
crossing clock at ALICE and it only includes the fastest inputs. All input at this level
are processed within 1.2 µs of the collision. The remaining fast inputs are handled by
the L1 trigger, which takes 6.5 µs to complete. The L2 trigger handles all slower inputs,
and must be completed before the TPC is read out, i.e. within 88 µs from the collision.

The detector signals used by the trigger depend on the trigger configuration. Two
important configurations are minimum bias (MB), which basically accepts events fol-
lowing the full multiplicity distribution, and high multiplicity (HM), which is only active
in pp collisions and only triggers on the ∼ 0.1% of the events with highest multiplicity.
The analyses described in this thesis all use the MB trigger, since part of their purpose
is to study how certain observables depend on multiplicity. In order to maximise the
number of rare particles, the HM trigger would have been a much better choice however,
since this records a much larger number of tracks (in particular in pp collisions). The
MB trigger requires a hit in both V0 detectors (V0-AND), which is sufficient for the
low multiplicities in pp and p-Pb collisions. Additional constraints are later applied on
the V0 timing information and the correlation between number of tracklets and clusters
in the SPD, in order to reduce beam-gas events [105].

For Pb–Pb and Xe–Xe collisions, the V0-AND trigger is polluted by electromagnetic
events, i.e. interactions between the nuclei originating from interactions in the large
electric fields associated with such ions. To get rid of these, extra constraints were
applied, namely a threshold on the V0 amplitude in the 2015 Pb–Pb run and required
hits in both ZDC detectors in the 2017 Xe–Xe run and 2018 Pb–Pb run.

For most of the data taking, the HM trigger was based on a threshold on the V0
multiplicity, but in particular in 2018, it was instead based on the SPD. In the latter
case, at least 85 hits were required. Moreover, there was a cut on the number of V0
channels where the hits were flagged as beam-gas interactions (based on the timing)
and it was required that neither the previous nor the next bunch crossing would have
any activity, in order to avoid pile-up, which could otherwise erroneously be tagged as
HM events.

Upon a successful trigger, the call from the CTP will start a series of read-out
operations in each active detector (how this is done depends on the detector; for the
TPC this is described in Chapter 5), until eventually the trigger input is recorded locally
at a Local Data Concentrator (LDC). During processing, the read-out system will be
busy. If so, a signal will be sent back to the CTP, which blocks the triggering until
all detectors used in the partition are operational. During recording, selected portions
of the data sent to the LDCs is duplicated and sent to the High Level Trigger (HLT),
where it is processed and decided whether to store or reject the event. This is the
final triggering stage, where also some compression is done by cutting out irrelevant
information. If accepted, the selected part of the data from the full event will be sent
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via the DAQ system to Global Data Concentrators (GDCs), where the whole event is
built, from where it will further recorded at a Transient Data Storage. Part of the
data from the event will also be processed online through data quality monitoring and
detector algorithms to ensure good quality. If not passing the quality evaluation (done
manually in Run 2, but this will be replaced with automatic procedures by the start of
Run 3), the ALICE shift crew will be notified and the shift leader may decide to stop
the run until the problem is solved. Finally, the data will be sent to GRID for final
storage and post-processing and be copied to tape.

The offline processing is carried out over a distributed computing network called
GRID. Here, for instance all tracks are reconstructed following the procedure described
in Section 4.6, as well as candidates for weakly decaying particles (cf. Section 8.5.2).
The processed event data is stored in Event Summary Data (ESD) files, which can be
analysed directly by the analysis software. Due to the amount of information included,
these are however very performance heavy to analyse, so a further processing stage is
carried out, where the most relevant information for most analyses is selected. This
information is stored in Analysis Oriented Data (AOD) files. The processing is then
repeated in several stages, called analysis passes, where the detector calibration has
been tuned between each pass9. Also, associated Monte Carlo (MC) simulation runs
are carried out based on the detector and beam conditions of each run period, which is
done in a similar way as for data.

While AOD files are used in most analyses, the main analysis described in Chapter 8
is based on ESD files, partly due to a few bugs which occurred during the processing
into AOD files. Therefore, the most relevant information for our analyses was extracted
from the ESDs and stored into data trees, which could be analysed offline.

Upgrade: Removing the Trigger
Upon the upgrade to continuous read-out, the current trigger system will be removed10.
There will still not be enough capacity to store all events and therefore some selection
will still be required, but this will not be done online (see below). The focus will now be
on selecting rare processes. Moreover, a MB sample will be collected during a limited
period each year using a weaker magnetic field than is currently being used, in order to
increase the capabilities at low pT [106]. For the MB sample, all events will be recorded,
but during most of the data taking, the number of events will be reduced by a factor
of ∼ 1.7 · 103.

As a consequence of the new trigger operation and increased data rates, the DAQ
system needs to be replaced, both on the hardware and the software side. The processing
will be done through the new Offline–Online system, O2. This will use a temporary
storage space with a capacity of 60 PB, where all detector information will be stored
until the detector calibration for the specific run period is completed. The ESD files will
be replaced by Compressed Time Frame (CTF) data, which will be used for creating
AOD files, just as now done in two passes. However, unlike now, the AOD files will

9The tracking information is used in the calibration of the later passes (e.g. for tuning PID paramet-
ers, cf. Section 8.5), requiring that a coarse calibration has already been carried out for the previous
pass.

10Some detectors, such as the TRD and the HMPID will still operate in triggered mode. These will
use a dedicated hardware trigger, but it will not be nearly as extensive as the one currently used.
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contain the full event information, but in a compressed format, so they can be used in
all analysis. Consequently, the CTF files will be removed after the processing stage, in
order to save storage space. The processing will be done at GRID, and in the case of
pp data taking – which requires less resources than Pb–Pb data taking – part of the
local O2 computing resources will be used for this as well. Events which do not contain
interesting physics will be discarded during the first pass of the offline processing.

The O2 system will also replace the current analysis framework, AliPhysics. The
reasons – apart from the new requirements with data files in a new format – are that
it will use the computing resources more efficiently, it will enable multicore and GPU
computing, which have seen much development recently, and it will make use of re-
cent developments in the C++ language. These improvements are required with the
immensely increased data volumes expected in Run 3 and beyond.
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Chapter 5

Chip Testing for the TPC

A complete experimental scientific project should contain all steps of the scientific pro-
cess, from deciding how to address the scientific question, develop and build the exper-
iment, acquire and analyse the data, and finally interpret and publish the results. In
a large project like ALICE this chain takes almost a scientific career and is far beyond
the scope of a PhD thesis. As a fruitful compromise, I have had the opportunity to use
the knowledge gained from analysing data from the present ALICE detector to contrib-
ute to the development of the detector upgrades, which is known as a service task. In
Section 10.5 I will elaborate on how my present analysis will benefit from the upgraded
detector.

5.1 SAMPA: a New Readout Chip Design
To be able to read out the analogue information produced by the TPC readout chambers
and convert it to a useful format, which can later be stored to disk or tape, a fast
analogue and digital electronic system is required. In Run 2, this was handled by a
series of chips on a frontend card, as schematically shown in Fig. 5.1. This setup,
which is based on the ALTRO (ALICE TPC Read-Out) chip, is however limited to a
sampling window of 100 µs [107], matching the gated operation of the TPC. Therefore,
for continuous readout, a new system for the readout electronics has been developed.

The central unit of the new readout system is the SAMPA chip [108]. This contains
both the preamplifier/shaper and the Analogue-to-Digital Converter (ADC) and data
processing units, i.e. it basically merges the functionality of the PASA and ALTRO
chips. An overview of the SAMPA chip design is shown in Fig. 5.2. The signal from the
TPC comes as a current pulse. This induces a charge on a capacitor in the preamplifier
feedback loop, which creates a voltage pulse. The preamplifier is followed by a shaper,
which gives the signal a smooth, semi-Gaussian shape, integrating the signal on a time
scale relevant for the duration of the signal in the detector. In the ADC, the analogue
voltage pulse is converted to a code with 10 digital bits (1024 channels) using successive
approximation, at a sampling rate which can be set as high as 20 MHz. There is an
option to compress null samples on the chip using a series of data processing units, but
due to the low fraction of null samples in the TPC, this is not used here. Instead,
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Figure 5.1 – Block diagram of the current TPC frontend electronics. The detector signal
from each channel is sent to a preamplifier/shaping amplifier (PASA). The output from
the PASA is converted to a digital signal and processed at an ALTRO chip. A local RAM
is used to store data taken during a time window of 100 µs, before it is sent via link to
the data acquisition and detector control systems. Image taken from Ref. [107].

Figure 5.2 – Block diagram of the SAMPA chip design. This contains a preamplifier
(Charge Sensitive Amplifier, CSA), shaper, ADC, and successive data processing units.
Figure taken from Ref. [108].
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all samples are transferred via 10 parallel fast-connection links and the processing is
done afterwards, both at hardware and software level. An advantage of the SAMPA
chip is that it has a flexible design, making it possible to tune several parameters such
as shaping time and gain. Thus it can be used for both the TPC and MCH readout
systems, although the detector characteristics are quite different.

Figure 5.3 – Photograph of a frontend card. The five SAMPA chips are mounted along
the side facing the Kapton cables connected to the readout chambers (bottom of the
image). Figure taken from Ref. [109].

The SAMPA chip is packaged in a ball grid array (BGA) package, with dimensions
of 15 × 15 mm2. Each chip contains 32 channels corresponding to different cathode
readout pads. The SAMPA chips are mounted on frontend cards, each containing five
chips, cf. Fig. 5.3 (see Fig. 5.5b for an individual chip). A total of ∼17 000 chips are
used for the TPC and ∼37 000 for the MCH.

Usage of SAMPA Chips in the Muon Tracking Chambers
The muon tracking chambers use cathode pad chambers based on MWPCs for tracking
the muons [94]. However, the current readout system is unable to handle the increased
event rates during Run 3, and therefore the frontend electronics and readout chain are
upgraded to allow for continuous readout [110]. For the new frontend electronics, the
SAMPA chips have been selected. Due to a quite different environment than for the
TPC, the specifications for the chips used for the MCH are not the same as for the
TPC. In particular, the gain will be set to 4 mV/fC for the MCH, compared to 20 or
30 mV/fC for the TPC, and most of the data processing options not used in the TPC
are used here. See the next section for specification details.
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5.2 Testing Overview
The Lund ALICE group is responsible for verifying that the chip works as intended and
ensuring that the chips follow the specifications – both in the prototyping phase and
for every chip which will be mounted in the detector – which requires extensive testing.
Consequently, the test setup saw some development between the testing phases.

(a) (b)

Figure 5.4 – Test setup for characterising the SAMPA prototype. The chip is soldered
onto an NCCA board in the lower right corner of panel (a). This is mounted onto
a SoCKit board to its left. A pulse generator has its input channel connected to the
sampling clock of the NCCA and its output connected to the injector card on top of the
NCCA board, which converts the voltage pulse to a charge pulse that is sent to the chip.
The data is transferred to a computer (not shown in the figure) via an Ethernet cable. In
panel (b) an aluminium box is placed over the NCCA board for noise suppression. Here,
the connector to the pulse generator is replaced by a series of capacitors, but the box was
normally used also during pulsed measurements.

The initial setup, shown in Fig. 5.4a, was mainly used for developing the testing code
and verifying basic chip functionality. Here, a SAMPA chip prototype was soldered onto
an NCCA1 board, which was mounted to a SoCKit board – a programmable hardware
platform accessible through the FPGA language, which enables fast data transmis-
sion [111]. The NCCA board had a 32-channelled port connected to the SAMPA chip,
where an injector card could be mounted to send a test pulse to the chip. Depending on
the test parameter, a few different injector cards were used to be able to switch between
pulsing all channels or just a subset of them (cf. Section 5.3). Alternatively, a set of
capacitors could be connected to the port, which was done for noise measurements. A
capacitor acts as an antenna, so when increasing the capacitance, the noise level will

1Negatively polarised Circuit Card Assembly.
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increase. For optimal performance (and to mimic the conditions in the detector), one
should however reduce the noise as much as much as possible, which requires shielding.
This was done by placing an aluminium box over the equipment, cf. Fig. 5.4b, which
acts as a Faraday cage. To synchronise the pulsing with the readout, another port at
the NCCA board was connected to the sampling clock. The pulsing was done by using
a pulse generator, which produced a voltage step function which could be adjustable by
using a specific input file. This used the signal from the sampling clock as trigger. The
pulse generator was connected to the injector card, which converted the voltage pulse
to a charge pulse, which was injected to the chip.

The readout control was handled by a computer interface made by our colleague
Arild Velure in the Bergen group. During measurements, the output from the chip
was sampled by an FPGA programme and sent to the computer through an Ethernet
connection. The output was stored in a data tree which could be analysed through the
ROOT package.

(a)
(b)

(c)

Figure 5.5 – (a) Socket used for placing chips for testing, along with a pressure plate
and a lid. The pressure plate was used to keep an even pressure on the chip, which was
ensured by tightening the screw in the lid. (b) Backside of a SAMPA chip. The QR code
is used for identification. (c) The other side of the chip. The pins are connectors to the
electronics.

In the second phase, the NCCA board with the soldered chip was replaced by one
where a socket box (cf. Fig. 5.5a) was used in its place. Here, the SAMPA chip could
be placed in the box. Connection was ensured by pins in the bottom of the box being
connected to the connector pins of the SAMPA chip (Fig. 5.5c). A slight tension was
applied to ensure good connection. This setup enabled testing of multiple chips, which
was necessary to characterise chip-to-chip variations.

Finally, for testing individual chips, an automatic procedure involving a robot was
required. This required to rewrite the testing code to executable files (instead of relying
on ROOT macros as was the case before) which could be used in the automatic routine.
The procedure was as follows: First, a set of ∼ 500 chips was placed manually on trays
next to the robot. The robot (Fig. 5.6) then used a suction device to lift the chip
and move it to a small tray close to one of the test stations2, in order to align it, and

2Two test stations were used for the testing.
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Figure 5.6 – Robot used for the automatic testing, before setting up the full testing
apparatus.

further moved it to a PCCA board similar to the one with the socket box used for the
prototype testing. A pressure plate was added to the socket to apply tension to the chip,
as before, and pressure was ensured by a special pressurising wagon (Fig. 5.7), which
used rails to move it to the test socket. Following this, a test routine was run using a
few different pulse sequences for the individual tests (here odd and even channels were
connected to different output channels in the pulse generator using a similar connector
as before). In the meantime, the robot was moving another chip to the second test
station, so the two chips could be tested in parallel. The output from the chips was
written to text files, which were analysed by the executables, extracting the relevant
information for each channel in the chip. If passing the specifications, the chip was
moved to one tray, and if rejected it was moved to another one. The rejected chips were
typically retested to make sure the failure was not due to e.g. bad connection with the
socket, external noise, or instabilities in one of the test routines3. An overview of the
test station is shown in Fig. 5.8 and a demonstration of the robot testing is available
at https://www.youtube.com/watch?v=r8HM-wFboOM&feature=youtu.be.

The analogue parameters tested were gain, rise time, cross-talk and noise. Moreover,
a couple of digital tests built into the SAMPA design were carried out. These include
verification of all memory cells and registers, toggling flip flops, and verifying digital
inputs/outputs by JTAG. Altogether fabrication faults in the BGA packaging should
be found for almost all signals and DC connections (as long as the same signal is not
routed several times in parallel through the package, like supply voltages and grounds).

3This was the case a few times, and consequently some of the test programmes had to be rewritten
during the testing.
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Figure 5.7 – View of one of the test stations. The tower-like structure in the middle
is a pneumatic wagon used for applying an even pressure to the chip in order to ensure
good connection. This can move freely on the metal rails, and its position is ensured by
a stopping screw between the rails (to the left in the image).

Table 5.1 – Summary of a selection of the SAMPA chip specifications at TPC and MCH
settings [112].

Specification TPC setting MCH setting
Reference voltage 1.25 V 1.25 V
Detector capacitance 18.5 pF 40-80 pF
Peaking time (shaper) 160 ns 320 nsa

Gain 20 or 30 mV/fC 4 mV/fC
Sampling frequency 5 MHza 10 MHz
Equivalent noise charge < 600 e < 950 e (40 pF)

< 1600 e (80 pF)
Cross-talk < 0.3% < 0.2%

aChanged from the original specification.

A summary of the specifications for most parameters, for both TPC and MCH setting,
is given in Table 5.1. The following sections describe how the (external) tests were
carried out, both in the prototype characterisation and the robot testing. During the
robot testing, it was ensured that the capacitance over the chip was lower than during
operation in the detector. The sampling frequency was set to 5 MHz due to technical
limitations of the equipment. For most measurements, the peaking time and gain were
set according to the specifications (i.e. for the TPC, measurements were carried out
both at 20 and 30 mV/fC).
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Figure 5.8 – Overview of the test setup for the automatic testing, with the robot in the
middle and the two test stations in the front.

5.3 Cross-Talk Measurements
Capacitive coupling between charge input channels in an analogue frontend card is
expected on some level, and therefore they may pick up signals from neighbouring
channels on the chip. This effect is known as cross-talk. It is important that the cross-
talk is not too large, since otherwise a signal in one channel may trigger a signal above
the threshold in another one, effectively triggering a false measurement. Acceptable
cross-talk limits are given in Table 5.1.

To measure cross-talk, a large pulse was sent to a subset of the channels and the
output in the other channels was measured as a fraction of the pulse amplitude in the
pulsed channels. This was done for several different pulsing configurations; during the
prototyping phase the following were used: pulsing all odd channels, all even channels,
every third channel, just a single channel, and all channels but one. In the prototyping
stage, the test pulse card, which is a source of cross-talk in itself, was disconnected
from the non-pulsed channels. In the production testing, this could not be done and
cross-talk measurements were reduced to be sensitive to short circuits (e.g. touching
bond wires) between neighbouring channels. Here a simultaneous test pattern of all
even or all odd channels was always used.

Two important aspects are to synchronise the measurements so they are done at the
peak amplitude and to use a large statistical sample to suppress asynchronous noise.
The former turned out to be a challenge during the characterisation phase, since the data
transferred through the link was packaged such that the output from three consecutive
channels was bunched together, but the transfer rate was different for different packets,
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resulting in a quite disordered output file for the analysis. During the robotic testing,
the output from all channels was written to a binary file (which was later decoded into
a text file) before sending the next pulse, so this problem was not present here.

The measured parameter is ADC output at the peak time minus the average baseline
value (measured outside the peak time window). Some results from the prototype test-
ing are shown in Fig. 5.9. First, one should notice that these measurements have been
performed on a single chip. Therefore, any large differences in a single channel between
measurements where a similar number of channels have been pulsed are likely due to dif-
ferences in measurement conditions. This is the likely explanation for the significantly
lower cross-talk levels observed when pulsing odd channels compared to even pulsing.
Moreover, a large deviation is observed in channel 30 when pulsing every third channel,
with a crosstalk nearly a factor five greater than any other similar measurement. This is
likely due to cross-talk within the connector rather than within the chip, and therefore
this measurement is not shown in the figure. Apart from these caveats, the cross-talk
levels are similar when pulsing every third channel as when pulsing every other chan-
nel, and therefore the former measurements are redundant. When pulsing all channels
except for one, the levels are significantly higher, but it is unlikely that this situation
would ever occur within the detector, so due to the challenge of setting up this meas-
urement for automatic testing, this was not investigated further. The most common
condition would be a pulse in a single or just a few channels, which generates much
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Figure 5.9 – Measured cross-talk (in ADC units; the amplitude of the test pulse was
about 600 ADC units) for the first version of the SAMPA chip for a few different con-
figurations. The legend indicates which channels were pulsed. For the single channel
measurement, channel 17 was pulsed, and this was the only channel tested with all the
others pulsed. In the case where every third channel starting at channel 2 were pulsed,
channel 30 had a cross-talk of ∼ 3 ADC units, which is outside the range of the plot.
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lower cross-talk levels (and only significantly different from zero in nearby channels).
Therefore, if the odd and even pulsing yields acceptable results, one can conclude that
the cross-talk is acceptable for any situation within the detector.

During the robotic testing, the cross-talk was normalised to the peak amplitude.
The chip was rejected if this exceeded 5% in at least one channel, and also if it was
< −1%, which could indicate other errors. These limits were set quite loose since other
cross-talk sources were present in the test set-up, in particular from the connector itself.
The cross-talk measured at the front-end cards satisfies the specifications.

5.4 Noise Measurements
The noise measurements are quite straightforward. Here, simply the standard deviation
of the output from the ADC, σADC, in each channel was measured, with no signal at
the input. This can then be converted to Equivalent Noise Charge (ENC) in electrons
by using

ENC = σADC · 2.2mV/ADC
g · e

, (5.1)

where g is the gain factor measured in mV/fC and e = 1.602 · 10−4 fC is the elementary
charge. There is however one problem with this approach, which will be discussed
carefully in Chapter 6, and that is that the measured output from the ADC is discretised,
so if the analogue noise is low compared to the ADC step size, the measured σADC will
be subject to a substantial discretisation effect. Therefore, the ENC cannot be measured
accurately in this way using a too low gain setting (in particular 4 mV/fC which will
be used in the MCH), although, as will be shown, a gain of 20 mV/fC is enough.
Consequently, this higher gain setting was used for the noise evaluation of the chips
used in the MCH during the automatic testing.

In the performance tests, noise was measured as a function of input capacitance,
which was done by connecting a capacitor from each input channel to ground, as de-
scribed in Section 5.2. One should note that there is a stray capacitance in the chip and
in particular on the board, so this approach is not perfect. Some results for 30 mV/fC
are shown in Fig. 5.10. This chip satisfies the requirement of < 600 electrons at low
capacitance (expected conditions in the detector). The channel-to-channel spread in-
creases when increasing the capacitance, which could be due to many different reasons,
such as the surrounding environment, or how things are connected. Evidently the point
at 0 pF does not match an extrapolation from the other data points. There could be
several reasons for that. One contribution is that the stray capacitance in the system
is non-negligible and also that the digital noise on the board contributes. It is difficult
to say how large this is not knowing exactly how the circuit is connected, but it should
be roughly as large as the external capacitance at the end of the linear regime, i.e.
∼ 15 − 20 pF.

During the automatic testing, all noise measurements were carried out using a gain of
20 mV/fC. The automatic setup was not ideal for this measurement since the test pulse
card (connected to the pulse generator) had to be connected during the measurement.
Also the environment was noisier due to the servo motors for the robotic movement.
Here the limit was set to 1.3 ADC units (≈ 900 electrons) for chips used in the TPC.
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Figure 5.10 – ENC as a function of external capacitance for a V2 SAMPA prototype,
using a gain of 30 mV/fC. The colour indicates the density of channels in a narrow ENC
interval.

For the MCH, the limit was set to 1.6 ADC units for one of the test stations and 2.0
ADC units for the other one, due to a noisier environment. Channels 30 and 31 picked
up more noise, so here looser limits were used. There was also a lower limit of 0.6 ADC
units (≈ 400 electrons). A lower noise level than this could be due to stuck bits or a
lost bond wire, but then of course, the chip would fail other tests as well.

In connection with the noise tests, the pedestal voltages were tested as well. These
were required to lie between 40 and 110 ADC units (90-240 mV), as to not interfere too
much with the detection range.

5.5 Rise Time Measurements
Following Table 5.1, the rise time of the analogue pulse, which is related to the shaping
time, should be ∼ 160 ns at TPC setting and ∼ 320 ns at MCH setting. The hardware
and firmware used for the automatic testing limited this to a sampling rate of 5 MHz, i.e.
a sampling interval of 200 ns, which is too wide for measuring the rise time to adequate
precision. To circumvent this limitation, a few different approaches were tested.

First, a Γ(4) fit function was fitted to the sampled peak. This is on the form

f(t) =


b, t < t0,

b+A · exp
(

−4
(
t− t0
τ

− 1
))

·
(
t− t0
τ

)4
, t ≥ t0,

(5.2)

where t0 is the start time of the pulse, b is the baseline (can usually be fixed to the
average measured value at t < t0), A is the amplitude, and τ is the rise time. While
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this provides a good description of the pulse shape, it turned out that the measured
rise time following this approach is biased by the position of the sampling points in the
peak region, cf. Fig. 5.11, which led to the conclusion that a more clever approach was
required. The solution was to use several pulses, where each pulse is shifted relative to
each other by a known delay – 20 ns turned out to be enough – and use this information
to reconstruct the pulse shape.

At first, this was done by taking several measurements synchronised with the
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Figure 5.11 – Rise time extracted from a fit, using a sampling window of 200 ns, shown
as a function of the delay of the input pulse. The true rise time for this measurement is
≈ 175 ns, so this approach yields neither precise nor accurate information.
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marked by dots and the fit by the dashed line. The top right corner shows the extracted
fit parameters (τ and t0 are in ns and A and b are in ADC units) as well as the quality
of the fit. This is measured after baseline subtraction, so this parameter is fixed to zero.
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sampling clock, but applying the shift to each measurement. This has the advant-
age that the pulses can be sufficiently spaced in time to not affect each other, but it
turned out to be a tedious measurement and difficult to obtain stable conditions, so this
approach was abandoned. Instead, a pulse train of charges produced from 10 identical
step voltages was sent to the chip, each separated by 3 µs and shifted by 20 ns, reaching
an effective sampling rate of 50 MHz. To get sufficiently large statistics, a few hundred
pulse trains were sent to the chip during each measurement. A signal with negative
amplitude was used to mark the start of each pulse train. With this refined measure-
ment, the fit function, Eq. (5.2), could be applied without any measurable bias. An
example of a measurement during the automatic testing is shown in Fig. 5.12. While
the χ2/d.o.f. in this example indicates a poor fit to the data, one should keep in mind
that the statistical sample is large, so any systematic disturbance will have a negative
impact on this. Upon close inspection the dominant source is likely a slowly decreasing
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Figure 5.13 – Rise time as a function of channel number for two different chips, using
(a) a gain of 30 mV/fC and a nominal rise time of 160 ns, and (b) a gain of 4 mV/fC and
a nominal rise time of 320 ns. In both cases, the channel-to-channel spread is less than
2%.
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tail far away from the peak (at t & 1250 ns), which is not accounted for by the fit
function. Moreover, the onset of the pulse is slightly more abrupt than indicated by
the fit. These deviations should not affect the rise time significantly (and if they do, it
happens in a systematic way), so one can conclude that this fit function describes the
pulse shape adequately.

Typically, the measured rise time was slightly higher than the design value, but one
should keep in mind that its definition in a design perspective may be slightly different
than what is obtained from the fit. Interestingly, the value was dependent on the gain
setting to some degree. There was also a significant spread between the channels on a
chip, although still acceptable. Examples for two different chips, one with TPC setting
and one with MCH setting, are shown in Fig. 5.13. Acceptable values were set to
155 < τ < 180 ns for the TPC (measured at 20 mV/fC) and 300 < τ < 350 ns for the
MCH.

5.6 Gain Measurements
The gain could in principle be derived from the fit parameter A in Eq. (5.2), which
was also done as a complementary measurement. This measurement was however too
tedious for checking both gain and linearity, and therefore another approach was chosen.
The approach was to apply pulses of different amplitudes to the chip. The pulses
in the train were synchronized with the sampling clock such that each sample was
situated at the peak value. The relation between input charge and digitised peak
amplitude was then analysed. During the robotic testing4, this was done using a pulse
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Figure 5.14 – Example of a calibration curve for a gain measurement of a chip with a
nominal setting of 20 mV/fC. The parameter “p1” indicates the slope of the curve.

4Since I was not involved in the gain measurements during the characterisation phase, this part is
not included in this thesis.
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train similar to the one used during the rise time measurement, except that instead
of different trigger delays, the different pulses had different amplitude. A linear fit
was applied to the measurements, which determined the gain factor of each channel
in the chip, see Fig. 5.14 for a calibration curve. To begin with, a measurement at
a setting of 20 mV/fC was used for both the TPC and the MCH. Acceptable values
were set to 18.5 < g < 20.7 mV/fC. To further test if the gain was correct at other
settings, a measurement was done at 30 mV/fC for both detectors, with coarse limits
of 25 < g < 35 mV/fC. For the MCH, an additional measurement was carried out at 4
mV/fC, with limits of 3.9 < g < 4.4 mV/fC.

