
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Domain-Specific Language for Filtering in Application-Level Gateways

Balldin, Hampus; Reichenbach, Christoph

Published in:
Proceedings of the 19th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences

DOI:
10.1145/3425898.3426955

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Balldin, H., & Reichenbach, C. (2020). A Domain-Specific Language for Filtering in Application-Level Gateways.
In Proceedings of the 19th ACM SIGPLAN International Conference on Generative Programming: Concepts and
Experiences (pp. 111–123). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3425898.3426955

Total number of authors:
2

Creative Commons License:
CC BY-NC-SA

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1145/3425898.3426955
https://portal.research.lu.se/en/publications/da622418-caad-4610-bc0a-ff8eb2bd0346
https://doi.org/10.1145/3425898.3426955

A Domain-Specific Language for Filtering in
Application-Level Gateways

Hampus Balldin
Advenica AB

Malmö, Sweden
hampus.balldin@advenica.com

Christoph Reichenbach
Department of Computer Science

Lund University
Lund, Sweden

christoph.reichenbach@cs.lth.se

Abstract
Application-level packet filtering is a technique for network
access control in which an “application-level gateway” inter-
cepts network packets at the application level (e.g., HTTP,
FTP), scans them for security concerns and optionally logs,
rewrites or discards them. Existing application-level filters
express their filtering rules in general-purpose languages,
which limits the correctness guarantees available for them.

We present the first declarative language for application-
level network filtering, developed at Advenica AB. Our DSL
uses security assertions to express properties that packets
must have to be allowed through the network (e.g., “IMAP
packet contains no executable attachment” or “SQL reply
contains only explicitly permitted columns”), along with
remedies that either reject or rewrite undesirable packets.
We have designed the language around the needs of net-

work filter developers, with a focus on correctness: our lan-
guage can statically verify several properties of filter pro-
grams, such as well-formedness of the outcome, confluence,
and termination, with the help of an off-the-shelf SMT solver.
Our initial results show that the language can express

many typical filtering tasks, closely maps to the application
domain, and provides strong correctness guarantees.

CCS Concepts: • Networks → Application layer protocols;
• Software and its engineering→ Domain specific lan-
guages; • Security and privacy → Network security.

Keywords: filtering language, packet filtering, network se-
curity, domain-specific languages
ACM Reference Format:
Hampus Balldin and Christoph Reichenbach. 2020. A Domain-
Specific Language for Filtering in Application-Level Gateways.
In Proceedings of the 19th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences (GPCE ’20),

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
GPCE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8174-1/20/11.
https://doi.org/10.1145/3425898.3426955

November 16–17, 2020, Virtual, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3425898.3426955

1 Introduction
Any organisation that collects sensitive information (e-mails,
photographs, personal data, . . .) must consider who should
be able to access and modify that information. In computer
networks, this means that the organisation must impose ac-
cess control. The main opportunities for access control are
at the level of server applications, and at the level of network
transmissions. While access control on the server software
level can give fine-grained control, the quality of this con-
trol is only as good as the quality of the server software
(regarding bugs and missing features) and the organisation’s
effectiveness at enforcing organisation-wide server settings.
Many organisations therefore choose to use network fil-

ters instead of or in addition to relying on server-side access
control. They can place these filters at any level of the OSI
network layer stack, but the further up they place the filter,
the more information they have available to make informed
decisions. The highest (or “application”) layer can provide
detailed insight, e.g. whether an FTP [20] request is trying
to download or overwrite a sensitive file.
Today, application-level gateways implement filters in

general-purpose languages, which makes it difficult to ob-
tain strong safety guarantees. Moreover, such filters spend
nontrivial effort on searching through filter packets, which
requires substantial boilerplate code for managing iterations.

We have designed a novel declarative domain-specific lan-
guage for asserting security conditions over application-level
network packets and for optionally repairing packets that vi-
olate these conditions. We have equipped our language with
a number of verification techniques that together guarantee
that filters will only emit packets that pass all security condi-
tions and never get “stuck”.While our verification techniques
are not complete (i.e., may discard some valid programs), we
argue that they are sound (i.e., they discard all programs that
violate well-formedness).

Figure 1 illustrates the architecture of Advenica AB’s Zone-
Guard1 system as an example of a typical application-layer
network filter: the system takes in network packets intended

1https://advenica.com/en/cds/zoneguard, accessed 2020-07-24

111

https://doi.org/10.1145/3425898.3426955
https://doi.org/10.1145/3425898.3426955
https://advenica.com/en/cds/zoneguard

GPCE ’20, November 16–17, 2020, Virtual, USA Hampus Balldin and Christoph Reichenbach

Service

Validator-In Filter Validator-Out

Service

Figure 1. Architecture of a typical application-level network
filter. The system pipes all incoming packets through a filter,
validating that the packet is well-formed before and after.

for a specific network service (HTTP, FTP, . . .) extracts key
features from the packet with a parser for the protocol, vali-
dates that the packet is well-formed according to a subset of
the protocol (expressed as a schema), and then applies a filter
that may log and rewrite or discard the packet. If the filter
did not discard the packet, the system re-validates the output
packet against a schema (usually same as the input schema),
and translates the packet back into a binary network packet
that it passes on to the intended target server.
To support multiple protocols, decoding, encoding, and

validation operate on a universal binary representation. The
two principal challenges then are to implement encoding/de-
coding logic (once per protocol), and to implement filter logic
(once per use case), which is the focus of this paper.

Figure 2 describes a filter for a small security-relevant
subset of the Remote Desktop Protocol (RDP), a protocol for
remote control of Microsoft Windows desktops. This filter
operates on a subset of the RDP protocol that controls the
server’s mouse movements and mouse button clicks.

Lines 1–4 describe the schema in a form similar to an EBNF
grammar with start symbol RDP. According to this schema, an
RDP packet is a possibly empty sequence of Mouse nodes (‘*’ is
the Kleene star), and each Mouse node consist of two integers,
named x and y, and an optional integer, called button, that
represents an optional mouse button press.
Line 6 asserts that any button must be an element of the

list allowedButtons (line 8). Our filter language infers the
context of button and checks the assertion condition on all
Mouse nodes in the input packet. Whenever a Mouse contains
the press of a button that is sanctioned by allowedButtons

(which only allows button #0), the assertion fails.
Such a failure triggers the recovery strategy in line 7,

which removes the (optional) mouse button press. This turns
the event into a pure mouse movement event. If an incoming
packet contains multiple Mouse events, we will transform all
of them accordingly.
Our system supports a number of different recovery ac-

tions, including direct updates. For instance, we could also
remap disallowed button presses to operate on button #0
with an update action:
Assert button elem allowedButtons where

@onfail = button <- 0

2https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-
rdpbcgr/, accessed 2020-07-17.

1 [Schema @start = RDP]

2 data RDP = [Mouse *]

3 data Mouse = [x : Integer, y : Integer,

4 button : Integer ?]

5

6 Assert button elem allowedButtons where

7 @onfail = remove(button)

8 @def allowedButtons = [0]

Figure 2. Filter for a small subset of the Remote Desktop
Protocol2. Lines 1–4 describe the input / output schema (a
subset of TS_POINTER_EVENTmessages). Line 6 describes an
assertion over input packets with the help of a local definition
in line 8, while line 7 describes the recovery action.

However, careless updates can introduce security vulnerabil-
ities. For example, an end user of our filter might decide to
only allow mouse button #2 and set allowedButtons = [2].
In this case, our update could produce a packet that violates
the assertion condition button elem allowedButtons — in
other words, the update fails to sanitise disallowed packets!
Since our system is intended as a security tool, we stat-

ically check for such ineffective repairs and report any
assertions that we cannot guarantee to be effective.
Ineffective repairs are only one of several pitfalls in fil-

ter specification that we have identified. We also statically
check for impossible assertions, which never succeed, vac-
uous assertions, which never fail, termination bugs, run-
time faults, schema invalidation, where filters produce
ill-formed output, and subverted repair, where one asser-
tion’s repair action thwarts the repair action of another.

