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Abstract

Event-based control is a promising concept for the design of resource-
efficient modern feedback systems based on wireless communication. In
this concept, events such as sampling, actuation, and data transmissions
are triggered reactively based on monitored control performance rather than
a periodic timer. This avoids redundant use of limited system resources
such as battery lifetime, network bandwidth, and CPU utilization. In this
thesis, we investigate how sampling and communication events should be
triggered to fully exploit the potential of event-based control, and take a
step towards a complete event-based design scheme based on the classic
linear–quadratic–Gaussian (LQG) framework.

The design of the event trigger is formulated as a trade-off between
a quadratic cost on control performance and the average event rate. This
problem, dubbed the optimal sampling problem, is equivalent to an impulse
control problem. The optimal even trigger is well-known for first-order sys-
tems, where it corresponds to a scalar symmetric threshold on the mon-
itored control performance. In this thesis, we consider systems of higher
order, where the shape of the optimal threshold is generally unknown. For
two new system classes with previously unknown solutions, we prove that
the optimal threshold is ellipsoidal for all system orders. Additionally, we
propose two numerical methods for finding the optimal threshold shape for
general systems. Both methods are numerically validated and show benefits
in terms of accuracy and solver time compared to a reference method based
on dynamic programming. We also extend a well-cited performance compar-
ison between event-based and periodic triggering for a first-order integrator
system to the higher-order case. The factor three improvement observed
for event-based triggering in the first-order case is shown to constitute an
upper bound for higher-order systems.

Using one of the proposed numerical methods, we study the shape of
the optimal threshold for different classes of second-order systems. Findings
suggest that ellipsoidal thresholds are good approximations for most system
classes, and can give near-optimal performance even in exceptional cases.
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Therefore, we argue that ellipsoids constitute a good general alternative to
the exact optimal threshold, especially for higher-order systems where an
optimal solution is impractical to obtain numerically. To find suitable ellipse
parameters for any system order, we propose and validate a previously
presented Monte Carlo approach applied to the optimal sampling problem.

Suboptimal but simpler designs in the form of event-based proportional–
integral–derivative (PID) control are also considered in this thesis. Inspired
by results from LQG-optimal sampled-data control, we derive an “ideal” (in
the LQG sense) sampled-data PID implementation, from which a range of
design options of varying complexity for event-based PID control is proposed.
Based on numerical evaluations, we conclude that event triggering based on
both the proportional and derivative part of the control signal is desirable
from a performance perspective.

Finally, this thesis also consider stochastic triggering, where events are
triggered according to a certain probability. This type of event trigger is
considered for a prototypical event-based state estimation problem, where
the sensor intermittently triggers measurement transmissions to a remote
estimator. With stochastic triggering, the LQG-optimal estimator takes the
form of a Kalman filter with event-dependent measurement updates, where
the quality of the estimates largely depends on the choice of trigger signal in
the sensor. In this thesis, we propose two policies for stochastic triggering,
both featuring predictions in the sensor for improved estimator performance.
In addition to comparing well to other policies previously proposed in the
literature, one of the policies also gives simplified performance analysis,
with expressions for average transmission rate and estimator performance
that are easily computed without resorting to Monte Carlo simulations.
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Nomenclature
Nomenclature Description
N0 Natural numbers, including zero
R Real numbers
Rn Real-valued column vectors of length n
Rn$m Real-valued matrices of dimension n$m
In Identity matrix of size n$ n
tr(·) Matrix trace
det(·) Matrix determinant
(·)ᵀ Matrix transpose
(·)i j Matrix element in the ith row and jth column
< Hadamard (element-wise) product
X 0 0 Positive definite matrix X
X 4 0 Positive semidefinite matrix X
exp(·) Exponential function
δ (·) Dirac delta function
{·} Sequence
p · p Absolute value
q · q1 1-norm
q · q 2-norm
q · qX Weighted 2-norm, with weight X
q · qFrob Frobenius norm
x ∝ y x is proportional to y
Pr(·) Probability
p(·) Probability density function
E[·] Expected value
N (µ, Σ) Normal distribution with mean µ and covariance Σ
A(·) Infinitesimal generator
∇ Gradient
∇2 Hessian
Cn Continuous differentiability up to order n
O(·) Function order

Throughout this thesis, solid and dotted lines in block diagrams signify
continuous-time and discrete-time signals respectively.
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Abbreviation Description
ARE Algebraic Riccati equation
A/D Analog–to–digital
BTCS Backward time, centered space
CL Closed loop
CLMB Closed loop with measurement buffer
CPU Central processing unit
DC Direct current
D/A Digital–to–analog
FIR Finite impulse response
FOPDT First-order process with deadtime
HJB Hamilton–Jacobi–Bellman
IaR Integrate–and–reset
i.i.d. Independent and identically distributed
KBF Kalman–Bucy filter
KF Kalman filter
LEQG Linear–exponential–quadratic–Gaussian
LQG Linear–quadratic–Gaussian
LQR Linear–quadratric regulator
LTI Linear time-invariant
MAE Maximum absolute error
MMSE Minimum mean square error
MSE Mean square error
OL Open loop
OSP Optimal sampling problem
PDE Partial differential equation
pdf Probability density function
PID Proportional–integral–derivative
QP Quadratic program
RBF Radial basis function
RDD Row diagonally dominant
SI Single input
SO Single output
SSOD Stochastic send–on–delta
SSODP Stochastic send–on–delta with a simple prediction
ZOH Zero-order hold
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1
Introduction

Automatic control is the hidden technology that enables many of the com-
forts we take for granted, such as cruise control and automatic brake sys-
tems in our cars, air conditioning, autofocus in our cameras, and automatic
adjustment of signal strength in the communication between our smart-
phones and base stations. The key to automatically regulating dynamical
systems in the presence of uncertainty is the concept of feedback, illustrated
in Figure 1.1. The process we wish to control is then regulated by a con-
troller via the input signal u, based on observations of the output signal y.
Modern control systems are almost exclusively implemented using comput-
ers, where the controller operates in discrete time. The measured output
y is then sampled by a sensor and fed to the controller as a discrete-time
signal ȳ, which then produces the discrete-time instructions ū for the ac-
tuator that produces the control signal u. For such sampled-data feedback
systems, wireless communication is often used to transfer data between
sensor, controller, and actuator.

Process Actuator
u

Controller

Sensor
y

ȳ ū

Figure 1.1 Illustration of a sampled-data feedback system. The measured
output y of the controlled process is sampled by a sensor, which then feeds
the sampled signal ȳ to a discrete-time controller. The controller computes
instructions ū, which the actuator uses to generate the control signal u.
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Chapter 1. Introduction

Traditionally, feedback actions such as sampling, actuation, and data
transmissions are triggered periodically based on a set timer—regardless if
adjustments to the current control action are required or not. This results in
redundant computations and communication, which can cause unnecessary
loads on CPU utilization and network bandwidth in the control system. It
also needlessly drains batteries in wireless sensors, where communication
often constitutes a major part of the total power consumption. To avoid this
redundancy, it is natural to instead trigger feedback actions only when a
significant change in system behavior is detected—an event. This is the con-
cept behind event-based control. By introducing decisions on when to apply
feedback, the event-based approach has the potential for more resource-
efficient designs, saving e.g., energy, network bandwidth, and computations
in the system. In this thesis, we investigate how the event trigger should
be designed to fully exploit this potential.

A great challenge when implementing event-based control systems is
the lack of a mature design framework. One promising avenue is the classic
linear-quadratic-Gaussian (LQG) framework, which we consider in this the-
sis. In this framework, the aim is to achieve an optimal trade-off between
a quadratic cost on the control objective and the average rate of triggered
events. Finding an optimal combination of event trigger and inter-event
control actions is generally a very complex task. However, the LQG frame-
work offers a great benefit in the form of a separation principle, which
enables us to consider the optimization of the event trigger in isolation.
This thesis describes the background on these results, and provide tools for
finding the optimal event trigger. Suggestions for near-optimal but simpler
event triggers are also given based on findings using these tools. In the
same LQG framework, this thesis also proposes simple yet well-performing
alternatives for event-based proportional–integral–derivative (PID) control
and state estimation.

1.1 Event-Based Control
We begin with a general description of the event-based control concept,
followed by a brief overview of the research field’s history, and a small,
but influential, motivating example. We also give an overview of different
structures for event-based control and specify what type of structure we
consider in this thesis.

General Concept
Control based on sampled measurements traditionally uses periodic sens-
ing, computations, and actuation, with a constant control signal generated
via zero-order hold between each measurement update [Åström and Witten-
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1.1 Event-Based Control

mark, 1997]. However, when some of these periodic actions are associated
with a cost, it becomes natural to avoid redundant actions and make sure
they are only triggered when required. This is the concept of event-based
control, where the cost of such actions (i.e., events) are taken into account
in the design formulation.

Two general aspects to consider in event-based control design are

(i) the policy for event triggering, and

(ii) the policy for generating a control signal between events.

The policy for event triggering (i) can take many forms, ranging from a
simple threshold on the measured process output, commonly referred to
as send–on–delta [Miskowicz, 2006] or a deadband [Otanez et al., 2002],
to more complex, model-dependent rules. An illustration that compares
event-based send–on–delta to periodic triggering is shown in Figure 1.2.
In this thesis, we consider only reactive event triggering, meaning policies
that trigger events based on the behavior of constantly monitored system
variables. Policies that schedule events based on predictions are commonly
referred to as self-triggered [Anta and Tabuada, 2010; Heemels et al., 2012],
and are outside the scope of this thesis.

Just as for event triggering, there is a range of choices for the control
signal generator (ii)—from a standard zero-order hold [Åström and Witten-
mark, 1997, Section 7.3] with stepwise constant control signals, to more
complex generalized hold circuits based on model information [Kabamba,
1987]. In general, it is a hard task to find an optimal combination of both
(i) and (ii), and much research has therefore been focused on only one as-
pect while keeping the other fixed. However, the problem is separable in
the classic design framework of LQG [Goldenshluger and Mirkin, 2017],
which promotes its usefulness for event-based control design. Background
on the LQG design framework, including the useful separation property, is
presented in Chapter 2.

A general notion in event-based control is the trade-off between event
rate and the corresponding penalty to the control objective. This trade-off is
illustrated in Figure 1.3, where it is assumed that periodic (red) and event-
based (blue) triggering is used for two otherwise identical controllers. As
the average time between events grows smaller (increasing event rate), the
performance of both controllers approaches that of an analog (continuous-
time) controller. Since events occur frequently, their exact timing becomes
less important, and the performance difference between periodic and event-
based triggering is small. However, as events occur more infrequently (de-
creasing event rate), the performance impact of the exact timing is greater.
Consequently, the performance difference between periodic and event-based
triggering becomes more pronounced. The illustration in Figure 1.3 shows
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Chapter 1. Introduction

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time, t

Pr
oc

es
s

ou
tp

ut
,y

(t
)

Periodic

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

∆

Time, t

Pr
oc

es
s

ou
tp

ut
,y

(t
)

Event-Based (Send–on–Delta)

Figure 1.2 Comparison of periodic (upper) and send–on–delta-triggered
(lower) sampling. In periodic triggering, each sampling instant (red circles)
occur at fixed time intervals, whereas in the send–on–delta case, each sam-
pling instant (blue squares) occur when the process output y(t) differs by
∆ from the previous sampled value. Note for the send–on–delta case how
sampling instants are triggered more frequently during the initial rise, and
less frequently as the process output y(t) settles.
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1.1 Event-Based Control
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Figure 1.3 Illustration of typical trade-off behavior between average inter-
event time and corresponding penalty to the control objective under periodic
(red, dashed) and event-based (blue, solid) triggering for two otherwise iden-
tical controllers.

an ideal situation, where event-based triggering gives a consistently bet-
ter trade-off (i.e., a consistently smaller penalty for all inter-event times)
than periodic triggering. An event-based controller with this desirable prop-
erty is commonly referred to as being consistent [Antunes and Khashooei,
2016]. Naturally, not every event-based controller is consistent, and poor
event-based design can still be outperformed by periodic triggering.

Like all control strategies, event-based control comes with both advan-
tages and disadvantages, and its ultimate usefulness depends on the specific
application. Advantages include

• more efficient use of limited or costly system resources, with potential
benefits such as reduced wear-and-tear, increased battery lifetime,
reduced CPU utilization, less bandwidth allocation, et.c.,

• more intuitive treatment of systems components with discrete-event
behavior, such as relays, rotary encoders, queuing networks, et.c.

However, these advantages should be weighed against

• more challenging theoretical analysis and design problem compared
to periodic triggering, and

• unpredictable timings of events, resulting in difficult scheduling of
shared computational resources.
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Chapter 1. Introduction

Historical Overview
Event-based control has a history reaching back to at least the late 1950s,
when the idea of sampling new measurement data based on level cross-
ings (i.e., send–on–delta) was proposed for a computer-controlled system
by Phillip H. Ellis at the Sperry Gyroscope Company. Ellis then made the
following observation:

The most suitable sampling is by transmission of only significant
data, as the new value obtained when the data are changed by
a given increment. In certain cases, transmission of data by this
means can be used to increase channel capacity.

[Ellis, 1959]

This idea of triggering sampling based on monitored system variables later
became popularized in the 1960-70s under the term adaptive sampling
[Dorf et al., 1962; Hsia, 1972]. During the same period, much work was
also focused on developing accelerometers and gyroscopes with event-based
pulse feedback [Åström, 2008].

In the 1980s, the concept of neuromorphic engineering was developed by
Carver Mead’s research group at Caltech, after inspiration from biological
systems such as neurons. They proposed to integrate biologically inspired
electronic sensors with analog circuits, where asynchronous event-based
communications protocols would be used. Today, this work has resulted in
a range of biologically inspired event-based sensors, such as the dynamic
vision sensor—a camera inspired by the human eye. In the dynamic vision
sensor, each pixel uses event-based triggering to update its values based on
incremental changes in light intensity [Liu et al., 2014b].

The current wave of research interest in event-based control began in the
late 1990s, motivated by increasing interest in wireless networked control
systems and the potential benefit event-based policies can provide in terms
of energy, computations, and network bandwidth. This potential was demon-
strated in the seminal works [Åström and Bernhardsson, 1999] and [Årzén,
1999], and the research field has since experienced exponential growth in
the yearly number of publications [Aranda-Escolástico et al., 2020].

Due to the impact made by the work in [Åström and Bernhardsson,
1999], and its particular relevance for the problems considered in this thesis,
we proceed by giving a brief review of one of its main results.

Example 1.1—Periodic versus Event-Based Impulse Feedback
In this example from [Åström and Bernhardsson, 1999], we compare per-
formance between periodic and event-based impulse feedback. The process
model is a simple first-order integrator, represented by the following scalar
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1.1 Event-Based Control

stochastic differential equation

dx = udt+ dw.

Here, the disturbance w is a Wiener process with unit incremental variance,
and u is the control signal. The objective in this example is to keep the
state x as close to the origin as possible using control actions in the form
of impulses. With x available for feedback, the optimal impulse applied at
time τ is

u(t) = −x(τ)δ (t− τ),

which exactly resets x to the origin. We note that x(t) = 0 could be achieved
for all t by allowing an infinite impulse rate. However, when the impulse
rate is restricted to being finite, there is time between each impulse where
x drifts randomly due to the disturbance w. In this case, we face the design
problem of when each impulse should be triggered.

The standard option is periodic triggering, with an impulse triggered
after every h time units. Since the state x evolves according to a Wiener
process between each impulse, the average variance of x is given by

Jper := 1
h
E
[ ∫ h

0
x2(t)dt

]
=

1
h

∫ h

0
E
[
w2(t)

]
dt = 1

h

∫ h

0
tdt = h

2 .

Now, consider an event-based send–on–delta policy (referred to as
Lebesgue sampling in [Åström and Bernhardsson, 1999]), where impulses
are triggered whenever x satisfies

px(t)p = ∆. (1.1)

A comparison of the time responses for send–on–delta and periodic trigger-
ing is shown in Figure 1.4. Let τ denote the first time the state x satisfies
(1.1) after starting in the origin. Since the process t− x2(t) is a Martingale,
we have

E[τ − x2(τ)] = 0.

This means that the expected time between two impulses is given by

E[τ ] = E[x2(τ)] = ∆2.

The average variance under the event-based policy can be computed from
the stationary probability distribution of x. It is given by

p(x) =


∆ − pxp

∆2 , pxp ≤ ∆,
0 otherwise,
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Figure 1.4 Time responses for periodic (upper) and event-based send–
on–delta (lower) impulse feedback (green stems) based on the example from
[Åström and Bernhardsson, 1999]. In this example, we have h = ∆ = 1,
corresponding to the same average sampling interval in both cases.

where we refer to [Åström and Bernhardsson, 1999] for its derivation. The
average variance under the event-based policy is then computed as

Jeb :=
∫ ∞

−∞

x2p(x)dx =
∫ ∆

−∆
x2 ∆ − pxp

∆2 dx = 2
∫ ∆

0
x2 ∆ − x

∆2 dx = ∆2

6 .

Finally, we compare the average variances obtained under periodic and
event-based triggering respectively. For the same average impulse rate, with
E[τ ] = ∆2 = h, the ratio of variances is given by

Jper

Jeb
=

h
2

/
h
6 = 3.

With this, we conclude that event-based triggering always results in three
times smaller variance under the same impulse rate—an elegant result that
demonstrates the efficiency of event-based control.
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1.1 Event-Based Control

While this small example may seem trivial, it turns out that a more
general version of it has a fundamental role in LQG-optimal sampled-
data control, where the impulses directly translate to sampling actions in
a feedback system. This connection is described in Chapter 2. While the
send–on–delta trigger in (1.1) is an optimal sampling policy for first-order
systems (see [Henningsson et al., 2008]), its counterpart for higher-order
systems is mostly unknown. Similarly, it is unknown how the factor three
improvement in (1.1) generalizes for higher-order systems. In this thesis,
we investigate these unknowns beyond the first-order case—an important
step towards a complete design framework for event-based control.

Event-Based Control Structures
The exact meaning of an event in event-based control differs based on the
considered problem structure. Here follows an overview of some common
structures.

Inherent versus By Design. Event-based control problems generally fall
into one of the following two broad categories:

• problems with inherently event-based system components, and

• problems that are event-based by design.

The former category includes systems with components such as rotary en-
coders, relays, pulse width modulators, queuing networks, et.c [Åström,
2008]. In all these components, the internal state changes based on events
rather than time. For instance, a rotary encoder triggers pulses only at fixed
angular increments, which is an inherent form of send–on–delta.

The latter category is arguably more common in the literature, and
the problems considered in this thesis are of this type. Event-based logic
is then deliberately introduced in the control system to avoid redundant
usage of limited or costly system resources. Different resource limitations,
and corresponding event actions, give rise to different design problems.

Design Based on Resource Limitations. As mentioned in the historical
overview, a motivating application for event-based strategies is control over
data networks, commonly referred to as networked control systems [Hes-
panha et al., 2007; Zhang et al., 2017]. These networks are often shared
by many nodes that communicate wirelessly, making network access and
battery lifetime limited resources. Common examples of event-based control
with multiple feedback loops are

• systems of several independent single loop feedback systems, all shar-
ing a common network bus, see e.g., [Cervin and Henningsson, 2008;
Trimpe and D’Andrea, 2014], and
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ū

Figure 1.5 Feedback loop illustrating different nodes and associated ac-
tions that may be relevant for an event-based design. Adapted from [Hen-
ningsson, 2012, Figure 1.1]

• multi-agent networks with a consensus objective, see e.g., [Dimarogo-
nas et al., 2011; Seyboth et al., 2013].

While multiple feedback loops are arguably of more practical interest, the
single loop case is useful for theoretical research on event triggers and
inter-event control actions, since they are then considered in isolation. For
this reason, we focus on the single loop case in this thesis. Ultimately, we
expect that insights gained from the single loop case can be useful also in
the case of multiple feedback loops.

Many single-loop event-based control problems are described by a feed-
back loop of the form in Figure 1.5. Similar to Figure 1.1, it illustrates a
closed-loop system with a controller distributed over three nodes; a sensor
node, a controller node, and an actuator node. The sensor node monitors
the output y of the controlled process and communicates a sampled mea-
surement ȳ to the controller node. The controller node updates its internal
state based on the received measurement and then communicates new in-
structions ū to the actuator node, which generates the control signal u. As
listed in Figure 1.5, each node and link are associated with some action
that may draw from limited resources. These are:

• communication, which may be costly in terms of network bandwidth
and/or power consumption from radio transmissions [Hespanha et al.,
2007; Zhang et al., 2017; Rault et al., 2014];

• actuation, where changes may be costly due to upsets in production
or increased wear-and-tear of equipment [Åström, 2008];

• sensing, for which high-resolution hardware might be expensive while
sensors with more coarsely quantized measurements can provide a
cheaper option; and
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• computations, which are performed on hardware with limited memory
and/or processing power, that should possibly also be shared by other
tasks.

In this thesis, we focus on reducing communication between the sen-
sor, controller, and actuator nodes. Examples of networked control systems
where communication is limited include unmanned aerial vehicles with
stealth requirements, vehicles with tight power-budgets such as planetary
rovers, long-endurance sensor networks with limited energy supply, and
underwater vehicles [Hespanha et al., 2007]. While we do not explicitly
consider computational limitations in this thesis, we also consider some
suboptimal solutions that trade some performance for simpler, less compu-
tationally demanding implementations.

1.2 Related Work
Topics related to the work in this thesis can be broadly categorized into

• stochastic event-based control,

• event-based state estimation, and

• event-based PID control.

For a comprehensive survey on the literature of event-based control over
the last twenty years, see [Aranda-Escolástico et al., 2020].

Stochastic Event-Based Control
The stochastic approach to event-based control has been much inspired
by the initial work in [Åström and Bernhardsson, 1999], from which we
presented an example in Section 1.1. Since then, different research direc-
tions have included optimal control, suboptimal control with performance
guarantees, and, in later years, methods inspired by machine learning.

Optimal Control. Optimality results in stochastic event-based control
have mainly been obtained within the framework of LQG. In [Meng and
Chen, 2012], the results in [Åström and Bernhardsson, 1999] are extended
to a class of second-order systems, where expressions for the LQG-optimal
cost and average event rate are derived under an ellipsoidal threshold
policy. The Lebesgue policy in [Åström and Bernhardsson, 1999] is formally
shown to be LQG-optimal for first-order systems in [Henningsson et al.,
2008], where also a minimum inter-event time is introduced under the term
sporadic event-based control. A general framework based on path integrals
is proposed in [Henningsson, 2011], which is then used in [Henningsson,
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2012, Paper II] to extend the results in [Henningsson et al., 2008] for the
case of multivariate integrator systems.

In [Molin and Hirche, 2009], a principle of separation is shown to hold be-
tween the inter-event control actions and the event trigger in a discrete-time
LQG setup with state feedback. This result is extended to the continuous-
time case in [Molin and Hirche, 2010a], and the discrete-time case with
output feedback in [Molin and Hirche, 2010b]. The same separation is for-
mally shown for the continuous-time output feedback case in [Goldenshluger
and Mirkin, 2017], which in turn is based on similar results for the case
of H2-optimization in [Mirkin, 2017]. In [Braksmayer and Mirkin, 2017],
the H2-optimal sampled-data controller from [Mirkin, 2017] is used in a
stochastic setting, where some heuristically motivated event-based trigger
policies are evaluated.

In this thesis, we also focus on optimal control within the LQG frame-
work, with the results in [Goldenshluger and Mirkin, 2017] being an impor-
tant foundation. With several strong theoretical results in the literature,
we believe that this approach is a good candidate for obtaining a relatively
simple design framework for event-based control.

Suboptimal Control with Performance Guarantees. To enable sim-
pler analysis and implementation, there has also been a large focus on
suboptimal event-based control. By also providing performance guarantees,
a suboptimal solution can also prove very useful.

In [Cogill et al., 2007], a simple ellipsoidal threshold policy is proposed
for a discrete-time impulse control problem with quadratic cost, which is
shown to give a cost within a factor six of the optimal. The results are
extended to the case of zero-order hold actuation in [Cogill, 2009], where
an ellipsoidal threshold policy is jointly optimized with a linear feedback
control law to minimize an upper bound on the cost.

In [Antunes et al., 2012; Antunes and Heemels, 2014], the authors con-
siders the co-design of event trigger and inter-event control actions for a
discounted LQG setup with state feedback, within the framework of periodic
event-triggered control introduced in [Heemels et al., 2013]. The co-design
problem is tackled using a roll-out dynamic programming technique, which
guarantees a lower cost compared to periodic triggering with the same aver-
age event rate. A similar method is also used in [Gatsis et al., 2014], where
the event policy is a smooth probability function for successful data trans-
missions rather than a deterministic threshold. Performance guarantees
are subsequently established in [Gatsis et al., 2016].

The work in [Antunes, 2013] generalizes upon the standard disturbance
assumption of white Gaussian noise by considering an LQ setup with ran-
dom impulse disturbances arriving at a Poisson rate. For this setup, an
event-based controller is derived that is guaranteed to outperform its pe-
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riodic counterpart. Similar results are obtained in the subsequent work
in [Antunes and Khashooei, 2016], where the notion of consistency for
event-based control is introduced. In [Khashooei et al., 2017], a consis-
tent event-based controller is derived for a discrete-time LQG setup with
output feedback.

Machine Learning. A recent trend in stochastic event-based control is
the adoption of methods inspired by machine learning. In [Baumann et
al., 2018], deep reinforcement learning is used to simultaneously learn
policies for event triggering and inter-event control actions for nonlinear
discrete-time systems subject to additive Gaussian noise. The policies are
obtained via a value function parameterized by a deep neural network,
whose parameters are learned from data.

In [Solowjow et al., 2018], the concept of event-triggered learning is pro-
posed. Based on an LQG setup, an identification experiment is triggered
to update model parameters whenever the measured event rate differs sig-
nificantly from the one expected from the model. The exact value for the
expected event rate is given by the solution to an elliptic partial differen-
tial equation, which becomes intractable to solve online for higher-order
systems. Instead, the authors estimate the expected event rate online us-
ing Monte Carlo simulations. Event-triggered learning is also applied for a
continuous-time linear impulse control problem in [Baumann et al., 2019].
The considered setup shares similarities to those considered in [Åström
and Bernhardsson, 1999; Henningsson et al., 2008; Henningsson, 2011;
Henningsson, 2012], but differs in that impulse magnitudes are model-
dependent.

Event-Based State Estimation
Remote state estimation is another common problem in the event-based
literature. In this problem class, events correspond to decisions in a sensor
for transmitting measurements to a remote state estimator. Typically, the
remote estimator is aware of the policy used for event triggering in the
sensor, which can be exploited to gain implicit measurement information
even in the absence of transmissions. While the inclusion of implicit mea-
surement information can result in better estimation performance, it also
significantly raises the complexity of the design of the remote estimator.
Consequently, there is a wide range of proposals in the literature for coping
with this added complexity.

In [Li et al., 2010], an LQG setup is considered, where the sensor in-
cludes a Kalman filter and a local copy of the remote estimator. The event
trigger is based on the error between the optimal estimates obtained from
the Kalman filter and those of the remote estimator (available via the local
copy), with the Kalman filter estimates being transmitted at events. The
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remote estimator employs an open-loop prediction in the absence of events
but does not take any implicit information into account. Optimization of the
event trigger is considered over a finite horizon based on a quadratic over-
approximation of the value function and shows similarities to the problem
considered in [Cogill et al., 2007].

A similar setup with a local estimator at the sensor is considered in
[Trimpe and D’Andrea, 2014]. In this work, several sensors are sharing a
common network bus, each having a local copy of the remote estimator.
Global information is ensured in the setup by the assumption that every
sensor node listens to all transmissions over the network bus. The trigger
function in each sensor is based on the variance of its measurement pre-
diction, but no measurement updates are taken by the estimators in the
absence of events.

A framework for event-based state estimation in an LQG setting un-
der general trigger conditions is proposed in [Sijs and Lazar, 2012]. In this
framework, the state estimates are updated with implicit information in the
absence of events by using a sum of Gaussians approximation for the like-
lihood function. With this approximation, the estimator becomes available
on a recursive form, similar to the standard Kalman filter.

Particle filtering has also been considered as an alternative for approxi-
mating the nonlinear measurement update in the absence of events. In [Sid
and Chitraganti, 2016], an event-based bootstrap particle filter is proposed,
with a likelihood function obtained via numerical integration. Another boot-
strap implementation is considered in [Davar and Mohammadi, 2017], with
an estimator tailored for an LQG setting with send–on–delta event trig-
gering. Improved performance over the bootstrap implementations is noted
in [Ruuskanen and Cervin, 2019], where an event-based auxiliary particle
filter is derived using the same likelihood approximation as in [Sijs and
Lazar, 2012].

A method of stochastic triggering for the LQG setting was proposed in
[Han et al., 2015], with extended analysis in [Shi et al., 2016]. With a suit-
able choice of trigger probability, it is shown that the Gaussian distribution
of the process state is preserved also in the absence of events, resulting in
a Kalman filter-like estimator with event-dependent measurement update.
Improved estimator performance is noted in [Schmitt et al., 2019], where
stochastic triggering is combined with a measurement prediction based on
a finite impulse response filter in the sensor.

Event-Based PID Control
Research on event-based PID control started with the seminal work in
[Årzén, 1999], where a simple event-based extension of a standard discrete-
time PID implementation was proposed. In this work, the potential for
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computational savings is demonstrated through simulations on a double
tank process, with the estimated CPU utilization of the event-based PID
being less than half of that of its periodic counterpart.

In [Vasyutynskyy and Kabitzsch, 2006], the problem of sticking is ob-
served for Årzén’s implementation. This phenomenon is caused by too small
deviations in the control error at the peak of overshoots, resulting in the
absence of new events and getting temporarily “stuck” in an equilibrium
away from the setpoint until a time-out is reached. A simple sticking de-
tection algorithm is proposed to alleviate this problem. Another scheme for
canceling sticking is introduced in [Tiberi et al., 2012]. In this work, the
event trigger is based on the PI part of the controller, with the latter being
implemented on the automatic reset form used in the PIDPLUS commercial
controller [Song et al., 2006]. The inclusion of the integral part results in
an implicit time-out since it continues to grow and eventually triggers an
event also for stationary errors.

Improvements to the integral action of Årzén’s implementation are pro-
posed in [Durand and Marchand, 2009a]. To reduce overshoots in setpoint
changes, the authors propose the removal of the time-out and limiting the
growth of the integral action based on three alternatives; saturation of the
integral approximation, adding an exponential forgetting factor, and a hy-
brid of the two. Further improvements are noted in [Durand and Marchand,
2009b], where an asynchronous event trigger is considered.

To further improve transient behavior, the inclusion of model informa-
tion has also been considered. In [Vasyutynskyy and Kabitzsch, 2009], a
first-order observer is introduced in the event trigger. The observer is de-
signed based on a first-order approximation of a possibly higher-order linear
model. The work in [Sánchez et al., 2011] considers the design of an event-
based PI controller with two degrees of freedom, where the feedforward
controller is based on a first-order process model with deadtime (FOPDT).
The feedforward controller is active during setpoint changes, where a self-
triggered policy based on the FOPDT model is used to reach the setpoint.

1.3 Contributions
Central to this thesis is a stochastic control problem concerned with design-
ing an LQG-optimal event trigger, formulated in Chapter 3 as the optimal
sampling problem (OSP). Based on the OSP, the main contributions of this
thesis are:

• Analytic results, in the form of exact solutions to the OSP for two new
system classes and tight bounds on optimal performance compared to
periodic triggering for multivariate integrator systems. These contri-
butions are presented in Chapter 3.
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• Numerical results, in the form of two methods for solving the OSP
approximately; a simulation-based method and a method based on
linear complementarity. These methods are presented in Chapter 4.

• New insights regarding the optimal event trigger based on numerical
studies on second-order systems. Findings suggest that ellipsoidal
threshold policies offer a simple yet well-performing alternative to the
optimal trigger policy, with optimal parameters obtainable also for
higher-order systems via a Monte Carlo approach. These contributions
are presented in Chapter 4.

Additionally, the following contributions are made for event-based PID con-
trol and state estimation:

• New proposals for implementation of event-based PID control based
on results in LQG-optimal sampled-data control, offering improved
trade-offs between performance in terms of quadratic cost and event
rate. These proposals are presented in Chapter 5.