5.7 Bit Issues: the Odd-Even Effect
Ideally a 10-bit ADC like the one used in the SAMPA chips divides the analogue range
into 1024 equally wide intervals. In reality the intervals are defined by analogue voltages
to comparators, resulting in some variation of the interval widths. This is most sensitive
for the comparator defining the least significant bit. For the ADC in the SAMPA one
can see an effect that the odd and even ADC codes are not equally populated, as shown
in Fig. 5.15. Therefore this effect has been dubbed the “odd-even effect”. To some extent
it will be present in all ADC designs which aim at reaching maximum sensitivity. To
limit the voltage division to a level where it responds 100% correctly would sacrifice
sensitivity which is not desired by the SAMPA users in ALICE.
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Figure 5.15 – Histogram over number of entries per ADC code intended for a cross-talk
measurement, but due to inadequate noise suppression, there is a large spread around
the pedestal level at ≈ 75 ADC units. While this caused issues with the measurement
(it had to be redone with proper shielding), the increased spread clearly demonstrates
the odd-even effect, i.e. a larger number of entries with an even ADC count than for
neighbours with an odd count. Some periodicity with every four and eight bins can also
be seen, indicating higher-order bit issues.
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A similar effect (perhaps with different origin) is that ADC codes spaced by powers
of 2 (and in particular 16) are less populated than their neighbouring channels. The
net effect is small such that there is a shift of one ADC channel (at most ∼ 1‰) for
the affected ADC values.

Both these effects are of minor importance for the use of the SAMPA in real data
taking since the information is vastly oversampled either by many samples per pulse as
in the MCH case or many pad values per track as for the TPC. Supported by physics
performance simulations of the detectors it has been found that the benefit of improving
the ADC performance on these points was not necessary, and the required effort would
have risked missing the target of having all SAMPA chips ready for the TPC upgrade
during Long Shutdown 2. However, the odd-even effect has an impact on the noise
performance results, as will be shown in Chapter 6, where it also will be described how
to deal with it.

The cause of the odd-even effect is a bit unclear, but it clearly originates from the
hardware (but not necessarily the chip design). The ADC used in the SAMPA chips
is based on successive approximation, meaning that it compares the amplitude of the
analogue signal from the shaper (at the sampling time) with a reference voltage in
several successive steps (here 10) [113, pp. 143-146]. If it is higher than the reference, a
one is set, otherwise a zero. To be able to do this, a sample of the signal is stored in a
capacitor and this charge is compared to an analogue reference signal obtained through a
digital-to-analogue conversion. After each comparison, the capacitor is discharged with
a charge equal to the reference signal, so only the remainder remains. In each step, the
reference voltage gets successively smaller. Ideally, each voltage should be exactly a
factor two smaller than the previous one, so the signal gets divided in two equal halves,
but this cannot be the case here. Therefore, I personally suspect that the reference
voltages in the ADC deviate from their design values, such that the voltage division is
not perfect. This should result in an effect that is similar to what is observed.
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Chapter 6

Noise Measurements of Chips
for the Muon Chambers

6.1 Introduction
When converting the analogue signal to digital data, one will inevitably lose information
due to the discretisation process. This will affect the resolution in time as well as in
amplitude. In Section 5.5, it was described how one can improve the temporal resolution
in order to accurately measure the shaping time of the chip. This chapter will instead
focus on the amplitude. If the ADC resolution is too low, it will affect the noise
measurements. In particular, the discrete distribution will deviate significantly from
the underlying analogue one, meaning that the measured (discrete) standard deviation
will no longer correspond to its analogue counterpart, invalidating the approach taken
in Section 5.4. In the following sections, it is described how one can circumvent this
problem and obtain useful results also if the analogue noise is very low compared to the
level spacing in the ADC.

If the gain is sufficiently high, the spread over the discrete ADC levels due to noise
will become large enough for it to describe the analogue distribution, which in the case
of white noise is Gaussian. This is clearly the case for the TPC settings, where a gain of
20 or 30 mV/fC is used. For the muon chambers, however, using a gain of 4 mV/fC, this
is not the case. Following Eq. (5.1), the desired maximum noise level of 950 electrons
corresponds to a standard deviation of σADC = 0.28 ADC units, meaning that most
of the noise data will be distributed over just one or two ADC channels. Therefore,
the Gaussian approximation is not valid here. The impact of this is illustrated in
Fig. 6.1, which is obtained using data from the same phase of the prototype testing
as Fig. 5.10. Here, the measured noise level seems to stabilise at a fairly large value
at low capacitance, of roughly 0.4 ADC units, corresponding to 1400 electrons. Even
more problematic, the spread between channels is very large. Both of these effects are
largely due to the discretisation process, which shows the importance of correcting for
this effect.
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Figure 6.1 – Measured noise (standard deviation, σ) in ADC units for a SAMPA proto-
type, as a function of detector capacitance, using a gain of 4 mV/fC. The colour indicates
the density of channels in a narrow σ interval.

6.2 Correlation Between Measured Baseline and Noise
Levels

A noise level of 0.4 ADC units should be close to the limit of what can be reliably
measured. At this level, assuming a Gaussian distribution, the discrete output will only
occupy a few (2-4) different ADC bins for a single channel. Therefore, the measured
standard deviation σ will depend on where the float remainder of the mean value µ is
located, or mathematically µ modulo 1. In the extreme case of only having occupation
in two bins, the following estimates can be made:

µ0 ≡ µmod 1 = N1
N0 +N1

where N0 is the occupation in the lower bin, and N1 is the occupation in the upper bin,
and

σ =

√
N0µ

2
0 +N1(1 − µ0)2

N0 +N1 − 1 '
√
µ0(1 − µ0) (6.1)

for large samples. This gives a strong correlation between µ and σ.
To test whether a correlation between µ and σ exists for the data set used to obtain

Fig. 6.1, the measured noise in each channel was plotted against the baseline modulo
1, for each capacitance. The results are shown in Fig. 6.2, where the result for the
limiting case of two bins (Eq. 6.1) also is included. Indeed, there is a strong correlation
between µ and σ for low capacitances (low noise), bending around the limiting case,
proving that the discretisation effect plays a large role in the obtained results. At higher
capacitance, where σ is further away from the limiting case, the effect is less obvious.
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Figure 6.2 – Measured noise (σ) as a function of mean modulo 1 (µ0), for different
capacitances. The solid line indicates the limiting case of only having data in two adjacent
ADC bins.

Now remains to find a method to get around this effect and extract the analogue part
of the noise.

6.3 Models for Discretisation
6.3.1 Ideal Model
The expected behaviour of an ideal ADC, is that it simply truncates the analogue value
(incoming charge) to the closest smaller discrete ADC level. If the equipment is well-
shielded, as is supposed in this case1, the analogue noise is expected to behave like
white noise, following a Gaussian distribution. This has the density function

fA(x) = 1√
2πσ2

exp
(

− (x− µ)2

2σ2

)
,

where µ and σ are the analogue mean and standard deviation, respectively. After
truncation, the corresponding discrete density function fD is obtained by integrating
the analogue density function between each ADC level and the next one, i.e.

fD(x) =
∞∑

n=−∞
δ(x− n)

∫ n+1

n

fA(x′)dx′

=
∞∑

n=−∞

1
2δ(x− n)

(
erf
(
n+ 1 − µ

σ
√

2

)
− erf

(
n− µ

σ
√

2

))
, (6.2)

1This seems to be true for most channels, but as will be seen, channel 30 is a notable exception.
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where x is in ADC units and δ denotes the Dirac delta.
From this, the corresponding discrete mean µD and standard deviation σD may

be calculated. Starting out from the definitions of the expection value and standard
deviation, yield

µD = EfD
[x] =

∫ ∞

−∞
xfD(x)dx =

∞∑
n=−∞

1
2n
(

erf
(
n+ 1 − µ

σ
√

2

)
− erf

(
n− µ

σ
√

2

))
,

and

σ2
D = EfD

[(x− µD)2] =
∫ ∞

−∞
(x− µD)2fD(x)dx

=
∞∑

n=−∞

1
2(n− µD)2

(
erf
(
n+ 1 − µ

σ
√

2

)
− erf

(
n− µ

σ
√

2

))
.

In practical calculations, one cannot take the sums up to infinity. Instead, one should
choose some appropriate limits a and b, such that the error function becomes constant
at the limits (this happens when the density function approaches zero). In this case,
after some simplifications,

µD ' 1
2

(
b+ a− 1 −

b∑
n=a

erf
(
n− µ

σ
√

2

))
, (6.3)

and

σ2
D ' 1

2
(
(b− µD)2 + (a− 1 − µD)2)+

b∑
n=a

(
1
2 + µD − n

)
erf
(
n− µ

σ
√

2

)
. (6.4)

Now, Eqs. 6.3 & 6.4 define a mapping between (µ, σ) and (µD, σD). If one finds
an inverse to this function, one should be able to use this to extract analogue values
µ and σ from a discrete (i.e. digital) distribution, such as the one shown in Fig. 6.2.
First, however, one should do some fact checks, to convince oneself that the obtained
distributions make sense.

Asymptotically, as σ → ∞, µD → µ − 1/2 and σD → σ, which is the expected
behaviour. For the more interesting regime of small σ, Fig. 6.3 shows the contours of
µD and σD in the (µ, σ) plane. For very small values of σ, µD ≈ 0 (modulo 1) and
σD ≈ 0 for a large part of the phase space. This corresponds to the situation where all
analogue values occupy a small region far from the discrete levels, and thus almost all
values are truncated to the same value. From the figure, it appears that for σ & 0.6, µD

and σD approach their asymptotic values, which means that the discrete output should
give a reliable measurement of the noise in this case.

6.3.2 Taking Into Account the Odd-Even Effect
As has been shown in Section 5.7, the ideal model for the ADC used in Section 6.3.1
does not seem to describe reality. For a more accurate description, the odd-even effect,

94



(a) (b)

Figure 6.3 – Mean µD (a) and standard deviation σD (b) of the discrete distribution,
as functions of analogue mean µ (defined on the interval [0, 1)) and standard deviation σ.

i.e. the imbalance between odd and even ADC levels, must be taken into account. This
can be modelled by introducing a shift in each level relative to the ideal case. Using
the parameter ∆(n) ∈ (−1, 1) ADC units for the shift at ADC level n, where a positive
value of ∆(n) corresponds to an increase in the level relative to the ideal case (which
means that some levels may have a negative value of ∆(n)), yields the density function

fD(x) =
∞∑

n=−∞
δ(x− n)

∫ n+1+∆(n+1)

n+∆(n)

fA(x′)dx′

=
∞∑

n=−∞

1
2δ(x− n)

(
erf
(
n+ 1 − µ+ ∆(n+1)

σ
√

2

)
− erf

(
n− µ+ ∆(n)

σ
√

2

))
. (6.5)

Following similar steps as in Section 6.3.1, one obtains

µD ' 1
2

(
b+ a− 1 −

b∑
n=a

erf
(
n− µ+ ∆(n)

σ
√

2

))
, (6.6)

and

σ2
D ' 1

2
(
(b− µD)2 + (a− 1 − µD)2)+

b∑
n=a

(
1
2 + µD − n

)
erf
(
n− µ+ ∆(n)

σ
√

2

)
. (6.7)

While this should work for any ADC with irregular output levels, Eqs. (6.5)-(6.7)
are not very useful for these measurements unless one finds an expression for ∆(n).
The output pattern indicates that the problem occurs in the comparators, and more
specifically when each bit is set. Therefore, ∆(n) should be a superposition of the shifts
at each comparison in the ADC. Introducing the parameters ∆2m for the shift at bit m
starting at the smallest comparison, the term ∆2m should be included if this bit is set
and otherwise excluded, yielding the expression

∆(n) =
N∑

m=0
∆2m (bn/2mc mod 2) ,
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where N is the total number of ADC bits (here 10). Since the output used in this
chapter only occupies a few different ADC bins, and a fitting procedure will be used
to obtain the best ∆ values, one cannot include all bits. In particular, if one bit is set
for all different bins, this will not affect the standard deviation, and there is no way to
disentangle this particular ∆2m from µ, and thus it should be excluded. There is also a
risk of overfitting if including too many levels. Therefore, only two levels, ∆1 and ∆2,
are used in this analysis.

Figure 6.4 illustrates the case of a non-zero ∆1, but with all higher ∆s set to zero
(an example with both ∆1 and ∆2 being non-zero is shown in Appendix D.1). Here,
∆1 = −0.15 is chosen, since this, as will be seen later, is a relevant choice for studying
data from the SAMPA chip. As seen, there is a clear asymmetry between odd and even
levels. Moreover, the asymptotic behaviour is reached at a slightly greater σ than in
the ∆1 = 0 case, namely at σ ≈ 0.8.

(a)

(b)

Figure 6.4 – Mean µD (a) and standard deviation σD (b) of the discrete distribution
when using ∆ = −0.15, as functions of analogue mean µ (defined on the interval [0, 2))
and standard deviation σ.
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6.4 Inverse
To be able to obtain analogue values (µ, σ) from the discrete distribution obtained
from the digital output, one needs to invert the function defined by Eqs. 6.6 & 6.7. In
Appendix A.1, it is shown that a local inverse exists whenever σ > 0, which when taking
into account the continuity and asymptotic behaviour of the function on (R × R+) 7→
(R × R+), strongly implies that a global inverse exists in its domain.

Since no analytical expression exists for the inverse, this was found by minimising

f(µ, σ) = (µD(µ, σ) − µ̃D)2 + (σD(µ, σ) − σ̃D)2 (6.8)

for given discrete values (µ̃D, σ̃D), where µD and σD are given by Eqs. 6.6 and 6.7,
respectively, using Newton’s method. This function has the nice feature of a minimum
of f = 0 exactly at the inverse. Newton’s method is an iterative method where the
iteration step is given as (modification of the work shown in Ref. [114, pp. 65-66])(

µn+1
σn+1

)
=
(
µn

σn

)
− γn (εnI + Hf(µn, σn))−1 ∇f(µn, σn), (6.9)

where

Hf =


∂2f

∂µ2
∂2f

∂µ∂σ
∂2f

∂µ∂σ

∂2f

∂σ2

 (6.10)

is the Hessian matrix of f , εn is a constant to make

εnI + Hf(µn, σn)

positively definite, and γn is a constant to reduce the step size, should it become

(a) (b)

Figure 6.5 – Analogue mean µ (a) and standard deviation σ (b), as functions of mean
µD (defined on [0, 1)) and standard deviation σD of the discrete distribution when using
∆(n) = 0, extracted from the inverse of Eqs. 6.6 & 6.7. Note that the inverse is not
defined for σD ≤

√
µD(1 − µD). Due to plotting limitations, (µ, σ) = (1, 0) are used for

this region in the plots, since these values are obtained when approaching the limit.
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too large. Here, it was concluded that Hf(µn, σn) is positively definite if its smallest
eigenvalue λmin ≥ 0.5. If not, εn was chosen as 0.5 − λmin. Initially, γn = 1 was used.
If σn+1 < 0, σD(µn+1, σn+1) < σD(µn, σn)/10, or f(µn+1, σn+1) > f(µn, σn), it was
concluded that the step was too large and γn was decreased until neither of these criteria
were fulfilled. The derivatives were computed numerically.

As a starting point, (µ0, σ0) = (µ̃D−0.5, σ̃D) was used. The iteration proceeded until
f(µn, σn) < 10−13, where convergence was assumed. If the function did not converge,
a different starting point was chosen by slightly increasing the value of σ0 and moving
µ0 closer to the centre of the interval.

Contour plots over the resulting inverse functions for ∆(n) = 0 are shown in Fig. 6.5
and analogous ones for ∆1 = −0.15 in Fig. 6.6. Corresponding plots for ∆1 = −0.15
and ∆2 = 0.05 are shown in Appendix D.1. One should note that no inverse exists in
the forbidden region of

σD ≤
√
µD(1 − µD),

where µD is defined modulo 1, since this is outside the domain of the inverse (cf. Eq. 6.1).
This causes some interpolation issues in the plots. In the case of a non-zero ∆1, it is

(a)

(b)

Figure 6.6 – Analogous to Fig. 6.5, these plots show µ and σ as functions of µD (defined
on the interval [0, 2)) and σD, for ∆1 = −0.15.
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clear that for the extracted value of σ, it is quite significant whether the discrete mean
is close to an odd bin or an even one.

6.5 Application to the Data Set
6.5.1 Hypotheses
With an inverse available, it is possible to extract estimates of analogue µ and σ to the
SAMPA data set used to generate Figs. 6.1 and 6.2. For this, five different hypotheses
were tested:

1. The discrete ADC scale is the only effect, i.e. there is no odd-even effect and ∆(n) =
0.

2. The magnitude of the odd-even effect is the same for all channels, but no higher-order
bit errors are present, i.e. ∆1 is a constant non-zero value and ∆2 = 0.

3. The magnitude of the odd-even effect is different for different channels, but there are
still no higher-order bit errors, i.e. ∆1 is channel-dependent, but ∆2 = 0.

4. Higher-order bit errors are present, but the magnitude of all of them is the same for
all channels, i.e. ∆1 and ∆2 have constant non-zero values.

5. Higher-order bit errors are present, and different for different channels, i.e. ∆1 and
∆2 are channel-dependent.

For Hypotheses 2-5, optimal values of ∆1 and ∆2 were found by minimising the χ2

function w.r.t. (∆1,∆2), here defined as

χ2 =
∑

j

Nj

∑
i

(
Nobs

i /Nj − pmodel
i

(
∆(j)

1 ,∆(j)
2

))2

pmodel
i

(
∆(j)

1 ,∆(j)
2

) , (6.11)

where j denotes the channel number, Nj is the total number of entries in this channel,
i denotes the ADC bin, Nobs

i is the observed number of counts in bin i, and pmodel
i

is the probability to get an entry in this bin according to the density function defined
by Eq. 6.5. For Hypothesis 2 and 4, the same ∆s were used throughout all channels,
whereas for Hypothesis 3 and 5, a new minimisation was carried out for each channel.

The χ2 function was minimised using a combination of conjugate gradients and
Brent’s method on (|∆1|, |∆2|) ≤ (0.5, 0.5). These methods were chosen since the χ2

function did not appear to be quadratic, which is required for Newton’s method. The
conjugate gradient method is a method for choosing directions in multidimensional
minimisation, which is reliable and generally efficient, since it uses that most well-
behaved functions are nearly quadratic close to the minimum [114, pp. 78-79]. To find
the actual minimum, this must be combined with a line search algorithm. Here, Brent’s
method was chosen since this fits a parabola to the function whenever possible and
otherwise uses the slower but more reliable Golden Section line search, making it both
reliable and efficient [115, pp. 73-75].
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It should be noted that the data from channel 30, located at the corner of the socket,
appeared to not follow any distribution close to a Gaussian one (or its discrete analogy),
with a significant amount of data points far from the mean value. For this reason, this
channel was excluded from the global minimisation of χ2 used for Hypothesis 2. A
similar issue seemed to appear also for the 33 pF measurement in channel 2. Therefore,
this data point was excluded from the minimisation as well.

6.5.2 Error estimate
To test the statistical uncertainty of the obtained µ and σ for each hypothesis, a simula-
tion was carried out. This was done by drawing N Gaussian samples with the obtained
parameters and discretising each sample through truncation (including the odd-even
effect; this is one correct way to draw from the discrete distribution), where N is the
number of entries in the original measurement. The mean and standard deviation of the
resulting distribution were then inverted. The entire process was repeated 100 times
and the spreads in the resulting µ and σ were used to estimate the errors.

It should be noted that this only gives an estimate of the statistical error, so e.g.
uncertainties in the obtained ∆ values (see below) are not included in this error estimate.

6.5.3 Validation
The computed χ2 value for a given fit gives a measure of the quality of fit. Therefore,
the χ2/d.o.f. values obtained from each hypothesis (excluding channel 30, where it is
known that the fit is really poor) were compared to test the significance of the odd-
even effect, and to what extent the models used here represent reality. Moreover, it
was tested whether there is any significant difference in extracted analogue noise levels
between the hypotheses. If not, one should be able to use a simpler model and skip a
tedious minimisation procedure to obtain the underlying σ values.

For Hypothesis 3 and 5, the 98% confidence intervals for ∆ were estimated by finding
the limits where the p-values cross P = 0.02, for each channel where, it is possible (i.e.
P > 0.02 for the best fit). These are not confidence intervals in the traditional sense,
but rather limits for how far away one can depart from the optimal value and still have
a reasonable chance of obtaining the measured data.

6.6 Results
Figs. 6.7 and 6.8 show the extracted analogue values of σ plotted against µ0, as well
as the spread in σ plotted against detector capacitance (these plots are analogous to
Figs. 6.1 and 6.2), for Hypothesis 1 and 5, respectively. The results for the other
hypotheses are very similar to those from Hypothesis 5, and are thus only shown in
Appendix D.1. In Fig. 6.7 (Hypothesis 1), there appears to remain a weak correlation
between µ and σ, which is not present for any of the other hypotheses. The spread in
σ between channels is also greater for this hypothesis. Therefore, it is probably best to
include the odd-even effect in one way or another. There are a few significant outliers
present in all of the plots. These are almost all from channel 30, which even though
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Figure 6.7 – (a) Extracted analogue noise σ versus truncated mean µ0 for different
detector capacitances, computed for ∆(n) = 0 (Hypothesis 1), i.e. the assumption of
no odd-even effect. For a given capacitance, each point corresponds to a single channel.
Statistical error bars are included, but not visible since they are smaller than the points
themselves. (b) Spread in σ between channels, as a function of detector capacitance. The
colour indicates the number of channels in a narrow σ interval.

the most outlying data points have been removed, still has a greater standard deviation
than most other channels at low capacitances.

The obtained σ values are summarised in Fig. 6.9 for all hypotheses, including the
raw data itself (marked as “Hypothesis 0”), as functions of detector capacitance. These
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Figure 6.8 – Analogous plots to Fig. 6.7, computed using optimised values of ∆1 and
∆2 in each channel (Hypothesis 5).

values are in all cases computed while excluding channel 30. As seen, both the values
of σ and their spread between channels drop compared to the discrete data for all
methods described here, and in particular at lower capacitances. There is not any
significant difference in average value of sigma between any of the hypotheses described
in 6.5.1, but the spread between channels is significantly smaller for Hypothesises 2-5.
One should also note that σ is rather constant up to 22 pF also in the inverted case,
varying around 0.27 ADC units, or ∼ 900 electrons, which is close to the specifications
(although these are defined for a slightly higher input capacitance).

102



0 10 20 30 40 50 60 70
Capacitance (pF)

0

0.1

0.2

0.3

0.4

0.5

0.6 (
A

D
C

)
σ

hypothesis 0

hypothesis 1

hypothesis 2

hypothesis 3

hypothesis 4

hypothesis 5
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tion 6.5.1, compared with analogous results directly from the discrete distribution (de-
noted “Hypothesis 0”). The error bars indicate spread between channels. The points are
separated horizontally to resolve the points.

The magnitude of the odd-even effect obtained for the best fit in Hypothesis 2 is
∆1 = −0.1378, which is close to the value used to generate Figs. 6.4 and 6.6. For
Hypothesis 4, the best values are ∆1 = −0.1484 and ∆2 = 0.0639, so ∆1 is clearly
dominant.

For Hypothesis 3 and 5, the ∆ values for the best fits, along with 98% confidence
limits, are summarised in Fig. 6.10a and 6.11a, respectively. As seen, there are quite
large variations in ∆. For Hypothesis 3, the minimum is at ∆1 ≈ −0.21 and the
maximum is at ∆1 ≈ −0.08. For Hypothesis 5, ∆1 varies between −0.25 and −0.08,
and ∆2 between −0.03 and 0.26. For ∆2, there are two very distinct regimes, with a
majority of channels having a value close to zero, or at most 0.1, and a few channels
being > 0.2. For many of the former, the fit is quite good using a single parameter,
whereas for the latter, both parameters are required to explain the data. Upon closer
inspection, the channels with a large ∆2 all have a µ just below 80 ADC units, i.e. they
are close to a transition between 0 and 1 for the four lowest bits. Therefore, the results
are likely due to influences from ∆3 and ∆4, indicating that the true value of ∆2 is
quite weak. Nevertheless, when the spread is so low as in these measurements, ∆2 may
be used to mimic a large fraction of the combined effect of these bit errors. It should
also be noted that the uncertainty of ∆2 is quite large for some channels, but generally
smaller for ∆1.

Resulting χ2 values for each hypothesis are summarised in Table 6.1, along with
corresponding numbers of degrees of freedom. Individual χ2 values for each channel
for Hypothesis 3 and 5 are summarised in Fig. 6.10b and 6.11b, respectively. Of all
these models, only Hypothesis 5 has a χ2/d.o.f. close to 1, indicating that one needs to
include several ∆ parameters to accurately describe the data. For 14 of the channels,
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Figure 6.10 – (a) Best fits of ∆1 for each channel (except channel 30) obtained for
Hypothesis 3. For channels where P > 0.02 for the best fit, 98% confidence limits are
given. For channel 2, the 33 pF measurement has been excluded. (b) Corresponding
χ2/d.o.f. values for the best fits. The dashed line indicates where P = 0.02 for 40 degrees
of freedom, which is a typical number of degrees of freedom for a single channel.

however, χ2/d.o.f. < 1.0 by only including ∆1, so this may not be necessary in all
channels. Including ∆2 in the fit, this increases to 18, with a p-value P > 0.02 for 21
channels.
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Figure 6.11 – (a) Best fits of ∆1 and ∆2 for each channel (except channel 30) obtained
for Hypothesis 5. For channels where P > 0.02 for the best fit, 98% confidence limits
are given. For channel 2, the 33 pF measurement has been excluded. (b) Corresponding
χ2/d.o.f. values for the best fits. The dashed line indicates where P = 0.02 for 40 degrees
of freedom, which is slightly above the typical number of degrees of freedom for a single
channel.

6.7 Application to the Automatic Testing
6.7.1 Motivation
In the previous sections, this method has only been applied to a single chip in the
development phase. To put this in a wider context, and increasing the data sample,
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Table 6.1 – χ2 values and degrees of freedom (d.o.f.) computed for the results from
each hypothesis described in Section 6.5.1. Data from channel 30, as well as the 33 pF
measurement in channel 2, have been excluded from the computations. Resulting values
of ∆ are also indicated.

Hypothesis χ2 d.o.f. χ2/d.o.f. ∆1 ∆2
1 1.04 · 106 1231 844 0 0
2 6.06 · 104 1207 50 -0.1378 0
3 2.89 · 104 1178 25 -0.08 – -0.21 0
4 4.03 · 104 1195 34 -0.1484 0.0639
5 2.07 · 103 1151 1.8 -0.25 – -0.08 -0.03 – 0.26

this should also be tested on data from the robot testing. While the noise measurements
at 4 mV/fC were never used for the validation of the MCH chips, they were still carried
out, and can therefore be used for this study. This also makes it possible to test whether
there is any strong correlation between the corrected results at 4 mV/fC and the raw
results at 20 mV/fC, which were used during the testing campaign.

6.7.2 Measurement Details
For this study, a total of 10 chips tested for the MCH are included. Of these, five were
analysed at each test station to test whether the choice of station has any significant
effect on these results. For each chip, each of the hypotheses defined in Section 6.5.1 were
tested. Finally, the same analysis was repeated for the 20 mV/fC results of the same
chips, which was done both to ensure that the discretisation effect is not significant here,
and to compare the results between different gain settings. This was done separately
from the previous measurements, since the increased gain caused the pedestal levels
to drift, making it difficult to combine measurements from different gain settings (if
desiring to do so, one would need to include more than two ∆ levels).

6.7.3 Results
Figure 6.12 shows the measured (uncorrected) σ as a function of measured baseline µ
for the 10 chips included in this measurement, along with the spread between channels
for each individual chip. As seen, the discretisation effect is present also here, with
data similar to the lower-capacitance (. 30 pF) measurements of the prototype chip, so
similar corrections as done previously are clearly necessary.

Results from the corrections defined by Hypothesis 1, 4, and 5 in Section 6.5.1 are
shown in Figs. 6.13, 6.14, and 6.15, respectively. The results from Hypothesis 2 and
3, which are similar to Hypothesis 4 and 5, respectively (but have larger χ2/d.o.f.),
are shown in Appendix D.1. For Hypothesis 1 and 4, similar observations can be
made as for the prototype testing, namely that some correlation between µ and σ
remains if setting ∆(n) = 0, but this is removed by using non-zero ∆1 and ∆2. For
Hypothesis 5, however, the measured noise level seems to be largely reduced from
Hypothesis 4, with many channels having an apparent σ around 0.2. This is almost
exclusively observed in channels with µ & 0.2, raising questions about measurement
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Figure 6.12 – (a) Uncorrected noise σ as a function of truncated mean µ0, measured for
10 different chips from the automatic testing campaign. Each data point corresponds to a
single channel. The solid line marks the limiting case defined by Eq. (6.1). (b) Spread in
σ between channels, divided between the different chips. The colour indicates the number
of channels in a narrow σ interval.

bias. Upon closer inspection, most of the low-σ channels have either a negative or
large positive value of ∆1, which also generally has a much larger uncertainty than
what is observed in Figs. 6.10a and 6.11a. This is due to a much smaller data set
(∼ 37 000 samples/channel compared with ∼ 2 000 000 samples/channel distributed
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Figure 6.13 – (a) Extracted analogue noise σ versus truncated mean µ0 for the same
chips as were used to obtain Fig. 6.12, computed for ∆(n) = 0 (Hypothesis 1). Each
data point corresponds to a single channel in a chip. The marker type indicates the
station where the chip was tested; circular and square markers are used for test station 1
and 2, respectively. The error bars are statistical only (large error bars may result from
failed convergence during the error simulation, since this reverted to a generic estimate of
(µ, σ) = (0.5, 0)). (b) Spread in σ between channels, divided between chips. The colour
indicates the number of channels in a narrow σ interval.

over the six capacitance measurements of the prototype) along with very few degrees of
freedom per channel (resulting from only carrying out a single measurement per chip).
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Figure 6.14 – Plots analogous to Fig. 6.13, computed for non-zero ∆1 and ∆2, optimised
for each chip, but assumed to be constant within the chip (Hypothesis 4).

