
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Some Notes on Post-Quantum Cryptanalysis

Mårtensson, Erik

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Mårtensson, E. (2020). Some Notes on Post-Quantum Cryptanalysis. [Doctoral Thesis (compilation),
Department of Electrical and Information Technology]. Department of Electroscience, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ab79fe93-2f19-4e6d-b813-4fac4b3b8499

Some Notes on Post-Quantum
Cryptanalysis

Doctoral Dissertation

Erik Mårtensson

Department of Electrical and Information Technology
Lund University, Lund, Sweden

December, 2020

Department of Electrical and Information Technology
Lund University
Box 118, SE-221 00 LUND
SWEDEN

This thesis is set in Computer Modern 10pt
with the LATEX Documentation System

Series of licentiate and doctoral theses
ISSN 1654-790X; No. 135
ISBN: 978-91-7895-711-8 (print)
ISBN: 978-91-7895-712-5 (pdf)

c© Erik Mårtensson 2020
Printed in Sweden by Tryckeriet i E-huset, Lund.
December 2020.
Published articles have been reprinted with the permission from the respective
copyright holder.

...To my father...

Abstract

Cryptography as it is used today relies on a foundational level on the as-
sumption that either the Integer Factoring Problem (IFP) or the Discrete

Logarithm Problem (DLP) is computationally intractable. In the 1990s Peter
Shor developed a quantum algorithm that solves both problems in polynomial
time. Since then alternative foundational mathematical problems to replace IFP
and DLP have been suggested. This area of research is called post-quantum
cryptology.

To remedy the threat of quantum computers the National Institute of Stan-
dards and Technology (NIST) has organized a competition to develop schemes
for post-quantum encryption and digital signatures. For both categories lattice-
based cryptography candidates dominate. The second most promising type of
candidate for encryption is code-based cryptography.

The lattice-based candidates are based on the difficulty of either the Learning
With Errors problem (LWE) or the Nth Degree Truncated Polynomial problem
(NTRU), of which LWE is the focus of this thesis. The difficulty of both these
problems in turn relies on the difficulty of variations of the Shortest Vector
Problem (SVP). Code-based cryptography is based on the difficulty of decoding
random linear codes.

The main focus of this thesis is on solving the LWE problem using the Blum-
Kalai-Wasserman algorithm (BKW). We have the following improvements of the
algorithm.

1. We combined BKW with state-of-the-art lattice sieving methods to im-
prove the complexity of the algorithm. We also elaborate on the simi-
larities and differences between BKW and lattice sieving, two approaches
that on a shallow level look very different.

2. We developed a new binary approach for the distinguishing phase of the
BKW algorithm and showed that it performs favorably compared to pre-
vious distinguishers.

3. We investigated the Fast Fourier Transform (FFT) approach for the dis-
tinguishing part of BKW showing that it performs better than theory
predicts and identically with the optimal distinguisher. We showed that
we could improve its performance by limiting the number of hypotheses
being tested.

4. We introduced practical improvements of the algorithm such as non-
integral step sizes, a file-based sample storage solution and an implemen-
tation of the algorithm.

v

vi Abstract

We also improved the classical state-of-the-art approaches for k-sieving -
lattice sieving where k vectors are combined at a time - by using quantum
algorithms. At the cost of a small increase in time complexity we managed
to drastically decrease the space requirement compared to the state-of-the-art
quantum algorithm for solving the SVP.

Finally, we developed an algorithm for decoding linear codes where the noise
is Gaussian instead of binary. We showed how code-based schemes with Gaus-
sian noise are easily broken. We also found other applications for the algorithm
in side-channel attacks and in coding theory.

Contribution Statement

This doctoral thesis concludes my work as a Ph.D. student, and is comprised of
two main parts. The first part gives an overview of the research field in which I
have been working during my Ph.D. studies and a brief summary of my work.
The second part is composed of the six following papers:

1. Q. Guo, E. Mårtensson and P. Stankovski Wagner, On the Sample Com-
plexity of solving LWE using BKW-Style Algorithms, under submission,
2020.

2. A. Budroni, Q. Guo, T. Johansson, E. Mårtensson and P. Stankovski Wag-
ner, Making the BKW Algorithm Practical for LWE, in 21st International
Conference on Cryptology in India (INDOCRYPT 2020), pp. 417-439,
2020, Bangalore, India.

3. E. Kirshanova, E. Mårtensson, E. Postlethwaite and S. Roy Moulik, Quan-
tum Algorithms for the Approximate k-List Problem and their Applica-
tion to Lattice Sieving, in Advances in Cryptology–ASIACRYPT 2019,
the 25th Annual International Conference on Theory and Application of
Cryptology and Information Security, pp. 521-551, 2019, Kobe, Japan.

4. Q. Guo, T. Johansson, E. Mårtensson and P. Stankovski, Some Crypt-
analytic and Coding-Theoretic Applications of a Soft Stern Algorithm, in
Advances in Mathematics of Communications, vol. 13, no. 4, pp. 559-578,
2019.

5. Q. Guo, T. Johansson, E. Mårtensson and P. Stankovski, On the Asymp-
totics of Solving the LWE Problem Using Coded-BKW with Sieving, in
IEEE Transactions on Information Theory, vol. 65, no. 8, pp. 5243-5259,
2019.

6. E. Mårtensson, The Asymptotic Complexity of Coded-BKW with Sieving
Using Increasing Reduction Factors, in 2019 IEEE International Sympo-
sium on Information Theory (ISIT), pp. 2579-2583, 2019, Paris, France.

The papers are slightly reformatted to fit within the overall thesis structure.
The thesis is concluded with a popular science summary in Swedish.

vii

viii Contribution Statement

For all papers in this list and the list of other contributions, the authors
are listed in alphabetical order, which is common in mathematically oriented
research areas1.

In Paper 1 I developed the pruned FFT approach together with the first au-
thor. I showed why the FFT distinguisher is optimal. I did the implementation
work by modifying code developed for Paper 2. I developed the ideas for what
implementations to run together with the first author and I ran the simulations.
I did the main part of writing the paper.

In Paper 2 I did the implementation work together with the first and fifth
author. I ran the simulations together with the first author. I developed the
file-based solution algorithm together with the fifth author. I wrote the paper
together with all the other authors.

In Paper 3 I developed the graph-based algorithms, derived their complexi-
ties and wrote the paper together with all the other authors.

In Paper 4 I developed the implementation, the numerical examples and
parts of the applications. I did the complexity analysis together with the other
authors. I ran the simulations together with the first author, which helped a lot
in estimating the complexity of the algorithm. I wrote the paper together with
all the other authors.

In Paper 5 I did the numerical optimizations to calculate the time complex-
ities. I made the illustrations that increased the readability of the paper and
greatly helped in generalizing the ideas for Paper 6. I wrote the paper together
with all the other authors.

In Paper 6 I was the only author.
The papers’ contributions to the research area are covered throughout Part I

of the thesis. Paper 1 to 3, 5 and 6 are summarized in Chapter 9. Paper 4 is
covered in Chapter 4.

1http://www.ams.org/profession/leaders/CultureStatement04.pdf

ix

Other Contributions
The following peer-reviewed publications have also been published during my
PhD studies, but are not included in this dissertation.

• S. Gunnarsson, P. Larsson, S. Månsson, E. Mårtensson and J. Sönnerup,
Enhancing Student Engagement Using GitHub as an Educational Tool,
In Introduction to Teaching and Learning in Higher Education, Centre for
Engineering Education, Faculty of Engineering, Lund University, 2017.

• S. Gunnarsson, P. Larsson, S. Månsson, E. Mårtensson and J. Sönnerup,
Engaging Students using GitHub as a Learning Management System, In
Lund University’s Teaching and Learning Conference 2017, 2017, Lund,
Sweden.

The following publications were the conference versions of Paper 4 and Pa-
per 5 respectively.

• Q. Guo, T. Johansson, E. Mårtensson and P. Stankovski, Information Set
Decoding with Soft Information and some cryptographic applications, In
2017 IEEE International Symposium on Information Theory (ISIT), pp.
1793-1797, Aachen, Germany, 2017.

• Q. Guo, T. Johansson, E. Mårtensson and P. Stankovski, Coded-BKW
with Sieving, In Advances in Cryptology–ASIACRYPT 2017, the 23rd An-
nual International Conference on Theory and Application of Cryptology
and Information Security, pp. 323-346, 2017, Hong Kong, China.

The work done during this PhD has been supported by the Swedish Research
Counsel (grant 2015-04528) and the Swedish Foundation for Strategic Research
(grant RIT17-0005).

Acknowledgments

Already in the fall of 2010 Fredrik Persson predicted that I would pursue a PhD
after my undergraduate studies. While I wasn’t as convinced as him at the time,
he turned out to be correct. It wouldn’t have been possible without the help of
some people.

First of all my deepest gratitude goes to my main advisor Thomas Johansson.
In a time of great uncertainty in my life he gave me the great opportunity of
getting paid for learning how to do research. Under his patient guidance I’ve
developed from a confused undergraduate student into a researcher with the
confidence to publish research papers, travel the world and present them in
front of cryptology experts.

I also thank my assistant advisors Paul Stankovski Wagner and Qian Guo.
Paul for his patience during my many frustrating moments and for his ability
to view things from a unique and clear perspective. Qian for being a role model
research-wise and for always being helpful despite my never-ending series of
questions.

Next I would like to thank my international collaborators. Elena, Eamonn
and Subhayan for introducing me to the finer details of the fascinating areas
of quantum computation and lattice sieving. Alessandro for his help in turning
our BKW implementation from a mess into a polished product.

During my time as a PhD student my research group has increased tremen-
dously in size, making it difficult to thank everyone. There are however some
people that I would like to acknowledge a little bit extra.

Linus, you unofficially worked as my fourth advisor answering many stupid
questions. Your low profile and general niceness make it hard to make any
joke about you. Jonathan “den lille doktor” Sönnerup, even though we failed
miserably at sharing an office we’ve had many great adventures together. You
taught me the importance of sometimes going “full Jonathan”. Without the two
of us the research group might become a bit more productive, but it will also not
have as much fun! Jing, in spite of all our pranks, jokes, cultural and linguistic
misunderstandings you have always been kind and kept a positive spirit. Joakim,
even though we oftentimes disagree we have had many interesting discussions
and you have given me new perspectives on many topics.

The communication group deserves thanks for saving me from my own
group’s inability to realize the importance of having lunch in a different building
than the one you work in. Special thanks go to Sara for initially inviting me to
the lunches and teaching me to appreciate coffee.

I would like to thank the technical and administrative personnel for their
helpfulness throughout my years at EIT. Special thanks go to Elisabeth Nord-
ström for patiently helping me despite my ability to always find strange special

xi

xii Acknowledgments

cases when reporting my many travel bills.
I would like to thank Bertil, Stefan, Mats, Martin, Morgan and the rest of

the Friday pizza crew for the delicious food and the fascinating discussions, in
spite of their inability to recognize Africana as the best pizza!

The number of people to thank outside the university is too many to mention
them all. There are however a few that deserve special mentions. Måns Jarlskog,
my brother in math, for being at my side all these years. Regardless of having
worked in different areas for many years we have a spooky ability as former
π students to view problems from a similar perspective. Sara, regardless of
her mathematical shortcomings, for teaching me valuable things outside the
academic area. Gustav, for many fun times together, regardless of his constant
interruptions and spending more time in my office than most of my colleagues.
I’d like to thank the TM crew for our many exciting, frustrating and fascinating
board game sessions.

I would like to thank the Swedish taxpayers for funding my research and
giving me the luxury of thinking for a living.

Finally I would like to thank my family who has supported and inspired me
from the very beginning. My “little” brother Gustav, who is becoming a doctor
in the more everyday meaning of the word. My mother Eva from whom I got my
interest in mathematics. In another time era she would likely have studied more
mathematics. My father Hans, who has both been a role-model academically
and showed what truly is important in life.

Erik Mårtensson

December 2020

List of Acronyms

AES Advanced Encryption Standard . 5

AWGN Additive White Gaussian Noise . 33

BDD Bounded Distance Decoding. .21

BKZ Block Korkine Zolotarev . 20

BKW Blum-Kalai-Wasserman . 17

CVP Closest Vector Problem . 21

DES Data Encryption Standard . 3

DFT Discrete Fourier Transform . 15

DLP Discrete Logarithm Problem . 7

FFT Fast Fourier Transform . 16

FHE Fully Homomorphic Encryption. .13

FWHT Fast Walsh-Hadamard Transform . 16

IFP Integer Factoring Problem . 7

IID Independent and Identically Distributed . 33

ISD Information Set Decoding . 33

xiii

xiv List of Acronyms

KEM Key Encapsulation Mechanism. .10

LF1 Levieil-Fouque 1. .46

LF2 Levieil-Fouque 2. .46

LLL Lenstra–Lenstra–Lovász . 23

LLR Log-Likelihood Ratio . 34

LMS Lazy Modulus Switching . 49

LPN Learning Parity with Noise . 13

LSB Least Significant Bit . 56

LSF Locality-Sensitive Filtering . 38

LDPC Low Density Parity-Check . 32

LWE Learning With Errors . 12

MDPC Moderate Density Parity-Check . 32

NIST National Institute of Standards and Technology . 9

NNS Nearest Neighbor Search . 38

NV Nguyen-Vidick . 38

NSA National Security Agency . 9

PDF Probability Density Function . 16

PMF Probability Mass Function . 16

RAM Random Access Memory. .53

xv

RSA Rivest-Shamir-Adleman. .6

SVP Shortest Vector Problem . 21

QC Quasi-Cyclic . 32

WHT Walsh-Hadamard Transform. 16

Contents

Abstract v

Contribution Statement vii

Acknowledgments xi

List of Acronyms xiii

Contents xvii

I Overview of Research Field 1

1 Introduction to Post-Quantum Cryptology 3
1.1 Brief Introduction . 3

1.1.1 General Thesis Focus 5
1.2 Classical Cryptography . 5

1.2.1 Symmetric Cryptography 5
1.2.2 Asymmetric Cryptography 6

1.3 Post-Quantum Cryptography 8
1.3.1 Shor’s Algorithm . 8
1.3.2 Grover’s Algorithm . 9
1.3.3 NIST Competition . 9
1.3.4 First Round Candidates 10
1.3.5 Second Round Candidates 10
1.3.6 Third Round Candidates 10
1.3.7 Some Voices on Quantum Computing 11

1.4 LWE and LPN . 12
1.4.1 Matrix Formulation of the LWE Problem 13
1.4.2 Parameter Choices . 13

1.5 Preliminaries . 14
1.5.1 Notation . 14
1.5.2 Complexity Theory . 14
1.5.3 Transforms . 15
1.5.4 Probability Distributions 16

1.6 Thesis Outline . 17

2 Algorithms for Solving LWE 19
2.1 Algebraic Approaches . 19

xvii

xviii Contents

2.2 Lattice-based Approaches . 20
2.2.1 Introduction to Lattices 20
2.2.2 Computational Problems 21
2.2.3 Transforming LWE Into a Lattice Problem 22
2.2.4 Lattice Reduction . 22

2.3 Combinatorial Approaches . 24
2.4 Surveys . 24

3 Quantum Computation 25
3.1 Quantum Computation Basics 25

3.1.1 Measurement . 26
3.1.2 Unitary Transformation 26
3.1.3 Entanglement . 26

3.2 Grover’s Algorithm . 26
3.3 Amplitude Amplification . 28
3.4 Shor’s Algorithm . 28

3.4.1 The DLP . 29

4 Code-based Cryptanalysis 31
4.1 Coding Theory Basics . 31
4.2 Code-based Cryptography . 32

4.2.1 Soft McEliece . 33
4.3 Stern’s Algorithm . 33
4.4 Soft Stern . 34

5 Lattice Sieving 37
5.1 Lattice Sieving . 37
5.2 Locality-Sensitive Filtering . 38

5.2.1 Quantum Speed-up . 39
5.3 k-sieving . 40

5.3.1 Quantum Improvements 42
5.3.2 The k = 3 Setting . 42
5.3.3 General k Setting . 42

6 The BKW Algorithm 45
6.1 Reduction . 45

6.1.1 LF1 vs. LF2 . 46
6.2 Hypothesis Testing . 46
6.3 Sample Amplification . 47
6.4 Secret-Noise Transformation . 47

7 Improvements of the BKW Reduction Steps 49
7.1 Coded-BKW and LMS . 49
7.2 Coded-BKW with Sieving . 50

7.2.1 Quantum Improvement 50
7.3 Pre-processing . 50
7.4 An Illustration of the Different BKW Steps 50

7.4.1 Optimizing the Reduction Factor 51
7.4.2 Using Varying Reduction Factors 51

7.5 k-BKW . 52

Contents xix

7.6 Implementation Aspects . 52
7.6.1 Smooth-LMS . 52
7.6.2 File-based Reduction Steps 53

8 Improvements of the Guessing Procedure 55
8.1 FFT and Pruned FFT . 55
8.2 Binary Guessing . 56

8.2.1 Retrieving the Least Significant Bits of s 57
8.2.2 Retrieving the Whole s Vector 58

9 Some Concluding Remarks 59
9.1 A General BKW Algorithm Framework 59
9.2 A Generic BKW Reduction Step Framework 60
9.3 Potential for Improvement of the Reduction Steps 61

9.3.1 Trying to Improve What Steps to Take 61
9.3.2 Trying to Improve the Individual Step 62

9.4 Improvements of k-BKW Reduction Steps 62
9.5 BKW vs. Lattice-based Approaches 62

9.5.1 Asymptotic Comparison 63
9.5.2 Concrete Complexity and Implementation 63

References 65

II Included Papers 79

PAPER I – On the Sample Complexity of solving LWE using
BKW-Style Algorithms 83
1 Introduction . 85

1.1 Related Work . 85
1.2 Contributions . 86
1.3 Organization . 87

2 Background . 87
2.1 LWE . 87
2.2 Rounded Gaussian Distribution 87

3 BKW . 88
3.1 Reduction . 88
3.2 Hypothesis Testing . 89

4 Distinguishers . 90
4.1 Optimal Distinguisher 90
4.2 Fast Fourier Transform Method 91
4.3 Polynomial Reconstruction Method 92
4.4 Pruned FFT Distinguisher 92

5 Equal Performance of Optimal and FFT Distinguishers 92
6 Simulations and Results . 93

6.1 Varying Noise Level . 93
6.2 Varying q . 93
6.3 LF1 vs LF2 . 94
6.4 Sample Amplification 94
6.5 Implementation . 95

xx Contents

7 Conclusions . 95
References . 96
A Explaining the Optimimality of the FFT Distinguisher 100
B Number of Iterations in the Simulations 101

PAPER II – Making the BKW Algorithm Practical for LWE 105
1 Introduction . 107

1.1 Related Work . 107
1.2 Contributions . 108
1.3 Organization . 108

2 Background . 108
2.1 Notation . 108
2.2 The LWE and LPN Problems 109
2.3 Discrete Gaussian Distributions 110

3 A Review of BKW-style Algorithms 110
3.1 The LWE Problem Reformulated 110
3.2 Transforming the Secret Distribution 110
3.3 Sample Amplification 111
3.4 Iterating and Guessing 111
3.5 Plain BKW . 111
3.6 Coded-BKW and LMS 112
3.7 LF1, LF2, Unnatural Selection 112
3.8 Coded-BKW with Sieving 112

4 BKW-style Reduction Using Smooth-LMS 112
4.1 A New BKW-style Step 113
4.2 Smooth-Plain BKW . 114
4.3 How to Choose the Interval Sizes Ci 115
4.4 Unnatural Selection . 115

5 A Binary Partial Guessing Approach 115
5.1 From LWE to LPN . 116
5.2 Guessing s0 Using the FWHT 117
5.3 Retrieving the Original Secret 117

6 Analysis of the Algorithm and its Complexity 118
6.1 The Algorithm . 118
6.2 The Complexity of Each Step 118
6.3 The Data Complexity 120
6.4 In Summary . 121
6.5 Numerical Estimation 121

7 A New BKW Algorithm Implementation for Large LWE Problem
Instances . 122

8 Experimental Results . 124
9 Conclusions and Future Work 125
References . 125

PAPER III – Quantum Algorithms for the Approximate k-List
Problem and their Application to Lattice Sieving 131
1 Introduction . 133
2 Preliminaries . 137
3 Sieving as Configuration Search 138
4 Quantum Configuration Search 143

Contents xxi

4.1 Quantum Version of the Configuration Search Algorithm
from [HKL18] . 148

5 Quantum Configuration Search via k-Clique Listing 151
5.1 The Triangle Case . 152
5.2 The General k-Clique Case 153

6 Quantum Configuration Search via Triangle Listing 153
6.1 Naïve Triangle Finding 154
6.2 Altering the Sparsity . 155

7 Parallelising Quantum Configuration Search 156
7.1 Distributed Configuration Search: Classical Analogue . 159

References . 160
A Configuration Search Algorithm 164
B Quantum Algorithms for Locality Sensitive Filters 165
C Some More k-clique Cases . 170

C.1 The k = 4 Case . 170
C.2 The General k-clique Case for Unbalanced Configurations 170

D Proofs of Lemmas from Section 7 173

PAPER IV – Some Cryptanalytic and Coding-Theoretic Appli-
cations of a Soft Stern Algorithm 179
1 Introduction . 181
2 Preliminaries . 182

2.1 Basics in Coding Theory 182
2.2 Soft McEliece . 183
2.3 The Stern Algorithm . 184

3 A Soft Version of the Stern Algorithm 185
3.1 A One-Pass Soft Stern Algorithm 185
3.2 How to Create the Most Probable Vectors 187

4 A Decoding Example . 189
5 Complexity Analysis and Simulations 193

5.1 Estimating and Simulating Pr [A] 194
6 Generalizations . 197

6.1 Soft Output . 197
6.2 Multiple Iterations . 198

7 Applications . 198
7.1 Breaking Soft McEliece 198
7.2 Applications in Side-channel Attacks 199
7.3 Hybrid Decoding . 200
7.4 Product Codes . 200

8 Conclusions . 200
References . 201

PAPER V – On the Asymptotics of Solving the LWE Problem
Using Coded-BKW with Sieving 207
1 Introduction . 209

1.1 Related Work . 209
1.2 Contributions . 211
1.3 Organization . 211

2 Background . 212
2.1 Notations . 212

xxii Contents

2.2 LWE Problem Description 212
2.3 Discrete Gaussian Distribution 213
2.4 Sieving in Lattices . 214

3 The BKW Algorithm . 214
3.1 Plain BKW . 214
3.2 Coded-BKW . 215

4 A Reformulation . 217
5 A BKW-Sieving Algorithm for the LWE Problem 218

5.1 Initial Guessing Step . 218
5.2 Transformation Steps 219
5.3 A BKW-Sieving Step 219
5.4 Illustrations of Coded-BKW with Sieving 221
5.5 High-Level Comparison with Previous BKW Versions . 221

6 Parameter Selection and Asymptotic Analysis 222
6.1 Asymptotics of Coded-BKW with Sieving 223
6.2 Asymptotics when Using Plain BKW Pre-Processing . . 224
6.3 Case Study: Asymptotic Complexity of the Regev Param-

eters . 226
6.4 A Comparison with the Asymptotic Complexity of Other

Algorithms . 226
7 Asymptotic Complexity of LWE with Sparser Secrets 227

7.1 Asymptotic Complexity of LWE with a Polynomial Num-
ber of Samples . 228

8 New Variants of Coded-BKW with Sieving 229
8.1 S-BKW-v1 . 230
8.2 S-BKW-v2 . 232
8.3 S-BKW-v3 . 233
8.4 An Asymptotic Comparison of the New Variants 235
8.5 A High Level Description 236
8.6 More Generalization . 237

9 Conclusions and Future Work 237
References . 238

PAPER VI – The Asymptotic Complexity of Coded-BKW with
Sieving Using Increasing Reduction Factors 245
1 Introduction . 247
2 Preliminaries . 248
3 BKW . 248

3.1 Plain BKW . 248
3.2 Lazy Modulus Switching 249
3.3 Coded-BKW . 249
3.4 Coded-BKW with Sieving 249

4 Coded-BKW with Sieving with Increasing Reduction Factors . 250
5 Asymptotic Complexity . 251

5.1 Arora-Ge and Lattice-based Methods 252
5.2 Plain and Coded BKW 252
5.3 Coded-BKW with sieving 252
5.4 Coded-BKW with Sieving with Increasing Reduction Fac-

tors . 252
5.5 Polynomial Number of Samples 253

Contents xxiii

6 Results . 253
7 Conclusions . 254
References . 255
A Proof of Theorem 5.2 . 257

Popular Scientific Summary in Swedish 262

Part I

Overview of Research Field

1

Chapter 1

Introduction to
Post-Quantum Cryptology

Factoring is hard. Let’s go shopping!

— Nadia Heninger/Sharon Goldberg

1.1 Brief Introduction

Cryptography (from the Greek kryptós "hidden/secret" and graphein "to
write") is, slightly simplified, the study of methods for secure communica-

tion in the presence of adversaries. Cryptanalysis (from the Greek analýein "to
loosen/untie") takes the perspective of the adversary and studies how to break
cryptographic constructions. Cryptology (from the Greek logia "study") refers
to the study of cryptography and cryptanalysis.

Cryptography should be distinguished from steganography, which is the art
of concealing the existence of a message altogether.

Historically, before the computer area, cryptography mainly dealt with en-
cryption of secret messages sent for state/military purposes. It was done by pen
and paper or, at the first half of the 20th century, by mechanical devices. The
methods were quite ad hoc and cryptanalysis was about solving puzzles rather
than well-defined mathematical problems.

The fascinating history of cryptography is outside the scope of this the-
sis. For a brief, non-technical introduction to the history of cryptography,
see [Sin99]. For a slightly more technical introduction, see [Chu01]. For a
comprehensive introduction to the history of cryptography up until the early
internet era, see [Kha96].

The modern history of cryptography arguably starts with Shannon’s paper
“Communication theory of secrecy systems” [Sha49], transforming cryptography
from an artform into a science.

Cryptography as an academic discipline arguably starts in the 1970s with
two major developments. Partly, the Data Encryption Standard (DES) was in-
troduced as the first wide-spread, publicly available encryption method. Partly,
the invention of public-key cryptography by Diffie and Hellman [DH76], and

3

4 Overview of Research Field

Merkle [Mer78], made it possible for two people that never met before to se-
curely communicate over an insecure channel.

Public-key cryptography is based on the inherent (assumed) difficulty of one
among a small set of mathematical problems. The beautiful thing about this
research area is that, unlike in many contexts where the mathematical model is
an approximation of reality, in cryptography we get to decide the mathematical
problem precisely.

In the 90s Peter Shor showed how the public-key cryptography used then,
and still today, can be broken by a large-scale quantum computer [Sho94].
This sparked research into developing quantum-resistant methods for public-
key cryptography. This area of research is called post-quantum cryptography1.

Modern cryptography is in some sense quite a strange research area.
Whereas in other areas researchers try to solve problems, in cryptography
researchers come up with mathematical problems that no one should be able to
solve.

Cryptanalysis, viewed as the art of breaking cryptographic constructions, is
in a sense even stranger. Here researchers try their best to solve problems, that
by their very construction, if correctly designed, are impossible to solve.

In other research areas quantum computers are seen as a fantastic future
tool, making it possible to solve problems that by their very nature are hard or
even impossible to solve with a classical computer. In the area of cryptography
they are seen as a foundational threat2 that needs to be addressed long before
large-scale quantum computers even exist.