• Two new simple yet well-performing stochastic trigger policies for
event-based state estimation, presented in Chapter 6.

1.4 Publications
The work presented in this thesis is based on the following publications:

Thelander Andrén, M., B. Bernhardsson, A. Cervin, and K. Soltesz (2017).
“On event-based sampling for LQG-optimal control”. In: Proceedings of
the 56th IEEE Conference on Decision and Control. Melbourne, Aus-
tralia, pp. 5438–5444.

This article considers sampled-data LQG control and introduces the OSP
covered in Chapter 3. It also proposes a simulation-based numerical method
for solving the optimization problem, presented in Chapter 4.

M. Thelander Andrén made the initial observation that previous re-
sults on impulse control could be used as a framework for solving the OSP.
B. Bernhardsson contributed with the core idea of the simulation-based
numerical method, while M. Thelander Andrén was responsible for its im-
plementation and related simulation results. The performance bounds for
multivariate integrator systems were derived jointly by M. Thelander An-
drén and K. Soltesz. Most of the manuscript was written by M. Thelander
Andrén, with A. Cervin contributing ideas on its structure. All authors
contributed to the editing of the manuscript.
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Thelander Andrén, M. (2019). “Using radial basis functions to approximate
the LQG-optimal event-based sampling policy”. In: Proceedings of the
18th European Control Conference. Naples, Italy, pp. 2832–2838.

This article proposes an improved numerical method based on linear
complementarity for solving the OSP. The method is presented in Chapter 4
and approximates the value function with a basis expansion, for which
weights are found by solving a quadratic program.

Thelander Andrén, M. and A. Cervin (2020). “Optimal event-based sam-
pling in LQG control: Exact solutions and numerical methods”. IEEE
Transactions on Automatic Control. Submitted.

This article serves as a foundation for Chapter 3, and summarizes re-
sults on the OSP for sampled-data LQG control. Additionally, it discusses
the properties of the value function, introduces exact solutions for two spe-
cial cases, and compares the simulation-based and linear complementarity
methods of the previous articles in a numerical study. M. Thelander Andrén
was the main contributor to this work, with editing suggestions provided
by A. Cervin.

Cervin, A. and M. Thelander Andrén (2020). “LQG-optimal versus sim-
ple event-based PID controllers”. In: Proceedings of the 2020 American
Control Conference. Denver, CO, USA, pp. 3678–3684.

This article serves as a foundation for Chapter 5, and considers a
continuous-time LQG benchmark problem for which the solution is an ideal
PID controller. Based on previous results, the optimal sampled-data con-
troller and sampling policy can then be expressed in terms of PID control.
With the optimal solution as a starting point, some proposals for suboptimal
but simpler event-based PID controllers are discussed and evaluated.

The core idea of applying the results on sampled-data LQG on the bench-
mark problem was by A. Cervin, while the interpretation of the optimal
sampled-data controller was by M. Thelander Andrén. A. Cervin performed
simulations of the sub-optimal controllers, while M. Thelander Andrén com-
puted the optimal sampling policies and performed the simulations for the
optimal controller. Both authors contributed equally to writing the article.

Thelander Andrén, M. and A. Cervin (2016). “Event-based state-estimation
using an improved stochastic send–on–delta scheme”. In: Proceedings of
the 2nd International Conference on Event-based Control, Communica-
tion and Signal Processing. Kraków, Poland, pp. 1–8.
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This article serves as a foundation for Chapter 6, and considers the
design of an event-based state estimator using a stochastic transmission
policy. The stochastic policy enables an analytic derivation of the minimum
mean square error (MMSE) estimator, which has a recursive formula similar
to that of the standard Kalman filter. This work improves upon related work
by adding a simple predictor in the sensor that does not require any feedback
from the estimator, resulting in improved estimation. M. Thelander Andrén
was the main contributor to this work, with editing provided by A. Cervin.

Thelander Andrén, M. (2020). “Remote state estimation using stochastic
triggering with buffered measurements”. Manuscript in preparation.

This unpublished work is presented in Chapter 6, and considers the
same event-based state estimation problem as in the previous publication.
Here, a new stochastic transmission policy is proposed for the case of bidi-
rectional communication between the estimator and the sensor. In addition
to showing improved estimation performance compared to other policies in
related works, we also derive exact expressions for the average transmission
rate and mean-square error under the proposed policy.

The author has also contributed to the following publications that are
not included in the thesis:

Hübel, M., S. Meinke, M. Thelander Andrén, C. Wedding, J. Nocke, C.
Gierow, E. Hassel, and J. Funkquist (2017). “Modelling and simulation
of a coal-fired power plant for start-up optimisation”. Applied Energy
208, pp. 319–331.

Nylander, T., M. Thelander Andrén, K.-E. Årzén, and M. Maggio (2018).
“Cloud application predictability through integrated load-balancing and
service time control”. In: Proceedings of the 2018 IEEE International
Conference on Autonomic Computing. Receiver of the Best Paper Award.
Trento, Italy, pp. 51–60.

1.5 Outline
This thesis is divided into seven chapters. In Chapter 2, we present relevant
background on sampled-data LQG control, including a review of the optimal
controller structure. For this controller structure, we then pose the problem
of finding the corresponding LQG-optimal sampling policy in Chapter 3,
along with exact solutions to problems with certain structures. For the
general problem, we propose two numerical methods in Chapter 4, which
are validated and compared against a standard value iteration method. In
Chapter 4, we also discuss ellipsoidal threshold policies, and how optimal
ellipse parameters can be obtained via a Monte Carlo approach. The results
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on LQG-optimal sampled-data control are then used as a starting point for
the design of event-based PID control in Chapter 5. In Chapter 6, we con-
sider a probabilistic type of event-based trigger policy, known as stochastic
triggering, for a prototypical remote estimation problem. Finally, a summary
and proposals for future research directions are given in Chapter 7.
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2
Sampled-Data LQG Control

This chapter presents relevant background on sampled-data linear–
quadratic–Gaussian (LQG) control. We first review the analog (continuous-
time) case, where no sampled-data structure is imposed on the controller.
The optimal analog controller acts as a performance baseline for all
sampled-data implementations. We then proceed by imposing a sampled-
data structure on the controller, consisting of an analog–to–digital (A/D) con-
verter (sampler), a microprocessor (discrete-time controller), and a digital–
to–analog (D/A) converter (hold).

Sampled-data control design is typically done under assumptions of pe-
riodic sampling and standard choices for the sampler and hold, leaving only
the discrete-time controller free in the design. While these assumptions limit
the attainable performance, they simplify the problem since the design can
then be considered entirely in discrete-time. As a reference for future perfor-
mance comparisons, the LQG-optimal controller for such a standard setup
is also presented in this chapter.

The chapter is concluded by reviewing results for the optimal co-design
of the sampler, hold, discrete-time controller, and sampling policy. By con-
sidering the complete co-design, performance can be pushed closer to the
analog case. A key result is that the sampler, hold and discrete-time con-
troller can be optimized separately from the sampling policy. This enables
us to consider the optimization of the sampling policy in isolation, which is
the main topic of this thesis.

2.1 Plant Model and Objective
Throughout this thesis, we consider the design of feedback controllers for
a continuous-time generalized plant G of the form shown in Figure 2.1.
The plant outputs are the measured signal y, used for feedback, and the
regulated output z, used to measure control performance. The inputs to the
plant are the control signal u and the disturbance signal w in the form of
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G u(t)y(t)

z(t) w(t)

Figure 2.1 Generalized plant G, with the control signal u and disturbance
w as inputs, and regulated output z and measured signal y as outputs.

a Gaussian white process with unit intensity. The purpose of the stochastic
signal w is to act as a source of uncertainty in the model, corresponding to,
e.g., unknown external disturbances and model errors.

The LQG design framework assumes a linear plant model, and we specif-
ically consider a linear, time-invariant (LTI) plant G with a state-space
realization of the form

G :


ẋ(t) = Ax(t) + Bww(t) + Buu(t),
z(t) = Czx(t) + Dzuu(t),
y(t) = Cyx(t) + Dyww(t),

(2.1)

where x ∈ Rn is the plant state vector and the coefficients in (2.1) are
matrices of appropriate dimensions. The matrices Cz and Dzu are design
parameters that add different weights to x and u in the regulated output z.
The other matrices in (2.1) are part of the plant model and are considered
fixed in the design.

To ensure a well-posed design problem, we assume;

A1: (A, Bu) is stabilizable, and (Cy, A) is detectable.

A2: Dzu and Dyw have full column and row rank respectively.

A3: The matrices [
A− iω In Bu

Cz Dzu

]
,

[
A− iω In Bw

Cy Dyw

]

have full column and row rank respectively, for all ω .

These assumptions are standard in LQG and H2 literature, see, e.g., [Chen
and Francis, 1994, Chapter 2]. A1 is required for existence of an inter-
nally stabilizing controller, while A2 ensures that all components of u are
weighted in z and that all components of y are corrupted by w respectively.
A3 ensures there are no zeros on the imaginary axis in the cross-systems
from u to z and from w to y.

Now consider Figure 2.2, where the feedback loop from y to u has
been closed with a controller K . For this feedback system, the LQG design
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G

K

y(t) u(t)

z(t) w(t)

Figure 2.2 Feedback system with controller K and generalized plant G.

objective is to find an internally stabilizing controller K that minimizes the
cost

J := lim
T→∞

E
[ 1
T

∫ T

0
qz(t)q2dt

]
, (2.2)

i.e., the asymptotic mean variance of z.

2.2 Analog LQG Control
We first consider the case when the controller K in Figure 2.2 is analog (i.e.,
operating entirely in continuous-time). The key to solving the analog LQG
design problem is the separation principle. It states that the design problem
can be separated into optimization of state feedback and state estimation
respectively, and it holds due to the whiteness of w and the LTI dynamics
of G [Potter, 1964]. The two optimization problems are dual to each other,
where both have an LTI solution obtained by solving an algebraic Riccati
equation (ARE).

Under A2, the optimal state estimator is an LTI system of the form

˙̂x(t) = Ax̂(t) + Buu(t) − L
(
y(t) − Cy x̂(t)

)
, (2.3)

where x̂ ∈ Rn is the state estimate. The estimator gain L is given by

L = −(YCᵀ
y + BwDᵀ

yw)(DywDᵀ
yw)

−1, (2.4)

where Y solves the ARE

AY + Y Aᵀ + BwBᵀ
w − R = 0, R := LDywDᵀ

ywLᵀ. (2.5)

Under A1 and A3, Y 4 0 is unique, and the optimal state estimator has
asymptotically stable estimation error dynamics [Zhou et al., 1996, Chapters
13–14]. In the context of stochastic control, the optimal state estimator (2.3)
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is the minimum mean square error (MMSE) estimator, generally known as
the Kalman–Bucy filter (KBF) [Åström, 1970].

Under A2, the optimal state feedback is a linear static gain of the form

u(t) = Fx(t). (2.6)

The feedback gain F is given by

F = −(Dᵀ
zuDzu)

−1(Bᵀ
uX + Dᵀ

zuCz). (2.7)

where X solves the ARE

AᵀX + X A+ Cᵀ
zCz − Q = 0, Q := FᵀDᵀ

zuDzuF. (2.8)

Under A1 and A3, X 4 0 is unique, and the optimal state feedback gives
an asymptotically stable closed-loop system [Zhou et al., 1996, Chapters
13–14]. The optimal state feedback (2.6) is known as the linear–quadratic
regulator (LQR).

By combining the KBF with the LQR we get the optimal controller

K :
{

˙̂x(t) = Ax̂(t) + Buu(t) − L
(
y(t) − Cy x̂(t)

)
,

u(t) = F x̂(t),
(2.9)

which we refer to as the analog LQG controller. The minimum cost achieved
by (2.9) is given by [Zhou et al., 1996, Theorem 14.7]

min
K

J := γ0 = tr(Bᵀ
wXBw) + tr(CzYCᵀ

z ) + 2tr(X AY ). (2.10)

The cost γ0 is a fundamental performance bound for all controllers—no
sampled-data design can achieve a lower cost. Intuitively, this holds since
imposing any sampled-data structure on K corresponds to adding con-
straints to the optimization problem, which can only result in an equal
or higher optimal cost. Therefore, γ0 is a useful baseline when determining
how much performance impact a given sampled-data structure has.

2.3 Sampled-Data Control
Now, consider the case when the controller K has the sampled-data struc-
ture in Figure 2.3. The controller now consists of a (generalized) sampler
S, a discrete-time controller K̄ and a (generalized) hold H. This structure
can be interpreted as a mathematical abstraction of a digital controller
implementation, where S and H corresponds to A/D and D/A converters
respectively, and K̄ represents a microprocessor [Chen and Francis, 1994,
Chapter 1].
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G

K̄S H

y(t) u(t)

ȳk ūk

z(t) w(t)

K

Figure 2.3 Sampled-data feedback system with continuous-time general-
ized plant G and a sampled-data controller K consisting of a sampler S, a
discrete-time controller K̄ and a hold H.

Let {τk}k∈N0 denote a sequence of sampling times where hk := τk −
τk−1 are the corresponding sampling intervals. The sampler S : y ]→ ȳ is
an operator converting the continuous-time measurement signal y into a
discrete-time signal ȳ at sampling times according to

S : ȳk :=
∫ τk

0
ψ(τk, v)y(v)dv.

The sampler is characterized by its sampling function ψ(t, v), for which it
holds that ψ(t, v) = 0 when v > t [Braksmayer and Mirkin, 2017]. The
sampler transmits ȳ to the controller K̄ : ȳ ]→ ū, which computes the
discrete-time control signal ū and transmits it to the hold H : ū ]→ u,
which generates a continuous-time control signal u based on ū. This is done
according to

H : u(t) =
kt∑
k=0

φ(t,τk)ūk,

where kt := maxτk≤t k. The hold is characterized by its hold function φ(t, v),
with the property φ(t, v) = 0 when v > t [Braksmayer and Mirkin, 2017].

We consider the following assumptions for the sampled-data controller:

A4: Each component performs its operations instantly, i.e. computational
time is assumed to be negligible.

A5: Both ȳ and ū are updated and transmitted at sampling times.

A6: There is no quantization of ȳ and ū.

These are common assumptions in the sampled-data literature used to
simplify the mathematical analysis [Chen and Francis, 1994, Chapter 1].
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From the presented setup, we see that there are three main aspects to
consider in the sampled-data design:

(i) the inter-sample behavior, defined by S and H,

(ii) the controller update at sampling times, defined by K̄ ,

(iii) the policy that generates the sequence of sampling times {τk}.

Typically in control literature, standard choices for (i) (ideal sampling and
zero-order hold) and (iii) (periodic sampling) that simplify the analysis are
assumed, leaving only K̄ available in the design [Åström and Wittenmark,
1997]. However, by also including (i) and (iii) in the optimization we can
obtain a controller that achieves similar performance to the standard case
for considerably lower sampling rates. This is appealing for applications
where sampling is associated with allocation of system resources, such as
networked control systems where the different components of the sampled-
data structure are not necessarily collocated in a single node [Heemels et
al., 2012; Liu et al., 2014a]. Instead, A/D and D/A converters are typically
collocated with sensors and actuators respectively, while the microprocessor
receives and transmits data from a remote location. In these instances,
sampling inherently comes with a cost due to, e.g., allocation of network
bandwidth, computational resources, and energy usage in wireless data
transmission.

2.4 A Baseline Sampled-Data LQG Controller
To provide a baseline for future designs, we present a standard sampled-
data setup and the corresponding LQG-optimal controller. In the setup, we
assume that

• S is an ideal sampler combined with a pre-filter,

• H is a zero-order hold circuit, and

• a periodic sampling policy, with constant intervals hk := h for all k.

Ideal Sampling and Pre-filtering
The ideal sampler is an operator which extracts the exact value of a
continuous-time signal at sampling times. Consequently, its sampling func-
tion is represented by a Dirac delta function, i.e.,ψ(t, v) = δ (t−v). However,
the presence of continuous-time white noise in y prohibits us from applying
the ideal sampler directly. The reason is that continuous-time white noise
is a generalized process with infinite variance, and thus can not be eval-
uated point-wise in a meaningful way. In contrast, its integral (a Wiener
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1
sh

+

−e−sh

y(t) yf (t)

Figure 2.4 Block diagram representation of the integrate–and–reset (IaR)
filter.

process) is well-defined for point-wise evaluation, and for this reason we
need to integrate (i.e., filter) y before sampling. Naturally, this is not only
a theoretical issue—an analog pre-filter (i.e., an anti-aliasing filter) should
always be featured in practical implementations to reduce the impact of
measurement noise and prevent aliasing [Åström and Wittenmark, 1997].

Common options for pre-filters include Butterworth and Bessel filters
of varying orders [Åström and Wittenmark, 1997], and the integrate–
and–reset (IaR) filter (also known as an averaging filter) [Goodwin et al.,
2010]. Owing to its simplicity, we use the IaR filter in the baseline setup.

The IaR filter produces a filtered version yf of y by averaging it over
each sampling period according to

yf (t) =
1
h

∫ t

t−h
y(v)dv.

A block diagram representation of the IaR filter is shown in Figure 2.4.
Applying the ideal sampler to the filtered signal yf gives

ȳk =
∫ τk

0
δ (τk − v)yf (v)dv = yf (τk). (2.11)

Zero-Order Hold
The zero-order hold circuit generates a continuous-time control signal by
outputting a constant over each interval. Its hold function is given by an
indicator function, φ(t,τk) = 1[0,hk+1](t− τk), resulting in

u(t) =
kt∑
k=0

1[0,hk+1](t− τk)ūk = ūkt .

Equivalent Discrete-Time Formulation
With the assumption of zero-order hold, it is possible to derive a discrete-
time equivalent of the continuous-time plant that captures system signals
exactly at sampling times. This is known as a stroboscopic model [Åström
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Ḡ

K̄

ȳk ūk

z̄k w̄k

Figure 2.5 Under assumptions of ideal sampling and zero-order hold, the
sampled-data feedback system in Figure 2.3 can be equivalently represented
by a discrete-time feedback system as above, with a discrete-time controller
K̄ and generalized discrete-time plant Ḡ.

and Wittenmark, 1997]. The design of the controller K̄ can then be consid-
ered for a discrete-time version Ḡ of the plant G including the pre-filter, see
Figure 2.5. The resulting discrete-time generalized plant can be written on
the following form

Ḡ :


x̄k+1 = Ax̄ x̄k + Bw̄w̄k + Būūk,
z̄k = C z̄ x̄k + D z̄ūūk,
ȳk = C ȳ x̄k,

(2.12)

where x̄ :=
[
xᵀ yᵀf

]ᵀ is the state vector of the extended plant, consisting of
the plant state x and the IaR filter output yf , and {w̄k}k∈N0 is an i.i.d. se-
quence of vector-valued standard normal random variables. Note that there
is no measurement noise acting on ȳ in (2.12). Instead, the measurement
noise of the continuous-time model appears as process noise acting on the
state yf . The relations between the given parameters for G in (2.1) and
the corresponding ones for Ḡ in (2.12) are given in Appendix A. The cost
(2.2) has an equivalent discrete-time representation based on the regulated
output z̄, given by [Chen and Francis, 1994, Chapter 12]

J = γw + lim
N→∞

E

[
1
Nh

N−1∑
k=0

∥∥z̄[k]∥∥2
]
, (2.13)

where γw (see (A.6)) is the accumulated cost over each period due to the
disturbance w. With (2.12) and (2.13), the original sampled-data LQG design
problem for the baseline setup is reformulated as a discrete-time one.

The Baseline LQG Controller
Similar to the analog case, the discrete-time LQG design problem is also
solved via the separation principle. The optimal controller will differ depend-
ing on if measurements up until ȳk (the filter case) or ȳk−1 (the predictor
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case) are available when computing the control signal ūk. Here we opt for
the filter case, as it results in the smallest LQG cost of the two cases. The
optimal controller is then given by [Åström and Wittenmark, 1997, Chapter
11]

K̄ :
{
x̂k+1 = Ax̄ x̂k + Būūk − L

(
ȳk − C ȳ x̂k

)
,

ūk =
(
F − MC ȳ

)
x̂k + Mȳk,

(2.14)

where F, L and M are given by

F = −
(
Bᵀ
ūXBū + Dᵀ

z̄ūD z̄ū
)−1(Bᵀ

ūX Ax̄ + Dᵀ
z̄ūC z̄

)
,

L = −Ax̄YCᵀ
ȳ
(
C ȳYCᵀ

ȳ
)−1,

M = FYCᵀ
ȳ
(
C ȳYCᵀ

ȳ
)−1,

and X and Y solve the discrete AREs

X = Aᵀ
x̄ X Ax̄ + Cᵀ

z̄C z̄ − Fᵀ(Bᵀ
ūXBū + Dᵀ

z̄ūD z̄ū)F,
Y = Ax̄Y Aᵀ

x̄ + Bw̄Bᵀ
w̄ − LC ȳYCᵀ

ȳ Lᵀ.

We refer to the baseline sampled-data setup with the corresponding optimal
controller K̄ given by (2.14) as the baseline LQG controller. The minimum
cost achieved by this controller is given by [Åström and Wittenmark, 1997,
Chapter 11]

min
K̄

J = γw +
1
h

tr
(
Bᵀ
w̄XBw̄

)
+

1
h

tr
((
FY Fᵀ − MC ȳYCᵀ

ȳMᵀ)(Bᵀ
ūXBū + Dᵀ

z̄ūD z̄ū
))
. (2.15)

2.5 Optimal Sampled-Data LQG Control
In the previous section we presented the LQG-optimal sampled-data con-
troller based on standard choices of the sampler S and hold H in Figure 2.3.
We now consider the case when also S and H are available in the design.

Derivation
The optimal sampled-data controller was first derived in terms of H2-
optimization in [Mirkin, 2017], and later extended to the stochastic case
with event-based sampling in [Goldenshluger and Mirkin, 2017]. Here, we
give a brief outline of the derivation, closely following [Goldenshluger and
Mirkin, 2017].
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K̃

Q

ỹ(t) ũ(t)

u(t) y(t)

K
Figure 2.6 The Q-parametrization (2.16) of the controller K .

The first step is to characterize the set of all (including nonlinear and
time-varying) internally stabilizing controllers for the plant G. This is done
through the Q-parametrization [Goldenshluger and Mirkin, 2017, (12)]

K = K̃uy + K̃uũQ(I − K̃ ỹũQ)−1 K̃ ỹy, (2.16)

where Q : ỹ ]→ ũ is any causal stable system (including nonlinar and time-
varying) and K̃i j denote the subsystems from input j to output i of the
generalized LTI system

K̃ :


˙̂x(t) =

(
A+ BuF + LCy

)
x̂(t) − Ly(t) + Buũ(t),

u(t) = F x̂(t) + ũ(t),
ỹ(t) = −Cy x̂(t) + y(t).

(2.17)

A block diagram illustrating the Q-parametrization is shown in Figure 2.6.
The Q-parametrization given by (2.16) and (2.17) is valid for any choice of F
and L that renders the matrices A+ BuF and A+ LCy Hurwitz. However,
when F and L are chosen as the LQR and KBF gains (2.7) and (2.4)
respectively, the cost satisfies [Goldenshluger and Mirkin, 2017, Lemma 1]

J = γ0 + lim
T→∞

E
[ 1
T

∫ T

0

∥∥Dzuũ(t)
∥∥2dt

]
. (2.18)

If no further constraints are imposed on K , we immediately see in (2.18)
that the cost is minimized by the choice Q = 0, which results in ũ(t) = 0 at
all times t. The minimum cost is then minK J = minQ J = γ0 and K = K̃yu
is the analog LQG controller, as expected.

The next step is to impose constraints on Q such that the resulting
K is a sampled-data controller. Necessary and sufficient constraints were
first identified in [Mirkin, 2017] by considering the closed-loop system in the
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lifted domain [Yamamoto, 1994]. Translated back to the continuous-time do-
main, the constraints state that K will be a causal sampled-data controller
for an arbitrary sampling sequence {τk}k∈N0 iff Q can be decomposed as
[Goldenshluger and Mirkin, 2017, Lemma 2]

Q = Qstat +Qsd, (2.19)

where Qstat : ỹ ]→ ũstat is a static system in the lifted domain, with the
continuous-time realization

Qstat :
{

˙̃x(t) = Ax̃(t) + Lỹ(t), x̃(τk) = 0,
ũstat(t) = F x̃(t),

(2.20)

and Qsd : ỹ ]→ ũsd is any stable, causal sampled-data system for the same
sampling sequence {τk}. For a Q of the form in (2.19) it holds that [Gold-
enshluger and Mirkin, 2017, Lemma 3]

lim
T→∞

E
[ 1
T

∫ T

0

∥∥Dzuũ(t)
∥∥2dt

]

= lim
T→∞

E
[ 1
T

∫ T

0

(∥∥Dzuũstat(t)
∥∥2
+

∥∥Dzuũsd(t)
∥∥2)dt]. (2.21)

So, by imposing sampled-data constraints on K , we are left with the free
parameter Qsd in the optimization. However, from (2.21) we see that Qsd = 0
results in an optimal sampled-data controller with Q = Qstat, and thus
ũ = ũstat. From (2.17) and (2.20) we then get the following realization of K

K :



[ ˙̂x(t)
˙̃x(t)

]
=

[(
A+ BuF + LCy

)
BuF

−LCy A

] [
x̂(t)
x̃(t)

]
+

[
−L
L

]
y(t),

x̃(τk) = 0,

u(t) =
[
F F

] [x̂(t)
x̃(t)

]
,

(2.22)

which achieves the minimal cost

min
K

J = γ0 + lim
T→∞

E
[ 1
T

∫ T

0
qx̃(t)q2

Qdt
]

︸ ︷︷ ︸
:=Jµ

, (2.23)

where the weight matrix Q is defined in (2.8). The relation (2.23) holds
for any sampling sequence—including those generated by event-based
policies—and in the case of periodic sampling it can be simplified further
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as [Braksmayer and Mirkin, 2017, Remark 4]

Jµ =
1
h

∫ h

0

∫ t

0
qDzuFevALDywq

2
Frobdvdt

=
1
h

∫ h

0

∫ t

0
tr(evARevAᵀQ)dvdt, (2.24)

where the matrix R is defined in (2.5).
The two terms on the right-hand side of (2.23) are the cost γ0 from the

corresponding analog LQG controller, and an additional cost Jµ due to the
sampled-data constraint. Since the value of Jµ only depends on the choice of
sampling policy µ, its optimization can be performed separately. Thus, there
holds a principle of separation between the controller K and the sampling
policy µ for the sampled-data LQG problem. The key to this property is the
nested pattern of information in the feedback loop, where the information
available at the actuator side is a subset of the information available to the
sampling policy implemented at the sensor side. To the author’s knowledge,
this property was first noted in [Molin and Hirche, 2010a].

While not immediately apparent from (2.22), the optimal controller K
has a sampled-data structure and can be translated to the form in Figure 2.3
with a sampler S, a hold H, and a discrete-time controller K̄ . However,
before presenting this version, we first consider an equivalent realization
of the form in (2.22), which provides more insight into the controller’s
operation.

An Equivalent Realization
As described in [Mirkin, 2017], we can introduce the state xa := x̂ + x̃ and
formulate an equivalent realization of (2.22) as

K :



[ ˙̂x(t)
ẋa(t)

]
=

[
A+ LCy BuF

0 A+ BuF

] [
x̂(t)
xa(t)

]
+

[
−L
0

]
y(t),

xa(τk) = x̂(τk),

u(t) =
[
0 F

] [ x̂(t)
xa(t)

]
.

(2.25)

We see in (2.25) that the control signal is solely based on the state vector
xa, which operates in open-loop between sampling times. Feedback from
the measured signal y is achieved only at sampling times through the
sampled-data operation xa(τk) = x̂(τk). Comparing (2.25) to the analog LQG
controller (2.9), we see that the optimal sampled-data controller operates
like a KBF on the sensor side (cf. (2.3)), which, at sampling times, transmits
its estimate x̂ to an LQR (cf. (2.6)) based on the simulated plant state xa
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G

KBF LQR

y(t) u(t)

x̂(τk)

z(t) w(t)

K

Figure 2.7 Equivalent realization of the optimal sampled-data controller
K , with a Kalman–Bucy filter (KBF) on the sensor side and a simulated
linear–quadratic regulator (LQR) on the actuator side of the plant G.

on the actuator side, see Figure 2.7. Naturally, a copy of the simulated LQR
has to be featured on the sensor side to provide the control signal to the
KBF. In principle, this poses no problem as the operation of the simulated
LQR is completely deterministic from the KBF’s point of view.

Sampled-Data Structure
We now present the optimal controller in (2.25) decomposed into the form
considered in Figure 2.3, with a sampler S, a hold H and a discrete-time
controller K̄ . The translation is performed by integrating the system of
differential equations in (2.25) using Van Loan’s formula [Van Loan, 1978,
Theorem 1] over one sampling interval and identifying the corresponding
sampling and hold functions ψ and φ, respectively. For a detailed proof, see
[Mirkin, 2017, Corollary 4.3].

The sampling function ψ is given by

ψ(τk, v) = e(τk−v)(A+LCy)L1[0,hk](τk − v), ∀v ∈ [τk−1, τk], (2.26)

while the hold function φ is given by

φ(t,τk) = Fe(t−τk)(A+BuF)1[0,hk+1](t− τk), ∀t ∈ [τk, τk+1]. (2.27)

The discrete-time controller K̄ is given by

ūk = Ψ(hk)ūk−1 + ȳk, (2.28)

where

Ψ(hk) := ehk(A+LCy)
(
I +

∫ hk

0
e−v(A+LCy)BuFev(A+BuF)dv

)
. (2.29)

44



2.5 Optimal Sampled-Data LQG Control

Note that the discrete-time controller (2.28) is time-varying in general, but
constant for periodic sampling when hk = h for all k.

We refer to the LQG-optimal sampled-data controller given by the two
equivalent forms (2.25) and (2.26)–(2.28) as Mirkin’s LQG controller.

Example 2.1
We conclude this chapter by considering an example where we compare the
performance between the presented LQG controllers. Consider a simple LTI
model of a DC motor, with parameters [Glad and Ljung, 2000, (4.15)]

A =
[
0 1
0 −1

]
, Bu =

[
0
1

]
, Cy =

[
1 0

]
. (2.30)

Here, y represent the measured position of the DC motor, while u represents
the input voltage.

Let us consider the LQG design problem for the DC motor with the
following (quite arbitrary) noise and cost parameters

Bw =
[
0 0
1 0

]
, Dyw =

[
0 0.1

]
, Cz =


1 0

0 1
0 0


 , Dzu =


0

0
1


 . (2.31)

Solving the continuous-time AREs (2.5) and (2.8), we get

F =
[
−1 −1

]
, L =

[
−3.58 −6.42

]ᵀ ,
and the cost γ0 = 1.46 via (2.10) for the analog LQG controller. We now
consider the cost J for three sampled-data controllers:

(i) the baseline LQG controller,

(ii) Mirkin’s LQG controller with periodic sampling, and

(iii) Mirkin’s LQG controller with optimal event-based sampling.

Optimal event-based sampling will be formally introduced in Chapter 3, but
we include it in this example as a reference for achievable performance.

The performance of the three controllers is shown in Figure 2.8, where
the cost J normalized by γ0 is plotted against the average sampling interval
h̄ (defined in (3.18)). By the rule of thumb given in [Åström and Wittenmark,
1997, Chapter 4], the sampling period of the baseline LQG controller should
be smaller than roughly h = 0.2 for the design in this example. At that
point, the resulting cost is approximately 8% higher than that of the analog
LQG. By switching to Mirkin’s LQG controller with periodic sampling, we
can use a slightly longer period, h = 0.22, for the same cost. However, by
instead considering event-based sampling for Mirkin’s LQG controller, we
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Figure 2.8 Normalized LQG cost J/γ0 versus average sampling interval h̄
for the DC motor system in Example 2.1. Trade-off curves are shown for the
baseline LQG controller (black, dotted) and Mirkin’s LQG controller with
periodic (red, dashed) and optimal event-based sampling (blue, solid). The
cost level J/γ0 = 1.08 has been highlighted for reference, corresponding to
h̄ = 0.2, 0.22 and 0.66 for the three controllers respectively.

can achieve h̄ = 0.66 for the same cost—three times larger compared to
periodic sampling. Thus, the results in Figure 2.8 (and similar examples
like it, see [Braksmayer and Mirkin, 2017; Thelander Andrén et al., 2017])
indicate that the main performance contributor is the choice of sampling
policy, rather than the sampled-data structure of the controller.