Therefore, trying to fit a unique ∆ for each channel may result in overfitting, causing
the minimisation of χ2 to end up at a solution with a lower σ but higher ∆s than the
true parameters of the chip. Therefore, Hypothesis 3 and 5 cannot be applied reliably
to this data set and one should rather use Hypothesis 4 instead. The results from the
prototype test, and Fig. 6.9 in particular, indicate that Hypothesis 4 gives very similar
results to Hypothesis 5, meaning that the results in Fig. 6.14 should accurately describe
the noise levels in the chips from the automatic testing.
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Figure 6.15 – Plot analogous to Fig. 6.13a, computed for non-zero ∆1 and ∆2, obtained
by minimising the χ2/d.o.f. for each individual channel in every chip (Hypothesis 5).

Uncorrected noise as a function of baseline for a gain of 20 mV/fC, i.e. the data used
for assessing the noise level of these chips, is shown in Fig. 6.16. As seen, the measured
noise is far above the measurement limit indicated by Eq. (6.1). There appears to be
two outliers, with a single channel being exposed to much more noise than the others.
These are both in chips tested at test station 1, and both in channel 4, but it was not
further analysed whether this is a coincidence or a systematic effect.

Figure 6.17 shows the converted values based on Hypothesis 5. Due to the larger
number of degrees of freedom in these measurements, the problem with overfitting is not
present here. The results from the other hypothesis are very similar and have thus been
moved to Appendix D.1. As expected, the conversion does not significantly change the
results, showing that one does not need to account for the discretisation effects when
the noise level is this high. This is even clearer when studying Fig. 6.18, which shows
a comparison between the obtained σ from the uncorrected data and corrected results
using two of the hypotheses, for each chip and gain setting. The selected hypotheses
are Hypothesis 1, since it has no odd-even effect, and Hypothesis 4 for 4 mV/fC and
Hypothesis 5 for 20 mV/fC, since these are considered the most accurate ones given
the overfitting problem. For 20 mV/fC, the correction does not change the results very
much, but taking the odd-even effect into account seems to bring the results slightly
closer to the raw data. For 4 mV/fC on the other hand, corrections are necessary
just as for the prototype testing. For both hypotheses, the extracted analogue noise is
considerably lower than the measured digital noise and the channel spread is reduced,
but including the odd-even effect reduces the spread even more.

Finally, Fig. 6.19 shows the channel-by-channel correlation between measured noise
at 20 mV/fC and the best correction at 4 mV/fC. Quite remarkably, there is only a
weak correlation between the two measurements. In particular, in most chips, there
seems to be two distinct noise levels at the 20 mV/fC measurement, which have no
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Figure 6.16 – Analogous plots to Fig. 6.12, measured using a gain of 20 mV/fC.

correspondence in the measurement at 4 mV/fC. Moreover, the two outliers observed
at 20 mV/fC do not show up at the lower gain setting. Apart from these feeatures,
there seems to be a weak correlation, but with a much larger spread at 4 mV/fC than
at 20 mV/fC. Measured in electrons, the noise is almost exclusively higher at 4 mV/fC,
with some channels having an ENC as high as 1500 electrons, compared to only a few
channels above 1150 electrons at 20 mV/fC.
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Figure 6.17 – Plots analogous to Fig. 6.13 for the 20 mV/fC data set, computed for
non-zero ∆1 and ∆2, obtained by minimising the χ2/d.o.f. for each individual channel in
every chip (Hypothesis 5).
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Figure 6.18 – Average values of σ for the 10 chips from the automatic testing, obtained
for a selection of the hypotheses described in Section 6.5.1, compared with analogous
results directly from the discrete distribution (denoted “Hypothesis 0”). The error bars
indicate spread between channels. The points are slightly separated horizontally to resolve
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6.8 Discussion
This work shows that when trying to measure noise in a sampled data set, this will suffer
from a discretisation effect if the noise is too low, but also that we can do something
about it. The odd-even effect complicates matters considerably, especially since this
does not just affect the last bit, but every comparison in the ADC seems to be affected
to some extent (cf. Fig. 5.15). Therefore, one should ideally include the seven lowest
∆2k to cover the full range of the pedestal levels in the chip, but due to the low spread
in each channel, this is not feasible. This may be possible if assuming that the bit
errors are the same for all channels within a chip, but since other measurements have
indicated that this is not really the case, and there is a risk of overfitting, there was no
point in pursuing this. If the channel-to-channel spread is low enough (which may be
the case), it could perhaps be worthwhile to test on the 20 mV/fC data set for a more
robust test of the accuracy of the model description in Section 6.3.2 (using only two
levels gives a quite high χ2/d.o.f. for this data set), but this was assessed to be beyond
the scope of this analysis.

When not being able to include the full parametrisation, fitting ∆1 and ∆2 inde-
pendently for each channel (Hypothesis 5) seems to give a close-to-accurate description
in most channels. Fitting each channel independently seems to be enough to account for
most higher-order bit effects, especially given the large apparent ∆2 when the baseline
is close to 80 ADC units. For a couple of channels the fit is quite poor, however. These
are in particular those where µ is between 2 and 3 modulo 4, indicating that the spread
in ADC should extend into the next interval of length 4 in both directions. Therefore,
including ∆4 would probably result in better results here, but given the low occupancy
in many ADC channels, this may result in large uncertainties on some of the parameters,
which may have a similar impact on the extracted µ and σ as for the robotic testing.

The results from Fig. 6.9 advice against trying to include more parameters. By just
assuming the ideal model, the correction puts the average of σ close to what is obtained
by the other hypotheses (and most likely the true value), but the spread is still too high.
By just using the simplest model for the odd-even effect (Hypothesis 2), the resulting
σ gets very close to the more advanced hypotheses and the correlation between µ and
σ is virtually gone, indicating that this model is probably good enough. Correcting for
higher-order effects by including more ∆s reduces the χ2/d.o.f., so this clearly gives a
more accurate description, but it does not change the end results.

For the robotic testing, one can largely draw similar conclusions as for the prototype
test with different external capacitances. The noise level is similar to an external capa-
citance of ∼ 20 pF, and there does not seem to be any significant difference between the
two test stations, at least for this data set. The biggest difference is the overfitting issue
occurring when testing Hypothesis 3 and 5. What happens is that due to the relatively
low statistics, statistical fluctuations cause the distribution to appear to be similar to
one with larger ∆1 and/or ∆2, than what the actual parameters of the chip are. This
shows that it is important to either use a large data set (2000 000 events seems to be
enough, but not 30 000), or use more measurements, preferably covering more ADC
levels. The latter is ensured when measuring over several different input capacitances.
A lucky consequence of this is that this also seems to shift the baseline level somewhat,
increasing the ADC range. The best way to remedy this in the robotic testing might

114



be to try to combine the measurements between 4 mV/fC and 20 mV/fC, but since this
has a quite large impact on the baseline level (and uncertain impact on ∆(n)), it may
require a bit of work and likely more than two ∆2k parameters.

If doing so, in order to ensure that there is no overfitting, one should calculate
the systematic errors of extracted µ and σ from the uncertainties in the different ∆
parameters (instead of just the statistical ones), which also could be done in the current
analysis, but was deemed to be too tedious. Increasing the number of fit parameters
would further increase the effort, which is one of the reasons why this was not attempted.

A simpler solution was to stick to Hypothesis 4, which according to the results in
Section 6.6 should be good enough. A possible issue with this, which was not studied
further, is that if non-Gaussian noise is present in any of the channels (such as channel
30 in the SAMPA prototype), this may strongly affect the obtained χ2 and possibly
have a large impact on the minimisation. This was not studied further, and given the
large spread in σ for some chips in Fig. 6.14, such noise could definitely be present, so
studying this could mean a possible improvement. In any case, the difference between
Hypothesis 1 and 4 (cf. Fig. 6.18) is generally not larger than for the prototype (cf.
Fig. 6.9), so this is likely only a minor effect.

For the measurements at 20 mV/fC, the results show that no correction is necessary,
meaning that this can safely be used for the testing campaign. A bigger question is if
the results obtained from such a measurement really can be applied to the gain setting
where the chips will be used, namely 4 mV/fC. Figure 6.19 indicates that this may not
really be the case, given the weak correlation between the measurements. In particular,
outliers showing up in the 20 mV/fC data set may not have a correspondence in the
low-gain setting, which may lead to functional chips being discarded unnecessarily. This
indicates however that the outliers likely are due to conditions during the testing – e.g.
non-Gaussian noise from the robot motor which was identified as a significant noise
sorce – and since all chips which failed the test were retested, such issues should go
away during the second iteration. The other issue is that the ENC range is larger at 4
mV/fC than at 20 mV/fC, making it possible that a chip well passing the criteria at the
higher gain setting, may have a high ENC in some channels at the lower one. The test
criteria are rather set such that most functional chips pass the criteria than to strictly
follow the specifications, so this may result in some somewhat noisy chips passing the
tests. This should however not be a real issue, unless a chip with a very high noise level
passes the criteria. To test this, one should check if a chip which is really noisy at 4
mV/fC (indicating some bad channel) also will be so at 20 mV/fC. Unfortunately, no
such chip was included in the data set, so this remains an open question.

Now to the most important result of this work: the measured noise levels at 4 mV/fC
– both low capacitances of the prototype, and in general for the automatic testing – are
largely due to a discretisation effect. More realistic noise level for small capacitances
is around 0.27 ADC units for the measurements with no external capacitance, or 900
electrons, and ∼ 0.3 ADC units (1000 electrons) for the robot testing, instead of the
previously measured values of 0.35 − 0.4 ADC units, or 1200 − 1400 electrons.

Finally, in this study, the correction for the noise measurement has been applied to
a quite limited use case. In principle, this should be applicable to any measurement
of white noise where a digitisation step is involved and the noise level is below the
ADC resolution. I can think of tests of shielding etc., where this approach may be
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used instead of investing in expensive equipment to improve the resolution. The major
drawback is that it is assumed that the noise is Gaussian, which is not always the
case, and depending on the frequency interval may, installations of low- or high-pass
filters may be required to achieve this. The odd-even effect is likely a general feature of
ADCs, since electronic equipment can never be perfect, although the effect probably is
less pronounced than in these chips, usually. The work here shows that even this effect
is something that can be corrected for.

6.9 Conclusions
Although it is not possible to apply the full description of the model developed in this
chapter to the present data sets, it is a promising way to extract the analogue noise
from data which suffer from a discretisation effect. Moreover, while the odd-even effect
does not need to be included for an accurate measurement of the mean noise level, given
the presence of such an effect in these SAMPA chips, it is important for increasing the
precision. A simple model turns out to be enough, however.

An estimate of the noise for a chip with an applied external capacitance of less than
22 pF is about 900 electrons, which satisfies the specifications reasonably well. This
is a significant improvement from the measured values when not accounting for the
discretisation effect. Similar conclusions can be drawn for chips from the automatic
testing campaign, although the noise from the setup is slightly higher here.

The corrected results from the measurements at 4 mV/fC (which will be used in the
detector) are only mildly correlated with the data at 20 mV/fC used for the testing.
Given the data set tested here, this should not cause any problem, but a larger data
set is necessary for a more conclusive statement.

The method demonstrated here should be possible to extend to more general ap-
plications of noise measurements in e.g. tests of electric shielding where the equipment
resolution for the measurement is limited, provided that the noise is Gaussian.
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Part III

Main Analyses

117





Chapter 7

Measurement of Flow in
Xe–Xe Collisions

My contribution to this analysis was quite limited, so I will only describe it briefly. There
is quite a large overlap with my conference proceedings from Hot Quarks 2018 [116],
which in turn is a summary of Ref. [117]. I will not describe the models tested here in
much detail, but the interested reader may check out the references.

7.1 Introduction
In 2017, a short Xe–Xe run at √

sNN = 5.44 TeV was carried out, which gave an excellent
opportunity for testing models that predict a dependence with system size. The isotope
used was 129Xe, which is significantly lighter than 208Pb, but still in the heavy-ion
regime. In this study, anisotropic flow, vn (cf. Section 3.7.2), was measured for 2 ≤ n ≤
4 in Xe–Xe and compared with Pb–Pb measurements at √

sNN = 5.02 TeV, in order to
test initial-state models. In particular, it is assumed that the scaling with eccentricity
described by Eq. (3.8) holds. Since the scaling depends on initial state (and to a lesser
extent by η/s of the medium), any model preserving this scaling is a viable candidate
for the initial state in heavy-ion collisions.

7.2 Analysis Methods
In this study, inclusive charged tracks reconstructed by the ITS and TPC were used
(cf. Sections 4.2 and 4.4). Only tracks in the transverse-momentum region 0.2 <
pT < 10 GeV/c were included in the analysis (for the results presented here, pT was
limited to 0.2 < pT < 3 GeV/c). The events were divided into multiplicity classes
by using the V0M estimator, where the events are divided into multiplicity classes
(cf. Section 3.2) based on the combined number of hits in the two V0 counters (cf.
Section 4.3). The track selection was largely the same as the one used in Table 8.1,
excluding the PID cuts, with the most notable difference that different distance-of-
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closest approach (DCA) cuts were used, namely DCAz < 3.2 cm and DCAxy < 2.4 cm1.
Particle efficiencies were calculated like described in Section 8.6, but using a different
event generator (HIJING [118]), and since flow measurements are quite sensitive to
detector non-uniformities, a full efficiency correction in (pT, η, ϕ) space was carried out.
Systematic uncertainties were calculated as described in Section 8.10, but using different
variations of course.

The flow coefficients were measured using multi-particle cumulants – defined in
Section 3.7.2 – which were calculated by summing generalised flow vectors

Qn,p =
M∑

k=1
wp

k exp(inϕk),

recursively through the generic framework [60], where wk are particle weights applied
to account for efficiency losses in the detector. The exact details are quite complicated
and will not be given here, but the most important end results are that

〈〈2〉〉 = |Qn,1|2 −Q0,2
Q2

0,1 −Q0,2

and

〈〈4〉〉 =
|Qn,1|4 − 4|Qn,1|2Q0,2 + 2Q2

0,2 + |Q2n,2|2 − 6Q0,4 + Re(8 Q∗
n,1Qn,3 − 2 Q∗

2n,2Q2
n,1)

Q4
0,1 − 6Q2

0,1Q0,2 + 3Q2
0,2 + 8Q0,1Q0,3 − 6Q0,4

.

Inserting these into Eqs. (3.11)–(3.15) then yield expressions for vn{2} and vn{4}.
To suppress non-flow in two-particle cumulants, correlations were taken between

tracks separated by an η gap larger than 1 in the TPC, or by using the scalar product
method to provide an η gap larger than 2 and increase the statistics [58]. In the latter
case, vn{2, |∆η| > 2} was calculated as

vn{SP} = 〈〈exp(inϕkQ
∗
n〉〉 /

√
〈QnQ

A∗
n 〉 〈QnQ

B∗
n 〉

〈QB∗
n QA∗

n 〉
,

where Qn is measured in V0A (located at 2.8 < η < 5.1) by estimating ϕk from the
centre of each sector and using the signal amplitude as weight, QA∗

n is measured in V0C
(−3.7 < η < −1.7), and QB∗

n is measured from the tracks in the ITS and TPC.

7.3 Results
Measurements of v2, v3, and v4 in Xe–Xe collisions, using two- and multiparticle cu-
mulants, are shown in the top panel of Figure 7.1a. Following Eq. (3.16), the ratio
v2{4}/v2{2} is sensitive to flow fluctuations, and hence to the initial state (IS). There-
fore, to test the IS condition and hydrodynamic description, this ratio is compared to

1With the much larger number of tracks in a heavy-ion collision than a pp collision, the requirements
for the DCA cuts become vastly different. Moreover, it is less important to reject decays from secondary
particles in an inclusive-charged particle analysis, which makes it possible to loosen the DCAxy cut.
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Figure 7.1 – (a) Upper panel: vn{m}, 2 ≤ n ≤ 4, as a function of centrality in Xe–
Xe collisions at 5.44 TeV, for various orders m and pseudorapidity gaps. Lower panel:
Comparison of the ratio v2{4}/v2{2, |∆η > 2|} with a hydrodynamic calculation where
a TRENTo IS model has been propagated using V-USPHYDRO [119, 120]. The results
are also compared with ε2{4}/ε2{2} from the IS model. (b) Top panel: Comparison of
vn{2, |∆η > 2|}, n = 2, 3, between Xe–Xe and Pb–Pb collisions as a function of centrality.
Middle panel: Ratios between flow coefficients in Xe–Xe and analogous ones in Pb–Pb as
a function of centrality, compared to hydrodynamic calculations from EKRT (η/s = 0.2)
and V-USPHYDRO (η/s = 0.047) [119, 123], respectively. Bottom panel: Double ratio
of data and theory for the two models. Figures taken from Ref. [117].

a hydrodynamic calculation, using V-USPHYDRO with η/s = 0.047 [119], as shown in
the lower panel of Fig. 7.1a. The IS is modelled by TRENTo [120], which is an effective
model for modelling the entropy distribution in the event, and hence the eccentricity
on an event-by-event basis. In this model, the nuclear deformation in Xe is taken into
account, which modifies the distribution of nucleons (Eq. (3.1)) to [121]

ρ(r, θ) = ρ0
1 + exp ((r −R(1 + β2Y20(θ)))/a) , (7.1)
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where θ is the polar coordinate and Y20 is a Bessel function of the second kind (w has
been assumed to be zero in this parametrisation). The nuclear deformation is given
by β2, which for 129Xe is predicted as β2 = 0.162 [122], but has never been measured
directly.

The results are also compared with the eccentricity ratio ε2{4}/ε2{2} obtained dir-
ectly from the IS model. Both of these predictions follow the same trend as the data,
although both deviate somewhat from the data in parts of the centrality range.

In the upper panel of Figure 7.1b, v2{2, |∆η > 2|} and v3{2, |∆η > 2|} are compared
between Xe–Xe collisions at 5.44 TeV, and Pb–Pb collisions at 5.02 TeV, as a function of
centrality. In the middle panel, the ratios between the results from these two systems are
compared with two different hydrodynamic calculations, EKRT using η/s = 0.2 [123]
and V-USPHYDRO using η/s = 0.047. The deformation described by Eq. (7.1) is taken
into account in both of these models.
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Figure 7.2 – vn{2, |∆η > 2|}/εn{2} as a function of transverse density in Xe–Xe and
Pb–Pb for n = 2 and n = 3, for various IS models. Top left: MC Glauber using nucleons
as sources [35]. Top centre: MC KLN [125]. Top right: TRENTo [120]. Bottom: MC
Glauber using 3, 5, and 7 constituent quarks as sources [35], respectively. Figure taken
from Ref. [117].

Following Eq. (3.8), the ratio

vn{2, |∆η > 2|}
εn{2}
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provides an estimate of the scaling factor κn, which for n = 2 and n = 3 is expected
to scale with 1/S dNch/dη. The dNch/dη were provided from other studies [91, 124].
In Figure 7.2, this scaling is tested for a few different IS models: MC Glauber with
nucleons and 3, 5, and 7 constituent quarks (q = 3, 5, 7) [35], respectively, as sources
(cf. Section 3.2.1); MC KLN [125], which is a CGC model; and the TRENTo model.
MC Glauber with q = 5 or q = 7, as well as TRENTo, generally yield good scaling,
although there is a sharp decrease in the ratio at high transverse density. MC Glauber
with nucleons as sources, as well as MC KLN, scale poorly across the systems.

7.4 Discussion
The fact that both the hydrodynamic prediction of v2{4}/v2{2, |∆η > 2|} and the
corresponding eccentricity ratio agree reasonably well with the data in Fig. 7.1a indic-
ates that Eq. (3.8) holds approximately and that flow fluctuations are preserved in the
hydrodynamic expansion. Moreover, it seems TRENTo models the initial eccentricity
fairly well.

Figure 7.1b indicates that both EKRT and V-USPHYDRO are able to model differ-
ences in IS and medium response between Pb and Xe fairly well. The lower v2 in Xe at
mid-central collisions is expected to be due to a larger viscous damping in Xe [119, 123],
since ε2 should be quite similar for the two systems. The peak in central collisions is
mostly due to the deformation of the Xe nucleus, enhancing flow at central collisions.
Since the Xe nucleus is smaller, it is expected to be more affected by flow fluctuations,
which is the most likely reason for the larger v3 (and v2) in central Xe collisions.

The sharp decrease in v2{2, |∆η > 2|}/ε2{2} at high transverse density seen in most
models for Pb–Pb in Fig. 7.2 may indicate some shortcomings in the modelling of the
IS in ultra-central collisions [117]. One reason may be that the model-based value used
for β2 is not entirely correct. Therefore, this measurement can give some insight into
the deformation. By interpolating between the Pb–Pb data points using one of the
models with good scaling, one can determine how large decrease in ε2{2} for central
Xe–Xe that is required to match the interpolated v2{2}/ε2{2} for Pb–Pb, and then
rescale β2 to match this reduction in eccentricity. This yields β2 = 0.14 ± 0.01, where
the uncertainty is model dependent2.

The requirement to use q ≥ 5 in MC Glauber for good scaling shows that one needs
to use several constituent quarks as sources, i.e. take into account subnuclear structure,
for this approach to work properly (also indicated in Ref. [126]). Moreover, MC KLN
can be ruled out from this study, whereas also these results favour TRENTo. It is quite
intriguing that the effective models succeed in describing the initial states, whereas the
only tested model based on QCD inspired effects fails, which means that still much
work is required to understand the underlying mechanisms.

2This calculation was done by Anthony Timmins, who was one of the members in the paper com-
mittee for Ref. [117], but it never made it into the final publication.
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7.5 Conclusions
Measurements of v2, v3, and v4 in Xe–Xe collisions have given valuable information
about the initial state and hydrodynamic propagation in heavy-ion collisions. These
results indicate that flow fluctuations are preserved through the hydrodynamic propaga-
tion. Moreover, both EKRT and V-USPHYDRO can describe differences between Xe–
Xe and Pb–Pb collisions. These models show that the Xe nucleus is deformed. Finally,
the data favour the effective models TRENTo IS model and MC Glauber with multiple
quarks as sources, but rule out the CGC model MC KLN, as well as MC Glauber models
not taking into account subnuclear structure.
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Chapter 8

Analysis of Ξ-Hadron
Correlations in 13 TeV pp
Collisions

8.1 Introduction and Overview
One of the QGP signatures which has been probed experimentally is the enhanced
yields of multistrange hadrons in heavy-ion collisions as compared to small systems (pp
or p–Pb collisions), known as strangeness enhancement, cf. Section 3.6. Until recently,
this was thought to be well understood, until a similar enhancement was observed also
in small systems with high density. As discussed in Chapter 3, this is just one of
several QGP observables where similar effects have been observed in small systems,
but it has the advantage that there are two model very different models that both
predict the observed results reasonably well, namely DIPSY with the rope hadronisation
framework now enabled in PYTHIA, and the core-corona model EPOS. Comparisons
between data and predictions from these two models is shown in Fig. 3.31. While
DIPSY does a better job in quantitatively describing strangeness enhancement, this
measurement alone is not enough to favour the rope hadronisation mechanism over the
core-corona approach; it mostly tells that this model is better tuned to data. Therefore,
the purpose of this analysis is to test the hadronisation mechanisms proposed by these
models through angular correlations, and in the extension – by studying key features
of the correlation function – go beyond these predictions to get a better understanding
of what is happening in these collisions.

As strangeness S is conserved in strong interactions, one expects that when hadrons
are formed, hadrons with S < 0 are exactly compensated by hadrons with S > 0,
resulting in correlations between these hadrons. A prediction of the string/rope model
is that strange hadrons are produced directly by ss pair breakings, so there will be
strong local correlations (in phase space) between strange and anti-strange hadrons in
the same event, even between different hadronic species. On the other hand, if strange
quarks are produced early in the collision and strange hadrons later, as one would
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expect in a thermal picture (this is the way strangeness is produced in EPOS), these
correlations might be non-local (in phase space).

In this study, these predictions are tested by comparing angular correlations between
the multistrange baryon Ξ− (quark content dss) – or its antiparticle – and single-strange
hadrons (kaons and Λ baryons, where K+ = us and Λ = uds) with correlations between
Ξ− and non-strange hadrons (pions and protons). To begin with, Ξ−−K+ (Ξ+−K−)
correlations are compared with the reference Ξ− − π+ (Ξ+ − π−), in pp collisions
at

√
s = 13 TeV. Since these correlations also may be influenced by non-local jet-like

correlations and the underlying event, a subtraction to same-quantum number (Ξ− −h−

and Ξ+ − h+, where h is either π or K) correlations is done as well, which really is the
most relevant observable for this analysis. As an extension, Ξ− −p (Ξ+−p) correlations
are compared with Ξ−−Λ (Ξ+−Λ) correlations. Here, baryon number conservation also
affects the measurements, and therefore this sheds light on the currently quite poorly
understood baryon production mechanism, but this also complicates the interpretation
of the results somewhat. Finally, an attempt is made at measuring Ξ − Ξ correlations,
but for this the statistical sample is quite limiting, making it difficult to draw any strong
conclusions for the time being.

The results are compared to theoretical predictions by PYTHIA8 and EPOS LHC.
For PYTHIA8, an unofficial tune of the rope hadronisation model is also included in
the comparison (as no official tune exists yet), as well as an official tune of the junction
model (cf. Section 3.8.2).

8.2 Introduction to Some Kinematic Variables: Rapid-
ity Versus Pseudorapidity

Before moving on to the measurements, it is useful to discuss two kinematic variables
which are frequently used in the analysis. These are rapidity and pseudorapidity.

While the azimuthal coordinate of the detector volume is simply defined by the
angle, using a similar definition for the longitudinal component would be problematic.
In particular, the distribution of the particle yields close to the centre of the detector
does not scale with the longitudinal angle. Instead a much better variable is rapidity,

y ≡ 1
2 ln

(
E + p‖

E − p‖

)
,

where E =
√
m2 + p2 (where m and p are the particle mass and momentum, respect-

ively) is the particle energy and p‖ its longitudinal momentum, which is ideal since it
is additive under Lorentz boosts [27, pp. 27-30], resulting in a smooth scaling of the
particle yields with rapidity, which is Lorentz invariant. Due to the mass dependence,
this is however impractical to use as definition of the detector coordinates, so instead
pseudorapidity is used, which is the rapidity limit for massless particles and is obtained
as

η = − ln
(

tan θ2

)
,
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where θ is the longitudinal angle relative to the beam direction. When pT � m, η
approaches y, but since the correlation function also involves low-momentum particles
and there is a flattening of the pseudorapidity distribution with decreasing pT, it is
preferred to use rapidity in analyses. The detector volume is however limited in η, so
in order to maximise the statistical sample, a cut has been applied in η instead of in y
in this analysis. The two quantities are related to each other as

y = ln


√
m2 + p2

T cosh2 η + pT sinh η√
m2 + p2

T

 . (8.1)

8.3 Measuring the Correlation Function
The correlation function C(∆y,∆ϕ), where ∆y is the difference in rapidity and ∆ϕ is
the difference in azimuthal angle between trigger and associated particles, is defined as

C(∆y,∆ϕ) = 1
Npairs

d2Npairs
d∆ϕd∆y , (8.2)

where Npairs is the number of trigger-associated particle pairs. For this analysis, the
number of particles associated with each trigger particle is also relevant, and thus it
makes more sense to normalise to the number of triggers Ntrig, which yields the per-
trigger yields

Y(∆y,∆ϕ) = 1
Ntrig

d2Npairs
d∆ϕd∆y . (8.3)

Regardless of normalisation, this is simply a distribution in relative angles between
trigger and associated particles, and can thus ideally be constructed by filling a two-
dimensional histogram over ∆y and ∆ϕ in the selected events. However, for a real
detector, where the phase space is limited and the detector acceptance is not uniform,
the resulting distribution would then become convoluted with the detector acceptance.
To mitigate this, one needs to divide the measured per-trigger yields S(∆y,∆ϕ) with
a distribution B(∆y,∆ϕ) resulting from the convolution alone, i.e.

