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Analytical Modeling and Multiphysics Simulation
of Acousto-Electromagnetic Interaction

Niklas Wingren∗, Daniel Sjöberg∗
∗Department of Electrical and Information Technology, Lund University, Lund, Sweden, niklas.wingren@eit.lth.se

Abstract—A model for interaction between acoustic and elec-
tromagnetic waves based on photoelasticity is presented. A radar
equation based on physical, geometric and system parameters is
shown, as well as a condition for maximizing interaction (equiv-
alent to the Bragg condition in acousto-optics). The photoelastic
model is used to implement a multiphysics simulation of the
problem. The Bragg condition is shown to hold for the simulated
case. Additionally, simulations are used to show how a contrast
in material properties in a small inclusion affects the interaction.

Index Terms—multiphysics, photoelasticity, electromagnetic
scattering, acoustics.

I. INTRODUCTION

Interaction between acoustic and electromagnetic waves has
been studied since at least 1922 when Brillouin described what
would later be known as acousto-optics [1]. The connection
between these seemingly separate phenomena occurs as an
acoustic wave can affect its medium in various ways, altering
conditions for electromagnetic waves in the region.

A well-established interaction mechanism is in acousto-
optics, where interaction is based on ultrasound modulating
the refractive index [2]. An optical beam is then diffracted by
this modulated refractive index [3]. If the beam overlap is large
enough, significant interaction is obtained by phase matching
[2]. This is obtained at a condition called the Bragg condition
which relates the angles of incidence and diffraction to the
optical and acoustic wavelengths [3]. The diffracted wave is
frequency shifted up or down by the acoustic frequency [3].
Acousto-optics has been utilized in devices for manipulation
of light beams since the development of lasers in the 1960s
[2]. Some examples are acousto-optic modulators and acousto-
optic tunable filters [3].

Using the same underlying mechanism as in acousto-optics,
interaction between audible sound and radio waves in the
MHz-GHz range has been applied to remote sensing under
the name Radio Acoustic Sounding System (RASS) [4], [5].
In this application, the acoustic and electromagnetic sources
are approximately co-located, transmitting into the air. The
diffraction resulting from the Bragg condition is a back
scattering of the electromagnetic wave by the acoustic wave
[5]. The condition no longer holds if the acoustic wave speed
is changed, for example by a change in temperature. This
is utilized in RASS to detect temperature profiles in the
atmosphere [5]. Other proposed applications for RASS are
detection of aircraft wake vortices [6] and early detection of
forest fires [7].

Other interaction mechanisms exist. Excitation of acoustic
resonances in a radar target result in a Doppler-shifted scat-
tered electromagnetic wave [8], which can be used for land
mine detection [9] and non-destructive testing [8]. A similar
effect has been proposed for use in breast-cancer imaging
[10]. An acoustic wave can cause frequency shift of multiply
scattered light, which is used in ultrasound-mediated optical
tomography [11].

This work focuses on the interaction mechanism active in
acousto-optics and RASS. Ultrasound and mm-waves, where
acoustic and electromagnetic wavelengths are similar, are
primarily considered. The basic theory of photoelasticity is
explored as a physical basis for the coupling between waves.
Analytical modeling is used for finding a condition equivalent
to the Bragg condition, and order of magnitude estimates
for signal-to-noise ratio (SNR). Simulations are presented for
confirming the Bragg condition, and as a way of exploring the
phenomenon further.

II. ACOUSTIC WAVE PROPAGATION

Acoustic waves can propagate in both fluids and solids,
but with different characteristics. In fluids the propagation
is purely longitudinal, while in solids both longitudinal and
transverse modes exist [12]. The acoustic pressure is described
by the wave equation both for linear acoustics in fluids and
p-waves in linear elastic solids [12], [13]. The wave speed
is v =

√
K/ρ0 in fluids [12] and v =

√
(K + 4µ/3)/ρ0 in

solids [12], [13]. K is the bulk modulus, µ the shear modulus
and ρ0 the unperturbed density of the medium.