To further highlight the strangeness of cryptography, consider the famous
P vs. NP problem [Coo71]. Imagine a future where someone would show the,
improbable but technically not impossible, result that P = NP . For many re-
search areas this would be a dream come true and it would make many currently
intractable problems easy to solve3. However, in cryptography this would be a
disaster since it would make public-key cryptography impossible to use4.

The topic of this thesis is the even stranger area of post-quantum crypt-
analysis. In this area researchers try their hardest to break systems that are
designed to resist both classical and quantum computers.

To the uninitiated, it might seem strange to focus on breaking systems.
However, the only way to make sure that a cryptographic construction is secure
is to try as hard as possible to break it5. If you discourage people to study your
system because you think academic researchers can break it, then chances are
that malicious players can break it too!

1which is very different from quantum cryptography, the science of performing crypto-
graphic tasks using quantum mechanical phenomenon.

2But also a job opportunity for researchers.
3Unless the solution is a polynomial but practically inefficient algorithm or the solution is

non-constructive in nature.
4See Footnote 3.
5In some cases, such as the Vernam cipher, it is possible to prove that a construction is se-

cure. However, at least in the area of public-key cryptography, constructions depend crucially
on the inherent difficulty of mathematical problems. Since computer scientists famously have
not even been able to prove that NP-complete problems are hard, we need to heuristically
assume that problems are hard if no one has been able to solve them efficiently after large
amounts of effort to do so.

Chapter 1. Introduction to Post-Quantum Cryptology 5

1.1.1 General Thesis Focus
When writing an introduction to a collection thesis we try to

1. give a comprehensive introduction to the general research area,

2. give the reader an easier time to read the papers the thesis is based on,

3. write as strictly as possible,

under the constraint that the introduction should not be unreasonably long.
Fully achieving all the goals under this constraint is not possible. I have decided
to focus on making the papers the thesis is based on more readable. One of the
main goals when writing a paper is to make the ideas easier to understand than
it was for the author to come up with them in the first place. Analogously,
my main goal with this thesis introduction is to make the papers it is based on
easier to read, than they would be without having read this introduction, both
by giving the reader extra intuitive explanations and by putting the papers in
a shared larger context.

For more mathematical strictness the reader is referred to the papers the
thesis is based on.

For many different areas, all the way from cryptography in general to spe-
cific topics like quantum computation and lattice sieving, well-written general
introductions are referenced throughout the thesis to guide the interested reader.

1.2 Classical Cryptography
Let us now introduce classical cryptography in some more detail, covering the
basic ideas of symmetric and asymmetric cryptography.

1.2.1 Symmetric Cryptography
Alice and Bob6 are communicating over an insecure channel where Eve is eaves-
dropping. Secret values are marked in red. Encryption is used to hide the secret
message from Eve. Alice maps her message m to an encrypted message c using
an invertible function Ek, where the key k is only known to Alice and Bob. Typ-
ically, k is chosen uniformly random from a very large set K of possible keys.
Next, Bob retrieves the secret message m by applying a decryption function Dk

to the encrypted message c. Figure 1.1 illustrates this process.
A fundamental concept here is Kerckhoffs’s principle, which says that a

cryptosystem should remain secure even if the attacker knows everything about
how the system works, except the secret key [Ker83a,Ker83b]. This principle
is universally accepted in cryptographic research. The reasoning behind it is
essentially that it is much easier to hide a short string like a key, than the whole
inner workings of the system.

The current standard for general-purpose symmetric cryptography is the Ad-
vanced Encryption Standard (AES). Given access to only a message encrypted

6In cryptography instead of writing something like “the sender" and “the receiver", we
usually use a set of human names, making the reading simpler. In general and practice Alice
and Bob can refer to computers, servers, mobile phones, tablets or any type of electronical
devices.

6 Overview of Research Field

Alice
m

Ek
c = Ek(m)

Eve

Bob

Dk

m = Dk(c)

Figure 1.1: A simple illustration of symmetric encryption.

using AES, the best known way of decrypting the message without access to
the secret key is just marginally faster than exhaustively trying to decrypt the
message using every possible key [BKR11]7.

Hash Function

A (cryptographic) hash function is a function H that maps data of arbitrary
size to a bit array of a fixed size n and has the following properties.

1. Pre-image resistance - given a hashed value h, it should be hard to find a
message m such that H(m) = h.

2. Second pre-image resistance - given a message m1, it should be hard to
find another message m2 such that H(m1) = H(m2).

3. Collision-resistance - It should be hard to find two messages m1 and m2

such that H(m1) = H(m2).

Notice here that unlike the case of encryption, a hash function is unkeyed.
We can trivially find a pre-image by brute-force in time O(2n). By the birthday
paradox we will find a collision after having hashed O(2n/2) messages. To
achieve m-bit collision-resistance we thus require n ≥ 2 ·m.

1.2.2 Asymmetric Cryptography
Asymmetric cryptography is also more commonly known as public-key cryptog-
raphy, but for reasons of symmetry we will refer to it as asymmetric throughout
this thesis.

Asymmetric Encryption

A major problem for symmetric cryptography is how Alice and Bob can decide
which shared key to use, if they only have access to an insecure channel and have
not communicated beforehand. This seemingly impossible problem was solved
in 1976 by the Diffie-Hellman key exchange protocol [DH76]8. A year later, a
similar system called Rivest-Shamir-Adleman (RSA) was invented [RSA78]. In

7In practice there are of course a lot of other attacks to consider.
8In 1997 it was revealed that the British signal intelligence agency secretly knew about

asymmetric cryptography already back in 1969.

Chapter 1. Introduction to Post-Quantum Cryptology 7

Alice
m

Epk
c = Epk(m)

Eve

Bob

Dsk

m = Dsk(c)

Figure 1.2: A simple illustration of asymmetric encryption.

RSA when Alice wants to send an encrypted message to Bob, Bob uses two
keys, a private (secret) key sk and a public key pk. Using Bob’s public key pk,
Alice can encrypt a message and send it to Bob. Having access to the private
key sk, Bob can easily decrypt the message. Eve, who does not have access
to the private key, must solve a difficult mathematical problem to decrypt the
message.

The security of RSA or the Diffie-Hellman key exchange rely on the assump-
tion that the Integer Factoring Problem (IFP) or the Discrete Logarithm Prob-
lem (DLP) respectively, are computationally intractable9. Let us first quickly
define the problems.

Definition 1.2.1 (The Integer Factoring Problem (IFP)). Given the product
n = pq of two large primes p and q, find the secret p and q.

Definition 1.2.2 (The Discrete Logarithm Problem (DLP)). Given a cyclic
group G, of large order q and with a generator g. Given h = gx, find the secret
x.

Here we measure the problem size as the number of bits needed to represent
the secret numbers. By computationally intractable we mean that there is no
algorithm that has a runtime that grows polynomially with the problem size.

The best algorithms for the IFP is the general number field sieve, which
solves it in subexponential time, both provably [LP92] and heuristically [BLP93].

The difficulty of the discrete logarithm problem depends on the group used.
If we use the multiplicative group F∗p for a prime p, then the best algorithm is
also the general number field sieve with subexponential time. If we instead use
an elliptic-curve group, then the best algorithm is a general-purpose discrete log-
arithm solving algorithm like Pollard’s ρ algorithm [Pol78], taking exponential
time.

Digital Signatures

Digital signatures make it possible for Alice to sign a message she sends to
Bob. A simple illustration of how it works is found in Figure 1.3. Alice first

9Technically the the security of RSA relies on the difficulty of solving the RSA problem,
which is a slight modification of the integer factoring problem. If you can solve integer
factoring, then you can break RSA. There might be an efficient way of solving RSA even
if integer factoring is hard, but no such algorithm is known. The situation is similar for
Diffie-Hellman, where the actual problem is a slight modification of the discrete logarithm
problem.

8 Overview of Research Field

Alice
m

H H(m)
Ssk

Bob

Ssk(H(m))

Eve

Vpk
Y/N

Figure 1.3: A simple illustration of a digital signature.

hashes her message using som well-chosen hash function H10. She then signs
her message using her signing function Ssk, which depends on her secret key sk.
Bob recieves her signed value Ssk(H(m)) and the hash of the original message
h = H(m). To check the validity of the message he uses a verification function
Vpk, which depends on Alice’s public key pk. He checks if h′ = Vpk(Ssk(H(m)))
is equal to h = H(m) to test the validity of the message. In order to create a
valid signature of her own, Eve has to solve a difficult mathematical problem,
in practice today either the DLP or the IFP11.

The picture in this chapter is quite simplified. Specifically we do not explain
in detail how the encryption/decryption functions or the signing/verification
functions work. A lot more needs to be taken into consideration before imple-
menting cryptography in practice. Asymmetric cryptography depends on, but
not only on, DLP or IFP. The key take-home message is that the asymmetric
primitives are important and if an attacker can break both the DLP and the
IFP then asymmetric cryptography as used today, and hence cryptography as
a whole, is broken.

For a more complete mathematical introduction to the cryptology area, see
for example [Sma16,MvOV01,SP18,FS03].

1.3 Post-Quantum Cryptography
In the 1990s, quantum algorithms that can potentially be used to break cryp-
tographic constructions in the future were developed.

1.3.1 Shor’s Algorithm
In [Sho94] Peter Shor showed how a large-scale quantum computer can solve
both the discrete logarithm problem, based on the multiplicative group or elliptic
curves, and the integer factoring problem, in polynomial time. This constitutes
a foundational threat towards asymmetric cryptography and makes it necessary
to use other underlying mathematical problems for asymmetric cryptography.

The research area studying such problems is called post-quantum cryptog-
raphy. There are currently 5 main categories of post-quantum cryptography
primitives.

10The hashing is done to transform all message into the same length and to make it impos-
sible to forge signatures.

11Also here the actual problem to solve is a slight modification of these problems.

Chapter 1. Introduction to Post-Quantum Cryptology 9

• Lattice-based cryptography

• Code-based cryptography

• Multi-variate cryptography

• Symmetric/Hash-based cryptography

• Super-singular isogeny-based cryptography

Among these, lattice-based cryptography is the focus of this thesis and also
arguably the most promising category. Paper 4 is about code-based cryptog-
raphy [GJMS19a]. The other areas of post-quantum cryptography are outside
of the scope of this thesis. For a general introduction to the area, after having
read the Wikipedia article [Wik20c], see [BL17,BBD08].

1.3.2 Grover’s Algorithm
In [Gro96] Lov Grover developed a quantum algorithm that makes it possible
to find an element in an unstructered list of size n in time O(

√
n), beating the

classical time of O(n). For symmetric systems like AES this allows the attacker
to search for the secret key much faster. It also allows for finding pre-images
to hash functions. These attacks can easily be neutralized by doubling the key
size.

A slight modification of Grover’s algorithm is the BHT algorithm for finding
collisions in O(2n/3) [BHT97]. To remedy this, the size of the hashed values
need to increase by a factor 3/2 to remain collision-resistant.

While not as powerful as Shor’s algorithm, Grover’s algorithm is much more
general. The algorithm is frequently used in post-quantum cryptanalysis and
will be studied in more detail in Chapter 3.

1.3.3 NIST Competition
The threat from quantum computers is not just considered an academic curios-
ity. The National Security Agency (NSA) has stated the following [Age].

IAD will initiate a transition to quantum resistant algorithms in the
not too distant future. Based on experience in deploying Suite B, we
have determined to start planning and communicating early about
the upcoming transition to quantum resistant algorithms.

The National Institute of Standards and Technology (NIST) is a United
States national agency known for, among many other things, holding interna-
tional competitions to develop new cryptographic standards, leading to globally
recognized standards such as the AES for symmetric cryptography and Secure
Hash Algorithm 3 (SHA-3) for hash functions. Currently they have an ongoing
competition to develop a new standard for lightweight cryptography [NISa].

To handle the potential future threat of quantum computers NIST issued
a competition to develop new standards for asymmetric encryption and digital
signatures [NISb].

10 Overview of Research Field

Category Signatures KEM/Encryption Total
Lattice-based 5 21 26
Code-based 2 17 19
Multi-variate 7 2 9
Symmetric/Hash-based 3 0 3
Other 2 5 7
Total 19 45 64

Table 1.1: Summary of the first round NIST PQC competition candidates.

Category Signatures KEM/Encryption Total
Lattice-based 3 9 12
Code-based 0 7 7
Multi-variate 4 0 4
Symmetric/Hash-based 2 0 2
Other 0 1 1
Total 9 17 26

Table 1.2: Summary of the second round NIST PQC competition candidates.

Throughout the competition12 lattice-based schemes have dominated. Let
us quickly cover the development of the competition.

1.3.4 First Round Candidates
The competition initially got 82 submissions in [NISc]. Out of these 69 were con-
sidered “acceptable and complete”. 5 of these were withdrawn. The remaining
64 candidates can be divided into categories according to Table 1.1.

1.3.5 Second Round Candidates
Out of the 64 candidates, 26 made it to the second round [NISd]. These can be
divided into categories according to Table 1.2.

1.3.6 Third Round Candidates
Out of the remaining 26 candidates, 15 made it to the third round [NISe].
The third round candidates are divided into finalists and alternates, where the
finalists are considered the most promising. The categories for the finalists and
alternates are summarized in Tables 1.3 and 1.4.

In Tables 1.1 to 1.4 super-singular isogeny-based candidates are considered as
“Other”. Key Encapsulation Mechanism (KEM) refers to an asymmetric method
for establishing a shared key, which in turn is used for symmetric encryption.

12NIST technically does not call the process a competition and uses various creative ways
of almost, but not quite, calling it a competition.

Chapter 1. Introduction to Post-Quantum Cryptology 11

Category Signatures KEM/Encryption Total
Lattice-based 2 3 5
Code-based 0 1 1
Multi-variate 1 0 1
Total 3 4 7

Table 1.3: Finalists of the third round of the NIST PQC competition.

Category Signatures KEM/Encryption Total
Lattice-based 0 2 2
Code-based 0 2 2
Multi-variate 1 0 1
Symmetric/Hash-based 2 0 2
Other 0 1 1
Total 3 5 8

Table 1.4: Alternates of the third round of the NIST PQC competition.

1.3.7 Some Voices on Quantum Computing
This section will briefly discuss the progress of quantum computing and the
seriousness of its threat to cryptography.

One of the first milestones for quantum computing is achieving quan-
tum supremacy, referring to a demonstration of a quantum computer being
able to solve a problem that no classical computer can solve in any feasi-
ble amount of time13. A Google team recently claimed to achieve quantum
supremacy [AAB+19]. They sampled a million values from a randomized quan-
tum circuit in about 200 seconds, a feat they claimed that the state-of-the-art
classical supercomputers need 10000 years to do. IBM claimed in response
that the calculation can be done in at most 2.5 days [PGN+19]. A very recent
quantum supremacy claim in the area of boson sampling is from [ZWD+20].
Whether either of these results should be considered as achieving quantum
supremacy or not, the time at which quantum supremacy can no longer be
denied is near.

A next milestone is showing an example of where a quantum computer can
solve an interesting problem significantly faster than any classical computer.
There will likely be a couple of steps between this milestone and large integer
factoring using quantum computers. The largest number factored by a quantum
computer using Shor’s algorithm is currently only 35 [ASK19]. While factoriza-
tions of larger numbers, such as 1,099,551,473,989 has been performed using a
quantum computer [AOAGC18], the methods used are not the same as Shor’s
algorithm and do not scale as well when increasing the problem size and/or do
only apply to numbers on special forms.

There are still reasons to be worried. Moore’s law famously states that
the number of transistors that fits on an integrated circuit doubles every two
years, meaning that the available computational power grows exponentially over
time. There is a corresponding quantum version called Neven’s law14, saying

13The usefulness of the problem is not relevant at this stage.
14after quantum computing researcher Hartmut Neven.

12 Overview of Research Field

that quantum computers ability to solve certain problems, like integer factoring,
grows doubly exponential, since they have an inherent exponential advantage to
begin with. This doubly exponential growth assumes that the number of qubits
a quantum computer can handle will grow exponentially over time, similar to
the number of transistors in classical computers.

Another perspective on post-quantum computing is Mosca’s theorem, named
after quantum computing researcher Michele Mosca. It essentially says that we
need to worry if

X + Y > Z,

whereX is the time a message needs to remain secret, Y is the time it takes to
implement post-quantum solutions and Z is the time until a quantum computer
can break our current asymmetric cryptography. In general both X and Y are
oftentimes many years, meaning that the threat from quantum computers needs
to be dealt with many years before large-scale quantum computers exist.

Yet another perspective on the threat from quantum computers is that of
a simple risk-benefit analysis. Due to the disastrous consequences a large-scale
quantum computer would be for all today’s secure communication, as long as
we think that the probability of a quantum computer being built is more than
non-negligible, we must take precautions against it in advance.

In the world of post-quantum cryptography you sometimes get the impres-
sion that governments and corporations spend enormous resources on building
quantum computers for the sole purpose of destroying cryptography as being
used today. Actually, quantum algorithms have applications in many other
areas. A couple of examples with their corresponding Wikipedia articles are

• Simulating quantum systems that are too difficult to study empirically or
simulate with classical supercomputers [Wik20f].

• Optimization using quantum annealing, essentially a quantum version of
the optimization method simulated annealing [Wik20e].

• Quantum algorithms for solving linear systems of equations [Wik20d],
which are prevalent in essentially every area of science and engineering.

For an attempt at listing all quantum algorithms see [Qua]15. Due to the
many different applications of quantum computers, both academia and industry
spend lots of resources building quantum computers. If humanity fails to build a
large-scale quantum computer, it will likely be because of some inherent physical
difficulty, not for the lack of trying!

1.4 LWE and LPN
Most of the lattice-based candidates in the NIST post-quantum competition
are based on the Learning With Errors (LWE) problem, introduced by Regev
in [Reg05]. Let us define its search version.

15Compared to algorithms on a classical computer this list is still comically short. The idea
of attempting to make a complete list of classical algorithms is of course absurd.

Chapter 1. Introduction to Post-Quantum Cryptology 13

Definition 1.4.1 ((Search) Learning With Errors (LWE)). Let n be a positive
integer, q be an odd prime and χ be a distribution on Zq. Let s be a random
secret vector in Znq , chosen from some distribution. Given access to m noisy
products between s and known, uniformly random vectors ai ∈ Znq ;

(ai, bi) = (ai, 〈ai, s〉+ ei),

where ei is sampled from χ. The (search) LWE problem is to find the secret
vector s.

There is also a corresponding decision version of the LWE problem where,
given access to m pairs (ai, bi), the task is to decide whether the pairs are LWE
samples or uniformly random samples from Zn+1

q .
Other than being among the main problems (if not the main problem) for

post-quantum cryptography, LWE has a couple of more fascinating properties.
The first Fully Homomorphic Encryption (FHE) system is based on the LWE
problem [Gen09]. For a long time the possibility of FHE was an open research
question. There are reductions from worst-case lattice problems to average-case
LWE, implying that even on average LWE is a hard problem to solve [Reg05,
Pei09].

Let us also define the Learning Parity with Noise (LPN) problem, which is
the corresponding binary problem.

Definition 1.4.2 ((Search) Learning Parity with Noise (LPN)). Let k be a
positive integer, let x be a secret binary vector of length k and let X ∼ Berη be
Bernoulli distributed with the parameter η > 0. Let Lx,X denote the probability
distribution on Fk2 × F2 obtained by choosing g uniformly at random, choosing
e ∈ F2 from X and returning

(g, z) = (g, 〈g,x〉+ e).

The (search) LPN problem is to find the secret vector x given a fixed number
of samples from Lx,X .

The LPN problem also has a a decision version, analogously with the LWE
problem.

1.4.1 Matrix Formulation of the LWE Problem
We can reformulate the LWE problem of Definition 1.4.1 on matrix form as

b = sA + e, (1.1)

where A = [aT1 · · ·aTm], bi = 〈ai, s〉+ ei and ei
$← χ.

The corresponding reformulation can of course also be done for the LPN
problem.

1.4.2 Parameter Choices
Asymptotically we typically use parameters q = O(ncq) and σ = O(ncs), for
small positive constants cq and cs. In Regev’s original paper he used cq = 2 and
cs = 1.5. His reduction proof requires that cs ≥ 0.5. As we will briefly discuss

14 Overview of Research Field

in Chapter 2, there are efficient algorithms for solving LWE when cs < 0.5.
Therefore either cs ≥ 0.5 is used or the scheme needs to make sure that the
number of available samples is small, preventing the efficient attacks explained
in Chapter 2.

1.5 Preliminaries
Let us cover some notation, concepts and methods that will be useful to know
when reading the rest of the thesis.

1.5.1 Notation
Let Sd−1 ⊂ Rd denote the unit sphere in Rd. Unless otherwise specified in this
introduction we use the Euclidean norm, denoted by ‖ · ‖. We let 〈x,y〉 denote
the scalar product between vectors x,y.

Given a set E ⊂ Rd, by its orthogonal complement we mean

E⊥ = {x ∈ Rd : 〈x,y〉 = 0,∀y ∈ E}. (1.2)

We define the orthogonal projection of Rd on E⊥ as the (unique) linear map
πE : Rd → E⊥ such that

πE(x) =

{
x,∀x ∈ E⊥,
0,∀x ∈ E.

(1.3)

1.5.2 Complexity Theory
There are essentially three different ways of comparing the computational effort
of running an algorithm; asymptotic complexity, concrete complexity and run-
time. All are relevant in cryptography and the papers this thesis is based on
use all these notations of complexity.

Asymptotic Complexity

Let f(n) denote the number of operations needed to run an algorithm with a
problem size n. For asymptotics we use the following standard notation.

• f(n) = O(g(n)) if there is a constant C such that f(n) ≤ C · g(n) for
sufficiently large values of n.

• f(n) = Ω(g(n)) if there is a constant C such that f(n) ≥ C · g(n) for
sufficiently large values of n.

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = Õ(g(n)), if there is a constant k such that f(n) = O(g(n) logk g(n)).

• f(n) = o(g(n)), if lim
n→∞

f(n)/g(n) = 0.

Chapter 1. Introduction to Post-Quantum Cryptology 15

Asymptotic analysis makes it simple to compare algorithms behavior as the
problem sizes grow towards infinity. An asymptotically faster algorithm will
eventually beat a slower one. However, asymptotic complexity in and of itself is
not enough. An algorithm can be asymptotically faster than another algorithm,
while being slower for all practically solvable instances even if we would use all
the world’s computing power until the heat death of the universe!

In the cryptographic context we prefer problems where the best algorithm
solves the problem in exponential time. We must avoid problems where the best
algorithms solve the problem in polynomial time.

Concrete Complexity

We can calculate how many operations an algorithm takes to solve a problem
instance of a given problem size n. Here we can talk about arithmetic complex-
ity, referring to the number of arithmetic operations in a specific field (like Fq),
or even the number of bit operations needed to run the algorithm.

For a specific value of n this method gives us a more precise idea of the
complexity of an algorithm. However, calculating the concrete complexity of
an algorithm is oftentimes more complicated than calculating the asymptotic
complexity.

In the cryptographic context we talk about λ-bit complexity/security when
we refer to a problem instance where the best algorithm needs at least 2λ oper-
ations to solve the problem instance. In cryptography common security levels
are 80, 128 or 256 bits.

Runtime Complexity

Finally we can run an implementation on actual hardware and measure the
runtime, in for example seconds or even clock cycles. In a sense this is the prac-
tically most relevant way of comparing algorithms. However, in order to make
an apples to apples comparison between two algorithms we need to take into
consideration efficiency of the implemented algorithm, available hardware and
so on. Comparing only runtime also makes it hard to tell how the performance
of the algorithms change as n increases.

1.5.3 Transforms
Here we will introduce some important transforms which will be used later.

The Discrete Fourier Transform

An important cryptanalytic tool is the Discrete Fourier Transform (DFT).

Definition 1.5.1 (Discrete Fourier Transform (DFT)). Let θq = exp(2πi/q)
denote the q-th root of unity and let f : Fnq → R. The DFT of f is the mapping

f̂(y) =
∑
x∈Fnq

f(x)θ−<x,y>
q , (1.4)

for all y ∈ Fnq .

16 Overview of Research Field

Calculating the DFT naively takes time O(q2n). However, by applying a
divide-and-conquer technique this can be sped-up to O(n · qn · log(q)) using
for example the Cooley-Tukey algorithm [CT65]. This foundational method in
computer science is called the Fast Fourier Transform (FFT).

The Walsh-Hadamard Transform

An important, binary special case of the DFT is the Walsh-Hadamard Transform
(WHT).

Definition 1.5.2 (Walsh-Hadamard Transform (WHT)). Given the Boolean
function f : Fn2 → F. The WHT of f is the mapping

f̂(y) =
∑
x∈Fn2

f(x)(−1)<x,y>, (1.5)

for all y ∈ Fn2 .

Just like for the DFT there is a divide-and-conquer algorithm for calculating
the WHT faster than naively. This algorithm is called the Fast Walsh-Hadamard
Transform (FWHT) and takes O(n · 2n) time.

1.5.4 Probability Distributions
Let us define a couple of important probability distributions.

Definition 1.5.3 (Bernoulli Distribution). Given ρ ∈ [0, 1]. A variable X is
called Bernoulli distributed Berρ if it has the following Probability Mass Function
(PMF)

Pr [X = x] =

{
1− ρ if x = 0,
ρ if x = 1.

Definition 1.5.4 (Uniform Distribution). A variable X is called uniformly
distributed U(a, b) if it has the following PMF

Pr [X = x] =
1

b− a+ 1
, x = a, a+ 1, . . . , b.

Definition 1.5.5 (Gaussian Distribution). Given µ, σ ∈ R, where σ > 0. A
variable X is called Gaussian distributed N (µ, σ) if it has the following Proba-
bility Density Function (PDF)

f(x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

Definition 1.5.6 (Discrete Gaussian Distribution). Given q ∈ N, σ ∈ R, where
q > 2 and q odd, σ > 0. Let f(x|0, σ) denote the PDF of the Gaussian distribu-
tion. Let us first consider the discrete Gaussian distribution over the integers as
the distribution with PMF proportional to exp(−x2/(2σ2)) to each x ∈ Z. The
discrete Gaussian function over Zq (χσ,q) is the distribution we get by sampling
from the integer version and then folding the values to the closest value in Zq.

Chapter 1. Introduction to Post-Quantum Cryptology 17

Definition 1.5.7 (Rounded Gaussian Distribution). Given q ∈ N, σ ∈ R, where
q > 2 and q odd, σ > 0. Let f(x|0, σ) denote the PDF of the Gaussian distri-
bution. A variable X is called rounded Gaussian distributed Ψ̄σ,q if it has the
following PMF.

Pr(X = e) =

∞∑
k=−∞

∫ e+1/2+k·q

e−1/2+k·q
f(x|0, σ)dx, e = −(q − 1)/2, . . . , (q − 1)/2.

Another way of viewing the rounded Gaussian distribution is as the dis-
tribution that samples from the Gaussian distribution N (0, σ), rounds to the
nearest integer and then wraps the value to the interval [−(q− 1)/2, (q− 1)/2].
The discrete and rounded Gaussian distributions are quite similar in nature and
both are commonly used for the noise in the LWE problem.

1.6 Thesis Outline
The structure of the rest of the introductory part of the thesis is as follows.
Chapter 2 briefly covers the main types of algorithms for solving LWE. Next,
Chapter 3 introduces quantum algorithms, with a focus on Grover’s algorithm
and its generalizations. Thereafter, Chapter 4 introduces coding theory, code-
based cryptography and cryptanalysis. Chapter 5 discusses lattice sieving with
a focus on asymptotics. Next, Chapters 6 to 8 constitute the main body of
the thesis, covering the Blum-Kalai-Wasserman (BKW) algorithm, including
the basic algorithm, improved reduction steps and improved hypothesis testing.
Finally, Chapter 9 concludes the thesis.