Y(∆y,∆ϕ) = S(∆y,∆ϕ)
B(∆y,∆ϕ) , (8.4)

where

S(∆y,∆ϕ) = 1
Ntrig

d2N signal
pairs

d∆yd∆ϕ,

where ‘signal’ denotes that this is the distribution of pairs from the same event.
An unbiased way to do this is through event mixing, which means that each trigger

is associated with particles in a set of different events, which should all be as similar as
possible as the original event. Thus

B(∆y,∆ϕ) = 1
C

d2Nmixed
pairs

d∆yd∆ϕ ,
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where C is a normalisation constant and ‘mixed’ denotes that these are from the mixed
event. Here, the normalisation is chosen such that the central value equals unity, which
was ensured by projecting B(∆y,∆ϕ) in ∆y over the full ∆ϕ range and fitting a function
to it of the form

b(∆y) = a0 + a1|∆y| + a2(∆y)2, (8.5)
where ai, i = 0 − 2, are fit parameters.

To ensure large similarity between signal and mixed events, events with a difference
in number of tracks ∆N ≤ 5 and difference in z coordinate of the collision vertex
∆vtxz < 1 cm were used for the event mixing, but apart from when measuring Ξ − Ξ
correlations, where it was done to increase statistics, it was not required that the mixed
event contained a Ξ trigger (the statistics would not have allowed that). This was done
in batches of 1000 000 events each. To minimise statistical errors, up to 60 mixed events
were used per signal event, but fewer if 60 events matching the selection criteria did not
exist within the batch. To further maximise the similarity between signal and mixed
events, the pairs were sorted such that at first hand |∆N | was minimised, and secondly
|∆vtxz|.

For Ξ−Ξ correlations, an additional constraint of ptrig
T > passoc

T was applied to make
sure that each pair was just counted once, and since a random ordering could poten-
tially bias the correlation function. A demonstration of how the correlation function is
calculated is shown in Fig. 8.1.

(a) (b)

(c)

Figure 8.1 – Demonstration of how the
Ξ − π correlation function is measured.
Panel (a) and (b) show the same-event
and mixed-event correlation functions,
respectively, whereas the final result ob-
tained by dividing the two distributions
is shown in panel (c).
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8.4 Event Selection
For the results presented here, a subset of the Run 2 pp data set covering one run period
from 2016 (pp16k) and most of the 2018 data (9 run periods), corresponding to 820
million events, has been used. This data set was selected since it it has passed the quality
assurance during previous correlation studies in ALICE, and the same gas mixture
(based on argon) was used in the TPC for all these run periods1. This is associated
with a set of Monte Carlo (MC) samples totalling 190 million events. This was obtained
from simulations by the PYTHIA8 event generator [74] and all tracks were propagated
through the detector using the available GEANT3/FLUKA simulation [127]. Using a
MC run is important for several parts of the analysis, in particular for validating the
method and calculate efficiencies, as will described later in this section. The GEANT3
software is unfortunately a bit dated, resulting in quite large uncertainties on some
parameters, but unfortunately the simulation using the newer GEANT4 software is not
yet finished for the full detector, so this could not be used for this thesis.

Following the original event selection, a couple of quality cuts were applied to filter
away bad events. The following cuts were applied:

• The standard physics selection using the minimum-bias trigger was applied. For
pp collisions this means that a hit is required in both the V0A and V0C detectors.

• Events with an incomplete DAQ were rejected.

• Events flagged as pile-up (i.e. containing overlapping data from other bunch
crossings) based on the timing information from the V0 or SPD were rejected.

• It was required that the primary vertex was found by the SPD, determined to a
resolution of ≤ 0.25 cm and a dispersion of < 0.04 cm.

• Events where the difference in z position of the primary vertex reconstructed using
global tracks (ITS+TPC) and only the SPD was ≥ 0.5 cm were rejected.

• The distance in z coordinate between the collision point and the centre of the
detector was required to be |vtxz| < 10 cm in order to ensure uniform efficiency
within the detector.

Finally, events were divided into multiplicity classes based on the V0M centrality
estimator (cf. 7.2). The correlations were measured both for minimum-bias events
(no multiplicity selection), and for a low- and high-multiplicity sample, covering the
60% of the events with lowest multiplicity, and the 5% with the highest multiplicity,
respectively. These intervals were selected since it was found that each contain about
20% of the total Ξ sample, which was chosen for statistical reasons.

1In this way, it was assured that tracking efficiencies etc. would not fluctuate too much between
different run periods.
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8.5 Particle Identification
For this analysis, it is important to disentangle the contributions to the correlation
function from different particle species, which requires to use several of the PID tech-
niques offered by the ALICE detector. In principle, there are two different categories
of particles, namely long-lived particles that can be identified directly from the tracks
they leave within the detector, and short-lived particles, which are identified from their
decay products. All unstable particles relevant for this analysis decay through the weak
interaction and as such, they are relatively long-lived compared to particles decaying
through the strong or electromagnetic interactions. In fact, all particles used in this
analysis live long enough to on the average have travelled a significant distance from
the primary vertex before they decay, which has implications on the decay topology and
make them easier to identify, as will be described below. A summary of some proper-
ties of the particles included in this analysis, along with a few other related particles,
is given in Appendix C.

8.5.1 Identification of Long-Lived Particles (Direct Detection)
The only charged particles (except nuclei) which live long enough to be detected directly
in the detector are pions, kaons, protons, electrons, and muons. Muons have signatures
very similar to pions in the TPC and TOF detectors, requiring to use other means to
detect them. Therefore, they are not relevant for this analysis, other than as a nuisance
for the pion identification, which should be corrected for2. The other particle species
can easily be identified in the central barrel, but since electrons have a huge background
from pair production from photons interacting with the detector material, and are not
very relevant for the physics case, they are not included in this study.

These particles can be identified through the specific energy loss in the TPC and
their absolute velocity β = v/c, which is measured by the TOF. The average energy
loss 〈dE/dx〉 of a particle traversing a medium is related to β through the Bethe-Bloch
formula, which can be approximated as [10, p. 86]〈

dE
dx

〉
= 4πα2h2Z2ne

meβ2

(
ln
(

2mec
2β2γ2

I

)
− β2 − δ(γ)

2

)
, (8.6)

where α ' 1/137 is the fine structure constant, h is Planck’s constant, me is the electron
mass, ne is the electron density in the material, I is the ionisation potential, Z is the
charge of the particle, γ = 1/

√
1 − β2 is its Lorentz factor, and δ is a factor entering

from dielectric screening which is important only for energetic particles. Therefore,
the energy deposit in a given material only depends on the velocity and charge of the
particle. In the ALICE TPC however, one instead uses a parametrisation proposed by
the ALEPH collaboration, which is on the form [100]

dE
dx = P1

βP4

(
P2 − βP4 − ln

(
P3 + 1

(βγ)P5

))
, (8.7)

2As charged pions primarily decay into muons, and primary muons are created in electromagnetic
processes (which are suppressed compared to strong processes in hadron collisions), most muons in the
central barrel actually originate from pion decay, which makes this not strictly necessary, but should
be done for increased accuracy.
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where the parameters P1 − P5 are obtained by fitting the measured response to known
particles being detected in the TPC. The quantities β and γ are related to the particle
momentum p and mass m through

β = p√
p2 +m2

, γ =
√

1 +
( p
m

)2
,

where c has been set to 1. Finally, p/Z can be obtained by measuring the radius of
curvature in the magnetic field.

(a) (b)

Figure 8.2 – (a) TPC signal (specific energy loss), along with lines over expected detector
response for some of the most common particles, and (b) TOF β, for tracks originating
from 13 TeV pp collisions, as a function of p. Figures taken from Ref. [128].

In practice, the measured dE/dx will be smeared by the tail in the energy loss
distribution3 and the TOF β will be smeared by the detector resolution, resulting in
a spread around the expected average. Yet, both the TPC and TOF provide clearly
distinguishable particle bands when measuring the response as a function of momentum,
as seen in Fig. 8.2. This is particularly the case at low momentum, but starting at
∼ 0.7 GeV/c for the TPC and ∼ 1.5 GeV/c for the TOF detector, the hadron bands
start to mix. By combining information from both detectors, this limit can be extended
somewhat, but already at ∼ 2 GeV/c kaon tracks are largely contaminated by pions.
To obtain accurate correlation results, a high purity is required, so one needs to resolve
this issue. There are basically three options:

• One can limit the analysis to a momentum range where the track purity is high,
with consequently a large loss in statistics. Only about half of the tracks have

3dE/dx follows a Landau distribution, which has a long tail towards large values. Therefore a few
events may deposit significantly more energy than the average, limiting the resolution.
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a successful TOF hit with a good matching between the TPC and TOF PID
information4, but this makes it possible to extend the momentum range somewhat.

• If desiring to reach a higher momentum and further increase the purity, a com-
monly used option is to apply a rejection cut, such that tracks where the PID
information is overlapping with another species are rejected. Apart from the
additional loss in efficiency, this approach is heavily reliant on the detector sim-
ulation, which has turned out to not simulate the distribution of the TOF β
very well (and in particular the TOF tail, see below), resulting in a significant
systematic uncertainty.

• A final option is to include all good tracks and subtract the contributions from
misidentified tracks. As the correlation function is additive, this is possible if the
misidentification fractions are known. This is the approach used in this analysis.

Before being used in any analysis, the tracking information is processed into ESD
and AOD files (cf. Section 4.7), which are the actual analysis files. In the process, the
detector responses are converted to the number of standard deviations nσi from the
expected detector response of each track type i = π,K, p, e. The TPC response follows
to a good approximation a Gaussian distribution, whereas the TOF distribution also
has a tail in β, falling off as exp(−β) rather than the Gaussian behaviour of exp(−β2).
This is difficult to simulate, which is the reason why a rejection cut in nσi is unreliable.
For this analysis, an inclusion cut is instead applied, such that tracks with |nσi| < 4
for at least one i are included in the analysis. Here

nσi =
{

nσi
TPC, no TOF hit,√

(nσi
TPC)2 + (nσi

TOF)2, TOF hit, (8.8)

i.e. TOF information is used whenever available, otherwise just the TPC information
is used. By using the TPC information alone, it would be impossible to disentagle the
different track types where the detector response lines cross. Therefore, one needs to
use both detectors, but including tracks also without a successful TOF hit increases
the overall statistical significance considerably. By requiring that the combined nσi

of the TPC and the TOF is below 4, mismatched tracks are rejected. Moreover, the
inclusion probability is not as dependent on the TOF tails as the rejection probability,
making the Monte Carlo simulations more reliable. In Section 8.7, it is described how
the contributions from different particle species are disentangled.

A summary of all track cuts used for the associated pions, kaons, and protons is
given in Table 8.1. The reason for the higher minimum momentum for protons is that
these are heavier and thus a higher momentum is required to escape the magnetic field.
Moreover, at low momentum they are largely contaminated by material interactions, due
to protons in the material being knocked out by other particles from the collision and
entering the detector volume. The high-momentum limit is due to a poor spectra closure
at higher momentum, cf. Section 8.9.1. A cut for the distance-of-closest-approach in the
transverse plane (DCAxy) to the primary vertex was used to suppress the contamination
from secondaries. This was set to 7 times the resolution of this quantity [128], since it

4Sometimes the measured TOF β is associated with a TPC track with a specific energy loss corres-
ponding to another particle species, which is known as TOF mismatch.
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from statistical arguments is more or less certain that a track with a larger DCAxy does
not originate from the primary vertex. A cut in longitudinal DCA (DCAz) was used to
reduce out-of-bunch pileup. In experimental data, DCAxy and DCAz are measured by
extrapolating the track back to the vicinity of the collision point. In addition, a couple
of quality cuts based on the TPC clustering parameters were used to ensure a good PID
quality and high resolution of the detector response. Finally, since in this analysis the
tracks are used for measuring correlations with a Ξ baryon, it was required that all the
tracks used for reconstruction of a Ξ candidate (see the next section) were rejected. For
the trigger itself, this is a necessary constraint to avoid autocorrelations, but all such
tracks were excluded to get the efficiency correction right.

Table 8.1 – Track cuts used for associated particles, nσi is defined by Eq. (8.8).

Transverse momentum 0.2 < pT < 3 GeV/c
(pT ≥ 0.4 GeV/c for protons)

Pseudorapidity |η| < 0.8
Number of TPC clusters (out of 159) Ncl ≥ 70
Fraction of findablea TPC clusters Ncl/N

f
cl > 0.8

Goodness-of-fit χ2 per cluster
(2 d.o.f./cluster) χ2/Ncl < 4
Number of associated SPD clusters ≥ 1
TPC and ITS refits required
Longitudinal DCA DCAz ≤ 2 cm
Transverse DCA DCAxy < 0.0105 + 0.035p−1.1

T cm
PID |nσi| < 4 for either of i = π,K,p,e
Other constraints not used in reconstruction of any

Ξ candidates
aClusters for which it is geometrically possible that they could be assigned to the track.

8.5.2 Identification of V0 Particles and Cascades
Weakly decaying particles which can be identified through their decay topology are
divided into V0 particles and cascades. The former are neutral particles (which thus
leave no direct tracks in the detector) which decay into a pair of oppositely charged
long-lived daughter particles. Due to the applied magnetic field, these will bend in
opposite directions, resulting in a “V” pattern in the detector. The strange particles
which can be identified in this way are K0

s (decays into two pions) and Λ (decays into a
π− and a proton). Due to time constraints, K0

s have not been included in this analysis.
Cascades, on the other hand, are charged and decay into a long-lived charged particle

(called bachelor) and a V0 particle. In the detector, this will leave a bachelor track
originating from a point quite close to the primary vertex, and a V0 decay somewhat
further out. A schematic figure of the detection pattern is shown in Fig. 8.3. There are
two cascades which can be identified in this way, Ξ− and Ω− (and their antiparticles).
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Figure 8.3 – Schematic view of a detection of a Ξ− baryon through its decay products,
along with another negative hadron h−, projected on the transverse plane of the detector.
The correlation between the two particles is measured from the angular distance. Projec-
ted in azimuthal angle, this is ∆ϕ, as indicated in the figure. Modified version of figure
taken from Ref. [129].

These decay primarily as [11]

Ξ− −→ π− + Λ0 BR = 99.9%,
Λ0 −→ π− + p BR = 63.9%,

and

Ω− → K− + Λ0 BR = 67.8%,

where BR is the branching ratio. Due to statistical limitations, Ω baryons have been
excluded from this analysis, which is the reason why it fully focuses on Ξ.

To identify the V0s and cascades, tracks satisfying a selection of topological cuts
following the expected decay topology are grouped together, which is done already in
the central data processing stage. These were further refined in the analysis to reduce
the background, as described henceforth. Moreover, a constraint on the deviation in
TPC signal strength from the expected daughter particle of |nσ| < 4 was applied to each
track. Apart from that, most track cuts listed in Table 8.1 were not applied, which for
instance means that a successful refit is only required for the TPC. To complement this,
it was required that for at least one of the daughter tracks, there is either a successful
ITS refit or a TOF hit. This was done to ensure that the tracks indeed point back to
the primary vertex, in order to suppress out-of-bunch pileup. If using the TPC alone,
there may linger tracks from another bunch crossing in the detector, and to discard
such tracks a faster detector is required. Finally, an invariant mass cut was applied to
the decay products such that the deviation in invariant mass from the expected value
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|∆M inv| should not be too large. The invariant mass is calculated as

M inv =

√√√√(∑
i

Ei

)2

−

∣∣∣∣∣∑
i

pi

∣∣∣∣∣
2

, (8.9)

where Ei and pi are the energies and 3-momenta of the cascade or V0 daughter particles.
The energy is calculated as

Ei =
√
m2

i + p2
i ,

where the masses are obtained from the hypothesised decay particles.

Figure 8.4 – Schematic drawing of a V0 decay with definitions of all topological cut
values. Legend: d+: positive V0 track, d−: negative V0 track, PV: primary vertex, SV:
secondary vertex, DCA: distance-to-closest approach, see text for definitions, PA: pointing
angle, rdec

T : transverse decay radius; this is the minimum accepted distance between PV
and SV. Figure taken from Ref. [130, p. 102].

Schematic drawings of a V0 decay and a cascade decay are shown in Figs. 8.4 and 8.5,
respectively, where all cut variables are defined. Three DCA variables are defined.
These are the extrapolated distance-of-closest-approach between each daughter track
and the primary vertex DCAd−PV, the DCA between the V0 daughter tracks DCAd−d,
and the DCA between the reconstructed V0 (or cascade) in the momentum direction
and the primary vertex DCAV0−PV (DCAcasc−PV). Here, a lower limit should be set
on DCAd−PV in order to reduce the combinatorial background from primary tracks,
and DCAd−d and DCAV0−PV (DCAcasc−PV) should be as small as possible. For the
cascades, a lower cut on DCA between the V0 daughter and the primary vertex is used
in some analyses to suppress combinatorial background from primary Λs, but this was
not done here since the simulations showed that this would not have the desired effect.

On top of this, there is a cut on the pointing angle, which is defined as the angular
difference between the momentum sum of all daughters and the motion of the V0 or
cascade with respect to the primary vertex. In practice, one defines the cut in the cosine
of this, cos(PA). A cos(PA) of 1 corresponds to full alignment between the momentum
sum and the particle motion, which would be expected in an ideal detector. Therefore,
the cut should be set close to unity. This is actually a very efficient way of cutting away
combinatorial background, but since the MC description of it is quite poor, it should
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Figure 8.5 – Schematic drawing of a Ξ− decay (cascade topology) with complementary
topological cut definitions. Additionally, most cuts defined in Fig. 8.4 are applied also to
the V0 daughter and a rdec

T cut is applied to the secondary vertex. DCABachelor−V0 is not
used in the analysis. New definitions in this figure: TV: tertiary vertex, DCAV0 daughters:
same as DCAd−d in the text. Figure taken from Ref. [131, p. 24].

not be set too tight, else the efficiency correction gets wrong. For cascades, a cut is
also put on the daughter cos(PA) in many analyses, but due to the momentum kink
received by the daughter particle upon the Ξ decay, this is actually not very accurate.
In this analysis, it was shown that such a cut had little to no effect on the background
reduction, and thus it was not applied.

The final cut is on the transverse decay radius, rV0

T (rcasc
T ), which is the distance

between the primary and secondary vertices in the transverse plane. In particular at
low momentum, there is a large risk of contamination from tracks originating from in-
teractions with the material in the ITS (material background) and therefore a lower cut
in rV0

T or rcasc
T is used. Additionally, an upper cut should be applied at low momenta,

since the V0 or cascade will at most travel a few decay lengths before it decays, and
therefore this may be used to reduce the combinatorial background. This can in prin-
ciple be done by imposing a cut on the decay length, but since this requires taking into
account the Lorentz boost, a simpler approach was to determine this from Monte Carlo
simulations as described below.

To determine which cuts to use, a coarse invariant mass cut of |∆M inv| < 80 MeV/c
was applied as a starting point, in combination with the nσ cuts and a slightly tighter
set of topological cuts than the standard ESD cuts. For the Λs, an additional cut of
|∆M inv

K0
s

| > 10 MeV/c was applied, since otherwise there is quite a large contamination
from K0

s , which are much more common than Λ. The MC signal and background distri-
butions were then studied for each cut (including invariant mass cut of the Λ daughter
to the Ξ candidate, but not mother invariant mass cuts) in cut-pT space. Regions with a
large background and/or low signal-to-background ratio (signal/background . 0.1, but
slightly higher tolerance at low pT where the signal is low) were cut away. If there was a
strong pT dependence on these parameters, a pT dependent cut was selected manually,
and a power law was fitted to the data points. Otherwise, a flat cut was used. The
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(a) (b)

(c)

Figure 8.6 – (a) Signal, (b) back-
ground, and (c) signal-to-background ra-
tio as a function of pT and cascade radius
cut, for an otherwise very loose cut set.
Note the logarithmic scales. The selected
cuts (power-law fits) are shown in red.

selection procedure is demonstrated for cascade radius in Fig. 8.6, with complementary
figures for other cuts in Appendix D.2.

To refine the invariant mass cuts, a different approach was used. Here, a two-
dimensional histogram in pT − ∆M inv space was filled with Ξ or Λ candidates from the
ALICE data set, using the obtained topological cuts. Each slice in pT was fitted by a
double Gaussian to describe the signal5, plus a background function. For Ξ and most of
the pT range in Λ, a one-dimensional polynomial turned out to describe the background
adequately, but for pT < 1 GeV/c, there is a strong invariant-mass dependence of the
background originating from material interactions. This required an additional term on
the form

B(x) = c1 · exp
(

−4
(
x− c2
c3

− 1
))

·
(
x− c2
c3

)4
, (8.10)

where c1 − c3 are fit parameters (i.e. the same function as is used in Eq. (5.2)), to
accurately describe the background. The final invariant-mass cut was then set as the
3σ limits of the wider Gaussian component, except the two lowest pT bins (0.4 < pT ≤
0.6 GeV/c, used for feed-down corrections) for Λ, where the narrower component was
used. In these bins the wider component sometimes had very low amplitude, yielding
unstable fit results. To be able to use this in the correlation measurement, a power law
was fitted to σ in the lower-pT part of the spectrum, which was matched to a constant

5The invariant-mass peak has an approximately Gaussian shape due to the detector smearing, but
the tails are generally longer than what is obtained from a Gaussian alone. This is remedied by
superposing two Gaussian distributions, which has proven to describe the data very well.
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Figure 8.7 – Fitted values of (a) the width σ and (b) the mean µ of the invariant-mass
peak for Ξ−, and (c) and (d) the same quantities for Λ. The solid curves are fits to the
parameters, which were used when selecting these baryons in the analysis.

value at the upper range (mostly done due to large fitting uncertainties in this range).
The resulting fits for Ξ and Λ are shown in Figs. 8.7a and 8.7c, respectively. A similar
fit was applied to the mean value µ of the same Gaussian component (this was not
assumed to be centered at zero), but this was fitted by a two-dimensional polynomial
instead, as shown in Figs. 8.7b and 8.7d.

Following reconstruction of all Ξ candidates in the event, it was just as for the tracks
themselves ensured that the Λ baryons used as associated particles were not among the
candidates for Ξ daughters. Here, this also helped in reducing the feed-down

138



Table 8.2 – Cuts used for the selection of Λ candidates. The topological cuts are defined
in Fig. 8.4. For the pT-dependent cuts, pT is in GeV/c.

Daughter track cuts
General either ITS refit or TOF hit for at least one daughter track,

not included in Ξ reconstruction
Transverse momentum 0.15 < pT < 20 GeV/c
Pseudorapidity |η| < 0.8
PID selection |nσTPC PID| < 4
Pion daughter DCA DCAd−PV > 0.10 cm
Proton daughter DCA DCAd−PV > 0.03 cm
V0 cuts
Transverse momentum 0.6 < pT < 12 GeV/c
Pseudorapidity |η| < 0.72
Invariant mass |∆M inv + (0.05 + 0.13pT − 0.016 p2

T)MeV/c2|

<

{
11.7 + 210 ((pT − 0.3)0.0017 − 1) MeV/c2, pT < 2GeV/c,
13.6 MeV/c2, pT ≥ 2GeV/c

DCA V0-daughters DCAd−d < 1.0 cm
V0 DCA not applied
V0 radius max(0.2,−1.1 + 1.2(pT − 0.35)0.56) < rV0

T < 83pT − 22 cm
Cosine of pointing angle cos(PA) > 0.995
K0

s rejection |∆M inv
K0

s
| > 10 MeV/c
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Figure 8.8 – Invariant-mass distribution of Ξ− candidates in the transverse-momentum
region 2.0 < pT ≤ 2.2 GeV/c, including a double-Gaussian fit + one-dimensional polyno-
mial background. The red ticks mark the 3σ limits of the wider Gaussian component,
which are used as limits for the signal region. The background is estimated from the
sideband region, located between 3 and 6σ away from the mean.
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Table 8.3 – Cuts used for the selection of Ξ candidates. The topological cuts are defined
in Figs. 8.4 and 8.5. Throughout this table, pT is in GeV/c. The cascade pseudorapidity
cut is applied due to a very low reconstruction efficiency close to the detector edges, cf.
Section 8.6.

Daughter track cuts
General either ITS refit or TOF hit for at least one daughter track
Transverse momentum 0.15 < pT < 20 GeV/c
Pseudorapidity |η| < 0.8
PID selection |nσTPC PID| < 4
V0 pion daughter DCA DCAd−PV > max(0.03,−0.11 + 0.18 (pT − 0.45)−0.36) cm
V0 proton daughter DCA DCAd−PV > max(0.03,−3.085 + 3.159 (pT − 0.45)−0.019) cm
Bachelor DCA DCAbach−PV > 0.021 + 0.034 (pT − 0.45)−0.73 cm
V0 cuts
Invariant mass |∆M inv| < 2.6 + 2.5 pT MeV/c2

DCA V0-daughters 1.5 cm
V0 radius 1.2 < rV0

T < 16 + 57 (pT − 0.45)1.1 cm
Cosine of pointing angle not applied
DCA V0-primary vertex not applied
Cascade cuts
Transverse momentum 1.2 < pT < 12 GeV/c
Pseudorapidity |η| < 0.7
Invariant mass |∆M inv + (0.41 − 0.47pT + 0.056 p2

T)MeV/c2|

<

{
6.6 (pT − 0.5)0.24 + 2.1 MeV/c2, pT < 5GeV/c,
11.7 MeV/c2, pT ≥ 5GeV/c

Cascade DCA DCAcasc−PV < min(2.0, 0.007 + 1.34 (pT − 0.45)0.68) cm
Cascade radius 0.57 + 0.09( pT − 0.45)0.81 cm < rcasc

T < 9 + 27 (pT − 0.45)1.7 cm
Cosine of pointing angle cos(PA) > max(0.993, 0.9983 − 3.2 · 10−3(pT − 0.45)−2.25)

contamination, cf. Section 8.8. Summaries of all cuts – topological as well as others –
for the (primary) Λ and Ξ selections are given in Table 8.2 and 8.3, respectively.

With all cuts applied, some background still remains, which needs to be corrected
for. While the spectra can be obtained directly from the invariant-mass fits, this can
in practice not be done when measuring the correlation function. Instead, the back-
ground contribution needs to be subtracted from the full correlation function within the
invariant-mass window in order to retain the signal correlation. This was done through
sideband subtraction, which means that one selects data from regions on either side of
the invariant-mass peak and uses these regions to approximate the background under
the peak. These should be as close to the peak as possible to make sure that the back-
ground correlations do not change too much, but be sufficiently far away as to (almost)
not contain any signal. For Ξ, it turned out that background regions between 3 − 6σ
away from the peak was enough, but for Λ some signal still remained in this window,
and thus the region 4 − 7σ was used instead. If the background is linear, and the sum
of the background windows is of the same width as the signal window, the sum of the
background in the sideband region will be the same as in the signal region.

For the non-linear part, i.e. low-pT Λ, the sidebands need to be scaled such that
the integral of the background in the signal region is the same as for the sideband
regions. Since the non-linearity originates from material interactions, whereas the linear
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part is mostly combinatorial, with possibly different correlations to the trigger, the
sidebands should be combined in such a way that the relative proportion between the
two components in the signal region is preserved. The procedure for this is described
in Appendix A.2, where also the obtained coefficients are listed. In the very lowest
bin, there was an issue with the invariant-mass distribution for Λ, and since this part
of the spectrum was only used for scaling purposes for the feed-down corrections (cf.
Section 8.8), it was decided to only use the Λ result here. A demonstration of the
sideband subtraction for Ξ in the region 2.0 < pT ≤ 2.2 GeV/c is shown in Figure 8.8.
Analogous plots for a few other transverse-momentum regions for both Λ and Ξ are
given in Appendix D.2.

8.6 Efficiency Corrections
When measuring correlations in data, one needs to correct for the efficiency loss in the
detector, which is done through Monte Carlo simulations. For the trigger particles, this
is done on-the-fly, with each trigger divided by the reconstruction efficiency εtrig(pT, η).
When measuring correlations with Λ or other Ξ baryons, a similar factor was applied
also to the associated particles. However, for the method used here, which is described in
the next section, the correlation function for the associated particles detected as tracks
in the detector was sliced in associated-particle momenta, and the efficiency corrections
were applied just upon merging.

