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Cloud-based model predictive control with
variable horizon ?

Per Skarin ∗,∗∗ Johan Eker ∗,∗∗ Karl-Erik Årzén ∗∗

∗ Ericsson Research
∗∗ Department of Automatic Control, Lund University

Abstract: A novel method using the cloud to implement a variable horizon model predictive
controller is presented. In case of sudden long delays and downtime, a graceful degradation is
used. Robust, best effort strategies allow industrial grade use of the powerful, efficient, and
quickly improving cloud ecosystems. The variable horizon strategy finds use in, for example,
non-linear control problems, and the proposed method can be generalized to implement robust
and scalable controllers that benefit from cloud technology. We show results from two horizon
selection strategies, service degradation and connectivity issues.

Keywords: Industry automation, Predictive control, Optimal control, Systems concept, System
architectures, Networks, Adaptive systems, Parallelism

1. INTRODUCTION

The cloud has come to represent the availability of com-
puting infrastructure and services in resemblance with a
public utility such as electricity or water. For many, it is
an ubiquitous everyday necessity, accessible at all times.
This ecosystem of web services and compute and storage
resources, available over remote networks and paid per
usage, gained momentum about a decade ago (Armbrust
et al. (2010)). Since then the cloud has revolutionized the
software industry and is rapidly becoming an intrinsic part
of our infrastructure. The cloud supports the design and
operation of highly automated and elastic services that can
scale to meet demands.

Recent advances in cloud technology include concepts such
as edge, fog and osmotic computing (Yousefpour et al.
(2019); Villari et al. (2016)). An edge node can be a server
on the factory floor which is connected to a centralized
cloud or it can be a radio base station that offers compute
capabilities. The edge node is integrated as part of the
cloud and provides the advantages of lower latency and
reduced dependencies on remote service, e.g. in the case of
connectivity issues the edge node can continue to provide
the cloud service, but at reduced capacity. Combined with
rich sensor environments and the edge, cloud technology
is gaining traction in traditional industries including lo-
gistics, transport, factory automation, manufacturing, and
even for critical closed loop control systems.

In this paper, we present a Model Predictive Control
(MPC) architecture that is designed for cloud deployment
and makes, from an MPC perspective, novel use of the
”infinite” compute capacity of the cloud while providing
robustness to loss of connectivity. The assumption is that
the controller requires the cloud to operate, possibly due
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to computational restrictions on the device or the need
to access data that is not locally available. In the ap-
proach, the prediction horizon is decided dynamically; and
stability and feasibility are enforced in the optimization.
Robustness towards loss of connectivity and extensive
computational delays is obtained by combining the MPC
with a local controller. We define two modes of operation.
In assisted mode, the controller uses the resources of the
cloud to solve the optimization problem over a large set
of horizons in parallel. In local mode, a simpler controller
stabilizes the system and provides a basic degree of perfor-
mance. The resulting system is convenient to implement
and has a built-in capacity to scale with the problem. The
approach naturally extends to edge clouds, which combine
the compute capacity of a centralized cloud with the low
latency access of local nodes. It also puts in perspective
the use of flexible, cost effective, best effort control sys-
tems as opposed to traditional, costly and static systems.
Reliability of best effort systems could provide a viable
cloud alternative when upgrading industrial processes and
the study of these systems is highly relevant for Industry
4.0.

The outline of the paper is as follows. Section 2.1 to 2.6
describe the problem and its solution. Section 2.7 and 2.8
briefly presents the latency and plant models. Section 2.9
outlines the design steps necessary to implement the
controller. In Section 3.1 the cloud service is benchmarked
while Section 3.2 shows simulated results based on these
observations. Finally, Section 4 concludes the paper.

1.1 Related Work

There is a lack of work on control design that considers the
possibilities and implications of the elastic, and virtually
unlimited compute resources of the cloud. Previous work
on cloud based control systems (Pelle et al. (2019); Mubeen
et al. (2017); Givehchi et al. (2014); Hegazy and Hefeeda
(2015); Heilig et al. (2015) ) focus on a high level of
abstraction and replacing existing designs with cloud coun-
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Fig. 1. The system setup where the control law is divided into
a local part κl(·) running in the client and a remote part
κr(·) that is off-loaded to the cloud. The remote part κr(·)
is realized by running multiple parallel instances in the
cloud.