18 Overview of Research Field

Chapter 2

Algorithms for Solving LWE

LWE is hard. Let’s go factoring!

— Post-quantum version of the factoring quote

The LWE problem is believed to be a hard problem. For typical parameter
settings used for cryptographic purposes the time complexity for the fastest

known algorithms, even when using a quantum computer, are exponential in the
problem size. Algorithms for solving the LWE problem is the main topic of this
thesis. This chapter will give an overview of the algorithms used to solve LWE.
These algorithms can be divided into three main categories.

2.1 Algebraic Approaches
Algebraic methods for solving LWE were introduced by Arora and Ge in [AG11].
Consider an LWE sample on the form

b = s · a + e. (2.1)

Assume that e ∈ S ⊂ Zq. As an example, if the noise is Discrete Gaussian,
then we can assume that the error term has a magnitude of at most t ·σ, where
t is a small integer. Now consider the function

fa,b(x) =
∏
e∈S

(b− x · a− e). (2.2)

If s is the secret vector, then fa,b(s) = 0. For x 6= s we, most likely, get
fa,b(x) = 0. Having access to m samples we consider the system of polynomial
equations

{fai,bi(x) = 0}mi=1 . (2.3)

These polynomials have a degree of |S|. The number of monomials is(
n+|S|
|S|
)
1. Next we solve (2.3) by linearization. Replace each monomial by a

1Each monomial is formed by picking one term out of n+1 from each of the |S| parantheses,
allowing repeating a term but ignoring the order in which the terms are picked. Thus the
number is

((n+1)+|S|−1
|S|

)
=
(n+|S|
|S|

)
[Wik20a]. (To be precis this number should be subtracted

by 1 since we do not need to introduce a variable for the constant term.)

19

20 Overview of Research Field

new variable. Then solve the linear system of equations. If the number of avail-
able samples is large enough, then this system of equations has a unique solution
x = s.

The original Arora-Ge algorithm was improved by Albrecht et al. in
[ACFP14], using Gröbner bases instead of linearization. If cs < 0.5, then
Arora-Ge is a subexponential algorithm. However, for cs > 0.5 it is inefficient
compared to the other algorithms of this chapter. The algorithm also does not
work if the number of provided samples is too small.

2.2 Lattice-based Approaches
To explain lattice-based approaches for solving LWE we need to introduce some
lattice concepts. These concepts will also be useful later in Chapter 5 where
we discuss lattice sieving. For a more general introduction to lattice-based
cryptography, see [MR09].

2.2.1 Introduction to Lattices
Let us start by defining a lattice.

Definition 2.2.1 (Lattice). A lattice L ⊂ Rd is a discrete, additive subgroup
of (Rd,+).

A lattice being discrete means that every lattice point in L has a neighbor-
hood around it in which it is the only element. Next we define the rank of and
a basis of a lattice.

Definition 2.2.2 (Rank). The rank of a lattice L, rank(L), is the maximum
number of linearly independent vectors in L.

Definition 2.2.3 (Basis). Let L be a lattice and let B = {b1, . . . ,bn} be linearly
independent lattice vectors in L. If for every v ∈ L there exists a set of integers
{x1, . . . , xn} such that v =

∑n
i=1 xibi, then B is a basis of L. Then we also say

that B spans L.

To indicate that B is a basis of a lattice L we write L(B).
In this thesis we are interested in maximum-rank lattices, in other words,

from now on we assume that rank(L) = d. To explain the Block Korkine
Zolotarev (BKZ) algorithm we need the concept of projective lattices. To do
so, let us first introduce sublattices and primitive sublattices.

Definition 2.2.4 (Sublattice). Given a lattice L in Rd. A set L′ ⊂ L, which
in turn is a lattice is called a sublattice of L.

Definition 2.2.5 (Primitive sublattice). Given a lattice L in Rd. A sublattice
L′ of L is called primitive if for any basis {b1, . . . ,br} of L′ there exists a set
of vectors {br+1, . . . ,bd} in L, such that {b1, . . . ,bd} is a basis of L.

Now, let us now introduce projected lattices.

Lemma 2.2.1 (Projected lattice). Let L be a full-rank lattice in Rd and let L′
be primitive sublattice of L with a basis Br = {b1, . . . ,br}. Let πL′ denote the
orthogonal projection on (L′)⊥. Then πL′(L) is a (d− r)-rank lattice.

Chapter 2. Algorithms for Solving LWE 21

Proof 2.2.1. The basis of L′ can be completed into a basis for L as B =
Br ∪{br+1, . . . ,bd} = {b1, . . . ,bd}. Then πL′(L) is the lattice generated by the
basis {πL′(br+1), . . . , πL′(bd)}.

Given a basis B = {b1, . . . ,bd}, the projection πL(Bi−1) is denoted πi. Let
also π1 denote the identity map. Let B[i,j] denote the basis {πi(bi), . . . , πi(bj)}
and let L[i,j] denote the lattice spanned by B[i,j].

2.2.2 Computational Problems
We will now cover some computational lattice problems that are useful in cryp-
tography. Let us start off with the concept of a shortest lattice vector2.

Definition 2.2.6 (Shortest vector). A non-zero lattice vector v whose norm is
shorter than or equal to the norm of all non-zero lattice vectors in a lattice L is
called a shortest vector. We denote its norm by λ1(L).

Finding a shortest vector in a lattice, solving the Shortest Vector Problem
(SVP), is a fundamental problem in lattice-based cryptography. The concept of
a shortest vector is also generalized to successive minima.

Definition 2.2.7 (Successive minima). We call a shortest vector in a lattice
the first successive minima and denote its length by λ1(L). A shortest possible
vector which is linearly independent of the first successive minima is the second
successive minima, with its length denoted by λ2(L). In general, given the first
k − 1 successive minima, a shortest possible lattice vector which is linearly in-
dependent of the first k − 1 first successive minima is called the k-th successive
minima and its length is denoted λk(L); where 1 < k ≤ d.

Let us define a couple of related problems. Let us start with the Closest
Vector Problem (CVP).

Definition 2.2.8 (Closest Vector Problem (CVP)). Given a lattice L and a
target vector t ∈ Rd. The CVP is the problem of finding a lattice vector that is
at least as close to t as all the other lattice vectors.

Typically t is not a lattice vector. Unlike the SVP, the CVP mostly has
a unique solution. A problem related to the CVP is the Bounded Distance
Decoding (BDD) problem.

Definition 2.2.9 (α-Bounded Distance Decoding (BDDα)). Given a lattice L,
a small positive number α and a target vector t ∈ Rd. Given a guarantee that a
closest vector v to t fulfills ‖v − t‖ ≤ αλ1(L), find a vector closest to t.

The BDD problem is thus essentially CVP with a guarantee that closest
vector is unusually close. The smaller α is, the easier the BDDα problem is.
The BDD problem can be transformed to another version of SVP called unique-
SVP.

Definition 2.2.10 (γ-unique Shortest Vector Problem (uSVPγ)). Given a lat-
tice L and a guarantee that λ2(L) > γ · λ1(L), for a positive constant γ > 1,
find a shortest vector in L.

2Notice the phrasing here. There is never a unique shortest vector. If v is a shortest vector,
then so is −v, for example. For some lattices even more shortest vectors exist.

22 Overview of Research Field

Unique-SVP is essentially SVP with the guarantee that a shortest vector is
unusually short. Except that; given that v is a solution to unique-SVP, so is
−v; the solution is typically unique. The larger γ is, the easier uSVPγ is.

There are approximate versions of many of the lattice problems. Let us
define the approximate SVP.

Definition 2.2.11 (Approximate SVP). Given a lattice L and a factor γ. The
γ-approximate SVP is to find a lattice vector v ∈ L such that ‖v‖ ≤ γλ1(L).
We write SVPγ to denote this problem.

There are of course obvious corresponding approximate versions of some of
the other lattice problems defined in this section, for example approximate CVP
denoted CVPγ .

2.2.3 Transforming LWE Into a Lattice Problem
Given an LWE instance on the matrix form of (1.1), there is an implied reduction
modulo q, which means that we can find a vector λ such that

b = sA + e + q · λ. (2.4)

We can rewrite this as

(
s λ

)(I A
0 qI

)
=
(
0 b

)
+
(
s −e

)
. (2.5)

We can thus solve LWE by solving the BDD problem looking for vectors
close to the target vector t =

(
0 b

)
in the lattice spanned by the basis

B =

(
I A
0 qI

)
. (2.6)

This approach was studied in [LP11,LN13]. Solving LWE by transforming
the problem to unique-SVP was studied in [AFG14]. There is also another
approach of solving the distinguishing problem in the dual lattice [MR09,Alb17],
which is outside the scope of this thesis.

2.2.4 Lattice Reduction
This section discusses methods for finding short/close vectors in a lattice using
lattice reduction. First, let us define a unimodular matrix.

Definition 2.2.12 (Unimodular matrix). A square matrix U is unimodular if
it has integer coefficients and det(U) = ±1.

The basis for a lattice is not unique. Given a basis B and a unitary matrix
U, we can form a new basis as B′ = UB. The general method for finding short
vectors in a lattice of large dimension is to change the basis to a "better" one
and then, if needed, search for an even shorter vector using this basis. A better
basis roughly means a basis where the basis vectors are closer to orthogonal and
are as short as possible. The process of finding a better basis is called lattice
reduction.

Chapter 2. Algorithms for Solving LWE 23

Size Reduction

For a vector space an orthogonal basis can always be achieved through Gram-
Schmidt orthogonalization, which we will briefly repeat. Given any basis B =
{b1, . . . ,bd} of a vector space, we can calculate an orthogonal basis B? =
{b?1, . . . ,b?d} as

b?i = bi −
i−1∑
j=1

µijb
?
j , (2.7)

where

µij =

〈
bi,b

?
j

〉〈
b?j ,b

?
j

〉 . (2.8)

Each new basis vector b?i is created as the difference between bi and the
orthogonal projection of bi on the plane spanned by the new basis vectors
{b?1, . . . ,b?i−1}, making sure that b?i is orthogonal against all the previously
created new basis vectors.

The only problem with the Gram-Schmidt orthogonalization process is that
the coefficients µij are non-integers and thus the resulting basis vectors b?i are
not lattice vectors. The most obvious way of doing lattice reduction is using
the Gram-Schmidt orthogonalization procedure, but rounding the coefficients
to the closest integer. This process is called size-reduction.

The LLL Algorithm

Next, let us define the Lovász condition.

Definition 2.2.13 (Lovász condition). Given the basis B = {b1, . . . ,bd}
of a lattice, the corresponding Gram-Schmidt orthogonalization basis B? =
{b?1, . . . ,b?d} and 0 < ε < 3/4. The Lovász condition is that

µ2
i,i−1

∥∥b?i−1

∥∥2
+ ‖b?i ‖

2 ≥ (1− ε)
∥∥b?i−1

∥∥2
, (2.9)

for 1 < i ≤ d.

A basis is called Lenstra–Lenstra–Lovász (LLL)-ε reduced if it is size reduced
and fulfills the Lovász condition for a certain value ε. If a certain value ε is
implied we simply call the basis LLL-reduced.

The LLL algorithm achieves a basis which is size-reduced and fulfills the
Lovász condition [LLL82]. The algorithm starts by size-reducing the basis. Then
it checks for adjacent pairs of vectors where the Lovász condition is not fulfilled.
Then it swaps the pair of basis vectors and size-reduces the basis again. This
process is repeated until there are no pairs where the Lovász condition is not
fulfilled and the basis is LLL-reduced.

The BKZ Algorithm

The LLL algorithm was improved and generalized in [Sch87], introducing the
concept of a block size β, where β = 2 corresponds to the LLL algorithm. A
basis is called BKZ-β reduced if it is LLL-reduced and for each 1 ≤ j < d,
b?j = λ1(L[j,k]), where k = min(j + β − 1, d).

24 Overview of Research Field

There are many methods for finding short vectors in the projected lattices,
but the two main practical ones are enumeration and sieving. Enumeration uses
only a polynomial amount of space, but is super-exponential in time. It essen-
tially consists of trying linear combinations of the basis vectors for a combination
that is as short as possible3. The idea of pruning this process and skipping un-
likely candidates was introduced in [SE94]. The idea of using extreme pruning,
where many enumerations are done with each having a very low success prob-
ability, to drastically improve this process, was introduced in [GNR10]. Even
though enumeration is asymptotically slow, it was fastest for practical instances
until recently.

Sieving is exponential in time and space, and recently became faster
than enumeration in practice. For the current state-of-the-art in practice,
see [ADH+19]. Sieving will be discussed in more detail in Chapter 5.

The SVP Challenge is a way of comparing the performance of SVP solving
algorithms [SVP]. A similar challenge specifically for LWE is the Darmstadt
LWE Challenge [Dar]. The largest LWE instances are solved using the imple-
mentation from [ADH+19]. Using a GPU-implementation of [ADH+19], Ducas,
Stevens and van Woerden have currently solved the largest SVP challenge in-
stance of dimension 176 [DSvW20].

For an easy introduction to lattice-reduction, see [Må16]. For a more
complete introduction to BKZ, see [Che14]. Notice that in both of these
introductions enumeration was used inside the BKZ algorithm, since enumer-
ation was the fastest algorithm in practice during the writing of both theses.
See [ADH+19] for how to use sieving inside BKZ.

It was shown in [HPS11] that the number of calls to the SVP subroutine of
BKZ is polynomial in the dimension d. The total (asymptotic) complexity of
BKZ hence depends directly on the complexity of the SVP subroutine.

2.3 Combinatorial Approaches
The combinatorial approaches include the basic BKW algorithm, as introduced
in [BKW00] for LPN and first analyzed for LWE in [ACF+15], and all later
improvements of it. This approach is the main topic of this thesis and will be
discussed in great detail in Chapters 6 to 9.

2.4 Surveys
There are a couple of good surveys on LWE solving algorithms that are much
more thorough than this short introduction. For a survey on the concrete com-
plexity of solving LWE using different approaches, see [APS15]. For a sur-
vey on the asymptotic complexity, see [HKM18]. For an asymptotic algorithm
comparison covering the most recent improvements of the BKW algorithm, see
Paper 5 [GJMS19b].

3Since we can estimate the size of a shortest vector we only need to try a limited number
of linear combinations.

Chapter 3

Quantum Computation

The book is too elementary, it starts off with the assumption that
the reader does not even know quantum mechanics.

— Anonymous Post-doc at Bell Labs

This chapter introduces quantum computation with a focus on Grover’s al-
gorithm and its generalizations, including amplitude amplification. The

reader is assumed to know basic linear algebra. However, let us repeat the
definition of a unitary matrix.

Definition 3.0.1 (Unitary Matrix). A complex, square matrix U is called uni-
tary if its inverse U−1 is equal to its complex conjugate U∗.

Equivalently a matrix U is called unitary if it maps a vector of norm 1 to a
vector of norm 1.

3.1 Quantum Computation Basics
The presentation here is based on the lecture notes of de Wolf [dW19], which
can be used for a much broader introduction to the area. Another great lecture
series is Aaronson’s [Aar18]. For an introductory book see [KLM17]. For the
most complete book introduction covering both the necessary computer science
and quantum mechanics, see [NC10]. A great non-technical introduction to
quantum computation is the following podcast episode [Fri20].

A classic computer works with bits. A bit can take the value 0 or 1. A qubit
in turn can be in a superposition between the two states |0〉 and |1〉,

|ψ〉 = α0 |0〉+ α1 |1〉 , (3.1)

where α0, α1 ∈ C and |α0|2 + |α1|2 = 1.
A register with n bits can be in any of 2n distinct states. Denote these states

by 0, 1, ..., 2n − 1. A register with qubits in turn can be in a superposition
between the basis states |0〉 , |1〉 , . . . , |2n − 1〉;

|ψ〉 =

2n−1∑
i=0

αi |i〉 , (3.2)

25

26 Overview of Research Field

where αi ∈ C and
∑2n−1
i=0 |αi|2 = 1. We can write the state as the column vector

|ψ〉 = (α0 · · ·α2n−1)T .

3.1.1 Measurement
We can measure the state of a system of qubits (3.2). The system then collapses
to one of the states. The probability of the system collapsing to the state |i〉 is

|αi|2. (3.3)

3.1.2 Unitary Transformation
We can apply also apply transformations to our qubits. The laws of quantum
mechanics only allows us linear transformations that also keep the norm of the
transformed state equal to 1. This means that every transformation of the state
|ψ〉 = (α0 · · ·α2n−1)T corresponds to multiplying a unitary matrix U by |ψ〉.

3.1.3 Entanglement
Consider a 2-qubit system in the state

|ψ〉 =
1√
2

(|00〉+ |11〉). (3.4)

Both the qubits can take the values |0〉 or |1〉 when measured. However,
measuring one of them means knowing the value of the other one. When mea-
suring, the outcome of the two qubits are not independent of each other, the
qubits are entangled.

Quantum computation is essentially the art of, given input data, applying
unitary transformations to the qubits in the correct way and then (with high
probability) retrieving the correct answer when measuring the state.

3.2 Grover’s Algorithm
We will cover Grover’s algorithm in some detail. To shorten the exposition a
bit we will cover what the different unitary transformations do, but not specify
the different unitary matrices.

While Grover’s algorithm does not lead to an exponential speed-up like
Shor’s algorithm, it can be used as a building block to speed-up many algo-
rithms.

Consider an unsorted database with N = 2n elements on the form x ∈
{0, 1}N . Let xi denote element number i. The problem is to find an i such
that xi = 1. Let us initially assume that there are precisely t such values
i. Classically, on average, we need to look through the whole database in time
Θ(N/t) to find a desirable element. We will now show how this can be drastically
improved quantumly. Let us define the good state

|G〉 =
1√
t

∑
i:xi=1

|i〉 ,

and the bad state

Chapter 3. Quantum Computation 27

|G〉

|B〉
|U〉

θ

Ox,± |U〉
θ

G |U〉

2θ

Figure 3.1: Illustration of the first Grover iteration.

|B〉 =
1√
N − t

∑
i:xi=0

|i〉 .

Let us begin in the zero-state |0〉. First we apply a unitary transformation
that turns the state into the uniform superposition state and write it as linear
combination of the good and the bad state

|U〉 =
1√
N

N−1∑
i=0

|i〉 =

√
t

N
|G〉+

√
N − t
N
|B〉 = sin(θ) |G〉+ cos(θ) |B〉 ,

where θ = arcsin(
√
t/N). Typically t � N , which means that |U〉 is almost

parallel with |B〉. Thus, if we measure immediately, the probability, 1 − t/N ,
is overwhelming that the state collapses to a non-solution xi = 0. Grover’s
algorithm works by repeatadly doing a reflection of the state in |B〉, followed
by a reflection of the state in |U〉, until the state is close to parallel with |G〉
instead, at which time measurement is likely to lead to a solution xi = 1.

Figure 3.1 illustrates the first Grover iteration. Here Ox,± is a unitary that
reflects the state in |B〉 and G is the unitary for the whole Grover iteration.

The first iteration increases the angle to 3θ. In general, iteration k increases
the angle from (2k−1)θ to (2k+1)θ. To get a success probability of 1 we would
like to make k̃ = π/(4θ) − 1/2 iterations. Since we cannot make a non-integer
number of iterations, we set the number of iterations to k = bπ/(4θ) − 1/2e
and thus achieve an angle as close as possible to π/2. If we denote the success
probability as Pk, then we can upper limit the risk of failure as

1− Pk = 1− sin2((2k + 1)θ) = cos2((2k + 1)θ) = cos2((2k̃ + 1)θ + 2(k − k̃)θ)

= cos2(π/2 + 2(k − k̃)θ) = sin2(2(k − k̃)θ) ≤ sin2(θ) =
t

N
.

If we are unlucky and do not find a solution, we can just re-run Grover’s
algorithm until we find a solution.

For small angles α we have arcsinα > α. Thus, k < π/(4θ) ≤ π/4
√
N/t =

O(
√
N/t).

28 Overview of Research Field

Grover’s algorithm is asymptotically optimal [BBBV97]. There are many
possible generalizations of the algorithm as described above. If we know t,
then it is possible to tweak the algorithm such that the success probability
when measuring is 1 [dW19, Exercise 7.7]. While the description above requires
that N is a power of 2, the algorithm can be generalized to handle any size
N [BBHT98]. If t is not known in advance, it is still possible to achieveO(

√
N/t)

time complexity by trying different values of k in a smart way [BBHT98].
One important generalization of Grover’s algorithm which we will cover next

is amplitude amplification.

3.3 Amplitude Amplification
Let us generalize Grover’s algorithm a bit to what is called amplitude ampli-
fication [BHMT02]. We have a function χ : Z → {0, 1} and search for values
z ∈ Z such that χ(z) = 1.

Let A be an algorithm that turns the starting state |0〉 into a state |U〉
where measuring results in a probability p of success. Let us define good and
bad states, |G〉 and |B〉, like for the Grover setting. Now let us apply the
following algorithm.

1. Set-up using A to form the state |U〉 = A |0〉.

2. Repeat k times:

(a) Reflect the current state in |B〉.
(b) Reflect the current state in |U〉.

3. Measure the state and check classically if the found element z is a solution.

The number k is optimized the same way as for Grover’s algorithm and is
O(1/

√
p). Amplitude amplification makes it possible to speed-up any classi-

cal algorithm that has a success probability of p by a factor of √p. Grover’s
algorithm covers the special case where the classical algorithm corresponds to
picking an element from the database randomly.

In Paper 3 [KMPM19a], we use both Grover’s algorithm and amplitude
amplification to speed-up classical algorithms for lattice sieving, see Chapter 5.
We also use Grover’s algorithm to speed-up BKW-type algorithms in Papers 5
and 6 [GJMS19b,Må19], see Chapter 7 for some details.

3.4 Shor’s Algorithm
Let us cover how to solve the IFP of Definition 1.2.1 using Shor’s algorithm.
Given a large positive integer n that we want to factor. We can handle an
arbitrary number n and do not need to limit the discussion to products of two
primes p and q like in Definition 1.2.1. We can assume without loss of generality
that n is odd and not a prime power1. In other words, let us assume that n is
the product of two, odd co-prime factors.

1Testing both these properties is trivial.

Chapter 3. Quantum Computation 29

The goal of Shor’s algorithm is to find a non-trivial root b of 1 modulo n. If
we find such a (non-trivial) root we get

b2 = 1 mod n⇔ (b− 1)(b+ 1) = 0 mod n⇔ (b− 1)(b+ 1) = mn, (3.5)

where m is a positive integer. Now n has gcd(b− 1, n) and gcd(b+ 1, n) as non-
trivial factors2. Let us briefly cover the steps of how Shor’s algorithm achieves
this.

1. Pick a random number 1 < a < n.

2. Calculate gcd(a, n). If this number is different from 1, then we have found
a factor and are done.

3. Given the function f(x) = ax mod n. Find the smallest positive integer
r, such that f(r) = 1. In other words calculate the period of f . (Since
gcd(a, n) = 1 we know that the period is well-defined and equal to the
order of a in Z?n.)

4. If r is odd, go back to step 1 and start over.

5. If ar/2 = ±1 mod n, go back to step 1 and start over.

6. Now gcd(ar/2 + 1, n) and gcd(ar/2 − 1, n) are non-trivial factors of n and
we are done.

The only computationally heavy part is step 3. For classical algorithms this
step is not easier than the original problem. However, this step can be per-
formed in polynomial time on a quantum computer using the quantum Fourier
transform. The details of how this is done is outside the scope of this thesis.

3.4.1 The DLP
Now consider the DLP of Definition 1.2.2. Consider the function f(a) = gah−1.
Using the quantum period finding of step 3 above we find an r, such that

f(r) = grh−1 = 1⇔ gr = h, (3.6)

which is a solution to the DLP. It is no coincidence that Shor’s algorithm can be
used to solve both the IFP and DLP. Both the problems can be stated as hidden
subgroup problems for finite abelian groups, which (a slight generalization of)
Shor’s algorithm can solve [Kit96,ME99].

2The idea is similar to how the classical sieving algorithms work.

30 Overview of Research Field

Chapter 4

Code-based Cryptanalysis

It’s Not a Bug, It’s a Feature.

— Unclear origin

4.1 Coding Theory Basics

Coding theory is the study of, among other things, how to reliably communi-
cate over a channel whose noise creates errors in the transmitted messages.

It turns out that the techniques from coding theory can be used for crypto-
graphic purposes. Some basic coding theory is needed to understand code-based
cryptography and cryptanalysis. Let us first define a (binary) linear code.

Definition 4.1.1 (Linear code). An [n, k] (binary) linear code C is a k-
dimensional subspace of Fn2 .

Analogously, we define a q-ary linear code as a k-dimensional subspace of
Fnq . Let us also define the generator matrix and parity-check matrix of a linear
code. For this chapter we only work with binary codes.

Definition 4.1.2 (Generator matrix). A generator matrix G of a linear code
C is a k × n matrix in Fk×n2 whose rows form a basis of C.

In other words, G is a matrix such that each codeword c ∈ C can be written
as c = mG, for some vector m ∈ Fk2 . If the first k columns of G form an
identity matrix, then we say that G is in systematic form. We can always turn
G systematic through Gaussian elemination.

Definition 4.1.3 (Parity-check matrix). A parity-check matrix of a linear code
C is a matrix H ∈ F(n−k)×n

2 , whose kernel is the linear code C.

In other words, H is a matrix such that cHT = 0, for all c ∈ C. Let us
also define the support of, the Hamming weight of and the Hamming distance
between binary vectors.

Definition 4.1.4 (Support). The support of an n-bit binary vector v is supp(v)
= {i : vi = 1, 1 ≤ i ≤ n}.

31

32 Overview of Research Field

Definition 4.1.5 (Hamming weight). The Hamming weight of an n-bit binary
vector v is wH(v) = |supp(v)|.

Definition 4.1.6 (Hamming distance). The Hamming distance between two
n-bit binary vectors v and w is dH(v,w) = wH(v + w).

Coding theory is about reliable communication over a noisy channel that
adds errors to sent messages. This is done using linear codes. By turning an
original k-bit messagem into an n-bit codeword c = mG, for a generator matrix
G, redundancy gets added to the message. The noisy channel adds a binary
error vector e to the codeword turning the recieved vector into r = c+e. If the
Hamming weight of e does not exceed a threshold t1, the errors can be corrected
and the codeword c, and hence m, can be retrieved. If we pick the linear code
and parity-check matrix H in a smart way the decoding can be done efficiently.

This introduction to coding theory is very brief in nature. For a much more
thorough introduction to the area, see for example [LC04,Bos99].

4.2 Code-based Cryptography
We can use linear codes for cryptographic purposes too. Unlike in coding the-
ory, in cryptography we intentionally add errors to the codewords. To make a
software analogy, while errors are viewed as a bug that needs to be fixed in cod-
ing theory, in cryptography they are considered a feature that makes encryption
possible.

Asymmetric encryption using coding theoretic methods was originally sug-
gested in 1978 by McEliece, making it almost as old as RSA [McE78]. Figure 4.1
shows a simplified illustration of encryption using the McEliece cryptosystem.
To encrypt a secret message m, Alice first multiplies it by the generator matrix
G of a linear code to turn it into a codeword in the linear code c = mG. Then
she intentionally adds an error vector e of a suitable Hamming weight t to form
r = mG + e. Observing r, it is computationally infeasible for Eve to correct
the t errors and decrypt the message. This is related to the fact that decoding
of general linear codes is NP-complete [BMv78]. By having access to a parity-
check matrix of a certain form, Bob can easily correct the errors to retrieve c
and thus the original message m.