For both trigger and associated particles, efficiency corrections were calculated from
Monte Carlo simulations, by dividing the reconstructed yields of each particle propaged
through the detector simulation, by the generated yields from the event generator. For
the generated particles, only primary particles were included, whereas for reconstructed,
most particles originating from decay of secondary particles were included as well. This
contamination is known as feed-down, and for minor sources the most efficient way to
compensate for it is to include it in the efficiency corrections. For a correlation analysis,
however, one should be careful about this, and therefore a more accurate approach was
used for the largest feed-down sources. This is described in Section 8.8.

The efficiencies are momentum dependent, both due to the magnetic field and mo-
mentum dependent interactions with the materials. The former depends on transverse
momentum pT, particularly since low-pT particles may be trapped in the magnetic field,
while the latter rather depends on the total momentum, p. Moreover, longer tracks (lar-
ger |η|) activate more clusters in the TPC, and are thus more likely to satisfy the track
cuts. On top of that, detector non-uniformities add an additional dependence in η and
ϕ, but this is mostly compensated for by the event mixing, and thus it was concluded
that no efficiency corrections in ϕ were necessary. For pseudorapidity on the other
hand, it turned out that corrections were necessary for Ξ and Λ baryons – which have
a large η dependence due to the increasing fraction of daughter tracks escaping when
approaching the detector edges – but not for tracks that can be detected directly in the
detector.

The efficiencies Ξ and Λ as a function of pT and η are shown in Fig. 8.9 and 8.10,
respectively. Efficiencies for pions, kaons, and protons were measured in p, using the
same binning as used for the slicing of the correlation function (cf. Section 8.7).
It turned out that these differed slightly between run periods; therefore they were
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(a) (b)

Figure 8.9 – Efficiency in (η, pT) space for (a) Ξ− and (b) Ξ+.

(a) (b)

Figure 8.10 – Efficiency in (η, pT) space for (a) Λ and (b) Λ. Secondary particles
(feed-down) have been excluded from this calculation.
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Figure 8.11 – Particle efficiencies in the run period pp16k for (a) positive particles and
(b) negative particles, not including contamination from secondary particles.
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calculated for each run period separately. The results for the pp16k dataset are shown
in Fig. 8.11.

8.7 Disentangling Contamination From Misidentified
Tracks: the Linear Algebra Method

As mentioned in Section 8.5.1, all tracks satisfying the track cuts summarised in Table 8.1
were used in the analysis and a subtraction scheme was applied to remove the contam-
ination from misidentified tracks. More specifically, linear algebra techniques were used
to extract the per-particle correlations from the per-track correlations. In this section,
it is described how this was done.

To begin with, the tracks were separated in those having a TOF hit and those
without, since the purity gets significantly higher if using the combined TPC+TOF
information compared to the TPC alone (but tracks without TOF information are used
nevertheless due to the low TOF efficiency). At low momentum, however, the distinction
power of the TPC is high and the TOF efficiency is very low. Therefore, for particles
with low momentum, only the TPC information was used. Different momentum limits
for the TOF were used for different track types. These are summarised in Table 8.4.

Table 8.4 – Momentum (p) limits for enabling the TOF detector for each particle type.

Particle type Momentum limit (GeV/c)
π, e 0.4
K 0.6
p 0.9

To begin with, each track was associated with the particle species with the smallest
|nσi|, as defined by Eq. (8.8), except that a pion veto was applied against electrons, due
to the much larger abundance of pions. This yields eight different track classes, four for
tracks with a TOF hit and four for those without. For each class, the misidentification
fraction of each particle type was first measured in MC. This was done as a function
of momentum, p, since the detector responses are dependent on p rather than pT.
Moreover, when measuring the misidentification fractions, as well as the efficiencies of
associated tracks, the track yields were multiplicity weighted to mimic the presence
of a Ξ baryon. This was done to assure that the fraction of tracks with a successful
TOF hit, as well as the total efficiency, was correct, since these quantities may have a
multiplicity bias. To obtain the misidentification fractions in data, it was assumed that
the detector simulation is correct to first order, which is a reasonable assumption in the
selected momentum region if not applying any strong rejection cuts (cf. Section 8.5.1),
and is confirmed in Fig. 8.19. However, the particle ratios may be different at generator
level compared to data, so this needs to be corrected for.

If the fraction of particle species j in MC is xMC
j , and in data it is xdata

j , the contam-
ination fraction in data will scale by xdata

j /xMC
j , save for a normalisation factor, simply

because there were more particles of this species to begin with. With normalisation,
the misidentification fraction of species j for track type i in data becomes
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Figure 8.12 – Misidentification fraction in data for positive tracks, as a function of
momentum. Left: TPC only tracks. Right: Combined TPC+TOF tracks. (a-b): Pion
tracks, (c-d): kaon tracks, (e-f): proton tracks, (g-h): electron tracks.



adata
ij = aMC

ij ·
xdata

j /xMC
j∑

k a
MC
ik xdata

k /xMC
k

, (8.11)

where aMC
ij is the misidentification fraction in MC. If letting yi be the fraction of tracks

of type i, one can form the equation system

ATy = x, (8.12)

where A is an 8×4 matrix with all aij , y is a column vector with all yi and x is a column
vector with all xj . This identity is valid both in MC and in data, and Eq. (8.11) forms
the link between the two systems. Hence, Eqs. (8.11) + (8.12) can be combined into
a single system. Since AMC and xMC are known, by putting y ≡ ydata, this combined
system can be solved iteratively to obtain Adata and xdata, i.e. the misidentification
fractions and particle ratios in data. This was repeated in each momentum bin, and
only for tracks in events containing a Ξ trigger since the correlation with a Ξ trigger will
also affect the total yield. The obtained misidentification fractions for each track type
are shown in Fig. 8.12. To account for muon contamination, it was assumed that the
µ/π ratio is correct in MC, which is reasonable since most muons originate from pion
decay. Since muons are so strongly mixed with pions, no attempt was made to separate
these particle species at track level. Instead, the muon fraction was just subtracted off
from the pion yield.

Here it has been assumed that the misidentification fraction is independent of the
distance to the trigger particle. Following the same logic as above, if the trigger is
giving rise to strong correlations, this is not the case if the desired particle is correlated
differently with the trigger than other particles contaminating the track. Therefore,
this correction should ideally be done in (∆y,∆ϕ) space, which would require fitting
and would thus be quite challenging. This was not attempted due to time constraints.
The results from the MC closure test (cf. Section 8.9.1) indicate that this is probably
not necessary for minimum-bias correlations, but may be so if pursuing a pT dependent
analysis.

To measure the correlation function, this was first separated into track types (defined
by the most likely particle species), and calculated separately in each momentum bin.
Moreover, the calculations were repeated for each mass hypothesis ((π,K, p, e)), since
this affects ∆y (cf. Eq. (8.1)), and the rapidity distribution needs to be correct at the
final merging in order to give the correlation function the correct shape. To obtain the
correlations to each particle species, one needs to solve the system

AS̃particle = S̃track,

where S̃ is a column vector with either the same-event or mixed-event correlations to
all tracks/particles, normalised to the number of tracks/particles6. Since A is an 8 × 4
matrix, this system is overdetermined and a least-squares solution is required in order
to maximise the statistical significance. This has the solution [114, p. 93]

S̃particle = (ATWA)−1ATWS̃track, (8.13)
6This works, since the correlation function is additive, at least locally. Ideally, this system should be

solved separately in each (∆y, ∆ϕ) bin, but this might not be possible due to time constraints. If not,
most errors caused by only doing this globally should enter into the MC closure test, cf. Section 8.9.1.
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where the weight-matrix W = diag(Ntrack), where Ntrack is a vector with the number
of tracks of each track type. These were not efficiency corrected, since this is used for
determining the variance only. Moreover, the muon and pion fractions were merged
exclusively in this step, since otherwise the efficiency correction would not be correct7.
In this final step, the correlations obtained using the invariant mass of the desired
particle species were used. The obtained weights for combining each track type are
summarised in Fig. 8.13. Since a subtraction is sometimes needed, negative weights are
possible.

Finally, in order to obtain the unnormalised correlation functions S and B used in
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Figure 8.13 – Weights used to obtain the
linearised system defined by Eq. (8.13),
for Ξ− −h+ correlations. (a): Pions, (b):
kaons, (c): protons. The subscript TOF
is used for combined TPC+TOF tracks,
whereas data points without a subscript
are TPC only tracks.

7Since the muon and pion tracks are merged, we are forced to measure the combined muon plus
pion correlation function. The muon fraction was subtracted when evaluating Eq. 8.14.
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Eq. (8.4), S̃particle was multiplied by

Nparticle = E(p)ATNtrack
, (8.14)

where E(p) is a diagonal matrix with all particle efficiencies, which are summarised in
Fig. 8.11. The results from the different momentum bins were merged before dividing
the same-event and mixed-event correlation functions.

8.8 Feed-down corrections
Not all particles which leave tracks in the detector originate from the collision itself,
but a significant fraction originates from decays of more short-lived particles. This is
known as feed-down, and since the purpose of this analysis is to study the production
mechanisms in the collisions, this needs to be corrected for.

There are two types of particles which contribute to the feed-down: weakly decaying
particles and resonances. The latter decay via either the strong or the electromagnetic
interaction and are not affected by any topological cuts. In particular strongly decaying
particles can be considered to be part of the collision itself. These will affect the
correlation function in various ways, but their interactions are rather studied from their
combined contribution to the full correlation function than to try to isolate them. A
possible exception is the φ meson, which to a good approximation is a pure ss state [11,
p. 281], and therefore can be used to study strangeness production, e.g. through φ− h
correlations. The φ meson decays primarily into two kaons, but it has still been decided
to include its contribution in the Ξ − K correlation functions.

The weakly decaying particles on the other hand, are long-lived enough to decay
relatively far from the collision vertex (typically in the cm − dm range) and therefore
any contamination from these in the correlation function will probe different processes
than the ones we are interested in. All weakly decaying particles which contribute signi-
ficantly to the feed-down are included in the list of hadrons in Appendix C, along with
their main decay channels. The particles with a decay length > 1 m will mostly decay
in the TPC or outside the detector volume and will thus not significantly contribute
to the feed-down, which is ensured by the DCA cut listed in Table 8.1. Instead, the
particles with decay lengths cτ in the cm range are the ones that contribute to the
feed-down.

To make matters worse, particles from the collision may interact with material in
the detector, in particular the ITS, where they may either scatter, knock out nucleons
(or electrons) from the material, or produce new particles through various reactions
(e.g. antimatter annihilation). This is known as material feed-down. Protons and
pions from material feed-down will also contaminate the V0 selection, but here it is
corrected for by sideband subtraction (cf. Section 8.5.2). Both feed-down from weak
decays and material interaction are reduced by the DCA cut in Table 8.1, but since it
was decided not to apply a similar cut on V0s due to its impact on the signal loss, the
decay feed-down contribution to the Λ data set is quite significant.

To determine which feed-down sources are likely to significantly affect the results,
the fraction of tracks originating from each of these sources as a function of pT was
extracted from MC simulations. The only significant sources (& 1%) were K0

s decay
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into pions (∼ 1.5% of the tracks), Λ (∼ 5%) and Σ+ (∼ 2%) decay into protons, material
feed-down to protons (∼ 1.5%; these are knocked out from the material, so this does not
include antiprotons), and Ξ0 (∼ 6%) and Ξ− (∼ 5%) decay into Λ baryons. All other
sources – including all contributions to kaons or Ξ – are small or negligible and were
therefore assumed to be well enough compensated for by including them in the efficiency
corrections. While being larger sources, there were no strong indications (in MC) that
either K0

s , Σ+, or material interactions (which mainly originate from pions) would
contribute substantially different to the correlation function than the particles subject
to the contamination. While their correlation functions obviously have a different shape,
the contribution from these sources is still small enough that it would require nearly an
order-of-magnitude difference in correlation strength to significantly affect the results.
Therefore, the same procedure was used also here, and any effect from it should enter
into the systematic uncertainty through the MC closure test (cf. Section 8.9.1)8.
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Figure 8.14 – Efficiency-corrected probabilities of detecting (a) a proton with 0.4 <
pT < 3 GeV/c and (b) a Λ baryon with 0.6 < pT < 12 GeV/c, originating from a selection
of secondary particles, as a function of the transverse momentum of the mother particle.

This leaves the contributions from Λ decaying into protons, and Ξ0 and Ξ− decaying
into Λ baryons, which are large enough to require a different approach. The Ξ − Λ and

8One may argue that this puts too much trust on the MC model, which is relevant criticism. The
dominant error source for the material contribution is the GEANT3 detector simulation, which is
known to be imperfect, but since the dominant contribution is pions knocking out protons and the
Ξ − π and Ξ − p correlation functions (cf. Chapter 9) are reasonably well described by PYTHIA, this
simulation is probably good enough. Moreover, K0

s yields are well-reproduced by PYTHIA, so a similar
conclusion can be drawn also here. The contribution from Σ+ on the other hand is more uncertain,
but since this is very challenging to access experimentally, this is probably as close as one can get.
The Ξ− − Σ+ correlation function is suppressed by only sharing a single quark, so this contamination
should indeed be much smaller than the one from Ξ− − Λ. The Σ+ yield is more uncertain, and is
probably underestimated in PYTHIA, but this is not experimentally accessible either.
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Ξ − Ξ correlation functions are expected to be significantly different from the ones
for Ξ − p and Ξ − Λ, meaning that their contribution from feed-down needs to be
measured separately and subtracted from the full correlation function. Moreover, the
Λ and Ξ spectra are not very well reproduced by the MC generator. To account for
these constraints, the MC generator was solely used to measure the average number of
(efficiency corrected) detected daughter particles in the target pT interval per generated
mother particle, as a function of pT and η for the mother (as it turned out to be a
quite strong η dependency). The resulting distributions projected in pT are shown in
Fig. 8.14a for protons and Fig. 8.14b for Λ baryons. The full (η, pT) maps can be found
in Appendix D.2. The reason for the decrease in contamination from charged Ξ baryons
to Λ, which is not present for Ξ0, is the rejection of Λ baryons used to reconstruct Ξ
candidates. These coefficients were then used as weights when measuring the correlation
functions for feed-down correction.

Since there is no viable way of reconstructing Ξ0s in the ALICE detector, one needs
to make use of Monte Carlo methods to estimate the feed-down contribution from
this particle, which was done by comparing the Ξ± − Ξ0 correlation functions with
the ones for Ξ± − Ξ± in PYTHIA8 and EPOS LHC. In both models, the number of
generated neutral and charged baryons was the same within statistical uncertainties, and
same-baryon number correlations were consistent with each other for the two species.
Therefore it was assumed that this is the case also in data. In EPOS, this assumption
holds also for opposite-baryon number pairs, but this is not the case for PYTHIA, where
the correlation with Ξ0 is much weaker, as is shown in Fig. 8.15. Here, the Ξ− − Ξ0

correlation is consistent with the Ξ− − Ξ+ correlation at the away side, where it is
dominated by the underlying event. The contribution from direct interactions with the
trigger, which was estimated by subtracting the same-baryon number correlation (cf.
Chapter 9 and 10), was on average 70% lower than for Ξ± and consistent with a flat
ratio.

In data, most of the results fall somewhere in between these two models, cf. Chapter 9.
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Figure 8.15 – Correlations between charged Ξ baryons and (a) other charged Ξ baryons
and (b) neutral Ξ baryons of opposite baryon number, projected in ∆ϕ, simulated by
PYTHIA8, Monash tune.

149



Therefore, it was assumed that this is the case also here9, and therefore the suppression
of opposite-baryon number Ξ0 was assumed to be 36% (except when evaluating the
Monte Carlo closure test, cf. Section 8.9.1, where the PYTHIA value was used instead)
in order to cover the two extremes within the systematic uncertainties. In practice, the
feed-down contribution from Ξ baryons to Λ was measured as

N feeddown
Ξ =

{
(fΞ− + fΞ0)NSB

Ξ same baryon number,
(fΞ− + (1 − r)fΞ0)NOB

Ξ + rfΞ0NSB
Ξ opposite baryon number,

(8.15)
where NSB

Ξ and NOB
Ξ are the number of same- and opposite-baryon number detected

Ξ − Ξ pairs, respectively, fΞ− and fΞ0 are the probabilities for the Λ daughter particle
of a charged and neutral Ξ, respectively, to appear within the Λ sample, and r is the
reduction factor for Ξ0.

Due to the low efficiencies at low pT, the lowest-pT weights were merged (weighted
with the spectra) into a single weight, which was applied to the lowest bin used for meas-
uring the correlation function. Finally, the weighted correlation function was measured
following the procedure in Section 8.3. The final correlation function was then convo-
luted by the autocorrelation function between mother and daughter, i.e. the expected
smearing from the decay, which was simulated in MC but weighted with the differences
in pT spectra. Since this could only be done (at least without introducing any biases)
to the final correlation function, the contribution from feed-down was not subtracted
from the correlation function until the very end.

8.9 Monte Carlo Simulations
Apart from being used as a tool for e.g. efficiency and feed-down corrections, Monte
Carlo simulations are important for validating the method and for testing model pre-
dictions. The procedures for this are described below.

8.9.1 Monte Carlo Closure Test
The validation of a method through MC simulations is known as a Monte Carlo closure
test, and is simply a comparison between the results obtained by running the full method
on the data set following the detector simulation, with the obtained result directly from
the generator. The full reconstruction is obtained by using the same code as in data,
whereas at generator level, the correlation function is measured from known particle
species by only using the procedure described in Section 8.3 and the same kinematic
cuts (in pT and η) as for the reconstructed tracks. The ratios between reconstructed and
generated MC, projected onto ∆ϕ, are shown in Fig. 8.16 for Ξ−π and Ξ−K correlations,
Fig. 8.17 for Ξ − p and Ξ − Λ correlations, and Fig. 8.18 for Ξ − Ξ correlations. The
agreement is generally very good, < 2% deviation for most measurements, although the

9From local conservation of quantum numbers alone, which is not implemented in EPOS LHC, one
can expect that the correlation is stronger for charged Ξ baryons than for Ξ0. The string breaking
picture of PYTHIA seems to to some extent, but not fully, explain the correlations seen in data (cf.
Chapter 10), meaning that the suppression of Ξ± − Ξ0 probably is substantial, but lower in data than
in PYTHIA.
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Figure 8.16 – Closure test for Ξ − π and Ξ − K correlations, projected in ∆ϕ for (a)
same-sign Ξ − π correlations, (b) opposite-sign Ξ − π correlations, (c) same-sign Ξ − K
correlations, and (d) opposite-sign Ξ − K correlations. The lower panels show ratios
between reconstructed and generated MC.
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Figure 8.17 – Closure test for Ξ − p and Ξ − Λ correlations, projected in ∆ϕ for (a)
same-baryon number Ξ − p correlations, (b) opposite-baryon number Ξ − p correlations,
(c) same-baryon number Ξ − Λ correlations, and (d) opposite-baryon number Ξ − Λ
correlations. The lower panels show ratios between reconstructed and generated MC.
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Figure 8.18 – Closure test for Ξ − Ξ correlations, projected in ∆ϕ for (a) same-baryon
number correlations, and (b) opposite-baryon number correlations. The lower panels
show ratios between reconstructed and generated MC.

statistical sample is a bit too small for in particular Ξ − Ξ correlations, but to some
extent also for Ξ − Λ correlations, to be able to fully evaluate the uncertainty of the
method.

Apart from a MC closure test of the correlations, it is important to validate the
reconstruction methods for the particles, and in particular the tracks. This is best done
by making a similar test for the spectra. For the pions and kaons, it has been confirmed
that the agreement in MC is perfect, whereas a tiny deviation is seen for the protons
due to uncertainties in the Λ spectrum. Therefore, a more conclusive way to test this is
to compare the spectra with published ALICE results (which are not so reliant on the
MC description as the approach used here), i.e. a data closure test rather than a MC
closure test. This is done in Fig. 8.19, where it is shown that the agreement is good for
pions, kaons, and protons for pT . 3 GeV/c, which is the onset of the relativistic rise
in the TPC response (roughly corresponding to the δ term in Eq. (8.6)), which is likely
not described well enough in the detector simulation for the method to work properly.
This is the reason for the upper cut in pT used in Table 8.1. For Ξ and Λ baryons, there
is a slight disagreement, but considered good enough for our purposes10.

10The data point with the largest disagreement in the Λ spectrum, corresponding to 0.5 < pT ≤
0.6 GeV/c is only used for feed-down subtraction. The discrepancy here is due to an improper de-
scription of the background, but the cause of the relatively large discrepancies for both Ξ and Λ at
intermediate to high pT is unknown.
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Figure 8.19 – Spectra of π,K, p,Λ, and Ξ as a function of pT, compared with published
results analysed on the pp15f data set [128]. Positive and negative particles have been
combined to obtain these results. Note that the first data point for kaons in the lower
panel deviates significantly from unity due to an interpolation error, and not to actual
differences between the obtained spectra. This is also the reason for the seemingly abrupt
dip in the Λ ratio at high pT.

8.9.2 Model Comparisons
Model comparisons have been done to three different flavours of PYTHIA8 [74], namely
the Monash tune (the same as used for the closure test), Junctions Mode 0 [87], and a yet
unofficial tune with rope hadronisation. These models are all described in Section 3.8.2.
Moreover a single implementation of EPOS, described in Section 3.8.4, has been tested,
which is the now a bit dated event generator EPOS LHC [69]. The reason for using
this, is that the newer generator, EPOS3, is not yet publicly available. The approach
is the same as used for the reference in the MC closure test described in the previous
section. A total number of 191 million events were used for PYTHIA8, 40 million events
for the junction extension, 20 million for the rope extension, and 14 million for EPOS
LHC. Without the efficiency losses associated with the reconstruction in the detector,
this turned out to be well enough to measure the correlation function, although a
larger sample would have been preferred for EPOS LHC. The results are presented in
Chapter 9, along with comparisons to data.
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8.10 Systematic Uncertainties
The uncertainty on any measured quantity can be divided into a statistical part and
a systematic one. The statistical uncertainty is due to limitations in the statistical
sample, and will get reduced by repeating the experiment. The systematic uncertainty
on the other hand, is the uncertainty which will remain no matter how many times
the experiment is repeated, i.e. this is the uncertainty imposed by the method itself.
While there are well-established methods to calculate the statistical uncertainty, the
same cannot be said about the systematic part. Nevertheless, it is at least as important
to estimate this. The ideal way to estimate the systematic uncertainty is to repeat
the measurement using a completely different experiment and also make sure to use
different procedures. There exists however only one accelerator such as the LHC and one
detector with the capabilities of ALICE, so in our field this is unfortunately impossible.
Instead, the established procedure is to repeat the analysis with variations to all cuts and
input parameters, and any variation which results in a deviation beyond the statistical
uncertainty, is considered as a systematic uncertainty. Otherwise, the contribution from
this particular variation is set to zero. Each variation should be set up in such a way
that it is reasonable to assume that the variations are independent from each other,
and the final uncertainty is obtained by summing them in quadrature. In this analysis,
this is for instance assured by varying all trigger cuts simultaneously.

The following systematic variations were studied:

• Use a tighter cut set for the Ξ and Λ baryons, defined in Tables 8.5 and 8.6.

• Change some of the cuts related to the TPC clustering for the associated particles,
summarised in Table 8.7.

• Use a tighter PID cut for the associated particles, |nσ| < 3.

• Use a fixed momentum value at p = 0.6 GeV/c for all particle types as a starting
point for using TOF information for the associated tracks.

• Use a more narrow vtxz range, |vtx|z < 8 cm.

• Use a coarser momentum binning when calculating the misidentification fractions,
10 bins instead of 20 (each bin is merged into two).

• Use a tighter pileup cut for Ξ, requiring two daughter tracks with either a suc-
cessful ITS refit or a TOF hit.

• Change the sideband definition to 4 − 7σ from the mean for Ξ and 5 − 8σ for Λ,
instead of 3 − 6σ and 4 − 7σ, respectively.

• Turn off the multiplicity weighting used when calculating efficiencies of associated
particles and misidentification fractions.

• Calculate the coefficients used for weighting the correlation function used for feed-
down corrections only as a function of pT instead of in (pT, η) space.
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• When measuring the feed-down correction, scale the full correlation function in-
stead of just the lowest-pT bin when correcting for the low-pT tail of the mother
correlation, which cannot be incorporated for statistical reasons (motivated mostly
since it smoothens the pT-dependence and reduces the statistical error).

• Vary the reduction factor used for estimating the feed-down from Ξ0 to Λ, as
defined in Eq. (8.15), to r = 0.72. Since this is designed to be symmetric, one
only needs to vary this in one direction.

Table 8.5 – Cuts used as a tight variation for the selection of Ξ candidates. Only cuts
which are different from the ones listed in Table 8.3 are listed here. Throughout this
table, pT is in GeV/c.

Daughter track cuts
V0 pion daughter DCA DCAd−PV > max(0.05,−0.021 + 0.104 (pT − 0.45)−0.7) cm
V0 proton daughter DCA DCAd−PV > max(0.05,−2.22 + 2.34 (pT − 0.45)−0.0165) cm
Bachelor DCA DCAbach−PV > 0.037 + 0.033 (pT − 0.45)−1.14 cm
V0 cuts
Invariant mass |∆M inv| < min(8, 2.75 + 2.5 pT) MeV/c2

DCA V0-daughters DCAd−d < min(1.6, 0.2 + 1.1 (pT − 0.45)0.6) cm
V0 radius 1.6 < rV0

T < max(10, 73 pT − 34) cm
Cascade cuts
Cascade DCA DCAcasc−PV < min(2.0, 0.13 + 0.74 (pT − 0.45)0.68) cm
Cascade radius 0.6 + 0.16 pT cm < rcasc

T < 9 + 27 (pT − 0.45)1.7 cm
Cosine of pointing angle cos(PA) > max(0.997, 0.9998 − 2.45 · 10−3(pT − 0.45)−1.1)

Table 8.6 – Cuts used as a tight variation for the selection of Λ candidates. Only cuts
which are different from the ones listed in Table 8.2 are listed here. For the pT-dependent
cut, pT is in GeV/c.

Daughter track cuts
Pion daughter DCA DCAd−PV > 0.16 cm
Proton daughter DCA DCAd−PV > 0.07 cm
V0 cuts
DCA V0-daughters DCAd−d < 0.6 cm
V0 radius 0.58 + 0.23(pT − 0.35)1.25) < rV0

T < 10 + 52(pT − 0.35)1.5 cm
Cosine of pointing angle cos(PA) > 0.998

Table 8.7 – Cut variations used for the associated tracks as a systematic variation.

Cut Default cuts Systematic variation
Minimum number of TPC clusters 70 60
Maximum χ2 per TPC cluster 4 5
Maximum DCA to z vertex 2 cm 3 cm
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Additionally, the uncertainty on the fit value used for the event mixing normalisation
(obtained from Eq. (8.5)) was assigned as a systematic uncertainty. The disagreement
between reconstructed and generated MC from the Monte Carlo closure test was as-
signed as another source, since this should quantify the uncertainty imposed by the
method itself. This will however not cover uncertainties from the propagation of MC
to data, so in order to estimate this, the deviation between the measured spectra of
the associated particles11 and published results derived from Fig. 8.19 was used as an
additional (flat) uncertainty. Moreover, as already has been mentioned, the detector
simulation is not perfect, which adds an additional uncertainty from the tracking ef-
ficiencies which has been estimated as 0.7% for pions, 0.5% for kaons, and 1.5% for
protons12.

To quantify the effect of each systematic variation, fits were applied to the ratio
between the variation and the default configuration. For projections in ∆y, this ratio
was always consistent with a constant, but for some variations there was a relatively
large difference between near- and away-side correlations. Consequently, a fit of them
form

A+B cos(∆ϕ), (8.16)

was applied to projections in ∆ϕ, where A and B are fit parameters, since this follows
the periodicity of the correlation function. For differences between opposite- and same-
sign correlations, the corresponding fits were applied directly to the differences instead
and not to the ratios. Moreover, since there for some of the correlations is a quite large
difference between simulation output and data, a scaling was applied to the difference
between opposite- and same-sign correlations when evaluating the impact from the MC
closure test.

To check whether each change is statistically significant, the two correlation func-
tions were assumed maximally correlated, i.e. the correlation coefficient is

ρ = σvar
σdef

,

where σvar and σdef are the standard deviations of the correlation function measured
from the variation and default configuration, respectively. This correlation coefficient
was used to assign the error at each data point in the ratio. Consequently, the error on
the sum of fit parameters determined whether the systematic difference was significant
or not. If the error was larger than the sum of parameters, the variation was rejected.