It can be shown that the factor three improvement obtained from event-
based sampling in fact holds for any cost level we might consider in Fig-
ure 2.8 (c.f Section 3.4). This is the same observation made in the example in
Section 1.1 based on the seminal work in [Åström and Bernhardsson, 1999],
and there is a clear link—optimizing the sampling policy is essentially an
impulse control problem. This link is further explained in Chapter 3.
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3
The Optimal Sampling
Problem

In the previous chapter, we concluded that the co-design problem in
sampled-data LQG control is separable, with a known solution for the sam-
pler, hold, and discrete-time controller. This chapter focuses on the design
of the final component—the sampling policy.

The objective is to design a policy that achieves an optimal trade-off
between control performance and resource utilization. This trade-off is ex-
pressed in terms of LQG cost and average sampling rate, and we begin this
chapter with a formal definition of this objective—denoted as the optimal
sampling problem (OSP). To characterize the solution of the OSP, we proceed
by deriving the corresponding Hamilton–Jacobi–Bellman (HJB) equation
for the value function of the optimization problem. This HJB equation has
the form of a free boundary problem—a special kind of partial-differential
equation common in impulse control problems. While free boundary prob-
lems generally require numerical methods to solve, there are a few systems
with special structures where the considered HJB equation admits an exact
solution. The chapter is concluded with a presentation of four such special
structures—two known results from the literature, and two new contribu-
tions.

3.1 Problem Formulation
From Chapter 2 we recall that the LQG cost J for the optimal sampled-data
controller (Mirkin’s LQG controller) is given by

J = γ0 + Jµ,
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where γ0 is the cost for the corresponding analog LQG controller (cf. (2.10))
and

Jµ = lim
T→∞

E
[ 1
T

∫ T

0

∥∥x̃(t)∥∥2
Qdt

]
, (3.1)

is the cost due to the sampled-data operation (cf. (2.23)), with Q :=
FᵀDᵀ

zuDzuF (cf. (2.8)). The cost Jµ depends on the trajectory of the state
x̃ ∈ Rn, which is governed by the dynamics

˙̃x(t) = Ax̃(t) + Lỹ(t), x̃(τk) = 0, (3.2)

i.e., x̃ is reset to the origin at each sampling time τk. We recall from
Section 2.5 that x̃ := xa − x̂ represents the error between the estimate x̂
of a KBF on the sensor side of the plant, and the state xa of an open-loop
simulation of the plant on the actuator side (see Figure 2.7). The input
signal ỹ in (3.2) represents the innovations signal of the KBF, i.e.

ỹ(t) = y(t) − Cy x̂(t),

where y is the measured plant output. The innovations signal is a
continuous-time white Gaussian process with the same intensity as the
measurement noise [Glad and Ljung, 2000, Theorem 5.5], and (3.2) can
therefore equivalently be represented as

˙̃x(t) = Ax̃(t) + v(t), x̃(τk) = 0, (3.3)

where v is a continuous-time white Gaussian process with intensity R :=
LDywDᵀ

ywLᵀ (cf. (2.5)).
The only available design variable to control the trajectory of x̃—and

ultimately the value of Jµ—is the policy µ for generating the sequence of
sampling times {τk}k∈N0 . We restrict the investigation of µ to admissible
sampling policies, defined as follows:

Definition 3.1—Admissible Sampling Policy
A sampling policy µ is said to be admissible if it generates a sequence of
sampling times 0 = τ0 < τ1 < τ2 . . . such that

(i) the process x̃ exists and is unique, and

(ii) limk→∞τk = ∞. ♦

The first item of Definition 3.1 ensures that the trajectory of x̃ is well-
defined, while the second item excludes policies that lead to Zeno behaviour,
i.e., where an infinite number of sampling times occur over a finite time
interval [Miskowicz, 2015, Chapter 1].
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3.1 Problem Formulation

The objective is to find an admissible sampling policy µ that achieves an
efficient trade-off between sampling rate (incurring costs in, e.g., energy and
network bandwidth) and closed-loop performance. To this end, we define the
average sampling rate as

f := lim sup
T→∞

E[kT]
T

, (3.4)

where kT = maxτk≤T k counts the number of sampling actions up until time
T. With an added penalty ρ > 0 per sampling action, we arrive at the
optimal sampling problem (OSP).

Definition 3.2—The Optimal Sampling Problem
Consider the cost Jµ in (3.1), where the dynamics of x̃ are given by (3.3).
For a given penalty ρ > 0, the optimal sampling problem is

minimizeµ Josp := Jµ + ρ f , (3.5)

subject to µ admissible. ♦

Note that (3.3) can also be viewed as a system with impulse feedback of
the form {

˙̃x(t) = Ax̃(t) + v(t) + u(t),
u(t) = −

∑∞
k=0 x̃(t)δ (t− τk).

The OSP is thus equivalent to an impulse control problem, here with long-
term average cost. Optimal policies for this problem class are typically
Markovian, and trigger impulses (sampling) based only on the current state
value [Robin, 1983]. Specifically, an optimal policy typically has the form

τk = min
{
t > τk−1 : �

(
x̃(t)

)
= 0

}
, τ0 = 0, (3.6)

for some trigger function � : Rn ]→ R. The policy (3.6) triggers an impulse
(sampling) whenever the trajectory of x̃ reaches the level set

�Ω :=
{
x̃ : �(x̃) = 0

}
.

This means that optimal sampling policies for this problem class are in-
herently event-based rather than time-triggered, and that the OSP can be
viewed as a search for a threshold set �Ω in the state space, see Figure 3.1.
Finding �Ω is an optimal control problem with two options at each point
in time; (i) do nothing, and accumulate an uncertain quadratic cost, or (ii)
reset x̃ and pay a fixed penalty ρ.
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ρ

�Ω

x̃1

x̃2

Figure 3.1 The optimal sampling problem (here in two dimensions) can be
viewed as the search for a threshold �Ω (blue) on the trajectory of x̃ (black),
from where it should be reset to the origin and incur the penalty ρ (dotted
arrow).

3.2 Hamilton–Jacobi–Bellman Formulation
We now take the first step towards solving the OSP using the framework
of dynamic programming. Central in continuous-time dynamic program-
ming is the Hamilton–Jacobi–Bellman (HJB) equation, which is a partial-
differential equation (PDE) in the value function of the optimization problem
(see e.g. [Bertsekas, 2012]). By obtaining a solution to the HJB equation,
we implicitly also retrieve the optimal policy.

Derivation
The HJB equation for the OSP was first derived in [Henningsson, 2012].
Here, we give an outline of the derivation and refer to [Henningsson, 2012,
Paper II] for a detailed proof.

First, consider a bounded function V : Rn ]→ R, and let

Iµ(T) :=
{
τk : k = 0 . . . kT

}
,

denote the sequence of sampling times generated by an admissible policy
µ up until time T. Furthermore, define T := [0, T] \ Iµ(T) as the set of
intervals between sampling times up until time T. By Dynkin’s formula
(see, e.g., [Øksendal, 2000, Theorem 7.4.1]), the expected change in V

∆TV := V
(
x̃(T)

)
− V

(
x̃(0)

)
,
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3.2 Hamilton–Jacobi–Bellman Formulation

is given by

E
[
∆TV

]
= E

[ ∫
T

AV
(
x̃(t)

)
dt+

∑
τk∈Iµ(T)

(
V(0) − V

(
x̃(τ−k )

))]
, (3.7)

where x̃(τ−k ) denotes the limit value of x̃ just before time τk. The infinitesi-
mal generator A(·) corresponding to (3.3) between sampling times is given
by [Øksendal, 2000, Theorem 7.3.3]

AV(x̃) = 1
2 tr

(
R∇2

x̃V(x̃)
)
+ x̃ᵀAᵀ∇x̃V(x̃). (3.8)

Let v(T) denote the non-averaged cost over the interval [0, T],

v(T) := E
[ ∫

T

∥∥x̃(t)∥∥2
Qdt+ ρkT

]
.

Adding v(T) to (3.7) then yields

v(T) + E
[
∆TV

]
= E

[ ∫
T
(AV

(
x̃(t)

)
+

∥∥x̃(t)∥∥2
Q)dt+

∑
τk∈I(T)

(
ρ + V(0) − V

(
x̃(τ−j )

))]
. (3.9)

Now, assume that V satisfies the following complementarity conditions for
some constant λ > 0

∀x̃ ∈ Rn :


0 =

(
AV(x̃) +

∥∥x̃∥∥2
Q − λ

)
·
(
ρ + V(0) − V(x̃)

)
,

0 ≤ AV(x̃) +
∥∥x̃∥∥2

Q − λ,
0 ≤ ρ + V(0) − V(x̃).

(3.10)

The complementarity conditions imply that equality holds in at least one of
the two inequalities in (3.10) for all x̃. With these inequalities we obtain a
lower bound on (3.9) as

v(T) + E
[
∆TV

]
≥ E[

∫
T
λdt] = λT. (3.11)

Now, dividing by T yields

v(T)
T

+
E
[
∆TV

]
T

≥ λ. (3.12)

Since
lim
T→∞

v(T)
T

= Josp,
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and boundedness of V implies

lim
T→∞

E
[
∆TV

]
T

= 0,

we obtain a lower bound on the OSP cost by taking the limit T → ∞ in
(3.12), resulting in:

Josp ≥ λ. (3.13)

Note that the bound (3.13) holds for any admissible sampling policy.
Since the complementarity conditions imply

ρ + V(0) − V(x̃) > 0 =[ AV(x̃) +
∥∥x̃∥∥2

Q = λ,

we see from (3.9) that equality is attained in (3.11)—and ultimately
(3.13)—if we pick the policy

µv : τk = min
{
t > τk−1 : ρ + V(0) − V

(
x̃(t)

)
= 0

}
, τ0 = 0. (3.14)

Thus, if a pair (V, λ) are found satisfying the complementarity conditions
(3.10), then minµ Josp = λ, and an optimal admissible sampling policy µv is
to trigger sampling whenever the trajectory of x̃ reaches the level set

�Ω =
{
x̃ : ρ + V(0) − V(x̃) = 0

}
.

The result is summarized in the following theorem.

Theorem 3.1
Assume that a bounded function V : Rn ]→ R and a constant λ > 0 are
found satisfying the complementarity conditions (3.10). Then the minimum
cost in the OSP is minµ Josp = λ, and an optimal sampling policy is of the
form (3.6), with the trigger function

�(x̃) = ρ + V(0) − V(x̃).

Proof. See [Henningsson, 2012, Paper II, Theorem 1]. 2

For a given value of λ, the nonlinear PDE (3.10) is a free-boundary
problem (here presented in complementarity form). The boundary �Ω is
said to be free since it is not known beforehand but is implicitly given
as a part of the solution. Free boundary PDEs typically arise in optimal
stopping problems [Peskir and Shiryaev, 2006], where perhaps the most
well-studied application is the pricing of American-style options in finance
(see e.g. [Björk, 2019] and references therein). In fact, as will be seen in
Section 3.3, the OSP can also be formulated as an optimal stopping problem.
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3.2 Hamilton–Jacobi–Bellman Formulation

Solution Properties
The function V is known as a relative value function. Its interpretation is
only meaningful as a difference; for two initial states x̃a and x̃b the quantity
V(x̃a)−V(x̃b) is the expected difference in cost under the optimal sampling
policy over any given time horizon. Consequently, the specific value of V(0)
does not matter. This is also apparent in (3.10), where we see that V can
only be unique up to a constant. Hence, we may, without loss of generality,
restrict our attention to solutions satsifying

V(0) := −ρ, (3.15)

which has the benefit of eliminating the explicit dependence of ρ in (3.10).
Having specified (3.15), it can be shown with the results from [Øksendal
and Reikvam, 1998] that there exists a unique solution (in the viscosity
sense, see [Øksendal and Reikvam, 1998, Definition 2.1]) to (3.10) for any
given λ as long as the sampling intervals are finite with probability one.

While results on existence and uniqueness are available, it is more dif-
ficult to estimate the regularity of the solution. It is rare to find smooth
solutions to problems such as (3.10) due to the free boundary, where non-
smoothness may occur. Typically, a solution will be C2 over the entire domain
except over the free boundary, where the solution is only C1 (known as the
high contact principle) [Øksendal, 2000, Chapter 10]. Formally, we can ob-
tain regularity estimates under the assumptions that the covariance matrix
R is positive definite, and that the domain of x̃ is a bounded set Ξ with
sufficiently smooth boundary �Ξ (see [Friedman, 1982, Chapter 1, (3.11)]),
with the boundary condition

V(x̃) = 0, ∀x̃ ∈ �Ξ.

The domain restriction poses no problem for non-pathological cases when
the solution of the original problem has a bounded threshold �Ω, since
we can then simply choose Ξ large enough to encompass �Ω. With these
assumptions, (3.10) becomes a uniformly elliptic obstacle problem—a well-
studied problem in the PDE literature (see, e.g., [Friedman, 1982]). The
solution is then unique, with [Friedman, 1982, Chapter 1, Theorem 3.2]

V ∈ W2,p(Ξ), 1 ≤ p < ∞, (3.16)

where W2,p(Ξ) denotes the Sobolev space of functions on the domain Ξ, with
weak derivatives up to order 2 having finite Lp norm. The implications
of (3.16) are threefold. First, we know that the solution is twice weakly
differentiable on the entire domain Ξ. Second, using the general Sobolev
inequalities (see, e.g., [Evans, 1998, Section 5.5, Theorem 6]) we can show
that

V ∈ C1(Ξ),
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i.e., the solution is continuously differentiable on the entire domain Ξ.
Third, by Meyer–Serrin’s theorem (see, e.g., [Evans, 1998, Section 5.3, The-
orem 3]) there exists an approximating sequence of smooth functions which
converges to the solution. This third implication supports the choice of
smooth basis functions in numerical approximations, as in the proposed
method described in Section 4.3.

3.3 Optimal Stopping Formulation
As noted in Theorem 3.1, the optimal sampling policy is a static threshold
of the form (3.6). By restricting the optimization to static sampling policies,
we can equivalently formulate the OSP as an optimal stopping problem. As
this formulation is useful for numerical evaluation, we briefly consider it
before presenting some special cases where the OSP has an exact solution.

First, let us formally define what is considered a static sampling policy.

Definition 3.3—Static Sampling Policy
A sampling policy µ is said to be static if

(i) the kth sampling decision only depends on x̃(t) for t ≥ τk−1, and

(ii) trigger conditions for sampling are identical between intervals. ♦
The set of static sampling policies includes both periodic sampling and
Markovian policies of the form (3.6), but also more general policies that
may be time-varying within each interval. In particular, the optimal policy
from Theorem 3.1 is still valid if we constrain the OSP to static policies.

A static sampling policy is memoryless between sampling intervals, sim-
ilar to how the trajectory history of x̃ is reset at each sampling time. Due to
this property, a static policy produces a sequence of i.i.d. sampling intervals
{hk := τk−τk−1}. Furthermore, the process kt = maxτk≤t k that counts the
number of sampling actions up until time t will then be a renewal process.
By the elementary renewal theorem, the average sampling rate as defined
in (3.4) then satisfies

f = 1
E[h1]

, (3.17)

where h1 is the first sampling interval. For static sampling policies, we
define

h̄ := E[h1] = E[τ1], (3.18)
as the average sampling interval. The relation (3.17) is especially useful
from a numerical standpoint, as f is then simple to evaluate via Monte
Carlo methods. Similarly, the cost Jµ can also be expressed in terms of
an expected value over a single interval [Goldenshluger and Mirkin, 2017,
Proposition 1].
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Theorem 3.2
For static sampling policies, the cost Jµ is given by

Jµ =
1
h̄
E
[ ∫ τ1

0
qx̃(t)q2

Qdt
]
, x̃(0) = 0.

Proof. See [Goldenshluger and Mirkin, 2017, Section III.B]. 2

By (3.17) and Theorem 3.2, we conclude that the following relation holds
for static sampling policies

min
µ

Josp = min
τ1

E
[ ∫ τ1

0 qx̃(t)q2
Qdt

]
+ ρ

h̄
, (3.19)

where minimization over the stopping time τ1 is subject to knowledge of
x̃(t) for t ≤ τ1 alone (i.e., non-causal policies are excluded). The formulation
in (3.19) is an example of an optimal stopping problem (see [Peskir and
Shiryaev, 2006]).

3.4 Exact Solutions for Some Special Cases
While free boundary problems generally require numerical methods, there
are in fact some special cases where an exact solution to the OSP can be
obtained. These special cases are

(i) first-order systems,

(ii) multivariate integrator systems,

(iii) spiral systems, and

(iv) single-input (SI) and single-output (SO) systems of certain structure.

Solutions for cases (i) and (ii) are known from the literature, but here
we give some additional new results for (ii). Cases (iii) and (iv) are new
contributions. For completeness, we present all four cases here (with (3.15),
i.e., V(0) = −ρ, assumed throughout).

First-Order Systems
For first-order systems, the free boundary problem (3.10) reads

∀x̃ ∈ R :


0 =

( r
2
�2V(x̃)
� x̃2 + ax̃�V(x̃)

� x̃
+ qx̃2 − λ

)
· V(x̃),

0 ≤ r
2
�2V(x̃)
� x̃2 + ax̃�V(x̃)

� x̃
+ qx̃2 − λ,

0 ≥ V(x̃),

(3.20)
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where r, q and a denote scalar versions of R, Q and A, respectively. This
case corresponds exactly to the one studied using Lebesgue sampling (i.e.,
send–on–delta) in [Åström and Bernhardsson, 1999], whose optimality for
the OSP was subsequently proven in [Henningsson et al., 2008].

Solution. Based on the results in [Henningsson et al., 2008], the solution
to the OSP for first-order systems can be summarized as follows.
Theorem 3.3
For first-order systems, the optimal admissible sampling policy has the
symmetric trigger function

�(x̃, ∆ρ) = ∆ρ − px̃p, (3.21)

where
∆ρ := arg min

∆

{
Jµ(∆) + ρ f (∆)

}
,

and Jµ(∆), f (∆) are the LQG cost and average sampling rate obtained using
the trigger function �(x̃, ∆). Expressions for Jµ(∆) and f (d) = 1/h̄(∆) are
given by

Jµ(∆) =
2q

rh̄(∆)

∫ ∆

0

∫ β

0
α2e

a
r (α

2−β 2)dαdβ, (3.22)

h̄(∆) = 2
r

∫ ∆

0

∫ β

0
e
a
r (α

2−β 2)dαdβ. (3.23)

The corresponding solution pair (V, λ) to (3.20) is given by

λ = Jµ(∆ρ) + ρ f (∆ρ),

V(x̃) =


2
r

∫ x̃
∆ρ

∫ β
0 (λ− qα2)e a

r (α
2−β 2)dαdβ, px̃p ≤ ∆ρ ,

0, otherwise.

Proof. See [Henningsson et al., 2008, Section 3.3]. 2

Example 3.1
Consider the set of first-order systems defined by

A = a ∈ {−1, 0, 1},
Bu = 1,
Cy = 1,
Bw =

[
1 0

]
,

Dyw =
[
0 1

]
,
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i.e., a stable (a = −1), marginally stable (a = 0) and unstable system
(a = 1) respectively. We consider an LQG control design for this set of
systems specified by

Cz =

[
1
0

]
, Dzu =

[
0
1

]
,

resulting in

r = q =


0.17, a = −1,
1, a = 0,
5.83, a = 1.

While using Mirkin’s LQG controller for this set of systems, we now compare
performance of periodic and optimal event-based sampling. To this end, let
Jeb(h̄) and Jper(h̄) denote the cost Jµ obtained with the average sampling
interval h̄ under optimal event-based and periodic sampling respectively.
We then define the cost ratio as

Jratio(h̄) := Jper(h̄)
Jeb(h̄)

, (3.24)

where optimality of the event-based policy implies Jratio ≥ 1. This ratio
quantifies the potential benefit of using event-based sampling and corre-
sponds to the ratio studied in the motivating example in Section 1.1. Large
values of Jratio indicates a significant improvement, whereas Jratio = 1 cor-
responds to no difference.

Starting with periodic sampling, it is straightforward to show, using
(2.24), that

Jper(h̄) =


qr
2a

( e2ah̄ − 1
2ah̄

− 1
)
, a ,= 0,

qr
2 h̄, a = 0.

(3.25)

For optimal event-based sampling, we can obtain an analytic expression for
the marginally stable case from (3.22) and (3.23). The cost is then given by

Jeb(h̄) =
qr
6 h̄, a = 0. (3.26)

Thus, for the marginally stable case we have

Jratio(h̄) = 3, a = 0, (3.27)

i.e., the well-known factor three improvement from [Åström and Bernhards-
son, 1999].

Since there is no analytic expression for Jeb when a ,= 0, we can not
obtain similar expressions for the cases a = 1 and a = −1. Instead, we
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Figure 3.2 Cost ratio Jratio(h̄) = Jper(h̄)/Jeb(h̄) between periodic and opti-
mal event-based sampling over varying average sampling intervals h̄ for the
stable (black, dotted), marginally stable (red, dashed) and unstable (blue,
solid) first-order systems in Example 3.1.

evaluate Jeb for these cases by numerical integration of (3.22) and (3.23).
The results are shown in Figure 3.2. As concluded in (3.27), the cost ratio
is constant Jratio(h̄) = 3 in the marginally stable case, and we additionally
see that Jratio(h̄) ( 3 for small sampling intervals in all three cases.

In the stable case (a = −1), Jratio is monotonically decreasing. The cost
ratio then approaches 1 asymptotically, at which point both strategies attain
the same open-loop control cost. The benefit of event-based sampling is thus
most prominent for relatively small sampling intervals in the stable case.

In the unstable case (a = 1), we initially see the opposite behavior.
Here, Jratio is increasing up until h̄ ( 1.5, where it has a peak value of
Jratio ( 4.15. The cost ratio is then decreasing with h̄, and approaches
Jratio ( 3.54 asymptotically. This curious non-monotonic behavior of Jratio
was not observed in [Åström and Bernhardsson, 1999], where the authors
considered a smaller range of h̄. By only seeing the initial rise of Jratio, one
might believe that the benefit of event-based sampling grows monotonically
with the average sampling interval, and that Jratio can be made arbitrarily
large by considering increasingly larger h̄. Clearly, this is not true, and the
cost ratio is in fact bounded even in the unstable case.
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Multivariate Integrator Systems
We now consider the case of systems with A := 0, which we refer to as
multivariate integrator systems. This system class has a closed-form solution
for any system order n.

Solution. The OSP solution for multivariate integrator systems was first
presented in [Henningsson, 2012, Paper II, Theorem 2]. The result is sum-
marized in the following theorem.
Theorem 3.4
For multivariate integrator systems (A = 0), the optimal admissible sam-
pling policy has an ellipsoidal trigger function given by

�(x̃) = 2√ρ −
∥∥x̃(t)∥∥2

P . (3.28)

The matrix P 0 0 is the unique solution of the Riccati-like equation

PRP + 1
2 tr(RP)P = Q. (3.29)

The LQG cost Jµ and average samplig rate f under the optimal policy are
given by

Jµ = ρ f = 1
2
√ρ tr(RP). (3.30)

The corresponding solution pair (V, λ) to (3.10) is given by

λ = √ρ tr(RP),

V(x̃) = −1
4

(
max

(
0, �(x̃)

))2
. (3.31)

Proof. See [Henningsson, 2012, Paper II, Theorem 2]. 2

The solution in Theorem 3.4 is in fact valid for a somewhat extended
class of systems [Thelander Andrén and Cervin, 2020, Corollary 1].
Corollary 3.1
The solution in Theorem 3.4 holds for all systems where the matrix PA is
skew-symmetric, and P is the solution to the Riccati-like equation (3.29).

Proof. With V given by (3.31), the first-order term of the infinitesimal
generator A(·) (cf. (3.8)) becomes

x̃ᵀAᵀ∇x̃V = (2
√ρ − qx̃q2

P)x̃ᵀAᵀP x̃ = 0,

where the last equality holds since PA is skew-symmetric. The PDE (3.10)
is then identical to the case with A = 0, and both cases therefore share the
same solution given by Theorem 3.4. 2
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The solution in Theorem 3.4 requires us to solve the Riccati-like equation
(3.29), which is nonlinear in P and thus cannot be solved directly through
semidefinite programming. However, a solution is easy to obtain with the
following result [Thelander Andrén et al., 2017, Theorem 4].
Theorem 3.5
Consider the matrix S := Q 1

2 RQ 1
2 0 0, which has an eigendecomposition of

the form
S = USΛSUᵀ

S , USUᵀ
S = I.

Here, ΛS is a diagonal matrix with the eigenvalues of S along its diagonal.
The solution to (3.29) is then given by

P = Q
1
2USΛPUᵀ

SQ
1
2 ,

where ΛP is a diagonal matrix with elements {ΛP,ii}i=1,...,n given by

ΛP,ii = −
α

4ΛS,ii
+

√
α2

16Λ2
S,ii
+

1
ΛS,ii

, i = 1, . . . , n,

where α > 0 is the unique root of the scalar function

l(α) := (n+ 4)α −
n∑
i=1

√
α2 + 16ΛS,ii.

Proof. The proof is given in Appendix C. 2

From Theorem 3.5 we see that the optimal sampling policy can be obtained
via a simple scalar search in the multivariate integrator case.

Comparison to Periodic Sampling. Since the cost Jµ and average sam-
pling interval h̄ = 1/ f under the optimal policy are available in closed
form in the multivariate integrator case, we can compare performance to
periodic sampling analytically. Via (3.30) it is straightforward to express Jµ
as a function of h̄ for optimal event-based sampling as

Jeb(h̄) =

(
tr(RP)

)2

4 h̄. (3.32)

We can obtain the corresponding relation for periodic sampling via (2.24),
resulting in

Jper(h̄) =
tr(RQ)

2 h̄. (3.33)

By comparing (3.32) and (3.33) for the same given h̄, we arrive at the
following result [Thelander Andrén et al., 2017, Theorem 5].

60



3.4 Exact Solutions for Some Special Cases

Theorem 3.6
As defined in (3.24), let Jratio denote the ratio of LQG cost Jµ between
periodic and optimal event-based sampling for the same average sampling
interval h̄. In the multivariate integrator case, Jratio is constant for all h̄
and satisfies {

Jratio = 3, n = 1,
Jratio ∈

[
1+ 2

n , 3
)
, n ≥ 2.

(3.34)

Furthermore, the bounds for n ≥ 2 are tight, with equality in the lower
bound when the matrix RQ only has repeated eigenvalues. The upper bound
is the limit value of Jratio when all but one eigenvalue of RQ approach zero.

Proof. The proof is given in Appendix C. 2

The conclusion from Theorem 3.6 is that optimal event-based sampling
always outperform periodic sampling in the multivariate integrator case,
and at most with a factor three. However, for the lower bound in Theorem 3.6
we note that

1+ 2
n
→ 1, as n→∞.

The performance improvement is thus negligible for those higher-order
systems where the eigenvalues of RQ are of similar magnitude.
Example 3.2
Consider the following second-order system with parameters

A = 02$2,
Bu = I2,
Cy = I2,
Bw =

[
I2 02$2

]
,

Dyw =
[
02$2 I2

]
.

We consider an LQG control design for this system specified by

Cz =




1
√

2
1
√

2

−

√
5
2

√
5
2

0 0
0 0



, Dzu =

[
02$2
I2

]
.

Since A = 0, we see from the AREs (2.5) and (2.8) that

R = BwBᵀ
w = I2,

Q = Cᵀ
zCz =

[
3 −2
−2 3

]
.
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Figure 3.3 Relative value function V (surface) and threshold �Ω (blue
line) of the optimal sampling policy for the multivariate integrator system
in Example 3.2 with ρ = 0.1.

Given this specification, we now compare the trade-off between LQG cost and
average sampling interval for the following three sampled-data controllers:

(i) the baseline LQG controller,

(ii) Mirkin’s LQG controller with periodic sampling, and

(iii) Mirkin’s LQG controller with optimal event-based sampling.

The LQG cost is computed using (2.15), (2.24) and (3.32) for controllers
(i), (ii) and (iii) respectively for different average sampling intervals h̄.
The optimal sampling policy is computed via the scalar search method in
Theorem 3.5, where the matrix P for this example evaluates to

P =
[

1.15 −0.58
−0.58 1.15

]
.

The relative value function and the optimal threshold policy for ρ = 0.1
(corresponding to h̄ = 0.27) are shown in Figure 3.3.

The trade-off results for the three controllers (i)–(iii) are presented in
Figure 3.4, which shows the normalized LQG cost J/γ0 versus the average
sampling interval h̄ for the three controllers. Similar to the DC motor
example in Section 2.5 (cf. Figure 2.8), we note that the performance gain is
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Figure 3.4 Normalized LQG cost J/γ0 versus average sampling interval
h̄ for the multivariate integrator system in Example 3.2. Trade-off curves
are shown for the baseline LQG controller (black, dotted) and Mirkin’s LQG
controller with periodic (red, dashed) and optimal event-based sampling
(blue, solid).

larger when changing from periodic to optimal sampling (from (ii) to (iii)),
compared to changing from suboptimal to optimal sampled-data structure
of the controller (from (i) to (ii)). Over the considered interval in Figure 3.4,
the cost Jµ for the baseline LQG controller is well-approximated by a linear
curve, where a least-squares fit yields

Jbase(h̄) ( 3.55h̄.

As seen in (3.33) and (3.32), the corresponding curves for Mirkins LQG
controller using periodic and optimal event-based sampling respectively are
exactly linear. For periodic sampling (ii) we have

Jper(h̄) = 3h̄, (3.35)

and for optimal event-based sampling we have

Jeb(h̄) =
4
3 h̄. (3.36)

Comparing the cost for the same average sampling interval, we see that the
cost ratio between the baseline and Mirkin’s LQG controller with periodic
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sampling is
Jbase(h̄)
Jper(h̄)

=
3.55

3 ( 1.18. (3.37)

From Theorem 3.6 we know that the corresponding cost ratio for Mirkin’s
LQG controller with periodic (ii) and optimal event-based sampling (iii)
satisfies

1+ 2
n
= 2 ≤ Jratio < 3.

The exact ratio obtained from (3.35) and (3.36) is

Jratio =
9
4 = 2.25,

which is almost twice as large as the ratio in (3.37).

Spiral Systems
We now consider a third class of systems which admits an exact solution to
the OSP. We refer to this class as spiral systems, since their deterministic
counterparts typically have spiral-shaped phase portraits. The considered
spiral systems have matrices A, Q and R satisfying

A = aI + B, RQ = αI, BR skew-symmetric, (3.38)

for some a ∈ R, α > 0 and B ∈ Rn$n. Our analysis of spiral systems was
inspired by [Meng and Chen, 2012], where the authors considered the OSP
for second-order systems of the form (3.38) with B = 0 and R = Q = I. As
further analysis revealed, an exact solution can be derived for the somewhat
more general class of systems satisfying (3.38), and for any system order n.

Solution. The key property of systems satisfying (3.38) is that the cor-
responding free boundary problem (3.10) can be reduced to a first-order
problem. This gives the following result [Thelander Andrén and Cervin,
2020].

Theorem 3.7
For spiral systems defined by (3.38), the optimal sampling policy has the
trigger function

�(x̃, ∆ρ) = ∆ρ −
∥∥x̃∥∥Q, (3.39)

where
∆ρ := arg min

∆

{
Jµ(∆) + ρ f (∆)

}
,
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and Jµ(∆), f (∆) are the LQG cost and average sampling rate obtained with
�(x̃, ∆). Expressions for Jµ(∆) and f (∆) = 1/h̄(∆) are given by

Jµ(∆) =
2

αh̄(∆)

∫ ∆

0

∫ y

0
z2
( z
y

)n−1
e

a
α (z

2−y2)dzdy, (3.40)

h̄(∆) = 2
α

∫ ∆

0

∫ y

0

( z
y

)n−1
e

a
α (z

2−y2)dzdy. (3.41)

The corresponding solution pair (V, λ) to (3.10) is given by

λ = Jµ(∆ρ) + ρ f (∆ρ),

V(x̃) =


2
α

∫ qx̃qQ

∆ρ

∫ y

0
(λ− z2)

( z
y

)n−1
e

a
α (z

2−y2)dzdy, qx̃qQ ≤ ∆ρ ,

0, otherwise.