In the original McEliece scheme Goppa codes were used [Gop70], allowing
efficient decoding [Pat75]. In principle any code that allows efficient decoding
can be considered2. One large disadvantage of code-based encryption schemes
is the large public key G.

Two more recent and popular versions of the McEliece cryptosystem
are based on Quasi-Cyclic (QC) Moderate Density Parity-Check (MDPC)
codes [MTSB13] and QC Low Density Parity-Check (LDPC) codes respec-
tively [BC07,BBC08]. These very sparse codes reduce the size of the public key.
As originally introduced they are vulnerable towards reaction attacks that take
advantage of dependencies between the secret key and the risk of decryption
failures [GJS16,FHS+17]. Counter-measures against these types of attacks need

1whose value depends on n, k and the linear being code used.
2Notice however that most codes with structure that allows efficient decoding suffer from

efficient attacks taking advantage of that structure.

Chapter 4. Code-based Cryptanalysis 33

Alice

m
G

mG
e

Bob

mG + e

Eve

H
m

Figure 4.1: A simplified illustration of encryption using the McEliece
cryptosystem.

to be implemented for all code-based crypto systems that contain decryption
failures.

For a much more thorough introduction to code-based cryptography, see for
example [Lö14,OS09].

4.2.1 Soft McEliece
In [BSC16] a version of the McEliece with real-valued noise called soft McEliece
was suggested. Here encryption is done by first transforming a codeword c to
ĉ, where ĉi = (−1)ci , for 1 ≤ i ≤ n. Next we add Additive White Gaussian
Noise (AWGN) to form the encrypted message

r = ĉ + w. (4.1)

Here AWGN means that the noise terms wi are Independent and Identically
Distributed (IID) and wi ∼ N (0, σ), for a suitable noise level σ.

4.3 Stern’s Algorithm
The most promising algorithms for decoding of general linear codes are based
on Information Set Decoding (ISD). Given the task of decoding the recieved
vector

r = uG + e, (4.2)

to retrieve the message u, where wH(e) ≤ w. Let us first define an information
set. Write the generator matrix of a linear code as

G =
[
gT1 · · ·gTn

]
. (4.3)

Definition 4.3.1 (Information set). A subset I ⊂ {1, . . . , n} of size k is an
information set to an [n, k] linear code if the corresponding vectors (gi)i∈I are
linearly independent.

The first ISD algorithm is Prange’s algorithm [Pra62]. In Prange’s algorithm
we perform a random permutation π on the system (4.2) forming

r′ = uG′ + e′. (4.4)

34 Overview of Research Field

Assume that the first k indices of the permuted system constitute an infor-
mation set I; if not, then we can perform new permutations until they do. If we
also assume that the error terms in (4.4) are all 0, then we can solve for u as

û = r′(G′)−1. (4.5)

Whether the solution is correct can be checked by testing if dH(ûG, r) ≤ w.
If the solution is incorrect we can make a new permutation and repeat the
process until we find a solution. An improvement of Prange’s algorithm was
made by Lee and Brickell [LB88]. The idea here is to assume that the error
vector in (4.4) has a Hamming weight less than or equal to p, where 0 ≤ p ≤ w.
Then we can calculate

û = (r′ + e′)G′
−1
, (4.6)

for all such error patterns e′ and check if any of them is correct. A big im-
provement was made by Stern in [Ste89]. Similar ideas were also introduced
in [Dum91]. Here a speed-up is achieved using the birthday paradox. We use
the same type of parameter p as in Lee-Brickell, but also another parameter
l ∈ {0, . . . , n − k}. Also here we start by performing a permutation π to the
positions (4.2) forming a system of the form (4.4), such that the first k positions
constitute an information set. Next perform Gaussian elemination such that the
generator matrix is on the systematic form

Gsys =
(
I Q J

)
, (4.7)

where I is a k× k identity matrix, Q is a k× l matrix and J is a k× (n− k− l)
matrix. Next we enumerate all vectors u of size k/2 and Hamming weight less
than or equal to p/2 and form the list L1 of vectors on the form c1 = (u||0)Gsys.
We also form the list L2 of vectors on the form c2 = (0||u)Gsys. Collide the
two lists and create a new list L1 � L2 of all vectors c = c1 + c2, that are equal
to 0 on positions k + 1 to k + l. For each codeword in this list we test if its
Hamming distance to r′ is less than or equal to w.

Typically, a good parameter choice here is |L1| = |L2| = 2l. Then we get
the expected list size

E(|L1 � L2|) ≈ |L1| = |L2| = 2l. (4.8)

The cost of building the two lists and colliding them are all equal to O(2l).
We manage to test the viability of (2l)2 = 22l codewords in the process, lead-
ing to improved performance over Lee-Brickell3. ISD algorithms have since the
seminal work of Stern been improved in a number of follow-up papers clas-
sically [CC98, FS09, BLP11,MMT11, BJMM12,MO15, BM17], and also quan-
tumly [Ber10,KT17,Kir18].

4.4 Soft Stern
In Paper 4 we developed an algorithm for solving the problem of decoding linear
codes with soft noise on AWGN form (4.1) [GJMS17b,GJMS19a]. When using
soft noise an important concept is the Log-Likelihood Ratio (LLR) defined as

3We do however only find codewords where positions k+ 1 to k+ l are equal to 0, lowering
the magnitude of the improvement.

Chapter 4. Code-based Cryptanalysis 35

Li = ln

[
p(ri|ci = 0)

p(ri|ci = 1)

]
, (4.9)

where p(ri|ci) is the PDF of ri conditioned on ci. In our setting the LLR can
be rewritten as4

Li =
2ri
σ2
. (4.10)

For each position we can translate the soft information to the most likely
hard choice as

sgn(ri) =

{
1, if ri ≤ 0,

0, otherwise.
(4.11)

We can also calculate the probability of this guess being correct as

pi = Pr[ci = sgn(ri)|ri] =
1

1 + e−|Li|
. (4.12)

The larger |Li|, the higher the probability is of correctly guessing the position
by making a hard decision. We say that a position is more reliable the larger
|Li| is.

We can now solve the decoding problem (4.1) using a Stern-type approach
but taking advantage of the soft information. Instead of picking a random
permutation, we pick a permutation π such that

1. The first k + l positions are the most reliable.

2. The first k columns of π(G) are linearly independent.

3.
∏(k+l)/2
i=1 pi ≈

∏(k+l)/2
i=1 pi.

Here we can apply a transformation such that the first k + l positions all
have ri ≥ 0 meaning that 0 is the most probable value for each position ci. The
probability of a bit pattern with 1s in the index set J for the first (k + l)/2
positions, being all correct, can now be written as

exp

−∑
j∈J

Lj

 (k+l)/2∏
i=1

pi. (4.13)

We get an analogous expression for the next (k + l)/2 positions.
Instead of enumerating all bit patterns up to a certain Hamming weight

when forming the lists L1 and L2, we enumerate the bit patterns with the
highest probabilities according to (4.13).

The soft version has two advantages over the standard Stern algorithm. First
of all, the first (k + l)/2 positions individually have a very large probability
of containing a 0 (after transformation). Secondly, we can cover much more
probable error patterns by enumerating in order of probability instead of purely
in order of Hamming weight.

4Notice that our algorithm does not require that the noise is AWGN, we just need to have
it on LLR form.

36 Overview of Research Field

If more iterations of the soft Stern algorithm are needed, we do not just pick
a uniformly random new permutation, we add/remove positions depending on
their reliability, see Paper 4 for more details [GJMS19a].

The idea of decoding random linear codes using ordered statistics has been
considered before, in for example [FS95] and how to efficiently enumerate the
error patterns was considered in [VF01]. A Stern-type approach to soft informa-
tion decoding was considered in [VF04]. The way we combined these approaches
in Paper 4 is novel [GJMS19a].

We found a couple of applications of the soft Stern algorithm, including the
following.

1. We showed that the soft McEliece system of [BSC16] is severely broken.
For the suggested parameters for both 80 and 128 bits of security with
high probability the k most reliable bits have 0 errors, turning decoding
using the soft Stern algorithm into simple linear algebra. Increasing the
noise level σ to achieve a better security level would increase the risk of
decoding failure to an unacceptably high level.

2. The algorithm can be used in side-channel attacks where the general de-
coding of unstructured codes with soft noise appears [PBY17,PM16] and
would lead to an improvement in that setting.

3. In [BMPC16] a hybrid decoder was suggested for decoding linear codes
with soft information. The idea here is to use an efficient decoder first
and in the case of decoding failure fall back on using a general decoder for
linear codes with soft information. Also here our algorithm would lead to
improved performance.

Chapter 5

Lattice Sieving

This chapter discusses lattice sieving, the asymptotically and practically
fastest type of algorithm for solving the SVP. It is the topic of Pa-

per 3 [KMPM19a] and used as a tool to improve BKW in Papers 5 and 6 [GJMS19b,
Må19].

5.1 Lattice Sieving
Lattice sieving algorithms were introduced in the seminal paper [AKS01], as the
first exponential algorithms for solving the SVP.

Given a basis B of a lattice L. Lattice sieving approaches start off by pro-
ducing an exponential amount of lattice vectors by forming linear combinations
of the basis vectors [Kle00]. Next given a large list L of vectors we want to find
pairs of vectors in L that produce slightly shorter vectors when combined. We
want to find at least |L| such pairs to keep the list size.

According to the so called sieving heuristic, which is widely adopted in the
literature, we assume that our vectors are approximately of equal length. We
also assume that the vectors, when scaled to length 1, are uniformly distributed
on the unit sphere. The analysis of heuristic algorithms for lattice sieving is
thus done on uniformly distributed vectors on the unit sphere.

If for two unit vectors x,y on the unit sphere 〈x,y〉 ≥ α, for 0 ≤ α ≤ 1, we
say that the vectors are α-close. Let us now define a lattice sieving iteration.

Definition 5.1.1 (Lattice sieving iteration). Given a list L of vectors on the
unit sphere and a constant 0 ≤ c ≤ 1. One iteration of lattice sieving refers to
finding |L| pairs x1,x2 ∈ L, such that x1,x2 are c-close.

Normally we are interested in the c = 1/2 case, which means that for each
sieving iteration we just slightly decrease the length of the vectors. Let us focus
on it for this subsection.

You can show that the probability of two uniformly random vectors being α-
close is Õ((1−α2)d/2). For the difference between two vectors x and y to be less
than or equal to 1, we need that 〈x,y〉 ≥ 1/2, which happens with probability
Õ((1 − (1/2)2)d/2) = Õ((3/4)d/2). Since a list of size |L| can produce Θ(|L|2)
pairs of vectors, we (heuristically) need a list size of

37

38 Overview of Research Field

|L| = Õ

((
4

3

)d/2)
= 20.2075d+o(d), (5.1)

to be able to produce a new list of slightly shorter vectors. In [NV08] the
new list was simply created by combining every possible pair and keeping the
shortest vectors, leading to a time complexity of 20.4150d+o(d). It is also shown
in [NV08] that the we only need to do a polynomial number of iterations to
find the shortest lattice vector, leading to a total time of 20.4150d+o(d). This
approach is called the Nguyen-Vidick (NV) sieve.

A different type of sieving algorithm was introduced in [MV10]. Instead of
starting with a large list and comparing all pairs, they start with an empty list
L. Then they sample vectors v and before v gets added to the list, they try to
shorten v and the vectors in L by adding/subtracting list vectors to/from v and
vice versa. This sieving algorithm is called the Gauss sieve1. Asymptotically
this sieve performs identically with the NV-sieve, but it is faster in practice.

The asymptotic improvements of [NV08, MV10] are due to more efficient
ways of doing the sieving iterations of Definition 5.1.1, using Nearest Neighbor
Search (NNS) techniques. NNS techniques refers to methods of, given a lattice
vector x1 ∈ L, find a c-close vector x2 ∈ L faster than by checking all |L| lattice
elements. In this work we will only discuss the currently asymptotically fastest
sieving algorithms.

The current state-of-the-art sieving algorithms with provable complexities
take 2d+o(d) time and space complexity classically [ADRS15] and 20.5d+o(d) space
and 20.9532d+o(d) time quantumly [ACKS20]. We will focus on the heuristically
fastest algorithms. Partly because the current state-of-the-art implementations
of SVP solving algorithms use heuristic sieving algorithms [ADH+19]. Partly
because the derived heuristic complexities of these algorithms agree quite well
with performance in practice.

For a much more thorough introduction to the topic of lattice sieving,
see [Laa15].

5.2 Locality-Sensitive Filtering
The asymptotically fastest sieving algorithm uses so called Locality-Sensitive
Filtering (LSF) [BDGL16]. Let us use the presentation of the algorithm from
Appendix B of Paper 3 [KMPM19a].

Assume that we have a large list L of at least size |L| = Õ((1/(1− c2))d/2)
vectors uniformly distributed on the unit sphere and want to find |L| c-close
pairs of vectors from L.

The idea of LSF is to create a large amount of filter vectors uniformly spread
out over the unit sphere. For each filter vector we map all vectors x ∈ L that
are α-close to that filter vector. When we query a vector q ∈ L to find a close
vector x ∈ L, we first find all filter vectors v that are β-close to q and then we
only iterate over vectors x that are α-close to one of these filter vectors v. We
use V to denote the set of filter vectors.

1Since for all pairs (v,w) in L we have ‖v±w‖ ≥ max (‖v‖, ‖w‖). This is what a pair of
vectors being Gauss reduced means.

Chapter 5. Lattice Sieving 39

One can show that the following conditional probability applies for the uni-
formly random triplet of vectors (x,v,q) on the unit sphere:

Pr(〈q,x〉 ≥ c, 〈q,v〉 ≥ β, 〈x,v〉 ≥ α|〈q,x〉 ≥ c) (5.2)

=

(
det
(1 α β
α 1 c
β c 1

))d/2
(det (1 cc 1))

d/2
. (5.3)

Thus the number of filters we need is

|V| = 1

Pr(〈q,x〉 ≥ c, 〈q,v〉 ≥ β, 〈x,v〉 ≥ α|〈q,x〉 ≥ c)
(5.4)

=
(det (1 cc 1))

d/2(
det
(1 α β
α 1 c
β c 1

))d/2 . (5.5)

For each x ∈ L we want to find all α-close filters. Here we assume that the
time needed to find the filters is equal to the number of filters, in other words
|V| · (1 − α2)d/2. In [BDGL16] they discuss how to realistically achieve this.
Thus, the time needed to map all vectors in L to all relevant filters is

Tprep = |L| · |V| · (1− α2)d/2. (5.6)

The memory needed to store the data structure is also equal to Tprep. When
we query a vector q ∈ L to find a c-close vector x we first find all β-close filters
v and then we look through all α-close list vectors x connected to any such
filter. For each such x we check if it is c-close to q. Thus, the time to query a
vectors q is |V| · (1− β2)d/2 · |L| · (1− α2)d/2. The time to query all vectors in
L is therefore

Tquery = |L| · |V| · (1− β2)d/2 · |L| · (1− α2)d/2. (5.7)

The sieving iterations problem described above corresponds to setting c =
0.5. Letting α = β = 0.5 minimizes the time complexity leading to a time
and space complexity of 20.2925d+o(d). By letting α = 0.25 and β = 0.5 we get
the best possible time complexity of 20.3685d+o(d) while not increasing the space
complexity above 20.2075d+o(d).

As is shown [BGJ15,LdW15,Laa15], it is possible to achieve the optimal time
complexity of 20.2925d+o(d) while only using a space complexity of 20.2075d+o(d).
This requires using the NV sieve, which is slower than the Gauss sieve in prac-
tice. This is done by generating the relevant filters on the fly every time we
query a vector q, instead of keeping them all at once in memory.

5.2.1 Quantum Speed-up
It is possible to speed-up the sieving iterations using LSF if we have a quantum
computer. Building of the filter structure is not faster than in (5.6) quantumly,
but the query cost (5.7) can be improved. For each query we first need to find
all |L| · (1 − β2)d/2 adjacent close filters. Then we can speed-up the search for

40 Overview of Research Field

a c-close vector connected to these filters using Grover’s algorithm. Thus, the
time it takes to query a vector q is

|V| · (1− β2)d/2 +
√
|V| · (1− β2)d/2 · |L|(1− α2)d/2, (5.8)

leading to a total query time of

Tquery = |L|
(
|V| · (1− β2)d/2 +

√
|V| · (1− β2)d/2 · |L|(1− α2)d/2

)
. (5.9)

Optimizing for time we get a time and space complexity of 20.2653d+o(d).
Unlike the classial case, the optimal quantum time complexity is not possible
to achieve without using an equal amount of memory. As is shown in Paper 3,
it is possible to achieve a time-memory tradeoff curve between the classical
memory and time exponents of (0.2075, 0.2925) and the quantum exponents of
(0.2653, 0.2653), see Figure 1 of the full version of the paper [KMPM19b].

5.3 k-sieving
The reader is assumed to know the basic concepts in graph theory. We will
repeat the definitions of an induced subgraph and a clique though.

Definition 5.3.1 (Induced subgraph). Given an undirected graph G = (V,E)
with vertices V and edges E. A subset of the vertices together with all edges
between these vertices is an induced subgraph.

Definition 5.3.2 (Clique). An induced subgraph which is complete is a clique.
If the clique has k elements it is called a k-clique.

The problem of finding a single k-clique in a graph and the problem of listing
all k-cliques in a graph are considered important problems in graph theory

When doing lattice sieving we do not have to limit ourselves to looking for
pairs of vectors resulting in new short vectors. More generally we want to find
k-tuples of vectors (x1, x2, . . . , xk), such that |x1 + · · · + xk| ≤ 12. This was
originally studied in [BLS16]. It is shown in [HK17, Theorem 3] that we need a
list size of

|L| = Õ

(k k
k−1

k + 1

) d
2

 , (5.10)

or more, to find |L| such k-tuples. The required list size from (5.10) decreases
with k. This comes at a cost of increased time complexity, leading to a tradeoff
between time and space.

Given a small constant ε > 0. It is shown in [HK17] that almost all good
k-tuples can be found by finding the k-tuples that satisfy

2In practical implementation we of course look at all 2k combinations x1±· · ·±xk. Asymp-
totically speaking we get the same results by just considering additions of all the vectors. The
techniques explained in this subsection can trivially be translated to any of the 2k different
combinations.

Chapter 5. Lattice Sieving 41

L L L . . . L

x1

Filter1,2 Filter1,3 Filter1,k

L(x1) L(x1) . . . L(x1)

x2

Filter2,3 Filter2,k

L(x1,x2) L(x1,x2)

Figure 5.1: The algorithm of Herold et al. [HKL18] for finding good k-tuples.

| 〈xi,xj〉+ 1/k| < ε, (5.11)

for all i 6= j. These k-tuples have a geometrical interpretation. Let the vectors
in L be nodes in a graph. Let there be an edge between two nodes x,y if and
only if | 〈x,y〉 + 1/k| < ε. Listing all good k-tuples corresponds to listing all
k-cliques in this graph. In the special case k = 3 this corresponds to listing all
triangles.

Figure 5.1 illustrates how theses k-tuples were found in [HKL18]. We start
off with the initial list L. For each element x1 ∈ L we iterate through the list
and filter out all vectors x2 ∈ L such that | 〈x1,x2〉 + 1/k| < ε to form L(x1).
Next we iterate over all x2 ∈ L(x1) and filter out all x3 ∈ L(x1) such that
| 〈x2,x3〉 + 1/k| < ε to form L(x1,x2). This then continues until we find good
k-tuples at the lowest layer. Let us denote L(x1, . . . ,xj) = L(j). It is shown
in [HK17, Equation 16] that the intermediate list sizes are

|L(j)| = Õ

((
k

1
k−1 · k − j

k − j + 1

)d/2)
. (5.12)

The cost of creating layer i here is |L| · |L(i−1)| ·
∏i−1
j=1 |L(j)|. Thus the time

complexity for all steps is

|L| · max
1≤i≤k−1

|L(i−1)| ·
i−1∏
j=1

|L(j)|. (5.13)

In [HKL18] the idea of using slightly different Filteri,j for different pairs
(i, j) in Figure 5.1 was introduced. Using the same number 1/k for all pairs
is called balanced configuration, while deviations from it are called unbalanced
configurations. Unbalanced configurations allow us to slightly improve the time
complexity at the cost of a slightly increased space complexity.

42 Overview of Research Field

Just like for the normal sieving setting, for k-sieving it is also possible to
improve the time complexity by using NNS techniques like LSF. Unlike the basic
k = 2 setting we cannot achieve optimal time without increasing the memory.

5.3.1 Quantum Improvements
Also k-sieving can be improved using a quantum computer. This was studied
in detail in Paper 3 [KMPM19a]. The obvious speed-up is to use Grover’s
algorithm to speed-up the LSF part of k-sieving, as described in Section 5.2.1.
More interestingly, it is possible to speed-up other aspects of k-sieving in a less
obvious way.

5.3.2 The k = 3 Setting
Let us first describe the approach for the k = 3 case. Here we use the geometric
view of the problem and view all vectors in the list as nodes and say that there is
an edge between nodes x and y if and only if | 〈x,y〉+1/k| < ε. The description
comes from Section 5 and Appendix C of [KMPM19a]. Then the following
algorithm can be used to find one triangle within this graph.

1. Use Grover’s algorithm to find any edge (x1,x2) ∈ E among all potential
O(n2) edges.

2. Given an edge (x1,x2) from Step 1, use Grover’s algorithm to find a vertex
x3 ∈ V , such that (x1,x2,x3) is a triangle.

3. Apply amplitude amplification on Steps 1–2.

The graph has n = |L| nodes and m = |L||L(x1)| edges, where the list sizes
are from (5.10) and (5.12) respectively. Step 1 takes

√
n2/m =

√
|L|/|L(x1)|

and step 2 takes
√
n =

√
|L|, of which step 2 is dominant. The probability that

the random edge we pick belongs to a triangle is |L|/(|L||L(x1)|) = 1/|L(x1)|.
By applying amplitude amplification on steps 1-2 the total cost of finding a
triangle is

√
|L(x1)| ·

√
|L|.

By the coupon collectors problem, we need to repeat the algorithm |L| ·
log(|L|) times to find all |L| triangles [Wik20b]. Thus the total cost of this
approach to 3-sieving is |L| log(|L|)

√
|L|
√
|L(x1)| = 20.3349d+o(d) using |L| =

20.1887d+o(d) memory.

5.3.3 General k Setting
The approach can be generalized to listing all k-cliques in the following way.

1. Use Grover’s algorithm to find an edge (x1,x2) ∈ E among all O(|L|2)
pairs of nodes.

...

i. Given an i-clique (x1, . . . ,xi) from step i− 1, use Grover’s algorithm
to find a vertex xi+1 ∈ V , such that (x1, . . . ,xi+1) is an (i+ 1)-clique.

...

Chapter 5. Lattice Sieving 43

k. Apply amplitude amplification on Steps 1–(k − 1).

By combining the approach above with unbalanced configurations we were
able to show that quantum k-sieving for large k leads to an algorithm using
20.2989d+o(d) time and 20.1395d+o(d) space. Compared to the quantum version of
sieving with LSF using space and time 20.2653+o(d) this corresponds to almost
halving the exponent for space at a relatively small increase in time.

44 Overview of Research Field

Chapter 6

The BKW Algorithm

The topic of this chapter is the BKW algorithm, one of the main algorithms
for solving the LWE problem. This algorithm is the main topic of the whole

thesis.
Many of the methods used for solving LWE using BKW were originally

developed for solving LPN. We will focus on the papers applying the techniques
to LWE, but also mention the original methods applied to LPN. The BKW
algorithm was the developed as the first subexponential algorithm for solving
LPN [BKW00]. The first paper describing in detail how to tweak the original
BKW algorithm for solving LWE is [ACF+15].

The BKW algorithm consists of two parts, reduction and hypothesis test-
ing. In this chapter we will introduce the basic versions of these two parts.
Improvements will be discussed in Chapters 7 to 9.

6.1 Reduction
Consider two samples ([±a0,a1], b1) and ([±a0,a2], b2), where ±a0 are the first
b positions in the a vectors of the two samples. By adding/subtracting the a
vectors and the corresponding bi values we get a new sample with the a vector

a1,2 = [0 0 · · · 0︸ ︷︷ ︸
b symbols

∗ ∗ · · · ∗],

and the corresponding bi value b1,2 = b1 ± b2. The corresponding error term
is e1 ± e2. This new sample has dimensionality reduced by b at the cost of
increasing the standard deviation of the noise by a factor

√
2. The first step

of the reduction part of the BKW algorithm consists of first mapping all the
samples into buckets1 based on the b first positions of the a vectors. Since
±a are in the same bucket, while 0 is its own bucket, the total number of
buckets is (qb + 1)/2. Next go through each bucket and form new samples by
adding/subtracting suitable pairs of samples. This reduction process is iterated
a total of t times, reducing the first t · b positions in the a vectors to 0.

1We sometimes also use the word category which in the context of BKW reduction steps
refers to the same thing as bucket.

45

46 Overview of Research Field

6.1.1 LF1 vs. LF2
Which pairs to pick within a bucket was studied in detail for LPN in [LF06].
The methods transfer to LWE directly. In Levieil-Fouque 1 (LF1), we pick
a representative sample from each bucket. Then we form new samples by
adding/subtracting each of the other samples to/from the representative. This
guarantees that all the samples are independent after the reduction phase. How-
ever, this also means that the number of samples decrease by (qb + 1)/2 each
step, resulting in having only m − t(qb + 1)/2 samples left for the hypothesis
testing.

In Levieil-Fouque 2 (LF2), we allow forming new samples by combining any
pair of samples in a bucket. In the extreme case we form every single possible
pair within each bucket. This means that we only need 3 · (qb + 1)/2 samples to
keep the sample size constant between the steps2.

The disadvantage of LF2 is that it the reduced samples are no longer inde-
pendent, leading to an increased noise level. For LPN experiments show that
this effect is small in practice [BTV16]. In Paper 1 we studied the sample com-
plexity of LF2 when applying the BKW algorithm to LWE and also in this
setting the sample dependency problem is small [GMS20].

In Chapter 7 and 9 we will discuss improvements of these basic reduction
steps.

6.2 Hypothesis Testing
After t steps of reduction all positions of the a vectors are canceled except the
last k = n− bt. The samples are on the form

b =

k∑
i=1

ai · si + e⇔ b−
k∑
i=1

ai · si = e. (6.1)

Here, the problem is to decide the k different si values of the secret. By
guessing these values the corresponding error terms in (6.1) can be calculated.
If we make the wrong guess the corresponding error terms should look uniformly
random, but if we make the correct guess, the values should follow another
distribution.

As is shown in [BJV04] an optimal distinguisher picks the hypothesis that
results in an error distribution that has a minimal relative entropy to the
Discrete/Rounded Gaussian distribution with mean 0 and standard deviation
σ · 2t/2. In other wordes, we calculate the guess ŝ that maximizes

q−1∑
e=0

N(e) log
PrΨ̄σf ,q

(e)

PrU(0,q−1)(e)
, (6.2)

where N(e) denotes the number of times the error term e occurs for the guess
ŝ and PrD(e) denotes the probability of drawing the value e from the distribu-
tion D. Here we assume that the original noise was rounded Gaussian with a
noise level of σ and therefore the final noise level was σf = σ · 2t/2. The time
complexity of this approach is

2We can get away with slightly fewer than 3·(qb+1)/2 samples due to the spread of created
samples not being perfectly even.