Summary of systematic uncertainties
Below, a summary of the statistically significant variations after applying the smoothen-
ing described above is presented. Summaries of the systematic uncertainties and the
difference between opposite and same-sign correlations for the minimum-bias selection
are shown in Fig. 8.20 for Ξ − π correlations, Fig. 8.21 for Ξ − K and Ξ − p correla-
tions, and Fig. 8.22 for Ξ − Λ and Ξ − Ξ correlations. Analogous plots for the high-
and low-multiplicity sample are shown in Appendix D.2. Only results for projections in

11Unless the correlation function has a strong pT dependence, which does not seem to be the case,
any uncertainty in the trigger yields will be cancelled by the normalisation.

12Recommended values by the ALICE Data Preparation Group (DPG).
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∆ϕ are shown in the figures. The systematic uncertainties for projections in ∆y were
calculated separately. The full range of variations of projections in ∆ϕ, near-side ∆y,
and away-side ∆y is summarised in Table 8.8.
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Figure 8.20 – Summary of systematic uncertainties from each source (insignificant
sources are set to zero, but still included in the legend) for the projection in ∆ϕ of
minimum-bias Ξ − π correlations for (a) same-sign correlations, (b) opposite-sign correl-
ations, and (c) differences between the two.
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Figure 8.21 – Summary of systematic
uncertainties from each source (insigni-
ficant sources are set to zero, but still
included in the legend) for the projec-
tion in ∆ϕ in minimum-bias events, for
(a) same-sign Ξ − K correlations, (b)
opposite-sign Ξ − K correlations, (c) dif-
ferences between the two, (d) same-
baryon number Ξ − p correlations, (e)
opposite-baryon number Ξ − p correla-
tions, and (f) differences between the
two.
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Figure 8.22 – Summary of systematic
uncertainties from each source (insignific-
ant sources are set to zero, but still in-
cluded in the legend) for the projection
in ∆ϕ in minimum-bias events, for (a)
same-baryon number Ξ − Λ correlations,
(b) opposite-baryon number Ξ−Λ correl-
ations, (c) differences between the two,
(d) same-baryon number Ξ − Ξ correla-
tions, (e) opposite-baryon number Ξ − Ξ
correlations, and (f) differences between
the two.

160



Table 8.8 – Summary of all systematic uncertainties. The ranges are the minimum and
maximum values of each quantity across all multiplicity configurations. For the opposite-
same sign differences, absolute uncertainties are given. Statistically insignificant effects
are denoted by “neg.”. Legend: SS = same sign, OS = opposite sign, SB = same baryon
number, OB = opposite baryon number.

Systematic effect SS π OS π SS K OS K SB p
Ξ/Λ topological cuts 0 − 0.6% 0 − 0.4% 0 − 1.2% 0 − 0.8% 0 − 5.9%
π,K, p ITS-TPC cuts < 0.1% < 0.1% 0 − 0.1% 0 − 0.2% 0 − 0.2%
PID cuts 0 − 0.3% 0.1 − 0.3% 0.8 − 1.6% 0.7 − 1.3% 0 − 0.5%
TOF onset 0.1 − 0.2% 0.2 − 0.3% 0 − 0.2% 0 − 0.4% 0 − 0.7%
Event mixing
normalisation < 0.1% < 0.1% 0.1 − 0.3% 0.1 − 0.3% 0 − 0.2%
vtxz range 0 − 0.2% 0 − 0.2% 0 − 1.5% 0 − 0.3% 0 − 1.1%
Momentum binning a a 0.3 − 1.1% 0.8 − 1.1% 0.2 − 0.4%
Pileup rejection 0 − 0.3% 0 − 0.4% 0 − 1.5% 0 − 0.2% 0 − 3.5%
Sideband region 0 − 0.3% 0 − 0.4% 0 − 0.9% 0 − 0.7% 0 − 1.3%
Multiplicity
weighting 0.2 − 1.3% 0.3 − 1.3% 0.7 − 2.8% 0.6 − 2.8% 0 − 0.4%
Feed-down pT
weighting 0 − 0.6%
1D feed-down
correction 0 − 0.4%
Ξ0 uncertainty
MC closure 0 − 0.4% 0 − 1.4% 0 − 3.1% 0.8 − 2.1% 0 − 1.5%
Spectra closure 0.3% 0.3% 0.9% 0.9% 0.2%
DPG efficiency
uncertainty 0.7% 0.7% 0.5% 0.5% 1.5%
Total 0.9 − 1.6% 0.9 − 2.1% 1.9 − 4.6% 2.1 − 3.8% 1.7 − 6.4%

Systematic effect OB p SB Λ OB Λ SB Ξ OB Ξ
Ξ/Λ topological cuts 0 − 1.0% 0 − 24% 0 − 6.7% 0 − 120% 0 − 21%
π,K, p ITS-TPC cuts 0 − 0.2%
PID cuts 0 − 0.5%
TOF onset 0 − 0.4%
Event mixing
normalisation 0 − 0.2% 0 − 1.1% 0.3 − 1.2% neg. neg.
vtxz range 0 − 1.4% 0 − 1.9% 0 − 2.2% 0 − 4.9% 0 − 3.5%
Momentum binning 0 − 0.2%b

Pileup rejection 0.1 − 1.5% 0 − 7.8% 2.9 − 10.6% 0 − 51% 0 − 20%
Sideband region 0 − 1.7% 0 − 5.9% 0 − 4.4% 0 − 17% 0 − 12%
Multiplicity
weighting 0.1 − 0.9%

aRejected due to a bug in the code.
bRejected for the low-multiplicity configuration due to a bug in the code.
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Systematic effect OB p SB Λ OB Λ SB Ξ OB Ξ
Feed-down pT
weighting 0 − 1.2% 1.4 − 4.9% 1.1 − 6.3%
1D feed-down
correction 0.3 − 1.0% 0 − 1.1% 0 − 1.7%
Ξ0 uncertainty 0 − 4.6%
MC closure 0 − 4.6% neg. 0 − 7.1% 12 − 78% 0 − 60%
Spectra closure 0.2% 5.7% 5.7% 3.7% 3.7%
DPG efficiency
uncertainty 1.5%
Total 1.8 − 5.5% 6.4 − 26% 7.2 − 15% 14 − 130% 6.5 − 67%

Systematic effect OS-SS π OS-SS K OB-SB p OB-SB Λ OB-SB Ξ
(×10−3) (×10−3) (×10−3) (×10−3) (×10−3)

Ξ/Λ topological cuts 0 − 3.7 0 − 5.3 0 − 2.9 0 − 3.8 0 − 2.8
π,K,p ITS-TPC cuts 0 − 1.6 < 0.5 0 − 1.0
PID cuts 0 − 2.9 0 − 0.9 0 − 0.6
TOF onset 0 − 1.7 0 − 2.1 < 0.5
Event mixing
normalisation neg. < 0.5 neg. 0 − 0.5 neg.
vtxz range 0 − 1.9 0 − 1.0 0 − 0.9 0 − 2.2 0 − 0.5
Momentum binning a 0 − 1.5 < 0.5b

Pileup rejection 0 − 4.6 0 − 2.8 0 − 2.9 0 − 8.9 0 − 3.1
Sideband region 0 − 3.7 0 − 2.1 0 − 1.8 0 − 7.4 0 − 2.0
Multiplicity
weighting 0 − 1.3 0 − 2.7 0 − 0.5
Feed-down pT
weighting < 0.5 0 − 3.2
1D feed-down
correction < 0.5 0 − 1.3
Ξ0 uncertainty 0 − 4.6
MC closure 0 − 32 neg. 0 − 7.1 0 − 7.0 0 − 4.8
Spectra closure < 0.5 0.1 − 1.0 < 0.5 0.1 − 3.3 0 − 0.4
DPG efficiency
uncertainty 0 − 1.1 0.1 − 0.6 0 − 0.5
Total 0.9 − 33 0.5 − 5.7 0.6 − 7.9 3.7 − 10 0.1 − 5.1
aRejected due to a bug in the code.
bRejected for the low-multiplicity configuration due to a bug in the code.
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Chapter 9

Correlation Results

9.1 ALICE Results
Angular Ξ − π and Ξ − K correlations in (∆y,∆ϕ) space for minimum-bias events
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Figure 9.1 – Correlations in (∆y,∆ϕ) space for minimum-bias events between Ξ baryons
and (a) same-sign pions, (b) opposite-sign pions, (c) same-sign kaons, and (d) opposite-
sign kaons.
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Figure 9.2 – Correlations in (∆y,∆ϕ) space between Ξ baryons and (a) same-B (baryon
number) protons, (b) opposite-B protons, (c) same-B Λ baryons, (d) opposite-B Λ
baryons, (e) same-B Ξ baryons, and (f) opposite-B Ξ baryons.

are shown in Fig. 9.1 and Ξ − p, Ξ − Λ, and Ξ − Ξ correlations are shown in Fig. 9.2.
The near side (|∆ϕ| < π/2) of the correlation function is shown on the left side of
each figure and the away side on the right side. Common features are a near-side peak
and an away-side ridge, which extends far in ∆y. The near-side peak is a signature
of strong correlations between trigger and associated particles produced close to each
other in phase space, which for Ξ−meson pairs is mainly present for oppositely charged
particles. For Ξ − π and Ξ − K correlations, this effect is also present for same-charge
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pairs, but is much weaker (note that for each particle species, the scales are the same
for the left and right panels of Figs. 9.1 and 9.2. For different particle species, different
scales are used). If this is the case also for Ξ − K correlations, it is not statistically
significant given the limited sample.

For Ξ−baryon correlations, the near-side peak is instead only present for pairs of
particles with opposite baryon number, indicating that baryon number affects the cor-
relation function more than charge. For pairs between particles with the same baryon
number, there is rather an anti-correlation on the near side, which is present even for
protons, which have opposite charge. This means that production of other baryons of
the same baryon number is disfavoured near a Ξ baryon.

Due to momentum conservation, the near-side peak must be balanced by an away-
side ridge for the total particle yield. Its presence in all Ξ − h correlation functions,
regardless of charge, indicates that this is not very much dependent on the particle
species, but rather a global effect due to the underlying event. Similarly, one can expect
that the underlying event will affect also the near-side correlations, e.g. from elliptic
flow (since v2 describes expansion of the medium both on the near and away side, cf.
Section 3.7, this shows up as a near-side ridge) and various jet correlations. Since the
Ξ baryons are expected to correlate with particles of opposite quantum numbers, same-
sign correlations are a signature of the underlying event. This also explains the relative
flatness of same-charge or baryon number correlations. Therefore, a way to quantify the
effect the Ξ has on particle production is to subtract same-quantum number correlations
from opposite-quantum number correlations. This is only shown for projections (see
Section 9.1.1) and not the full correlation function.

The major difference between Ξ − π and Ξ − K correlations is that the near-side
peak in Ξ − K correlations is wider and stronger relative to the background. This is
likely related to strangeness production, and will be discussed in Chapter 10. A similar
difference in peak amplitude is observed when comparing Ξ − p correlations with Ξ − Λ
correlations, although both of these correlations have a wide near-side peak. For Ξ − Ξ
correlations, the statistical errors are a bit too large to be able to fully describe the
shape of the near-side peak, but it seems to be similar to the other Ξ−baryon correlation
functions.

9.1.1 Multiplicity Dependent Results
The shapes of the correlation functions measured in the high- and low-multiplicity
samples are all qualitatively similar to the minimum-bias results, and thus these results
are shown in Appendix D.3. To quantify the differences between each multiplicity selec-
tion, projections of all these correlations functions in ∆ϕ and ∆y, where the latter have
been separated in near-side correlations (|∆ϕ| < 3π/10, which is chosen to roughly
cover the peak) and away-side correlations (|∆ϕ − π| < π/2). Moreover, differences
between same- and opposite-quantum number (charge or baryon number) correlations
are included. The results are shown in Figs. 9.3, 9.4, 9.5, 9.6, and 9.7 for correlations
between Ξ baryons and pions, kaons, protons, Λ baryons, and other Ξ baryons, respect-
ively. The observant reader may notice that for Ξ − Ξ correlations, a few of the data
points have negative values, but these are just artefacts of the background subtraction
from a very limited statistical sample, and do not make physical sense.
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Figure 9.3 – Correlations between Ξ ba-
ryons and pions for different multiplicity
classes. The bottom panels show differ-
ences between opposite- and same-sign
correlations for each selection. Statistical
and systematic errors are marked with
bars and boxes, respectively. (a) Pro-
jection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SS = same
sign, OS = opposite sign.
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Figure 9.4 – Correlations between Ξ ba-
ryons and kaons for different multiplicity
classes. The bottom panels show differ-
ences between opposite- and same-sign
correlations for each selection. Statistical
and systematic errors are marked with
bars and boxes, respectively. (a) Pro-
jection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SS = same
sign, OS = opposite sign.
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Figure 9.5 – Correlations between Ξ ba-
ryons and protons for different multipli-
city classes. The bottom panels show dif-
ferences between opposite- and same-sign
correlations for each selection. Statistical
and systematic errors are marked with
bars and boxes, respectively. (a) Pro-
jection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SB =
same baryon number, OB = opposite ba-
ryon number.
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Figure 9.6 – Correlations between Ξ
and Λ baryons for different multiplicity
classes. The bottom panels show differ-
ences between opposite- and same-sign
correlations for each selection. Statistical
and systematic errors are marked with
bars and boxes, respectively. (a) Pro-
jection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SB =
same baryon number, OB = opposite ba-
ryon number.
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Figure 9.7 – Correlations between pairs
of Ξ baryons for different multiplicity
classes. The bottom panels show differ-
ences between opposite- and same-sign
correlations for each selection. Statistical
and systematic errors are marked with
bars and boxes, respectively. (a) Pro-
jection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SB =
same baryon number, OB = opposite ba-
ryon number.
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For all correlation functions, the results are very similar between multiplicity classes.
The overall baseline increases thanks to the increasing multiplicity, and the relative dif-
ference between opposite- and same-sign correlations increases, which is a consequence
of that the absolute difference does not change very much. There is a slight increase in
peak amplitude when going to higher multiplicities, which may be compensated for by
a possible narrowing in ∆y, but it is difficult to tell given the large statistical errors at
large |∆y|.

9.2 Simulation Results
Simulations have been carried out using the PYTHIA8 [74] and EPOS LHC [69] event
generators. For PYTHIA8, the standard tune (Monash; cf. Section 3.8.2) is comple-
mented with the junction and rope extensions. For junctions, the official tune Mode
0 is being used [87], whereas an unofficial tune largely based on the same parameters
as Mode 0 is being used for ropes1. Angular Ξ − π, Ξ − K, Ξ − p, Ξ − Λ, and Ξ − Ξ
correlations, simulated by all of these event generators, are given in Figs. 9.8, 9.9, 9.10,
9.11, and 9.12, respectively.

For Ξ − π correlations, there are not any major differences between PYTHIA and
EPOS, nor between the different flavours of PYTHIA, at least qualitatively. There is a
near-side peak present in all models for all charge combinations, but it is stronger for
opposite-sign correlations, just as in data. The biggest difference is that the near-side
peak is stronger and narrower in PYTHIA than in EPOS for same-charge correlations.

For Ξ − K correlations, the situation is different, with all PYTHIA flavours giving
very similar results with a sharp near-side peak for opposite-sign correlations, which
is both higher and narrower than in data, and a weak peak for same-sign correlations.
EPOS gives a very different picture with a very wide near-side peak and strong ridges
both on the near and away side. The magnitude indicates a large probability of produ-
cing kaons together with Ξ baryons, but unlike pions, they are very weakly correlated in
phase space. Moreover, there are strong correlations far away in ∆y, which are neither
seen in PYTHIA nor in data.

For PYTHIA, Ξ − p correlations are qualitatively quite similar to what is observed
in data, with a near-side peak for opposite-baryon number correlations and a tendency
of anti-correlations between pairs of the same baryon number. The magnitude is quite
different between different PYTHIA flavours, on the other hand, with a much stronger
near-side peak in the junction and rope models, as well as stronger correlations overall.
For EPOS, the difference to PYTHIA is smaller than for Ξ − K correlations, but again
the near-side peak is wider and weaker, and there are strong correlation far away in
rapidity. Moreover, for same-baryon number correlations, there is a tendency of anti-
correlations on the away side, rather than on the near side.

For Ξ − Λ and Ξ − Ξ correlations, there is a very strong near-side peak in PYTHIA
which dominates the entire correlation function, although the magnitude is slightly
smaller for the rope model and even more so for the junction model. This peak is much

1The rope model includes junction interactions as implemented by the junction extension, but
further includes more interactions from rope hadronisation. The tune that is used was provided by
PYTHIA developer Christian Bierlich.
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Figure 9.8 – Simulated 2D-correlations between Ξ baryons and pions, left: same-sign
correlations, right: opposite-sign correlations. (a)-(b) PYTHIA8, (c)-(d) EPOS LHC,
(e)-(f) PYTHIA8 with junctions, and (g)-(h) PYTHIA8 with ropes.
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Figure 9.9 – Simulated 2D-correlations between Ξ baryons and kaons, left: same-sign
correlations, right: opposite-sign correlations. (a)-(b) PYTHIA8, (c)-(d) EPOS LHC,
(e)-(f) PYTHIA8 with junctions, and (g)-(h) PYTHIA8 with ropes.
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Figure 9.10 – Simulated 2D-correlations between Ξ baryons and protons, left: same-B
correlations, right: opposite-B correlations. (a)-(b) PYTHIA8, (c)-(d) EPOS LHC,
(e)-(f) PYTHIA8 with junctions, and (g)-(h) PYTHIA8 with ropes.
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Figure 9.11 – Simulated 2D-correlations between Ξ and Λ baryons, left: same-B correl-
ations, right: opposite-B correlations. (a)-(b) PYTHIA8, (c)-(d) EPOS LHC, (e)-(f)
PYTHIA8 with junctions, and (g)-(h) PYTHIA8 with ropes.
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Figure 9.12 – Simulated 2D-correlations between pairs of Ξ baryons in the same event,
left: same-B correlations, right: opposite-B correlations. (a)-(b) PYTHIA8, (c)-(d)
EPOS LHC, (e)-(f) PYTHIA8 with junctions, and (g)-(h) PYTHIA8 with ropes.
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narrower than what is observed in data. For EPOS, the correlation function is instead
quite flat and similar to Ξ − p correlations, with only a weak near-side peak for correl-
ations between pairs of opposite baryon number, which in particular is present for Λ.
This is wider than what is seen in PYTHIA, but the sample used for the simulations is
a bit too small to make a quantitive statement.

9.3 Comparisons Between Models and Data
To make quantitive comparisons between models and data, projections have been made
in the same manner as in Section 9.1.1, including differences between opposite- and
same-quantum number correlations. These results – only including the minimum-bias
sample in data – are shown in Figs. 9.13, 9.14, 9.15, 9.16, and 9.17 for correlations
between Ξ baryons and pions, kaons, protons, Λ baryons, and other Ξ baryons, respect-
ively.

On the away side, the difference between same-sign and opposite-sign correlations
is in each case – for models as well as data – consistent with a flat value. Moreover,
this value is for most of the measurements of the same order of magnitude for different
particle species. Therefore, weighted averages of the difference in away-side per-trigger
yields between same- and opposite-quantum number particles are drawn in the same plot
in Fig. 9.18, for both data and the various MC models. This is done in order to facilitate
comparisons both between model and data, different particle species, and near-side
versus away-side correlations, although one should be aware that the kinematic ranges
are slightly different for different measurements. In order to quantify global correlations
within the detector acceptance, a similar integration has also been done over the full
range in ∆ϕ and going as far out in ∆y as the detector allows (i.e. |∆y| < 1) for both
data and all models. The results are shown in Fig. 9.19.

For Ξ − π correlations, the shape in data is well-described by all models, but the
Monash tune describes the underlying event better (the other models overestimate the
baseline), whereas EPOS and the other PYTHIA flavours better quantify the difference
between opposite- and same-sign correlations. However, even these models underestim-
ate this difference on the near side.

For Ξ − K correlations, all models fail in describing the data. While PYTHIA in
general, and the rope tune in particular, succeeds in describing the same-sign correla-
tions outside the peak region, the near-side peak is too large, and also too narrow for
opposite-sign correlations. Consequently, the difference between correlations of different
charge combinations gets overestimated on the near side, ranging from about 40% for
the rope model to about 60% for the junction model, and even more at the centre of the
peak in the near-side projection. On the away side, the Monash tune underestimates
the difference, but the rope and junction models do a better job. For EPOS, the shape
is very different from data, and the same-sign correlations are too strong. Moreover,
there is a very flat difference between opposite- and same-sign correlations, with only a
slight tendency of a near-side peak. On the other hand, the integral of the difference is
just as for the PYTHIA Monash tune and junction models similar to what is observed
in data.

177



0 2 4
1.6

1.8

2

2.2

2.4

2.6ϕ∆
/d

N
 d

tr
ig

N
1/

SS OS
 ALICE data
 PYTHIA8 Monash
 EPOS LHC
 PYTHIA8 Junctions
 PYTHIA8 Ropes

 = 13 TeVspp This thesis 

,c < 3 GeV/assoc
T

p, 0.2 < c < 12 GeV/trig

T
p, 1.2 < π-Ξ

| < 1y∆|

0 2 4
 (rad)ϕ∆

0

0.1

0.2

O
S

-S
S

(a)

1− 0.5− 0 0.5 1

1.6

1.8

2

2.2

2.4

2.6

y∆
/d

N
 d

tr
ig

N
1/

SS OS
 ALICE data
 PYTHIA8 Monash
 EPOS LHC
 PYTHIA8 Junctions
 PYTHIA8 Ropes

 = 13 TeVspp This thesis 

,c < 3 GeV/assoc
T

p, 0.2 < c < 12 GeV/trig

T
p, 1.2 < π-Ξ

/10π 3≤ ϕ∆/10 < π-3

1− 0.5− 0 0.5 1
y∆

0

0.1

0.2

O
S

-S
S

(b)

1− 0.5− 0 0.5 1

2.8

3

3.2

3.4

3.6

3.8

y∆
/d

N
 d

tr
ig

N
1/

SS OS
 ALICE data
 PYTHIA8 Monash
 EPOS LHC
 PYTHIA8 Junctions
 PYTHIA8 Ropes

 = 13 TeVspp This thesis 

,c < 3 GeV/assoc
T

p, 0.2 < c < 12 GeV/trig

T
p, 1.2 < π-Ξ

/2π 3≤ ϕ∆/2 < π

1− 0.5− 0 0.5 1
y∆

0.05−

0

0.05

0.1

O
S

-S
S

(c)

Figure 9.13 – Correlations between Ξ
baryons and pions, comparing the results
from EPOS and the various flavours of
PYTHIA with ALICE data. The bottom
panels show differences between opposite-
and same-sign correlations for data, as
well as each of the models. Statistical
and systematic errors are marked with
bars and boxes, respectively. (a) Pro-
jection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SS = same
sign, OS = opposite sign.
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Figure 9.14 – Correlations between Ξ
baryons and kaons, comparing the results
from EPOS and the various flavours of
PYTHIA with ALICE data. The bottom
panels show differences between opposite-
and same-sign correlations for data, as
well as each of the models. Statistical
and systematic errors are marked with
bars and boxes, respectively. (a) Pro-
jection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SS = same
sign, OS = opposite sign.
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Figure 9.15 – Correlations between Ξ
baryons and protons, comparing the res-
ults from EPOS and the various flavours
of PYTHIA with ALICE data. The
bottom panels show differences between
opposite- and same-B correlations for
data, as well as each of the models. Stat-
istical and systematic errors are marked
with bars and boxes, respectively. (a)
Projection in ∆ϕ, (b) projection in ∆y on
the near side (−3π/10 < ∆ϕ ≤ 3π/10),
(c) projection in ∆y on the away side
(π/2 < ∆ϕ ≤ 3π/2). Legend: SB =
same baryon number, OB = opposite ba-
ryon number.
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Figure 9.16 – Correlations between Ξ
and Λ baryons, comparing the results
from EPOS and the various flavours of
PYTHIA with ALICE data. The bottom
panels show differences between opposite-
and same-B correlations for data, as well
as each of the models. Statistical and
systematic errors are marked with bars
and boxes, respectively. (a) Projection
in ∆ϕ, (b) projection in ∆y on the near
side (−3π/10 < ∆ϕ ≤ 3π/10), (c) pro-
jection in ∆y on the away side (π/2 <
∆ϕ ≤ 3π/2). Legend: SB = same baryon
number, OB = opposite baryon number.
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Figure 9.17 – Correlations between
pairs of Ξ baryons, comparing the results
from EPOS and the various flavours of
PYTHIA with ALICE data. The bottom
panels show differences between opposite-
and same-B correlations for data, as well
as each of the models. Statistical and
systematic errors are marked with bars
and boxes, respectively. (a) Projection
in ∆ϕ, (b) projection in ∆y on the near
side (−3π/10 < ∆ϕ ≤ 3π/10), (c) pro-
jection in ∆y on the away side (π/2 <
∆ϕ ≤ 3π/2). Legend: SB = same baryon
number, OB = opposite baryon number.
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marked with bars and boxes, respectively. Note that since these yields are integrated,
they need to be scaled by 1/π ≈ 0.32 and 0.5, respectively, to match the normalisation
used in the ∆ϕ and away-side ∆y projections in Figs. 9.13–9.17.
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Figure 9.19 – Differences in per-trigger yields between opposite- and same-sign or baryon
number particles, integrated over the volume within |∆y| < 1, for all particles and models
included in this analysis. Statistical and systematic errors are marked with bars and
boxes, respectively.
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For Ξ−p correlations, the Monash tune again describes the baseline very well, apart
from a small near-side peak not present in data, but strongly underestimates the correla-
tion difference. The other PYTHIA flavours overestimate proton production in general,
with about an 80% difference to data for same-sign pairs, but the difference between
opposite- and same-sign particles is very well reproduced for both of these models.
Again, EPOS describes the shape of the correlation function poorly and overestimates
the baseline, but the integral of the difference gets very close to what is observed in
data.

For Ξ−Λ correlations, all PYTHIA flavours strongly overestimate the near-side peak
in opposite-baryon number correlations. Despite a large difference between the flavours,
the correlation difference is overestimated by about 70% in the best model (junctions).
Moreover, the Monash tune underestimates the baseline with nearly 50%, but this is
remedied by the rope and junction models, which get close to what is observed in data,
although they largely fail to describe the near-side depletion. Also EPOS does a poor
job in describing the correlation function, despite that it is very wide in ∆y in data.
Just as for the other results, the baseline is overestimated and the difference is too flat.

For Ξ−Ξ correlations, the shape in both PYTHIA and EPOS is quite similar to their
Ξ−Λ correlation results, although the difference between different PYTHIA extensions
is even more pronounced and the near-side peak is relatively stronger in PYTHIA than
in EPOS. Also in data, the shape is similar as for Ξ − Λ correlations, as well as the
relative difference to the MC models.
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Chapter 10

Discussion of Correlations and
Conclusions

There are two aspects of the correlation function that can be studied to increase the
understanding of particle production mechanism: the shape and the magnitude. In prin-
ciple, the correlation function can be decomposed into several different parts originating
from each of the various production mechanisms involved. The overall shape will be
determined by the relative strength of each production mechanism, whereas the overall
magnitude depends on the combined strength of all these mechanisms. In practice, it is
not that simple, since several different mechanisms may affect the correlation function
in a similar way, the same mechanism may affect several different features of the cor-
relation function, and there is usually a strong interplay between different mechanisms.
Moreover, aspects from different models are generally not very easy to combine, and
tuning model parameters may affect other results, such as the particle spectra. Nev-
ertheless, by studying the correlation function, we can give input to the theorists on
which mechanisms are likely involved in particle production and which are less so, and
also if some aspects are not well described by either model. In extension, this will get
us closer to understanding what is happening in a pp collision, and more specifically
what is the origin of the strangeness production in small systems.

Most of the results presented in Chapter 9 are minimum-bias results, meaning
that results are combined across multiplicity and momentum of trigger and associ-
ated particles. While this maximises the statistical sample, it also means that different
mechanisms may be involved. This is the reason for the multiplicity dependent study,
which is discussed in Section 10.3. Further separation could have been done by also
studying pT-dependent correlations, but there was unfortunately not enough time for
this.
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10.1 Correlations Originating from the Underlying
Event

The measured correlation function is a combination of correlations from the production
of the Ξ baryon and correlations appearing from the event itself. The latter are due to
that the Ξ is more likely to appear in certain regions in phase space, and have already
been introduced as underlying-event correlations.