terparts. Work on distributed MPC over networks include
collaborative agent systems, distributed optimizations, hi-
erarchical control and optimal control in the presence of
delay (for instance Zheng et al. (2016); Christofides et al.
(2013); Alessio and Bemporad (2007); Lu et al. (2014);
Scattolini (2009); Stewart et al. (2010); Camponogara
et al. (2002)), but work that considers the cloud as a
separate paradigm is largely missing. One example which
does make an explicit case for MPC in the cloud is Heilig
et al. (2015) which presents an application for intelligent
transport systems. A multi-agent system comprising many
MPCs executing in the cloud is proposed conceptually
as a flexible method to handle heavy computations and
large amounts of data, but there is no consideration as to
how the control structure itself can be improved using the
cloud.

Variable horizon MPC as introduced for nonlinear systems
by Michalska and Mayne (1993) adds minimization of the
horizon to the optimization problem in order to reach a
target set in the shortest possible amount of steps. In our
work, we utilize the cloud to evaluate a set of horizons
and define a separate operation which selects the horizon,
or more generally an MPC definition, from the available
responses when the output is applied. A different reason
for variable horizons (or multiple horizon) MPC is used in
Park et al. (2015) where the optimal horizon varies and
is determined by evaluating the gait of a quadruped as it
prepares for jumping an obstacle.

2. METHOD

2.1 Targeted system

The targeted system is illustrated in Figure 1. The system
is composed of a plant controlled by our proposed assisted
controller, here operated by the local device (denoted
Client in the figure). The client continuously executes a
local on-board controller κl(·) and a remote controller
κr(·), which performs most of its work in the cloud. Using
a cloud service it processes several potential solutions
in parallel, filters the responses and forwards the best
selection to a function fu(κl, κr) that merges the output
of the two controllers. The function fx(x, u) predicts the
plant state a number of sampling periods into the future.
This is used to set a deadline for the remote controller,

i.e., any response from the remote controller must arrive
to the local client before the deadline.

A key element of the design is the use of the cloud to
execute multiple instances of a model predictive controller.
In Figure 1 this is represented by the stacked boxes labeled
Yi = f(Xi). In relation to Section 2.2, Xi is the input
pair (x0, Ni), while Yi is a predicted state trajectory and a
control input vector (xi,ui) Cloud services specifically de-
signed for executing functions are referred to as Function-
as-a-Service (FaaS). These services provide the user with a
convenient way to implement and execute single operations
in the cloud. Such services automatically scale to handle
load, allowing a large number of requests at a given time.

2.2 Controller

The control strategy uses the cloud to implement a vari-
able prediction horizon MPC. An MPC works by repeat-
edly solving a numerical optimization problem to find
an optimal control signal. The optimization problem can
take considerable time to evaluate. The control strategy
must take this delay into account in combination with
the communication latency between the client and the
cloud. The load of the network and in the cloud service
varies over time and there is an inherent risk of loosing
connectivity. When a request is made to the cloud it is
assumed that it can fail, or that it does not provide the
service that was expected and aimed for. Altogether this
requires a local backup strategy. For the purpose of the
work herein it is assumed that the local device is limited
to a degree such that it is not possible to execute an MPC
controller locally, not even an explicit MPC (Bemporad
et al. (2002)). Instead, a Linear Quadratic (LQ) regulator
is used, derived from the specifications of the MPC.

The selection of the horizon in the MPC can be non-
trivial. A short horizon can lead to infeasibility while a long
horizon can take too long to evaluate. A scalable controller
should not be bound by a predetermined horizon. The
cloud allows us to run the optimization over many horizons
and select the best alternative that provides a response
within the deadline. To ensure stability and recursive fea-
sibility of the responses the MPC uses a terminal cost and
terminal state constraints, referred to as the terminal set
Rawlings and Mayne (2009). The terminal requirements
force responses which ensure constraint satisfaction in
future states and, as the system gets close to the setpoint,
its response approaches that of the local LQ controller.
When the state is inside the terminal set the plant can be
operated using the local controller.