Chapter 6. The BKW Algorithm 47

O(mqk). (6.3)

After performing the secret-noise transformation of Section 6.4 we can make
sure that the magnitude of the values in the secret s is small. Limiting ourselves
to a magnitude of d we can decrease the complexity to

O(m(2d+ 1)k). (6.4)

In Chapter 8 we will discuss how to improve this approach.

6.3 Sample Amplification
In some versions of LWE, the number of samples m we have access to is limited.
Consider k different samples (ai, bi). We can now form a new sample in 2k

different ways by forming (
k∑
i=1

±ai,
k∑
i=1

±bi

)
. (6.5)

Doing this for all k-tuples allows us to form up to 2k ·
(
m
k

)
samples. This

comes at a cost of increasing the noise level by a factor
√
k and increasing the

sample dependency.
Counterintuitively, the increased noise from sample amplification does not

punish BKW that much asymptotically compared to lattice-based approaches,
a fact which was shown in [HKM18] and further analyzed in Paper 5 and
6 [GJMS19b,Må19].

The effect of sample dependency was studied in Paper 1 [GMS20]. In sum-
mary, the sample dependency problem from sample amplification seems to be
negligible or at least not a major problem.

6.4 Secret-Noise Transformation
There is a transformation that makes the distribution of the secret follow the
secret of the noise [ACPS09,Kir11]. If for example the secret follows a uniform
distribution this transform could be applied to achieve multiple advantages.
Given an LWE instance on the form (1.1). Arrange the columns such that the
first n are linearly independent and form the matrixA0. DenoteD = A−1

0 . Now
write ŝ = sA0− [b1 · · · bn] = −[e1 · · · en]. Also introduce Â = DA =

[
I Â1

]
and

b̂ = b− [b1 · · · bn]Â =
[
0 b̂n+1 · · · b̂m

]
. Now we get the modified LWE problem

b̂ = ŝÂ + e, (6.6)

with a secret ŝ with small entries. After solving (6.6) for ŝ, we find s via trivial
linear algebra.

The transformation comes at a cost of losing the first n samples. However,
there are at least two advantages to the secret-noise transformation, in case the
original secret has larger variance than the noise terms.

One advantage of performing this transformation is that the smaller noise in
the secret vector means that we can reduce the magnitude of the a vectors less

48 Overview of Research Field

and still be able to distinguish the correct secret. We discuss these improved
reduction methods in Chapter 7.

Another advantage is that it lowers the amount of probable hypotheses for
the hypothesis testing stage. We explain in Section 8.1 how to take advantage
of this fact by using a pruned FFT approach.

Chapter 7

Improvements of the BKW
Reduction Steps

This chapter introduces improvements over the basic reduction steps of Sec-
tion 6.1. The chapter covers asymptotic and concrete complexity improve-

ments, and covers some implementation aspects too.
In [AFFP14] the first improvement of the reduction part of the BKW al-

gorithm on LWE was introduced. Instead of mapping samples with the exact
same values on the a vectors to the same buckets, they allowed for samples that
were almost, but not quite, equal on these positions to be mapped to the same
buckets.

More precisely, pick a positive integer parameter p, 1 ≤ p < q. Transform
each relevant position value ai to a′i = ai\p, where \ denotes integer division.
Next we map into buckets based on the transformed values instead of the original
ones. The plain BKW algorithm from Chapter 6 corresponds to letting p = 1.
This technique is called Lazy Modulus Switching (LMS).

To make a programming analogy, LMS is like mapping numbers viewed as
floats, while the calculations on the numbers are done using double precision,
leading to small errors, but allowing for longer steps.

One problem with the reduction steps of [AFFP14] is that the final dis-
tribution of the a vectors is uneven. Every new reduction step increases the
magnitude of the previously reduced positions by a factor

√
2. See column 2

in Figure 7.1 for an illustration of the behavior.
The other idea introduced in the paper was unnatural selection. When

choosing what pairs to combine within a bucket, they picked the pairs resulting
in the smallest magnitudes on the previously reduced positions. In Section 7.2
we will discuss how this basic idea can be improved using techniques from lattice
sieving.

7.1 Coded-BKW and LMS
The problem of the uneven distribution of the values in the a vectors was solved
in [KF15,GJS15]. Here both the degree of reduction and the step length vary
over the steps. The first step is only slightly longer than a plain BKW step
and reduces the positions almost to 0. Then gradually the steps become longer

49

50 Overview of Research Field

and longer and the reduction becomes less and less strict. The result is an
evenly distributed a vector. See column 3 of Figure 7.1 for an illustration of the
behavior.

A new type of reduction step was also introduced in [GJS15]. Let us explain
the first reduction step, the next steps follow in an obvious way. Given an
[n1, k] q-ary linear code C. In the first step of coded-BKW samples ([a0,a1], b)
are mapped to buckets based on the closest codeword c ∈ C to a0. Thus, LMS
corresponds to a concatenation of arbitrarily many trivial codes for each position
and is thus a special case of coded-BKW.

7.2 Coded-BKW with Sieving
A new way of solving the problem of the increasing magnitudes of the previ-
ously reduced positions was introduced in [GJMS17a]. Let B denote the final
magnitude needed to correctly distinguish the secret after the reduction. Map
samples to buckets the same way as in [GJS15, KF15] to reduce the magnitude
of the current ni positions from q to B. Within each bucket, we pick the pairs
that make sure to keep the magnitude of the previously reduced Ni−1 positions
reduced to B. For each bucket, this corresponds to doing a sieving iteration of
Definition 5.1.1 from Section 5.11. We can therefore apply LSF here to speed-up
this process.

7.2.1 Quantum Improvement
Just like the LSF algorithm of Section 5.2 can be improved quantumly by ap-
plying Grover’s algorithm, the same trick can of course be used for coded-BKW
with sieving within each bucket to improve the time complexity.

7.3 Pre-processing
In most cases it is beneficial to start the reduction process with plain BKW steps.
The positions in the a vectors that are reduced to 0 during the pre-processing
phase do not grow in size in the following non-plain reduction steps. While the
pre-processing does increase the noise level, the reduced dimensionality generally
makes the problem easier to solve.

7.4 An Illustration of the Different BKW Steps
Figure 7.1 shows a comparison of the behavior of the different BKW versions.
For each column the width corresponds to the number of positions and the height
corresponds to the magnitude of the position of the a vector. For plain BKW
we reduce a constant number of positions to 0 in each step. Thus the previously
reduced positions do not increase in magnitude, but we are also limited in step
size.

For a naive LMS implementation we reduce a fixed number of positions
in each step, but not completely to 0. This allows us to take longer steps.

1You could argue that the algorithm should be called coded-BKW with NNS search. Seeing
all reduced steps as a single unit you could argue that the word sieving still makes sense.

Chapter 7. Improvements of the BKW Reduction Steps 51

Plain BKW Naive LMS Coded-BKW Coded-BKW with Sieving

Figure 7.1: An illustration of how the magnitudes of the a vectors change over
the reduction steps for different versions of the BKW algorithm. Slightly

modified version of Figure 2 of Paper 5 [GJMS19b].

However, the magnitude of the previously reduced positions grow by a factor√
2 in each step, resulting in an uneven distribution of the a vectors, where the

first positions dominate.
The reduction strategy of [KF15, GJS15] corresponds to column 3. Here

the step sizes increase and the degree of reduction decreases gradually. The
final resulting distribution of the a vectors is even. Compared to a naive LMS
approach this allows us to reduce more positions for the same amount of effort.

Column 4 corresponds to the coded-BKW with sieving strategy from
[GJMS17a]. Here we begin by taking long steps since we do not have to
reduce the positions that strictly. However, gradually we need to decrease the
step size since the cost of keeping the magnitude of the previously reduced
positions down gradually increases.

7.4.1 Optimizing the Reduction Factor
In Paper 5 [GJMS19b] the idea of [GJMS17a] was generalized by looking at dif-
ferent reduction factors γ for the sieving iteration part of the reduction. Instead
of keeping the magnitude of the reduced positions constant we let it change from
Bi−1 to Bi = γBi−1 in step i, such that the final magnitude Bt = B. A value
γ corresponds to setting c = 1− γ2/2 in Definition 5.1.1. From this perspective
coded-BKW corresponds to the special case of letting γ =

√
2 and the basic

coded-BKW with sieving algorithm corresponds to letting γ = 1. The optimal
value γ depends on q and σ. For almost all settings this approach resulted in a
strict improvement over both coded-BKW and coded-BKW with sieving.

7.4.2 Using Varying Reduction Factors
In Paper 6 [Må19], the idea of [GJMS17a] was further generalized. Here, the
idea was to use different γi factors in different steps of the reduction. Linearly

52 Overview of Research Field

increasing γi values seem to be close to optimal for this type of approach, leading
to a small but noticeable improvement over Paper 5 [GJMS19b].

7.5 k-BKW
In [EHK+18] k-BKW was introduced. The main focus was on the LPN problem,
but they also showed how to apply their techniques to LWE. The basic idea of
the paper is to combine k samples in the reduction part of BKW instead of the
standard 2.

Naively this can be done by summing all possible k-tuples

(

k∑
i=1

ai,

k∑
i=1

bi), (7.1)

where the samples (ai, bi) are any of the m available samples2 and picking the
ones that reduce the b positions to 0. We can do slightly better by instead
summing all possible (k − 1)-tuples

(

k−1∑
i=1

ai,

k−1∑
i=1

bi), (7.2)

and colliding them against the list of samples. The larger value of k we use the
less samples and memory we need, but the more time we need. An advantage of
k-BKW, for k > 2, is that we need to introduce less extra noise due to sample
amplification, compared to the other reduction methods. We will discuss briefly
how to improve k-BKW in Section 9.4.

7.6 Implementation Aspects
In Paper 2 we implemented the BKW algorithm [BGJ+20]. The most impor-
tant contributions in the paper, other than the implementation itself, are the
smooth-LMS reduction steps, our file-based reduction method and our binary
distinguishing approach. We will discuss the first two contributions in this sec-
tion and the binary distinguishing approach in Section 8.2.

7.6.1 Smooth-LMS
When solving concrete instances of LWE we must reduce an integer number of
positions. It is oftentimes the case that reducing b positions is easy while reduc-
ing b+1 positions is computationally infeasible. We solved this problem by intro-
ducing so called smooth-LMS steps, allowing us to, effectively, use non-integer
step sizes. While this method does not perform better than LMS/coded-BKW
asymptotically, it leads to a significant improvement in concrete complexity and
implementation.

2We can of course form any of the 2k different combinations of samples on the form(∑k
i=1±ai,

∑k
i=1±bi

)
. While it does not change the asymptotic analysis, forming every

possible combination of samples is still better for concrete complexity and when implement-
ing the algorithm in practice.

Chapter 7. Improvements of the BKW Reduction Steps 53

Plain Smooth-plain LMS Smooth LMS

Figure 7.2: An illustration of how the magnitudes of the a vectors change over
the reduction steps for different versions of the BKW algorithm. The heights

correspond to magnitudes and the width corresponds to the number of
positions. Slightly modified version of Figure 2 of Paper 5 [GJMS19b].

In the first step we reduce n1 positions to the desired level and position n1+1
partially. In the second step we reduce positions n1 +1 to n1 +n2 to the desired
level and position n1 + n2 + 1 partially, and so on. In the final step number t
we reduce positions Nt−1 + 1 to Nt to the desired level. The difference between
LMS and smooth-LMS steps is illustrated on the right half of Figure 7.2. In
this illustration we are able to reduce 2 more positions in total, compared to the
standard LMS approach, by partially reducing an extra position in each step.

Smooth Plain BKW

A special case of the smooth-LMS steps is smooth plain BKW steps. Here
we reduce b positions completely and an extra position partially in each step,
allowing us to pre-process with an arbitrary step size.

On the left part of Figure 7.2 a comparison between smooth plain BKW and
plain BKW is illustrated. Using plain steps we reduce 2 positions at a time, since
reducing 3 positions is considered infeasible in this setting. However, by using
smooth-LMS steps we manage to reduce 2 and 1/3 positions at a time, allowing
us to reduce 2 more positions in total after 6 steps. Notice that, unlike for all
the other columns, the scale for the smooth-plain reduction is logarithmic3.

7.6.2 File-based Reduction Steps
When implementing BKW the amount of Random Access Memory (RAM) is
oftentimes a limiting factor. We introduce a file-based way of doing BKW reduc-
tion steps. The problem with file-based solutions is that the file reading/writing

3Reducing half of a position in terms of work corresponds to reducing it from q to q1/2.

54 Overview of Research Field

Dsrc

0

1

...

i

...

M − 1

Rsrc

i
Red.

Rdst
...

...

Ddst

0

1

...

i

...

M − 1

Figure 7.3: An illustration of the handling of file-based BKW reduction steps.

can lead to a large overhead cost. Here we describe how to minimize this cost
when implementing file-based reduction steps4.

Figure 7.3 illustrates our solution. In each reduction step the (source) sam-
ples are initially stored on disk in what we call Dsrc. In each reduction step the
goal is to create a certain number of reduced samples and store these (destina-
tion) samples on disk in what we call Ddst. These destination samples are then
the source samples of the next reduction step and so on. We can let the source
samples and the destination samples take up roughly half of the available disk
space respectively if we want to push the algorithm maximally.

The source samples are divided up intoM different so called meta-categories,
each containing the samples corresponding to a large amount of categories. The
reduction step first reads the meta-categories one by one, each time stored in
RAM in Rsrc. Then a precise mapping into categories is made, as explained
in previous sections on reduction, using any type of reduction step. When
new samples are formed by combining samples within each category we store
the result according to the meta-category of the next reduction step in Rdst

5.
When Rdst is full we iterate through the meta-categories of Rdst and for each
meta-category we append the meta-categories on disk Ddst with the samples
stored on the meta-category in Rdst. To push the algorithm maximally we let
Rsrc and Rdst take up roughly half of the available RAM each.

This approach means that we use M file reads and M2 file writes for each
reduction step. To push the available hardware we let M ≈ Mdisk/MRAM,
where Mdisk is the size of the available disk space and MRAM is the size of the
available RAM.

4This description of the file-based approach is slightly different from and slightly better
than the one used in Paper 2.

5In a purely RAM based solution we would store the samples according to their exact
category.

Chapter 8

Improvements of the Guessing
Procedure

In this chapter we will cover improvements over the basic guessing procedure
as explained in Section 6.2. While not improving the asymptotic complex-

ity of the algorithm, these improvements are still important for the concrete
complexity of it and when implementing it in practice.

8.1 FFT and Pruned FFT
Let us revisit the situation from Section 6.2 and introduce the FFT distinguisher
from [DTV15]. This approach in turn is a generalization of the corresponding
distinguisher for LPN which uses the FWHT [LF06].

We have m equations of the form (6.1). Consider the function

f(x) =

m∑
j=1

1aj=xθ
bj
q , (8.1)

where x ∈ Zkq , 1aj=x is equal to 1 if and only if x = aj and 0 otherwise, and θq
denotes the q-th root of unity. Calculating the FFT of f gives us

f̂(y) =
∑
x∈Zkq

f(x)θ−〈x,y〉q =

m∑
j=1

θ−(<aj ,y>−bj)
q , (8.2)

for all y ∈ Zkq . For the secret y = s, the terms in (8.2) simplify to θejq . Since
the error terms are slightly biased around 0, this turns (8.2) into a random walk
with steps along the unit circle, biased towards the direction 1. For the wrong
guess y 6= s the exponents are uniformly random, turning (8.2) into a uniform
random walk with directions along the unit circle. Thus, assuming that we
have enough samples m for the noise level σf , the correct guess is the one that
maximizes the real part of (8.2).

The time complexity of this approach is O(m+k ·qk · log(q)), which is a large
improvement of the optimal distinguisher from Section 6.2, unless the original
noise level σ is very small.

55

56 Overview of Research Field

In [DTV15] the following upper limit formula for the number of samples
needed to guess the secret is presented.

8 · ln
(
qk

ε

)(
q

π
sin

(
π

q

)
e−2π2σ2/q2

)−2t+1

. (8.3)

Here ε refers to the probability of incorrectly guessing the secret. In Paper 1
we investigate the performance of this distinguisher and the optimal distin-
guisher [GMS20]. In summary we found the following.

1. FFT requires the same number of samples as the optimal distinguisher

2. FFT is much better than theory, the constant 8 in (8.3) is roughly an
order of magnitude too large.

3. The sample dependency due to LF2 and sample amplification both seem
to be relatively small.

We also suggested a slightly improved version of the FFT distinguisher using
a pruned FFT. After having done the secret-noise transform introduced in
Section 6.4, we know that the magnitude of the values in the secret vector is
small. Assuming that the values of s are at most d in magnitude, we only need
to calculate the FFT for the input values with magnitude less than or equal to
d. Firstly, efficiently calculating the pruned FFT [SB93], this reduces the cost
of calculation to

O(m+ k · qk · log(2d+ 1)). (8.4)

Secondly, and more importantly, this reduces the number of samples needed
to distinguish the secret. Redoing the proofs from [DTV15], but limiting the
number of hypotheses to (2d+ 1)k, we get the following upper limit formula for
the number of samples needed for distinguishing.

8 · ln
(

(2d+ 1)k

ε

)(
q

π
sin

(
π

q

)
e−2π2σ2/q2

)−2t+1

. (8.5)

Notice that also the expression (8.5) is roughly an order of magnitude larger
than the simulated values in Paper 1 [GMS20]. A small bonus of the FFT
approach is that it does require us to know the exact noise level of the reduced
samples1.

8.2 Binary Guessing
In Paper 2 we introduced a new approach to the guessing part of BKW [BGJ+20].
Instead of guessing the last couple of position values in s, we translated the
problem into a binary one and guessed the Least Significant Bit (LSB)s of a
large number of the position values.

1Calculating the final noise level can be a bit complicated when taking non-plain reduction
steps.

Chapter 8. Improvements of the Guessing Procedure 57

8.2.1 Retrieving the Least Significant Bits of s
Let us start with the LWE problem written on matrix form as2

b = sA + e. (8.6)

Next, multiply (8.6) by 2 to form

b′ = sA′ + 2e. (8.7)

Now perform t reduction steps of any kind that does not reduce the position
values in the a vectors completely to 0, to form

b′′ = sA′′ + 2E. (8.8)

Here A′′ = [aT1 · · ·aTm] consists of vectors with small norm, E = [E1 · · ·Em]

and Ei =
∑2t

j=1 eij . Now, reduce (8.8) modulo 2 to form

b′′0 = s0A
′′
0 + e mod 2, (8.9)

where b′′0 is a vector with the LSBs of b′′, s0 is a vector with the LSBs of
s, A′′0 = A′′ mod 2 and e denotes the binary error3. Now (8.8) consists of
equations that can be written on integer form as

bj =
∑
i

siaij + 2Ej + kj · q. (8.10)

When reducing modulo 2 the binary error of (8.9) is equal to ej = kj mod 2.
The higher value of kj the lower the probability is of getting that value. Thus
there is a bias towards even kj values and thus a bias towards the binary error
being 0.

Let us interpret each binary column of the matrix A′′0 on the form
k = (k0, k1, . . . , kn−1) as its corresponding integer k =

∑n−1
j=0 kj2

j . Let N = 2n.
Let Jk denote the set of columns of the A′′0 matrix that are equal to k. Now
define the function

Xk =
∑
j∈Jk

(−1)b
′′
j . (8.11)

Now let us calculate the WHT of Xk as

X̂ω =

N−1∑
k=0

Xk(−1)ω·k =

N−1∑
k=0

∑
j∈Jk

(−1)b
′′
j (−1)ω·k =

m−1∑
j=0

(−1)b
′′
j +aj ·ω. (8.12)

Since the values e are biased towards 0, the value 1 is more common than
the value -1 in the sum (8.12), for the correct guess ω = s0. The magnitude of
X̂ω for this guess will be large, while for the wrong guesses the sum while be
closer to 0. Thus, if the number of samples are enough compared to the noise
level, then s = ω̄, where |X̂ω̄| = maxω |X̂ω|. This random walk is precisely the
binary equivalent of the corresponding random walk for the FFT distinguisher
in (8.2).

2Notice that there is an implied reduction modulo q here, as usual for the LWE problem.
3Due to the reduction modulo q it is not the case that 2E mod 2 = 0.

58 Overview of Research Field

8.2.2 Retrieving the Whole s Vector
Once we have found the least significant bits of s we can write s = 2s′ + s0,
Â = 2A and b̂ = b− s0A. Now we get

b̂ = s′Â + e. (8.13)

We can in turn solve (8.13) for the LSBs of s′ using the same procedure
as in Section 8.2.1. Repeating this process we can solve for the whole secret
s. Every time we have solved for new bits of s, the remaining secret halves in
magnitude, which makes the problem significantly easier to solve. Therefore,
computationally speaking, we can view the LWE problem as solved once we
have found the LSBs of s.

Unlike the FFT based approach, the binary approach requires that we reduce
all positions in the a vectors. On the other hand, the approach allows us to
correctly distinguish the secret with a larger magnitude on the a vectors. In
Paper 2 we show that the binary approach is superior in some settings [BGJ+20].

Chapter 9

Some Concluding Remarks

I’ve always pursued my interests without much regard for financial
value or value to the world. I’ve spent lots of time on totally useless
things.

— Claude Shannon

This chapter concludes the research and points towards potential future re-
search directions. It also covers some ideas that were tried, but that did

not seem to work.

9.1 A General BKW Algorithm Framework
All suggested versions of the BKW algorithm are following the following frame-
work.

1. Given m LWE samples.

2. Apply sample amplification if more samples are needed.

3. Apply secret-noise transform if the secret has larger standard deviation
than the noise.

4. Apply pre-processing with plain BKW steps.

5. Apply other reduction steps. If the binary distinguisher is used, then
multiply all samples by 2 at some point during this stage.

6. Apply distinguisher to guess the last positions or, if the binary distin-
guisher is used, guess the LSBs of all positions being reduced after the
multiplication by 2.

7. Backtrack to whatever previous step is appropriate.

Paper 1 studies the sample complexity of Point 6, both with unlimited num-
ber of samples and limited number of samples requiring the sample amplification
of Point 2.

Paper 2 implements all these points. It introduces the idea of multiplying
with 2 at Point 5 in order to use the binary distinguisher at Point 6. The

59

60 Overview of Research Field

smooth-LMS and file-based storage solution are two ways in which it improves
the reduction of Point 4 and 5.

The quantum k-sieving of Paper 3 can be applied to the reduction of Point 5
to improve the k-BKW algorithm discussed in Section 7.5. See Section 9.4 for
a bit of discussion on this.

Paper 5 and 6 both improve the reduction of Point 5 by using lattice sieving
techniques. They also study the performance of this algorithm when the number
of given samples of Point 1 is limited, requiring the sample amplification of
Point 2.

9.2 A Generic BKW Reduction Step Framework
All the different reduction steps of the BKW algorithm can be viewed from a
shared framework1. We describe the idea asymptotically, but it can of course
also be analyzed for a concrete parameter setting.

Assume that we have taken i− 1 reduction steps and reduced the first Ni−1

positions to a magnitude Bi−1. Reduction step number i combines pairs2 of
samples to produce new samples with the first Ni positions reduced to the
magnitude Bi, where

• A plain BKW step [ACF+15], corresponds to letting Bi = Bi−1 = 0.

• A coded-BKW/LMS step [KF15, GJS15], corresponds to letting Bi =√
2Bi−1.

• The basic coded-BKW with sieving algorithm [GJMS17a], corresponds to
letting Bi = Bi−1 6= 0.

• The improvement in Paper 5 [GJMS19b], corresponds to letting Bi =
γBi−1 for a constant γ. The other suggested versions in Paper 5 only use
steps from the previous bullet points and are thus also covered.

• The slight improvement of Paper 6 [Må19] corresponds to letting Bi =
γiBi−1 for γi values that are different in different steps.

• The k-BKW algorithm [EHK+18] and the suggested improvements of it
in this thesis, correspond to the previous bullet points, but combining k
samples at the time instead of 2.

The plain reduction steps are a bit of a special case, where each step corre-
sponds quite clearly to a generalized step of Gaussian elimination. These steps
should, usually, be used at the beginning to decrease the dimension at a cost
of increased noise. The large advantage of these plain steps is that positions
reduced to 0 stayed reduced to 0, unlike partially reduced positions.

For all the other steps, it is more helpful to view them as modified version
of a sieving iteration. The first discovered approaches of coded-BKW/LMS just
correspond to letting γ =

√
2 and the basic coded-BKW with sieving corre-

sponds to γ = 1. The connection between lattice sieving and BKW is thus
1The author would like to thank Elena Kirshanova and Gottfried Herold for pointing

out that a coded-BKW with sieving step can be viewed from this perspective. This section
generalizes and studies that realization.

2or k-tuples more generally.

Chapter 9. Some Concluding Remarks 61

no coincidence. Even though the methods are actually quite similar, there are
also some differences. Compared to sieving BKW has both advantages and
disadvantages.

The two advantages for BKW are

• We do not need to reduce all positions in every step. This is of course
due to the fact that positions not being reduced yet do not increase in
magnitude, due to the reduction modulo q.

• We are working in a smaller dimension compared to lattice-based ap-
proaches.

There are however also some disadvantages.

• We are more limited in the number of iterations we can make. For typical
parameters we only get Θ(log(n)) iterations.

• We also depend heavily on the number of samples provided. While the
performance of BKW is great asymptotically even with just Θ(n log(n))
samples, for concrete instances BKW suffers from having only a limited
number of available samples.

Which of the algorithms is superior depends on the parameters being used,
the number of available samples and whether the comparison is made asymp-
totically, concretely or in implementation. See Section 9.5 for a discussion.

9.3 Potential for Improvement of the Reduction
Steps

There are essentially two different possible ways of improving BKW reduction
steps. Either we pick the different steps to take in a smarter way or we improve
the individual step as described in Section 9.2. Let us first consider the k = 2
setting.

Since the position values in the previous Ni−1 positions and the current ni
positions are independent of each other, the cost for coded-BKW with sieving-
style algorithms is mulitplicative in the cost of keeping the previous Ni−1 posi-
tions small and the cost of reducing the current ni positions. These two costs
can therefore be analyzed independently when trying to find an improvement
of the algorithm.

9.3.1 Trying to Improve What Steps to Take
Let us first look into the possibility of picking the steps in a smarter way. If
plain BKW is considered one extreme, then the opposite extreme reduction step
is to apply a sieving iteration on all n positions in each reduction step. Since we
only have a logarithmic number of steps (assuming that q = poly(n)) we need
to reduce the positions by a pretty large factor in each step. It is possible to
tweak the LSF technique to achieve this. The complexity of doing BKW this
way is actually quite easy to work out, but leads to an algorithm that is just
slightly better than plain BKW. The LSF part can of course be sped-up using

62 Overview of Research Field

Grover’s algorithm, but the resulting algorithm is still not better than the other
BKW approaches.

In Paper 5 [GJMS19b], other than varying the reduction factor, we also
tried doing coded-BKW steps followed by coded-BKW with sieving steps and
vice versa. This corresponds to using γ =

√
2 followed by γ = 1 and vice versa.

Doing coded-BKW with sieving steps followed by coded-BKW steps turned out
to be slightly better than just doing coded-BKW with sieving and optimized γ
steps, for parameter settings where the optimal γ value is close to 1. In other
words the settings where optimizing for γ leads to very small improvements.

The algorithm of Paper 6 beats all the algorithms of Paper 5 for all param-
eter settings tested in the papers. This is not so strange. Instead of abruptly
switching from doing steps with γ = 1 to steps with γ =

√
2, the algorithm

of Paper 6 starts and ends at optimally picked values γ1 and γt, and makes a
smooth transition between them.