In the time frame of a proton collision, the total quantum numbers shared by the
two protons are conserved, i.e. the total charge Q = 2, the quark number balances
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Figure 10.1 – Symmetric correlation functions (defined by Eq. (8.2)), projected in ∆ϕ,
measured by ALICE at

√
s = 7 TeV, along with model predictions by various PYTHIA

tunes and PHOJET (not discussed in the text) for pairs of like-sign (a) pions, (b) kaons,
(c) protons, and (d) Λ baryons. Figure taken from Ref. [132].
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nu − nu = 4, nd − nd = 2, baryon number B = 2, and strangeness S = 0. Therefore,
any excess of these quantum numbers needs to be balanced by the opposite quantum
number and consequently, two particles not sharing any opposite quantum numbers are
not likely to be produced from the same interaction. Therefore, any such correlations
must originate from the underlying event. This is the case for same-charge Ξ−meson
correlations and same-baryon number Ξ − Λ and Ξ − Ξ correlations. While Ξ − p pairs
have opposite charge, which in principle could put them closer in phase space, there still
needs to be some intermediate mechanism, since they do not share any quark-antiquark
pair. Therefore, such correlations are likely mostly due to the underlying event as well.

The best probe for studying the underlying event is through pions, since these are by
far the most abundant particles produced in the event. The same-sign Ξ−π correlation
function (Fig. 9.1a) is quite flat, indicating that the correlation to the underlying event
is quite weak, but the presence of the near-side jet peak and away-side ridge indicates
that Ξ baryons are more likely to be produced within the jet cone and the observed
peak is due to minijet fragmentation. This is well described by both PYTHIA and
EPOS, although the magnitude of the near-side peak is somewhat different between the
models (including different PYTHIA extensions). A similar effect has been observed
also in π− π and K − K correlations in pp collisions, which similarly are well described
by PYTHIA, at least qualitatively [132]. This is shown in the upper panels of Fig. 10.1.
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Figure 10.2 – Charge inclusive yields of various hadron species as a function of pT,
measured by the ALICE detector at a collision energy of

√
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results published in Ref. [128].

The strength of the underlying-event correlation function is expected to scale with
the integrated spectra, which for ALICE data are shown in Fig. 10.2. This is the
reason why the magnitude of the Ξ − K correlation function is only about 15% of the

187



Ξ − π correlation function. The physics should be similar though, which explains the
similarity in shape, which is the case also for PYTHIA and to some extent also for
EPOS. Also the Ξ − p, Ξ − Λ and Ξ − Ξ correlation functions scale with the spectra,
but one should bear in mind that the pT and η ranges are somewhat reduced for these
particle species, affecting the total yield. Yet, this explains why the statistical errors
for Ξ − Ξ correlations are so large compared to the others – about ten Λ baryons are
produced for every Ξ baryon.

While there is a clear scaling in magnitude, there is also a clear division in shape
between Ξ−meson and Ξ−baryon correlations. There does not appear to be any signi-
ficant difference in shape between same-B Ξ − p, Ξ − Λ, and Ξ − Ξ correlations, proving
that baryon number is more important than charge for describing these correlations.
The near-side depletion indicates that a Ξ baryon is unlikely to be produced together
with another baryon of the same baryon number, which means that they are more
likely to appear in back-to-back jets than in the same jet, for instance. This is quite
well described in PYTHIA, but less so in EPOS, which is not too surprising given that
this requires a different mechanism. In PYTHIA, baryons are produced through double
string breakings, cf. Fig. 3.24a, meaning that two baryons cannot be produced from
the same string. This results in a natural separation in phase space, but studies of p−p
and Λ − Λ correlations indicate that this cannot be the full explanation why the Ξ − p
correlation in PYTHIA agrees with data. Same-baryon number p − p and Λ − Λ correl-
ations have a similar shape as Ξ − p correlations in data (Fig. 9.15a), but in PYTHIA
there is a clear near-side peak for these systems – which is much less pronounced for
the results presented in this thesis – resulting in a very different shape overall, as shown
in the lower panels of Fig. 10.1 [132]. Therefore, there must be another explanation,
which is currently not understood.

The magnitudes of the Ξ−π, Ξ−K, and Ξ−p underlying-event correlation functions
are by far best described by the Monash tune of PYTHIA (except that the rope ex-
tension does slightly better for Ξ − K correlations), which among other things is tuned
to accurately describe light-hadron spectra. The other models tend to overestimate
these quantities in Ξ − π and Ξ − p correlations. On the other hand, PYTHIA8 Mon-
ash severely underestimates the Ξ − Λ and Ξ − Ξ correlation functions, and here the
other models do a better job – and in particular the rope model (EPOS still tends to
overestimate these).

For PYTHIA, all these observations can be understood from studying the spectra,
as seen in Fig. 10.3. The junction model adds an additional mechanism for producing
baryons, cf. Fig. 3.24b, and since this mechanism is required also for the PYTHIA
implementation of the ropes (cf. Section 3.8.3), this is present also in the rope model.
Therefore, in order to produce the number of Λ and Ξ baryons observed in data – and
the increase with multiplicity – the proton yields get overestimated, cf. Fig. 10.3b. It
has turned out to be challenging for the PYTHIA developers to achieve strangeness
enhancement without introducing an excess of protons, but since several mechanisms
are involved, this would likely require a reduction of the baryon production mechanism
present in the standard version of PYTHIA in order for this model to be successful.

For EPOS, the underlying-event correlations are overestimated for all particles, al-
though this is not the case for most of the spectra. This means that the relative multi-
plicity of other particles to the number of triggers is overestimated in events containing
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√
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a Ξ baryon. A possible explanation for this is that Ξ baryons are mostly associated
with events with very high multiplicity in EPOS LHC (cf. Fig 3.31), and the fraction
of Ξ baryons in each such event likely is lower than in minimum-bias events data (this
has not been investigated, but it seems reasonable given the increased baseline for the
high-multiplicity results in data). For PYTHIA on the other hand, the number of Ξ
baryons per event roughly scales with multiplicity (cf. Fig. 3.31).

Another peculiarity with EPOS is that the correlation function has some features
which are not at all present in data – and in particular stronger correlations between
the trigger and other particles with a large separation in ∆y than with particles close
in phase space. This would indicate that same-quantum number particle pairs are
correlated transversely to the trigger (in phase space) rather than back-to-back, which
is something that has not been observed in data. This is likely due to a limitation
in the model description, since the micro-canonical ensemble only conserves quantum
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numbers in slices in pseudorapidity, and not locally [90, 133], which very well may lead
to an improper description of the event shape as well.

10.2 Correlations Originating from Ξ Baryon Inter-
actions

Unlike same-quantum number particle pairs, oppositely charged Ξ−meson pairs and
opposite-baryon number Ξ−baryon pairs share at least one quark-antiquark pair. In
the case of pions, kaons, and protons, Ξ only has one quark of opposite quantum number,
whereas Λ and Ξ baryons have two and three such quarks, respectively. Therefore, one
can expect that the interactions between Ξ and the latter two are quite different from
the other ones, which indeed seems to be the case, but as will discussed here there are
strong indications that there are more properties that give rise to a distinction between
the different particles and their interactions with the Ξ baryon. What is important
is that the underlying-event correlations are expected to be the same for same-sign as
for opposite-sign correlations, and therefore this part of the discussion focuses on the
differences between the two, i.e. the lower panels of Figs. 9.13–9.17.

The near side of the correlation function gives information about particles that are
locally correlated with the Ξ baryon, and therefore all quantum numbers originating
from the initial state of the collision will be preserved in this region. This is particularly
relevant for the near-side peak, also referred to as the jet peak, where an excess of
particles is seen due to the trigger being more likely to be produced in the regions of
the event with higher multiplicity, usually associated with jets. Particles in the jet peak
are produced close in phase space relative to the Ξ baryon during the hadronisation
phase, and the excess relative to the underlying event gives information about which
quantum numbers are remaining close to the Ξ baryon in the later stages of the event.
Correlations in this region can also be used to study the hadronisation mechanism.

The other extreme is the excess of particles observed on the away side, which gives
information on which quantum numbers have decoupled from the trigger early on in the
collision, which in turn gives insight into which processes are involved. This decoupling
can be quantified both from the magnitude of the away side difference and on the width
of the near-side peak, where the latter gives a measure of the decoupling rate. Any
excess of particles on the away side not related to the Ξ production, should cancel out
when averaging over many events. The flatness of the away-side excess indicates that
the initial-state effects are distributed rather isotropically in the event. In some sense
we are lucky about this, since it makes it possible to measure this more precisely by
averaging over a large region in phase space, as is done in Fig. 9.18.

Finally, by integrating the balancing part of the correlation function over the full
detector acceptance, one can get access to how much each particle species contributes to
the global balance of the Ξ quantum numbers, as is done in Fig. 9.19. The correspond-
ing balances for charge, strangeness, and baryon number1 contained within the detector
acceptance are summarised in Table 10.1 for both data and all MC models. In data
as well as for EPOS LHC, and to some extent for the junction model, a much larger

1The charge balance is obtained from summing the contributions from π+K+Ξ−p, the strangeness
balance from K + Λ + 2 · Ξ, and the baryon balance from p + Λ + Ξ.
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contribution of the charge is contained within the detector than for the other quantum
numbers. This can to some extent be explained by additional contributions from Σ±,
Ξ0, and Ω (cf. Appendix C), but the main reason is likely that these quantum numbers
to a larger extent are balanced at large separations in rapidity, which is a recurrent
observation in the following discussion. For PYTHIA8 (in particular the Monash tune),
the lower charge balance than in data can be explained from an expected large contri-
bution from Σ− (dds, shares two quarks with Ξ−), which is missing, yet much more of
the detected strangeness and baryon number are balanced close to the trigger. For the
junction extension, the description is closer to what is seen in data, but one should care-
fully investigate the contributions from other strange baryons before drawing too strong
conclusions. By adding ropes, the description again gets closer to what is predicted by
the Monash tune.

Table 10.1 – Sum of contributions to the charge, strangeness, and baryon number balance
of the Ξ trigger, contained within |∆y| < 1 and originating from pions, kaons, protons,
Λ, and Ξ baryons, for data and each MC model studied in this thesis. Data derived from
Fig. 9.19. Only statistical errors are stated in the table.

Data/Model Charge Strangeness Baryon number
ALICE data 59.4 ± 0.9% 28.1 ± 0.4% 27.1 ± 0.7%
PYTHIA8 Monash 48.5 ± 0.7% 37.1 ± 0.1% 35.4 ± 0.2%
EPOS LHC 47.1 ± 1.7% 25.8 ± 0.4% 24.0 ± 0.6%
PYTHIA8 Junctions 62.8 ± 1.4% 32.4 ± 0.3% 27.4 ± 0.5%
PYTHIA8 Ropes 53.2 ± 1.7% 30.9 ± 0.4% 29.0 ± 0.6%

To summarise, both strangeness and baryon number conservation are much more
localised in PYTHIA than in data, although this seems to at least partly be remedied
by adding junctions, and in this respect EPOS is more successful. This translates to an
earlier decoupling of strangeness and baryon number in the system evolution – but not
charge – in data than in PYTHIA.

10.2.1 Ξ − π Correlations
Pions couple to the Ξ baryon by sharing a down quark, but they will also affect the
correlation function through charge balance. Since all quantum numbers are preserved
in the jet peak, any excess in charge induced by other correlations must be balanced.
Balancing this with kaons would create an excess in strangeness, which in turn needs
to be balanced by other strange particles. Since K0

s is a superposition of K0 and K0

to nearly equal proportions [10, pp. 289-291], resulting in a net strangeness of zero,
this would need to be done by another particle, such as Λ. Since no such excess has
been observed in the Ξ − Λ correlation function, one can conclude that kaons should
not play a major role in the charge balance. Similarly, balancing charge with protons
would violate baryon number conservation, which only leaves pions.

To extract the impact of the d quark to the Ξ − π correlation function, one should
look at the away side, where a small excess of 0.034 ± 0.005 (stat.) ± 0.002 (syst.) pions
at midrapidity per Ξ baryon is observed. The presence of the Ξ− (Ξ+) does however
result in an excess of antiprotons (protons) on the away side, resulting in an excess of

191



negative (positive) charge in the event. This needs to be balanced somehow, and since
charge balance seems to be a fairly localised effect (see below), this has to cause at
least part of the pion excess2. The away-side proton excess of 0.025 ± 0.001 (stat.) ±
0.008 (syst.) per Ξ baryon is actually nearly consistent with the pion excess being fully
due to charge balance of protons, meaning that most of the d quark balance is likely
achieved by protons and not pions, unless the mechanism for the down quark coupling
is very different from that of strange quarks, which is unlikely3. Therefore the excess in
oppositely-charged Ξ − π correlations is likely strongly dominated by charge balance.

While the study of Ξ − π correlations give information of the charge distribution in
Ξ triggered events, it is not equal to it. For a complete description, one would need to
study the full correlation between the Ξ baryon and oppositely charged particles, which
very well is achievable, since these are dominated by pions, kaons, and protons, but has
not been measured locally since it is not the purpose of this study. Instead, the pions give
a measure of the charge distribution not covered by other charged particles, particularly
kaons. This explains why PYTHIA gives a much lower excess of pions than what is
seen in data; this is simply an effect of the increased number of kaons. By summing
the contributions from all charged particles which are experimentally accessible, all
versions of PYTHIA get fairly close to the experimental value (exactly how close is
difficult to say due to the impact of Σ±), showing that PYTHIA quite well describes
the total charge distribution. While the charge balance peak is the only feature that
EPOS reproduces, summing all contributions does not give a value of the charge excess
even close to what is seen in data. Instead, this is largely balanced by an excess on the
away side, which is the reason why the global charge balance is not very different from
the other MC models or data.

While not probing the full charge distribution, the narrowness of the Ξ − π cor-
relation peak shows that charge conservation is a quite localised phenomenon, mostly
associated with correlations within the jet, although the peak is not quite as narrow
as the contribution from pions alone. Given the success of the EPOS description of
jet-hadron correlations (Fig. 3.29), it is quite expected that the jet peak should show
up for inclusive charged particles. What this study shows is that only pions contribute
to the jet correlations in EPOS, which is not exactly what is seen in data (but as I will
return to, this picture may not be entirely wrong).

The charge imbalance seen on the away side should on the other hand arise from
other processes, such as quark or baryon number decoupling in the initial phase, as
discussed elsewhere in this chapter.

2The excess of strange quarks on the away side is coupled to the production of (what later becomes)
the Ξ baryon. As such, this will create a dipole already in the initial stage and should not contribute
to the proton charge balance.

3For Ξ−, part of the down quark balance can however be achieved by the valence quarks from
the colliding protons, which would reduce the balance for d quarks relative to s quarks. There is a
significantly weaker correlation difference on the away side for Ξ− − π correlations than for Ξ+ − π
correlations (not shown in this thesis), but a corresponding separation is not observed for Ξ − p
correlations.
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10.2.2 Ξ − K Correlations
With charge balancing ruled out as a source of the excess of oppositely charged kaons,
this must be a probe of where strangeness is produced in the event. However, just as
the pion excess results from charge balance, the kaon excess results from strangeness
balance remaining after production of strange baryons. Despite a large excess on the
near side, reaching slightly more than 50% of the underlying-event correlation at the
peak (compared to about 15% for the pions), this is somewhat suppressed on the near
side due to the impact of Λ and – to a lesser extent – Ξ baryons. The width of the Ξ−K
peak is similar to the Ξ−Λ peak however, indicating that Ξ−K correlations alone fairly
well describe how strangeness is distributed in the event, at least qualitatively. The slow
fall-off – particularly in ∆y – and the large excess on the away side, clearly indicate that
strangeness is diluted in the system, meaning that it largely is an initial-state effect.

While diluted, the clear near-side peak shows however that strangeness is not nearly
isotropically distributed in the system, with the Ξ baryon being produced at the side
with more strangeness. This is likely a combination of initial- and final-state effects,
since from statistical arguments, the Ξ baryon should more likely be produced in a
region with more strangeness produced from imbalance in the initial state, but also
that the production of a Ξ will result in even more strange hadrons produced during
hadronisation. With the amplitude of the near-side Ξ − K peak being about four times
as large as the away-side magnitude (and the difference being even larger if including
Λ), it is unlikely that the imbalance is due to the initial state alone, but also due to
effects later in the system evolution. The narrow core of the jet peak present in the
PYTHIA models is however missing in data, indicating that strangeness is not produced
in the final stages either, but rather at some intermediate stage.

PYTHIA and EPOS are extreme cases of where the strangeness production is dom-
inated by final- and initial-state effects, respectively. In the Monash tune of PYTHIA,
the near-side Ξ − K peak is about 70% stronger than what is observed in data, with
an even larger excess for total strangeness. Consequently, the peak is much narrower
than what is seen in data, and the away-side excess is reduced to about 40% of the
ALICE results. The fact that it is non-zero shows that ss breakings may happen early
enough in the collision for the hadrons to be emitted back-to-back, which is expected,
but strangeness production is still strongly dominated by interactions within the jet.
Adding junctions partly remedies the problem by reducing the excess in Λ baryons, as
expected when adding mechanisms such as the one shown in Fig 3.24b, but although
the away-side excess as well as correlations at large ∆y, of oppositely charged kaons get
close to what is seen in data, the strangeness in the jet peak is still too dominant. This
model also has the problem of producing too little strangeness, which is the reason for
adding rope interactions, but the little extra impact that has on the correlation function
results in an even larger deviation from data – closer to what is seen for the Monash
tune – which disfavours this mechanism for producing strangeness enhancement in pp
collisions. Adding string shoving (cf. Section 3.8.3; this was not included in any of the
tested models) would probably not resolve this, since it would shove strings apart prior
to hadronisation. Since multistrange baryons are produced by strings that are grouped
close together, this would rather increase the dilution of the Ξ − π correlation function
than the correlation to strange hadrons. It would be interesting to test nevertheless, I
might well be wrong.
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In EPOS LHC on the other hand, strangeness seems to purely be produced at the
initial state, resulting in a nearly isotropic excess of kaons. This indicates that the Ξ
baryon itself would need to be produced very close to the initial medium and not even
close to the jet, which seems unlikely in a physics perspective to begin with, and from
these measurements is proven to be wrong. This is rather a limitation of the model than
anything else, however, since local conservation of quantum numbers is not implemented
in the current version of EPOS (and is not yet implemented in EPOS3 either, but is
planned for the future [133]). This does not disprove the core-corona model for the
initial state – the missing core of the jet peak indicates that this may very well be the
reason for the dilution of strangeness in the event – but the hadronisation description
clearly needs a more careful treatment. Until this has been implemented, it is not
possible to use these measurements to test whether the EPOS description of the initial
state is compatible with data.

The integrated magnitude of the kaon excess on the away side is 0.105±0.003 (stat.)±
0.003 (syst.) kaons per Ξ baryon at small separations in rapidity. The much smaller
excess of Λ baryons on the away side indicates that this covers a majority of the total
strangeness increase in this region. While being a quite significant number, it is only a
small fraction of the total strangeness imbalance of 2 induced by the Ξ baryon. Here one
should be careful about comparing numbers though, since the flatness of the away-side
excess indicates that it may spread far in rapidity, increasing the total yield significantly.
Therefore, this number should rather be compared with the yield on the near side, but
due to the strange hadrons that are not experimentally accessible, this is difficult to do
for total strangeness.

One can also think of the near-side peak spreading even further in rapidity, which
cannot be verified due to the quite narrow rapidity window of the ALICE detector.
This would be a signature of elliptic flow and a possible indication of a hydrodynamic
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origin of the strangeness production in the initial state. A more robust measurement
for studying this would be to measure flow of multistrange baryons, i.e. Ξ and/or Ω, in
small systems, which has not been done yet. The closest measurement carried out so
far is a measurement of flow of the Λ baryon and φ meson in p–Pb collisions, with only
partial non-flow subtraction [134]. The preliminary results, shown in Fig. 10.4, show
that the flow compared to inclusive charged hadrons is lower for these species at low
pT, which is expected due to mass ordering, but for Λ it is higher at high pT (for φ it
is consistent with results from other mesons). A similar increase is also observed for
protons, and since the effect in Λ may be due to non-flow, it is not yet possible to draw
any conclusions from this measurement.

10.2.3 Ξ − p Correlations
Just as for kaons, there is a large excess of protons on the away side, as well as a wide
extension of the correlation function in ∆y. While the magnitude is smaller than for
strangeness, this still indicates that also baryon number is significantly diluted in the
system, meaning that the net baryon content decouples already in the initial state. With
a large excess also of Λ baryons on the away side, this decoupling is likely significant
also for other strange baryons, as well as for neutrons. Given their similar properties
(except for the charge), the number of protons and neutrons should be roughly equal,
but depending on the mechanism for this decoupling, the number of neutrons may be
larger since they contain two d quarks instead of one.

As already has been discussed, the protons seem to take up a larger fraction than the
pions of the direct d quark associated with Ξ production at the initial state, although
the pions indirectly add to some of the d quark balance due to charge balance. It is
however unclear whether the shared qq pair increases the baryon number decoupling,
or if it is the baryon number decoupling itself that causes the protons to account for
such a large fraction of the away-side d quark excess. One way to get some insight into
this, and also would shed some light of the mechanism involved, would be to measure
Ξ − n correlations, which unfortunately is impossible with the ALICE detector (and
not so easy using any other detector either). A better way to access what fraction of
the proton excess is due to baryon decoupling would be to measure Ω − p correlations,
since they do not share the same quark flavours, which should be possible in Run 3.

In any case, if the Ξ − n correlations are similar to the Ξ − p correlations, the
total baryon imbalance on the away side induced by the Ξ baryon is only slightly lower
the strangeness imbalance (cf. Fig. 9.18), given that most of the net strangeness not
contributing equally to baryon number comes from kaons (the contribution from Ξ
baryons is quite weak, which is probably the case also for Ω given its much lower total
yield). With the Ξ baryons having a strangeness-to-baryon number ratio of 2, this
indicates that baryon number is even more diluted in the event than strangeness. I
leave it to the theorists to figure out what could be causing this.

On the near side, on the other hand, the excess of protons is suppressed compared
to e.g. Λ baryons, but the overall shape of it is quite similar to what is observed
for kaons. This does not mean that the mechanisms are necessarily similar, though,
since here protons (and neutrons) will act mostly as a baryon number balance. With
the baryon number conservation appearing quite diluted in the event, it is not too
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surprising that the near-side peak is quite small for the proton excess (although not
nearly as suppressed as in EPOS). This is very much the case also for PYTHIA, where
the Monash tune produces a relatively small excess, which can be explained by the
large near-side Ξ − Λ peak, which accounts for most of the baryon number balance.
Therefore, the total Ξ−baryon per-trigger yield is much more enhanced on the near side
in PYTHIA than what is seen in data. This is also indicated by previously published
results of p − p correlations in pp collisions, where the near-side peak of the symmetric
correlation function is more prominent than in data, as shown in Fig. 10.5a [132]. The
same has been observed also for Λ − Λ and p − Λ correlations, so this is obviously a
universal issue for baryon–baryon correlations.
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Figure 10.5 – (a) Symmetric correlation function (defined by Eq. (8.2)) between pairs
of oppositely charged protons, along with model predictions, and (b) proton balance
functions (differences between opposite-and same-sign particles) for a few multiplicity
classes, measured in pp collisions at 7 TeV and 5.02 TeV, respectively. Figures taken from
Refs. [132] and [80].

There has not yet been any publication of per-trigger normalised p − p correlations
by ALICE in small systems, but there has been a measurement of the proton balance
function (i.e. the difference between opposite-sign and same-sign correlations, but it is
mostly used for pairs of particles of the same kind or inclusive charged particles) in 5.02
TeV pp collisions, aiming at understanding the radial-flow like effects in small systems
(cf. Sections 3.7.1 and 3.8.1) which is shown in Fig. 10.5b [80]. Although measured at
a lower energy, the results are remarkably similar to the lower panel of Fig. 9.15a. The
magnitude is greater (especially considering the narrower pT interval), but this should
not come as any surprise, since the proton trigger is not expected to be balanced by
strange baryons to the same extent as the Ξ baryon. Moreover, the proton-to-neutron
ratio should be greater due to a larger fraction of shared quarks, which could explain the
increased magnitude on the away side. These results indicate that the baryon–baryon
correlation function is not very different for different triggers.
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For the junction and rope extensions, both the shape and magnitude of the near-side
difference are very similar to what is observed in data. The reason for the similarity
in shape seems to be due to a very weak core of the jet peak, which indicates that
most of the correlations in these models are due to processes happening earlier in the
evolution, just as in data. While the underlying mechanism might be different (in the
PYTHIA models the reason is likely that the baryon balance in the jet peak is covered
by other particles such as Λ), this indicates that the processes involved in this particular
correlation happens at a similar stage in the evolution. Since strangeness (and total
baryon number) seems to decouple only slightly later than this (due to the similar width
but more enhanced near-side peak), it could be worth investigating. The similarity in
magnitude might be a coincidence though, since the excess of Λ and Ξ baryons is lower
in these models, requiring an extra balance of protons (although model dependent), and
the total yield of protons is strongly overestimated by these models (cf. Fig. 10.3b).

10.2.4 Ξ − Λ and Ξ − Ξ Correlations
For Ξ − Λ correlations, most of the excess of opposite-baryon number particles is on
the near side, with a larger relative excess compared to the away side than for kaons or
protons. The peak magnitude is about 50% larger than for protons, and about half of
what is observed for kaons. Therefore, one can conclude that Λ baryons are favoured to
be produced together with the Ξ baryon close to jet peak. This could be because here
both the strangeness and baryon density are greater in the vicinity of the Ξ baryon,
favouring that they hadronise close to each other in phase space, or that the Λ baryon
is produced together with the Ξ baryon, as in PYTHIA. What is clearly not observed
is a description like in EPOS, where the Λ baryons are produced nearly isotropically
with the Ξ baryon in the event, but this may again just be due to quantum number
conservation not being handled properly.

Now the question is whether the near-side peak is due to string breakings – like
in PYTHIA – or some other mechanism is involved. A few of the results indicate
that a pure string model is unlikely. Most importantly, the near-side peak is way too
strong in PYTHIA as compared to data, which likely is a consequence of the baryon
production mechanism in PYTHIA, cf. Fig 3.24a. With the Ξ − Λ near-side excess
being about 3.5 times higher in PYTHIA than in data, diquark breaking is unlikely to
be the dominant mechanism for baryon production. The junction model reduces this
excess to about two times what is seen in data, but one should bear in mind that the
diquark breaking mechanism still exists, so this is likely part of the reason why the
correlations are so strong. Therefore, baryon production through string junctions is a
more plausible mechanism, but it has the drawback of creating more protons than what
is observed in data. Nevertheless, it would be interesting to study what impact a pure
junction mechanism has on the Ξ − Λ correlation function. Adding ropes again moves
the near-side yields away from data, which is another indication that this is not the
mechanism responsible for strangeness enhancement.

Secondly, while junctions help in remedying the Λ excess, they do not significantly
affect the near-side enhancement of opposite-sign kaons. Therefore, both the standard
mechanism for baryon production and the junction one will result in a localised strange-
ness conservation picture, indicating that this is what one obtains from a pure string
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model. Finally, this conclusion is consolidated by studying the width of the Ξ−Λ peak;
it is much wider than in any PYTHIA model, indicating that despite the low excess
on the away side, Λ baryons are largely produced by indirect interactions, indicating
that part of the near-side production is due to in-medium effects. Whether this is due
to some hybrid mechanism or several different mechanisms is a subject for further re-
search, although the multiplicity dependent study indicates that the mechanism(s) does
not change with multiplicity.

For Ξ − Ξ correlations, the correlation function is very similar to the one observed
for Ξ − Λ correlations, but weaker. On the other hand, the relative increase compared
to the underlying event is much larger than for Λ, indicating that direct interactions
with the trigger particles are important. This is the case also for all phenomenological
models.

10.3 Multiplicity Dependent Results
The results from studying Ξ−hadron correlations when going from lower to higher
multiplicity can be summarised by a few simple observations: the underlying-event
correlation becomes stronger, while the part originating from the Ξ trigger remains re-
markably similar, but with a slight enhancement in the peak region. These observations
are common for all associated particles and there are not any statistically significant
effects observed for any of the measurements.

The enhancement of the underlying event is a natural consequence of the increased
collision multiplicity – higher-multiplicity events contain more tracks. While there is a
bias towards events with a larger number of tracks at midrapidity (the multiplicity is
measured at forward rapidities, and in pp correlations, the correlation is not as strong
between the two regions as in heavy-ion collisions), this division is still apparent. Given
the small correlation between pairs of Ξ baryons, the average number of Ξ baryons per
event containing a Ξ is typically one, so the per-trigger yields are expected to scale
with the number of tracks. This also tells us that the enhanced strangeness in high-
multiplicity events is due to a higher probability that a Ξ baryon is formed in an event,
and not that they are much more likely to form together.