Our contributions are as follows:
• The first (to the best of our knowledge) DSL for protocol-
independent application-level network filtering

• A technique for statically verifying the absence of the
seven pitfalls listed above

• A validation of our language via re-implementations
of four of the 15 currently existing protocol filters from
Advenica AB’s ZoneGuard system in our prototype

• A systematic case study with a network filter engineer
from Advenica AB that explored re-implementing an
existing filter in our language

2 Extended Example
We introduce our language with a synthetic example that
showcases several core features. Figure 3 shows the schema
of a hypothetical protocol for reporting time series of sensor
measurements. Line 2 defines a node type SensorData for the
root node of incoming and outgoing packets. A SensorData

node contains a String with the name tag sensor, and an-
other node with time series data: either as a TSeries (another
node type), or as a zero or more BoundedTSeries nodes.

112

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/

A Domain-Specific Language for Filtering in Application-Level Gateways GPCE ’20, November 16–17, 2020, Virtual, USA

1 [Schema @start = SensorData]

2 data SensorData = [sensor : String,

3 (TSeries | BoundedTSeries *)]

4 data TSeries = [val : Integer +]

5 data BoundedTSeries = [max : Integer, TSeries]

Figure 3. Schema for a protocol for transmitting sensor data.
Each packet contains either a single time series or a sequence
of bounded time series, where each bounded time series
stores a regular time series and the series’ maximal element.

Line 4 then defines TSeries as a nonempty list of Integer
nodes, each named val. Here, the + stands for the Kleene
plus. Finally, line 5 defines BoundedTSeries as a pair of an
integer named max and an unnamed TSeries. Figure 4 gives
an example of a well-formed example packet in this protocol.

We nowwrite a filter to ensure properties over the packets:
(R-1) they come from a named node, (R-2) bounded time
series report a correct maximum, and (R-3) no time series
contains negative numbers. Along the way, we explore how
our system guarantees what we call filter correctness:
Whenever a filter processes a well-formed packet that violates
an assertion, the filter either discards the packet or emits a
different, well-formed packet that satisfies all assertions.
Our system also guarantees that well-formed packets that

pass all assertions pass the filter unmodified and that the
filter discards all ill-formed packets.

2.1 Rule R-1: Sensors Are Named
We begin with the following assertion:
Assert sensor /= ""

This assertion will discard any packets in which the name
of the sensor is empty. Since we left out the @onfail repair
action, our system will discard any packet that fails the as-
sertion condition and record a default log message.

2.2 Rule R-2: Values Do Not Exceed the Maximum
This rule requires comparing all val nodes in BoundedTSeries

to the same series’ max value. We write it as:
Assert BoundedTSeries..val <= BoundedTSeries.max where

@onfail = BoundedTSeries..val <- BoundedTSeries.max

Here, BoundedTSeries..val refers to a val node that is a de-
scendant of a BoundedTSeries in the tree structure of the
input packet, while BoundedTSeries.max refers to a max node
that is an immediate child of a BoundedTSeries node.
This condition illustrates a semantic subtlety. As we see

in Figure 4, a SensorData packet can contain more than one
BoundedTSeries node. When our language iterates over all
five possible bindings for val, we want to compare val nodes
under TSeries.1 only to max.1 and not to max.2. This is im-
plicit in our semantics: as we bind BoundedTSeries..val, we

SensorData

sensor BoundedTSeries.1 BoundedTSeries.2

max.1 TSeries.1 max.2 TSeries.2

val.1.1 val.1.2 val.2.1 val.2.2 val.2.3

Figure 4. Example packet for the schema in Figure 3

also implicitly bind BoundedTSeries accordingly, and re-use
that binding to resolve BoundedTSeries.max. Section 3.1 elab-
orates on this mechanism.

2.3 Rule R-3: No Negative Numbers in Time Series
Finally, we ensure that the time series contains no negative
numbers. Below is a first attempt at such a rule, though this
rule suffers from an off-by-one error:

Assert val > 0 where @onfail = val <- 0 # broken

Written in an imperative language, this rule would make
sense: Whenever val is greater than zero, set it to zero. How-
ever, our language is declarative, and its semantics guarantee
that any packet emitted by a filter satisfies all assertions. We
will thus reject the above rule, with an error to show that
the rule does not resolve the failed assertion.

Instead, we can write the following rule:

Assert val >= 0 where @onfail = val <- 0

While this rule captures our intent, our system will still
reject the rule, due to the way that it interacts with rule R-2:
first, if the filter changes a val both by ruleR-3 and by ruleR-
2, we introduce an ambiguity into the filter’s semantics. Our
system will report this issue as ambiguous assertions: “the
order of evaluating the@onfail action of [the two assertions]
may lead to different filter results”

Second, setting val to zero may invalidate the assertion of
rule R-2. The reason for that is that in rule R-2 we require
val to be less than max, but we have never ruled out that max
can be negative. Our tool reports this error as follows:3

[UnstableAssertions]
After evaluating the @onfail action of {assertion2},
a previously satisfied precondition of {assertion1}
may evaluate to False, in {model}

where
{assertion2} = Assert@Line=28
{assertion1} = Assert@Line=32
{model} = SensorData..BoundedTSeries..max%2 -> -1

SensorData..BoundedTSeries..val%2 -> 0
SensorData..val%1 -> 0 :: Integer

3Edited for space, removing two type annotations (:: Integer) and three
trailing variable assignments that were less useful than the first three.

113

GPCE ’20, November 16–17, 2020, Virtual, USA Hampus Balldin and Christoph Reichenbach

The concrete counterexample from this error message
alerts us that we must add a rule R-4 to the program:

Assert max >= 0

After we ensure that no max value can be negative, our
system can verify that our specification guarantees that any
filtered packet will satisfy all assertions and be well-formed.

3 Language Overview
Figure 5 summarises the core syntax of our language. Each
filter program consists of a schema and a set of assertions.

The schema consists of type definitions that together im-
pose a structure over the tree-structured input and output
packets. Our types include primitive types (Integer, String,
Bool), product types (T1, T2), sum types (T1 | T2) for vari-
ants, and multiplicities, which state how many elements of
the type a given node may contain: One element (T), any
number of elements (T*), one or more (T+), zero or one (T?),
or any number 𝑖 where 𝑎 ≤ 𝑖 ≤ 𝑏 (T{𝑎,𝑏}). By default, multi-
plicities apply equally to input and output packets, but users
can designate output-only types by marking the multiplicity
with square brackets (T[?]). Since these output-only types
are invalid in input packets, we only allow them within sum
types. Types can also name their primitive component types;
e.g. [x : Integer, y : Integer] gives two different name
tags to the integers in this product type. Finally, types can
reference each other, but as in ZoneGuard, we currently dis-
allow types to recursively depend on themselves (i.e., the
types are stratifiable) since we have not found this feature
to be needed and it may indicate a bug in the specification.

Assertions consist of a condition expression and a number
of optional decorators, which are mainly @onfail recovery
actions and, occasionally, precedence levels (Section 3.3).
Recovery actions can discard the packet (the default ac-

tion), remove a node, log a message, update a primitive value
in a node, notation v <- expr, replace a node with an output-
only variant (Section 3.2), or any combination of these.

We use expressions in two places: to compute truth values
for assertion conditions, and to compute node updates and
node replacements. Expressions can access packet nodes via
path variables that may bind to multiple values (Section 3.1).
Whenever we can evaluate an expression with multiple bind-
ings, we explore all possible bindings. For example, consider
the following assertion:

data T = [a : Integer *, b : Integer *]

Assert a > b

If we process a packet with two a elements and three b ele-
ments, we will check all six combinations of these elements.
Expressions can alternatively materialise all bindings of

a given variable as a list (in a deterministic order), notation
valuesOf(var). We provide aggregator functions, existential
and universal checks, and list comprehensions to operate on
lists. The example below illustrates using valuesOf with one

of the built-in aggregator functions, sum, to assert that all a
elements and all b elements sum up to the same value:

Assert sum(valuesOf(a)) = sum(valuesOf(b))

Our language also supports local variables (e.g., for list com-
prehensions or exists/forall), but the majority of our vari-
ables are path variables.