The function that executes in the cloud is a MPC as
defined in Equation (1).

min
u

f(x0, N) =

N−1∑
i=0

xTi Qxi + uTi Rui + xTNPxN

subject to xi+1 = Axi +Bui
Gxi ≤ g, Hui ≤ h, xN ∈ Xf

(1)

This is a discrete time, constrained controller with a
quadratic cost function defined by the matrices Q and R,
applied to the state and control signal respectively. N is
the horizon. Equation (1) includes a terminal constraint
set Xf and a terminal cost P . A local control law, κl(·),



i.e., the LQ regulator, is defined for which Xf is a positive
invariant set. That is, if the starting state is in Xf then the
system, under control of κl(·), will remain in Xf . Formally,
f(x, κl(x)) ∈ Xf ,∀x ∈ Xf , where f(x, u) defines the state
evolution of the system. It is also required that all states
in Xf satisfy the state constraints, that Xf is a closed set,
and that Xf contains the origin in its interior. Finally, the
input constraints must also be satisfied, κl(x) ∈ U,∀x ∈
Xf , where U are the control input constraints. Since the
selected MPC is a linear quadratic problem we derive from
it a local linear state feedback controller κl(x) = Kx and
find a terminal set Xf for which the conditions above
hold. This local LQ regulator is the solution to (1) with
an infinite horizon and no constraints. The constraint
satisfaction is ensured through the terminal set Xf . The
asymptotic and unconstrained solution to the LQ regulator
problem provides a cost P which is a local Lyapunov
function for κl(·). Inserting P and Xf into (1) ensures a
stabilizing state feedback controller. It is assumed that the
system state is fully observable.

To create a time frame for the optimization a dead-
time is forced into the controller by generating a state
approximation x̂k+1 using the available system model

x̂k+1 = Axk +Buk (2)

This state approximation is inserted into the optimization
at time k and the resulting controller output is applied
at the next sampling instant k + 1, i.e., the control signal
is delayed until the next sampling instant. Note that this
delay is not part of the MPC problem and therefore not
included in (1). The delay of one sample is the time frame
available for the optimizations in the cloud. Any result
returned later will be discarded.

We are now ready to define the cloud assisted, elastic
controller. First, if we can guarantee a result from the
optimization in (1) for all samples then the local control
κl(·) is not explicitly needed. It is introduced implicitly
into the MPC by adding its cost P as the terminal cost and
enforcing the terminal set. An important property of our
cloud controller is that the availability of the MPC output
is not guaranteed due to connectivity, latency or feasibility
issues. Therefore there must be a local device controller
available to ensure uninterrupted control of the plant. For
this purpose the stabilizing LQ regulator from the MPC
formulation is used to provide the baseline performance
of the cloud assisted controller. In a nominal system, this
controller is optimal and does not violate constraints, as
long as the state error is inside the terminal set. To ensure
that the local controller is inside Xf it is necessary to
shape the setpoint, something which is returned to in the
description of the local mode.

Next, we consider the MPC functions that are requested
from the cloud and how we define admissible responses.
Let M be the set of all applicable models and C the set
of all applicable constraints. N is as usual the horizon.
Assuming that the cost function is the same then Φ is
the set of all possible model predictive controllers for our
problem.

Φ =
{
κN,m,c|N ∈ Z+,m ∈M, c ∈ C

}
(3)

Given the theoretical idealization of the cloud as a place of
infinite computational resources all controllers in Φ could

be evaluated with every sample. In practice, however,
the controller must select a subset of MPCs, φk ⊆ Φ,
to execute in the cloud. The set φk is referred to as
the request set. The set of admissible results ψk at time
k are all the MPC responses that are returned within
the deadline. It is assumed that the solver only returns
results that are feasible, i.e. that the solver either aborts
in case of infeasibility or returns an indication causing the
local device to discard the result. Denoting τ iN,m,c as the
latency for controller κN,m,c evaluated at time i, δ the
deadline, and g(κN,m,c) the result obtained when solving
the optimization, the response set is defined as

ψk =
{
g(κN,m,c)|τ iN,m,c < δ, δ ∈ R+

}
(4)

Note that g(κN,m,c) corresponds to Yi in Figure 1 and φk
defines the stacked functions in the cloud. Restricting the
setup to a single model and a single constraint set, and
restricting δ to the time between two control actions we
get the reduced sets

Φ = {κN |N ∈ Z}
ψk =

{
g(κk−1

N )|τk−1
N < h

} (5)

where h is the sampling period t(k)−t(k−1). In this setup
all requested MPCs have the same model, constraints and
cost function but different horizons. Only responses which
arrive within one sample are valid. In the following this
setup will be the focus.

We now define two modes for the controller, assisted mode
and local mode, and the switching strategies.