That the magnitude of the balancing part of the correlation function is similar across
multiplicity is also expected due to conservation of quantum numbers, so the interesting
result is that the shape does not change. This tells us that the production mechanism
is the same for high- and low-multiplicity events. The slight increase in peak amplitude
at high multiplicity may be attributed to radial flow (cf. Section 3.7.1), since such an
increase should be compensated by a depletion elsewhere in phase space, and hence
the balance function should be narrower. There are indications of such a narrowing at
least in Ξ − π correlations, but in order to tell whether this is statistically significant,
a careful quantification would be necessary, which there was unfortunately not enough
time for here. Moreover, the narrowing is expected to be dominant at low pT, so one
should limit the study to low-pT triggers to study this and ideally go lower in pT than
1.2 GeV/c, which is the low limit currently used4.

4This limit was selected since there were large statistical fluctuations at lower pT, which were
distorting the results given the statistical sample used originally, but given the larger sample used in
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In the case of a core-corona picture, this observation would indicate that the volume
where strange quarks are produced is smaller at low multiplicity, but they would still
be produced in the core part.

10.4 Conclusions
These results indicate that both strangeness and baryon number largely decouple during
the initial phase, indicating that the initial state largely behaves like a medium, although
what could be causing the baryon number decoupling is somewhat unclear. This is
further indicated by radial-flow like effects in the scaling with multiplicity. This is
consistent with a core-corona picture, but since EPOS does not conserve quantum
numbers locally, it is not possible to test this model until these conservation laws are
properly implemented in EPOS.

There are also strong final-state interactions resulting in a significant excess of op-
posite quantum numbers in the vicinity of the Ξ baryon, which in particular is seen as
an excess of strange baryons. In regions of phase space where the baryon and strange-
ness density are lower, production of protons and kaons, i.e. non-strange baryons and
strange mesons, is more favoured. The hadronisation mechanism could partly be due
to a string breaking mechanism, and given the success of PYTHIA in describing many
other observables, parts of this model may be close to reality. There are however indic-
ations of medium effects involved also here, which could either originate from the initial
state or from some hybrid mechanism. Baryon production from diquark formation –
the main mechanism in PYTHIA – and strangeness production from colour ropes are
disfavoured to be among the dominant mechanisms for these processes.

The strangeness production mechanism does not seem to change with collision mul-
tiplicity.

The correlations between the Ξ baryon with same-quantum number particles are
dominated by the underlying event and therefore probe different physics. These largely
behave as described in PYTHIA.

To summarise, these measurements indicate that there is a possibility of a core-
corona initial state and a hadronisation phase similar to what is observed in PYTHIA
(with junctions), rather than a pure string based model. Therefore, such an approach
should be considered some further phenomenological treatment.

10.5 Outlook
The following studies are proposed as an extension of this analysis:

• Measurements of pT dependent Ξ−hadron correlations. This was originally planned
for this thesis, but has not yet been done due to time constraints. This would test
whether the correlations are different between hard and soft processes, and more
conclusively test whether the correlation function is subject to radial flow.

• Ω-hadron correlation studies. The analysis presented here could be repeated with
the Ω baryon as a trigger. Being a pure strange-quark state, this would reduce

the final results, this should now be possible to lift.
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contamination from other processes, such as those induced by the down quark
in Ξ. Therefore, Ω − p correlations could be used to purely access the baryon
correlation with the away side and Ω − K correlations would more conclusively
quantify how strangeness is distributed in the event. Especially interesting would
be to compare Ω − Λ correlations with Ξ − Λ correlations, since this would probe
whether the enhancement of Λ baryons on the near side is mostly due to diquark
sharing or if it is dominated by the high density of both strangeness and baryons.
Such a study will be possible following in Run 3, following the detector upgrade,
where a specific trigger for events with Ω baryons is planned (this will trigger on
topology, so will also yield much more Ξ baryons) [106]. With the Ω baryon being
about 20 times as rare as the Ξ baryon, only simpler studies such as minimum-bias
Ω − π and Ω − K correlations are currently accessible.

• More complete Ξ correlation studies in PYTHIA and its extensions. Since this
is simulation, one can study interactions also with particles that cannot easily
be detected in the experiment (including Σ±). In this way one can study how
the correlation between Ξ and total charge, baryon number, net strangeness etc.
are related to each other, and how this changes by turning on and off different
mechanisms such as colour reconnection (included in the Monash tune), junctions,
and string shoving. For a more advanced study, one can tune various parameters
to quantify the contribution from each mechanism to the correlation function.

• In-depth studies in PYTHIA on how the correlations between Ξ and other hadrons
are produced. This means that one should dig into the various processes involved,
which would support the discussion in this thesis. It would be particularly in-
teresting to investigate what happens at the different stages of the evolution and
how this enters into the correlation function, since this would give insights into
the time scales of strangeness and baryon decoupling and charge balance etc. also
in data.

• Extensions to larger collision systems such as p–Pb and Pb–Pb collisions (and in-
termediate systems possibly available in Run 3 and beyond). Such measurements
would more robustly test how the mechanism for strangeness production depends
on system size and collision multiplicity than what is possible from pp collisions
alone.

• Measurements of p−p, p−Λ, and Λ−Λ correlations in data and various PYTHIA
extensions. By comparing the results from such a study with the ones presented in
this thesis, one can e.g. test if baryon number is distributed in a similar way when
triggering on a proton or Λ baryon as when triggering on a Ξ baryons. In data,
only symmetric correlations have been published for these observables so far, so
for a direct comparison with this study, one needs to extend this to per-trigger
yields.

• Theoretical development of models with a core-corona initial state and a had-
ronisation phase where all quantum numbers are locally conserved. This may be
implemented in a future EPOS version, but given the success of PYTHIA, one can
also think of corona based models partly based on PYTHIA. Such a model has
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actually already been studied, where PYTHIA/Angantyr was used to generate
particles from pp, p–Pb, and Pb–Pb collisions and a hydronamisation code was
applied to generate a fluid state in regions with high parton density, whereas the
PYTHIA string fragmentation was used for regions with lower density [135]. In
this way, a core-corona state was produced, resulting in an increase in strange
baryons with multiplicity. From the results presented in this thesis, it seems more
likely that the core has a different origin (although this picture is a possible al-
ternative if not believing that the CGC picture is valid in small systems) and the
string picture is only valid in the hadronisation phase. Nevertheless, if an event
generator based on this mechanism is released, it would be interesting to test it
against the results presented in this thesis.
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Appendix A

Mathematical Derivations

A.1 Derivation of Existence of a Local Inverse of the
Distribution of the ADC Output

This mathematical derivation complements the work presented in Chapter 6. According
to the Inverse Function Theorem, a function g(x) is locally invertible at a point x0 if
the Jacobian

J ≡ det dg
dx

is non-zero at x0 [136, p. 3]. For a global inverse, a necessary (but not sufficient)
condition is that J is non-zero over the entire domain of g. In this analysis, the
relevant function g : (R × R+) 7→ (R × R+) is defined as (cf. Section 6.3.2)
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and
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where Y is a distribution created from a discrete sampling of a normal distribution with
mean µ and standard deviation σ. Thus,

J = 0 ⇐⇒ VY [n] = 0 ⇐⇒ σ = 0,

i.e. g is locally invertible whenever σ > 0.

A.2 Calculation of Sideband Coefficients Used for Λ
in the Non-Linear Regime

This section describes how the scaling coefficients applied to the non-linear sideband
regime in the Λ invariant-mass spectrum are calculated. The final coefficents are listed
at the end of the section.

Let y1 and y2 be the integrals of the background in the lower and upper sidebands,
respectively, and xL and xNL be the linear and non-linear components of the lower
sideband, i.e. y1 = xL + xNL. Then we can find coefficients a, b such that{

xL+ xNL = y1
a xL+ b xNL = y2.

(A.1)

In order for the sideband subtraction to be correct, one needs to subtract the terms
(1 + a)xL + f(1 + b)xNL from the signal, where f is the scaling factor required for the
non-linear part (the first term is just the usual linear sideband subtraction). We want
to find scaling terms f1 and f2 for each sideband, such that

f1y1 + f2y2 = (1 + a)xL + f(1 + b)xNL (A.2)
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is satisfied.
By inverting Eq. (A.1), one obtains

xL = by1 − y2
b− a

xNL = y2 − ay1
b− a

.

Inserting this into Eq. (A.2), yields after some simplification

f1 = b− f · a+ (1 − f) · a · b
b− a

f2 = f − 1 − a+ f · b
b− a

. (A.3)

Now remains to evaluate a, b, and f , which is done by integrating various components
of the fit function. By introducing m = ∆Minv, the sidebands are defined as −7σ <
m − µ ≤ −4σ for the lower sideband and 4σ < m − µ ≤ 7σ for the upper sideband,
and the signal region as −3σ < m− µ ≤ 3σ, where σ and µ are obtained from the fits
shown in Fig. 8.7. The parameter a is the ratio of the linear component in the upper
sideband to the one in the lower sideband, i.e.

a =
∫mu+7σ

µ+4σ
d0 + d1mdm∫ µ−4σ

µ−7σ
d0 + d1mdm

= d0 + d1(µ+ 5.5σ)
d0 + d1(µ− 5.5σ) ,

where d0 and d1 are the fit parameters in the linear component of the fit function. To
evaluate b and f , let us first integrate the non-linear component. Its indefinite integral
is
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where C1 is an integration constant and the parameters c1 − c3 are obtained from the
fit. Then the integrals in the various regions become

I1 = I(µ− 4σ) − I(µ− 7σ),
I2 = I(µ+ 7σ) − I(µ+ 4σ),
I3 = I(µ+ 3σ) − I(µ− 3σ),

where I1 and I2 are the integrals in the lower and upper sideband regions, respectively,
and I3 is the integral of the non-linear part of the background in the signal region.
From these integrals,

b = I2
I1
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and
f = I3

I1 + I2
.

The final scaling factors defined by Eq. (A.3) are summarised in Table A.1 for ALICE
data and in Table A.2 for MC.

Table A.1 – Multiplication factors used for the lower and upper sidebands for Λ in the
interval 0.4 < pT < 1.0 GeV/c for the ALICE data. Note that the lowest bin is not used
for Λ.

Λ Λ
pT interval lower upper lower upper

sideband sideband sideband sideband
0.4 − 0.5 GeV/c 1.80 0.56 − −
0.5 − 0.6 GeV/c 1.12 1.14 0.67 1.57
0.6 − 0.7 GeV/c 0.32 1.87 0.37 1.82
0.7 − 0.8 GeV/c 0.32 1.88 0.33 1.89
0.8 − 0.9 GeV/c 0.27 2.07 0.27 2.09
0.9 − 1.0 GeV/c 0.01 2.61 0.06 2.51

Table A.2 – Multiplication factors used for the lower and upper sidebands for Λ in the
interval 0.4 < pT < 1.0 GeV/c for the MC data set.

Λ Λ
pT interval lower upper lower upper

sideband sideband sideband sideband
0.4 − 0.5 GeV/c 1.73 0.64 − −
0.5 − 0.6 GeV/c 1.21 0.84 1.20 0.78
0.6 − 0.7 GeV/c 0.68 1.39 0.63 1.44
0.7 − 0.8 GeV/c 0.20 2.15 0.20 2.13
0.8 − 0.9 GeV/c 0.14 2.32 0.16 2.24
0.9 − 1.0 GeV/c 0.01 2.59 0.01 2.58
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Appendix B

List of Acronyms

A side ATLAS side
ADC Analogue-to Digital Converter
ALICE A Large Ion Collider Experiment
ALTRO ALICE TPC Read-Out
AOD Analysis Oriented Data
ATLAS A Toroidal Large ApparatuS
BGA Ball Grid Array
BM@N Baryonic Matter at Nuclotron
BR Branching Ratio
C side CMS side
CBM Compressed Baryonic Matter
CGC Color Glass Condensate
CERN European Organization for Nuclear Research1

CKM matrix Cabibbo-Kobayashi-Maskawa matrix
CMS Compact Muon Solenoid
CP Charge-Parity
CPV Charged Particle Veto
CR Colour Reconnection
CSA Charge Sensitive Amplifier
CTF Compressed Time Frame
CTP Central Trigger Processor
DAQ Data AQuisition
DC Direct Current
DCA Distance of Closest Approach
DCal Di-jet Calorimeter
DPG Data Preparation Group
DIPSY Dipoles in Impact-Parameter Space and rapidity (Y)
EKRT model Eskola-Kajantie-Ruuskanen-Tuominen model

1Originally an abbreviation for Conceil Européen pour la Recherche Nucléaire, the research council
that was formed when it was decided to build an international nuclear physics laboratory in Europe.
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EMCal Electromagnetic Calorimeter
EPOS Energy-conserving quantum mechanical multiple scattering approach,

based on Partons (parton ladders), Off-shell remnants, and Splitting
of parton ladders

ENC Equivalent Noise Charge
ESD Event Summary Data
FAIR Facility for Antiproton and Ion Research
FPGA Field-Programmable Gate Array
GDC Global Data Concentrator
GEANT GEometry ANd Tracking
GEM Gas Electron Multiplier
HLT High-Level Trigger
HM High Multiplicity
HMPID High-Momentum Particle IDentification detector
HRG Hadron Resonance Gas
IROC Inner Read-Out Chamber
IS Initial State
ITS Inner Tracking System
JTAG Joint Test Action Group
LDC Local Data Concentrator
LEP Large Electron-Positron collider
LHC Large Hadron Collider
LHCb LHC beauty
MB Minimum Bias
MC Monte Carlo
MCH Muon tracking CHamber
MC-KLN MC implementation of the Kharzeev-Levin-Nardi model
MOS Metal Oxide Semiconductor
MPI MultiParton Interaction
MRPC Multi-gap Resistive-Plate Chamber
MTR Muon TRigger
MWPC Multi-Wire Proportional Chamber
NCCA Negatively polarised Circuit Card Assembly
NICA Nuclotron-based Ion Collider fAcility
NLO Next-to-Leading-Order
O2 Offline-Online system
OROC Outer Read-Out Chamber
PA Pointing Angle
PASA PreAmplifier/Shaping Amplifier
PHENIX Pioneering High Energy Nuclear Interaction eXperiment
PCCA Positively polarised Circuit Card Assembly
PID Particle IDentification
PV Primary Vertex
QCD Quantum ChromoDynamics
QED Quantum ElectroDynamics

210



QGP Quark Gluon Plasma
RAM Random-Access Memory
RHIC Relativistic Heavy-Ion Collider
SDD Silicon Drift Detector
SoCKit System-on-Chip development Kit
SPD Silicon Pixel Detector
sPHENIX super PHENIX
SPS Super Proton Synchrotron
SSD Silicon Strip Detector
STAR Solenoidal Tracker At RHIC
SV Secondary Vertex
T0 Time 0 detector
TOF Time-Of-Flight
TPC Time Projection Chamber
TRD Transition Radiation Detector
TRENTo Reduced Thickness Event-by-event Nuclear Topology model
TV Tertiary Vertex
UV Ultra-Violet
VZERO/V0 Vertex 0 detector
ZDC Zero-Degree Calorimeter
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Appendix C

List of Common Hadrons

Table C.1 summarises some of the basic properties of the hadrons involved in the ana-
lyses presented in this thesis (excluding antiparticles), along with a few other light
hadrons, which either are used in related analysis, or have similar properties, but are
not analysed due to detector limitations. Only charged particles give tracks in the
detector. In order to measure the momenta of neutral particles, one requires a calori-
meter. ALICE only has electromagnetic calorimeters, which enable photon detection,
but such measurements are challenging due to the large background involved. Neut-
rons, for instance, require a hadronic calorimeter, and are thus not possible to detect
by the ALICE detector. Alternatively, particles which decay into one charged and one
neutral particle, it is possible to detect the momentum kink of the charged track, but
this requires a higher tracking resolution in the vicinity of the beam pipe than what
is currently available, but may be possible after the ITS upgrade (this is currently be-
ing evaluated). For the particles that can be more easily identified, they can either
be detected directly, through identification of the decay topology (V0 or cascade, cf.
Section 8.5.2), or – in the case of resonances – through their invariant mass alone.

The proper lifetime listed in the table is multiplied by the speed of light c, since this
is close to the decay length of a particle with high energy in its rest frame. In the lab
frame, the particles may travel a significantly larger distance due to the Lorentz boost.
Individual particles may travel up to a few decay lengths due to the statistical nature
of the decay. The weakly decaying particles listed all have a decay length > 1 cm.

Table C.1 – Summary of some of the most important properties of a selection of light
hadrons. Data retreived from Ref. [11].

Particle name quark main decay detection proper mass
content modes method lifetime (cτ) (×c2)

π+ charged ud µ+νµ direct 7.80 m 140 MeV
pion (∼ 100%) tracking

π0 neutral 1
√

2
(uu − dd) 2γ (99%) EM cal. + 25.5 nm 135 MeV

pion inv. mass
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Particle name quark main decay detection proper mass
content modes method lifetime (cτ) (×c2)

K+ charged us µ+νµ (64%) direct 3.71 m 494 MeV
kaon π+π0 (21%) tracking

K0
s neutral 1

√
2

(ds + ds)a π+π− (69%) V0 2.68 cm 498 MeV
kaon, short 2π0 (31%) topology

K0
L neutral 1

√
2

(ds − ds)a π±e∓νe (41%) hadronic 15.3 m 498 MeV
kaon, long π±µ∓νµ (27%) calorimetry

3π0 (20%)
π+π−π0 (13%)

φ0 φ meson ss K+K− (49%) invariant 46.3 fm 1019 MeV
K0

s K0
L (34%) mass

π+π−π0 (15%)

p proton uud stable direct N/A 938 MeV
tracking

n neutron udd pe−νe hadronic 2.6 · 108 km 940 MeV
(100%) calorimetry

Λ0 Λ baryon uds pπ− (64%) V0 7.89 cm 1116 MeV
nπ0 (36%) topology

Σ+ charged uus pπ0 (52%) calorimeter 2.40 cm 1189 MeV
Σ baryon nπ+ (48%) + inv. mass /

track kink

Σ0 neutral uds Λ0γ EM cal. + 22.2 pm 1193 MeV
Σ baryon (∼ 100%) inv. mass

Σ− charged dds nπ− had. cal. + 4.43 cm 1197 MeV
Σ baryon (∼ 100%) inv. mass /

track kink

Ξ0 neutral uss Λ0π0 EM cal. + 8.71 cm 1315 MeV
Ξ baryon (∼ 100%) inv. mass

Ξ− charged dss Λ0π− cascade 4.91 cm 1322 MeV
Ξ baryon (∼ 100%) topology

Ω− Ω baryon sss Λ0K− (68%) cascade 2.46 cm 1672 MeV
Ξ0π− (24%) topology
Ξ−π0 (8.6%)

aNeglecting CP violation.
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Appendix D

Complementary Figures

D.1 Complementary Results From the MCH Noise
Measurement

(a)

(b)

Figure D.1 – Discrete mean µD (a) and σD (b) as a function of analogue mean µ
(0 ≤ µ < 4) and standard deviation σ, for ∆1 = −0.15 and ∆2 = 0.05.
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(a)

(b)

Figure D.2 – Inverse to Fig. D.1, i.e. analogue mean µ (a) and σ (b) as a function
of discrete mean µD (0 ≤ µD < 4) and standard deviation σD, for ∆1 = −0.15 and
∆2 = 0.05.
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Figure D.3 – Left: Extracted noise σ versus truncated mean µ0 for different input ca-
pacitances. Right: Spread in σ as a function of detector capacitance. (a)-(b) Hypothesis
2, (c)-(d) Hypothesis 3, and (e)-(f) Hypothesis 4, defined in Section 6.5.1.
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Figure D.4 – Left: Extracted noise σ versus truncated mean µ0 for 10 different chips
from the automatic testing, using a gain of 4 mV/fC. Right: Spread in σ divided into
different chips. (a)-(b) Hypothesis 2, (c)-(d) Hypothesis 3, and (e) Hypothesis 5, defined
in Section 6.5.1.
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Figure D.5 – Left: Extracted noise σ versus truncated mean µ0 for 10 different chips
from the automatic testing, using a gain of 20 mV/fC. Right: Spread in σ divided into
different chips. (a)-(b) Hypothesis 1, (c)-(d) Hypothesis 2, and (e)-(f) Hypothesis 3,
defined in Section 6.5.1.
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Figure D.6 – (a) Extracted noise σ versus truncated mean µ0 for Hypothesis 4 defined in
Section 6.5.1, for 10 different chips from the automatic testing, using a gain of 20 mV/fC.
(b) Spread in σ divided into the different chips (for the same hypothesis).

D.2 Supporting Figures to the Ξ−Hadron Analysis
Description

(a) (b)

(c)

Figure D.7 – (a) Signal, (b) back-
ground, and (c) signal-to-background ra-
tio as a function of pT and bachelor DCA
cut for Ξ, for an otherwise very loose cut
set. Note the logarithmic scales. The se-
lected cut (power-law fit) is shown in red.
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(a) (b)

(c) (d)

(e) (f)

Figure D.8 – (a)-(b) Signal, (c)-(d) background, and (e)-(f) signal-to-background ratio
as a function of pT and (left) V0 pion and (right) V0 proton daughter DCA cut for Ξ,
for an otherwise very loose cut set. The selected cuts (power-law fit) are shown in red.
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(a) (b)

(c) (d)

(e) (f)

Figure D.9 – (a)-(b) Signal, (c)-(d) background, and (e)-(f) signal-to-background ratio
as a function of pT and (left) V0 invariant mass and (right) V0 DCAd−d cut for Ξ, for
an otherwise very loose cut set. The selected cuts (power-law fit) are shown in red.

222



(a) (b)

(c) (d)

(e) (f)

Figure D.10 – (a)-(b) Signal, (c)-(d) background, and (e)-(f) signal-to-background
ratio as a function of pT and (left) V0 radius and (right) V0 cos(PA) cut for Ξ, for an
otherwise very loose cut set. The selected V0 radius cuts (power-law fits) are shown in
red; based on this no cut was applied in V0 cos(PA).
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(a) (b)

(c) (d)

(e) (f)

Figure D.11 – (a)-(b) Signal, (c)-(d) background, and (e)-(f) signal-to-background
ratio as a function of pT and (left) V0-primary vertex DCA and (right) cascade-primary
vertex cut for Ξ, for an otherwise very loose cut set. The selected DCAcasc−PV cut (power-
law fit) is shown in red; based on this no cut was applied in V0-primary vertex DCA.
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(a) (b)

(c)

Figure D.12 – (a) Signal, (b) back-
ground, and (c) signal-to-background ra-
tio as a function of pT and cascade
cos(PA) cut for Ξ, for an otherwise very
loose cut set. Note the logarithmic scales.
The selected cut (power-law fit) is shown
in red.

0.015− 0.01− 0.005− 0 0.005 0.01 0.015
)2c (GeV/invM∆

0

200

400

600

800

1000Y
ie

ld Background included

Background subtracted

gaus(0)+gaus(3)+pol1(6)

c < 1.3 GeV/
T

 candidates in 1.2 < p-Ξ

(a)

0.02− 0.015− 0.01− 0.005− 0 0.005 0.01 0.015 0.02
)2c (GeV/invM∆

0

50

100

150

200

250

300

350

Y
ie

ld Background included

Background subtracted

gaus(0)+gaus(3)+pol1(6)

c < 4.0 GeV/
T

 candidates in 3.8 < p-Ξ

(b)

0.02− 0.015− 0.01− 0.005− 0 0.005 0.01 0.015 0.02
)2c (GeV/invM∆

0

5

10

15

20

25

30

35

40

45

Y
ie

ld Background included

Background subtracted

gaus(0)+gaus(3)+pol1(6)

c < 8.0 GeV/
T

 candidates in 7.0 < p-Ξ

(c)

Figure D.13 – Invariant-mass distribu-
tion of Ξ− candidates in the transverse-
momentum regions (a) 1.2 < pT ≤
1.3 GeV/c, (b) 3.8 < pT ≤ 4.0 GeV/c,
and (c) 7.0 < pT ≤ 8.0 GeV/c, including
a double-Gaussian fit + one-dimensional
polynomial background. The red ticks
mark the 3σ limits of the wider Gaussian
component, which are used as limits for
the signal region. The background is es-
timated from the sideband region, located
between 3 and 6σ away from the mean.
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Figure D.14 – Invariant-mass distribution of Λ candidates in the transverse-momentum
regions (a) 0.6 < pT ≤ 0.7 GeV/c, (b) 2.0 < pT ≤ 2.2 GeV/c, (b) 3.8 < pT ≤ 4.0 GeV/c,
and (c) 7.0 < pT ≤ 8.0 GeV/c, including a double-Gaussian fit + one-dimensional polyno-
mial background. In the lowest-pT interval an additional component defined by Eq. (8.10)
is included. The red ticks mark the 3σ limits of the wider Gaussian component, which
are used as limits for the signal region. The background is estimated from the sideband
region, located between 4 and 7σ away from the mean.
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(a) (b)

(c)

Figure D.15 – Efficiency-corrected
probabilities of detecting (a) a Λ baryon
in the range 0.6 < pT < 12 GeV/c and
|η| < 0.72 originating from Ξ± decay, (b)
a Λ baryon in the same kinematic region
originating from Ξ0 decay, and (c) a pro-
ton in the range 0.4 < pT < 3 GeV/c and
|η| < 0.8 originating from Λ decay, as a
function of pseudorapidity and transverse
momentum of the mother particle.
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Figure D.16 – Summary of systematic
uncertainties from each source (insigni-
ficant sources are set to zero, but still
included in the legend) for the projec-
tion in ∆ϕ of Ξ − π correlations. The
top three panels are for high-multiplicity
events, whereas the bottom ones are for
low-multiplicity events. (a, d) same-sign
correlations, (b, e) opposite-sign correl-
ations, and (c, f) differences between the
two.
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Figure D.17 – Summary of systematic
uncertainties from each source (insigni-
ficant sources are set to zero, but still
included in the legend) for the projec-
tion in ∆ϕ of Ξ − K correlations. The
top three panels are for high-multiplicity
events, whereas the bottom ones are for
low-multiplicity events. (a, d) same-sign
correlations, (b, e) opposite-sign correl-
ations, and (c, f) differences between the
two.
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Figure D.18 – Summary of systematic
uncertainties from each source (insigni-
ficant sources are set to zero, but still in-
cluded in the legend) for the projection in
∆ϕ of Ξ − p correlations. The top three
panels are for high-multiplicity events,
whereas the bottom ones are for low-
multiplicity events. (a, d) same-baryon
number correlations, (b, e) opposite-
baryon number correlations, and (c, f)
differences between the two.
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Figure D.19 – Summary of systematic
uncertainties from each source (insigni-
ficant sources are set to zero, but still in-
cluded in the legend) for the projection in
∆ϕ of Ξ − Λ correlations. The top three
panels are for high-multiplicity events,
whereas the bottom ones are for low-
multiplicity events. (a, d) same-baryon
number correlations, (b, e) opposite-
baryon number correlations, and (c, f)
differences between the two.
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Figure D.20 – Summary of systematic
uncertainties from each source (insigni-
ficant sources are set to zero, but still in-
cluded in the legend) for the projection in
∆ϕ of Ξ − Ξ correlations. The top three
panels are for high-multiplicity events,
whereas the bottom ones are for low-
multiplicity events. (a, d) same-baryon
number correlations, (b, e) opposite-
baryon number correlations, and (c, f)
differences between the two.
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D.3 Complementary Ξ-Hadron Correlation Results
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Figure D.21 – Correlations in (∆y,∆ϕ) space between Ξ baryons and pions for (a) same-
sign pairs at high multiplicity, (b) opposite-sign pairs at high multiplicity, (c) same-sign
pairs at low multiplicity, and (d) opposite-sign pairs at low multiplicity
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Figure D.22 – Correlations in (∆y,∆ϕ) space between Ξ baryons and (a, c) same-
sign kaons, (b, d) opposite-sign kaons, (e, g) same-baryon number protons, and (f, h)
opposite-baryon number protons, with high-multiplicity events in the upper panels and
low-multiplicity events in the lower ones.
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Figure D.23 – Correlations in (∆y,∆ϕ) space between Ξ baryons and (a, c) same-B Λ
baryons, (b, d) opposite-B Λ baryons, (e, g) same-B Ξ baryons, and (f, h) opposite-B
Ξ baryons, with high-multiplicity events in the upper panels and low-multiplicity events
in the lower ones.
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