3.1 Referencing Tree Nodes with Path Variables
Typical application-level filter assertions check or compare
nodes as individuals, rather than considering their siblings
or node list offset. We thus designed our language to make
it easy to avoid explicit iteration, via path variables (though
users can use valuesOf for explicit iteration when needed).
The simplest path variables (⟨Var⟩ in Figure 5) consist of

only a name 𝑛 and reference all nodes that have the type
named 𝑛 or occur under the name tag 𝑛. If we want only
variables 𝑛 that are immediate children of path variable ℓ ,
we can write ℓ.𝑛, while ℓ..𝑛 describes variables 𝑛 that are
descendants of ℓ (cf. child and descendant axes in XPath [8]).

For variables with a common prefix, as in

Assert BoundedTSeries..val <= BoundedTSeries.max

our semantics ensure that both variables refer to the same
BoundedTSeries: whenwe bind the first BoundedTSeries..val,
we simultaneously bind the corresponding BoundedTSeries.

Informally, our semantics ensure that for any two path
variables in the same expression, their longest common prefix
must bind to the same node. We capture this formally below.

Assume that 𝑠N is the packet’s root (@start) node, 𝑝 → 𝑐

the child relation (𝑝 is the parent of 𝑐), and𝑇 (𝑛, 𝑡) a predicate
that holds whenever 𝑛 is a node and 𝑡 a type such that 𝑛 : 𝑡 ,
or 𝑛 has the name tag 𝑡 . We define the relation

𝐶, 𝐸 ⊢ 𝑣 ⊳ 𝐸 ′

to describe all environments 𝐸 ′ that contain bindings for
variable 𝑣 , when encountering 𝑣 in environment 𝐸 with the
context 𝐶 . In the core language, 𝐶 = 𝑠N (but see Section 3.4).
Figure 6 captures our environment semantics formally.

For each expression 𝑒 we extract all path variables 𝑣1, . . . , 𝑣𝑘 .
At runtime, we set 𝐸0 = ∅ and iterate 𝐶, 𝐸𝑖−1 ⊢ 𝑣 ⊳ 𝐸𝑖 , to find
all minimal environments 𝐸𝑘 and test 𝑒 once for each 𝐸𝑘 . Our
system reports a static error if the schema guarantees that
there can be no such 𝐸𝑘 .

Note that our semantics are order-independent: no matter
in which order we encounter the variables of an expression,
we will produce the exact same set of environments.

3.2 Replacement Semantics
Most of our recovery actions have straightforward semantics,
but replace introduces two subtleties that reflect its main
use case of error reporting.

Node replacement, unlike updates, can change the type of
a node, so we restrict replacement to variant nodes, as in:

114

A Domain-Specific Language for Filtering in Application-Level Gateways GPCE ’20, November 16–17, 2020, Virtual, USA

⟨Program⟩ → ⟨Schema⟩ ⟨Assertion⟩∗

⟨Schema⟩ → [Schema @start = id] ⟨TyDef⟩∗
⟨TyDef⟩ → data id = [⟨TyBody⟩]
⟨TyBody⟩ → id : ⟨Ty⟩

| ⟨Ty⟩
| ⟨TyBody⟩ (, ⟨TyBody⟩)∗
| ⟨TyBody⟩ (| ⟨TyBody⟩)∗
| ⟨TyBody⟩⟨Multi⟩

⟨Ty⟩ → id | ⟨PrimTy⟩
⟨PrimTy⟩ → Integer | String | Bool
⟨Multi⟩ → ⟨Quant⟩ | [⟨Quant⟩]
⟨Quant⟩ → * | + | ? | { int , int }

⟨Var⟩ → id
| ⟨Var⟩ . id
| ⟨Var⟩ .. id

⟨Assertion⟩ → Assert ⟨Expr⟩ [where ⟨Decorator⟩∗]
⟨Decorator⟩ → @prec = int

| @onfail = ⟨Action⟩
⟨Action⟩ → discard

| remove (⟨Var⟩)
| log (⟨Var⟩)
| ⟨Var⟩ <- ⟨Expr⟩
| replace (⟨Var⟩ , id , ⟨Expr⟩)

⟨Expr⟩ → ⟨Var⟩
| valuesOf(⟨Var⟩)
| id (⟨Expr⟩(, ⟨Expr⟩) +)
| id (⟨Expr⟩(, ⟨Expr⟩) +)
| exists (id(, id) +) <- ⟨Expr⟩ : ⟨Expr⟩
| forall (id(, id) +) <- ⟨Expr⟩ : ⟨Expr⟩
| [⟨Expr⟩ | ⟨ListComp⟩(, ⟨ListComp⟩) ∗]
| [] | int | string | True | False

⟨ListComp⟩ → id <- ⟨Expr⟩ | ⟨Expr⟩

Figure 5. Simplified syntax of our core filter language in EBNF.

𝑣 ∈ dom𝐸

𝐶, 𝐸 ⊢ 𝑣 ⊳ 𝐸 (env)

id ∉ dom𝐸

𝐶, 𝐸 ⊢ id ⊳ {𝐸 [id ↦→ 𝑛] |𝐶 →∗ 𝑛 ∧𝑇 (𝑛, id)} (context)

𝑣.id ∉ dom𝐸 𝐶, 𝐸 ⊢ 𝑣 ⊳ 𝐸 ′

𝐶, 𝐸 ⊢ 𝑣.id ⊳ {𝐸 ′[𝑣.id ↦→ 𝑛] |𝐸 ′(𝑣) → 𝑛 ∧𝑇 (𝑛, id)} (cld)

𝑣..id ∉ dom𝐸 𝐶, 𝐸 ⊢ 𝑣 ⊳ 𝐸 ′

𝐶, 𝐸 ⊢ 𝑣..id ⊳ {𝐸 ′[𝑣..id ↦→ 𝑛] |𝐸 ′(𝑣) →+ 𝑛 ∧𝑇 (𝑛, id)} (dsc)

Figure 6. Semantics of environment production for a single
name, given an existing environment 𝐸 and a context 𝐶 .

data Packet = [D*]

data D = [x : Integer | err : String [{1,1}]]

Assert D.x > 0 where

@onfail = replace(D.x, err, "Bad: " + toString(D.x))

Here we replace integer nodes that fail an assertion with
error messages, in output-only string nodes of multiplicity 1.
In practice, the same node may have multiple errors:

Assert D.x elem passlist where

@onfail = replace(D.x, err, "Not in passlist")

For D.x that fail both assertions, our system collects both
replacements, but only if we give err suitable multiplicity:

data D = [x : Integer | err : String [{1,2}]]

3.3 Stratification
Our declarative language design treats all assertions as inde-
pendent of their order of appearance. However, sometimes
we need explicit order dependence, as we have (so far) ob-
served in one case, where assertion (a) removed list elements
and assertion (b) removed empty lists. Here, we must apply
assertion (a) exhaustively before testing assertion (b).
For these cases. we allow rules to supply the decorator

@prec = 𝑛, where the number 𝑛 is the desired precedence
level (higher means later). The default stratum is 1, or −1
for rules that discard the packet. We use stratum separation
extensively while checking filter correctness (Section 4.2).

3.4 Language Extensions
Our language provides numerous convenience features be-
yond its core, such as a typical set of infix and prefix opera-
tors for arithmetic, comparison, and string operations. While
it is easy to add new operations to the language runtime,
implementers must take special care to encode the semantic
properties of our operations so that our static checks can
reason about them (Section 4.2).

We summarise the most salient remaining features below.
Regular Expressions allow e.g. checking server names

or file names. We not only include regular expressions in
our system but also provide full support for reasoning about
them in our correctness checker (Section 4.2).

User-Defined Functions and Constants such as the
@def allowedButtons in line 8 of Figure 2 give names to com-
mon values and computation to increase readability and
reuse, either globally or within one assertion. User-defined
functions may call each other, but we reject (mutually) re-
cursive function definitions to guarantee termination.