9.3.2 Trying to Improve the Individual Step
A possible idea for improving the individual steps is to merge the coded part of
two steps of length n1 and n2 into reducing n1 + n2 partially two times. This
can of course be generalized to merging at least a constant number of steps r.
This might be interesting concretely, but at least asymptotically it is possible
to show that this does not lead to an improvement.

Another possible idea is to reduce the current ni positions by a super-
constant magnitude using sieving techniques. This is unlikely to be an im-
provement though. It is quite easy to show that the coded approach uses a
minimum amount of memory. Since the approach uses the same amount of time
as the amount of memory, its time complexity cannot be improved.

9.4 Improvements of k-BKW Reduction Steps
The possible time/memory tradeoffs from k-BKW steps are not a particularly
explored area of research. The techniques from coded-BKW and coded-BKW
with sieving can be combined with the k-BKW idea to achieve a good improve-
ment of the complexities for solving LWE reported in [EHK+18].

The complexity of a coded version of k-BKW is pretty straightforward
to derive. However, deriving the complexity when adding classical k-sieving
techniques of [HK17, HKL18] or quantum k-sieving techniques of Paper 3
[KMPM19a], is more challenging. Especially if we want to add these techniques
in a non-blackbox manner.

Possible further improvements should be possible to achieve by applying the
techniques introduced in Papers 5 and 6 to the k-BKW setting. This is likely
to lead to very messy derivations of complexity though.

9.5 BKW vs. Lattice-based Approaches
In this section we will compare the performance of BKW and lattice-based
approaches.

Chapter 9. Some Concluding Remarks 63

9.5.1 Asymptotic Comparison
For comparisons between the asymptotic complexity of BKW and lattice-based
approaches when solving LWE, see Figure 5 and 8 of Paper 5 [GJMS19b]. If
we would use the method from Paper 6, that algorithm would cover the full
area where BKW algorithms are the fastest and a small adjacent area where
lattice-based algorithms are the fastest in Paper 5. In Figure 8 the number of
samples is unlimited, while in Figure 5 it is Θ(n log(n)).

In general, we notice that BKW algorithms are fastest for small values of q,
while lattice-based methods are best for large values of q. Counterintuitively,
when having access to only a limited number of samples, BKW algorithms out-
perform lattice-based methods asymptotically in a larger part of the parameter
space.

9.5.2 Concrete Complexity and Implementation
So far, even though BKW algorithms are asymptotically faster for some settings,
they are slower in practice than lattice-based algorithms, even when using an
unlimited number of samples.

Estimating the more precise bit complexity of the BKW algorithm is tricky.
With recent developments, the complexity depends inherently on the complexity
of the lattice sieving iterations of Definition 5.1.1, a complexity which in turn is
tricky to estimate precisely. Calculating the complexity of the BKW algorithm
when combining all the tricks used in Papers 2, 5 and 6 remains to be done. As
discussed in Paper 2 [BGJ+20], when using an unlimited number of samples,
there are settings where BKW-type algorithms beat lattice-based approaches,
in terms of bit complexity.

Recently, the concrete complexity of lattice sieving using quantumer com-
puting was studied in [AGPS19]. A possible future research idea is to do a
similar analysis for the BKW-type algorithms of Papers 5 or 6. More generally,
quantum improvements of the BKW algorithm is a possible area to study.

Implementation-wise, BKW algorithms are slower than lattice-based meth-
ods. Partly the reason is that much less effort has been spent on making efficient
implementations of BKW and running large-scale simulations. Partly, the large
memory requirement is another problem.

From the publication of the NV sieve in 2008 [NV08], it took roughly 10 years
before sieving beat enumeration, even though it was asymptotically faster. It is
possible that something similar will happen with BKW for the settings where
it is asymptotically faster, at least assuming an unlimited number of samples.

Number of Available Samples

The main practical limitation of BKW is the number of available samples. Many
practical schemes based on LWE only provide the attacker with n or 2n samples,
which clearly is very restricting for the current approaches of BKW. There are
however some possible scenarios and/or techniques that can improve this. The
performance of all of these remain to be investigated.

Many constructions use versions of the LWE problem with more structure
than the one from Definition 1.4.1, the main one being ring-LWE. In [Sta19]
Stange shows how the BKW algorithm can take advantage of this structure,

64 Overview of Research Field

including a rotation technique that allows the attacker to increase the initial
number of samples without increasing the noise level. Similar approaches might
be possible for other types of structured LWE problems.

Some constructions provide the attacker with a bit more samples. A recent
example is [KKPP20]. They construct a post-quantum version of an mKEM
(multiple Key Encapsulation Mechanism), which can be based on the LWE
problem. Here the attacker is provided with Θ(m · n) samples, where m is the
number of users, a number which can be up to 50000.

Another possible improvement when having a limited number of initial sam-
ples is keeping track of the error terms each sample has and prioritize combining
samples that cancel error terms [Ngu20]. Yet another possibility to increase the
number of samples is to use plain k-BKW steps to increase the number of sam-
ples. Similarly we can reduce fewer than the maximal number of positions
using plain BKW steps, thereby gradually increasing the sample count for each
iteration.

As a final note, if BKW can become faster than lattice-based methods only
with a very large number of samples, that would still be an interesting result,
leading to some natural follow-up questions. What number of samples does this
happen at? Is it possible to improve upon both BKW and lattice sieving by
some hybrid approach?

References

[AAB+19] F. Arute, K. Arya, R. Babbush, et al. Quantum supremacy
using a programmable superconducting processor. Nature,
574(7779):505—-510, October 2019.

[Aar18] Scott Aaronson. Introduction to quantum information science lec-
ture notes. https://www.scottaaronson.com/qclec.pdf, 2018.
Accessed: 2020-11-09.

[ACF+15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert
Fitzpatrick, and Ludovic Perret. On the complexity of the BKW
algorithm on LWE. Designs, Codes and Cryptography, 74(2):325–
354, 2015.

[ACFP14] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Lu-
dovic Perret. Algebraic algorithms for LWE. Cryptology ePrint
Archive, Report 2014/1018, 2014. http://eprint.iacr.org/
2014/1018.

[ACKS20] Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen.
Improved (provable) algorithms for the shortest vector problem
via bounded distance decoding. arXiv, Report 2002.07955, 2020.
https://arxiv.org/abs/2002.07955.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai.
Fast cryptographic primitives and circular-secure encryption based
on hard learning problems. In Shai Halevi, editor, Advances in
Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 595–618, Santa Barbara, CA, USA, Au-
gust 16–20, 2009. Springer, Heidelberg, Germany.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kir-
shanova, Eamonn W. Postlethwaite, and Marc Stevens. The gen-
eral sieve kernel and new records in lattice reduction. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology – EU-
ROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Com-
puter Science, pages 717–746, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah
Stephens-Davidowitz. Solving the shortest vector problem in 2n

time using discrete Gaussian sampling: Extended abstract. In

65

66 Overview of Research Field

Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual
ACM Symposium on Theory of Computing, pages 733–742, Port-
land, OR, USA, June 14–17, 2015. ACM Press.

[AFFP14] Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick,
and Ludovic Perret. Lazy modulus switching for the BKW al-
gorithm on LWE. In Hugo Krawczyk, editor, PKC 2014: 17th
International Conference on Theory and Practice of Public Key
Cryptography, volume 8383 of Lecture Notes in Computer Sci-
ence, pages 429–445, Buenos Aires, Argentina, March 26–28, 2014.
Springer, Heidelberg, Germany.

[AFG14] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On
the efficacy of solving LWE by reduction to unique-SVP. In Hyang-
Sook Lee and Dong-Guk Han, editors, ICISC 13: 16th Interna-
tional Conference on Information Security and Cryptology, volume
8565 of Lecture Notes in Computer Science, pages 293–310, Seoul,
Korea, November 27–29, 2014. Springer, Heidelberg, Germany.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in pres-
ence of errors. In Luca Aceto, Monika Henzinger, and Jiri Sgall, ed-
itors, ICALP 2011: 38th International Colloquium on Automata,
Languages and Programming, Part I, volume 6755 of Lecture Notes
in Computer Science, pages 403–415, Zurich, Switzerland, July 4–
8, 2011. Springer, Heidelberg, Germany.

[Age] National Security Agency. NSA Statement on the threat
from quantum computers. https://apps.nsa.gov/iaarchive/
programs/iad-initiatives/cnsa-suite.cfm. Accessed: 2020-
10-24.

[AGPS19] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite,
and John M. Schanck. Estimating quantum speedups for lat-
tice sieves. Cryptology ePrint Archive, Report 2019/1161, 2019.
https://eprint.iacr.org/2019/1161.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In 33rd Annual ACM Sym-
posium on Theory of Computing, pages 601–610, Crete, Greece,
July 6–8, 2001. ACM Press.

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-secret
LWE and parameter choices in HElib and SEAL. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lec-
ture Notes in Computer Science, pages 103–129, Paris, France,
April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[AOAGC18] Eric R. Anschuetz, Jonathan P. Olson, Alán Aspuru-Guzik, and
Yudong Cao. Variational quantum factoring. arXiv, Report
1808.08927, 2018. https://arxiv.org/abs/1808.08927.

References 67

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On The Con-
crete Hardness Of Learning With Errors. J. Mathematical Cryp-
tology, 9(3):169–203, 2015.

[ASK19] Mirko Amico, Zain H. Saleem, and Muir Kumph. Experimental
study of Shor’s factoring algorithm using the IBM Q Experience.
Physical Review A, 100(1), July 2019.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh
Vazirani. Strengths and weaknesses of quantum computing. SIAM
Journal on Computing, 26(5):1510–1523, Oct 1997.

[BBC08] Marco Baldi, Marco Bodrato, and Franco Chiaraluce. A new anal-
ysis of the McEliece cryptosystem based on QC-LDPC codes. In
Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors,
SCN 08: 6th International Conference on Security in Communica-
tion Networks, volume 5229 of Lecture Notes in Computer Science,
pages 246–262, Amalfi, Italy, September 10–12, 2008. Springer,
Heidelberg, Germany.

[BBD08] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-
Quantum Cryptography. Springer Publishing Company, Incorpo-
rated, 1st edition, 2008.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
bounds on quantum searching. Fortschritte der Physik, 46(4-
5):493–505, Jun 1998.

[BC07] M. Baldi and F. Chiaraluce. Cryptanalysis of a new instance of
McEliece cryptosystem based on QC-LDPC Codes. In 2007 IEEE
International Symposium on Information Theory, pages 2591–
2595, 2007.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New
directions in nearest neighbor searching with applications to lattice
sieving. In Robert Krauthgamer, editor, 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 10–24, Arlington, VA,
USA, January 10–12, 2016. ACM-SIAM.

[Ber10] Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, ed-
itor, The Third International Workshop on Post-Quantum Cryp-
tography, PQCRYPTO 2010, pages 73–80, Darmstadt, Germany,
May 25–28 2010. Springer, Heidelberg, Germany.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lat-
tice sieving without increasing the memory, using sub-quadratic
nearest neighbor search. Cryptology ePrint Archive, Report
2015/522, 2015. http://eprint.iacr.org/2015/522.

[BGJ+20] Alessandro Budroni, Qian Guo, Thomas Johansson, Erik Mårtens-
son, and Paul Stankovski Wagner. Making the BKW algorithm
practical for LWE. In Karthikeyan Bhargavan, Elisabeth Oswald,

68 Overview of Research Field

and Manoj Prabhakaran, editors, Progress in Cryptology – IN-
DOCRYPT 2020, pages 417–439, Cham, 2020. Springer Interna-
tional Publishing.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp.
Quantum amplitude amplification and estimation. In Quantum
Computation and Information, Contemporary Mathematics Se-
ries. AMS, 2002.

[BHT97] Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum algorithm
for the collision problem. ACM SIGACT News, 28:14 – 19, 1997.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander
Meurer. Decoding random binary linear codes in 2n/20: How 1
+ 1 = 0 improves information set decoding. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 520–536, Cambridge, UK, April 15–19, 2012. Springer, Hei-
delberg, Germany.

[BJV04] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far
can we go beyond linear cryptanalysis? In Pil Joong Lee, edi-
tor, Advances in Cryptology – ASIACRYPT 2004, volume 3329 of
Lecture Notes in Computer Science, pages 432–450, Jeju Island,
Korea, December 5–9, 2004. Springer, Heidelberg, Germany.

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rech-
berger. Biclique cryptanalysis of the full AES. In Dong Hoon
Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASI-
ACRYPT 2011, volume 7073 of Lecture Notes in Computer Sci-
ence, pages 344–371, Seoul, South Korea, December 4–8, 2011.
Springer, Heidelberg, Germany.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant
learning, the parity problem, and the statistical query model. In
32nd Annual ACM Symposium on Theory of Computing, pages
435–440, Portland, OR, USA, May 21–23, 2000. ACM Press.

[BL17] D.J. Bernstein and T. Lange. Post-quantum cryptography. Nature,
549(7671):188–194, September 2017.

[BLP93] J. P. Buhler, H. W. Lenstra, and Carl Pomerance. Factoring in-
tegers with the number field sieve. In Arjen K. Lenstra and Hen-
drik W. Lenstra, editors, The development of the number field
sieve, pages 50–94, Berlin, Heidelberg, 1993. Springer Berlin Hei-
delberg.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller
decoding exponents: Ball-collision decoding. In Phillip Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of
Lecture Notes in Computer Science, pages 743–760, Santa Bar-
bara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Ger-
many.

References 69

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice siev-
ing. LMS Journal of Computation and Mathematics, 19(A):146–
162, January 2016.

[BM17] Leif Both and A. May. Optimizing BJMM with nearest neighbors
: Full decoding in 22n/21 and mceliece security. In WCC workshop
on coding and cryptography, 2017.

[BMPC16] Marco Baldi, Nicola Maturo, Enrico Paolini, and Franco Chiar-
aluce. On the use of ordered statistics decoders for low-density
parity-check codes in space telecommand links. EURASIP Jour-
nal on Wireless Communications and Networking, 2016, 12 2016.

[BMv78] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Trans-
actions on Information Theory, 24(3):384–386, 1978.

[Bos99] Martin Bossert. Channel Coding for Telecommunications. John
Wiley & Sons, Inc., USA, 1st edition, 1999.

[BSC16] M. Baldi, P. Santini, and F. Chiaraluce. Soft McEliece: MDPC
code-based McEliece cryptosystems with very compact keys
through real-valued intentional errors. In 2016 IEEE International
Symposium on Information Theory (ISIT), pages 795–799, 2016.

[BTV16] Sonia Bogos, Florian Tramèr, and Serge Vaudenay. On solving
LPN using BKW and variants - implementation and analysis.
Cryptography and Communications, 8(3):331–369, 2016.

[CC98] Anne Canteaut and Florent Chabaud. A new algorithm for finding
minimum-weight words in a linear code: Application to McEliece’s
cryptosystem and to narrow-sense BCH codes of length 511. In-
formation Theory, IEEE Transactions on, 44:367 – 378, 02 1998.

[Che14] Yuanmi Chen. Lattice Reduction and Concrete Security of Fully
Homomorphic Encryption. PhD thesis, Paris Diderot University,
France, 2014.

[Chu01] Robert Churhhouse. Codes and Ciphers: Julius Caesar, the
Enigma, and the Internet. Cambridge University Press, 2001.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of
Computing, STOC ’71, page 151–158, New York, NY, USA, 1971.
Association for Computing Machinery.

[CT65] J. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of Computation,
19:297–301, 1965.

[Dar] TU Darmstadt Learning with Errors Challenge. https://www.
latticechallenge.org/lwe_challenge/challenge.php. Ac-
cessed: 2020-10-16.

70 Overview of Research Field

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22(6):644–654,
1976.

[DSvW20] L. Ducas, M. Stevens, and W.P.J. van Woerden. New practical
advances in lattice sieving, using GPU tensor cores, 2020. Under
submission.

[DTV15] Alexandre Duc, Florian Tramèr, and Serge Vaudenay. Better algo-
rithms for LWE and LWR. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, vol-
ume 9056 of Lecture Notes in Computer Science, pages 173–202,
Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[Dum91] I. Dumer. The use of information sets in decoding of linear codes.
In Proceedings of 5th Joint Soviet-Swedish International Workshop
on Information Theory, pages 50 – 52, 1991.

[dW19] Ronald de Wolf. Quantum computing: Lecture notes. https:
//homepages.cwi.nl/~rdewolf/qcnotes.pdf, 2019. Accessed:
2020-11-09.

[EHK+18] Andre Esser, Felix Heuer, Robert Kübler, Alexander May,
and Christian Sohler. Dissection-BKW. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Com-
puter Science, pages 638–666, Santa Barbara, CA, USA, Au-
gust 19–23, 2018. Springer, Heidelberg, Germany.

[FHS+17] Tomás Fabsic, Viliam Hromada, Paul Stankovski, Pavol Zajac,
Qian Guo, and Thomas Johansson. A reaction attack on the
QC-LDPC McEliece cryptosystem. In Tanja Lange and Tsuyoshi
Takagi, editors, Post-Quantum Cryptography - 8th International
Workshop, PQCrypto 2017, pages 51–68, Utrecht, The Nether-
lands, June 26–28 2017. Springer, Heidelberg, Germany.

[Fri20] Lex Fridman. Scott Aaronson: Quantum computing | episode #72.
In Lex Fridman Podcast, February 2020. https://www.youtube.
com/watch?v=uX5t8EivCaM.

[FS95] M. P. C. Fossorier and Shu Lin. Soft-decision decoding of linear
block codes based on ordered statistics. IEEE Transactions on
Information Theory, 41(5):1379–1396, 1995.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. John
Wiley & Sons, Inc., USA, 1st edition, 2003.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the de-
sign of code-based cryptosystems. In Mitsuru Matsui, editor, Ad-
vances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture
Notes in Computer Science, pages 88–105, Tokyo, Japan, Decem-
ber 6–10, 2009. Springer, Heidelberg, Germany.

References 71

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, 41st Annual ACM Symposium
on Theory of Computing, pages 169–178, Bethesda, MD, USA,
May 31 – June 2, 2009. ACM Press.

[GJMS17a] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul
Stankovski. Coded-BKW with sieving. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology – ASI-
ACRYPT 2017, Part I, volume 10624 of Lecture Notes in Com-
puter Science, pages 323–346, Hong Kong, China, December 3–7,
2017. Springer, Heidelberg, Germany.

[GJMS17b] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul
Stankovski. Information set decoding with soft information and
some cryptographic applications. In 2017 IEEE International
Symposium on Information Theory (ISIT). IEEE, jun 2017.

[GJMS19a] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul
Stankovski. Some cryptanalytic and coding-theoretic applications
of a soft stern algorithm. Advances in Mathematics of Communi-
cations, 2 2019.

[GJMS19b] Qian Guo, Thomas Johansson, Erik Mårtensson, and Paul
Stankovski Wagner. On the asymptotics of solving the LWE prob-
lem using coded-bkw with sieving. IEEE Trans. Information The-
ory, 65(8):5243–5259, 2019.

[GJS15] Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-
BKW: Solving LWE using lattice codes. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, Advances in Cryptology –
CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 23–42, Santa Barbara, CA, USA, August 16–20,
2015. Springer, Heidelberg, Germany.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recov-
ery attack on MDPC with CCA security using decoding errors.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, Part I, volume 10031 of Lec-
ture Notes in Computer Science, pages 789–815, Hanoi, Vietnam,
December 4–8, 2016. Springer, Heidelberg, Germany.

[GMS20] Qian Guo, Erik Mårtensson, and Paul Stankovski Wagner. On the
sample complexity of solving LWE using BKW-style algorithms.
Under submission, 2020.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enu-
meration using extreme pruning. In Henri Gilbert, editor, Ad-
vances in Cryptology – EUROCRYPT 2010, volume 6110 of Lec-
ture Notes in Computer Science, pages 257–278, French Riviera,
May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[Gop70] V. D. Goppa. A new class of linear correcting codes. Probl.
Peredachi Inf., 6:24–30, 1970.

72 Overview of Research Field

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In 28th Annual ACM Symposium on Theory of Computing,
pages 212–219, Philadephia, PA, USA, May 22–24, 1996. ACM
Press.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for
the approximate k-list problem in euclidean norm. In Serge Fehr,
editor, PKC 2017: 20th International Conference on Theory and
Practice of Public Key Cryptography, Part I, volume 10174 of Lec-
ture Notes in Computer Science, pages 16–40, Amsterdam, The
Netherlands, March 28–31, 2017. Springer, Heidelberg, Germany.

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-
ups and time-memory trade-offs for tuple lattice sieving. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018: 21st Interna-
tional Conference on Theory and Practice of Public Key Cryptog-
raphy, Part I, volume 10769 of Lecture Notes in Computer Sci-
ence, pages 407–436, Rio de Janeiro, Brazil, March 25–29, 2018.
Springer, Heidelberg, Germany.

[HKM18] Gottfried Herold, Elena Kirshanova, and Alexander May. On the
asymptotic complexity of solving LWE. Des. Codes Cryptogr.,
86(1):55–83, 2018.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing
blockwise lattice algorithms using dynamical systems. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, vol-
ume 6841 of Lecture Notes in Computer Science, pages 447–464,
Santa Barbara, CA, USA, August 14–18, 2011. Springer, Heidel-
berg, Germany.

[Ker83a] Auguste Kerckhoffs. La cryptographie militaire. Journal des sci-
ences militaires, IX:5–83, jan 1883.

[Ker83b] Auguste Kerckhoffs. La cryptographie militaire. Journal des sci-
ences militaires, IX:161–191, feb 1883.

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved BKW al-
gorithm for LWE with applications to cryptography and lattices.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, Ad-
vances in Cryptology – CRYPTO 2015, Part I, volume 9215 of
Lecture Notes in Computer Science, pages 43–62, Santa Barbara,
CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[Kha96] David Khan. The Codebreakers: The Comprehensive History of
Secret Communication from Ancient Times to the Internet. Scrib-
ner, 1996.

[Kir11] Paul Kirchner. Improved generalized birthday attack. Cryptology
ePrint Archive, Report 2011/377, 2011. http://eprint.iacr.
org/2011/377.

References 73

[Kir18] Elena Kirshanova. Improved quantum information set decoding.
In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018,
pages 507–527, Fort Lauderdale, Florida, United States, April 9–
11 2018. Springer, Heidelberg, Germany.

[Kit96] A. Kitaev. Quantum measurements and the abelian stabilizer
problem. Electron. Colloquium Comput. Complex., 3, 1996.

[KKPP20] Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and
Thomas Prest. Scalable ciphertext compression techniques for
post-quantum kems and their applications. Cryptology ePrint
Archive, Report 2020/1107, 2020. https://eprint.iacr.org/
2020/1107.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusu-
ally close. In David B. Shmoys, editor, 11th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 937–941, San Francisco,
CA, USA, January 9–11, 2000. ACM-SIAM.

[KLM17] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An In-
troduction to Quantum Computing. Oxford University Press, 1st
edition, 2017.

[KMPM19a] Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite,
and Subhayan Roy Moulik. Quantum algorithms for the approx-
imate k-list problem and their application to lattice sieving. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryp-
tology – ASIACRYPT 2019, Part I, volume 11921 of Lecture Notes
in Computer Science, pages 521–551, Kobe, Japan, December 8–
12, 2019. Springer, Heidelberg, Germany.

[KMPM19b] Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite,
and Subhayan Roy Moulik. Quantum algorithms for the ap-
proximate k-list problem and their application to lattice siev-
ing. Cryptology ePrint Archive, Report 2019/1016, 2019. https:
//eprint.iacr.org/2019/1016.

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information
set decoding algorithms. In Tanja Lange and Tsuyoshi Takagi, ed-
itors, Post-Quantum Cryptography - 8th International Workshop,
PQCrypto 2017, pages 69–89, Utrecht, The Netherlands, June 26–
28 2017. Springer, Heidelberg, Germany.

[Laa15] Thijs Laarhoven. Search problems in cryptography. PhD thesis,
Eindhoven University of Technology, 2015.

[LB88] Pil Joong Lee and Ernest F. Brickell. An observation on the
security of McEliece’s public-key cryptosystem. In C. G. Gün-
ther, editor, Advances in Cryptology – EUROCRYPT’88, volume
330 of Lecture Notes in Computer Science, pages 275–280, Davos,
Switzerland, May 25–27, 1988. Springer, Heidelberg, Germany.

74 Overview of Research Field

[LC04] Shu Lin and Daniel Costello. Error Control Coding. Prentice Hall,
2nd edition, 01 2004.

[LdW15] Thijs Laarhoven and Benne de Weger. Faster sieving for short-
est lattice vectors using spherical locality-sensitive hashing. In
Kristin E. Lauter and Francisco Rodríguez-Henríquez, editors,
Progress in Cryptology - LATINCRYPT 2015: 4th Interna-
tional Conference on Cryptology and Information Security in
Latin America, volume 9230 of Lecture Notes in Computer Sci-
ence, pages 101–118, Guadalajara, Mexico, August 23–26, 2015.
Springer, Heidelberg, Germany.

[LF06] Éric Levieil and Pierre-Alain Fouque. An improved LPN algo-
rithm. In Roberto De Prisco and Moti Yung, editors, SCN 06:
5th International Conference on Security in Communication Net-
works, volume 4116 of Lecture Notes in Computer Science, pages
348–359, Maiori, Italy, September 6–8, 2006. Springer, Heidelberg,
Germany.

[LLL82] A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515 – 534,
1982.

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration:
An update. In Ed Dawson, editor, Topics in Cryptology – CT-
RSA 2013, volume 7779 of Lecture Notes in Computer Science,
pages 293–309, San Francisco, CA, USA, February 25 – March 1,
2013. Springer, Heidelberg, Germany.

[LP92] H.W. Lenstra and Carl Pomerance. A rigorous time bound for
factoring integers. J. Amer. Math. Soc. 5, 5, 09 1992.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks)
for LWE-based encryption. In Aggelos Kiayias, editor, Topics in
Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in Com-
puter Science, pages 319–339, San Francisco, CA, USA, Febru-
ary 14–18, 2011. Springer, Heidelberg, Germany.

[Lö14] Carl Löndahl. Some Notes on Code-Based Cryptography. PhD
thesis, Lund University, 2014.

[McE78] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic
Coding Theory. Deep Space Network Progress Report, 44:114–116,
January 1978.

[ME99] Michele Mosca and Artur Ekert. The hidden subgroup problem
and eigenvalue estimation on a quantum computer. In Colin P.
Williams, editor, Quantum Computing and Quantum Communi-
cations, pages 174–188, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels.
Communications of the ACM, 21:294–299, 1978.

References 75

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding
random linear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology – ASIACRYPT 2011, vol-
ume 7073 of Lecture Notes in Computer Science, pages 107–124,
Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg,
Germany.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors
with applications to decoding of binary linear codes. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in
Computer Science, pages 203–228, Sofia, Bulgaria, April 26–30,
2015. Springer, Heidelberg, Germany.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography.
In Post-Quantum Cryptography, pages 147–191. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[MTSB13] R. Misoczki, J. Tillich, N. Sendrier, and P. S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density
parity-check codes. In 2013 IEEE International Symposium on
Information Theory, pages 2069–2073, 2013.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponen-
tial time algorithms for the shortest vector problem. In Moses
Charika, editor, 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1468–1480, Austin, TX, USA, January 17–19,
2010. ACM-SIAM.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1st edition, 2001.

[Må16] Erik Mårtensson. Solving NTRU Challenges Using the New Pro-
gressive BKZ Library. Master’s thesis, Lund University, Sweden,
2016.