Proof. The proof is given in Appendix C. 2

Although the solution given by Theorem 3.7 relies on the reduction to
a first-order problem, we emphasize that the new problem still has a non-
trivial dependency on the state dimension n and differs from the problem
solved in Theorem 3.3 (cf. (3.40)–(3.41) and (3.22)–(3.23)).
Example 3.3
Consider the following set of third-order systems defined by

A =


a −1 −2

1 a −3
2 3 a


 , a ∈ {−1, 0, 1},

Bu = I3,
Cy = I3,
Bw =

[
I3 03$3

]
,

Dyw =
[
03$3 I3

]
,

i.e., a stable (a = −1), marginally stable (a = 0) and unstable (a = 1)
system respectively). We consider an LQG control design for this set of
systems specified by

Cz =

[
I3

03$3

]
, Dzu =

[
03$3
I3

]
,

resulting in
R = Q ∝ I3, (3.42)
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Figure 3.5 Cost ratio Jratio(h̄) = Jper(h̄)/Jeb(h̄) between periodic and opti-
mal event-based sampling over varying average sampling intervals h̄ for the
stable (black, dotted), marginally stable (red, dashed) and unstable (blue,
solid) spiral systems in Example 3.3.

in all three cases. We note that the given design and plant model satisfy
(3.38) and that Theorem 3.7 is applicable. Similar to the first-order example,
we consider Mirkin’s LQG controller in all three cases and compute the cost
ratio Jratio between periodic and optimal event-based sampling. Using (2.24)
and (3.42), it is straightforward to show that the cost Jµ under periodic
sampling in this example is given by

Jper(h̄) =


αn
2a

( e2ah̄ − 1
2ah̄

− 1
)
, a ,= 0,

αnh̄
2 , a = 0.

Combined with numerical integration of (3.40) and (3.41), we can then
compute Jratio, see Figure 3.5.

In Figure 3.5, we see several similarities to the results for the first-order
example (cf. Figure 3.2). We note that the cost ratio in the marginally stable
case (a = 0) also is constant in this case, and it is straightforward to show
that the system then satisfies Corollary 3.1. The solution to the OSP is then
given by Theorem 3.4, and since the eigenvalues of the matrix RQ are all
repeated we know that the ratio will equal the lower bound in Theorem 3.6,
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i.e Jratio = 1+ 2/3 = 5/3.
For the stable (a = −1) and unstable case (a = 1) we have Jratio ( 5/3

for small sampling intervals, and just like in the first-order example we
see that Jratio is monotonically decreasing in the stable case, while Jratio is
non-monotonic but still bounded in the unstable case. The peak cost ratio is
Jratio ( 1.68 in the unstable case, and occurs for h̄ ( 0.25. However, unlike
the first-order case in Example 3.1, we see that the cost ratio then settles
at a value smaller than 5/3, i.e. smaller than the cost ratio achieved in the
marginally stable case.

Single-Input and Single-Output Systems
Similar to the case of spiral systems, there are also certain types of single-
input (SI) and single-output (SO) systems for which a solution can be ob-
tained via a reduction to first-order dynamics. What enables the order
reduction is the fact that the cost weight Q and covariance R are matrices
of rank 1 in the SI and SO case, respectively. The cost and innovations pro-
cess are therefore restricted to a single dimension in each respective case.
This property was first explored for the SI case in [Molin et al., 2011].

Solution. Building upon [Molin et al., 2011], we have the following result
for SI and SO systems [Thelander Andrén and Cervin, 2020].
Theorem 3.8
For SI systems satisfying

FAQ = FQA, (3.43)
and SO systems satisfying

LᵀAR = LᵀRA, (3.44)

the optimal admissible sampling policy has the trigger function

�(x̃, ∆ρ) = ∆ρ − pK x̃p, (3.45)

where K = F/qFq for the SI case, and K = Lᵀ/qLq for the SO case. The
parameter ∆ρ is given by

∆ρ := arg min
∆

{
Jµ(∆) + ρ f (∆)

}
,

where Jµ(∆), f (∆) are the LQG cost and average sampling rate obtained
with �(x̃, ∆), given by (3.22) and (3.23) with parameters exchanged in each
case according to

SI: a = FAFᵀ

qFq2 , r = FRFᵀ

qFq2 , q = qQq, (3.46)

SO: a = LᵀAL
qLq2 , r = qRq, q = LᵀQL

qLq2 . (3.47)
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Proof. The proof is given in Appendix C. 2

The conditions (3.43) and (3.44) in Theorem 3.8 can be quite restrictive.
However, as noted in [Molin et al., 2011], there are systems that do not
strictly satisfy these conditions but where the trigger function (3.45) still
gives near-optimal performance. To give an indication on when this is the
case, a measure δ ∈ [0, 1] was proposed in [Molin et al., 2011] for the SI
case:

δ := qF(AQ− QA)q
qAqqFqqQq

. (3.48)

Exchanging F and Q in (3.48) for Lᵀ and R respectively gives the cor-
responding measure for the SO case. The measure has the property that
δ = 0 iff the assumptions in Theorem 3.8 are satisfied, and a small value
of δ suggests that the trigger function (3.45) is close to optimal. This is
highlighted in the following example.

Example 3.4
Consider again the DC motor model from Example 2.1. With model and
design parameters given by (2.30) and (2.31), we get

F =
[
−1 −1

]
, L =

[
−3.58 −6.42

]ᵀ ,
and

Q =
[
1 1
1 1

]
, R =

[
0.13 0.23
0.23 0.41

]
.

Since the system is SISO, we can apply the measure (3.48) for both the SI
(denoted δ F ) and SO (denoted δ L) case. This gives

δ F = 0, δ L = 0.13.

Theorem 3.8 is thus applicable to the SI case, which results in a first-order
OSP with parameters given by (3.46). The parameters evaluate to

a = 0, r = 0.5, q = 2.

Since the reduced OSP is that of a first-order integrator, Theorem 3.6 tells us
that the optimal sampling policy will outperform its periodic counterpart by
a factor three, i.e, Jratio = 3. This is indeed the case, as noted in Example 2.1.

Now consider the same DC motor model, but with a new LQG design
where Cz is changed to

Cz =


4 2

2 4.5
0 0


 .
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All other parameters from Example 2.1 are left unchanged. The new choice
of Cz corresponds to a design with higher bandwidth of the closed-loop
system while keeping the damping similar to that of the old design. With
this new Cz, the values of L, R, and thus δ L, remain unchanged, while F
and Q become

F =
[
−4.47 −4.85

]
, Q =

[
20 21.68

21.68 23.5

]
,

which corresponds to
δ F = 0.03.

Theorem 3.8 is thus not directly applicable for the new design. However,
since the value of δ F is small we suspect that the trigger function (3.45)
based on the SI case should still perform well. This is verified by the results
in Figure 3.6, where the trade-off between normalized LQG cost J/γ0 and
average sampling interval h̄ is shown for:

(i) the baseline LQG controller,

(ii) Mirkin’s LQG controller with periodic sampling,

(iii) Mirkin’s LQG controller with event-based sampling using the trigger
function (3.45) from Theorem 3.8, and

(iv) Mirkin’s LQG controller with optimal event-based sampling.

As hinted by the value of δ F , we see that the performance of (iii) and (iv) are
practically indistinguishable. The results in Figure 3.6 for (ii)–(iv), where
Mirkin’s LQG controller is used, are well-approximated by linear curves
over the considered interval. A least-squares fit of the cost Jµ for periodic
sampling (ii) yields

Jper(h̄) ( 10.91h̄.
The corresponding approximation of (iii) and (iv), where event-based sam-
pling is used, is given by

Jeb(h̄) ( 3.71h̄.
For the new design, we thus have

Jratio (
10.91
3.71 = 2.94,

which is still quite close to the factor three of the old design.
For the two event-based policies (iii) and (iv), the cost and average

sampling interval were estimated using Monte Carlo simulations based on
the optimal stopping formulation in Section 3.3. The optimal policy (iv)
was approximated numerically using a linear complementarity method (see
Section 4.3), which is one of the proposed numerical methods in this thesis
that is described in detail in Chapter 4.
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Figure 3.6 Normalized LQG cost J/γ0 versus average sampling interval
h̄ for the DC motor system in Example 3.4 with modified Cz. Trade-off
curves are shown for the baseline LQG controller (black, dotted) and Mirkin’s
LQG controller with periodic sampling (red, dashed), optimal event-based
sampling (blue circles) and event-based sampling using the trigger function
(3.45) (teal squares).

3.5 Summary
This chapter introduced the optimal sampling problem (OSP) for the LQG-
optimal sampled-data controller (Mirkin’s LQG controller). Optimizing the
trade-off between LQG cost and the average sampling rate is an impulse con-
trol problem, characterized by a Hamilton–Jacobi–Bellman equation with
free boundary. The free boundary constitutes an optimal threshold policy for
sampling, and the optimal sampling policy is thus event-based by nature.

Four special system types with exact solutions to the OSP were pre-
sented. These include two types previously studied in the literature; first-
order systems and multivariate integrator systems, where new results were
presented for the latter in this chapter. In addition to these, two new system
types were presented; spiral systems, and single-input and single-output
systems of certain structure.

In all four cases, the optimal sampling policy can be represented as an
ellipsoidal trigger function. This raises the question if this is a general trait
of the optimal policy. To answer this question, we will consider numerical
methods for solving general OSPs. This is the topic of the next chapter.
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Numerical Methods

This chapter presents three numerical methods for solving the optimal
sampling problem (OSP):

(i) value iteration,

(ii) a simulation-based method, and

(iii) a linear complementarity method.

Value iteration (i) is a standard tool in dynamic programming for solving
optimal control problems (see, e.g., [Bertsekas, 2012]), and serves as a base-
line for comparisons with the contributions of this chapter; the simulation-
based method (ii) and linear complementarity method (iii).

The simulation-based method (ii) solves the OSP via a time-dependent
reformulation of the stationary free boundary problem introduced in Chap-
ter 3. The benefit of the time-dependent formulation is that its solution
can be simulated using standard methods for partial differential equations
(PDE). The stationary solution then coincides with the solution of the orig-
inal problem.

The linear complementarity method (iii) is an alternative that avoids in-
troduction of time-dependence by discretizing the stationary free boundary
problem directly. The resulting finite-dimensional form can then be posed
as a linear complementarity problem—a well-studied optimization problem
that can be efficiently solved via quadratic programming.

While all three methods theoretically can provide arbitrarily fine approx-
imations of the optimal solution, they all suffer from the curse of dimension-
ality. As a suboptimal, but useful, alternative for higher-order systems, we
propose the use of ellipsoidal trigger functions, and present a brief outline
on how optimal ellipse parameters can be obtained.

This chapter is structured as follows. An overview of each method (i)–(iii)
is presented in Sections 4.1 to 4.3, respectively. In Section 4.4, all three
methods are validated and compared in a numerical study. Following this
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is another study in Section 4.5, where the linear complementarity method
is used to explore the different solutions to the OSP for different classes of
second-order systems. Based on the findings in Section 4.5, we further mo-
tivate the use of ellipsoidal trigger functions via an example in Section 4.6,
and outline how optimal ellipse parameters can be obtained for higher-order
systems. Finally, the chapter is summarized in Section 4.7.

4.1 Value Iteration
Value iteration is a central method in dynamic programming for solving
optimal control problems, see e.g. [Bertsekas, 2012]. Based on the Bellman
equation—the discrete-time analog to the HJB equation—the method pro-
duces successively improved estimates of the relative value function and
minimal cost through a recursive scheme. Since value iteration assumes a
problem in discrete time, we use a discrete-time approximation of the OSP
for this method. Below we give an overview of the value iteration method
along with the discretization of the OSP.

Discrete-Time Approximation of the OSP
In the original OSP, sampling decisions are made in continuous time.
However, by restricting sampling decisions to some pre-defined sequence
of points in time, {tk}, we can formulate a discrete-time version of the OSP.
Here, we consider the case of periodic decision times given by

tk := k∆t, k ∈ N0,

for some (small) nominal period ∆t > 0. The original problem is recovered
as ∆t → 0, and for sufficiently small values of ∆t we expect only minor
differences.

Under the constraint of periodic decision times, a time-invariant strobo-
scopic version of the OSP is obtained via the same approach as described
in Appendix A. The trajectory of x̃ at times {tk} is then described by the
difference equation

x̃k+1 = (1− sk)A∆t x̃k + v∆t,k, (4.1)

where x̃k := x̃(tk). The binary variable sk ∈ {0, 1} in (4.1) represents the
sampling decision at time tk, where

sk =
{

1, if sampling,
0, otherwise.
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The random vector v∆t,k is given by [Åström and Wittenmark, 1997, Sec
10.6]

v∆t,k =

∫ tk+∆t

tk
e(tk+∆t−t)Av(t)dt,

which corresponds to an i.i.d. sequence of zero-mean Gaussian random vec-
tors. The matrix A∆t and noise covariance E[v∆t,kvᵀ∆t,k] := R∆t are obtained
from the original OSP as [Åström and Wittenmark, 1997, Sec 10.6]

A∆t = e∆tA,

R∆t =

∫ ∆t

0
etARetAᵀdt. (4.2)

The constraint of periodic decision times also enables us to formulate the
OSP cost Josp in discrete-time as

Josp = γv + lim
K→∞

1
K∆t

K−1∑
k=0

E
[(

1− sk
)∥∥x̃k∥∥2

Q∆t
+ ρsk

]
, (4.3)

where
Q∆t =

∫ ∆t

0
etAᵀQetAdt, (4.4)

is the discrete-time version of the weight matrix Q (cf. (A.7)) and

γv =
1
∆t tr

(
Q

∫ ∆t

0

∫ t

0
eαAReαAᵀdαdt

)
, (4.5)

is the accumulated cost from v during the intervals between sampling deci-
sions (cf. (A.6)). We can thus equivalently consider the minimization of the
discrete-time cost Josp,∆t, defined as

Josp,∆t := lim
K→∞

1
K

K−1∑
k=0

E
[(

1− sk
)∥∥x̃k∥∥2

Q∆t
+ ρsk

]
, (4.6)

and then retrieve the actual cost Josp through the relation

Josp = γv +
Josp,∆t

∆t .

The Average-Cost Bellman Equation
With the discrete-time approximation of the OSP given by (4.1) and (4.6),
we define the Bellman operator T (·) applied to a function V∆t : Rn ]→ R as

T
(
V∆t

)
(x̃) := min

s∈{0,1}

{
(1− s)qx̃q2

Q∆t
+ sρ+E

[
V∆t

(
(1− s)A∆t x̃+ v∆t

)]}
. (4.7)
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The Bellman operator corresponds to the optimization of the current sam-
pling decision when the cost-to-go under the optimal policy is given by V∆t.
This operator is central to the Bellman equation, which is the discrete-time
analog to the HJB equation (see Section 3.2). The Bellman equation for
average-cost problems reads [Hernández-Lerma, 1989, Chapter 3, Theorem
2.2]

V∆t(x̃) + λ∆t = T
(
V∆t

)
(x̃), (4.8)

for a scalar λ∆t > 0. If a pair (V∆t, λ∆t) are found satisfying the Bellman
equation (4.8), then it is also a solution to the discrete-time OSP, with

λ∆t = min Josp,∆t.

The optimal sampling policy then corresponds to the action that achieves
the minimum in the Bellman operator, i.e.,

sk = arg min
s∈{0,1}

{
(1− s)qx̃kq2

Q∆t
+ sρ + E

[
V∆t

(
(1− s)A∆t x̃k + v∆t

)]}
.

With the notation from Chapter 3, the optimal policy can also be viewed as
a static threshold policy of the form (3.6), with a trigger function given by
(cf. Theorem 3.1)

�(x̃) = ρ + E
[
V∆t(v∆t) − V∆t(A∆t x̃+ v∆t)

]
− qx̃q2

Q∆t
.

Existence of a solution to the Bellman equation (4.8) is guaranteed
under some technical conditions [Hernández-Lerma, 1989, Chapter 3]. As
described in [Molin, 2014, Section 6.3], these technical conditions are satis-
fied for the discrete-time OSP under the assumption that

qx̃kq > ∆ =[ sk = 1, (4.9)

for some finite ∆ > 0, meaning that there exists a finite radius ∆, beyond
which sampling is always triggered. In practice, adding the assumption (4.9)
to the problem formulation is of minor consequence, since we can pick an
arbitrarily large ∆.

Value Iteration
With the assumption in (4.9), it can be shown that (see [Molin, 2014, Section
6.3]) the following iterative scheme adapted from [Hernández-Lerma, 1989,
Chapter 3, Theorem 4.8] converges to the solution pair (V∆t, λ∆t):

k ∈ N0 :
{

λk+1
∆t = T

(
V k

∆t
)
(x̃0),

V k+1
∆t (x̃) = T

(
V k

∆t
)
(x̃) − λk+1

∆t .
(4.10)
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The scheme in (4.10) defines the value iteration method, and convergence
holds for any choice of V 0

∆t and fixed x̃0.
A benefit of value iteration is that it also provides bounds on λ∆t. Defining

k ∈ N0 :


λ̄k∆t := max

x̃

(
T
(
V k−1

∆t
)
(x̃) − V k−1

∆t (x̃)
)
,

¯
λk∆t := min

x̃

(
T
(
V k−1

∆t
)
(x̃) − V k−1

∆t (x̃)
)
,

it holds that [Hernández-Lerma, 1989, Chapter 3, Theorem 4.8]

¯
λk∆t ≤ λ∆t ≤ λ̄k∆t, ∀k ∈ N0.

These bounds provide a useful stopping criterion for the iterative scheme
in (4.10). By stopping whenever

λ̄k∆t − ¯
λk∆t

¯
λk∆t

< ε,

holds, we ensure that the relative error of the cost estimate λk∆t is less than
ε, i.e.

pλk∆t − λ∆tp

λ∆t
≤
λ̄k∆t − ¯

λk∆t
λ∆t

≤
λ̄k∆t − ¯

λk∆t

¯
λk∆t

< ε.

The evaluation of the Bellman operator typically requires some form of
finite-dimensional approximation of V∆t, e.g., gridding a bounded subset of
the state space and approximate the dynamics (4.1) with a Markov decision
process. For an approximation with Ndim grid points per state dimension
n, each iteration in (4.10) has a nominal time complexity of O(N2n

dim). Since
the method scales exponentially with n, it is only practical for lower-order
systems.

4.2 A Simulation-Based Method
As noted in Section 4.1, value iteration does not explicitly use the free
boundary formulation for solving the OSP. With the free boundary problem
as a starting point, it is natural to consider a PDE solver method for the
OSP. However, direct use of standard PDE solvers is inhibited by the fact
that the boundary �Ω is unknown beforehand.

A way to circumvent this issue is to instead consider a time-dependent
version of the free boundary problem, with a solution that coincides with the
one of the original problem in stationarity. In this approach, we can choose
any initial condition for the relative value function V—which corresponds
to a known initial boundary—and proceed by simulating its evolution in
time until a stationary solution is reached. This is the concept behind the
proposed simulation-based method.
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The Moving Boundary Problem
Recall the stationary free boundary problem (3.10), given as;

∀x̃ :


0 =

(
AV(x̃) + qx̃q2

Q − λ
)
·
(
− V(x̃)

)
,

0 ≤ AV(x̃) + qx̃q2
Q − λ,

0 ≤ −V(x̃).
(4.11)

Consider the case when the relative value function is time-dependent, i.e.,
V := V(t, x̃). A non-stationary version of (4.11)—referred to as a moving
boundary problem—can then be posed as

∀t ≥ 0, x̃ :



0 =
(
−
�V
�t
(t, x̃) +AV(t, x̃) + qx̃q2

Q − λ
)
·
(
− V(t, x̃)

)
,

0 ≤ −�V
�t
(t, x̃) +AV(t, x̃) + qx̃q2

Q − λ,

0 ≤ −V(t, x̃),

V(0, x̃) = V0(x̃) ≤ 0,
(4.12)

where V0 : Rn ]→ R is an initial condition that can be chosen freely. Note
that any stationary solution to the moving boundary problem (4.12) (where
�V/�t = 0) also satisfies the original formulation in (4.11). The benefit of
(4.12), however, is that we can choose V0(x̃) ≤ 0 freely and thus have a
known solution at time t = 0. Using (4.12), we can then simulate V forward
in time until we are sufficiently close to a stationary solution.

Simulating the Moving Boundary Problem
We proceed with a heuristic argument for how to simulate the solution
of the moving boundary problem (4.12). Later, in Section 4.4, the method
obtained from this argument is validated numerically.

For compactness, define

m(t, x̃) := AV(t, x̃) + qx̃q2
Q − λ. (4.13)

Now, consider the time-dependent version of V at some time point tk ≥ 0,
and assume that

V(tk, x̃) ≤ 0, ∀x̃.
Let V̄ denote the solution of

∀∆t ≥ 0, x̃ :


� V̄
�t
(tk + ∆t, x̃) = m̄(tk + ∆t, x̃),

V̄(tk, x̃) = V(tk, x̃),
(4.14)
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where, similar to (4.13), we have

m̄(t, x̃) := AV̄(t, x̃) + qx̃q2
Q − λ.

Note that the PDE in (4.14) corresponds to (4.12) without the moving bound-
ary. To introduce the moving boundary, define

V(tk + ∆t, x̃) := min
(
V̄(tk + ∆t, x̃), 0

)
, ∀x̃, ∆t ≥ 0. (4.15)

Since (4.15) implies

V(tk + ∆t, x̃) = V̄(tk + ∆t, x̃), and/or V(tk + ∆t, x̃) = 0, ∀x̃, ∆t ≥ 0,

we conclude that the modified solution in (4.15) satisfies

∀∆t ≥ 0, x̃ :

 0 =
(
−
�V
�t
(tk + ∆t) +m(tk + ∆t, x̃)

)
· (− V(tk + ∆t, x̃)

)
,

0 ≤ −V(tk + ∆t, x̃).
(4.16)

Comparing (4.16) with (4.12), we see that V(tk + ∆t, x̃) solves the moving
boundary problem for ∆t ≥ 0 if it also satisfies

0 ≤ −�V
�t
(tk + ∆t, x̃) +m(tk + ∆t, x̃), ∀x̃, ∆t ≥ 0. (4.17)

We proceed by analyzing this inequality. To this end, consider the first-order
expansion of V ;

V(tk + ∆t, x̃) = V(tk, x̃) +
∫ ∆t

0

�V
�t
(tk + s, x̃)ds

= V(tk, x̃) +
�V
�t
(tk + ∆t, x̃)∆t+O(∆t2) as ∆t→ 0, (4.18)

and the first-order expansion of V̄ ;

V̄(tk + ∆t, x̃) = V(tk, x̃) +
� V̄
�t
(tk, x̃)∆t+O(∆t2) as ∆t→ 0, (4.19)

where we used that V̄(tk, x̃) = V(tk, x̃). Furthermore, we note that

m(tk + ∆t, x̃) = m(tk, x̃) +O(∆t) as ∆t→ 0
= m̄(tk, x̃) +O(∆t) as ∆t→ 0,

(4.20)
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where, again, V̄(tk, x̃) = V(tk, x̃) was used. From (4.15) and (4.18) to (4.20)
we then get (as ∆t→ 0)

�V
�t
(tk + ∆t, x̃) = V(tk + ∆t, x̃) − V(tk, x̃) −O(∆t2)

∆t

=
min

(
V̄(tk + ∆t, x̃), 0

)
− V(tk, x̃) −O(∆t2)

∆t

≤
V̄(tk + ∆t, x̃) − V(tk, x̃) −O(∆t2)

∆t

=
� V̄
�t
(tk, x̃) +O(∆t)

= m̄(tk, x̃) +O(∆t)
= m(tk + ∆t, x̃) +O(∆t).

In summary, we have thus shown (cf. (4.17))

0 ≤ −�V
�t
(tk + ∆t, x̃) +m(tk + ∆t, x̃) +O(∆t) as ∆t→ 0. (4.21)

The time evolution of V according to (4.14) and (4.15) therefore satisfies
(4.16) and (4.21), which is identical to the moving boundary problem in
(4.12), aside for an additional term of order ∆t. For small ∆t, this suggests
that a simple iterative scheme based on (4.14) and (4.15) can be used to
(approximately) simulate the moving boundary problem. The simulation-
based method then constitutes of applying this iterative scheme until the
solution is sufficiently close to stationarity, see Algorithm 1.

Algorithm 1: Simulation of the Moving Boundary Problem
Input: λ, ∆t, V0(x̃)
Output: V(x̃) that (approximately) satisfies (4.11)
tk ← 0
V(tk, x̃) ← V0(x̃)
V̄(tk, x̃) ← V0(x̃)
while maxx̃ p�V(tk, x̃)/�tp > ε do

Compute V̄(tk + ∆t, x̃) by integrating (4.14)
tk ← tk + ∆t
V(tk, x̃) ← min(V̄(tk + ∆t, x̃), 0)
V̄(tk, x̃) ← V(tk, x̃)

end
V(x̃) ← V(tk, x̃)
return V(x̃)
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Numerical implementation requires a finite-dimensional approximation
of V . As in [Thelander Andrén et al., 2017], we use the backward time,
centered space (BTCS) finite-difference scheme (see, e.g., [Hutchinson, 2015,
Chapter 5]) in this thesis. The BTCS scheme is an implicit method, with
a truncation error of order O(∆t) +O(∆ x̃2), where ∆ x̃ denotes the spatial
finite difference. With a spatial discretization of N = Nn

dim mesh points (i.e.,
Ndim points per state dimension), the scheme first solves a linear system
of N equations at the start of the simulation, followed by multiplication of
an N $ N matrix with an N $ 1 vector each iteration. The nominal time
complexity per iteration of the BTCS scheme—and ultimately the complete
method—is thus O(N2) = O(N2n

dim), i.e., the same as for value iteration.

4.3 A Linear Complementarity Method
The time discretization considered for value iteration and the simulation-
based method contributes to the overall approximation error. Also, the re-
quired number of iterations to obtain an acceptable solution depends on
the choice of the initial condition. It is therefore preferable to avoid a
time-dependent formulation altogether and solve the stationary problem
directly. To this end, we now consider a numerical method where the free
boundary problem (3.10) is discretized and solved directly. The key for ac-
complishing this is that the finite-dimensional approximation of the free
boundary problem can be posed as a linear complementarity problem—a
form of quadratic program (QP)—for which there are several efficient nu-
merical solvers [Murty, 1972]. Consequently, we refer to this method as the
linear complementarity method.

The linear complementarity method in this thesis is inspired by similar
methods for solving moving boundary problems in mathematical finance
(see e.g. [Wilmott et al., 1995, Chapter 9]). However, this method has been
adapted to the stationary problem of the OSP, with an additional proof of
existence and uniqueness of the solution to the related linear complemen-
tarity problem.

Approximating the Relative Value Function
We consider a finite-dimensional approximation V̂ of the relative value
function V in the form of a radial basis function (RBF) expansion;

V̂(x̃) =
N∑
j=1

α jφ j(x̃) = αᵀφ(x̃), (4.22)

where
α :=

[
α1 . . . α j . . . αN

]ᵀ ,
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is a vector of weights, and

φ(x̃) :=
[
φ1(x̃) . . . φ j(x̃) . . . φ N(x̃)

]ᵀ ,
is a vector of basis functions, φ j : Rn ]→ R, where each function is radially
symmetric around a collocation point x̃ j in the state space. For a given set
of N collocation points {x̃ j} j=1,...,N , the objective is to find a weight vector
α such that V̂ ( V .

A benefit of the RBF approximation is that it is mesh free, meaning that
we can choose the set of collocation points freely in the state space. With
careful placement of the collocation points, an accurate solution can often be
obtained even for relatively small numbers of collocation points [Fornberg
and Flyer, 2015].

While there are many choices for basis functions, a popular choice, which
we use here, are Gaussian basis functions:

φ j(x̃) := exp
(
− cqx̃− x̃ jq2

2

)
, j = 1, . . . , N. (4.23)

The parameter c > 0 is a shape parameter that determines the decay rate of
the basis functions. It is typically chosen as a trade-off between accuracy and
numerical stability, where a small value of c often gives improved accuracy
at the price of ill-conditioning [Fornberg and Flyer, 2015].

With a Gaussian RBF expansion given by (4.22) and (4.23), the gradient
and Hessian of V̂ are given by

∇x̃V̂ =
N∑
j=1

α j∇φ j(x̃) = −2c
N∑
j=1

α j
(
x̃− x̃ j

)
φ j(x̃),

∇2
x̃V̂ =

N∑
j=1

α j∇
2φ j(x̃) = 2c

N∑
j=1

α j
(
2c(x̃− x̃ j)(x̃− x̃ j)ᵀ − In

)
φ j(x̃).

Direct insertion of V̂ into the free boundary problem (4.11) thus yields
0 =

(
αᵀΛ(x̃)φ(x̃) + qx̃q2

Q − λ
) · (−αᵀφ(x̃)

)
,

0 ≤ αᵀΛ(x̃)φ(x̃) + qx̃q2
Q − λ,

0 ≤ −αᵀφ(x̃).
(4.24)

where Λ : Rn ]→ RN$N is a diagonal matrix corresponding to the infinitesi-
mal generator, with the jth diagonal element given by

Λ j(x̃) := c
(
2cqx̃− x̃ jq2

R − 2x̃ᵀAᵀ(x̃− x̃ j) − tr(R)
)
, j = 1, . . . , N.

If the conditions in (4.24) are satisfied for all x̃, then V̂ is an exact solution
to the free boundary problem (4.11). However, the task of finding a weight
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vector α such that (4.24) holds for all x̃ is infinite-dimensional, and can not
be considered in practice. Instead, we search for a weight vector α such that
(4.24) holds point-wise at all collocation points {x̃ j}. This approximation and
the resulting linear complementarity problem are presented next.

The Linear Complementarity Problem
The condition that (4.24) should hold point-wise at all collocation points
results in a system of N equations subject to 2N inequalities. To enable
a compact representation, define the vector β ∈ RN and the interpolation
matrix Φ ∈ RN$N as:

β :=



qx̃1q

2
Q − λ
...

qx̃Nq2
Q − λ



ᵀ

, Φ :=



φ1(x̃1) φ2(x̃1) . . . φ N(x̃1)

φ1(x̃2) φ2(x̃2)
...

...
. . .

φ1(xN) . . . φ N(xN)


 .

Due to the choice of Gaussian basis functions, we have Φ = Φᵀ 0 0 [Forn-
berg and Flyer, 2015]. Additionally, define the matrix

Ψ := Λ̄ < Φ,

where < denotes the Hadamard (element-wise) product, and the matrix
Λ̄ ∈ RN$N is given by

Λ̄ :=




Λ1(x̃1) Λ2(x̃1) . . . ΛN(x̃1)

Λ1(x̃2) Λ2(x̃2)
...

...
. . .

Λ1(x̃N) . . . ΛN(x̃N)


 .

The condition that (4.24) should hold point-wise at all collocation points can
then be compactly written as

∀ j = 1, . . . , N :


0 =

(
Ψα + β

)
j · (−Φα) j,

0 ≤
(
Ψα + β

)
j,

0 ≤
(
− Φα

)
j,

(4.25)

where (·) j denotes the jth vector element. The relations in (4.25) can be
equivalently written in the following quadratic form:

0 = (−Φα)ᵀ
(
Ψα + β

)
,

0 ≤ Ψα + β,
0 ≤ −Φα,

(4.26)
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where the inequalities are considered element-wise. Now, by defining

z := −Φα,
M := −ΨΦ−1,

we can rewrite (4.26) as 
0 = zᵀ(Mz+ β),
0 ≤ Mz+ β,
0 ≤ z,

(4.27)

which is a linear complementarity problem in the vector z ∈ RN . This
problem is in turn equivalent to the following QP [Murty, 1972]:

minimizez zᵀMz+ βᵀz, (4.28)

subject to 0 ≤ Mz+ β,
0 ≤ z,

where the minimum objective equals zero. The problem (4.28) can be solved
using any QP solver, and after obtaining a solution zv we retrieve the
approximation V̂ as

V̂(x̃) = −φ(x̃)ᵀΦ−1zv.
Assuming an RBF approximation with N = Nn

dim collocation points (Ndim
points per state dimension n), a QP solver using a first or second-order
method nominally requires O

(
N2n

dim
)

or O
(
N3n

dim
)

operations per iteration
respectively when solving (4.28). Similarly to the previous methods, the
linear complementarity method thus also scales exponentially with n, and a
QP solver that specializes in large-scale problems is typically most efficient
when solving (4.28). The computational burden can be reduced by picking
fewer but more carefully placed collocation points. However, such techniques
are outside the scope of this thesis.