115

GPCE ’20, November 16–17, 2020, Virtual, USA Hampus Balldin and Christoph Reichenbach

Table 1. Pitfalls and how we prevent them

Pitfall Approach
Impossible Assertion Satisfiability (Section 4.2.1)
Vacuous Assertion Tautology (Section 4.2.1)
Schema Invalidation Validity (Section 4.2.3)
Termination Bug Totality (Section 4.2.4)
Runtime Fault Totality (Section 4.2.4)
Ineffective Repair Effectiveness (Section 4.2.5) and

Limited Confluence (Section 4.2.2)
Subverted Repair Global Stability (Section 4.2.6)

Configuration Files externalise parts of the filter set-
tings via user-defined functions and constants. End-users
can thus configure filters without editing their logic. Seman-
tically, we treat configuration files as if they were inlined.

Advanced Type Support comes mainly in the form of
constrained types, which are Integer, String, Bool types with
value restrictions that we express in a boolean expression.

For example, we could have incorporated rule R-4 from
Section 2.3 into the definition of the field max by writing

Constrained(max : Integer, max >= 0)

When a constraint fails, we discard the packet, making the
constraint checks part of stratum −1 (cf. Section 3.3).

Path Variable Context Operators such as @context al-
low us to add context for path variables (Section 3.1). This
allows us to e.g. shorten rule R-2 from Section 2.2:
Assert val <= max where

@onfail = val <- max

@context = BoundedTSeries

3.5 Additional Language Design Considerations
Our language design was driven partly by the existing Zone-
Guard system (motivating our @onfail actions and our non-
recursive schemas), but especially by considering features
for reducing the risk of program bugs (Section 4).

Many other design decisions were driven by prototyping.
For example, our initial design used rules of the form “if
condition then action”, until we noticed that we were mostly
writing negative conditions (“if not desired-property”), which
led us to our current syntax (“assert desired-property”).

4 Verification and Correctness
Since network filters are security devices, their correctness
is crucial. We have designed our language to facilitate a
number of correctness checks that together avoid the known
pitfalls that we list in the introduction. Table 1 summarises
the relationship between pitfalls and correctness checks.

Together, our checks give a strong correctness guarantee:
• Any well-formed packet that enters a filter will either
be discarded or the filter will emit another well-formed
packet (Section 4.2.3)

• All filters terminate (Section 4.2.4)

• Any packet emitted by the filter satisfies all of the
assertions in the filter specification (Section 4.2.6)

4.1 Type Correctness
Our system uses monomorphic type inference to ensure type
correctness in expressions. The type system provides three
built-in types (Integer, String, Bool), parametric types for
lists and tuples, and user-defined schema types (data).

The type system provides limited overloading for built-in
operators, namely addition (overloaded for strings and inte-
gers) and the toString() function (supported on all types).
It also supports sum types e.g., [Integer | String].

We check types throughout, including in update and replace
actions, whichmust preserve thewell-typedness of the packet.
The type checker delegates multiplicities to a separate mul-
tiplicity checker (Section 4.2.3).

4.2 Satisfiability Checks
Our correctness checks can depend on the satisfiability of
arbitrary arithmetic expressions over unknown inputs. Since
this means that these properties are undecidable [14], we
apply a semi-decision procedure in the form of the off-the-
shelf SMT solver Z3 [9]: whenever Z3 cannot confirm a safety
property, we treat this result as a static error.
Much of our encoding to Z3 is straightforward. We map

most operators to corresponding Z3 functions (integer addi-
tion in both formalisms corresponds to “unbounded” integers
rather than machine integers), string operations and regular
expressions to the corresponding Z3 operations [27], and
other built-in functions such as the string uppercase con-
version function toUpper to uninterpreted function symbols
for which we provide additional axioms (e.g., that toUpper
returns no lower-case characters).

We use assertion stratification to promote assertion condi-
tions to lemmas, and exploit schema information to provide
additional constraints to Z3 beyond type information, pri-
marily through multiplicity analysis and alias analysis.

Assertion stratification describes the order inwhichwe
check assertions. Due to stability (Section 4.2.6), each stratum
guarantees that all its assertions hold before we evaluate the
next stratum. Assertion conditions from earlier strata thus
become axioms when checking later strata. For example,
in Section 2.3 we proved rule R-3 (stratum 1) correct with
the help of rule R-4. Rule R-4 discards packet that fail its
condition, so it is in stratum −1 (Section 3.3) and we can use
its condition as an axiom for checking properties of R-3.
Multiplicity analysis determines the multiplicity of an

expression by examining how many distinct bindings the
schema permits. For example, in Figure 3, sensor has multi-
plicity {1, 1}, i.e., must occur precisely once, while max has
multiplicity {0,∞}, i.e., might occur any number of times
in a packet, since its parent node, BoundedTSeries. also has
multiplicity {0,∞}. We also use this knowledge to bound the
size of lists for SMT checks involving valuesOf.

116

A Domain-Specific Language for Filtering in Application-Level Gateways GPCE ’20, November 16–17, 2020, Virtual, USA

Alias analysis checks if two path variables must refer-
ence the same node, i.e., if, for any binding of their longest
common prefix (Section 3.1), the schema constrains the vari-
ables to bind to the same node. If two variables are aliases,
we unify their names in our SMT checks.

4.2.1 Assertion Satisfiability andTautology. For an ex-
ample of alias analysis, consider the following filter:

data A = [B*]

data B = [C]

data C = [d : Integer]

Assert B..d > B.C.d

Due to the common prefix rule, B..d and B.C.dwill always
refer to the same d, making this assertion unsatisfiable (since
data B = [C] and not data B = [C*]).
Our system can detect such unsatisfiable assertions by

iterating over all assertions and asking Z3 whether their
conditions are satisfiable. Here, alias analysis tells us to unify
B..d and B.C.d, so we ask Z3 (essentially) whether 𝑥 > 𝑥 .
We then report Z3’s failure result (UNSAT) result as an error.

Analogously, we check for and report assertion conditions
that are tautologies, i.e., always true.
The above checks can find suspicious rules but are not

essential to correctness, so we allow users to override them

4.2.2 Limited Confluence. Limited confluence guaran-
tees that multiple @onfail actions in one stratum — due to
one rule or multiple rules — yield a predictable result.
For example, consider an assertion with two @onfail ac-

tions v <- 1 and v <- 0. These actions are contradictory.
To ensure confluence, we search each stratum for pairs of

recovery actions (within the same assertion or in separate
assertions) that can modify the same variable, such as

Assert 𝑃1 where @onfail = x <- 𝐴1
Assert 𝑃2 where @onfail = x <- 𝐴2

and ask Z3 for each pair to confirm that

¬𝑃1 ∧ ¬𝑃2 =⇒ (𝐴1 = 𝐴2)

If Z3 times out or finds a counterexample, we report an error.
We prioritise the recovery actions (from highest to lowest)

as follows: discard, remove, replace, and update. Higher-
precedence actions override lower-precedence actions; e.g.,
replace actions overwrite update actions. We ignore log ac-
tions, treat discard and remove as idempotent, and use checks
like the above to ensure confluence of updates. For all actions
other than replace, our semantics guarantee confluence.
When we detect two conflicting replace actions (Sec-

tion 3.2), we allow them if the replacements are on the same
node and name tag. Our semantics here are to incorporate
all replacements into that list in an undefined order, meaning
that we do not guarantee confluence in this case.

4.2.3 Validity. We ensure statically that the output packet
is well-formed according to the schema. This allows us to
eliminate the Validator-Out phase from Figure 1 in Figure 7.

Validity checking has three parts: type checking (Section 4.1),
multiplicity checking, and type constraint checking.
Multiplicity checking relies heavily on our multiplicity

analysis (Section 4.2) and checks that no transformation
(remove / replace action) can violate multiplicity constraints.

For remove, we ensure that the action cannot reduce the
number of nodes in a node list below its minimum multiplic-
ity by requiring the minimum multiplicity to be zero.
For replace actions, we compute the minimum and max-

imum number of possible replacements (Section 3.2) and
compare against the declared multiplicity.