2.3 Assisted mode

In the assisted mode, the device is connected to the net-
work. At each sample a new set of requests, φk, is sent to
the cloud service. This set includes state information and
the horizons to evaluate. Up until the deadline admissible
MPC responses in ψk are received from the cloud. Several
horizons are evaluated to increase the chance of receiving
an admissible response in time. Results may be lost or late
due to network delay, computation time, admission time
into the cloud services, packet loss, connectivity loss and
machine failure. Short horizons may not provide feasible
solutions and long horizons can take too long to evaluate.
Late responses are discarded.

At the start of a sampling period the local control system
selects one of the arrived responses. Since all the responses
in ψk guarantee stability, feasibility and no constraint
violation any of the responses can be selected and used.
The set operation

Ψ : ψk → g(κr(·)) (6)

defines a function that selects one of the available re-
sponses. The selection criteria is arbitrary. It could be
a simple criteria such as always selecting the smallest or
largest horizon or a more involved method which looks
at the system state or the predicted cost. The selected
g(κr(·)) contains a sequence of control inputs over the
length of the horizon

#»u k = {uk, uk+1, ..., uk+N−1} (7)

When operating in the assisted mode, and hence contin-
uously receiving responses from the cloud, the controller
acts as an ordinary MPC and applies to the plant only the
first value in the sequence, #»u k(0).



2.4 Local mode

In local mode, the control is achieved using the LQ
controller obtained from the costs and model of the MPC.
Local mode is entered when connectivity is lost, the cloud
is unable to provide admissible results or when the state
error lies within the terminal set. The latter implies that
resources are not requested from the cloud when the state
error is small. To operate reliably setpoint shaping is used
for the local controller, e.g. a large setpoint change is
replaced by a sequence if smaller step changes. Setpoints
are also restricted to operate at a safe distance from
constraints. Limiting the magnitude of errors perceived by
the controller makes the local mode limited in performance
but in return provide stability and satisfies constraints.

Figure 2 illustrates the effect of limiting the controller
in this manner; showing the initial open loop prediction,
Linear Quadratic Regulator (LQR), set-point shaped LQR
and a MPC response to a step change in the reference of a
second order system (see Skarin et al. (2019) for details).
The state constraints are contracted for robustness. The
terminal set and tightened constraints are marked in the
figure while the outer gray box illustrate the original
constraints. The trajectory of the setpoint shaped, con-
servative LQR is far from the optimal path but stays well
within the constraints. The open loop sequence does not
correspond with the closed loop optimal path and violates
constraints, which shows the severity of the model er-
ror. The unrestricted LQR largely violates the constraint,
which shows the reaction without setpoint shaping.

2.5 Switching from local to assisted mode

The switch from local to assisted mode is instantaneous.
When ψk 6= ∅, i.e. the controller has received one or more
responses in time, it will apply one of those results as
the next control output. Similarly, if the controller is in
transition from assisted to local mode, that process is
immediately interrupted.

2.6 Switching from assisted to local mode

The switch to local mode can happen when the system
has entered into the invariant set for the local controller or
because no response was received from the network. This
switching is critical since the local control does not handle
constraints. In the first scenario, when having entered into
the invariant set, it is straight forward to hand over control
to the local controller. Being in the invariant set ensures
that the local controller can act without violating the
constraints. In the second scenario connectivity is lost or
the admissible set becomes empty. If local mode is entered
immediately when this happens the system can experience
erratic behavior or large constraint violations because of
the limitations of the local controller. To avoid this, the
control sequence from the latest selected response is used
to provide a sequence of inputs used in combination with
the local controller.

Since the LQ is built into the MPC the control signal can
be considered as the output of a linear, unconstrained con-
troller summed with a perturbation from the constrained
optimization, i.e., as

fu(κl, κr) = #»u k(k − i)−Kx̂k|xi−1 +Kx̂k|xk−1, (8)

where i is the time step in which the MPC with output
sequence #»u k was selected. This decomposition is strongly
related to the tube-based robust MPC proposed in Rawl-
ings and Mayne (2009). The state estimate x̂k|xi−1 is the
prediction of the current state used by the the MPC to
generate #»u k while x̂k|xk−1 is the current state prediction
from the previous sample, i.e., using the latest information
as opposed to the information available when the MPC was
requested. The expression in (8) removes the predicted
LQ response from the MPC output and re-adds the LQ
using updated state information. In the first step, when
i = k, the two last terms cancel and the closed loop
MPC of (1) is obtained. In assisted mode this happens
repeatedly as i = k when the response set is non-empty,
ψ 6= ∅. When i < k the states may not match and the LQ
regulator, working in closed loop, is allowed to compensate
for prediction errors. This strategy assumes that the MPC,
in addition to the control signal sequence, also returns
the corresponding state sequence, i.e., that this is also
contained in the response set ψk. We do not formally
address constraint satisfaction on connectivity loss but
(8) is a better alternative than using only the open loop
sequence or unconstrained LQ.