Existence and Uniqueness of Solution
A benefit of the linear complementarity method is that we can give an
explicit condition for when the numerical problem of finding V̂ is well-
posed, i.e., when there exists a unique solution to (4.28). Central to the
condition is the notion of a P-matrix:

Definition 4.1—P-matrix
A P-matrix is a matrix with only positive principal minors. ♦
Note that a P-matrix is not necessarily symmetric, but in the case of symme-
try it is by definition also positive definite. The condition for well-posedness
is then straightforward [Murty, 1972, Theorem 4.2]:
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Theorem 4.1
The linear complementarity problem (4.27) has a unique solution for each
β ∈ RN iff M is a P-matrix.

Proof. See [Murty, 1972, Theorem 4.2] 2

The question then arises whether M in (4.27) is a P-matrix or not. The
following result sheds some light on this:

Theorem 4.2
Assume that R ,= 0. Then, for any given set of unique collocation points
{x̃ j}, there exists a finite constant

¯
c > 0 such that for any shape parameter

c >
¯
c the corresponding matrix M in (4.27) is a P-matrix.

Proof. The proof is given in Appendix C. 2

Theorem 4.2 implies that a well-posed problem can always be obtained
by making the shape parameter c sufficiently large. However, the lower
bound

¯
c is not given explicitly, and we therefore need to verify if M is a

P-matrix or not for a given c—and increase the value of c if it is not.
Unfortunately, determining if a matrix is a P-matrix or not is an NP-

hard problem, and straightforward evaluation of the 2N−1 principal minors
requires O(N32N) operations [Rump, 2003]. This verification can thus only
be performed in practice when the number of collocation points N is small.
However, there exist several sufficient conditions of less computational com-
plexity that can be used. For instance, M is a P-matrix if M + Mᵀ 0 0,
which requires O(N3) operations to verify. In all examples where the lin-
ear complementarity method is used in this thesis, we use this sufficient
condition combined with a simple binary search to find as small shape pa-
rameter c as possible for which the problem is guaranteed to be well-posed.
Additional sufficient conditions can be found in [Tsatsomeros, 2002].

4.4 Numerical Validation and Performance Comparison
We now proceed by validating the three presented methods numerically
against a set of examples with known solutions. To measure the accuracy
of each method, we track the normalized maximum absolute error (MAE),

max
x̃

pV(x̃) − V̂N(x̃)p
ρ

,

between the exact solution V and the approximation V̂N obtained using N
discretization points (i.e., mesh or collocation points). The normalization
is motivated by the fact that V(x̃) ∈ [−ρ, 0] for all x̃, and the resulting
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measure is an estimate of the relative error. In addition to verifying that
the MAE is decreasing with increasing N for all three methods, we are also
interested in comparing performance in terms of

(i) the accuracy obtained for a given number of discretization points N,

(ii) the accuracy obtained for a given solver time, and

(iii) the trade-off between accuracy and solver time.

Setup
The set of examples considered in the validation consists of second-order
multivariate integrator systems, whose exact solution to the OSP was pre-
sented in Section 3.4. The OSP for this type of system always satisfies R 0 0
and Q 0 0, and thus there always exists a linear transformation such that
they can be formulated as

A = 02$2,
R = I2,

Q =
[
q1 0
0 q2

]
, (4.29)

for some q1 > 0 and q2 > 0. Without loss of generality, we can thus consider
the example systems to be of the form in (4.29), where the corresponding
OSP is uniquely determined by the three parameters q1, q2 and ρ. For
the validation, we pick 100 systems of this form with randomly selected
parameters in the ranges ρ ∈ [0.01, 1] and q1, q2 ∈ [1, 10].

For each of these 100 systems, we apply the three numerical meth-
ods with N = 52, 62, . . . , 602 uniformly distributed discretization points.
The two time-dependent methods (value iteration and the simulation-based
method) use a fixed time step ∆t = 2.5 · 10−3, and share the same stopping
condition

pV̂N(tk, x̃) − V̂N(tk−1, x̃)p
∆t < 10−6.

The operator splitting quadratic program (OSQP) solver [Stellato et al.,
2020] is used to solve the QP arising in the linear complementarity method.
All three methods are implemented in the Julia programming language
[Bezanson et al., 2017] and evaluated on a PC with a quad-core Intel i7-
7500 processor and 16 GB RAM.
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Results and Discussion
The normalized MAE for varying numbers of discretization points N are
presented in Figure 4.1. A numerical method is said to have a convergence
rate of order p if it satisfies

pV(x̃) − V̂N(x̃)p ≤ CN−p,

for some constant C > 0. In Figure 4.1, a least-squares fit of the curve for the
linear complementarity method give an estimated convergence rate of p = 1.
For N ≤ 200, a similar convergence rate is observed for the simulation-
based method, while the MAE of the value iteration method remains large
and almost unaffected. However, for N > 200, the value iteration method
starts to converge rapidly until finally settling at a constant normalized
MAE value of roughly 6 · 10−3. Similarly, the simulation-based method also
settles for large N at roughly 1.1 · 10−2—approximately twice as large.

The convergence to a constant MAE observed for the simulation-based
method and value iteration is due to their time discretization, which pro-
duces a constant error for a fixed time step ∆t that becomes dominant for
large N. This error can be reduced by decreasing ∆t, but at the price of
more iterations and therefore longer solver times to obtain a solution. The
linear complementarity method avoids this dilemma, and generally achieves
better accuracy for all N compared to both time-dependent methods.

In addition to Figure 4.1, we also present the normalized MAE versus
the average time to compute a solution in Figure 4.2. Here we see that
the linear complementarity method generally outperforms both the time-
dependent methods also in terms of solver time. We also note that the
simulation-based method is generally more efficient than value iteration for
shorter solver times, but is then outperformed by value iteration since the
simulation-based method settles at a larger MAE.

We noted earlier that the simulation-based method settles at a larger
MAE value than value iteration for large N. While this initial observa-
tion favors value iteration, it does not take solver times into account. For
instance, if value iteration gives half the MAE but takes, e.g., ten times
longer to run, then the simulation-based method has a better trade-off be-
tween accuracy and solver time and is arguably more useful. To this end,
we present the results in Figure 4.3 where the ratio of median MAE versus
the ratio of average solver time between all three methods is shown. The
results show that the simulation-based method indeed has a better trade-
off compared to value iteration. The corresponding comparison between the
linear complementarity and simulation-based method is inconclusive, with
a roughly equal division of data points favoring each method. Finally, the
results in Figure 4.3 suggest that the linear complementarity method has
an equal or better trade-off compared to value iteration.
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Figure 4.1 Normalized MAE versus number of discretization points N for
value iteration (black squares), the simulation-based method (red diamonds)
and the linear complementarity method (blue circles). For each method, the
markers represents median values, the darker shaded area represents the
first and third quartiles (containing 50% of the data) and the lighter shaded
area represents the first and fourth quartiles (containing all the data).

Conclusions
The conclusions of the previous section are summarized as follows:

• The numerical accuracy of all three methods improves with the num-
ber of discretization points N.

• The linear complementarity method has an estimated convergence
rate of order p = 1 and outperforms the other two methods in terms
of numerical accuracy for both a given number of discretization points
N and solver time. Furthermore, it has a similar or better trade-off
between accuracy and solver time compared to value iteration.

• Due to their time discretizations, value iteration and the simulation-
based method asymptotically approach constant accuracy for large N.

• The simulation-based method has a better trade-off between accuracy
and solver time compared to value iteration, arguably making it the
better option of the two.

Based on these conclusions, we consider the linear complementarity method
the overall best option of the three methods.
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Figure 4.2 Normalized MAE versus average solver time for value itera-
tion (black squares), the simulation-based method (red diamonds) and the
linear complementarity method (blue circles). For each method, the markers
represents median values, the darker shaded area represents the first and
third quartiles (containing 50% of the data) and the lighter shaded area
represents the first and fourth quartiles (containing all the data).
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Figure 4.3 Ratio of median MAE versus ratio of average solver time be-
tween the simulation-based (SB) method and value iteration (VI) (left), the
linear complementarity (LC) and SB method (mid) and the LC method and
VI (right), respectively. Ratios (black circles) in the red, gray and blue shaded
areas correspond to a better trade-off between accuracy and solver time for
the simulation-based method, value iteration and the linear complementar-
ity method, respectively.
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4.5 Optimal Policies for Second-Order Systems
With the presented numerical methods we can investigate how different
system dynamics (i.e, A-matrices) affect the shape of the threshold �Ω
of the optimal sampling policy. As concluded in Section 3.5, the optimal
sampling policy in all presented special cases can be represented with
ellipsoidal trigger functions. This raises the question if this also holds in
general, and if not, what other shapes the optimal threshold �Ω can take.

To investigate this, we solve the OSP numerically for a set of systems
with different A-matrices. Since all three numerical methods scale poorly
with the system order n, we restrict the investigation to second-order sys-
tems. The choice of systems is based on the different classes of equilibrium
points for linear systems, given by:

Class A-matrix Poles

Saddle
[

0 15
15 0

]
±15

Node
[
15 10
10 15

]
5, 25

Center
[

0 −18
12.5 0

]
±15i

Focus 1
√

2

[
15 −22.5
10 15

]
1
√

2
(15± 15i)

Double integrator
[
0 5
0 0

]
0, 0

In all cases, we restrict the investigation to R = Q = I2 and λ = 1, as we
are specifically interested in the impact of the A-matrix.

Remark 4.1
Note that we have not included a system with a star-type equilibrium point,
i.e., a system with with an A-matrix of the form

A = aI2, a ∈ R. (4.30)

This is because (4.30) together with the assumption R = Q = I2 satisfies
the definition in (3.38) of a spiral system. By Theorem 3.7 we thus already
know that its optimal sampling policy has an ellipsoidal trigger function.♦
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Figure 4.4 Numerical solutions of the OSP for different classes of second-
order systems, with the relative value functions V (surface) in the left col-
umn, and the corresponding optimal threshold �Ω (blue, solid) with the
system’s phase portrait (red arrows) in the right column.
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Figure 4.5 Optimal threshold �Ω (blue surface) for a third-order saddle-
point system, with A = [0 0 5; 0 5 0; 5 0 0], R = Q = I3 and λ = 4. The
solution was computed using the linear complementarity method with 30$
30$ 30 = 27 000 uniformly distributed collocation points.

Using the linear complementarity method from Section 4.3, we compute
the relative value function V for the considered systems and retrieve the
corresponding optimal threshold �Ω. In all cases, the solution is computed
using 40$ 40 = 1 600 collocation points, distributed on a uniform grid over
the domain x̃1, x̃2 ∈ [−1.5, 1.5]. The results are presented in Figure 4.4,
where the (approximate) relative value function V and the corresponding
threshold �Ω for each system is shown. The phase portrait of each system
is also shown for reference.

The results in Figure 4.4 clearly invalidate the hypothesis of ellipsoidal
thresholds in the general case. However, most of the thresholds seem to
be well-approximated by ellipses. This is a promising observation for the
design of suboptimal but simpler event-based sampling policies, and by
using a trigger function with a simple ellipsoidal parametrization we can
expect near-optimal performance in most cases.

The notable exception in Figure 4.4 is the saddle-point system, which
has a non-convex threshold �Ω. This curious result also appears in higher-
order systems, as demonstrated by the third-order example in Figure 4.5.
While the threshold itself has a radically different shape, it remains to be
quantified how performance-critical the exact shape really is.
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4.6 On Ellipsoidal Trigger Functions
In Section 3.4, we observed that all considered special cases has an optimal
policy that can be represented with an ellipsoidal trigger function of the
form

�(x̃) = ∆ − qx̃qP , (4.31)
for some scalar ∆ > 0 and matrix P 4 0. Furthermore, most of the problem
classes considered in the numerical study in Section 4.5 were shown to
have near-ellipsoidal optimal thresholds. These observations suggest that
ellipsoidal trigger functions can be a simple, but useful, alternative to the
optimal solution.

A critical benefit of ellipsoidal trigger functions is their simple
parametrization, with a parameter space that grows only quadratically
(rather than exponentially) with the system order. This stands in contrast to
the previously described numerical methods in this chapter, which in prin-
ciple can provide arbitrarily fine approximations of the optimal solution,
but suffer from the curse of dimensionality. However, to find optimal ellipse
parameters for higher-order systems we require an efficient method for
evaluating and differentiating the LQG cost and average sampling period.
One promising method is the Monte Carlo approach for optimal stopping
problems proposed in [Becker et al., 2019], which we briefly review here and
evaluate in the context of the OSP. First, however, we address the notable
exception found in Section 4.5; saddle-point systems, which have non-convex
optimal thresholds.

Example 4.1—Ellipsoidal Trigger Function for a Saddle-Point System
Consider the following LQG design problem for an unstable second-order

system, with parameters:

A =
[

0 15
15 0

]
,

Bw = Cᵀ
z =

[
3.35 0 0 0
−3.27 0.72 0 0

]
,

Bu = Cᵀ
y =

[
28.71 0
28.64 2

]
,

Dzu = Dᵀ
yw =

[
02
I2

]
. (4.32)

The corresponding OSP has the parameters

Q = R = I2,

i.e., the OSP obtained for the LQG design problem in (4.32) is identical to
that considered for the saddle-point system in Section 4.5. For reference, the
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Optimal
Ellipse

Figure 4.6 The optimal sampling threshold (blue, solid) for the saddle-
point system in Example 4.1. The ellipse (teal, dotted) has been fitted to the
optimal threshold using the least-squares method.

optimal threshold is shown in Figure 4.6, which also shows an ellipse fitted
to the optimal threshold using least squares. While the ellipse is similarly
oriented as the optimal threshold, the fit is overall quite poor. Given a
threshold policy based on this naive ellipse approximation, we consider
how it performs in comparison to both periodic sampling and the optimal
event-based policy.

Performance is evaluated by computing the cost Jµ for varying average
sampling intervals h̄ for each sampling policy. Data for periodic sampling
are obtained via (2.24), while Monte Carlo simulations based on the optimal
stopping formulation in Section 3.3 with a time step of ∆t = 10−4 are used
for the optimal and ellipsoidal threshold policies.

The trade-off results are presented in Figure 4.7, where the cost Jµ is
normalized by γ0. First, we observe that both event-based policies clearly
outperform periodic sampling, with a gap in the LQG cost that increases
with h̄ (note the logarithmic scale in Figure 4.7). Most importantly, however,
we note that the performance of the ellipse threshold policy and the optimal
policy are practically identical. That is, even when the optimal policy is non-
convex, a simple ellipsoidal threshold performs remarkably well. Of course,
the naive approach used to obtain the ellipsoidal threshold in this example
is not viable in general as it requires the optimal threshold.
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Figure 4.7 Normalized LQG cost Jµ/γ0 versus average sampling interval
h̄ for the saddle-point system in Example 4.1. While periodic sampling (red,
dashed) is clearly outperformed by event-based sampling, the difference is
negligible between sampling based on the optimal policy (blue circles) and
the ellipsoidal threshold policy (teal squares).

Parameter Optimization via Monte Carlo
Based on the previous example, we note that;

(i) an ellipsoidal trigger function can give near-optimal performance even
for saddle-point systems, and

(ii) performance seems quite robust in terms of ellipse parameters, due
to the heuristic and quite arbitrary method with which they were
obtained.

These two observations further motivate the use of ellipsoidal trigger func-
tions, especially for higher-order systems where numerical approximations
of the optimal solution break down. Additionally, the second observation
is promising when it comes to parameter optimization, as it suggests that
approximate methods might be sufficient. One such approach is to consider
parameter optimization based on Monte Carlo estimates of the LQG cost
and average sampling interval. Below, we give an outline of how a Monte
Carlo method can be implemented for the OSP based on [Becker et al.,
2019].
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Method Overview. Similar to the value iteration method, the Monte Carlo
approach requires a problem in discrete time. Therefore, we consider here
the discrete-time approximation of the OSP used for the value iteration
method, see Section 4.1.

Optimization in the Monte Carlo approach is based on the optimal stop-
ping formulation of the OSP described in Section 3.3. Using the approach
described in Appendix A, a discrete-time version of the OSP cost Josp in
optimal stopping form is obtained as

Josp = γv +
E
[∑τ

k=0
∥∥x̃k∥∥2

Q∆t

]
+ ρ

∆tE[τ ]
:= γv +

Josp,∆t

∆t ,

where ∆t is the nominal time step of the discretization, and Q∆t and γv are
given by (4.5) and (4.4) respectively. Furthermore,

τ := min
{
k : s(x̃k) = 1

}
,

is the index of the first stopping time (i.e., first sampling time) for a given
threshold policy, which assigns a stopping decision s : Rn ]→ {0, 1} as

s(x̃) :=
{

1, �(x̃) ≤ 0,
0, otherwise.

(4.33)

For convenience, define

JQ∆t := E
[ τ∑
k=0

∥∥x̃k∥∥2
Q∆t

]
,

τ̄ := E[τ ]. (4.34)

The discrete-time approximation of the OSP can then be expressed as

min
τ

Josp,∆t = min
τ

JQ∆t + ρ
τ̄

. (4.35)

The stopping decision s(x̃) is explicitly introduced in the expressions for
JQ∆t and τ̄ via the following reformulations

JQ∆t = E
[ τ∑
k=0

∥∥x̃k∥∥2
Q∆t

]

=
∞∑
k=0

E
[ k∑
j=0

∥∥x̃ j∥∥2
Q∆t
s(x̃k)

k−1∏
i=0

(
1− s(x̃i)

)]

=
∞∑
k=0

k∑
j=0

E
[∥∥x̃ j∥∥2

Q∆t
s(x̃k)

k−1∏
i=0

(
1− s(x̃i)

)]
, (4.36)
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and

τ̄ = E[τ ] =
∞∑
k=0

kE
[
s(x̃k)

k−1∏
i=0

(
1− s(x̃i)

)]
. (4.37)

With a set of N trajectories {x̃n,k}n=1,...,N
k=0,...,K generated over a sufficiently long

finite time-horizon K , we can form Monte Carlo estimates of (4.36) and
(4.37) as

JQ∆t ( ĴQ∆t :=
K∑
k=0

k∑
j=0

1
N

N∑
n=1

∥∥x̃n, j∥∥2
Q∆t
s(x̃n,k)

k−1∏
i=0

(
1− s(x̃n,i)

)
, (4.38)

τ̄ ( ˆ̄τ :=
K∑
k=0

k 1
N

N∑
n=1

s(x̃n,k)
k−1∏
i=0

(
1− s(x̃n,i)

)
. (4.39)

The final estimate of the objective in (4.35) is then given by

Josp,∆t ( Ĵosp,∆t := ĴQ∆t + ρ
ˆ̄τ

.

With an ellipsoidal trigger function of the form (4.31), we can then find
an (approximately) optimal set of parameters through the minimization

min
P

Ĵosp,∆t, (4.40)

for some fixed value of ∆. Since the precise value of ∆ is just a matter of
scaling, we can simply use, e.g., ∆ = 1 in the optimization without loss of
generality.

An obstacle when solving (4.40) is the fact that the sampling policy given
by (4.33) is non-differentiable with respect to the ellipse parameters, leav-
ing only zeroth-order methods available in the optimization. To practically
perform optimization over large parameter spaces, we therefore need to in-
troduce a smooth approximation. In [Becker et al., 2019], a logistic function
approximation ŝ : Rn → (0, 1) of the sampling decision s(x̃) is proposed
according to

ŝ(x̃) = 1
1+ exp(−α�(x̃)) , (4.41)

where the parameter α > 0 determines the slope of the logistic function,
with ŝ → s as α → ∞. The choice of α is a trade-off between bias and
variance of the estimates ĴQ∆t and ˆ̄τ .

Remark 4.2
Relating to the later topic of stochastic triggering in Chapter 6, it is worth
noting that the smooth approximation can be directly interpreted as sam-
pling being triggered according to a probability given by ŝ(x̃). To see this,
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let the sampling decisions {sk}∞k=0 be a sequence of random variables that
are conditionally independent given {x̃k}∞k=0. We then have

JQ∆t =
∞∑
k=0

k∑
j=0

E
[∥∥x̃ j∥∥2

Q∆t
sk

k−1∏
i=0

(
1− si

)]

=
∞∑
k=0

k∑
j=0

E
[∥∥x̃ j∥∥2

Q∆t
E
[
sk

k−1∏
i=0

(
1− si

)
p x̃0, . . . , x̃k

]]

=
∞∑
k=0

k∑
j=0

E
[∥∥x̃ j∥∥2

Q∆t
E
[
sk p x̃0, . . . , x̃k

] k−1∏
i=0

E
[
1− si p x̃0, . . . , x̃i

]]

=
∞∑
k=0

k∑
j=0

E
[∥∥x̃ j∥∥2

Q∆t
Pr

(
sk = 1 p x̃0, . . . , x̃k

) k−1∏
i=0

Pr
(
si = 0 p x̃0, . . . , x̃i

)]
,

where we used the law of total probability in the second equality and the
conditional independence in the third equality. The stochastic sampling
interpretation is then apparent by identifying

Pr(sk = 1 p x̃0, . . . , x̃k) = Pr(sk = 1px̃k) := ŝ(x̃k). ♦

With the smooth approximation (4.41), both JQ∆t and τ̄ become differ-
entiable in the ellipse parameters, enabling the use of first or second-order
optimization methods. Since the number of trajectories N is typically very
large, it is beneficial from a computational perspective to only consider
subsets of the trajectories when evaluating the gradient or Hessian—i.e.,
mini-batch or stochastic methods [Goodfellow et al., 2016, Chapter 4]. These
methods can then be combined with other extensions common in the field
of machine learning, such as momentum, decay, and adaptive step size, etc.
For more information on mini-batch and stochastic methods, we refer to
[Goodfellow et al., 2016, Chapters 4 & 8].

Numerical Validation. We conclude by validating the Monte Carlo ap-
proach numerically against a set of higher-order OSPs with known solu-
tions. Similar to the validation done in Section 4.4, we consider sets of
multivariate integrator systems of the form:

A = 0n$n,
R = In,

Q =



q1

. . .
qn


 , (4.42)
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Figure 4.8 Box plot showing the distributions of relative cost difference
between the optimal policy and the policy obtained via the Monte Carlo
approach. The lower, mid, and upper line in each box correspond to the
first, second (median) and third quartile, respectively, while the whiskers
correspond to the minimum and maximum. The distribution for each system
order n is based on a set of 100 randomized multivariate integrator OSPs.

where qi > 0 for all i = 1, . . . , n. However, in contrast to Section 4.4,
we consider varying system orders n in this validation. For each system
order n, we pick 100 systems of the form in (4.42), with randomly selected
parameters in the ranges ρ ∈ [0.01, 1] and qi ∈ [1, 10] for all i = 1, . . . , n.
We choose to validate against this class of OSP since it has an analytic
solution for any order n, with an optimal threshold policy in the form of
an ellipsoid. When optimizing ellipse parameters using the Monte Carlo
approach, we then have a known optimum available for comparison.

In the Monte Carlo approach, each OSP is discretized using a nominal
time step ∆t = 10−3, and a total of N = 10 000 trajectories are then
generated for the optimization, divided into 100 mini-batches. A smooth
approximation according to (4.41) is employed, with α = 70. The parameter
optimization is then performed using the ADAM algorithm [Kingma and Ba,
2014] for 100 epochs. The optimization is implemented using the machine
learning library Flux.jl [Innes et al., 2018] for the Julia programming
language [Bezanson et al., 2017]. When a solution is found, the cost for
the corresponding ellipsoidal trigger function is estimated using (4.38) and
(4.39) with the exact policy (4.33) using a new set of N = 10 000 trajectories.

The results are presented in Figure 4.8, where deviations from the opti-
mal cost for the policy obtained from the Monte Carlo approach are shown
for different system orders n. We see that roughly half of the data is clus-
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tered around 1 % for all system orders and that the maximum deviation
varies between roughly 3–4.5 %. The difference in cost can be made even
smaller by using a smaller time step ∆t and a larger number of trajectories
N. However, for all practical purposes, the results in Figure 4.8 demon-
strate that the Monte Carlo approach can be used to obtain (near) optimal
parameters for ellipsoidal trigger functions for higher-order systems.

4.7 Summary
This chapter presented three methods for solving the optimal sampling
problem (OSP) numerically; value iteration, a simulation-based method,
and a linear complementarity method. Value iteration is a standard tool in
dynamic programming, while the simulation-based and linear complemen-
tarity method are contributions of this thesis. The simulation-based method
is derived directly from the free boundary problem of the OSP and features
a time-dependent formulation that can be simulated using standard PDE
tools. The linear complementarity method is proposed as an alternative that
avoids time-dependence.

The three methods were validated and compared in a numerical study.
While the linear complementarity method has an estimated convergence
rate of order 1, the simulation-based method and value iteration both settle
at a constant error for increasing mesh sizes. A comparison showed that
the simulation-based method has a better trade-off between accuracy and
solver time compared to value iteration, arguably making it the better
option. The linear complementarity method was also seen to outperform
both the simulation-based method and value iteration in terms of accuracy.

The relation between system dynamics and the shape of the optimal sam-
pling threshold was investigated using the linear complementarity method.
Results from this investigation showed that most second-order systems have
a near-ellipsoidal optimal threshold. A notable exception is saddle-point sys-
tems, which have non-convex optimal thresholds.

The last part of the chapter was dedicated to ellipsoidal trigger func-
tions, which seem like a promising alternative to the optimal policy. A
numerical example demonstrated that ellipsoidal trigger functions can give
near-optimal performance even in cases when the optimal threshold is non-
convex. To find suitable ellipse parameters for any system order, we proposed
the Monte Carlo approach described in [Becker et al., 2019]. This approach
was validated numerically against the known solution for the multivariate
integrator of different system orders.

Ellipsoidal trigger functions constitute the first step from optimal to
suboptimal, but simpler, event-based policies in this thesis. This focus is
retained in the next chapter, with the topic of event-based PID control.
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5
Event-Based PID
from an LQG Perspective

This chapter considers results on LQG-optimal sampled-data control from
Chapters 2 and 3 as a starting point for the design of event-based
proportional-integral-derivative (PID) control. Since the pioneering work
in [Årzén, 1999], a rich literature of event-based PID control has emerged
with many different design heuristics. The purpose of the LQG perspective
in this chapter is to better understand which design choices are actually
performance-critical, and use this understanding to propose an implemen-
tation that strikes a balance between performance and simplicity.

The link between the results on LQG-optimal sampled-data control
(Mirkin’s LQG controller, see Section 2.5) and PID control are established
via a special benchmark LQG design problem, whose solution is an ideal
PID controller. This benchmark problem was first presented in [Cervin and
Thelander Andrén, 2020], which in turn was influenced by [Cervin, 2016].
Since the solution can be viewed from the perspectives of both LQG and
PID control, we can interpret Mirkin’s LQG controller as a form of sampled-
data PID controller. While this optimal event-based PID controller may be
difficult to implement in practice, it still serves as a useful baseline for
comparisons of suboptimal but simpler designs.

This chapter is structured as follows. In Section 5.1, we formulate the
benchmark LQG design problem. Based on the benchmark problem, we
interpret Mirkin’s LQG controller as a sampled-data PID controller in Sec-
tion 5.2. In Section 5.3, we discuss various design choices for event-based
PID control, and how they relate to the optimal solution. These design
choices are then evaluated in a simulation study in Section 5.4, based on
which we give a proposal for a simple, yet well-performing, implementation.
Finally, the chapter is summarized in Section 5.5.
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Figure 5.1 The considered process model for the benchmark problem, con-
sisting of a double integrator and an integral input disturbance.

5.1 The Benchmark Problem
Consider the system in Figure 5.1, consisting of a double integrator and
a low-frequency input disturbance d—a very basic control model for, e.g.,
simple mechanical systems such as a satellite or a cart on a rail. We begin
by showing how an LQG design problem for this system can be formulated
such that the solution is an ideal PID controller.

LQG Design
For the system in Figure 5.1, assume that the gain k > 0 is a given scalar
parameter and that wd and wη are two scalar and independent continuous-
time Gaussian white processes with intensities rd > 0 and 1, respectively.
Consider the following LQG design objective:

J := lim
T→∞

E
[ 1
T

∫ T

0

(
qyy2(t) + 2qyηy(t)η(t) + η2(t)

)
dt
]
, (5.1)

where qy > 0 and q2
yη ≤ qy are scalar weights. We refer to the minimization

of (5.1) for the system in Figure 5.1 as the benchmark problem. Note in (5.1)
that we penalize η = u+d rather than the control signal u. By also penaliz-
ing the low-frequency input disturbance d, the optimal controller is ensured
to feature integral action to suppress it. This is a common construction in
LQG control design, see, e.g., [Glad and Ljung, 2000, Chapter 9]

We now proceed by deriving the optimal analog LQG controller for the
benchmark problem. Since the state d of the input disturbance is not sta-
bilizable, the optimal state feedback can not be obtained directly via the
algebraic Riccati equation (ARE) (2.8). Instead, assume for now that we
control η directly. In the framework of Chapter 2, the corresponding sub-
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problem is defined by

G :



[
ẋ1(t)
ẋ2(t)

]
=

[
0 0
k 0

] [
x1(t)
x2(t)

]
+

[
k
0

]
wη(t) +

[
k
0

]
η(t),

z(t) =
[
0 √qy
0 0

] [
x1(t)
x2(t)

]
+




qyη
√qy√
1−

q2
yη

qy


 η(t),

y(t) =
[
0 1

] [x1(t)
x2(t)

]
,

(5.2)

where the objective is given by

J = lim
T→∞

E
[ 1
T

∫ T

0
qz(t)q2

2dt
]
.

In contrast to the original benchmark problem, the optimal state feedback
for (5.2) can be obtained directly via the ARE (2.8), yielding

η(t) = f1x1(t) + f2x2(t), (5.3)

with

f1 = −
√

2
(√qy − qyη

)
, (5.4)

f2 = −
√qy. (5.5)

Returning to the original benchmark problem, we see that the objective in
(5.1) is minimized if the control signal u is chosen such that the relation (5.3)
holds. With complete state information (including d) the optimal feedback
law is thus given by

u(t) = f1x1(t) + f2x2(t) − d(t). (5.6)

We proceed by deriving the optimal state estimator. Because of the lack
of measurement noise in the process model, the states x1 and x2 can be
reconstructed exactly from the measured output y as

x2(t) = y(t),

x1(t) =
ẋ2(t)
k

=
ẏ(t)
k
. (5.7)

Thus, only the disturbance d remains to be estimated. The lack of process
noise on x1 allows us to to obtain a reduced-order Kalman–Bucy filter for
d as

˙̂d(t) = −ld
( ẋ1(t)

k
− u(t) − d̂(t)

)
= −ld

( ÿ(t)
k2 − u(t) − d̂(t)

)
, (5.8)
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Figure 5.2 A slightly perturbed version of the benchmark process model
in Figure 5.1. Here, a white Gaussian process wy with intensity ry has been
added to the measured output, and the integrator of the disturbance d has
been changed into a stable first-order system with a pole in −εd < 0. The
original system is recovered in the limit ry, εd → 0+.

where d̂ is the MMSE estimate of d, and the gain ld is obtained by solving
the associated Riccati equation (2.5), yielding

ld = −
√
rd. (5.9)

Combining the optimal state feedback (5.6) with the state estimator
(5.7) and (5.8), we obtain the complete analog LQG controller K for the
benchmark problem as

K :



x̂1(t) =
ẏ(t)
k
,

x̂2(t) = y(t),

˙̂d(t) = −ld
( ÿ(t)
k2 − u(t) − d̂(t)

)
,

u(t) = f1 x̂1(t) + f2 x̂2(t) − d̂(t).