III. PHOTOELASTICITY

A. Basic Theory

The effect of a mechanical strain sj on refractive index n2
i

can be written as [2], [3]

∆

(
1

n2
i

)
= pijsj (1)

where pij is the photoelastic tensor. Repeated indices imply
summation, and tensor indices have been reduced due to tensor
symmetry [2], [3]. The equation can be altered to use relative
permittivity as εri = n2

i . A scalar model is obtained by
assuming that the medium is mechanically and electrically
isotropic, and that remaining components of pij are equal [13].
This model can be expressed as [13]

ε1 =
ε2
rp

K
p (2)



where ε1 is the perturbation in relative permittivity, p is the
scalar photoelastic constant, K is the bulk modulus and p is
the pressure.

One possible relation between p and εr (εr ≥ 1) is [2], [13]

p =
(εr − 1)(εr + 2)

3ε2
r

. (3)

This has its origin in the Lorentz-Lorenz relation, implicitly
including density. Equation (3) typically only holds for flu-
ids, as more complicated and anisotropic effects have to be
considered otherwise [2].

B. Examples of Photoelastic Constant

Equation (3) can be compared with the literature. In [14],
the dielectric perturbation in dry air is given by

ε1 =
1.13 · 10−6p

T
(4)

where p is the pressure in Pa and T the temperature in K. Dry
air at 273 K has the properties ρ0 = 1.293 kg/m3, v = 331.3
m/s [12] and εr = 1.00059 [15]. This gives a ratio ε1/p =
4.1 · 10−9 Pa−1 using (4). The model presented here instead
gives a ratio of 4.2 · 10−9 Pa−1 [13], which is very close
to the value from the literature. Additionally, the photoelastic
constant in air calculated by (3) is p = 0.00059.

In [16] the photoelastic constant was measured for 26
liquids. The definition of p was slightly different though,
requiring multiplication with 2/n3 where n is the refractive
index [2] (in [2] the factor contains a minus sign, but this is
due to a sign difference in definitions). The liquids in [16] had
measured values of p between water at 0.274 and methylene
iodide at 0.332 (values converted as discussed above). [16]
also compares measured values with values calculated using
the Lorentz-Lorenz relation. Measured values are consistently
lower than theoretical due to the Lorentz-Lorenz relation being
inaccurate for liquids [16].

Measured values of photoelastic tensor components are now
presented for completeness. Fused quartz has the components
p11 = +0.121, p12 = +0.270, p44 = −0.075 [17]. Diamond
has the components p11 = −0.244, p12 = +0.042, p44 =
−0.172 [18]. The three components presented are sufficient
for describing the full tensor using isotropic or cubic crystal
symmetry [3].

IV. ELECTROMAGNETIC MODELING

The model presented in this section is described in more de-
tail in [13] where full derivations are available. The approach
is similar to that in [19].

A. Basic Model

The permittivity of the perturbed medium is defined as

ε = ε0(εr + ε1) (5)

where ε0 is the permittivity of free space, εr is the unper-
turbed relative permittivity (frequency independent) and ε1

is the perturbation in relative permittivity. It is assumed that
|ε1| � εr. An electric field is split into the incident part Ei

and the part scattered by the dielectric perturbation Esc. If the
scattered field is small compared to the incident field (Born
approximation), the scattering is described by [13]

∇2Esc(r, t) + k2Esc(r, t) = −k2 ε1(r, t)

εr
Ei(r)

− 1

εr
∇(Ei(r) · ∇ε1(r, t))− k2

εr
Edi(r, t) (6)

which is an inhomogeneous Helmholtz equation where k is
the wavenumber. All electric fields are complex amplitudes
with a −iωt time-dependence separated. However, a weaker
time-dependence remains in the scattered field due to the time-
varying dielectric perturbation. The remaining time derivatives
are collected in

Edi(r, t) =
2iEi(r)

ω

∂

∂t
(ε1(r, t))− Ei(r)

ω2

∂2

∂t2
(ε1(r, t)) (7)

where ω is the electromagnetic angular frequency. In three
dimensions, the solution for the scattered field is given by the
integral

Esc(r, t) =
1

4πεr

∫
V

eik|r−r′|

|r − r′|
(
k2ε1(r′, t)Ei(r

′)

+∇ (Ei(r
′) · ∇ε1(r′, t)) + k2Edi(r

′, t)
)
dv′ (8)

where V is the volume where both Ei and ε1 are nonzero.