Finally, type constraint checking ensures that replace and
update actions on a node of a Constrained type (Section 3.4)
substitute only values that pass the requirements imposed
by the type constraint, which we verify with a query to Z3.

4.2.4 Totality. We ensure that filters are total, i.e., evalua-
tion cannot crash or hang for any well-formed input packet.

This guarantee hinges on the following properties:

• Language lacks recursion: Our language does not allow
(indirect) recursion or equivalent language features.

• Finite input: All input packets are of finite size.
• All transformations are finite: We only transform pack-
ets during @onfail actions. Due to limited confluence,
each stratum updates an individual node at most once,
with the exception of replace actions. These may mul-
tiply the number of nodes by𝑂 (#assertions×#bindings).
Nodes created via replace can only be bound to path
variables in later strata.

• All operations are effectively total and return finite re-
sults: All built-in operations return primitive values
(Integer, String, Bool) and are total, with two excep-
tions: division and modulo. We check all right-hand
sides of these operations with Z3 to ensure that they
are always nonzero, i.e., our language will reject the
expression a / b unless Z3 can prove that b is nonzero.

Given finite input, we see for each stratum that each vari-
able in the stratum can bind to only a finite number of nodes.
With a finite number of possible bindings, we evaluate a
finite number of expressions in assertion conditions. Since
all operations are effectively total and return finite results, and
since our language lacks recursion, all of these evaluations ter-
minate. Since all transformations are finite, each stratum will
produce a finite number of nodes, from which we conclude
termination for filters of finite size.

4.2.5 Effectiveness. Effectiveness ensures that whenever
we cannot satisfy the condition of an assertion, the @onfail

action of that assertionwill either discard the packet or repair
it so that the same condition now holds.

117

GPCE ’20, November 16–17, 2020, Virtual, USA Hampus Balldin and Christoph Reichenbach

To check for effectiveness for actions other than discard,
we again defer to Z3. For an assertion with condition 𝑃 (𝑥)
and @onfail action 𝑥 <- 𝐴(𝑥), we emit the proof obligation

¬𝑃 (𝑥) =⇒ 𝑃 (𝐴(𝑥))
In practice, 𝑥 may denote multiple variables. This obligation
ensures that the repair is immediate, so we will e.g. reject
an attempt to repair 𝑥 > 0 via 𝑥 <- 𝑥 + 1. We handle replace

by disallowing replace actions from producing nodes that
are matched in the same stratum. For remove, effectiveness
is straightforward: all path variables in an action must also
be bound in the assertion condition, so remove trivially elim-
inates condition failures.

4.2.6 Local andGlobal Stability. Global stability ensures
that whenever the filter does not discard the packet, the
output packet satisfies the conditions imposed by all asser-
tions. We derive it from three properties: effectiveness (Sec-
tion 4.2.5), local stability, and stability preservation.
Local stability extends the effectiveness guarantee to the

entire stratum: each stratum either discards the packet or
ensures that it satisfies all assertion conditions in the stratum.
We ensure local stability by finding all rules 𝑅2 that may
update a node or a descendant of a node that is referenced in
a rule𝑅1. Here,𝑅1 and𝑅2 may be the same rule, with different
path variable bindings. For each such case, we extract the
conditions 𝑃1 and 𝑃2 of 𝑅1 and 𝑅2, respectively, along with
the @onfail action 𝐴2 of 𝑅2, and query Z3 to confirm the
stability condition that applying 𝐴2 will not invalidate 𝑃1:

𝑃1 (𝑥 ′) ∧ ¬𝑃2 (𝑥) =⇒ 𝑃1 (𝐴2 (𝑥))
where 𝑥 are the affected variables. Specifically, we handle
three cases: (i) Limited confluence (Section 4.2.2), which en-
sures this property for all updates to the same node except
via replace, (ii) replace, which we prohibit from introduc-
ing new nodes that can be bound in the same stratum, (iii)
remove / replace / update actions 𝐴2 (𝑥) on node 𝑥 that can
affect 𝑃1 (𝑥 ′) if 𝑥 ′ contains 𝑥 or a descendant of 𝑥 , where we
assert the above stability condition. Our system extends this
last case to path variables in valuesOf expressions, whose
stability can depend on both ancestor and descendant nodes.

Stability preservation guarantees that if a packet sat-
isfies all conditions of all assertions in a stratum, then no
@onfail action in a later stratum may invalidate these condi-
tions. Stability preservation is analogous to local stability, ex-
cept that (i) we check preservation for a stratum by checking
preservation of assertion conditions from all previous strata,
and (ii) we emit assertion conditions from previous strata as
premises, allowing proofs in later strata to exploit proper-
ties guaranteed in earlier strata. Global stability follows by
induction from local stability and stability preservation.

4.3 Example Generation
While we can verify many useful properties of our filters, we
cannot automatically validate that they capture the user’s

filter.fll

filter.config

Packet Packet’

Frontend

Type Checker

Verifier

Z3

Backend

Validator

Example
Generator

Interpreter

Figure 7. Overview over our system. After type checking
and verifying filters, we can run the example generator or
run the validator and interpreter (for packet filtering).

intent, i.e., that a filter removes and retains exactly what the
user wants the filter to remove and retain.

We help users validate their filters by providing an exam-
ple generator that synthesises random packets that satisfy
the schema. This process is straightforward except for con-
strained types, for which we defer to Z3 to search for variable
bindings that satisfy the constraints. Since we cannot control
the randomness in Z3’s search for variable bindings, we in-
stead ask Z3 to generate multiple bindings and sample from
them. Since Z3 is incomplete, we we cannot guarantee that
we can produce an example, but we have not observed this
to be a limitation in practice.

5 Implementation
Figure 7 summarises our system. We implemented our pro-
totype in Haskell [16], using Alex4/Happy5 for the frontend.
We translate the input program into an AST, desugar it

(e.g., inlining user-defined functions and translating con-
straint types into assertions), and decorate it with types and
expanded variable names (Section 3.1). We then run our SMT-
based correctness checks (Section 4.2) on Z3, via the SBV
library6. Due to limitations in SBV, we preprocess queries
that involve explicit existential or universal quantification to
translate them into Prenex Normal Form (specifically queries
that use our explicit forall and exists subexpressions).
Our implementation interprets filter programs and com-

municateswith packet (un)parsers through a general-purpose
tree representation. We expect that implementing a future
backend for compilation, targeting Rust [18] or C, will be sub-
stantially simpler for our system than for the existing Zone-
Guard system, which has access to unconstrained Python.

4https://www.haskell.org/alex/, accessed 2020-07-24
5https://www.haskell.org/happy, accessed 2020-07-24
6https://hackage.haskell.org/package/sbv, accessed 2020-07-19

118

https://www.haskell.org/alex/
 https://www.haskell.org/happy
https://hackage.haskell.org/package/sbv

A Domain-Specific Language for Filtering in Application-Level Gateways GPCE ’20, November 16–17, 2020, Virtual, USA

6 Evaluation
We have evaluated our language by comparing it to the
current state-of-the-practice technique used at Advenica
AB, which implements filters in the embedded system Zone-
Guard. The system’s Python-based filters provide none of the
static guarantees that our system offers (Section 4) and rely
on testing and logging to detect bugs. We compare the two
languages for compactness (Section 6.1) and report on the
language’s suitability for filtering by conducting a case study
with a filter engineer familiar with ZoneGuard (Section 6.2).

6.1 Filters
To explore the suitability of our DSL for different filtering
tasks, we translated four of the 15 existing ZoneGuard filters
(three production filters, for Syslog [11], FTP, and RDP, one
full-featured prototype for SQL) and an RDP filter variant
(Section 1) into our language. Each filter addressed threats
related to information leakage, the SQL filter also addressed
tampering threats. Table 2 summarises our results.

Here, the Schema size describes the information responsi-
ble for the Validator processes in Figure 1 (and written in a
separate specification language, for ZoneGuard), while the
Filter size corresponds to the Filter process in Figure 1.
We found that our filter specifications are roughly 2–3×

smaller than the existing ZoneGuard specifications. The dif-
ference is less extreme for schema specifications. Our Syslog
schema even exceeds the original schema in size: ZoneGuard
schemas have syntactic support for subrange types (integers
with upper/lower bounds), which we encoded in our more
general (and more verbose) constrained types. ZoneGuard
does not support general constrained types.