(5.10)

The derivation of the analog LQG controller above did not use the stan-
dard LQG assumptions A1 (due to d not being stabilizable) and A2 (due to
the lack of measurement noise) (see Section 2.1). An alternative approach is
to instead consider a slightly perturbed version of the original system, see
Figure 5.2. Here, measurement noise in the form of a scalar white Gaussian
process signal wy with (low) intensity ry > 0 has been added to x2, and the
integrator of the disturbance d has been changed into a stable first-order
system with a pole in −εd, for some small value εd > 0. With the modified
process model in Figure 5.2, the conditions A1 and A2 are satisfied and the
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analog LQG controller can be computed according to the standard frame-
work described in Section 2.2. The original benchmark problem is recovered
by taking the limit ry, εd → 0+, at which point the solution obtained for the
perturbed system coincides with the one given in (5.10).

PID Interpretation
We now proceed by showing that the analog LQG controller in (5.10) is
in fact equivalent to a PID controller. To this end, consider the change of
variable

xi(t) := −d̂(t) − ld
k
x̂1(t) +

ld f1
k

x̂2(t),

which by (5.10) evolves according to

ẋi(t) = −ld f2 x̂2(t) = −ld f2y(t).

By introducing xi, the feedback law of the analog LQG controller can be
rewritten as

u(t) = f1 x̂1(t) + f2 x̂2(t) − d̂(t)

=
f1k+ ld

k
x̂1(t) +

f2k− ld f1
k

x̂2(t) + xi(t)

=
f2k− ld f1

k

(
x̂2(t) +

k
f2k− ld f1

xi(t) +
f1k+ ld
f2k− ld f1

x̂1(t)
)

= −
ld f1 − kf2

k

(
y(t) + ldkf2

ld f1 − kf2

∫ t

0
y(s)ds+ − f1k− ld

ldkf1 − k2 f2
ẏ(t)

)

:= −K
(
y(t) + 1

Ti

∫ t

0
y(s)ds+ Td ẏ(t)

)
, (5.11)

which is an ideal PID controller on parallel form, with

K = ld f1 − kf2
k

,

Ti =
ld f1 − kf2
ldkf2

,

Td =
− f1k− ld
ldkf1 − k2 f2

. (5.12)

Thus, we have shown that the optimal controller for the benchmark problem
has two equivalent representations; the analog LQG controller in (5.10) and
the ideal PID controller in (5.11).
Remark 5.1
For a given ideal PID controller with positive parameters K , Ti, and Td it
is also possible to find a corresponding (non-unique) benchmark problem.
For details, see Appendix B. ♦
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A Note on Integral Action
The state xi represents the integral action of the PID controller, since

ẋi(t) = −ld f2y(t) = −
K
Ti
y(t). (5.13)

The standard representation in (5.13) is only one of many possible formu-
lations, and here we give a brief note on these.

First, define the PI part of the control signal as

upi(t) := −Ky(t) + xi(t).

The integral action (5.13) can then alternatively be represented as

ẋi(t) = −
1
Ti
(
Ky(t) + upi(t) − upi(t)

)
= −

1
Ti
(
2Ky(t) − xi(t) + upi(t)

)
,

(5.14)

i.e., expressed in terms of xi and upi in addition to y. More generally, by
introducing a parameter α ∈ R and splitting up the PI part according to

upi(t) = αupi(t) + (1−α)upi(t) = −αKy(t) +αxi(t) + (1−α)upi(t),

and inserting this relation into (5.14), we retrieve a family of possible rep-
resentations for the integral action as

ẋi(t) = −
1
Ti
(
(1+α)Ky(t) −αxi(t) +αupi(t)

)
. (5.15)

We see that α = 0 corresponds to the original expression in (5.13), while
α = 1 gives (5.14). With α = −1 we eliminate y from (5.15), resulting in

ẋi(t) = −
1
Ti
(
xi(t) − upi(t)

)
. (5.16)

Integral action of the form in (5.16) can be recognized as the classical
automatic reset realization [Åström and Murray, 2008, Chapter 10]. In a
continuous feedback setting, the behavior of the integral action is identical
regardless of the choice of α. However, in an event-based implementation,
different realizations may yield different results depending on when and
how the variables are communicated between the sensor, controller, and
actuator.
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5.2 LQG-Optimal Event-Based PID
Having established that the analog LQG controller for the benchmark prob-
lem can be interpreted as an ideal PID controller, we now consider the
sampled-data case. In Chapter 2, it was established that Mirkin’s LQG
controller (i.e., the optimal sampled-data controller) has a representation
closely connected to the analog LQG controller. For the benchmark problem,
this implies that Mirkin’s LQG controller also can be interpreted as a PID
controller.

Optimal Sampled-Data LQG Design
While the derivation of Mirkin’s LQG controller assumes that A1–A3 are
satisfied (see Section 2.1), we can, similarly to [Braksmayer and Mirkin,
2017], obtain a formal solution to the benchmark problem by considering
the perturbed system Figure 5.2, followed by taking the limit ry, εd → 0+.
Recalling that Mirkin’s LQG controller can be represented as a Kalman–
Bucy filter on the sensor side, and a simulation-based LQR on the actuator
side (see Figure 2.7), the limiting solution is given in terms of the reduced-
order filter in (5.7) and (5.8), and state feedback in (5.6). Thus, on the
sensor side of Mirkin’s LQG controller, the MMSE estimates are generated
according to

Sensor:


x̂1(t) =

ẏ(t)
k
,

x̂2(t) = y(t),

˙̂d(t) = −ld
( ÿ(t)
k2 − u(t) − d̂(t)

)
,

while on the actuator side, the control signal is generated according to

Actuator:


ẋ1,a(t) = kda(t) + ku(t),
ẋ2,a(t) = kx1,a(t),
ḋa(t) = 0,
u(t) = f1x1,a(t) + f2x2,a(t) − da(t),

where the actuator states x1,a, x2,a and da are reset at sampling times {τk}
according to

k ∈ N0 :


x1,a(τk) = x̂1(τk),
x2,a(τk) = x̂2(τk),
da(τk) = d̂(τk).
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PID Interpretation of Mirkin’s LQG Controller
With the following definitions

ya(t) := x2,a(t),

xi,a(t) := −da(t) −
ld
k
x1,a(t) +

ld f1
k

x2,a(t),

we can use the same derivation as in Section 5.1 to show that Mirkin’s LQG
controller for the benchmark problem is equivalent to

K:



ÿa(t) = kf1 ẏa(t) + k2 f2ya(t),

ẋi,a(t) = −
K
Ti
ya(t),

ya(τk) = y(τk),

xi,a(τk) = xi(τk) = −
K
Ti

∫ τk

0
y(t)dt,

ẏa(τk) = ẏ(τk),

u(t) = −Kya(t) + xi,a(t) − KTd ẏa(t), t ∈ [τk,τk+1), k ∈ N0.
(5.17)

In (5.17), we see that the control signal u is generated by an analog PID
controller based on the simulated output ya. On the sensor side, the “ob-
server” tracks the measured output y, its integral and its derivative, and
transmits (y, xi, ẏ) to the actuator at each sampling instance.

This controller structure can be difficult to realize in practice, but from
a theoretical point of view it sheds some light on how an “ideal” sampled-
data PID is structured, and provides a useful performance baseline for
comparisons to more practical implementations.

Sampling Policy
In Chapter 3 it was established that the optimal sampling policy for Mirkin’s
LQG controller is of threshold type (see Theorem 3.1). The threshold policy
is based on the error vector

[
x1,a − x̂1 x2,a − x̂2 da − d̂

]ᵀ, which after a
linear change of coordinates is equivalent to

 ỹx̃i
˙̃y


 :=


 ya − y
xi,a − xi
ẏa − y


 . (5.18)

Simply put; (5.18) implies that sampling should be triggered whenever the
P, I or D part of the control signal deviates too much from that of the analog
PID controller.
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Figure 5.3 Numerical approximation of the optimal sampling threshold
�Ω (blue surfaces) for the benchmark problem with parameters k = rd = 1,
qy = 4 and qyη = 0. The approximation was computed using the linear
complementarity method described in Section 4.3 with 25$25$25 = 15 625
uniformly distributed collocation points. The threshold is well-approximated
by two parallel planes with a normal illustrated by the red line. The green
line is parallel to the vector [K, −1, KTd], and differs only by 1○ from the
red line.

To obtain the optimal threshold, we can employ the numerical methods
presented in Chapter 4. As illustrated by the example in Figure 5.3, the
resulting threshold for the benchmark problem is well-approximated by two
parallel planes. In Figure 5.3, the red line illustrates the normal of a plane
fitted to the optimal threshold (blue surfaces) using least squares, while the
green line illustrates the direction of the vector

[
K −1 KTd

]
. The red

and green lines differ only by approximately 1○, and we therefore expect
near-optimal performance from a trigger function of the form

�(ỹ, x̃i, ˙̃y) = ∆ −
∣∣K ỹ− x̃i + KTd ˙̃y

∣∣, (5.19)

where ∆ is a parameter chosen as a trade-off between LQG-performance
and average sampling rate (cf. Section 3.4). In comparisons with other PID
controllers, we use the (near optimal) trigger function in (5.19) for the
controller in (5.17).
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5.3 Implementation Aspects of Event-Based PID
Event-based implementations of PID controllers are usually motivated by
improved resource efficiency, especially in networked control systems, where
savings in energy and bandwidth can be achieved by transmitting data less
often. However, the computational capacity in the sensor and actuator nodes
are usually limited in embedded implementations, which makes complex
triggering conditions and signal generators infeasible. Arguably, this is the
case for the optimal controller of the previous section, which motivates
the need for suboptimal but simpler implementations. In this section, we
highlight some features of previously proposed event-based PID controllers
from the literature and discuss how they relate to the optimal solution.

Baseline: Årzén’s Simple Event-Based PID Controller
Most proposals of event-based PID controllers in the literature can be traced
back to Årzén’s simple event-based PID controller proposed in the seminal
work [Årzén, 1999]. Therefore, we proceed by briefly reviewing its imple-
mentation and use it as a baseline in the remainder of this chapter.

On the sensor side of Årzén’s controller, the system output y is monitored
periodically with a short, fixed, period hnom. The event of sampling and
transmission of y to the actuator side is triggered based on a send–on–delta
rule combined with a time-out hmax. With the time interval between two
events defined as

hk := τk − τk−1,

the event trigger of Årzén’s controller is given by

hk = min
l=1,...,∞

{
h = lhnom : py(h+τk−1) − y(τk−1)p > ∆ or h ≥ hmax

}
, (5.20)

where ∆ > 0 is a parameter chosen as a trade-off between performance and
average sampling rate. Compared to the sampling policy in (5.19), which
uses all three PID components, we see that Årzén’s controller only considers
the measured output y (i.e., only the P part). Furthermore, the measured
output y is compared to the last sampled value rather than a time-varying
prediction. However, the policy (5.20) has the practical benefit of being very
simple to implement, as demonstrated by the following pseudo-code:

y := AnalogIn();

h := h + h_nom;

IF abs(y - y_old) >= delta OR h >= h_max THEN

Send(y);

y_old := y;

ENDIF
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On the actuator side of Årzén’s controller, the control signal is generated
by a discretized version of an analog PID controller with derivative filter,
combined with a zero-order hold. Using forward and backward difference
approximations for the integral action and the derivative part respectively,
the control signal u is generated according to

Actuator:



xi(τk+1) = xi(τk) −
K
Ti
hky(τk),

ud(τk+1) =
Td

Nhk+1 + Td
ud(τk) −

KNTd
Nhk+1 + Td

(
y(τk+1) − y(τk)

)
,

u(t) = −Ky(τk) + xi(τk) + ud(τk), t ∈ [τk,τk+1), k ∈ N0,
(5.21)

where ud represents the derivative part of the PID controller and N is
the maximum derivative gain. Without any measurement noise, we can let
N → ∞ and the derivative part becomes a pure backward difference. In
contrast to the optimal actuator policy in (5.17), Årzén’s controller holds
a constant control signal over each sampling interval. By using zero-order
hold, the implementation does not require any custom analog circuitry for
signal generation, and the actuator policy has the following straightforward
digital implementation:

y := Receive();

h := Time() - time_old;

a_d := T_d / (N * h + T_d);

u_d := a_d * u_d - K * N * a_d * (y - y_old);

u := -K*y + x_i + u_d;

AnalogOut(u);

x_i := x_i - K / T_i * h * y;

y_old := y;

time_old := Time();

Choice of Sampling Policy
Årzén’s controller, and many subsequent ones, use a send–on–delta rule
[Miskowicz, 2015] based on the difference between the current and last
sampled value of the measured output y. Aside from the possible addition
of a time-out and different scaling of y, the send–on–delta rule can be
represented by a trigger function of the following form:

�(ỹ) = ∆ −
∣∣K ỹ∣∣, (5.22)

where
ỹ(t) := y(t) − y(τk), t ∈ [τk, τk+1), k ∈ N0. (5.23)
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Because send–on–delta essentially is a policy based on the P part of a PID
controller, we refer to it from now on as P triggering.

It has been pointed out in several works, e.g., [Miskowicz, 2007; Tiberi
et al., 2012], that sampling based on the integral of y can be useful as it
is less sensitive to noise and also eliminates the deadband effect. Similar
to [Tiberi et al., 2012], we can take the integral of y into account with a
trigger function of the form:

�(ỹ, x̃i) = ∆ −
∣∣K ỹ− x̃i

∣∣, (5.24)
where

x̃i(t) := xi(t) − xi(τk), t ∈ [τk, τk+1), k ∈ N0, (5.25)

and ỹ is given by (5.23). We refer to (5.24) as PI triggering.
Based on the sampling policy (5.19) obtained for the benchmark problem,

it is natural to also consider sampling policies that include the derivative
part of a PID controller. The first option has a trigger function of the form:

�(ỹ, ˜̇y) = ∆ −
∣∣K ỹ+ KTd ˜̇y

∣∣, (5.26)
where

˜̇y(t) := ẏ(t) − ẏ(τk), t ∈ [τk, τk+1), k ∈ N0, (5.27)

and ỹ is given by (5.23). We refer to (5.26) as PD triggering. The other option
includes all three components according to

�(ỹ, x̃i, ˜̇y) = ∆ −
∣∣K ỹ− x̃i + KTd ˜̇y

∣∣, (5.28)

with ỹ, x̃i and ˜̇y given by (5.23), (5.25) and (5.27), respectively. We refer
to (5.28) as PID triggering. Note that there is a subtle difference between
the PID trigger (5.28) and the policy (5.19), i.e., the PID trigger does not
compare (y, xi, ẏ) to the model-based predictions (ya, xi,a, ẏa), but rather
to the last transmitted values.

While a true continuous-time implementation of the PI/PD/PID triggers
requires custom analog circuitry, they would be relatively simple to realize
in conjunction with an analog prefilter—a feature in virtually all practical
implementations. Based on the argument in [Åström and Hägglund, 2006,
Section 13.3], consider a second-order prefilter of the form

Yf (s) =
1

1+ sTf + (sTf )2/2
Y (s), (5.29)

where Y , Yf are the Laplace representations of the raw and filtered mea-
surement y and yf respectively, and Tf is the filter’s time constant. As
shown in Figure 5.4, the filter in (5.29) can be constructed as a feedback
circuit with a stable first-order filter and an integrator. This setup com-
bines prefiltering with easy access to both yf and ẏf for feedback. With one
additional integrator in Figure 5.4 we also gain access to xi.
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Figure 5.4 Block diagram of analog second-order prefilter with easy access
to both the filtered output yf and its derivative ẏf .

Choice of Data to Communicate
Most heuristic methods only communicate the sensor value y to the actu-
ator side. The policy (5.19) obtained for the benchmark problem, however,
transmits (y, xi, ẏ). Sending a few extra bytes in a network packet costs
very little, and, depending on if PI, PD, or PID triggering is used, some
combination of y, xi, and ẏ are already available in the sensor node and
should therefore be communicated to the actuator.

Choice of Integrator Implementation
Since a standard finite-difference approximation is used for the integral
part in Årzén’s controller, it behaves poorly for long inter-event times with
large overshoots as a result. Furthermore, since the integral part is updated
after the control signal, the period used for scaling in the integral update
in (5.21) is delayed by one sampling event. These two drawbacks were
addressed in [Durand and Marchand, 2009a], where the delay was removed
and a forgetting factor was introduced to alleviate the problem of overshoots
during long sampling periods. The result is an integral part computed
according to

xi(τk) = xi(τk−1) −
K
Ti
(τk − τk−1)ehnom−(τk−τk−1)y(τk). (5.30)

We refer to (5.30) as the Durand–Marchand integrator.
For zero-order hold, an elegant alternative to the Durand–Marchand

integrator is an implementation based on the automatic reset form in (5.16).
Integrating (5.16) over one sampling period then yields

xi(τk) = e−
1
Ti
(τk−τk−1)xi(τk−1) +

(
1− e−

1
Ti
(τk−τk−1)

)
upi(τk−1). (5.31)

This implementation has for instance been adopted in the PIDPLUS com-
mercial controller [Song et al., 2006], which shows promise for application
in event-based PI control [Tiberi et al., 2012].
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Choice of Control Signal Generator
At the actuator side, zero-order hold between events is a standard assump-
tion in heuristic implementations. Ideally, the feedback gain should then
be adapted according to the length of each hold interval. One method is to
match poles between the closed-loop systems under analog and sampled-
data control as in [Åström and Wittenmark, 1997, Section 8.3]. A lookup
table of PID parameters corresponding to different interval lengths can
then be computed. However, the event-based sampling scheme prevents us
from knowing the length of the next hold interval beforehand. A very simple
heuristic is to assume that the duration of the current interval is equal to
the last experienced one. We refer to this heuristic method as adaptive gain.

Since a suitable feedback gain under zero-order hold requires knowl-
edge of the duration of the next hold interval, it may be better to instead
consider impulse generators or generalized hold circuits as discussed in
[Åström, 2008]. Indeed, Mirkin’s LQG controller, and in particular the solu-
tion (5.17) of the benchmark problem, both utilize generalized hold circuits
in the actuator. While generalized hold circuits have the potential of im-
proving performance, their drawback is the increased complexity of the
implementation. Based on the control signal generator of the benchmark
solution (5.17), we propose two options. The first generates a control signal
in between sampling times according to

t ∈ [τk,τk+1) :
{
ÿa(t) = kf1 ẏa(t) + k2 f2ya(t),
u(t) = −Kya(t) + xi,a − KTd ẏa(t),

(5.32)

which we denote as a PD generator. While ya and ẏa are generated accord-
ing to the differential equation, xi,a remains constant throughout the hold
interval. The other option is the generator of the benchmark solution (5.17),
which also includes the integrator:

t ∈ [τk,τk+1) :


ÿa(t) = kf1 ẏa(t) + k2 f2ya(t),

ẋi,a(t) = −
K
Ti
ya(t),

u(t) = −Kya(t) + xi,a(t) − KTd ẏa(t).

(5.33)

We denote this option as a PID generator. For both generators above, the
signals ya, xi,a and ẏa are updated at sampling times with either the exact
values (if they are collected and transmitted by the sensor) or some finite-
difference approximation based on y.
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5.4 Performance Evaluation
In this section, we evaluate the performance of the different design choices
discussed in Section 5.3. We use Årzén’s controller as a base implementation
in each evaluation, and consider different options for each of the following
aspects:

(i) sampling policy,

(ii) communicated data,

(iii) integrator implementation, and

(iv) control signal generator.

With higher resource efficiency being one of the main motivators for
event-based control, we focus on the trade-off between average sampling
rate (corresponding to mean network usage or sensor energy consumption)
and the LQG cost as measured by (5.1). Two different setups are considered:

A. The process model of the benchmark problem in Figure 5.1, with gain,
cost, and noise parameters given by k = 1, qy = 4, qyη = 0, rd = 1.
The optimal analog controller for this setup is a PID controller with
the parameters K = 4, Ti = 2, Td = 0.75.

B. The stable third-order process in Figure 5.5 with the cost and noise
parameters qy = 5.5, qyη = 0, rd = 0.1. For this higher-order process,
the optimal analog controller is not a PID controller. However, we can
find the best possible PID parameters using nonlinear optimization,
yielding K = 2.15, Ti = 2.67, Td = 1.23.

Setup A matches the benchmark problem exactly, while Setup B is repre-
sentative of a lag-dominated stable process from process industry. In both
cases, the LQG costs found in the evaluation have been normalized so that
the continuous PID controller has a relative cost of 1.

The performance of the different controllers is evaluated through simu-
lations in TrueTime [Henriksson et al., 2002]. Throughout, hnom = 0.01 s
is used as the simulation time step (and hence the smallest possible event
detection interval). For each scenario, a 2 000 s simulation is run using the
same noise input sequence. For the event-triggered algorithms, the trigger
parameter ∆ is swept over a range of values to generate different average
sampling rates and LQG costs.

For reference, we also include results for Mirkin’s LQG controller in
each evaluation. Its implementation follows Section 5.2 for Setup A (where
it has a PID interpretation given by (5.17)), and the general framework in
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Figure 5.5 Process considered for Setup B in the performance comparisons.

Section 2.5 for Setup B. In both setups, the trigger function used by Mirkin’s
LQG controller is of the form (cf. Chapter 3)

�(x̃) = ∆ − pF x̃p,

which for Setup A is equivalent to (5.19).

Sampling Policy
We first study how the choice of sampling policy impacts the performance
of the event-based PID controller. The sampling policies under study are:

(i) P trigger (5.22) (as in Årzén’s controller),

(ii) PI trigger (5.24),

(iii) PD trigger (5.26), and

(iv) PID trigger (5.28).

The trade-off results for both setups are presented in Figure 5.6. In both
setups we see only minor differences between P and PI triggering, indicating
that the addition of the integral state xi to the sampling policy only has a
minor performance impact. In contrast, we see a significant improvement
with the addition of the derivative ẏ, as indicated by the results from PD
and PID triggering. The small difference between PD and PID triggering
also confirms the minor role played by xi in improving performance.

Communicated Data
The second implementation aspect under study is the choice of communi-
cated data. The configurations of data communicated between the sensor
and actuator node are:
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Sampling policy
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Figure 5.6 Relative LQG cost versus average sampling interval h̄ for
Setup A (upper) and B (lower) using different sampling policies.
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(i) y (as in Årzén’s controller),

(ii) (y, xi),

(iii) (y, ẏ), and

(iv) (y, xi, ẏ).

The trade-off results for both setups are presented in Figure 5.7. Similar
to the evaluation of the sampling policy, we observe that the addition of
derivative information ẏ gives improved performance (albeit the improve-
ment is smaller here). However, the addition of integral information xi
seems to have little or no effect for Setup A and actually results in some-
what worse performance for small sampling intervals in Setup B.

Integrator Implementations
We now study the choice of integrator implementation, with the following
options:

(i) forward difference approximation (5.21) (as in Årzén’s controller),

(ii) Durand–Marchand’s integrator (5.30), and

(iii) automatic reset integrator (5.31).

The trade-off results for both setups are presented in Figure 5.8. We
observe that the difference in performance between the different integral
action implementations is small. In Setup A, the difference is practically
indistinguishable, whereas in Setup B the implementation by Durand–
Marchand is slightly worse than Årzén’s forward difference and automatic
reset. A possible explanation for why only minor differences are seen in
Figure 5.8, is that the low-frequency behavior of the controller becomes
less important when the process is subject to white noise disturbances of
relatively high intensity.

Control Signal Generators
The fourth and final implementation aspect under study is the choice of
control signal generator on the actuator side. We consider the following
options:

(i) zero-order hold (ZOH) (as in Årzén’s controller),

(ii) ZOH with adaptive gain,

(iii) PD generator (5.32), and

(iv) PID generator (5.33).
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Communicated data
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Figure 5.7 Relative LQG cost versus average sampling interval h̄ for
Setup A (upper) and B (lower) using different configurations of commu-
nicated data between the sensor and actuator node.
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Integrator implementation
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Figure 5.8 Relative LQG cost versus average sampling interval h̄ for
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The simulated model in the PD and PID generators are based on the
benchmark process model in both setups. In Setup A we use the exact model
parameters, whereas in Setup B we obtain suitable model parameters via
the PID parameters as detailed in Appendix B with k = 0.75, which in the
corresponding benchmark model gives a phase margin of roughly 58○. Since
the PD and PID generator ideally should be reset with analog signals, we
even the field and transmit (y, ẏ) for implementations (i)–(iii) and (y, xi, ẏ)
for (iv) respectively.

The trade-off results for both setups are presented in Figure 5.9. In
Setup A, we observe somewhat improved performance for large sampling
intervals when using adaptive gain and the model-based signal generators.
This is expected behavior, as it is only for longer intervals that the control
signal from the adaptive gain and model-based signal generator start to
deviate significantly from the baseline zero-order hold implementation by
Årzén. However, we observe a different performance ranking for Setup B,
where the adaptive gain and PD generator give very similar results to the
baseline zero-order hold, and the PID generator has the worst performance
of all the options for small sampling intervals. This behavior suggests that
adaptive gain and signal generation based on the benchmark problem gen-
eralize poorly to other systems.

Conclusions and Final Evaluation
Based on the evaluations in the previous sections, we conclude the following:

• the main performance contributor is the inclusion of the derivative ẏ
in the sampling policy and transmitted data,

• performance seems largely insensitive to the implementation of the
integral action, and

• the adaptive gain and control signal generators based on the bench-
mark problem give a moderate performance boost when applied to the
matching process model (Setup A) but generalize poorly (Setup B).

Arguably, it is more worthwhile to keep the implementation model-free,
rather than having the potential of an (at best) moderate performance
boost for long sampling intervals. In a trade-off between simplicity and
performance, we therefore propose an implementation based on Årzén’s
controller with the following modifications:

• PD triggering (5.26) for sampling policy, and

• (y, ẏ) for communicated data.
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Control signal generator
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Figure 5.9 Relative LQG cost versus average sampling interval h̄ for
Setup A (upper) and B (lower) using different control signal generators.

120



5.5 Summary

In a final evaluation, we study the performance of this proposal. Since there
was no clear winner between forward difference and automatic reset imple-
mentation of the integral action, we evaluate both options for the proposed
controller above. The baseline periodic LQG controller from Section 2.4 is
also included in the comparison for reference.

The trade-off results for both setups are shown in Figure 5.10. Drastic
improvement is seen in both setups from the proposed modifications to
Årzén’s controller. In Setup A, both variants of the proposed implementation
are even on par with the “ideal” event-based PID controller (Mirkin’s LQG
controller) (5.17) up until roughly h̄ = 0.3 s. The performance gap in the
corresponding comparison in Setup B is expected since the PID structure
is fundamentally suboptimal for this setup. Still, the proposed event-based
PID controller with automatic reset outperforms the baseline periodic LQG
implementation for large sampling intervals (roughly h̄ ≥ 0.3 s).

Both variants of integral action seem to perform roughly the same in
Setup A, with automatic reset showing slightly better performance for large
sampling intervals. The improvement seen from automatic reset is even
more pronounced in Setup B. These observations, combined with previously
reported benefits in, e.g., [Tiberi et al., 2012], make automatic reset the
preferred choice of integral action.

5.5 Summary
This chapter built upon the results in Chapters 2 and 3 and studied a
benchmark problem for which the LQG-optimal controller is a PID con-
troller. Based on Mirkin’s LQG-optimal sampled-data controller, we studied
what a theoretically “ideal” sampled-data implementation of a PID con-
troller looks like. In turn, this inspired a range of design options for differ-
ent implementations of event-based PID control, with complexity varying
from Årzén’s simple controller [Årzén, 1999] to the aforementioned “ideal”
implementation.

A numerical evaluation of these design options suggested that a practi-
cal, yet well-performing, event-based PID controller should trigger sampling
not only on the measured output y but also its derivative ẏ—here referred
to as PD triggering. Furthermore, the sensor should also transmit both y
and ẏ to the controller at sampling times. Additional improvements for long
sampling intervals were noted for integral action based on an automatic
reset implementation.
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Final evaluation
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PD trigger, send (y, ẏ), AR
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Figure 5.10 Relative LQG cost versus average sampling interval h̄ for
Setup A (upper) and B (lower) using the proposed event-based PID controller
with integral action using forward difference (FD) and automatic reset (AR).
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6
Stochastic Triggering
in Event-Based
State Estimation

This chapter considers a different type of event-based trigger policy—
stochastic triggering. In contrast to the threshold-type policies considered
so far, stochastic triggering assumes that events are triggered according to
a certain probability. The probability of triggering an event is close to zero
for small deviations from expected behavior, but transitions smoothly to one
as deviations grow larger. Effectively, this can be viewed as a trigger policy
with a “fuzzy” threshold.

Stochastic triggering is motivated by its potential for more tractable
analysis. While deterministic threshold policies typically require Monte
Carlo methods to estimate the state distribution, a stochastic policy can
often provide useful bounds or even exact expressions. In particular, the
stochastic approach has proven useful for event-based state estimation
based on linear Gaussian models, where a suitable choice of trigger proba-
bility can preserve Gaussianity of the state distribution at all times [Han
et al., 2015]. It is in this context that we consider stochastic triggering in
this chapter.

The estimation problem in this chapter exhibits a degree of duality to
the previously considered optimal sampling problem (OSP) (see Chapter 3).
While triggering in the OSP is essentially based on deviations between open
and closed-loop control actions, triggering in the estimation problem is based
on deviations between monitored and predicted plant measurements. Both
problems consider an LQG setup, where the quadratic cost in the estima-
tion problem represents the estimation error covariance. However, unlike
the OSP, a discrete-time setting is considered for the estimation problem.
Furthermore, stochastic triggering enables us to employ a Bayesian ap-
proach for analysis rather than a Hamilton–Jacobi–Bellman formulation.

123



Chapter 6. Stochastic Triggering in Event-Based State Estimation

To the author’s knowledge, the original framework of stochastic trig-
gering for event-based state estimation was first introduced in [Han et al.,
2015], with extended analysis in [Shi et al., 2016]. In the subsequent works
[Thelander Andrén and Cervin, 2016; Schmitt et al., 2019; Thelander An-
drén, 2020], several different policies were presented, aimed at improving
the trigger policies in [Han et al., 2015]. This is mainly achieved by consid-
ering different predictions in the signal used for triggering. In this chapter,
we present the general framework shared by the aforementioned works,
and review the different proposed trigger policies. In particular, the contri-
butions of this chapter are based on the work in [Thelander Andrén and
Cervin, 2016; Thelander Andrén, 2020].

The chapter is structured as follows. In Section 6.1 we introduce the
remote state estimation problem, where event-based triggering of data
transmissions is considered. This is followed by a general derivation of
the optimal state estimator under stochastic triggering in Section 6.2. The
different trigger policies are described in Section 6.3, which are then evalu-
ated and compared in a simulation study presented in Section 6.4. Finally,
the chapter is summarized in Section 6.5.

6.1 The Remote State Estimation Problem
We study a prototypical remote state estimation problem in discrete time,
see Figure 6.1. It involves a process subject to disturbances w, with an
output signal corrupted by noise v and measured by a sensor as y. Based
on the history of y, the sensor decides if new measurement data should
be transmitted to a state estimator, situated remotely across a wireless
network channel. Based on received measurements and knowledge of the
sensor’s policy for triggering transmissions, the state estimator produces the
estimate x̂ of the process state vector x. Transmissions should be triggered
only when necessary since the radio in a wireless sensor typically stands
for a large part of the total power consumption [Rault et al., 2014].

We assume a linear, discrete-time, state space model for the process:

xk+1 = Φxk + wk,
yk = Cxk + vk,

(6.1)

where x ∈ Rn is the process state vector, y ∈ Rp is the measured output
collected by the sensor, and w ∈ Rn and v ∈ Rp are uncorrelated white
Gaussian processes with covariances Rw 4 0 and Rv 0 0, respectively. The
pair (Φ, C) is assumed to be observable.

The objective of the remote estimator is to produce the optimal estimate
of the state vector x in the minimum mean square error (MMSE) sense.
When the sensor transmits y every time step, the MMSE estimator for
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Process +
Sensor &

Event Trigger
Remote

Estimator

wk

vk
yk

(sk, ȳk)
x̂k

Figure 6.1 Setup for the remote state estimation problem. The estimate
x̂ of the internal state of the process are computed in the remote estimator
based on intermittently communicated measurement information from the
sensor.

the process in (6.1) is the standard Kalman filter [Kalman, 1960]. How-
ever, when transmissions occur sporadically based on a triggering rule, the
problem instead becomes event-based.