B. Calculation Using Simplified Fields

For a simple analytical calculation, Ei and ε1 are modeled
as plane waves within specified beam regions and zero outside.
The overlap between the electric and acoustic beam regions
defines a region where both Ei and ε1 are nonzero. This is
referred to as the interaction region, and there the following
holds for the electric field

Ei(r
′) = Ei0eik·r′

(9)

where Ei0 is the amplitude of the incident field and k is the
electromagnetic wavevector. The dielectric perturbation is

ε1(r′, t) =
ε2

rp

K
p0 cos(q · r′ − Ωt) (10)

where p0 is the unperturbed pressure, q is the acoustic
wavevector and Ω is the acoustic angular frequency. Fig. 1
shows the geometry of the problem. The electromagnetic beam
width is de and the acoustic beam width is da. Both beams
are assumed to have rectangular cross-sections, extending Lz

in z. The observation point r is at a distance r from the center
of the interaction region at azimuthal angle φ and polar angle
θ (not shown).

The incident electric field is polarized in z, and the incident
acoustic wave propagates in the xy-plane. Esc is assumed
to be in the far-field, simplifying the Green function. It is
further assumed that Ω� ω, which is true for mm-waves and
ultrasound.

Under these conditions, the scattered field is [13]

Esc(r, t) = Ei0

(
E+

A (r, t) + E−A (r, t)
)

(11)
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Fig. 1. Geometry used in analytical calculations.

where

E±A (r, t) =
εrk

2eikrpp0

8πrK

dadeLz

sinα
e∓iΩtΦ± (12)

and

Φ± =sinc

(
da

2π sinα
(k − k sin θ cosφ± q cosα)

)
·sinc

(
de

2π tanα
(k − k sin θ(cosφ+ sinφ tanα)

± q(cosα+ sinα tanα))

)
·sinc

(
−Lz

2π
k cos θ

)
(13)

The factor e∓iΩt in (12) indicates a frequency shift of ±Ω for
E±A (r, t). Thus Esc(r, t) has two frequency components - one
at frequency ω+ Ω and one at ω−Ω. However, Φ± limits the
angles where strong interaction is possible. If (13) is analyzed,
a maximizing condition is found when all sinc functions are
zero. The condition for incident waves is [13]

cosα = ∓ q

2k
= ∓ λ

2Λ
(14)

where λ is the electromagnetic wavelength and Λ the acoustic
wavelength. The observation point should be in the same plane
as the incident waves, as well as at the azimuth angle φ =
∓π + 2α [13].

The maximum of Φ± almost gives the conditions for max-
imum scattering, but the factor 1/ sinα in (12) complicates
matters. This factor contains the effect of the interaction region
increasing as α decreases. The effect of this is maximum
scattering at a different α than given by (14) [13]. However,
this is not explore further as such details are outside the scope
of this rough modeling.

C. Radar Equation

Using more system parameters, a radar equation for SNR
can be written as

SNR±N =
PTGTGRλ

2
Rσ
±(θ, φ)

(4π)3R2
TR

2
RkBT0BF

N (15)

Physics domain

PML domain

PEC (EM)
Free (Ac.)