We also found that for all of the existing filters, we could
summarise the existing Python code using only three Assert
declarations, with the exception of the SQL filter, which
required 14 Assertions. This filter processes SQL statements
and offers a high degree of configurability. Only one filter
(Syslog) used explicit stratification, for a single rule.

Overall, our language mapped closely to the needs of the
existing filters and allowed us to re-implement them much
more concisely. We did not observe any practical problems
due to the restrictions that we impose on expressivity.

When compiling, we spendmost of our time in Z3 (Table 2).
On an Intel i7-7700 CPU with 16 GiB RAM on Ubuntu 18.04
with Z3 4.8.5 (64 bit) we measured a maximum of 1.01s,
checking the FTP filter. No individual check took more than
75 ms. On an Intel i5-8250U laptop (8 GiB RAM) we observed
similar results (3% to 20% slower). We conclude that the
turnaround time for our checks is suitable for practical use.

6.2 Case Study
To explore the utility of our language, we conducted a case
study with a software engineer who was closely familiar
with the Python-based ZoneGuard filters. The objective of

our study was to explore the suitability of our language for
the filtering task, and its strengths and weaknesses as a no-
tational mechanism, with focus on the following questions:

• RQ 1: How does the new filter language’s writability
compare to the existing system?

• RQ 2: How does the new filter language help write
less error-prone code than the existing system?

• RQ 3: Is the filter language suitable as a replacement
for the ZoneGuard Python system?

To develop and run our case study, we followed best prac-
tices as described by Runeson and Höst [21].

6.2.1 Test Subject. The test subject for our case study was
a software engineer at Advenica AB who was part of the
design and development team behind ZoneGuard, and has
substantial experience implementing filters and schemas for
it. The subject was also the first author’s industrial M.Sc.
co-supervisor. This M.Sc work developed an earlier version
of our system. The subject’s involvement in this thesis work
and the development of the filter language was confined to
requesting a small number of features (most notably regular
expressionmatching) and to providing feedback on the thesis
document, approximately one year prior to the study.

6.2.2 Study. We first confirmed the modalities of the study
with the test subject. We then began the study with the first
author (the implementer of our system) giving a one-hour
tutorial of the language and its semantics.
We then asked the test subject to implement a filter for

the Syslog protocol [11] in our new filter language. The test
subject had previously implemented the same protocol for
ZoneGuard. While implementing this filter, the test subject
had access to the first author and could ask questions if
needed. The first author kept a log of all interactions. The
first author had previously implemented the Syslog protocol
in our language himself, without making any changes to the
language. We selected Syslog because we expected it to be of
average complexity, compared to other candidate protocols.
Afterwards, the second author asked the test subject to

fill out the “Cognitive Dimensions of Notation question-
naire” [6] which asks a number of questions related to the dif-
ferent “Cognitive Dimensions of Notation” [5]. We replaced
section headings for questions on the different cognitive di-
mensions by letters and asked the subject to not use internet
search while filling out the questionnaire, to reduce bias.
The second author reviewed the replies, and conducted

a follow-on online interview about unclear points in the
questionnaire and a number of questions aimed at RQ 3, on
the same day. The second author then summarised the key
points from the replies and sent them to the test subject for
review before sharing them with the first author.

6.2.3 Observations. The test subject completed the task
in 52 minutes, of which they spent 15 minutes (29%) bug-
fixing. The subject spent the last of these minutes generating

119

GPCE ’20, November 16–17, 2020, Virtual, USA Hampus Balldin and Christoph Reichenbach

Table 2. Summary of our filters: lines of code and number of tokens in the filter specifications of our tool vs. the corresponding
ZoneGuard filters, plus Z3 verification effort for our tool. We list the lines of code for the schemas separately from the filters.
We report LoC via sloccount for ZoneGuard (excluding imports), and by counting non-blank non-comment lines for our tool.
For token counts, we used the Python3 tokeniser, discarding comment tokens. We used the same tokeniser for our language,
but also discarded indent, dedent, and newline tokens. For Z3 verification, we list the number of invocations of Z3 for our
optional rules (Section 4.2.1) and mandatory rules (all other rules) separately. All times in milliseconds, averaged over 100 runs.

Schema Size Filter Size Z3 Queries Compile
ZoneGuard Our Tool ZoneGuard Our Tool Mandatory Optional Time

Filters LoC Tok LoC Tok LoC Tok LoC Tok # Time # Time (other)
RDP 13 83 7 53 38 208 9 77 0 0 0 0 44
RDP (Section 1) 9 59 3 34 31 249 12 115 10 127 6 68 46
Syslog 17 172 11 198 45 384 12 117 0 0 22 287 47
Syslog (case study) 17 172 13 210 45 384 11 108 0 0 22 260 47
FTP 18 189 17 153 81 593 32 312 0 0 34 1012 62
SQL (prototype) 45 446 19 227 258 1854 80 825 20 621 28 444 180

four synthetic examples with our example generator (Sec-
tion 4.3), of which one was a duplicate.
The subject worked on the specification offline (without

running our tool) for 37 minutes, submitting a specification
that was complete except for the following bugs that we
extracted from the compiler logs:

• Missing type annotations: The code used eight con-
strained type declarations but initially omitted the
specification of the underlying primitive type. The test
subject added all annotations in less than one minute.

• The test subject initially used @onfail handlers with-
out following them by ‘=’ signs but fixed this issue
after feedback from the language frontend.

• The test subject implemented a type that they had
referenced but not included in the filter specification
after feedback from the language frontend.

• The test subject encountered and fixed a bug in string
concatenation during logging. The fix required him to
explicitly convert an integer to a string.

• The test subject encountered two more complex bugs
thatwe analysed inmore detail (Sections 6.2.4 and 6.2.5).

Except for the two more complex bugs, the test subject
solved all bugs in less than two minutes.

6.2.4 Access Path Bug. The test subject encountered an
error message stating that the variable Syslogs..Hostname

was undefined (without giving a line number). This access
path does not literally occur in the program; our compiler
generated it implicitly from the variable ‘Hostname’ in the test
subject’s code, since the root node has node type Syslogs.

The test subject spent approximately four minutes editing
an occurrence of the name Syslog..Hostname (note the sin-
gular Syslog, a different node type) in a nearby line before
asking the first author for help. The first author clarified
that the compiler prepends the root node type internally (a
leaked implementation detail during context handling).

The subject spent 4–5 minutes to resolve this bug, and
less than half a minute to resolve a second, analogous bug.

6.2.5 Unstable Assertions Bug. The system reported the
final bug in the user study as UnstableAssertions, i.e., lack-
ing stability (Section 4.2.6)7:

After evaluating the @onfail action of {assertion2},
a previously satisfied precondition of
{assertion1} may evaluate to False, in {model}

where
{assertion2} = Assert@Line=18
{assertion1} = Assert@Line=28
{model} = Syslogs..Syslog..Hostname%2 -> "\NUL"
Here, {assertion2} referenced an assertion that would

remove an entry from the system log under certain condi-
tions, while {assertion1} ensured that the filter would not
propagate empty system logs. The four variable bindings
reported in {model} were unrelated to the conflict.

The test subject reported initially experiencing confusion
for why the two assertions would be incompatible, until it
became clear to him that the two conditions could not be true
at the same time. They remembered a related example from
the tutorial that introduced ordering via @prec and addressed
the bug using the same technique.

The test subject resolved this bug in less than 3.5 minutes
and reported it as easier to resolve than the Access Path bug.

6.2.6 Interactions. In total, the test subject asked the first
author for help four times during the study:

1. To clarify the availability of empty strings (omitted
from the grammar by accident). The test subject’s code
ultimately did not utilise empty strings.

2. At what time schema constraints apply, which the first
author clarified (both for input and for output).

7{model} shortened from 4 to 1 variable assignments for space.