[Må19] Erik Mårtensson. The asymptotic complexity of Coded-BKW with
sieving using increasing reduction factors. In IEEE International
Symposium on Information Theory, ISIT 2019, Paris, France,
July 7-12, 2019, pages 2579–2583. IEEE, 2019.

[NC10] Michael Nielsen and Isaac Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2nd edition,
2010.

[Ngu20] Vu Nguyen. Personal communication, 2020.

[NISa] NIST Lightweight Cryptography Competition. https://csrc.
nist.gov/projects/lightweight-cryptography. Accessed:
2020-10-23.

[NISb] NIST Post-quantum Cryptography Competition. https://csrc.
nist.gov/projects/post-quantum-cryptography. Accessed:
2020-10-23.

76 Overview of Research Field

[NISc] NIST Post-quantum Cryptography Competition Round 1. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
Round-1-Submissions. Accessed: 2020-10-23.

[NISd] NIST Post-quantum Cryptography Competition Round 2. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
round-2-submissions. Accessed: 2020-10-23.

[NISe] NIST Post-quantum Cryptography Competition Round 3. https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions. Accessed: 2020-10-23.

[NV08] Phong Nguyen and Thomas Vidick. Sieve algorithms for the short-
est vector problem are practical. Journal of Mathematical Cryp-
tology, 2:181–207, 07 2008.

[OS09] Raphael Overbeck and Nicolas Sendrier. Code-based cryptog-
raphy. In Post-Quantum Cryptography, pages 95–145. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Pat75] N. Patterson. The algebraic decoding of goppa codes. IEEE Trans-
actions on Information Theory, 21(2):203–207, 1975.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To bliss-
b or not to be: Attacking strongswan’s implementation of post-
quantum signatures. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17,
page 1843–1855, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case short-
est vector problem: extended abstract. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing,
pages 333–342, Bethesda, MD, USA, May 31 – June 2, 2009. ACM
Press.

[PGN+19] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior
Horesh, and Robert Wisnieff. Leveraging secondary storage to
simulate deep 54-qubit sycamore circuits, 2019.

[PM16] Peter Pessl and Stefan Mangard. Enhancing side-channel analysis
of binary-field multiplication with bit reliability. In Kazue Sako,
editor, Topics in Cryptology – CT-RSA 2016, volume 9610 of Lec-
ture Notes in Computer Science, pages 255–270, San Francisco,
CA, USA, February 29 – March 4, 2016. Springer, Heidelberg,
Germany.

[Pol78] J. M. Pollard. Monte carlo methods for index computation
(mod p). Mathematics of Computation, 32(143):918–924, 1978.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes.
IRE Transactions on Information Theory, 8(5):5–9, 1962.

References 77

[Qua] Quantum algorithm zoo. https://quantumalgorithmzoo.org/.
Accessed: 2020-10-24.

[Reg05] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald Fagin,
editors, 37th Annual ACM Symposium on Theory of Computing,
pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryptosys-
tems. Communications of the Association for Computing Machin-
ery, 21(2):120–126, 1978.

[SB93] H. V. Sorensen and C. S. Burrus. Efficient computation of the DFT
with only a subset of input or output points. IEEE Transactions
on Signal Processing, 41(3):1184–1200, 1993.

[Sch87] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduc-
tion algorithms. Theor. Comput. Sci., 53(2):201–224, June 1987.

[SE94] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathemat-
ical Programming, 66:181 – 199, 1994.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems.
Bell Systems Technical Journal, 28(4):656–715, 1949.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In 35th Annual Symposium on Founda-
tions of Computer Science, pages 124–134, Santa Fe, NM, USA,
November 20–22, 1994. IEEE Computer Society Press.

[Sin99] Simon Singh. The Code Book: The Evolution of Secrecy from
Mary, Queen of Scots, to Quantum Cryptography. Doubleday,
USA, 1st edition, 1999.

[Sma16] Nigel Smart. Cryptography Made Simple. Springer International
Publishing, 1st edition, 2016.

[SP18] Douglas Robert Stinson and Maura Paterson. Cryptography : The-
ory and Practice. Boca Raton : Chapman and Hall/CRC, 4th
edition, 2018.

[Sta19] Katherine E. Stange. Algebraic aspects of solving ring-LWE,
including ring-based improvements in the blum-kalai-wasserman
algorithm. Cryptology ePrint Archive, Report 2019/183, 2019.
https://eprint.iacr.org/2019/183.

[Ste89] Jacques Stern. A method for finding codewords of small weight. In
Gérard Cohen and Jacques Wolfmann, editors, Coding Theory and
Applications, pages 106–113, Berlin, Heidelberg, 1989. Springer
Berlin Heidelberg.

[SVP] SVP Challenge. https://www.latticechallenge.org/
svp-challenge/#. Accessed: 2020-10-16.

78 Overview of Research Field

[VF01] Antoine Valembois and Marc Fossorier. Generation of binary vec-
tors that optimize a given weight function with application to soft-
decision decoding. In Proceedings 2001 IEEE Information Theory
Workshop, pages 138–140, 02 2001.

[VF04] A. Valembois and M. Fossorier. Box and match techniques applied
to soft-decision decoding. IEEE Transactions on Information The-
ory, 50(5):796–810, 2004.

[Wik20a] Wikipedia contributors. Combination - number of combi-
nations with repetition — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Combination#Number_
of_combinations_with_repetition, 2020. [Online; accessed
2020-09-29].

[Wik20b] Wikipedia contributors. Coupon collector’s problem—Wikipedia,
the free encyclopedia. https://en.wikipedia.org/wiki/
Coupon_collector%27s_problem, 2020. [Online; accessed 2020-
10-02].

[Wik20c] Wikipedia contributors. Post-quantum cryptography —
Wikipedia, the free encyclopedia. https://en.wikipedia.org/
wiki/Post-quantum_cryptography, 2020. [Online; accessed
2020-09-28].

[Wik20d] Wikipedia contributors. Quantum algorithm for linear
systems of equations — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Quantum_algorithm_
for_linear_systems_of_equations, 2020. [Online; accessed
2020-11-21].

[Wik20e] Wikipedia contributors. Quantum annealing — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/wiki/Quantum_
annealing, 2020. [Online; accessed 2020-11-21].

[Wik20f] Wikipedia contributors. Quantum simulator — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/wiki/Quantum_
simulator, 2020. [Online; accessed 2020-11-21].

[ZWD+20] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-
Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu,
Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li,
Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang,
Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum
computational advantage using photons. Science, 2020.

Part II

Included Papers

79

On the Sample Complexity of solving
LWE using BKW-Style Algorithms

The Learning with Errors problem (LWE) receives more and more
attention in cryptography, mainly due to its fundamental significance in
post-quantum cryptography. Among the extensive studies on its solving
algorithms, the Blum-Kalai-Wasserman algorithm (BKW), originally pro-
posed for solving the Learning Parity with Noise problem (LPN), performs
well, especially for certain parameter settings with cryptographic impor-
tance. The BKW algorithm generally consists of two phases, the reduction
phase and the solving phase. In this work, we study the performance of
distinguishers used in the solving phase. We show that the Fast Fourier
Transform distinguisher (FFT) from Eurocrypt’15 has the same sample
complexity as the optimal distinguisher, when making the same number
of hypotheses. We also show that it performs much better than theory
predicts and introduces an improvement of it called the pruned FFT dis-
tinguisher. Finally, we indicate, via extensive experiments, that the sample
dependency due to both LF2 and sample amplification is limited.

Keywords: LWE, BKW, FFT distinguisher, Hypothesis testing.

Qian Guo, Erik Mårtensson and Paul Stankovski Wagner, “On the Sample Complexity
of solving LWE using BKW-Style Algorithms”. Under Submission, 2020.

83

PAPER I 85

1 Introduction
Post-quantum cryptography is a central area in recent cryptographic research,
studying replacements of cryptographic primitives based on the factoring and
the discrete-log problems, both of which could efficiently be solved by a quantum
computer [30]. Among all of its research branches, lattice-based cryptography is
the most promising one; for instance, in the NIST Post-Quantum Cryptography
(PQC) Standardization project [1], twelve out of twenty-six round-2 candidates
are lattice-based.

The Learning with Errors problem (LWE), originally proposed by Regev [29],
is the major problem in lattice-based cryptography. Its average-case hardness
can be based on the worst-case hardness of some standard lattice problems,
which is extremely interesting in theoretical crypto. Its cryptographic applica-
tions are very versatile, and among them, the most famous is the design of Fully
Homomorphic Encryption (FHE) schemes. Its binary counterpart, the Learning
Parity with Noise problem (LPN), also plays an significant role in cryptography
(see [10]), especially in light-weight cryptography for very constrained environ-
ments such as RFID tags and low-power devices.

Due to the significance of LWE, a number of works have contributed to its
solving algorithms. These approaches can be generally categorized into three
classes – the lattice reduction, the algebraic, and the combinatorial approaches.
The last class of algorithms all inherit from the famous Blum-Kalai-Wasserman
(BKW) algorithm [11, 12], and are the most relevant to our study. We refer
interested readers to [6] for concrete complexity estimation for solving LWE
instances, and to [22,24] for asymptotic complexity estimations.

The BKW-type algorithms include two phases, the reduction phase and the
solving phase. The prior consists of a series of operations, called BKW steps,
iteratively reducing the dimension of the problem at the cost of increasing its
noise level. At the end of the reduction phase, the original LWE problem is
transformed to a new problem with a much smaller dimension. The new problem
can be solved efficiently by a procedure called distinguishing in the solving phase.

One of the main challenges in understanding the precise performance of
BKW variants on solving the LWE problem comes from the lack of extensive
experimental studies, especially on the various distinguishers proposed for the
solving phase. Firstly, we have borrowed many heuristics from BKW variants
on the LPN problem, but only very roughly or not at all verified them for the
LWE problem. Secondly, the tightness of the nice theoretical bound in [16] on
the sample complexity of the FFT distinguisher also needs to be experimentally
checked. Lastly, a performance comparison of the different known distinguishers
is still lacking.

1.1 Related Work
The BKW algorithm proposed by Blum et al. [11,12] is the first sub-exponential
algorithm for solving the LPN problem. Its initial distinguisher, an exhaustive
search method in the binary field, recovers one bit of the secret by employing ma-
jority voting. Later, Levieil and Fouque [27] applied the fast Walsh-Hadamard
transform (FWHT) technique to accelerate the distinguishing process and re-
covered a number of secret bits in one pass. They also proposed some heuristic
versions and tested these assumptions by experiments. In [25] Kirchner pro-

86 PAPER I

posed a secret-noise transform technique to change the secret distribution to be
sparse. This technique is an application of the transform technique proposed
in [7] for solving LWE. Bernstein and Lange [9] further instantiated an attack
on the Ring-LPN problem, a variant of LPN with algebraic ring structures.
In [19,20], Guo, Johansson, and Löndahl proposed a new distinguishing method
called subspace hypothesis testing. Though this distinguisher can handle an
instance with larger dimension by using covering codes, its inherent nature is
still an FWHT distinguisher. Improvements of the BKW algorithm was further
studied by Zhang et al. [32] and Bogos-Vaudenay [14]. An elaborate survey
with experimental results on the BKW algorithm for solving LPN can be found
in [13].

We see a similar research line when applying the BKW idea for solving
LWE. Albrecht et al. initiated the study in [3]. In PKC 2014 [5], a new re-
duction technique called lazy modulus switching was proposed. In both works,
an exhaustive search approach is employed in the solving phase. In [16] Duc et
al. introduced the fast Fourier transform (FFT) technique in the distinguishing
process and bounded the sample complexity theoretically from the Hoeffding
inequality. Note that the actual performance regarding the bound is not exper-
imentally verified and the information loss in the FFT distinguisher is unclear.
There are new reduction methods in [21, 23, 26], and in [23], the authors also
proposed a new method with polynomial reconstruction in the solving phase.
This method has the same sample complexity as that of the exhaustive search
approach but requires (q+ 1) FFT operations rather than only one FFT in [16].

The BKW variants with memory constraints were recently studied in [15,
17,18].

1.2 Contributions
In the paper, we perform a thorough empirical study to compare the perfor-
mance of the known distinguishers. We investigate the performance of the
optimal distinguisher and the FFT distinguisher. We also test the sample de-
pendency when using LF2 or sample amplification. The following is a list of our
contributions.

1. We show that the FFT method performs equally well as the optimal dis-
tinguisher in terms of number of samples needed for correctly guessing
the secret, if we make sure that the distinguishers make the same num-
ber of hypotheses. This means that, except for very sparse secrets, the
FFT distinguisher is always preferable. This also makes the polynomial
reconstruction method of [23] obsolete.

2. We indicate that the formula from [16] for the number of samples needed
for distinguishing is off by roughly an order of magnitude.

3. We introduce a pruned FFT method. By limiting the number of hypothe-
ses to only the reasonable ones, we show that this method can improve
the performance of the FFT distinguisher from [16] without any compu-
tational overhead.

4. We indicate that the sample dependency due to using LF2 or sample
amplification is limited.

PAPER I 87

1.3 Organization
The rest of the paper is organized in the following way. We begin by introducing
some necessary background in Section 2. In Section 3 we cover some basics about
the BKW algorithm. In Section 4 we go over different distinguishers used for
hypoethesis testing when solving LWE using BKW and introduce the pruned
FFT method. Next, in Section 5 we show why the FFT distinguisher and the
optimal distinguisher perform identically for our setting, which is followed by
simulation results in Section 6. Finally, we conclude the paper in Section 7.

2 Background
We start by introducing some notation. We use a bold small letter to denote
a vector. Let 〈·, ·〉 denote the scalar products of two vectors with the same
dimension. By |x| we denote the absolute value of x for a real number x ∈ R.
We also denote by <(y) the real part and ‖y‖ the absolute value of a complex
number y ∈ C.

2.1 LWE
Let us define the LWE problem.

Definition 2.1 (LWE). Let n be a positive integer, q an odd prime. Let s
be a uniformly random secret vector in Znq . Assume access to m noisy scalar
products between s and known vectors ai, i.e.

bi = 〈ai, s〉+ ei, (1)

for i = 1, . . . ,m. The small error terms ei are drawn from a distribution χ.
The (search) LWE problem is to find the secret vector s.

In other words, when solving LWE you have access to a large set of pairs
(ai, bi) and want to find the corresponding secret vector s. In some versions
there are restrictions on the number of samples you have access to.

If we let ~b = (b1, b2, . . . , bm), ~e = (e1, e2, . . . , em) and A = [~aT1 ,~a
T
2 · · ·~aTm] we

can write the whole problem on matrix form as

~b = ~sA + ~e. (2)

2.2 Rounded Gaussian Distribution
For the error we use the rounded Gaussian distribution1. Let f(x|0, σ2) denote
the PDF of the normal ditribution with mean 0 and standard deviation σ,
this distribution in turn being denoted as N (0, σ2). Depending on the two
parameters q and σ the rounded Gaussian distribution samples values from
N (0, σ2), rounds to the nearest integer and wraps the value to the interval
[−(q−1)/2, (q−1)/2]. In other words, the probability of picking a certain error
e is equal to

1Also common is to use the Discrete Gaussian distribution, which is similar.

88 PAPER I

∞∑
k=−∞

∫ e+1/2+k·q

e−1/2+k·q
f(x|0, σ2)dx,

for e ∈ [−(q − 1)/2, (q − 1)/2]. We denote this distribution by Ψ̄σ,q. We
use the well-known heuristic approximation that the sum of two independent
distributionsX1 andX2, drawn from Ψ̄σ1,q and Ψ̄σ2,q, is drawn from Ψ̄√

σ2
1+σ2

2 ,q
.

We also use the notation α = σ/q.
Finally, we let U(a, b) denote the discrete uniform distribution taking values

from a up to b.

3 BKW
The BKW algorithm was originally invented to solve LPN. It was first used for
LWE in [3]. The BKW algorithm consists of two parts, reduction and hypothesis
testing. Let us begin by describing the reduction part.

3.1 Reduction
We divide samples into categories based on b position values in the a vec-
tors. Two samples should be in the same category if and only if the b po-
sition values get canceled when adding or subtracting the a vectors. Given
two samples ([±a0,a1], b1) and ([±a0,a2], b2) within the same category. By
adding/subtracting the a vectors we get

a1,2 = [0 0 · · · 0︸ ︷︷ ︸
b symbols

∗ ∗ · · · ∗].

By also calculating the corresponding b value we get b1,2 = b1 ± b2. Now we
have a new sample (a1,2, b1,2). The corresponding noise variable is e1,2 = e1±e2.
Thus the variance of the new noise is 2σ2, where σ2 is the variance of the originial
noise. By going through all categories and calculating a suitable number of new
samples we have reduced the dimensionality of the problem by b, at the cost of
increasing the noise variance to 2σ2. If we repeat the reduction process t times
we end up with a dimensionality of n− tb, and a noise variance of 2t · σ2.

LF1 and LF2

LF1 and LF2 are two implementation tricks originally proposed for solving LPN
in [27]. Both can naturally be generalized for solving LWE.

In LF1 we pick one representative per category. We form new samples by
subtracting or adding the other samples in this category from the representative.
This process makes sure that all samples at the hypothesis testing stage are
independent of each other. However, it also means that the sample size shrinks
by (qb − 1)/2 samples per generation, requiring a large initial sample size.

In LF2 we allow forming samples by combining any pair of samples within a
category. This allows us to form much more samples. In LF2, if we form every
possible sample, it is enough with a sample size of 3(qb − 1)/2 to form a new
generation of samples of the same size. The disadvantage of this approach is
that the samples are no longer independent, leading to higher noise levels in the

PAPER I 89

hypothesis stage of BKW. It is generally assumed that this effect is quite small,
and this heuristic method is well tested for solving the LPN problem [27].

Sample Amplification

In some versions of LWE the number of initial samples is limited. To get more
samples we can use sample amplification. For example, by adding/subtracting
triples of samples we can increase the initial sample size m up to a maximum
of 4 ·

(
m
3

)
. This does however increase the noise by a factor of

√
3. It also leads

to an increased dependency between samples in the hypothesis testing phase,
similar in principle to LF2.

Secret-Noise Transformation

There is a transformation of the LWE problem that makes sure that the distri-
bution of the secret vector follows the distribution of the noise [7, 25]. Assume
for simplicity that the first n columns in A are linearly independent and form
the invertible matrix A0. Now replace A by Â = A−1

0 A = [I~aTn+1~a
T
n+2 · · ·~aTm]

and b by b̂ = b− (b1, b2, . . . , bn)Â = (0b̂n+1, b̂n+2, b̂m). Now we can search for
the transformed secret vector ~̂s = ~sA0 − (b1, b2, . . . , bn). Once we have found ~̂s
we can find ~s via a simple inverse transformation.

Improved Reduction Methods

There are improvements of the basic reduction steps of the plain BKW algo-
rithm. In [5] lazy modulus switching (LMS) was introduced. The main idea
is to map vectors that almost, but not completely, cancel each other out when
added/subtracted, into the same category. This leads to an extra error term,
but allows us to take longer step. By correctly managing the total noise LMS
makes it possible to solve larger instances. The problem with the approach of [5]
is that the noise from the previously reduced positions increases in each new
reduction step, leading to an uneven noise distribution.

This idea was improved in [23, 26]. The new idea was to vary the length
of the reduction steps and the strictness of the reduction, leading to an evenly
spread final noise. The next improvement was in [21]. To handle the problem of
the increasing noise of the previously reduced positions, only the pairs creating
the smallest noise levels were used within each category. This selection was done
using techniques from lattice sieving. The asymptotics of the idea of combining
BKW and lattice sieving was subsequently improved in [22,28].

For the sake of comparing distinguishers it does not matter how the reduction
is done. What matters is only the size of the final noise. Thus, for the sake of
simplicity we only use plain reduction steps in this paper.

3.2 Hypothesis Testing
Assume that we have reduced all positions down to 0 except for k positons,
leaving k positions for the hypothesis testing phase. After the reduction phase
of t steps of plain BKW we end up with samples on the form

90 PAPER I

b =

k∑
i=1

ai · si + e⇔ b−
k∑
i=1

ai · si = e, (3)

where e is (approximately) rounded Gaussian distributed with a standard
deviation of σf = 2t/2 · σ and mean 0. Now the problem is to distinguish the
correct guess s = (s1, s2, . . . , sk) from all the incorrect guesses, among the total
qk different hypotheses2. For each guess ŝ we calculate the corresponding error
terms in (3). For the correct guess the observed values of e are rounded Gaussian
distributed, while for the wrong guess they are uniformly random.

How the hypothesis testing is done to distinguish the right guess from all
the wrong ones is explained in Section 4.

4 Distinguishers
For the hypothesis testing we look at two different distinguishers, the optimal
distinguisher, which is an exhaustive search method; and a faster method based
on the fast Fourier transform.

For the optimal distinguisher, for each hypothesis we go through (3) for
each sample and calculate a metric for how close the e values are to a rounded
Gaussian distribution.

4.1 Optimal Distinguisher
Let Dŝ denote the distribution of the e values for a given guess of the secret
vector ŝ. As is shown in [8, Prop. 1] to optimally distinguish the hypothesis
Dŝ = U(0, q − 1) against Dŝ = Ψ̄σf ,q we calculate the log-likelihood ratio

q−1∑
e=0

N(e) log
PrΨ̄σf ,q

(e)

PrU(0,q−1)(e)
=

q−1∑
e=0

N(e) log
(
q · PrΨ̄σf ,q

(e)
)
, (4)

where N(e) denotes the number of times e occurs for the guess ŝ, σf denotes
the standard deviation of the samples after the reduction phase and PrD(e)
denotes the probability of drawing e from the distribution D. We pick the value
ŝ that maximizes (4). The time complexity of the optimal distinguisher is

O(m · qk), (5)

if we try all possible hypotheses. After performing the secret-noise transforma-
tion of Section 3.1 we can limit ourselves to assuming that the k values in s
have an absolute value of at most d, reducing the complexity to

O(m · (2d+ 1)k). (6)

Limiting ourselves to only testing the likely hypotheses also have another
advantage. The fewer hypotheses we test the less probable it is that an incorrect
one gets picked 3. This trick of limiting the number of hypotheses can of course
also be applied to the FFT method of Section 4.2, which we do in Section 4.4.

2After the secret-noise transforming most of these hypotheses are almost guaranteed to be
incorrect, simplifying the hypothesis testing a bit.

3as long as the correct one is among our hypotheses.

PAPER I 91

4.2 Fast Fourier Transform Method
For LWE, the idea of using a transform to speed up the distinguishing was
introduced in [16]. Consider the function

f(x) =

m∑
j=1

1aj=xθ
bj
q , (7)

where x ∈ Zkq , 1aj=x is equal to 1 if and only if x = aj and 0 otherwise, and θq
denotes the q-th root of unity. The idea of the FFT distinguisher is to calculate
the FFT of f , that is

f̂(α) =
∑
x∈Zkq

f(x)θ−〈x,α〉q =

m∑
j=1

θ−(〈~aj ,α〉−bj)
q . (8)

For any vector different from the secret α 6= ~s, the exponents in (8) are
uniformly random and (8) corresponds to a random walk of m steps in the
complex plane along directions on the unit circle. If α = ~s, then the exponents
are equal to ej . These values are more centered around 0 than uniformly random
values. This will bias the random walk along the positive direction of the real
axis. Thus, if m is large enough compared to the noise level, the secret s is the
value that maximizes <(f̂(α)) from (8).

Time Complexity

The time complexity for building the function f from (7) is O(m). The time
complexity of calculating the FFT of f is O(qk · log(qk)) leading to a total time
complexity of

O(m+ k · qk · log(q)). (9)

In general this complexity is much lower than the one in (5). However, it
does depend on the sparsity of the secret ~s. For a binary ~s, the exhaustive
methods are better.

Sample Complexity

From [16, Thm. 16] we have the following (upper limit) formula for the number
of samples needed for the FFT distinguisher

8 · ln
(
qk

ε

)(
q

π
sin

(
π

q

)
e−2π2σ2/q2

)−2t+1

, (10)

where ε is the probability of guessing ~s incorrectly. Notice that the expression
is slightly modified to fit our notation and that a minor error in the formula is
corrected4.

4Using our notation k should be within the logarithm and not as a factor in front of it like
in [16].

92 PAPER I

4.3 Polynomial Reconstruction Method
In [23], a method combining exhaustive search and the fast Fourier transform
was introduced. It can achieve the optimal distinguishing from the information-
theoretical perspective. On the other hand, it is much more efficient compared to
the optimal distinguisher. Compared to the complexity of the FFT methods (9),
however, the complexity is higher by a factor of roughly q.

4.4 Pruned FFT Distinguisher
Just like for the optimal distinguisher we can limit the number of hypotheses
when using the FFT distinguisher. Since we only need a small subset of the
output values of the FFT distinguisher in (8), we can speed-up the calculations
using a pruned FFT. In general, if we only need K out of all N output values,
the time complexity for calculating the FFT improves from O(N log(N)) to
O(N log(K)) [31]. Limiting the magnitude when guessing the last k positions
of s to d, this changes the time complexity from (9) to

O(m+ k · qk · log(2d+ 1)). (11)

The more important gain of this method is in the sample complexity. In
the formula for sample complexity (10), the numerator qk corresponds to the
number of values of s can take on the last k positions. Re-doing the proofs
of [16, Thm. 16], but limiting the magnitude of the guess in each position to d,
we get the formula

8 · ln
(

(2d+ 1)k

ε

)(
q

π
sin

(
π

q

)
e−2π2σ2/q2

)−2t+1

. (12)

Notice that this reduced sample complexity comes at no computational cost.

5 Equal Performance of Optimal and FFT Dis-
tinguishers

When starting to run simulations, we noticed that the FFT distinguisher and
the optimal distinguisher performed identically, in terms of number of samples
to correctly guess the secret. We explain this phenomenon in Appendix A5.

There are two immediate effects of this finding.

• The polynomial reconstruction method from Section 4.3 is now obsolete.

• Unless the secret is very sparse, the FFT distinguisher is strictly better
than the optimal distinguisher, since it is computationally cheaper.

Hence we limit ourselves to investigating the FFT distinguisher in Section 6.
Notice that we do not make any wider claims about the equivalance between

the sample complexity of the two distinguishers outside of our context of solving
LWE using BKW, when having large rounded (or Discrete) Gaussian noise 6.

5We do, of course, not claim that this is true in general for distinguishing distributions
outside of our context of solving LWE using BKW.

6Although it could be interesting to investigate.

PAPER I 93

6 Simulations and Results
This section covers the simulations we ran and the results they yielded. For all
the figures, each data point corresponds to running plain BKW plus distinguish-
ing at least 30 times. For most data points we ran slightly more iterations. See
Appendix B for details on the number of iterations for all the data points. We
picked our parameters inspired by the so called Darmstadt LWE Challenge [2].

The Darmstadt LWE Challenge

The Darmstadt LWE Challenge is a set of (search) LWE problem instances
with the goal of comparing the efficacy of different methods of solving LWE.
You have access to the problem dimension n, the modulus q ≈ n2, the relative
error size α and m ≈ n2 equations of the form (1). In our simulations we mostly
use parameters inspired by the LWE challenges, that is, we mostly let q = 1601
(corresponding to n = 40) and vary α to get problem instances that require
a suitable number of samples for simulating hypothesis testing. Currently the
records for the LWE challenges are set using lattice sieving [4].