EM source

Ac. source

Interior boundary

Fig. 2. Simulation geometry for both the acoustic (Ac.) and electromagnetic
(EM) problem.

where PT is the power accepted by the transmitting antenna,
GT is the gain of the transmitting antenna, GR is the gain of
the receiving antenna, λR is the wavelength at the receiving
antenna, RT is the range from the transmitting antenna to the
interaction region center, RR is the range from the interaction
region center to the receiving antenna, kB is Boltzmann’s
constant, T0 is the standard temperature for noise, B is the
receiver bandwidth, F is the noise ratio of the receiver and
N is the number of samples recorded. Coherent demodulation
and integration of the signal is assumed [13].

The equation is a bistatic radar equation with an equivalent
radar cross-section (RCS) given by

σ±(θ, φ) =
ε2

rk
4p2p2

0

16πK2

d2
ad

2
eL

2
z

sin2 α
Φ±(θ, φ)2 (16)

This parameter contains all connection to the acousto-
electromagnetic problem. It should be noted that the radar
equation is based on a very rough model, but may still be
able to provide order of magnitude estimates for SNR [13].

V. SIMULATION SETUP

A. General Details

To verify and expand on the results of the analytical model,
simulations were conducted in COMSOL Multiphysics. Both
acoustic and electromagnetic simulations were 2D frequency
domain, but for different frequencies. One effect of this
setup was the inability to simulate frequency shifts in the
electromagnetic wave. The simulation geometry is shown in
Fig. 2. To simulate an open boundary, a perfectly matched
layer (PML) was used outside of the physics domain for both
simulations. Its typical wavelength was the maximum of λ and
Λ. The mesh for both simulations was based on an edge mesh
on the interior boundary. From this, a free triangular mesh in
the physics domain and a mapped quadrilateral mesh in the
PML domain were generated. The maximum element size was
1/10 of the smallest wavelength. The material simulated was
based on the properties of polystyrene in [20] with parameter
values within the listed ranges.



B. Acoustic Simulation

Acoustic waves were simulated using solid mechanics for
correct handling of p-waves in solids. The source was modeled
using a prescribed displacement boundary condition on a
boundary segment with length 8Λ. The displacement ampli-
tude was set to 5 nm and a Gaussian taper was applied to
decrease sidelobe levels. The acoustic frequency was set to 1
MHz. A free boundary condition was used at the end of the
PML domain. The solid was modeled as an isotropic solid and
plane strain conditions were used. The material had a Young’s
modulus E = 1.8 GPa, Poisson’s ratio ν = 0.22 and density
ρ0 = 600 kg/m3.

C. Photoelastic Coupling

The photoelastic model used was the simple scalar model
in (2). For simplicity, (3) was used to model the photoelastic
constant even though the material was a solid. The relative
permittivity used was εr = 2.4, and the material was nonmag-
netic and nonconducting. The bulk modulus K was calculated
automatically from E, ν and ρ0. The real part of the pressure
from the acoustic simulation was used in (2) to calculate ε1

in the physics domain.

D. Electromagnetic Simulation

Two electromagnetic simulations were performed where
photoelasticity was either enabled or disabled. The photoe-
lastically scattered electric field was calculated as the dif-
ference between the two fields. The electromagnetic source
was modeled using a port boundary condition on a boundary
segment with length 8λ. The port input power was set to 15
dBm with the electric field polarized in z and the propagation
constant equal to the wavenumber in the medium. As in
the acoustic case, a Gaussian taper was applied to the field.
The electromagnetic frequency was matched to the acoustic
frequency using the condition in (14) with α = 40◦, resulting
in a frequency of 68 GHz. A perfect electric conductor (PEC)
boundary condition was used at the end of the PML domain.

E. Post-processing

The photoelastically scattered electric and magnetic fields
resulting from simulations were evaluated at the interior
boundary (see Fig. 2). In post-processing the time-averaged
Poynting vector was calculated along the boundary. The total
photoelastically scattered power was then calculated by inte-
grating the normal component of the time-averaged Poynting
vector along the full interior boundary. The trapezoidal rule
was used with interval lengths extracted from the geometry
data.