120

A Domain-Specific Language for Filtering in Application-Level Gateways GPCE ’20, November 16–17, 2020, Virtual, USA

3. Regarding whether schema nodes had to follow the ex-
act naming scheme as outlined in the task description
(not necessary for the study).

4. Regarding the Access Path bug (Section 6.2.4).

6.2.7 Implementation Outcome. Upon manual inspec-
tion, we found the implementation to meet the specification
in all points but one: the specification had asked for a cer-
tain type of strings to have a length of “more than one”, the
implementation allowed strings to have a length of “at least
one”. This was in fact the intended behaviour as exhibited
by the existing Syslog filter and a bug in our specification.

6.2.8 Insights from theQuestionnaire and Interviews.
This was the test subject’s first interaction with our system.
They estimated that they spent 50% of his time reading docu-
mentation, 30% translating the specification into the notation
of our DSL, and 20% of his time bug-fixing (our measure-
ments put this number at 29%).
The subject reported answers on most of the questions

related to the Cognitive Dimensions of Notation [6].
Visibility and Juxtaposibility: The subject found the

notation well-suited to finding and to comparing informa-
tion, with two exceptions: they found that working with
the implicit and explicit context of assertions could be “non-
trivial to figure out for reviewers”.

Viscosity: The subject reported that changes were easy
to make, but noted (also regardingConsistency) that chang-
ing from type constraints to stand-alone assertions required
substantial typing, and that such changes were necessary to
produce custom-tailored log messages.

Hard Mental Operations , Error Proneness, and sup-
port for Role Expressiveness: The subject listed as chal-
lenges the syntactic dissimilarity between our language and
mainstream programming languages, as well as the interac-
tions with explicit and implicit scoping, noting that these
interactions might lead to misunderstandings when reading
code. Moreover, they noted that multiplicities for variable
bindings could be challenging for “newcomers”.They other-
wise found the syntax to have an “overall good structure”.

Closeness of Mapping: The subject reported that the
declarative nature of the DSL made it a close match to the
reasoning that filter developers use, but observed that the
syntax might offer readability challenge to “newcomers”.

Hidden Dependencies: The subject expressed concern
about the implicit reference to the root node (the context in
Section 3.1), which they argued might lead to name capture
during refactoring (due to @context decorators).
Progressive Evaluation andPrematureCommitment:

The subject noted that the system can only be tested once the
schema structure is specified, but found that it was possible
to incrementally add assertions afterwards while generating
synthetic permissible packets to aid in identifying the need
for additional assertions. They expressed the opinion that

early commitment to a schema structure was inherent in the
intended use of the system.

Provisionality: They argued that the language was not
very supportive of experimentation, due to its strict syntax,
apart from omitting assertions.

Overall, they found the system to have a “well-built foun-
dation” with “some rough edges”. They expected the system
to provide superior correctness guarantees and potentially
higher performance than the existing ZoneGuard system
if expanded with a C or Rust backend, but noted that the
code base was likely bigger than that of the existing system
and thus likely to require more maintenance and quality
assurance effort. They proposed using the new system con-
currently with the existing Python system, with the latter
handling legacy specifications and use cases with unfore-
seen feature requirements, but noted potential bias due his
authorship of the previous system.

Finally, they proposed a new feature for logging unmodi-
fied packets.

6.2.9 Case Study Conclusions. The case study helped
highlight strengths and weaknesses of our language, as well
as avenues for future work. Some of the latter are technical
(improving error reporting, adding logging support, custom
error messages for constrained types), though we also see a
need for further studies on the readability of path variables,
especially with user-defined contexts (@context).

RQ 1: Is code written in the new filter language eas-
ier to write? Our declarative approach differs substantially
from the dominant imperative programming paradigm. The
test subject mentioned this difference as a potential concern,
especially to “newcomers”, but expressed satisfaction with
the language’s syntax and closeness of mapping to the domain
concepts. Since the user was able to construct a correct filter
in our language in less than an hour with minimal support,
we find no major concerns about the language’s writability
but cannot conclude the writability of our system is higher
than that of Python in the ZoneGuard system.

RQ2:Does the newfilter language helpmake code less
error-prone? By design, our language disallows errors that
are possible to make in languages like Python. The subject’s
interactions with our system confirm that our mechanisms
are effective. Moreover, the size of the subject’s filter imple-
mentation in our language was substantially smaller than
the original implementation in Python (between 40% and
75% smaller, depending on how we count).

We conclude that our static checks offer effective safety
guarantees beyond that of the existing system.

RQ 3: Is the new filter language adequately powerful
to replace ZoneGuard Python? The study subject recom-
mended using the two approaches in complementary roles,
with the existing framework supporting legacy use cases
and use cases with unexpected feature requirements (since

121

GPCE ’20, November 16–17, 2020, Virtual, USA Hampus Balldin and Christoph Reichenbach

ZoneGuard allows unconstrained modifications to packets,
we cannot, by design, have equal expressivity). While our
language supports a variety of use cases (Table 2) and is
extensible (Section 6.3), we are not currently able to assuage
concerns about expressivity. This suggests a need for addi-
tional studies on a broader class of filters and addressing
known limitations, especially logging without filtering.

Threats toValidity. Regarding external validity: Our case
study explored our language with one test subject and one
protocol, exposing the test subject to the language for two
hours (plus time for questionnaire and interview). To ob-
tain more robust answers to our research questions, we are
considering using this study as a pilot for a larger user study.
Regarding internal validity: The former ‘industrial the-

sis co-supervisor’ relationship between study subject and
first author raises the risk of more favourable comments
towards our system, while the study subject’s authorship of
the existing (essentially competing) system raises the risk of
the converse. We have tried to reduce this risk by having a
separate author collect and evaluate the results and giving
the study subject the opportunity to veto any observations
reported by the second author before they reached the first
author and to abort the study at any time.

6.3 Language Limitations
By design, our language is not Turing-complete, nor does
it allow recursive tree construction. We have inherited the
requirement that schemas may not recurse from the orig-
inal Python-based ZoneGuard system and note that this
constraint simplifies the semantics of our “longest common
prefix” semantics for variables. We expect that we could
easily extend our system to recursive schemas, if necessary.

Our use of an incomplete external SMT solver makes our
correctness checking incomplete: our system may reject
some correct filters. In this case, we may sometimes be forced
to add new axioms to the SMT solver that increase the size
of our trusted base. We have only observed this challenge
once, during the implementation of our first filter (SQL), but
believe it to be an acceptable trade-off for the additional
correctness guarantees that we offer.

Finally, we do not currently support adding new subtrees
to the output beyond replacing single nodes. We anticipate
no substantial challenges in adding this feature, which will
simplify support for future use cases (e.g., HTTP redirection).

7 Related Work
DSLs have been used before for security in networking, e.g.
for configuring network protocol analysers,8 or intrusion
detection systems [24]. Hamdi et al. describe PPL, a DSL for
securing distributed systems [15]. They use rules with trig-
gers and actions, analogous our system. They can configure

8https://wiki.wireshark.org/CaptureFilters, accessed 2020-07-18

multiple systems at once, but operate below the application
level and cannot inspect or modify packet contents. Similarly,
Youssef et al. [4, 26] check firewall configurations against a
security policy but again only at the network protocol level.
Backes et al. describe the Zelkova system [2], which can

check user-defined Amazon Web Services security policies
against both best practices and custom organisational rules.
Zelkova’s ability to check that a given policy is at least as
strict as another policy, again using an SMT solver, is an
appealing feature that we expect to be easy to adopt.
At network layers below the application level, domain-

specific languages for network filtering are widely avail-
able [19]. Recent languages include NetKAT [1, 23], which
provides a broad mathematical foundation for reasoning
about global and local network packet processing, and P4 [7],
which can target a wide variety of switches.

Outside of the networking domain, Schematron [10] and
CLiX9 are languages for checking properties similar to our
assertion conditions. Schematron Quickfix10 adds facilities
analogous to our @onfail rules. These XML-based languages
do not provide correctness guarantees.