Using (8), the local LQ regulator is active at all times and
applied as a residual to the MPC open loop trajectories
during the mode switch. As a further measure to create
robustness and a smooth transition to local control, (8)
is extended with an averaging term, αi, which gradually
decreases the impact of the MPC control signal when
switching from assisted to local mode. To make explicit
that the local controller uses setpoint shaping, x̂limk is
introduced to denote the limited state after shaping.

fu(κl, κr) = αi(
#»u k(k − i)−Kx̂limk |xi−1) +Kx̂limk |xk−1

(9)
Equation (9) is performed by the client (inside fu in Fig-
ure 1) and is not part of the MPC problem. From here on
(9) is referred to as α-switching. Figure 3 shows again the
scenario in Figure 2 but this time with two examples of α-
switching. These two trajectories have suffered connection
loss and are switching to the local mode using the exponen-
tial decay given by Equation (10) but with different values
of N . An exponential decay is chosen from the observation
that model errors in the MPC produce an exponential
growth in the error over the predicted path. The exponent
γ and starting condition β0 are set to change the influence
of the MPC from 99 % to 1 % over the horizon.

αi = 1− βi, i = {1, .., N}
βi = βi−1e

γ , β0 = 0.01, γ = log(99)/N
(10)

There are several things to note in this figure. First, the
closed loop MPC represents the assisted mode. This is the
typical path of the cloud-assisted MPC controller. Second,
the α-switch with N = 20 violates the original constraints
while the the α-switch with N = 9 does not. To handle
connectivity issues it is a more robust strategy to select
short horizons since they are forced into the terminal set
within fewer steps. Third, the two dashed lines shows paths
with αi = 1. The effect of α-switching is clearly visible
when N = 9. The effect is reduced as N increases since
αi remains large outside the terminal set, which retains
the MPC output until the two modes begin to coincide.
It should be noted also that (8) already provides some
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Fig. 2. Response of the setpoint shaped LQR (SS-LQR), open
loop prediction, unrestricted LQR, and MPC in a system
with a model error. Terminal set and tightened constraints
are marked in the figure. The outer gray box shows the
critical, original constraints.
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Fig. 3. Same scenario as in Figure 2, with different controllers.
The local, setpoint shaped LQR (SS-LQR), a fully con-
nected MPCN=9, initial open loop prediction and two,
disconnected, α-switching controllers, using (9) with the
decay in (10). Dashed lines show the paths for a fixed
αi = 1, i.e. (8).

robustness to model errors as seen by comparing to the
open-loop sequence. Fourth, the α-switching initially pulls
the path towards the conservative path of the setpoint
shaped LQR, but as the system approaches the terminal
set the N = 9 solid path again begins to merge with its
corresponding dashed path. This happens even though the
local controller becomes more and more dominant because
the paths of the two modes begin to coincide. The strategy
pulls the path slightly towards SS-LQR, with the result
that the path stays within the original constraints. Finally,
on close inspection, the path of the closed loop MPC
temporarily violates the constraints at one point. This is
because of the model error. At this point the MPC will be
infeasible but control is recovered by temporarily entering
the switching mode. The switching brings the state back
inside the constraints where in turn the assisted mode, and
therefore MPC efficiency, is regained.

2.7 System delay model

The latency of a single optimization, i.e., one configuration
κN in Φ, is modeled as

τrt(N, ε) = Xe(N, ε) +Xs (11)

where τrt is the round trip delay and Xe and Xs are
random variables referred to as the execution time and
service delay. The execution time depends on the controller
horizon and the current state error ε. Repeating a request
is expected to not provide an identical execution time due

to the expectancy of executing on different machines and
alongside other applications in the cloud. The function and
variability governing the execution time is unknown. To
obtain an estimate of the execution times as a function
of state and horizon, and variability due to the cloud, an
efficient optimizer (QPgen, Giselsson (2015)) is deployed
in the cloud service. However, this optimizer lacks the
necessary support for terminal conditions and therefore
in the evaluations a Matlab implementation is used.