Let sk ∈ {0, 1} denote the sensor’s decision to transmit (sk = 1) or not
(sk = 0), and let

ȳk :=
{
yk, if transmit,
;, otherwise,

denote the measurement available to the remote estimator at time step k.
Assuming that no data is lost in the transmission, the combined history of
measurements and sensor decisions Ik available to the remote estimator at
time k is

Ik :=
{
(s0, ȳ0), (s1, ȳ1), . . . , (sk, ȳk)

}
.

Conditioned on Ik, the MMSE estimate x̂ and one-step prediction x̂− of the
state vector x at time k are given by

x̂k := E
[
xk p Ik

]
,

x̂−k := E
[
xk p Ik−1

]
.

The covariances of the corresponding estimation and prediction errors are

Pk := E
[
(xk − x̂k)(xk − x̂k)T p Ik

]
,

P−k := E
[
(xk − x̂−k )(xk − x̂−k )T p Ik−1

]
.

In the standard Kalman filter, the data (x̂, P−, P) is easily computed via
closed-form recursive equations (see Section 2.4). By considering stochastic
triggering, the same property can be retained also in the event-based case.
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6.2 The Optimal Estimator under Stochastic Triggering
We proceed by introducing the mathematical framework behind stochastic
triggering. After demonstrating how it can be used to preserve Gaussian-
ity of the state estimates, we present the optimal state estimator under
stochastic triggering.

Stochastic Triggering
The framework of stochastic triggering, as first presented in [Han et al.,
2015], is as follows. At each time step k, the sensor samples a uniformly
distributed random variable ζ ∈ [0, 1]. The sampled value of ζ is then
compared to the value of a trigger function �(y − µ) : Rp → [0, 1], whose
argument is the difference between the measurement y and a prediction µ.
The prediction is based on common information between both sensor and
remote estimator, and should preferably require only minor computational
effort from the sensor. With a sample ζk drawn at time k, the sensor decision
is formed according to:

sk =
{

1, if ζk > �
(
yk − µk

)
,

0, otherwise.
(6.2)

Under this scheme, the following property holds:

Pr(sk = 0) = �
(
yk − µk

)
,

Pr(sk = 1) = 1− �
(
yk − µk

)
.

This means that the output of the trigger function � equals the probability
of not triggering a transmission. Intuitively, � should satisfy

�(y− µ) → 1, as qy− µq → 0,
�(y− µ) → 0, as qy− µq → ∞,

i.e., the trigger probability should be small when the measurement y does
not deviate significantly from the prediction µ.

Preserving Gaussianity
Now, consider a trigger function of the form

�(y− µ) = exp
(
−

1
2qy− µq2

Y

)
, (6.3)

i.e., a scaled Gaussian density function. The parameter Y 0 0 in (6.3) is a
design variable, which determines the decay rate of �. Assuming that the
initial state x0 has a Gaussian distribution, i.e.,

x0 ∼ N (x̂0, P0),
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with known mean x̂0 ∈ Rn and covariance P0 4 0, we will show that the
distribution of xk p Ik remains Gaussian at all times k when stochastic
triggering with (6.3) is used.

For the derivation, we adopt the following shorthand notation for the
Gaussian probability density function (pdf):

G
(
x, x̂, P

)
:= 1√

(2π)n det(P)
exp

(
−

1
2qx− x̂q2

P−1

)
. (6.4)

Furthermore, we make use of the following two identities:

Lemma 6.1
For two Gaussian pdfs G(x, x̂, P) and G(x̄, Φx, R), it holds that

G
(
x̄, Φx, R

)
G
(
x, x̂, P

)
= G

(
x, d, D

)
G
(
x̄, Φ x̂, ΦPΦᵀ + R

)
, (6.5)

where

D :=
(
P−1 + ΦᵀR−1Φ

)−1
,

d := DP−1 x̂+ DΦᵀR−1 x̄.

Proof. The result is obtained by insertion of (6.4) into (6.5), and then
completing the square of the exponent. 2

Corollary 6.1
For two Gaussian pdfs G(x, x̂, P) and G(x̄, Φx, R), it holds that∫

Rn
G
(
x̄, Φx, R

)
G
(
x, x̂, P

)
dx = G

(
x̄, Φ x̂, ΦPΦᵀ + R

)
. (6.6)

Proof. The result is obtained by applying Lemma 6.1 to the product in (6.6)
and noting that the resulting factor G

(
x̄, Φ x̂, ΦPΦᵀ + R

)
is independent of

the integrand x. 2

We now proceed with the derivation. First, consider the case when

xk−1 p Ik−1 ∼ N (x̂k−1, Pk−1), (6.7)

where the mean x̂k−1 ∈ Rn and covariance Pk−1 4 0 are known quantities.
This holds by assumption for k = 0, and if we can show that

xk p Ik ∼ N (x̂k, Pk), (6.8)

for some x̂k and Pk, then Gaussianity holds for all k ≥ 0 by induction.

127



Chapter 6. Stochastic Triggering in Event-Based State Estimation

By Bayes’ theorem, the pdf of xk p Ik satisfies

p
(
xk p Ik

)
= p

(
xk p sk, ȳk,Ik−1

)
∝ p

(
sk, ȳk p xk

)
p
(
xk p Ik−1

)
, (6.9)

From (6.7) and Corollary 6.1, the prior distribution in (6.9) is given by

p
(
xk p Ik−1

)
=

∫
Rn
p
(
xk p xk−1

)
p(xk−1 p Ik−1)dxk−1

=

∫
Rn
G
(
xk, Φxk−1, Rw

)
G
(
xk−1, x̂k−1, Pk−1

)
dxk−1

= G
(
xk, Φ x̂k−1, ΦPk−1Φᵀ + Rw

)
. (6.10)

We identify the MMSE one-step prediction and its covariance in (6.10) as

x̂−k = E
[
xk p Ik−1

]
= Φ x̂k−1,

P−k = E
[
(xk − x̂−k )(xk − x̂−k )T p Ik−1

]
= ΦPk−1Φᵀ + Rw.

We now proceed with the distribution of the measurement update in
(6.9). In the case when a transmission is triggered (sk = 1) we have

p
(
sk = 1, ȳk p xk

)
= Pr(sk = 1 p yk, xk)p

(
yk p xk

)
= Pr(sk = 1 p yk)p

(
yk p xk

)
∝ p

(
yk p xk

)
= G

(
yk, Cxk, Rv

)
, (6.11)

where the measurement equation in (6.1) was used for the second equality.
In the case of no transmission (sk = 0) we have

p
(
sk = 0, ȳk p xk

)
= Pr

(
sk = 0 p xk

)
=

∫
Rp

Pr(sk = 0 p yk)p(yk p xk)dyk

∝

∫
Rp
G
(
yk, µk, Y−1)G(yk, Cxk, Rv

)
dyk = G

(
µk, Cxk, Rv + Y−1), (6.12)

where Corollary 6.1 was used in the last equality.
Finally, by combining the two measurement updates (6.11) and (6.12)

we see that (6.9) can be expressed as

p
(
xk p Ik

)
∝ G

(
skyk + (1− sk)µk, Cxk, Rv + (1− sk)Y−1)G(xk, x̂−k , P−k ).

Using Lemma 6.1, the above expression can be rewritten as

p
(
xk p Ik

)
∝ G

(
xk, x̂k, Pk

)
, (6.13)

where x̂k and Pk are given by:

Pk =
((
P−k

)−1
+ Cᵀ(Rv + (1− sk)Y−1)−1C

)−1

x̂k = Pk
(
P−k

)−1 x̂−k
+ PkCᵀ(Rv + (1− sk)Y−1)−1(skyk + (1− sk)µk

)
.

(6.14)
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Since G(xk, x̂k, Pk) is already a normalized pdf, we in fact have equality
in (6.13) and we have affirmed that (6.8) holds. By induction, Gaussianity
therefore holds for all time steps k ≥ 0, and the MMSE estimate and its
covariance are given by (6.14).

The Optimal Estimator
We summarize the derivation of the previous section as follows:

Theorem 6.1—The MMSE Estimator
Consider a linear discrete-time process of the form in (6.1). Under the

stochastic trigger policy (6.2) with a Gaussian trigger function (6.3), the
MMSE estimator is given by the following recursive scheme:

Time update:
{
P−k = ΦPk−1Φᵀ + Rw,
x̂−k = Φ x̂k−1,

Measurement update:


Kk = P−k Cᵀ(CP−k Cᵀ + Rv + (1− sk)Y−1)−1,
Pk = P−k − KkCP−k ,
x̂k = x̂−k + Kk

(
skyk + (1− sk)µk − Cx̂−k

)
.

Proof. The result follows from the derivation in the previous section, along
with straightforward manipulations of the expressions for x̂k and Pk in
(6.14) using the Woodbury matrix identity. 2

In Theorem 6.1 we see that the optimal remote estimator is a Kalman
filter with an event-dependent measurement update. When the measure-
ment yk is transmitted (sk = 1), the update follows the standard Kalman
filter algorithm, whereas in the case of no transmission (sk = 0), the update
is made with the sensor prediction µk instead. The additional uncertainty
in the latter case is reflected by the extra term Y−1 in the covariance of the
estimate.

6.3 Sensor Prediction Policies
In Section 6.2 we introduced the prediction µ, which the sensor compares
to the measurement y when deciding if a transmission should be triggered
or not. If µ matches y well, the probability of triggering remains small, and
the measurement update of the remote estimator is based on a value that
is close to y. The opposite is true if µ is a poor prediction of y. Therefore,
the choice of policy for producing the sensor prediction µ is critical for good
estimator performance. We proceed in this section by giving brief reviews
of the policies proposed in [Han et al., 2015; Shi et al., 2016; Schmitt et
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al., 2019], along with more in-depth descriptions of the proposals based on
[Thelander Andrén and Cervin, 2016; Thelander Andrén, 2020].

Open Loop
The simplest proposal for the sensor predictor, referred to as the open loop
(OL) policy, was first studied in [Han et al., 2015]. In this policy, the sensor
prediction is given by

OL: µk := 0.

This simple choice is intended for stable systems, where

lim
k→∞

E[yk] = 0.

However, the OL policy is not suited for unstable systems. Owing to its
simplicity, an exact expression for the average transmission rate under the
OL policy is available, see [Han et al., 2015, Theorem 3].

Stochastic Send-on-Delta
Another simple proposal for the sensor predictor is the stochastic send–
on–delta (SSOD) policy, which, to the author’s knowledge, was first intro-
duced in [Shi et al., 2016, Chapter 6]. In this policy, the sensor keeps track
of the last transmitted measurement and uses it as its prediction. Assuming
that the last transmission occurred l ≥ 1 time steps ago, the prediction of
the SSOD policy is given by

SSOD: µk := yk−l.

Like the OL policy, the SSOD policy requires no computations in the sensor
and offers a reasonable prediction for slow-varying processes and short
durations l. However, the prediction generally becomes poor as l grows.

Stochastic Send-on-Delta with a Simple Prediction
To strike a balance between simplicity and prediction quality, we propose an
SSOD policy modified with a simple model-based prediction. This proposal,
denoted SSODP, was first presented in [Thelander Andrén and Cervin,
2016] and uses a pre-computed look-up table of factors {Sl} to rescale yk−l
based on the model dynamics. The predictions are of the form

SSODP: µk := Slyk−l.

Since the scaling factors are computed based on the assumption of a sta-
tionary state distribution, the SSODP is only applicable for stable systems.
In the following, we derive the scaling factors {Sl}.
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Derivation of Scaling Factors. Consider an l step prediction of yk based
on the last transmitted measurement yk−l according to

µk = E
[
yk p yk−l

]
. (6.15)

To find an expression for (6.15), we introduce the following lemma from
[Åström, 1970, Chapter 7, Theorem 3.2]:
Lemma 6.2
Let x and y be two jointly Gaussian vectors. The distribution of x p y is then
Gaussian, with expectation

E
[
x p y

]
= E[x] + PxyP−1

y

(
y− E[y]

)
,

where

Pxy := E
[
(x− E[x])(y− E[y])ᵀ

]
,

Py := E
[
(y− E[y])(y− E[y])ᵀ

]
.

Proof. See [Åström, 1970, Chapter 7, Theorem 3.2]. 2

Since yk and yk−l are jointly Gaussian, Lemma 6.2 gives

E
[
yk p yk−l

]
= E[yk] + Pykyk−l P−1

yk−l

(
yk−l − E[yk−l]

)
. (6.16)

Assuming that the process (6.1) is stable, and that the state vector has
converged to its stationary distribution, we have

E[yk] = E[yk−l] = 0,

which reduces (6.16) to

E
[
yk p yk−l

]
= Pykyk−l P−1

yk−l yk−l := Slyk−l. (6.17)

Under the same assumption, we can also obtain closed-form expressions
for the matrices Pykyk−l and Pyk−l , which together form the scaling factor
Sl = Pykyk−l P−1

yk−l . Starting with Pykyk−l , we have

Pykyk−l = E[ykyᵀk−l] = E
[
(Cxk + vk)(Cxk−l + vk−l)ᵀ

]
= CE[xkxᵀk−l]CT

= CE
[( l∑

j=1
Φ j−1wk− j+Φlxk−l

)
xᵀk−l

]
Cᵀ = CΦlE[xk−lxᵀk−l]Cᵀ := CΦlΣCᵀ.

Here Σ 4 0 denotes the stationary covariance of the state vector, which
satisfies the discrete-time Lyapunov equation

Σ = ΦΣΦᵀ + Rw. (6.18)
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Using similar calculations, the matrix Pyk−l is obtained as

Pyk−l = E[yk−lyᵀk−l] = E
[
(Cxk−l + vk−l)(Cxk−l + vk−l)ᵀ

]
= CΣCT + Rv.

In summary, the set of scaling factors {Sl} used in the SSODP policy is
given by

Sl = CΦlΣCᵀ(CΣCT + Rv)
−1. (6.19)

As the set {Sl} is known beforehand, a look-up table can be computed offline
and stored in the sensor for improved efficiency. In practice, the exact value
of Sl can for sufficiently large l be approximated by the limit

lim
l→∞

Sl = 0.

Relation to the OL and SSOD Policies. From (6.19), we deduce that
fast-decaying processes (i.e., when the eigenvalues of Φ are of small mag-
nitude) with high-intensity measurement noise (i.e., the eigenvalues of Rv
are of large magnitude) achieve Sl ( 0 after relatively few time steps l. The
reason is that the correlation between yk−l and yk rapidly approaches zero
with increasing l, and the SSODP policy then essentially coincides with the
OL policy.

In contrast, when there is a strong positive correlation between yk and
yk−l, we have Sl ( Ip, and the SSODP policy coincides with the SSOD
policy. This occurs for slow-decaying, non-resonant processes (i.e., when the
eigenvalues of Φ are positive, real, and close to 1) with measurement noise
of relatively small magnitude.

From this, we note that there are processes where neither OL nor SSOD
are particularly well-suited. In particular, none of them are well-suited for
resonant systems, where the correlation between yk and yk−l periodically be-
comes negative. However, resonant systems pose no problem to the SSODP
policy as the negative correlation is taken into account in the set of scaling
factors {Sl}.

Stochastic Send-on-Delta with a FIR-Based Prediction
A clear limitation of the SSODP policy is its requirement of a stable process
model. This limitation was tackled in [Schmitt et al., 2019], where the
authors expanded upon the SSODP policy by introducing a finite impulse
response (FIR) prediction. This policy, denoted SSODP-FIR, use a sensor
prediction of the form

SSODP-FIR: µk := CΦl+1 x̂FIR
k−l, (6.20)

where x̂FIR
k−l denotes a FIR-based estimate of xk−l. The estimate is computed

in the sensor at times of transmission, and is based on the solution of a
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weighted least-squares problem using the m last measured outputs from
the process according to

x̂FIR
k = (MᵀV−1M)−1MᵀV−1




yk
yk−1

...
yk−(m−1)


 ,

where M ∈ Rpm$n is given by

M :=




C
CΦ−1

...
CΦ−(m−1)


 ,

and V ∈ Rpm$pm have the block entries

Vi, j := C
(min(i, j)−1∑

k=1
Φ−(i−k)Rw(Φ−( j−k))ᵀ

)
Cᵀ + δ i, jRv,

where i, j ∈ {1, . . . ,m} and δ i, j denotes the Kroenecker delta.
At each transmission, the tuple (yk, x̂FIR

k ) is transmitted from the sensor
to the remote estimator. By including x̂FIR

k in the transmission, the esti-
mator receives information from the last m measured outputs from the
process, including measurements collected between events. Since (6.20) is
an unbiased prediction of yk, the SSODP-FIR policy is useful also for un-
stable processes. However, since the matrices M and V depend on Φ−1, the
SSODP-FIR policy is not directly applicable for process models with pure
time-delays (i.e., when Φ has one or more zero eigenvalues). The number
m of buffered measurements in the sensor is chosen as a trade-off between
computational load and performance, and in the limit m→∞ the estimate
x̂FIR produced by the sensor is equivalent to that of the standard Kalman
filter.

Closed Loop
Another policy introduced in [Han et al., 2015] is the closed loop policy.
The name comes from the fact that it requires bidirectional communication
between the sensor and remote estimator. The sensor prediction used by
the CL policy is the one-step prediction of the remote estimator, i.e,

CL: µk := Cx̂−k .
The proposed implementation in [Han et al., 2015] requires transmissions
from the remote estimator to the sensor at each time instant. Arguably, this
goes against the motivation of event-based transmissions, as it prohibits the
sensor from powering down its radio in between events.
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Closed Loop with Buffered Measurements
Inspired by the previous policies, we propose a new policy that combines
the predictions of the CL policy with the buffered measurements of the
SSODP-FIR policy. This policy, referred to as closed loop with measurement
buffer (CLMB) [Thelander Andrén, 2020], also uses the prediction of the
remote estimator in the sensor, i.e,

CLMB: µk := Cx̂−k .

However, in contrast to [Han et al., 2015], we propose that transmissions
from the remote estimator to the sensor only take place at events, i.e., when
the sensor takes the initiative to communicate. Since bidirectional commu-
nication only takes place on the sensor’s initiative, it can then safely power
down its radio in between events. When communication takes place at a time
k, the remote estimator transmits a predicted trajectory {Cx̂−k+1, . . . , C x̂−k+m}
of length m, computed under the assumption that no transmissions will be
received for the coming m time steps. If no transmissions have been trig-
gered after m time steps, the sensor triggers a new transmission regardless.
To the author’s knowledge, this approach for remote state estimation was
first proposed in [Ruuskanen and Cervin, 2020] and is a simple solution
for avoiding a constantly powered on radio or a local copy of the remote
estimator in the sensor.

So far, the CLMB and CL policies essentially only differ in the proposed
implementation and are mathematically equivalent in the limit m → ∞.
The second part of the CLMB policy is the addition of a measurement buffer
in the sensor. The sensor then stores up to a maximum of m measurements,
and then transmits the entire buffer {yk, yk−1, . . . , yk−(m−1)} to the remote
estimator. The remote estimator then updates its estimate based on the
full measurement history—in effect reproducing the state estimation of
the standard Kalman filter at transmission times. This means that the
estimates of the CLMB policy only differ from those of the standard Kalman
filter during the intervals between transmission events.

Choosing the Trajectory Length. The fact that the CLMB policy coin-
cides with the standard Kalman filter at events is also useful for analysis.
In particular, it allows us to compute the probability of triggering a trans-
mission within a given time interval, which can guide the choice of m.

Let P−kf denote, which satisfies the discrete-time ARE [Åström and Wit-
tenmark, 1997, Theorem 11.6]

P−kf = ΦP−kfΦᵀ + Rw − ΦP−kfCᵀ(CP−kfCᵀ + Rv
)−1CP−kfΦᵀ.

Since the CLMB policy coincides with the standard Kalman filter at events,
the estimate and prediction covariances of the two policies are identical
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immediately after a transmission. Let P−l denote the prediction covariance
of the CLMB policy after l time steps since the last transmission. We thus
have

P−l =
{
P−kf, l = 1,
Φ(P−l−1 − Kl−1CP−l−1)Φᵀ + Rw, l ≥ 2,

(6.21)

where
Kl := P−l Cᵀ(CP−l Cᵀ + Rv + Y−1)−1. (6.22)

Now, let I denote the transmission history available at the time of the
last event. With some abuse of notation, the probability of triggering a
transmission at the lth time step since the last event is given by

Pr(sl = 1, s1:l−1 = 0 p I)
= Pr(sl = 1 p s1:l−1 = 0,I)Pr(sl−1 = 0 p s1:l−2 = 0,I) . . .Pr(s1 = 0 p I).

(6.23)

The conditional probabilities in (6.23) are of the form

Pr
(
sl = 0 p s1:l−1 = 0,I

)
=

∫
Rp

Pr
(
sl = 0 p yl

)
p
(
yl p s1:l−1 = 0,I

)
dyl

=
√
(2π)n det(Y−1)

∫
Rp
G
(
yl, C x̂−l , Y−1)G(yl, C x̂−l , CP−l Cᵀ + Rv

)
dyl

=
1√

det
(
Ip + (CP−l Cᵀ + Rv)Y

) := q(P−l ). (6.24)

Thus, by using (6.24) we obtain the probability (6.23) for l ≥ 2 as

Pr(sl = 1, s1:l−1 = 0 p I) =
(
1− q(P−l )

) l−1∏
j=1

q(P−j ), (6.25)

and for l = 1:
Pr(s1 = 1 p I) = 1− q(P−1 ).

Finally, the probability of triggering a transmission within m time steps is
given by the sum

Pr(sl = 1, s1:l−1 = 0, 1 ≤ l ≤ m p I) =
m∑
l=1

Pr(sl = 1, s1:l−1 = 0 p I). (6.26)

By evaluating (6.26) for different values of m, we see how probable it is that
the sensor is forced to trigger a transmission due to a full measurement
buffer. Ideally, the probability in (6.26) should be close to 1, but the result-
ing data size of each transmission and computational load on the remote
estimator also has to be taken into account.
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Average Transmission Rate and Mean-Square Error. The analysis
in the previous section can also be used to find expressions for the aver-
age transmission rate and mean square error (MSE) of the CLMB policy.
The MSE is given by tr( P̄), where P̄ is the asymptotic covariance of the
estimation error

P̄ := lim
k→∞

E
[
Pk

]
. (6.27)

Similarly, the average transmission rate f is defined as

f := lim
k→∞

E[sk]. (6.28)

The key observation for computing (6.27) and (6.28) for the CLMB pol-
icy, is that the set of possible covariance matrices and interval durations
between events is finite. As in the previous section, let 1 ≤ l ≤ m denote
the number of time steps since the last transmission event, and define

Pl :=
{
Pkf, l = 1,
P−l − KlCP−l , 2 ≤ l ≤ m,

where Pkf denotes the stationary estimation error covariance of the stan-
dard Kalman filter, and P−l and Kl where defined in (6.21) and (6.22),
respectively. The transitions between different states of covariance can then
be modeled as a Markov chain. The transition probabilities are given by
(6.24) for 1 ≤ l < m, while for l = m we trigger a transmission with
probability 1. This results in the following transition matrix:

Mtrans =




1− q(P−1 ) q(P−1 ) 0 · · · 0
1− q(P−2 ) 0 q(P−2 ) · · · 0

...
...

...
. . .

...
1− q(P−m−1) 0 0 · · · q(P−m−1)

1 0 0 · · · 0


 .

This Markov chain is both irreducible and aperiodic, which guarantees the
existence of a stationary distribution π̄ =

(
π1 . . . πm

)
, satisfying

π̄Mtrans = π̄. (6.29)

After solving (6.29), the asymptotic covariance P̄ under the CLMB policy
is found as

P̄ = lim
k→∞

E
[
Pk

]
= E

[
Pl
]
=

m∑
j=1

π jP j. (6.30)
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The stationary distribution π̄ also lets us compute the average transmission
rate as

f = lim
k→∞

E[sk] = E[sl] = E
[
E[sl p s1:l−1 = 0,I]

]
= E

[
Pr(sl p s1:l−1 = 0,I)

]
= E[1− q(P−l )] =

m∑
j=1

π j
(
1− q(P−j )

)
, (6.31)

where the law of total expectation was used in the third equality.

6.4 Performance Comparison
With a range of trigger policies available from Section 6.3, we proceed by
evaluating and comparing their respective performances in a simulation
study. Two of the presented policies, SSODP-FIR and CLMB, have an addi-
tional parameter m that represents the maximum buffer size in the sensor.
To simplify comparisons, we let m→∞ in this study. As noted in [Schmitt
et al., 2019], the performance of the SSODP-FIR policy then coincides with
that of the CL policy.

The study is divided into two parts. In the first part, we evaluate esti-
mation performance over four second-order systems, each an example of a
stable/unstable and resonant/damped process. In the second part, we con-
sider estimation performance and feedback control of a simulated flexible
servo process—a resonant fourth-order process commonly used in teaching
of control theory.

For each policy, we consider the trade-off between MSE, tr( P̄), and
average transmission rate f . These quantities are evaluated via (6.30) and
(6.31) for the CLMB policy, while simulations are used for the other policies
to obtain estimates according to

P̄ ( 1
N − 1

N∑
k=1

(
xk − x̂k

)(
xk − x̂k

)ᵀ,
f ( 1

N

N∑
k=1

sk,

where N is the total number of time steps in the simulation. Unless other-
wise stated, we use N = 105. Furthermore, the MSE is normalized in all
results such that the standard Kalman filter (KF) has a relative MSE of 1.

Second-Order Systems
Setup. Here we consider the performance trade-off for a set of four
second-order systems, categorized according to stable/unstable and reso-
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nant/damped dynamics:

(i) stable, critically damped:

Φ =
[
0.8 0.3
0 0.8

]
, C =

[
1 0

]
, Rw =

[
1.0 0.7
0.7 0.5

]
, Rv = 1,

(ii) unstable, critically damped:

Φ =
[
1.0 0.3
0 1.0

]
, C =

[
1 0

]
, Rw =

[
1.0 0.7
0.7 0.5

]
, Rv = 1,

(iii) stable, resonant:

Φ =
[
−0.85 −0.35

0.35 −0.85

]
, C =

[
1 0

]
, Rw =

[
0.01 0

0 1.

]
, Rv = 0.1,

(iv) unstable, resonant:

Φ =
[

1.1 −0.35
0.35 1.1

]
, C =

[
1 0

]
, R1 =

[
0.01 0

0 1.

]
, R2 = 0.1.

As previously noted in Section 6.3, the OL and SSODP policies are not
applicable for unstable systems and are therefore omitted for systems (ii)
and (iv) above.

Results and Discussion. Trade-off results are presented in Figure 6.2
for systems (i) and (ii) (critically damped systems), and in Figure 6.3 for
systems (iii) and (iv) (resonant systems) respectively. We observe that the OL
and SSOD policies, which both lack a time-varying prediction in the sensor,
give the overall poorest trade-offs. For the stable systems (upper plots in
Figures 6.2 and 6.3), we note that the OL policy performs better than the
SSOD policy in the resonant case, while the opposite is true in the critically
damped case. This behavior is explained by the fact that zero, rather than
the last transmitted measurement, is a better prediction on average of a
measurement signal y which is oscillating around the origin. Better still is
the simple prediction used by the SSODP policy, which outperforms both
the OL and SSOD policies.

For systems (ii) and (iv) (lower plots in Figures 6.2 and 6.3), we im-
mediately see that SSOD is not suitable for unstable systems and that
a model-based prediction in the sensor is required. We see a drastic im-
provement for the CL/SSODP-FIR and CLMB policies, where predicted
trajectories are transmitted from the remote estimator to the sensor. By
also buffering measurements in the sensor, the CLMB policy gains slightly
better performance compared to the CL/SSODP-FIR policies, especially for
the unstable resonant system (iv) in the lower plot of Figure 6.3.
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Critically Damped Systems
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Figure 6.2 Relative MSE versus average transmission rate f for the stable
(upper) and unstable (lower) critically damped second-order systems.
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Resonant Systems
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Figure 6.3 Relative MSE versus average transmission rate f for the stable
(upper) and unstable (lower) resonant second-order systems.
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cart 1 cart 2

y

F

Figure 6.4 The flexible servo process.

Conclusions. The conclusions are summarized as follows:

• the OL and SSOD policies have the overall poorest performance, while
the CLMB policy has the overall best performance,

• just as the OL and SSODP policies, the SSOD policy is not suitable
for unstable systems,

• for stable systems, the SSODP policy performs almost as well as the
more complex SSODP-FIR policy and the bidirectional CL policy.

Flexible Servo
Setup. We now consider state estimation and feedback control of a flexible
servo process, illustrated in Figure 6.4. The process consists of two inter-
connected carts moving on a track. The interconnection is flexible, and a
damper is connected to each cart. A voltage u is supplied to a DC-motor,
which in turn exerts a force F to the first cart. The available sensor mea-
surement y from the process is the position of the second cart.

A representative LTI model, corresponding to a nominal time step of
∆t = 0.01 s, is given by

xk+1 = Φxk + Γuk + wk,
yk = Cxk + vk, (6.32)

with parameters

Φ =




1 0.01 0.01 0
−1.72 0.98 1.72 0.01
0.01 0 1 0.01
1.93 0.01 −1.93 0.97


 , Γ=




0
0.01

0
0



ᵀ

, C =




0
0
1
0



ᵀ

.
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The state vector x =
[
x1 x2 x3 x4

]ᵀ corresponds to the position and
velocity of the first (x1 and x2) and second cart (x3 and x4) respectively,
given in units [m] and [ms−1]. Covariances of wk and vk are given by

Rw = 10−6 $




0.99 −0.85 0.01 0.96
−0.85 2.98 0.86 −2.23

0.01 0.86 0.99 −0.96
0.96 −2.23 −0.96 3.48


 , Rv = 10−6.

Trade-Off Comparison. First, we consider the trade-off between MSE
and average transmission rate f for the uncontrolled process (i.e., u = 0 in
(6.32)). Since the flexible servo is a marginally stable process, the SSODP
policy can not be applied directly. Instead, the SSODP design is based on
a slightly modified version of (6.32), where the marginally stable pole has
been perturbed to produce an asymptotically stable process model. For a
small perturbation, we have Sl ( 1 for all l, and the SSODP policy thus
coincides with the SSOD policy.

The trade-off results for the uncontrolled flexible servo process are
shown in Figure 6.5. We observe that the OL policy is performing sig-
nificantly worse than the other policies, while the SSOD(P) policy performs
only slightly worse than the CL/SSODP-FIR policies. As in the previous
examples, the CLMB policy provides the best performance, with a clear
improvement over the CL/SSODP-FIR policies for low trigger rates.

Feedback Control Based on Event-Based State Estimation. Based
on the trade-off results, we now consider the SSOD(P), CL/SSODP-FIR,
and CLMB policies in a final example, where we combine a linear state
feedback controller with the state estimates provided by each policy. The
state feedback gain is given by

F = −
[
59.9 9.5 −30.2 2.2

]
,

and is designed to give a damped closed-loop system. For evaluation, we
consider the response of the closed-loop system to two input impulse dis-
turbances, representing two sudden pushes to the first cart. The response
based on feedback from a standard Kalman filter is used as a nominal case,
which is used for comparisons with the corresponding responses for the
event-based policies.

The closed-loop system is simulated over a 12 s interval for each pol-
icy, corresponding to a total of 1 200 discrete time steps. The two impulse
disturbances are applied at 3 s and 6 s, respectively. For each event-based
policy, the trigger parameter Y is tuned such a total of 100 events are
triggered, i.e., roughly 8 % of the transmissions used in the nominal case.
The sequence of measurement noise is identical in all simulations.

142



6.5 Summary

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.1

1.2

1.3

1.4

1.5

Average Transmission Rate, f

R
el

at
iv

e
M

SE

Flexible Servo

OL
SSOD(P)
CL / SSODP-FIR
CLMB
Standard KF

Figure 6.5 Relative MSE versus average transmission rate f for the flexi-
ble servo system.

The results are presented in Figure 6.6, where the impulse response for
each state estimator policy is seen in the upper plot. Deviations from the
nominal response are strikingly small for all event-based policies—in the
order of a few millimeters—which is seen in the box plot in the lower part
of Figure 6.6. That only minor deviations are seen—despite only using 8 %
of the available transmissions—suggests that there is a large redundancy
of transmissions in the nominal case. Only minor differences are observed
between the responses of the event-based policies, and they all essentially
perform equally well in this example.