F. Simulation Cases

Two different simulation cases are presented in this work.
The first is a sweep of the angle α with the wavelengths
matched to α = 40◦ as described earlier. The purpose of this
was to show how the scattering is affected by altering the angle
between incident waves. The second is a sweep of the density
ρ0 in a small inclusion of the interaction region.
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Fig. 3. Total photoelastically scattered power for angle sweep. Normalized
to peak value for (−) case: −68.24 dBm. Sweep midpoints α0 = 40◦ (−)
and α0 = 140◦ (+). Insets show scattered electric field for α = 40◦ (−)
(top) and α0 = 140◦ (+) (bottom).

VI. SIMULATION RESULTS

A. Angle Sweep

The electromagnetic and acoustic wavelengths were
matched according to (14) for α = 40◦. This is for the
(−) case. The (+) case for those wavelengths instead results
in α = 140◦ being the matched angle. Simulations were
conducted for both α = 40◦ ± 10◦ and α = 140◦ ± 10◦.
The total photoelastically scattered power for different α is
shown in Fig 3 for both cases. From Fig 3 it is clear that the
condition in (14) holds well for both the (−) and (+) cases.
The total scattered power is the same for both cases, but it
should be noted that the scattered power density is greater in
the (−) case. The maximum of the power density at 40◦ in
the (−) case was 14.2 nW/m2, while it was 5.12 nW/m2 at
140◦ in the (+) case. This is due to the wider beam in the
(+) case, as can be seen qualitatively in the insets of Fig 3.

Earlier it was discussed that the factor 1/ sinα in (12) would
result in a shifted α for the maximum. This is not observed
in the simulation results. The shift might be too minor to be
detected, or may simply be an artifact of the rough model
used.

B. Density Sweep

In this simulation case, the angle α was fixed at 40◦ with the
wavelengths matched as before. The density was varied inside
of an inclusion of the interaction region with the diameter λ.
The total photoelastically scattered power for different density
is shown in Fig 4. It is clear from Fig 4 that a change in the
density affects the interaction. The main mechanism at work
here is the diffraction of the acoustic wave by the inclusion.
This introduces nulls in the acoustic field and changes the
propagation direction for parts of the wave. This can be seen
qualitatively in the inset of Fig 4. Close to nulls, lower acoustic
pressure weakens interaction. Where the propagation direction
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Fig. 4. Total photoelastically scattered power for density sweep. Normalized
to peak value: −68.15 dBm. Inset shows acoustic pressure for the inclusion
density ρ0 = 360 kg/m3.

is changed, the Bragg condition no longer holds, which also
weakens interaction.

The scattered power might be expected to decrease as the
density moves away from 600 kg/m3. However, the peak in
Fig. 4 is at ρ0 > 600 kg/m3. The reason for this is that
the inclusion acts as an acoustic lens if the density is higher
than its surroundings, increasing power slightly [13]. Another
interesting detail is the shift in the slope at ρ0 < 300 kg/m3.
This might be due to an increase in the forward-scattered
component of the acoustic wave, as the Bragg condition holds
for that part of the wave. Effects similar to this were seen
if the conductivity was varied, with the electromagnetic wave
being scattered by the inclusion instead [13].

VII. CONCLUSION

A model for acousto-electromagnetic interaction based on
photoelasticity was presented. The conditions for strong inter-
action corresponded well to the Bragg condition in acousto-
optics. A radar equation for estimating the SNR was presented.
Although based on a rough model, it could be useful for order
of magnitude estimations in a measurement situation.

Multiphysics simulations with a simple photoelastic rela-
tion connecting acoustic pressure and relative permittivity
confirmed the Bragg condition for strong scattering. Simu-
lations also allowed for the study of beam widths for the
photoelastically scattered wave. This is not possible from
the Bragg condition alone. Further simulation showed how a
small inclusion with material contrast impacted the interaction.
Effects similar to this are widely studied in the literature, for
example in the context of RASS. The shorter wavelengths
of ultrasound and mm-waves combined with the increased
photoelasticity of solids might present a new possibility for
applications in, for example non-destructive testing.
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