The service delay includes networking and other overhead
such as queuing for access to the cloud service. It is
assumed that the distributions are relatively stable and
therefore they do not depend on the time step k. In
practice, if the load on the system temporarily causes the
designed for distributions to be wrong, the loss is managed
by the switching and local modes. Xs is calculated through
measurements of τrt(N, ε) and Xe(N, ε) when running
QPgen optimizations on real cloud services. This is what
is used in Section 3.1.

2.8 Plant model

The approach in this paper is exemplified using the lin-
earized triple integrator process in (12) and (13). This
system controls a ball rolling on a tilting beam. x1 is the
ball’s position, x2 the velocity of the ball and x3 the angle
of the beam. This system is observable, controllable, and
open-loop unstable. The state x = [x1 x2 x3] is limited by
the explicit constraints given in (13).

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)
(12)

A =

[
0 1 0

0 0 − 5
7
· g

0 0 0

]
, B =

[
0
0

0.44

]
, C = 10

[
1

0.55
0 0

0 0 4
π

]
x =

[
x1 ẋ1 x2

]
, |x1| ≤ 0.55, |x2| ≤ 1.5, |x2| ≤ π/4

(13)

The aim is to use a sample rate of 20 Hz. This is a
reasonable frequency for the plant and for the cloud control
system, as previously observed by Skarin et al. (2018).

2.9 Designing an assisted controller

The controller is defined as the linear MPC in (1). The
local regulator is obtained as the solution to the uncon-
strained LQ problem as N → ∞. The model matrices
A,B, the constraint pair G, g, cost matrices Q,R and the
terminal set Xf must be specified. No horizon is defined
for the controller but as specified in Section 2.2 there needs
to be a strategy for choosing the request set φk. Here this
strategy is defined as using a fixed set of horizons which are
evaluated with every sample. The terminal cost P follows
as the asymptotic cost in the LQ problem, the solution
to which is standard procedure (Kalman (1960)). A brief
introduction to the terminal set follows.

The positive invariant set is a set of starting conditions
which ensures that the local controller does not violate
constraints. A large terminal set reduces the need for
large horizons but can also become complex and hard
to calculate. Based on the assumptions and purpose for
creating the cloud controller it is not necessary to find
the largest possible invariant set. A reasonably small, non-
optimal, but preferably robust, subset will suffice.



Fig. 4. The maximal invariant set (outer hull), an invariant
ellipse and the contained invariant set cube represented by
three linear constraints. The local controller is constrained
to operate in this limited space.

Polytopes can represent the invariant set arbitrarily well
but become complex. An alternative method to find a rea-
sonable non-optimal subset is to use elliptical constraints.
However, this requires the use of cone programming for
the optimization. To stay with the linear constraints in
Equation (14) a rectangular polytope is defined which fits
inside the elliptical subset.

Xf = {x|Htx ≤ h} (14)

This is illustrated in Figure 4 1 . The outer hull in this
figure is the maximal invariant set for the LQ controller.
The much smaller cube shows the final terminal con-
straints which are contained inside the ellipse. A thorough
introduction to the use and calculation of invariant sets is
found in Blanchini (1999).

3. RESULTS

In this section, we first look at an example of the cloud
in practice and evaluate it for our application. The data
collected is used for the simulations in Section 3.2. The
simulations use Matlab, and Simulink, with a continuous-
time model of the plant. Matlab’s quadprog is used for the
optimizations, with support for the terminal conditions.

3.1 Cloud

First, the proposition to use FaaS (Section 2.1) is investi-
gated. Figure 5 shows results from executing the MPCs on
three different platforms. The setup is as in Figure 1 but
using different cloud providers and configurations. While
the details of cloud service changes, the request API and
the implementation on the client remains unaffected. The
tests repeatedly evaluate a step change in the setpoint for
the system in (13). For a set of horizons N = 5− 120, the
step is evaluated a total of 1000 times using each service.
The services γ, α, and β1 are continuously loaded with
ten optimizations in parallel while β2 must handle twice
as many, i.e. 20, parallel requests. With each new request,
the horizon is selected randomly from the above set.