6.5 Summary
This chapter considered stochastic trigger policies for a prototypical event-
based remote estimation problem. By choosing a stochastic policy in the form
of a scaled Gaussian function, the conditional distribution of the process
state remains Gaussian even when no new measurements are transmitted.
This enables a straightforward derivation of the MMSE estimator, which
has the form of a Kalman filter with an event-dependent measurement
update.
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Figure 6.6 Impulse rejection for the flexible servo system with feedback
based on different state estimators, showing the time responses (upper) and
distribution of deviations from the nominal response (lower). In the box
plot of the distributions, the lower, mid, and upper line in each box corre-
sponds to the first, second (median), and third quartile, respectively, while
the whiskers correspond to the minimum and maximum. The nominal re-
sponse is produced with a standard Kalman filter, while the other responses
are based on state estimates from the SSODP, CL/SSODP-FIR, and CLMB
policies. All three event-based estimators have been tuned such that they
trigger 100 times out of 1 200 time steps during the simulations.
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6.5 Summary

For the MMSE estimator, we considered different policies for sensor
prediction—a key part in achieving a good trade-off between MSE and aver-
age transmission rate. We propose two new policies in this thesis; stochas-
tic send-on-delta with a simple prediction (SSODP) and closed loop with a
measurement buffer (CLMB). The SSODP policy expands upon previously
proposed policies by incorporating a simple prediction based on a steady-
state analysis of the process model. By taking the process dynamics into
account, the SSODP is capable of dealing with systems where other simple
policies perform poorly, such as resonant systems.

The CLMB policy is a useful alternative when bidirectional transmission
between the sensor and remote estimator is allowed. By letting the sensor
buffer and transmit the full measurement history between events, the es-
timates of the CLMB policy coincide with those of the standard Kalman
filter after each transmission from the sensor. In addition to performance
benefits, this property also results in simpler analysis, with expressions for
average transmission rate and MSE that are straightforward to compute.

In a simulation study, we compared the trade-off between MSE and
transmission rate of the aforementioned policies with other policies from the
literature. The results favored the CLMB policy in all examples, with vary-
ing margins of improvement over the other policies. Compared to other poli-
cies of similar complexity, clear performance improvement was also noted
for the SSODP policy.
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7
Conclusion

This chapter concludes the thesis with a summary and proposed directions
for future research.

7.1 Summary
In this thesis, we have considered the design of trigger policies for event-
based control and state estimation in an LQG setting. Based on the LQG-
optimal sampled-data controller (referred to as Mirkin’s LQG controller),
we posed the problem of finding the corresponding optimal trigger policy for
sampling. Solutions to this optimal sampling problem (OSP) were derived
analytically for two new system types; spiral-type systems, and single-input
and single-output systems of certain structure. The optimal event trigger
was shown to be an ellipsoidal threshold for both system types. Tight bounds
on optimal performance relative to periodic triggering were also derived for
multivariate integrator systems. These bounds show that the well-known
factor three improvement derived in [Åström and Bernhardsson, 1999] for a
first-order integrator system constitutes an upper bound in the higher-order
case. Moreover, the corresponding lower bound is decreasing with increasing
system order, with equal performance of periodic and optimal event-based
triggering in the limit.

Two numerical methods were proposed for solving the OSP for general
linear systems; a simulation-based method and a linear complementarity
method. The simulation-based method was derived using a time-dependent
formulation of the Hamilton–Jacobi–Bellman equation for the OSP, suitable
for standard PDE tools. The linear complementarity method was proposed
as an alternative that avoids introducing time-dependence. Both methods
were validated numerically and compared to a standard value iteration algo-
rithm for reference. The simulation-based method showed a better trade-off
between accuracy and solver time compared to value iteration, while the
linear complementarity method outperformed both of the other methods
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7.1 Summary

in terms of accuracy. However, both value iteration and the two proposed
methods suffer from the curse of dimensionality, restricting their use to
low-order systems.

The shape of the optimal event trigger threshold was investigated us-
ing the linear complementarity method on different classes of second-order
systems. Findings showed that most second-order systems have an optimal
threshold that is almost ellipsoidal. The notable exception is saddle-point
systems, which have non-convex optimal thresholds. For this reason, we
compared performance between triggering based on an ellipsoidal thresh-
old and the optimal threshold for a saddle-point system. The performance
results were practically indistinguishable, which further motivates the use
of ellipsoidal trigger functions. A numerical validation demonstrated that
suitable ellipse parameters for higher-order systems can be obtained via
the Monte Carlo approach in [Becker et al., 2019].

Inspired by the LQG-optimal sampled-data controller, we also studied
an “ideal” (in the LQG sense) sampled-data PID implementation. Based
on this study, a range of design options of varying complexity for event-
based PID control were proposed. A numerical study lead to the conclusion
that so-called PD triggering—where events are triggering based on both the
measured output and its derivative—is a useful option for a better trade-off
between control performance and trigger rate.

Finally, we considered stochastic triggering in a prototypical remote esti-
mation problem. With a stochastic trigger in the form of a scaled Gaussian
function, the minimum mean square error (MMSE) estimator takes the
form of a Kalman filter with event-dependent measurement update. For
this MMSE estimator, we proposed two event triggers; stochastic send-on-
delta with a simple prediction (SSODP) and closed loop with a measurement
buffer (CLMB). The SSODP policy extends previously proposed trigger poli-
cies by incorporating a simple prediction based on a steady-state analysis
of the process model. This simple prediction makes the SSODP policy capa-
ble of handling systems where other policies of similar complexity perform
poorly, such as resonant systems. The CLMB policy was proposed as a high-
performance alternative for cases when bidirectional transmissions between
the sensor and remote estimator are allowed. By letting the sensor buffer
and transmit the full measurement history between events, the estimates
of the CLMB policy coincide with those of the standard Kalman filter at
event times. In addition to performance benefits, this property also results
in simpler analysis, with expressions for average transmission rate and
estimator performance that are straightforward to evaluate.

147



Chapter 7. Conclusion

7.2 Directions for Future Research
For future research on LQG-optimal event-based control, we propose three
main directions:

• event triggering based on ellipsoidal thresholds,

• framework extensions aimed at sporadic disturbances, and

• incorporation of event-triggered learning.

Ellipsoidal Threshold Policies
We argue that ellipsoidal threshold policies are a useful and more practical
alternative to the optimal one—especially for higher-order systems, where
numerical methods for obtaining the optimal policy break down. While the
Monte Carlo approach described in Section 4.6 can be used to find (almost)
optimal ellipse parameters, we still believe that further improvements are
possible. As seen in the derivation in [Becker et al., 2019], the approach
was developed for a very general setting. However, the OSP comes with
strong model assumptions due to the LQG setup. Most likely, these as-
sumptions can be exploited in the Monte Carlo approach, either to evaluate
some involved subexpressions exactly or to find suitable control variates for
variance reduction.

Another direction that may lead to simpler optimization is to consider
stochastic triggering of the form presented in Chapter 6. Stochastic trigger-
ing based on a Gaussian function has trigger probabilities with ellipsoidal
level sets, and it can thus be interpreted as a “fuzzy” version of an ellipsoidal
threshold policy. The benefit of this approach is that the state distribution
remains Gaussian at all times, making it is possible to find exact expressions
for the LQG cost and average sampling interval—similar to the analysis for
the CLMB policy in Section 6.3. If optimization over these expressions can
be performed efficiently, a deterministic threshold can then be recovered
from the optimal stochastic policy by choosing a suitable trigger probability
level set.

Sporadic Disturbances
Disturbances are assumed to continuously perturb the controlled process
in the LQG framework considered in this thesis. Intuitively, however, we
expect event-based strategies to be most advantageous for processes where
disturbances only occur sporadically. An example of this was observed in
the flexible servo study in Section 6.4. Due to the sporadic nature of the
disturbances (two impulses), event-based triggering resulted in a closed-loop
behavior very similar to that of periodic triggering, while triggering only
8 % as often.

148



7.2 Directions for Future Research

One potential approach for incorporating sporadic disturbances is the
framework proposed in [Antunes, 2013]. Disturbances are then modeled as
impulses of random magnitude, arriving according to a Poisson process.
The “sporadicity” of the disturbance process is then determined by the
Poisson rate. This sporadic disturbance model is a generalization of the
one considered in this thesis since both models coincide as the Poisson rate
goes to infinity. Due to this link, it may be possible to extend the results
presented in this thesis for sporadic disturbances using this model.

Another approach is the framework of linear-exponential-quadratic-
Gaussian (LEQG) control, see [Jacobson, 1973; Duncan, 2013]. As the name
implies, the framework considers the exponential of the standard LQG ob-
jective. The LEQG objective function also includes a scalar design variable
that determines the exponential rate. Large values of the exponential rate
variable result in a more risk-averse control design, with a controller more
prone to rejecting large, sporadically occurring, disturbances from the tails
of the Gaussian distribution. On the other hand, as the exponential rate
variable approaches zero, the LEQG objective coincides with the standard,
risk-neutral, LQG objective. This explicit connection to the standard LQG
objective suggests that it may be possible to extend the work in this thesis
to the LEQG case.

Event-Triggered Learning
It should be noted that the framework considered in this thesis is based on
the availability of a representative process model. However, if model param-
eters are chosen poorly, there is no guarantee that actual performance will
be close to that we expect from the model. A way to deal with this problem
could be to include event-triggered learning in the closed-loop system, see
[Solowjow et al., 2018; Baumann et al., 2019]. In this approach, expected be-
havior from the model is compared to data collected from the actual process.
Whenever the model behavior differs significantly from the data, an identi-
fication experiment is triggered to update the model’s parameters. If online
redesign of the event-based controller can be achieved, then this approach
could offer the benefits of both model-based and data-driven strategies. To
achieve fast redesign of the event trigger, a suboptimal parametrization,
such as the aforementioned ellipsoidal threshold, is most likely the best
choice.
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A
Discrete-Time Model for the
Baseline LQG Design

This appendix presents a derivation of the equivalent discrete-time gener-
alized plant (2.12) for the baseline LQG design Section 2.4, including the
integrate–and–reset (IaR) pre-filter. The involved matrices in the discrete-
time formulation are expressed in terms of the given parameters in the
continuous-time model (2.1).

Consider the extended plant, with state vector x̄ :=
[
xᵀ yᵀf

]ᵀ, where yf
is the output of the IaR pre-filter

yf (t) := 1
h

∫ t

t−h
y(v)dv = 1

h

∫ t

t−h

(
Cyx(v) + Dyww(v)

)
dv.

First, from (2.11) we see immediately that

C ȳ =
[
0 I

]
.

Next, we integrate the differential equation for x in (2.1) and note that u is
constant over each sampling interval due to the assumption of zero-order
hold. This yields [Åström, 1970, Chapter 3]

∀t ∈ [τk, τk+1] :
{
x̄(t) = Φ(t− τk)x̄k + w̄x̄(t− τk) + Γ(t− τk)ūk,
w̄x̃(t− τk) ∼ N

(
0, R x̄(t− τk)

)
,

(A.1)

with

Φ(t) = et Ā −
[
0 0
0 I

]
,

Γ(t) =
∫ t

0
ev Ādv

[
Bu
0

]
,

R x̄(t) =
∫ t

0
ev Ā

[
Bw 1

hDyw
] [
Bw 1

hDyw
]ᵀ ev Āᵀdv,
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where

Ā :=
[
A 0

1
hCy 0

]
=[ et Ā =

[
etA 0

1
hCy

∫ t
0 e

vAdv I

]
. (A.2)

The expression for the exponential matrix in (A.2) is due to Van Loan’s
formula [Van Loan, 1978, Theorem 1]. By considering t = τk+1 = τk + h in
(A.1) we retrieve the difference equation for x̄ in (2.12), with

Ax̄ = Φ(h), Bū = Γ(h), Bw̄Bᵀ
w̄ = R x̄(h).

Finally, we consider the equation for the regulated output z̄ in (2.12). First,
split the cost J into a sum of integrals of length h

J = lim
T→∞

E
[ 1
T

∫ T

0
qz(t)q2dt

]

= lim
N→∞

E
[ 1
Nh

N−1∑
k=0

∫ τk+h

τk
qz(t)q2dt

]

= lim
N→∞

1
Nh

N−1∑
k=0

∫ τk+h

τk
E
[
qz(t)q2]dt, (A.3)

where Tonelli’s theorem was used in the third equality. Each integral in
(A.3) can be written as∫ τk+h

τk
E
[
qz(t)q2]dt = ∫ τk+h

τk
E

[∣∣∣∣∣
∣∣∣∣∣
[
C̄ᵀ
z

Dᵀ
zu

]ᵀ [ x̄(t)
u(t)

] ∣∣∣∣∣
∣∣∣∣∣
2]
dt, (A.4)

where
C̄z :=

[
Cz 0

]
.

Note that since the integral (A.4) covers the interval t ∈ [τk,τk + h] we
have u(t) = ūk and x̄(t) is given by (A.1). Since w̄x̄ has zero mean and is
uncorrelated with xk and ūk for all t > τk, the only stochastic term in (A.4)
with non-zero expected value is the quadratic term in w̄x̄. The expected
value in (A.4) thus evaluates to

E
[
qz(t)q2] = E

[
qC̄zw̄x̄(t− τk)q2]

+

∣∣∣∣∣
∣∣∣∣∣
[
C̄ᵀ
z

Dᵀ
zu

]ᵀ [Φ(t− τk) Γ(t− τk)
0 I

] [
x̄k
ūk

] ∣∣∣∣∣
∣∣∣∣∣
2

. (A.5)

The first term on the right-hand side of (A.5) can be computed as [Åström
and Wittenmark, 1997, (11.28)]

E
[
qC̄zw̄x̄(t− τk)q2] = tr

(
C̄ᵀ
z C̄zR x̄(t− τk)

)
.
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The integral (A.4) is thus given by∫ τk+h

τk
E
[
qz(t)q2]dt = tr

(
C̄ᵀ
z C̄z

∫ h

0
R x̄(t)dt

)
+

[
x̄k
ūk

]ᵀ ∫ h

0

[
Φ(t) Γ(t)

0 I

]ᵀ [ C̄ᵀ
z

Dᵀ
zu

] [
C̄ᵀ
z

Dᵀ
zu

]ᵀ [Φ(t) Γ(t)
0 I

]
dt

[
x̄k
ūk

]
.

The cost can therefore be equivalently written as

J = γw + lim sup
N→∞

E

[
1
Nh

N−1∑
k=0

qz̄kq2

]
,

with
γw := 1

h
tr
(
C̄ᵀ
z C̄z

∫ h

0
R x̄(t)dt

)
(A.6)

and
z̄k := C z̄xk + D z̄ūūk,

where matrices C z̄ and D z̄ū are given by the relation[
Cᵀ
z̄

Dᵀ
z̄ū

] [
Cᵀ
z̄

Dᵀ
z̄ū

]ᵀ
=

∫ h

0

[
Φ(t) Γ(t)

0 I

]ᵀ [ C̄ᵀ
z

Dᵀ
zu

] [
C̄ᵀ
z

Dᵀ
zu

]ᵀ [Φ(t) Γ(t)
0 I

]
dt. (A.7)
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B
From PID Parameters to
Benchmark LQG Problem

This appendix present the (non-unique) inverse relation between a given
ideal PID controller on parallel form (cf. (5.11)) and the benchmark LQG
design problem described in Section 5.1. That is, given a set of (positive)
PID parameters K , Ti and Td, we would like to find corresponding values
of qy, qyη, rd and k for the benchmark problem.

We recall from Section 5.1 that the parameters for the benchmark prob-
lem satisfy k, rd, qy > 0 and qy ≥ q2

yη. In turn, these parameters are related
to the optimal state feedback and estimator gains f1, f2, and ld as

f1 = −
√

2
(√qy − qyη

)
,

f2 = −
√qy,

ld = −
√
rd. (B.1)

From these relations, we see that permissible values of parameters for the
benchmark problem can only be found iff f1, f2, ld < 0. Since the feedback
and estimator gains are related to the PID parameters according to

K = ld f1 − kf2
k

,

Ti =
ld f1 − kf2
ldkf2

,

Td =
− f1k− ld
ldkf1 − k2 f2

, (B.2)

we see that this in turn is equivalent to K, Ti, Td > 0, i.e., the PID param-
eters must be positive for an inverse relation to exist.

The next question is if (B.2) always can be solved for f1, f2, ld with a
given set of positive PID parameters. By first isolating ld from (B.2), we

161



Appendix B. From PID Parameters to Benchmark LQG Problem

obtain a third-order equation

l3d + l2dk2KTd + k2Kld +
k2K
Ti

= 0.

By Descartes’ rule of signs, this equation has either one or three negative
real solutions, so we can always find a valid ld < 0. Secondly, with a solution
ld < 0, we then obtain

f2 =
K
Tild

< 0,

which is also valid. Thirdly, from the relation

KTd =
−ld − f1k

k2 ,

it follows that
f1 = KTdk−

ld
k
. (B.3)

This means that f1 < 0 iff k is chosen such that

k >

√
−ld
KTd

. (B.4)

Since any k satisfying (B.4) is valid, the resulting benchmark LQG design
problem is not unique. After having chosen a large enough value for k, we
obtain f1 via (B.3). Finally, values for qy, qyη and rd are obtained via (B.1).
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C
Proofs

This appendix presents proofs for selected thesis results.

Proof of Theorem 3.5. First, note that assumptions A1, A2 and A = 0
implies R, Q 0 0. Now, recall the Riccati-like equation (3.29)

PRP + 1
2 tr(RP)P = Q. (C.1)

Multiplying (C.1) by Q− 1
2 from both sides and defining S := Q 1

2 RQ 1
2 yields

Q−
1
2 PQ−

1
2 SQ−

1
2 PQ−

1
2 +

1
2 tr(SQ− 1

2 PQ−
1
2 )Q−

1
2 PQ−

1
2 = I. (C.2)

With the eigendecomposition S = USΛSUᵀ
S and definition ΛP :=

Uᵀ
SQ−

1
2 PQ− 1

2US we can re-write (C.2) as

ΛPΛSΛP +
1
2 tr(ΛSΛP)ΛP = I. (C.3)

With the ansatz that ΛP is a diagonal matrix we can also express (C.3) as

Λ2
P,iiΛS,ii +

1
2

n∑
j=1
(ΛS, j jΛP, j j)ΛP,ii = 1, i = 1, . . . , n. (C.4)

Note that if there exists a solution to (C.4), then it is the unique solution to
(C.3) and ultimately (C.1). Define α :=

∑n
j=1(ΛS, j jΛP, j j) > 0 and insert it

into (C.4). We can then re-write (C.4) as a second-order equation in ΛP,ii as

Λ2
P,ii +

α
2ΛS,ii

ΛP,ii −
1

ΛS,ii
= 0, i = 1, . . . , n. (C.5)

Note that ΛP,ii, ΛS,ii > 0 since R, Q 0 0. Solving (C.5) for ΛP,ii yields

ΛP,ii = −
α

4ΛS,ii
+

√
α2

16Λ2
S,ii
+

1
ΛS,ii

, i = 1, . . . , n, (C.6)
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and thus

4ΛS,iiΛP,ii = −α +
√
α2 + 16ΛS,ii, i = 1, . . . , n. (C.7)

Summation over i = 1, . . . , n in (C.7) and some re-arranging yields

(n+ 4)α −
n∑
i=1

√
α2 + 16ΛS,ii = 0, α > 0. (C.8)

Solving (C.4) is thus equivalent to finding a root of a scalar function l : α ]→
R, defined as the left hand side of (C.8). Since l is continuous and

lim
α→0+

l(α) = −
n∑
i=1

4
√

ΛS,ii < 0,

lim
α→∞

l(α) = ∞ > 0,

we conclude that there exists a solution to (C.8). Furthermore, the solution
is unique since l is strictly increasing, with

dl
dα

> 4, ∀α > 0.

With a solution to (C.8), we then obtain ΛP via (C.6), which gives the final
solution

P = Q
1
2USΛPUᵀ

SQ
1
2 .

This concludes the proof. 2

Proof of Theorem 3.6. First, note that assumptions A1, A2 and A = 0
implies R, Q 0 0. Now, from (3.32) and (3.33) we have

Jratio =

2 tr(RQ)(
tr(RP)

)2 = 2
tr
(
(RP)2 + 1

2 tr(RP)RP
)

(
tr(RP)

)2 = 1+ 2
tr
(
(RP)2

)
(
tr(RP)

)2 , (C.9)

where (3.29) was used in the second equality. Now, let λ :=
[
λ1 . . . λn

]ᵀ
denote the vector of eigenvalues to the matrix RP. Since R, P 0 0 we have
λi > 0 for all i = 1, . . . , n. Therefore;

tr(RP) =
n∑
i=1

λi =
n∑
i=1
pλip = qλq1. (C.10)

Furthermore, we have

tr
(
(RP)2

)
=

n∑
i=1

λ2
i = qλq2. (C.11)
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Inserting (C.10) and (C.11) into (C.9) yields

Jratio = 1+ 2qλq
2

qλq2
1
.

If n = 1 we have qλq2 = qλq2
1 and thus Jratio = 3. If n ≥ 2, the Cauchy–

Schwarz inequality gives
1
n
≤
qλq2

qλq2
1
< 1. (C.12)

From (C.12) it follows that

1+ 2
n
≤ Jratio < 3, n ≥ 2. (C.13)

When RP only have repeated eigenvalues, i.e., λi := λrp for all i =
1, . . . , n, the lower bound in (C.13) is attained as

Jratio = 1+ 2qλq
2

qλq2
1
= 1+ 2

λ2
rpn

(λrpn)2
= 1+ 2

n
.

The upper bound in (C.13) is the limit of Jratio when all but one eigenvalue
of RP approach zero, as

Jratio = 1+ 2qλq
2

qλq2
1
→ 1+ 2λ

2
i
λ2
i
= 3, as λ j → 0, ∀ j ,= i.

To show that the same conditions hold for the eigenvalues of RQ, we first
multiply (3.29) with R from the left, which yields

(RP)2 + tr(RP)RP = RQ. (C.14)

Define the Jordan decomposition of RP as

RP := SJ S−1,

where S is an invertible matrix and J is the Jordan canonical form of RP,
which is a triangular matrix with λ along its diagonal. Inserting the Jordan
decomposition into (C.14) yields

S
(
J 2 +

1
2 tr(J )J

)
S−1 = RQ,

which implies that RQ is similar to J 2 + 1
2 tr(J )J , and thus share the

same eigenvalues. These eigenvalues are given by

λ2
i + 1/2

n∑
j=1

λ jλi, i = 1, . . . , n. (C.15)
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Since λi > 0 for all i = 1, . . . , n, the eigenvalues (C.15) of RQ are all
repeated iff the eigenvalues λi of RP are all repeated. Furthermore, the ith
eigenvalue of RQ tends to zero iff the eigenvalue λi of RP tends to zero.
Thus the conditions on RQ are equivalent to those for RP, which concludes
the proof. 2

Proof of Theorem 3.7. Define d := qx̃qQ. Using the chain rule we have

∇x̃V =
1
d
�V
�d

Qx̃,

∇2
x̃V =

1
d
�V
�d

Q+ 1
d2

(�2V
�d

−
1
d
�V
�d

)
Qx̃x̃ᵀQ.

From the assumption RQ = αI we then have

1
2 tr(R∇2Vx̃) =

α
2 tr

(
1
d
�V
�d

In +
1
d2

(�2V
�2d

−
1
d
�V
�d

)
x̃x̃ᵀQ

)
=
α
2

(�2V
�2d

+
n− 1
d

�V
�d

)
.

Since A = aI + B and BR is skew-symmetric, we have

x̃ᵀAᵀ∇x̃V =
1
d
�V
�d

x̃AᵀQx̃ = 1
d
�V
�d

(
ax̃ᵀQx̃+ x̃ᵀBᵀQx̃

)
=

1
d
�V
�d

(
ad2 +αx̃ᵀBᵀR−1 x̃

)
=
�V
�d

ad, (C.16)

where in the third equality we used RQ = αI, and in the fourth equality
we used the relation

BR + RBᵀ = 0 Z[ R−1B+ BᵀR−1 = 0.

For spiral systems we thus have

AV(x̃) + qx̃q2
Q =

α
2
�2V(d)
�2d

+
(
ad + α(n− 1)

2d

)�V(d)
�d

+ d2,

which means that (3.10) can be reduced to one dimension, and by Theo-
rem 3.1 an optimal sampling sequence will be generated by a Markovian
threshold policy which triggers when

V(d) = ρ + V(0), (C.17)

holds. Since the level set defined by (C.17) corresponds to some fixed value
d = ∆ρ , an optimal trigger function is given by

�(x̃) = ∆ρ − qx̃qQ.
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With the problem reduced to one dimension, it is straightforward to derive
the expressions for Jµ, h̄ and V similarly to how the corresponding expres-
sions in Theorem 3.3 were derived in [Henningsson et al., 2008], to which
we refer for details. This concludes the proof. 2

Proof of Theorem 3.8. We begin by proving the result for the single-input
case. In this case the weight matrix Q is of rank 1, and thus has an
eigendecomposition of the form

Q =
[
Uq U⊥

]︸ ︷︷ ︸
:=U

[
λQ 0
0 0

] [
Uᵀ
q

Uᵀ
⊥

]
, UUᵀ = I,

where λQ > 0 is the single non-zero eigenvalue of Q, Uq ∈ Rn$1, U⊥ ∈
Rn$(n−1) and Uᵀ

q U⊥ = 0. Specifically, we have

Uq =
Fᵀ

qFq
, λQ = qQq.

With the change of variables x̃new := Uᵀ x̃ we get

˙̃xnew =

[ ˙̃xnew,q
˙̃xnew,⊥

]

= UᵀAUx̃new +Uᵀv =
[ FAFᵀ

qFq2
FAU⊥
qFq

Uᵀ
⊥ AFᵀ

qFq Uᵀ
⊥AU⊥

] [
x̃new,q
x̃new,⊥

]
+Uᵀv, (C.18)

where x̃new,q ∈ R and x̃new,⊥ ∈ Rn−1. The LQG cost (3.1) only depends on
the scalar x̃new,q since

qx̃q2
Q = x̃ᵀQx̃

= x̃ᵀnewUᵀQUx̃new =

[
x̃new,q
x̃new,⊥

]ᵀ [λQ 0
0 0

] [
x̃new,q
x̃new,⊥

]
= ppQppx̃2

new,q. (C.19)

Furthermore, the assumption FAQ = FQA gives

FAU⊥
ppFpp

=
FFᵀFAU⊥
ppFpp3

=
FQAU⊥
ppFpp · ppQpp =

FAQU⊥
ppFpp · ppQpp =

FAFᵀUqU⊥
ppFpp · ppQpp = 0.

The same assumption also implies Uᵀ
⊥AFᵀ/qFq = 0. The states x̃new,q and

x̃new,⊥ are thus discoupled, and the OSP is reduced to a first-order problem
in x̃new,q = F x̃/qFq. The solution of the reduced-order problem is given by
Theorem 3.3, with parameters retrieved from (C.18) and (C.19) as

a = FAFᵀ

qFq2 , r = FRFᵀ

qFq2 , q = ppQpp.
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The single-output case is handled analogously to the single-input case
using a linear transformation based on the eigendecomposition of R. Ob-
serving that the transformed innovations process is one-dimensional and
that the assumption LᵀAR = LᵀRA gives a discoupled transformed system
then gives the final result. This concludes the proof. 2

Proof of Theorem 4.2. First, we require the following definition:

Definition C.1—Row Diagonally Dominant
A matrix B ∈ RN$N is said to be row diagonally dominant (RDD) if

pBiip >
∑
j ,=i

pBi jp, ∀i = 1, ..., N. ♦

With this definition we proceed with the proof by using the following lemma
[Tsatsomeros, 2002, Proposition 4.6]:

Lemma C.1
The matrix M := −ΨΦ−1 is a P-matrix if −Ψ and Φ are RDD matrices with
positive diagonal elements.

See [Tsatsomeros, 2002, Proposition 4.6] for proof of this lemma. The state-
ment of Theorem 4.2 is thus proven if we show that −Ψ and Φ are both
RDD with positive diagonal entries for all c >

¯
c for some finite

¯
c > 0.

Consider first Φ, which has positive diagonal entries since

Φii = φ i(x̃i) = exp
(
− cqx̃i − x̃iq2) = 1 > 0, i = 1, . . . , N.

For Φ to be RDD we require that

pΦiip = 1 >
∑
j ,=i

pΦi jp =
∑
j ,=i

exp
(
− cqx̃i − x̃ jq2), ∀i = 1, . . . , N. (C.20)

The assumption of unique collocation points implies qx̃i − x̃ jq ,= 0. The
sum in (C.20) is therefore guaranteed to be a strictly decreasing function in
c ∈ (0,∞). Furthermore, we have

i = 1, . . . , N :

 lim
c→0+

∑
j ,=i exp

(
− cqx̃i − x̃ jq2) = N − 1,

lim
c→∞

∑
j ,=i exp

(
− cqx̃i − x̃ jq2) = 0.

Therefore, the inequality (C.20) is always satisfied if N ≤ 2, whereas if
N > 2 there exist a unique set of values {

¯
cΦ,i > 0} such that

1 =
∑
j ,=i

exp
(
−

¯
cΦ,iqx̃i − x̃ jq2), ∀i = 1, . . . , N.
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The matrix Φ is thus RDD if we pick a c satisfying

c >
¯
cΦ := max

i ¯
cΦ,i.

Now consider the matrix −Ψ, which also has positive diagonal elements
as

(−Ψ)ii = −Λi(x̃i)φ i(x̃i) = −Λi(x̃i)
= −c

(
2cqx̃i − x̃iq2

R − 2x̃ᵀi Aᵀ(x̃i − x̃i) − tr(R)
)
= ctr(R) > 0. (C.21)

The inequality in (C.21) holds since R 4 0 and R ,= 0. For −Ψ to be RDD
we require that

tr(R) > 1
c

∑
j ,=i

p(−Ψ)i jp

=
∑
j ,=i

ptr(R) − 2cqx̃i − x̃ jq2
R + 2x̃ᵀi Aᵀ(x̃i − x̃ j)pφ j(x̃i), ∀i = 1, ..., N.

(C.22)

Using the triangle inequality, we note that the sum in (C.22) is bounded
from above by a function bi : R ]→ R given as

bi(c) :=
∑
j ,=i

(
tr(R) + 2cqx̃i − x̃ jq2

R + 2px̃ᵀi Aᵀ(x̃i − x̃ j)p
)
φ j(x̃i), i = 1, . . . , N.

(C.23)
Thus, the inequality

tr(R) > bi(c), ∀i = 1, . . . , N, (C.24)

implies that (C.22) is satisfied and that −Ψ is RDD. Each function bi(c) is
continuous, with limits

i = 1, . . . , N :

 lim
c→0+

bi(c) =
∑

j ,=i(tr(R) + 2px̃ᵀi Aᵀ(x̃i − x̃ j)p) > tr(R),

lim
c→∞

bi(c) = 0.
(C.25)

Furthermore, the derivative of bi(c) is given by

�bi
�c

=∑
j ,=i

(
2qx̃i− x̃ jq2

R−qx̃i− x̃ jq2(tr(R)+2cqx̃i− x̃ jq2
R+2px̃ᵀi Aᵀ(x̃i− x̃ j)p)

)
φ j(x̃i).

(C.26)
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Appendix C. Proofs

Since the collocation points are unique, each function bi(c) has a unique
stationary point given by

cvi =
∑

j ,=i
(
2qx̃i − x̃ jq2

R − qx̃i − x̃ jq2(tr(R) + 2px̃ᵀi Aᵀ(x̃i − x̃ j)p)
)

2
∑

j ,=i qx̃i − x̃ jq2
Rqx̃i − x̃ jq2 .

By studying the sign of (C.26) around cvi we deduce that the stationary
point for each function bi(c) is a local maxima, and each function is strictly
decreasing on the interval c ∈ (cvi ,∞). Thus, there exists a

¯
cΨ,i ≥ cvi for

each row i such that

tr(R) > bi(c), ∀c >
¯
cΨ,i, ∀i = 1, . . . , N.

The inequality (C.24) is therefore satisfied for all c satisfying

c >
¯
cΨ := max

i ¯
cΨ,i,

and −Ψ is RDD for these values of c. Finally, both −Ψ and Φ are guaranteed
to be RDD for all c satisfying

c >
¯
c := max(

¯
cΨ, ¯

cΦ).

Thus, by Lemma C.1 we have showed that M is a P-matrix for all c >
¯
c.

This concludes the proof. 2
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