Our language is also related to other declarative languages
in the tradition of Prolog [25] and Datalog [3], though we
permit updates (similarly to some Datalog dialects [13]) and
offer features finely tuned to our application domain.
Our current example generator is related to the general

domain of fuzzing. We expect that we can improve its utility
through dynamic-symbolic execution, or concolic testing [12,
22] in the style of Li et al. [17]’s work on systematically
exploring all possible paths through a dataflow program.

8 Conclusions
We have presented a novel application-level network packet
filtering language developed at Advenica AB. Our declara-
tive language provides strong correctness guarantees at a
modest cost in analysis time, a close mapping to the prob-
lem domain, and sufficient expressive power to handle many
known use cases. We have explored our language with four
filter implementations that suggest that our language is sub-
stantially more concise than general-purpose languages, and
with a systematic case study that found evidence that the lan-
guage is suitable for its intended task and that its correctness
guarantees are effective.

Acknowledgments
We thank Advenica AB and especially the anonymous test
subject for support and feedback, and Per Runeson for advice
on experimental setup. This work was partially supported
by Wallenberg Artificial Intelligence, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice
Wallenberg Foundation.

9http://www.clixml.org/clix/1.0/clix.xml, accessed 2020-07-22
10http://www.schematron-quickfix.com/, accessed 2020-07-22

122

https://wiki.wireshark.org/CaptureFilters
http://www.clixml.org/clix/1.0/clix.xml
http://www.schematron-quickfix.com/

A Domain-Specific Language for Filtering in Application-Level Gateways GPCE ’20, November 16–17, 2020, Virtual, USA

References
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-

nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. SIGPLAN Not. 49, 1 (Jan. 2014),
113–126. https://doi.org/10.1145/2578855.2535862

[2] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow, N.
Rungta, O. Tkachuk, and C. Varming. 2018. Semantic-based Automated
Reasoning for AWS Access Policies using SMT. In 2018 Formal Methods
in Computer Aided Design (FMCAD). 1–9.

[3] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ull-
man. 1985. Magic sets and other strange ways to implement logic
programs. In Proceedings of the fifth ACM SIGACT-SIGMOD symposium
on Principles of database systems. 1–15.

[4] N. Ben Youssef, A. Bouhoula, and F. Jacquemard. 2009. Automatic
Verification of Conformance of Firewall Configurations to Security
Policies. In 2009 IEEE Symposium on Computers and Communications.
526–531.

[5] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green,
Corin A. Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes, Chrysto-
pher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan Wong,
and Richard M. Young. 2001. Cognitive Dimensions of Notations:
Design Tools for Cognitive Technology. In Proceedings of the 4th Inter-
national Conference on Cognitive Technology: Instruments of Mind (CT
’01). Springer-Verlag, Berlin, Heidelberg, 325–341.

[6] Alan F. Blackwell and Thomas R. G. Green. 2000. A Cognitive Di-
mensions questionnaire optimised for users. In Proceedings of the 12th
AnnualWorkshop of the Psychology of Programming Interest Group, PPIG
2000, Cosenza, Italy, April 10-13, 2000. Psychology of Programming In-
terest Group, 10. http://ppig.org/library/paper/cognitive-dimensions-
questionnaire-optimised-users

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[8] James Clark and Steve DeRose. 1999. XML Path Language (XPath)
version 1.0. Recommendation. World Wide Web Consortium. See
http://www.w3.org/TR/xpath.html.

[9] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo
Theories: Introduction and Applications. Commun. ACM 54, 9 (Sept.
2011), 69–77. https://doi.org/10.1145/1995376.1995394

[10] Philip Fennell. 2014. Schematron-more useful than you’d thought.
XML LONDON (2014).

[11] R. Gerhards. 2009. The Syslog Protocol. RFC 5424 (Proposed Standard).
http://www.ietf.org/rfc/rfc5424.txt

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Di-
rected Automated Random Testing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Chicago, IL, USA) (PLDI ’05). Association for Computing
Machinery, New York, NY, USA, 213–223. https://doi.org/10.1145/
1065010.1065036

[13] Todd J Green. 2015. Logiql: A declarative language for enterprise
applications. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. 59–64.

[14] Kurt Gödel. 1931. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme. Monatshefte für Mathematik
und Physik 38, 1 (1931), 173–198.

[15] Hedi Hamdi, Mohamed Mosbah, and Adel Bouhoula. 2007. A Do-
main Specific Language for Securing Distributed Systems. In ICSNC
’07: Proceedings of the Second International Conference on Systems and
Networks Communications. IEEE Computer Society, Washington, DC,
USA.

[16] Simon Peyton Jones. 2003. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press.

[17] Kaituo Li, Christoph Reichenbach, Yannis Smaragdakis, Yanlei Diao,
and Christoph Csaller. 2013. SEDGE: Symbolic example data gen-
eration for dataflow programs. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 235–245. https:
//doi.org/10.1109/ASE.2013.6693083

[18] Nicholas D Matsakis and Felix S Klock. 2014. The rust language. ACM
SIGAda Ada Letters 34, 3 (2014), 103–104.

[19] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A
New Architecture for User-level Packet Capture.. In USENIX winter,
Vol. 46.

[20] J. Pastel and J. Reynolds. 1985. File Transfer Protocol. RFC 959. https:
//doi.org/10.17487/RFC0959

[21] Per Runeson and Martin Höst. 2009. Guidelines for conducting and
reporting case study research in software engineering. Empirical
Software Engineering 14, 2 (2009), 131–164. https://doi.org/10.1007/
s10664-008-9102-8

[22] Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic Unit
Testing and Explicit Path Model-Checking Tools. In Computer Aided
Verification, Thomas Ball and Robert B. Jones (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 419–423.

[23] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. 2015.
A Fast Compiler for NetKAT. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming (Vancouver, BC,
Canada) (ICFP 2015). Association for Computing Machinery, New York,
NY, USA, 328–341. https://doi.org/10.1145/2784731.2784761

[24] Diomidis Spinellis and Dimitris Gritzalis. 2000. A Domain-specific
Language of Intrusion Detection. In Proceedings of the 1st ACM Work-
shop on Intrusion Detection Systems. ACM. http://www.spinellis.gr/
pubs/conf/2000-CCS-DSLID/html/paper.html

[25] David HDWarren, Luis M Pereira, and Fernando Pereira. 1977. Prolog-
the language and its implementation compared with Lisp. ACM SIG-
PLAN Notices 12, 8 (1977), 109–115.

[26] N. B. S. B. Youssef and A. Bouhoula. 2010. Automatic Conformance
Verification of Distributed Firewalls to Security Requirements. In 2010
IEEE Second International Conference on Social Computing. 834–841.

[27] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A
z3-based string solver for web application analysis. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering.
114–124.

123

https://doi.org/10.1145/2578855.2535862
http://ppig.org/library/paper/cognitive-dimensions-questionnaire-optimised-users
http://ppig.org/library/paper/cognitive-dimensions-questionnaire-optimised-users
http://www.w3.org/TR/xpath.html
https://doi.org/10.1145/1995376.1995394
http://www.ietf.org/rfc/rfc5424.txt
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1109/ASE.2013.6693083
https://doi.org/10.1109/ASE.2013.6693083
https://doi.org/10.17487/RFC0959
https://doi.org/10.17487/RFC0959
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/2784731.2784761
http://www.spinellis.gr/pubs/conf/2000-CCS-DSLID/html/paper.html
http://www.spinellis.gr/pubs/conf/2000-CCS-DSLID/html/paper.html

	Abstract
	1 Introduction
	2 Extended Example
	2.1 Rule R-1: Sensors Are Named
	2.2 Rule R-2: Values Do Not Exceed the Maximum
	2.3 Rule R-3: No Negative Numbers in Time Series

	3 Language Overview
	3.1 Referencing Tree Nodes with Path Variables
	3.2 Replacement Semantics
	3.3 Stratification
	3.4 Language Extensions
	3.5 Additional Language Design Considerations

	4 Verification and Correctness
	4.1 Type Correctness
	4.2 Satisfiability Checks
	4.3 Example Generation

	5 Implementation
	6 Evaluation
	6.1 Filters
	6.2 Case Study
	6.3 Language Limitations

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