γ is the result of a function-based implementation using
a representative public FaaS. Here, we have submitted
the function, i.e. the optimization software, to the cloud
but do not manage the service architecture. The default
configuration of the service such as number of concurrent
requests and timeouts are not restrictive for this scenario.
Examples α, β1, and β2 use the infrastructure service of
the cloud (IaaS) to create a custom service. This uses
Flask and HAProxy to provide the request API and a load
balancer. The data center provider and virtual machine
configuration are different for α and β1 but both have one
load balancer and the same number of worker cores (eight).

1 Using the Multi-Parametric Toolbox by Herceg et al. (2013).
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Fig. 5. Delay distributions from three different services. Dark
gray is round-trip time. Gray is service time. Light gray
is execution time. β2 is loaded by twice as many parallel
requests.

β2 was given more cores to account for the additional
load. The data center of β is a much smaller, municipal
data center, while α uses the same, more distant, public
data center also used for γ. The inclusion of α is for
comparison with γ and the performance of the municipal
data center. In all cases, the same Python code is used for
the optimization function.

As stated in Section 2.8 the aim is to use a sampling period
of 50ms (the red line). This is not possible for γ since
service times, and sometimes also execution times, end up
beyond the red line. The large spread of the execution
times, Xe(N, ε), seems due to that the service penalizes ex-
tended executions. That is, the performance per time unit
decreases when the complexity of the problem increases.
This translates to long execution times for large horizons
and when the system state requires many iterations for the
optimization to converge.

The results prompt the necessity to try something differ-
ent, which is why α and β1 are introduced. The response
of α is much better than that of γ. Since they use the
same cloud provider, with the same locality, this shows
that the long delays of γ, caused by execution times, are
due to the FaaS. The figure also shows that using the local
cloud provider, β1, gives a response similar to α. The more
distant provider has faster execution times but a larger
minimum service time. This is attributed to network delay.
Finally, β2 was loaded by more concurrent requests, to
allow for more horizons per sample. Although the number
of workers was scaled up to account for the load, the service
time increased. Thus, the assumption of an ideal system
capable of an arbitrary amount of concurrent requests does
not fully hold for this configuration and load. Still, this
setup has a higher utility, with more successful requests
per sample.

β2 is chosen as the baseline to study control performance.
The service time distribution, Xs, is obtained through
maximum likelihood fitting of the data in Figure 5 onto
a log-normal distribution. Execution times, Xe(N, ε), are
obtained by executing the functions on the cloud service.

3.2 Control

The performance of a nominal system is shown in Figure 6,
Figure 7, and Figure 8. The simulations are run in Matlab
but draws the execution delays from the cloud as presented



Table 1. Admissible responses (percent)

N 3 5 7 9 11 20 29 38 47 56 66 75 84 93 102 111 120

A 26 40 51 60 69 94 94 96 94 92 90 93 91 92 87 90 85

B 23 36 47 56 65 95 98 98 99 99 96 95 92 95 94 91 88

C 7 13 19 20 28 39 25 31 26 27 24 21 24 20 23 16 19

D 6 8 11 12 12 17 22 21 17 15 15 14 10 4 11 8 9

Table 2. Horizon selection (percent)

N 0 3 5 7 9 11 20 29 38 47 56 66 75 84 93 102 111 120

A 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 24 73

B 55 15 5 4 4 4 11 2 0 0 0 0 0 0 0 0 0 0

C 40 4 10 11 6 8 9 3 4 2 1 1 1 1 0 0 0 0

D 20 5 5 5 5 2 11 10 15 7 4 2 3 2 0 1 1 0

in Section 2.7. In examples A and B the service times are
drawn from a log-normal distribution, µ = 2.54, σ = 0.48,
offset = 6.8, which represents the service of β20 in the
previous section. For examples C and D, problematic
network/service conditions are simulated by increasing the
mean to µ = 3.93.

Examples A and B in Figure 6 illustrate two different
controller modes. In A (left) Ψ is defined to select the
longest horizon from the admissible set ψk. In B (right)
Ψ is instead defined to select the shortest available hori-
zon. Table 1 shows the percentage of times each horizon
provides an admissible result, i.e. is feasible and responds
in time. In examples A and B service conditions are good
and most requests respond in time. Looking at Table 1 the
decreasing values for horizons 11 to 3 are not due to service
or execution times but to the horizons being too short
to provide feasible solutions. Horizons from 20 and above
always provide feasible solutions but a few responses are
lost due to delays. The lower values for the longer horizons
are attributed to execution time delays. Table 2 shows how
often each horizon is selected by the controller. Here N = 0
refers to the local mode of operation. Since the service
performance in β20 is good, selecting the long horizon
effectively translates to using N = 120 or N = 111 almost
always, i.e., this system behaves similar to a standard
MPC with a long constant horizon. Service latency is the
reason why N = 120 is not always selected in example
A. In B however, the selected horizon will decrease as
the state error gets smaller and the controller therefore
operates over a range of horizons by design. In example
A the local mode was almost never used since the system
does not have time to stabilize around the setpoint before
it changes. In difference to A, example B is able to often
operate in the local mode. This is due to the use of short
horizons near the set point. The difference in behaviour
between the two modes is clearly visible as the system
approaches a setpoint, emphasized by the encircled red ar-
eas in the figure. Both system stay within the constraints,
which is not the case for the optimal LQ regulator shown
in the dotted line, and both are more efficient than the
setpoint-shaped LQ regulator shown in the dashed line.

Example C in Figure 7 also uses short horizon selection but
the service delays are now longer. In Table 1 there is a clear
decline in admissible responses as seen in the lower num-
bers and reduced blue color. The effect of combined service
time, execution time and feasible horizon also becomes
clearer with a peak of admissible responses at horizon 20.
In Table 2 the use of horizons above 20 shows that on occa-
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Fig. 6. (A): Assisted controller selecting the longest horizon.
(B): Assisted mode controller selecting the shortest hori-
zon. The gray trajectory is the setpoint and the state
constraint is shown as the dashed gray line. A dotted gray
line shows the unconstrained LQR and the dashed black
line show an LQR with setpoint shaping to not violate the
constraints.

sion, the network conditions of C causes unnecessarily long
horizons to be the only choice available. This translates
into some of the used trajectories resembling example A
and some example B. Overall the controller continues to
perform well but the occasional longer horizon is an issue
for the robustness aspect of choosing shorter horizons. For
the switching strategy to be effective the MPC must move
quickly away from constraints and/or the shaped local
controller must be switched in early. When using the mode
switching, selecting the shortest feasible horizon creates
these conditions but due to service latency and potential
execution variability, the shortest feasible result may not
arrive to enter the admissible set.
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Fig. 7. The scenario in Figure 6-B with degraded service.
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Fig. 8. Assisted control with degraded network and modi-
fied constraint. In the gray area the controller has no
connectivity to the cloud and transitions to local mode.
Performance is regained when connectivity is restored.
Dashed line is a setpoint shaped LQR.

In example D, Figure 8, a change has been made to the
controller constraints. The range of state x1 has more than
doubled which allows for a larger range of setpoints. At
time t = 5 this is used to request larger state changes than
what was previously possible. This example also uses short
horizon selection. The larger setpoint changes may require
longer horizons for feasible solutions. Up until now the
controller could limit itself to use horizons 3 to 20. When it
now needs longer horizons they may not be admissible due
to delay. If they become available they can be used, if they
do not, the local mode will eventually bring the system to
a state were the shorter horizons are feasible. The larger
setpoint in D is observed in Table 2 as the increased



selection of horizons above 20. The peak in admissible
responses is not as clear as in example C but there seems
to be a slight shift upwards in Table 1 which is expected
with the larger setpoint changes. In addition to modified
constraints and the degraded service conditions, example
C also introduces connectivity loss at t = 10. When this
happens, the controller must switch from assisted to local
mode using the open loop data of the latest selected
MPC. After connectivity is restored the controller enters
the assisted mode again as soon as a feasible MPC is
returned in time. The encircled red area shows the switch
to and from local mode. It may seem that the trajectory
leaves the optimal path prematurely but this is part of the
α-switching and short horizon strategy which prioritizes
robustness over the potential performance of the open loop
data from the MPC.

4. CONCLUSION

We have shown the implementation of a variable horizon
model predictive controller using the cloud. The perfor-
mance of the cloud services and the controller were shown
in a combination of benchmarks performed on the real
services in the cloud and controller simulations driven by
the observed data. Through a combination of local LQ
control and cloud supported MPC an improved MPC de-
sign was obtained which allows flexible performance while
remaining stable and reliable. Constraint satisfaction is
made possible in the nominal case and a strategy combin-
ing short horizon selection and gradual mode switching
provides smooth operation, performance and a degree of
robustness. The idea of elastic control extends to complex
and non-linear systems, and the strategy of evaluation
many controllers concurrently should lend itself to many
problems for finding cost minimizing solutions online and
for creating robust best effort solutions in control.
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