6.1 Varying Noise Level
In Figure 1a we compare the theoretical expressions for sample complexity from
(10) with our implementation results. We compare it against an implementation
of the FFT distinguisher of [16] and an implementation of the pruned FFT
distinguisher suggested in this paper. The latter distinguisher guesses values
of absolute value up to 3σ, rounded upwards. The simulated data points are
the median values of our simulations and the theoretical values correspond to
setting ε = 0.5 in (10). We use q = 1601, n = 28, we take t = 13 steps of
plain BKW, reducing 2 positions per step. Finally we guess the last 2 positions
and measure the minimum number of samples to correctly guess the secret. We
vary α between 0.005 and 0.006. We use LF1 to guarantee that the samples are
independent.

We notice that there is a consistant gap of roughly a factor 10 between theory
and simulation. More exactly, the gap is a factor [10.8277, 8.6816, 10.1037,
8.6776, 10.5218, 10.1564] for the six data points, counting in increasing order of
noise level.

We also see a gap between the FFT distinguisher and the pruned FFT distin-
guisher. We can estimate how much better the pruned FFT should be compared
to the standard version by comparing (12) and (10). Counting in increasing level
of noise by theory we expect the pruned version to need [1.8056, 1.8056, 1.7895,
1.7743, 1.7598, 1.7461] times less samples for the 6 data points. The numbers
from the simulation were [2.0244, 1.8610, 1.8433, 2.1905, 2.0665, 2.2060], pretty
close to theory.

6.2 Varying q

In Figure 1b we show how the number of samples needed for distinguishing
varies as we vary q. For q we use the values [101, 201, 401, 801, 1601, 3201],
for α we use the values [0.0896, 0.0448, 0.0224, 0.0112, 0.0056, 0.0028] and the
number of steps were [5, 7, 9, 11, 13, 15]. This way we make sure that both the

94 PAPER I

final noise level and the original s vectors have almost the same distribution,
making the values of q the only varying factor. We use LF1 to guarantee that
the samples are independent.

Notice first of all that the number of samples needed to guess the secret is
roughly an order of magnitude lower than theory predicts, counting in increasing
order of q, the gain is a factor [11.4537, 10.6112, 9.2315, 10.4473, 9.5561, 9.7822]
for the six data points.

Also notice that the pruned version is an improvement, that increases with
q. The explanation for this is that the total number of hypotheses divided by
the number of hypotheses we make increases with q. By comparing (12) and
(10), we expect the improvement to be a factor [1.1303, 1.2871, 1.4563, 1.6152,
1.7743, 1.9334]. This is pretty close to the factors 1.1435, 1.4551, 1.6215, 1.8507,
2.0121, 2.3045] from simulation.

(a) Varying α (b) Varying q

Figure 1: Comparing the theoretical values with our simulated values.

6.3 LF1 vs LF2
We investigate the increased number of samples needed due to dependencies,
when using LF2. Here we limit ourselves to using the FFT distinguisher. For
LF2, depending on the number of samples needed for guessing, we used either
the minimum number of samples to produce a new generation of the same size
or a sample size roughly equal to the size needed for guessing at the end. To
test the limit of LF2 we made sure to produce every possible sample from each
category. See Figure 2a for details and the setting is the same as in Section 6.1.
We limit ourselves to using the pruned FFT distinguisher.

Notice that the performance of the distinguisher is almost exactly the same
in both the LF1 and the LF2 cases, as is generally assumed [27].

6.4 Sample Amplification
In Figure 2b we investigate the increased number of samples needed due to
dependencies, when using sample amplification. We use q = 1601 and start
with 1600 samples. We form new samples by randomly adding/subtracting
triples of samples to get a large enough set of samples. We vary the noise
level between α = 0.005/

√
3 and α = 0.006/

√
3. We take 13 steps of plain

BKW, reducing 2 positions per step. Finally we guess the last 2 positions and
measure the minimum number of samples needed to correctly guess the secret.
We compare the results against starting with as many samples as we want and
noise levels between α = 0.005 and α = 0.006 to isolate the effect of the increased
dependencies due to sample amplification. We use LF1 to isolate the sample
dependency due to sample amplification. We limit ourselves to using the pruned
FFT distinguisher.

There does not seem to be a clear difference between the data points. This
implies that the dependency caused by sample amplification is rather limited.

(a) LF1 vs. LF2 (b) Unlimited vs. sample amplification

Figure 2: Testing the increased number of samples needed due to dependencies.

6.5 Implementation
The source code for the simulation is part of an ongoing implementation project.
It will be made available when it is in a more mature state.

7 Conclusions
In this paper we have shown that, in terms of sample complexity, the FFT
distinguisher performs as well as the optimal distinguisher for solving LWE
using the BKW algorithm. We have also showed that it performs roughly an
order of magnitude better than the upper limit formula from [16, Thm. 16].
By introducing a pruned version of the FFT method we improved the sample
complexity of the FFT solver, with no computational overhead.

Finally, we have also indicated that the sample dependency due to using

95

96 PAPER I

both LF2 and sample amplification is limited.

References

[1] NIST Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization, accessed: 2019-09-
24

[2] TU Darmstadt Learning with Errors Challenge. https://www.
latticechallenge.org/lwe_challenge/challenge.php, accessed:
2020-09-30

[3] Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the
complexity of the BKW algorithm on LWE. Designs, Codes and Cryptog-
raphy 74(2), 325–354 (2015)

[4] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite,
E.W., Stevens, M.: The general sieve kernel and new records in lattice
reduction. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2019, Part II. Lecture Notes in Computer Science, vol. 11477, pp.
717–746. Springer, Heidelberg, Germany, Darmstadt, Germany (May 19–
23, 2019)

[5] Albrecht, M.R., Faugère, J.C., Fitzpatrick, R., Perret, L.: Lazy modu-
lus switching for the BKW algorithm on LWE. In: Krawczyk, H. (ed.)
PKC 2014: 17th International Conference on Theory and Practice of Public
Key Cryptography. Lecture Notes in Computer Science, vol. 8383, pp. 429–
445. Springer, Heidelberg, Germany, Buenos Aires, Argentina (Mar 26–28,
2014)

[6] Albrecht, M.R., Player, R., Scott, S.: On The Concrete Hardness Of Learn-
ing With Errors. J. Mathematical Cryptology 9(3), 169–203 (2015)

[7] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. Lecture Notes in
Computer Science, vol. 5677, pp. 595–618. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2009)

[8] Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond lin-
ear cryptanalysis? In: Lee, P.J. (ed.) Advances in Cryptology – ASI-
ACRYPT 2004. Lecture Notes in Computer Science, vol. 3329, pp. 432–450.
Springer, Heidelberg, Germany, Jeju Island, Korea (Dec 5–9, 2004)

PAPER I 97

[9] Bernstein, D.J., Lange, T.: Never trust a bunny. Cryptology ePrint
Archive, Report 2012/355 (2012), http://eprint.iacr.org/2012/355

[10] Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primi-
tives based on hard learning problems. In: Stinson, D.R. (ed.) Advances in
Cryptology – CRYPTO’93. Lecture Notes in Computer Science, vol. 773,
pp. 278–291. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 22–26, 1994)

[11] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. In: 32nd Annual ACM Sympo-
sium on Theory of Computing. pp. 435–440. ACM Press, Portland, OR,
USA (May 21–23, 2000)

[12] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50(4), 506–519 (2003),
https://doi.org/10.1145/792538.792543

[13] Bogos, S., Tramèr, F., Vaudenay, S.: On solving L P N using
B K W and variants - implementation and analysis. Cryptography
and Communications 8(3), 331–369 (2016), https://doi.org/10.1007/
s12095-015-0149-2

[14] Bogos, S., Vaudenay, S.: Optimization of LPN solving algorithms.
In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2016, Part I. Lecture Notes in Computer Science, vol. 10031,
pp. 703–728. Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–8,
2016)

[15] Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and
LPN algorithms via multiple collisions. In: Albrecht, M. (ed.) 17th IMA
International Conference on Cryptography and Coding. Lecture Notes in
Computer Science, vol. 11929, pp. 178–199. Springer, Heidelberg, Germany,
Oxford, UK (Dec 16–18, 2019)

[16] Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR.
In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EURO-
CRYPT 2015, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
173–202. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015)

[17] Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-
BKW. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology –
CRYPTO 2018, Part II. Lecture Notes in Computer Science, vol. 10992,
pp. 638–666. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 19–23, 2018)

[18] Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology – CRYPTO 2017, Part II. Lecture Notes in
Computer Science, vol. 10402, pp. 486–514. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 20–24, 2017)

[19] Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In:
Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014,

98 PAPER I

Part I. Lecture Notes in Computer Science, vol. 8873, pp. 1–20. Springer,
Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014)

[20] Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering
codes. J. Cryptology 33(1), 1–33 (2020), https://doi.org/10.1007/
s00145-019-09338-8

[21] Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-BKW with
sieving. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2017, Part I. Lecture Notes in Computer Science, vol. 10624,
pp. 323–346. Springer, Heidelberg, Germany, Hong Kong, China (Dec 3–7,
2017)

[22] Guo, Q., Johansson, T., Mårtensson, E., Stankovski Wagner, P.: On the
asymptotics of solving the LWE problem using coded-bkw with sieving.
IEEE Trans. Information Theory 65(8), 5243–5259 (2019), https://doi.
org/10.1109/TIT.2019.2906233

[23] Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: Solving LWE using
lattice codes. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryp-
tology – CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol.
9215, pp. 23–42. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 16–20, 2015)

[24] Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of
solving LWE. Des. Codes Cryptogr. 86(1), 55–83 (2018), https://doi.
org/10.1007/s10623-016-0326-0

[25] Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint
Archive, Report 2011/377 (2011), http://eprint.iacr.org/2011/377

[26] Kirchner, P., Fouque, P.A.: An improved BKW algorithm for LWE with ap-
plications to cryptography and lattices. In: Gennaro, R., Robshaw, M.J.B.
(eds.) Advances in Cryptology – CRYPTO 2015, Part I. Lecture Notes in
Computer Science, vol. 9215, pp. 43–62. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2015)

[27] Levieil, É., Fouque, P.A.: An improved LPN algorithm. In: Prisco, R.D.,
Yung, M. (eds.) SCN 06: 5th International Conference on Security in Com-
munication Networks. Lecture Notes in Computer Science, vol. 4116, pp.
348–359. Springer, Heidelberg, Germany, Maiori, Italy (Sep 6–8, 2006)

[28] Mårtensson, E.: The asymptotic complexity of coded-bkw with sieving
using increasing reduction factors. In: IEEE International Symposium on
Information Theory, ISIT 2019, Paris, France, July 7-12, 2019. pp. 2579–
2583. IEEE (2019), https://doi.org/10.1109/ISIT.2019.8849218

[29] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Sym-
posium on Theory of Computing. pp. 84–93. ACM Press, Baltimore, MA,
USA (May 22–24, 2005)

PAPER I 99

[30] Shor, P.W.: Algorithms for quantum computation: Discrete logarithms
and factoring. In: 35th Annual Symposium on Foundations of Computer
Science. pp. 124–134. IEEE Computer Society Press, Santa Fe, NM, USA
(Nov 20–22, 1994)

[31] Sorensen, H.V., Burrus, C.S.: Efficient computation of the dft with only a
subset of input or output points. IEEE Transactions on Signal Processing
41(3), 1184–1200 (1993)

[32] Zhang, B., Jiao, L., Wang, M.: Faster algorithms for solving LPN.
In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology – EURO-
CRYPT 2016, Part I. Lecture Notes in Computer Science, vol. 9665, pp.
168–195. Springer, Heidelberg, Germany, Vienna, Austria (May 8–12, 2016)

100 PAPER I

A Explaining the Optimimality of the FFT Dis-
tinguisher

Consider a sample on the form (3). By making a guess ŝ we calculate the
corresponding error term ê. The Fourier transform of the FFT distinguisher in
(8) can now be written as

m∑
j=1

θêjq . (13)

The real part (13) is equal to

m∑
j=1

cos (2πêj/q). (14)

The FFT distinguisher picks the guess that maximizes (14). Now, let us
rewrite (4) for the optimal distinguisher as

m∑
j=1

log
(
q · PrΨ̄σf ,q

(êj)
)
. (15)

It turns out that with increasing noise level, the terms in (15) can be ap-
proximated as cosine functions with a period of q, as illustrated in Figure 3.
The terms correspond to q = 1601, starting with rounded Gaussian noise with
α = 0.005, σ = α · q = 8.005 and taking 12 or 13 steps of plain BKW respec-
tively. Notice that the approximation gets drastically better with increasing
noise level7. The 13 step picture corresponds to the setting used in most of the
experiments in Section 6. For a large-scale problem, the noise level would of
course be much larger, resulting in an even better cosine approximation.

(a) Taking 12 plain BKW steps (b) Taking 13 plain BKW steps

Figure 3: Approximating the terms in (15) as cosine functions.

Since both distinguishers pick the ŝ that minimizes a sum of cosine func-
tions with the same period, they will pick the same ŝ, hence they will perform
identically.

7Also notice that the approximation is not necessarily the best cosine approximation. It is
simple the approximation that matches the largest and the smallest value of the curve.

PAPER I 101

B Number of Iterations in the Simulations
The following is a collection of lists of the number of iterations used for each
data point to get the estimations of the median values in Figures 1b-2b. For
each figure and curve we list the number iterations from left to right in, in other
words in increasing level of noise level α or modulus q.

Figure 1a
Simulated FFT 31 51 52 59 50 52

Simulated Pruned FFT 33 41 56 35 30 49

Figure 1b
Simulated FFT 100 100 95 80 67 82

Simulated Pruned FFT 100 100 95 80 67 82

Figure 2a
LF1 33 41 56 35 30 49
LF2 43 46 69 37 69 50

Figure 2b
Unlimited samples 33 41 56 35 30 49

Sample Amplification 37 59 38 45 47 40

102 PAPER I

Making the BKW Algorithm Practical for
LWE

The Learning with Errors (LWE) problem is one of the main mathemat-
ical foundations of post-quantum cryptography. One of the main groups
of algorithms for solving LWE is the Blum-Kalai-Wasserman (BKW) algo-
rithm. This paper presents new improvements for BKW-style algorithms
for solving LWE instances. We target minimum concrete complexity and
we introduce a new reduction step where we partially reduce the last posi-
tion in an iteration and finish the reduction in the next iteration, allowing
non-integer step sizes. We also introduce a new procedure in the secret re-
covery by mapping the problem to binary problems and applying the Fast
Walsh Hadamard Transform. The complexity of the resulting algorithm
compares favourably to all other previous approaches, including lattice
sieving. We additionally show the steps of implementing the approach for
large LWE problem instances. The core idea here is to overcome RAM
limitations by using large file-based memory.

Keywords: BKW, LWE, Lattice-Based Cryptography, FWHT, Post-Quantum Cryp-
tography.

c©Springer 2020. Reprinted, with permission, from
Alessandro Budroni, Qian Guo, Thomas Johansson, Erik Mårtensson and Paul
Stankovski Wagner, “Making the BKW Algorithm Practical for LWE”, in 21st Inter-
national Conference on Cryptology in India (INDOCRYPT 2020), pp. 417-439, 2020,
Bangalore, India.

105

PAPER II 107

1 Introduction
Since a large-scale quantum computer easily breaks both the problem of in-
teger factoring and the discrete logarithm problem [34], public-key cryptogra-
phy needs to be based on other underlying mathematical problems. In post-
quantum cryptography - the research area studying such replacements - lattice-
based problems are the most promising candidates. In the NIST post-quantum
standardization competition, 5 out of 7 finalists and 2 out of 8 alternates are
lattice-based [1].

The Learning with Errors problem (LWE) introduced by Regev in [33], is the
main problem in lattice-based cryptography. It has a theoretically very inter-
esting average-case to worst-case reduction to standard lattice-based problems.
It has many cryptographic applications, including but not limited to, design
of Fully Homomorphic Encryption Schemes (FHE). An interesting special case
of LWE is the Learning Parity with Noise problem (LPN), introduced in [12],
which has interesting applications in light-weight cryptography.

Considerable cryptanalytic effort has been spent on algorithms for solving
LWE. These can be divided into three categories: lattice-reduction, algebraic
methods and combinatorial methods. The algebraic methods were introduced
by Arora and Ge in [9] and further considered in [3]. For very small noise these
methods perform very well, but otherwise the approach is inefficient. The meth-
ods based on lattice-reduction are currently the most efficient ones in practise.
One way of comparing the different approaches is through the Darmstadt LWE
Challenges [2], where the lattice-based approach called General Sieve Kernel
(G6K) is the currently most successful algorithm in breaking challenges [5]. The
combinatorial algorithms are all based on the Blum-Kalai-Wasserman (BKW)
algorithm and algorithms in this direction will be the focus of this paper.

For surveys on the concrete and asymptotic complexity of solving LWE,
see [7] and [22, 24], respectively. In essence, BKW-style algorithms have a bet-
ter asymptotic performance than lattice-based approaches for parameter choices
with large noise. Unlike lattice-based approaches, BKW-style algorithms pay
a penalty when the number of samples is limited (like in the Darmstadt chal-
lenges).

1.1 Related Work
The BKW algorithm was originally developed as the first subexponential algo-
rithm for solving the LPN problem [13]. In [27] the algorithm was improved,
introducing new concepts like LF2 and the use of the fast Walsh-Hadamard
transform (FWHT) for the distinguishing phase. A new distinguisher using
subspace hypothesis testing was introduced in [19,20].

The BKW algorithm was first applied to the LWE problem in [4]. This
idea was improved in [6], where the idea of Lazy Modulus Switching (LMS)
was introduced. The idea was improved in [23, 26], where [23] introduced so
called coded-BKW steps. The idea of combining coded-BKW or LMS with
techniques from lattice sieving [11] lead to the next improvement [21]. This
combined approach was slightly improved in [22,30]. The distinguishing part of
the BKW algorithm for solving LWE was improved by using the Fast Fourier
Transform (FFT) in [16]. One drawback of BKW is its high memory-usage.
To remedy this, time-memory trade-offs for the BKW algorithm were recently

108 PAPER II

studied in [15,17,18].

1.2 Contributions
In this paper we introduce a new BKW-style algorithm including the following.

• A generalized reduction step that we refer to as smooth-LMS, allowing us
to use non-integer step sizes. These steps allow us to use the same time,
space and sample complexity in each reduction step of the algorithm,
which improves performance compared to previous work.

• A binary-oriented method for the guessing phase, transforming the LWE
problem into an LPN problem. While the previous FFT method guesses a
few positions of the secret vector and finds the correct one, this approach
instead finds the least significant bits of a large amount of positions using
the FWHT. This method allows us to correctly distinguish the secret with
a larger noise level, generally leading to an improved performance com-
pared to the FFT based method. In addition, the FWHT is much faster
in implementation.

• Concrete complexity calculations for the proposed algorithm showing the
lowest known complexity for some parameter choices selected as in the
Darmstadt LWE Challenge instances, but with unrestricted number of
samples.

• An implementation approach for the algorithm that allows larger instances
to be solved. The implementation is file-based and stores huge tables on
disk and not in RAM only. The file read/write is minimized by imple-
menting the algorithm in a clever way. Simulation results on solving larger
instances are presented and verifies the previous theoretical arguments.

1.3 Organization
We organize the rest of the paper as follows. We introduce some necessary
background in Section 2. In Section 3 we cover previous work on applying the
BKW algorithm to the LWE problem. Then in Section 4 we introduce our new
Smooth-LMS reduction method. Next, in Section 5 we go over our new binary-
oriented guessing procedure. Sections 6 and 7 cover the complexity analysis
and implementation of our algorithm, respectively. Section 8 describes our
experimental results using the implementation. Finally, the paper is concluded
in Section 9.

2 Background

2.1 Notation
Throughout the paper we use the following notations.

• We write log(·) for the base 2 logarithm.

PAPER II 109

• In the n-dimensional Euclidean space Rn, by the norm of a vector x =
(x1, x2, . . . , xn) we consider its L2-norm, defined as

‖x‖ =
√
x2

1 + · · ·+ x2
n.

The Euclidean distance between vectors x and y in Rn is defined as
‖x− y‖.

• Elements in Zq are represented by the set of integers in [− q−1
2 , q−1

2].

• For an [N, k] linear code, N denotes the code length and k denotes the
dimension.

2.2 The LWE and LPN Problems
The LWE problem [33] is defined as follows.

Definition 2.1. Let n be a positive integer, q a prime, and let X be an error
distribution selected as the discrete Gaussian distribution on Zq with variance
σ2. Fix s to be a secret vector in Znq , chosen from some distribution (usually the
uniform distribution). Denote by Ls,X the probability distribution on Znq × Zq
obtained by choosing a ∈ Znq uniformly at random, choosing an error e ∈ Zq
from X and returning

(a, z) = (a, 〈a, s〉+ e)

in Znq × Zq. The (search) LWE problem is to find the secret vector s given a
fixed number of samples from Ls,X .

The definition above gives the search LWE problem, as the problem descrip-
tion asks for the recovery of the secret vector s. Another version is the decision
LWE problem, in which case the problem is to distinguish between samples
drawn from Ls,X and a uniform distribution on Znq × Zq.

Let us also define the LPN problem, which is a binary special case of LWE.

Definition 2.2. Let k be a positive integer, let x be a secret binary vector of
length k and let X ∼ Berη be a Bernoulli distributed error with parameter η > 0.
Let Lx,X denote the probability distribution on Fk2 × F2 obtained by choosing g
uniformly at random, choosing e ∈ F2 from X and returning

(g, z) = (g, 〈g,x〉+ e)

The (search) LPN problem is to find the secret vector s given a fixed number of
samples from Lx,X .

Just like for LWE, we can also, analogously, define decision LPN.
Previously, analysis of algorithms solving the LWE problem have used two

different approaches. One being calculating the number of operations needed
to solve a certain instance for a particular algorithm, and then comparing the
different complexity results. The other being asymptotic analysis. Solvers for
the LWE problem with suitable parameters are expected to have fully expo-
nential complexity, bounded by 2cn as n tends to infinity, where the value of c
depends on the algorithms and the parameters of the involved distributions. In
this paper, we focus on the complexity computed as the number of arithmetic
operations in Zq, for solving particular LWE instances (and we do not consider
the asymptotics).

110 PAPER II

2.3 Discrete Gaussian Distributions
We define the discrete Gaussian distribution over Z with mean 0 and variance σ2,
denoted DZ,σ as the probability distribution obtained by assigning a probability
proportional to exp(−x2/(2σ2)) to each x ∈ Z. Then, the discrete Gaussian
distribution X over Zq with variance σ2 (also denoted Xσ) can be defined by
folding DZ,σ and accumulating the value of the probability mass function over
all integers in each residue class modulo q. It makes sense to consider the noise
level as α, where σ = αq. We also define the rounded Gaussian distribution on
Zq. This distribution samples values by sampling values from the continuous
Gaussian distribution with mean 0 and variance σ2, rounding to the closest
integer and then folding the result to the corresponding value in Zq. We denote
it by Ψ̄σ,q.

If two independent X1 and X2 are drawn from Xσ1 and Xσ2 respectively,
we make the heuristic assumption that their sum is drawn from X√

σ2
1+σ2

2

. We
make the corresponding assumption for the rounded Gaussian distribution.

3 A Review of BKW-style Algorithms

3.1 The LWE Problem Reformulated
Assume that m samples

(a1, z1), (a2, z2), . . . , (am, zm),

are collected from the LWE distribution Ls,X , where ai ∈ Znq , zi ∈ Zq. Let
z = (z1, z2, . . . , zm) and y = (y1, y2, . . . , ym) = sA. We have

z = sA + e,

where A =
[
aT

1 aT
2 · · · aT

m

]
, zi = yi + ei = 〈s,ai〉 + ei and ei

$← X . The
search LWE problem is a decoding problem, where A serves as the genera-
tor matrix for a linear code over Zq and z is a received word. Finding the
secret vector s is equivalent to finding the codeword y = sA for which the
Euclidean distance ||y − z|| is minimal. In the sequel, we adopt the notation
ai = (ai1, ai2, . . . , ain).

3.2 Transforming the Secret Distribution
A transformation [8, 25] can be applied to ensure that the secret vector follows
the same distribution X as the noise. It is done as follows. We write A in
systematic form via Gaussian elimination. Assume that the first n columns
are linearly independent and form the matrix A0. Define D = A0

−1 and
write ŝ = sD−1 − (z1, z2, . . . , zn). Hence, we can derive an equivalent problem
described by Â = (I, âT

n+1, â
T
n+2, · · · , âT

m), where Â = DA. We compute

ẑ = z− (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

Using this transformation, each entry in the secret vector s is now distributed
according to X . The fact that entries in s are small is a very useful property in
several of the known reduction algorithms for solving LWE.

The noise distribution X is usually chosen as the discrete Gaussian distri-
bution or the rounded Gaussian Distribution from Section 2.3.

PAPER II 111

3.3 Sample Amplification
In some versions of the LWE problem, such as the Darmstadt Challenges [2],
the number of available samples is limited. To get more samples, sample am-
plification can be used. For example, assume that we have M samples (a1, b1),
(a2, b2), ..., (aM , bM). Then we can form new samples, using an index set I of
size k, as ∑

j∈I
±aj ,

∑
j∈I
±bj

 . (1)

Given an initial number of samples M we can produce up to 2k−1
(
M
k

)
sam-

ples. This comes at a cost of increasing the noise level (standard deviation) to√
k · σ. This also increases the sample dependency.

3.4 Iterating and Guessing
BKW-style algorithms work by combining samples in many steps in such a way
that we reach a system of equations over Zq of the form z = sA + E, where
E = (E1, E2, . . . , Em) and the entries Ei, i = 1, 2, . . . ,m are sums of not too
many original noise vectors, say Ei =

∑2t

j=1 eij , and where t is the number of
iterations. The process also reduces the norm of column vectors in A to be
small. Let ni, i = 1, 2, . . . , t denote the number of reduced positions in step i
and let Ni =

∑i
j=1 nj . If n = Nt, then every reduced equation is of form

zi = 〈ai, s〉+ Ei, (2)

for i = 1, 2, . . . ,m. The right hand side can be approximated as a sample drawn
from a discrete Gaussian and if the standard deviation is not too large, then the
sequence of samples z1, z2, . . . can be distinguished from a uniform distribution.
We will then need to determine the number of required samples to distinguish
between the uniform distribution on Zq and Xσ. Relying on standard theory
from statistics, using either previous work [28] or Bleichenbacher’s definition of
bias [32], we can find that the required number of samples is roughly

C · e2π
(
σ
√

2π
q

)2

, (3)

where C is a small positive constant. Initially, an optimal but exhaustive dis-
tinguisher was used [10]. While minimizing the sample complexity, it was slow
and limited the number of positions that could be guessed. This basic approach
was improved in [16], using the FFT. This was in turn a generalization of the
corresponding distinguisher for LPN, which used the FWHT [27].

3.5 Plain BKW
The basic BKW algorithm was originally developed for solving LPN in [13].
It was first applied to LWE in [4]. The reduction part of this approach means
that we reduce a fixed number b of positions in the column vectors of A to zero
in each step. In each iteration, the dimension of A is decreased by b and after
t iterations the dimension has decreased by bt.

112 PAPER II

3.6 Coded-BKW and LMS
LMS was introduced in [6] and improved in [26]. Coded-BKW was introduced
in [23]. Both methods reduce positions in the columns of A to a small magni-
tude, but not to zero, allowing reduction of more positions per step. In LMS
this is achieved by mapping samples to the same category if the ni considered
positions give the same result when integer divided by a suitable parameter p. In
coded-BKW this is instead achieved by mapping samples to the same category
if they are close to the same codeword in an [ni, ki] linear code, for a suitable
value ki. Samples mapped to the same category give rise to new samples by
subtracting them. The main idea [23,26] is that positions in later iterations do
not need to be reduced as much as the first ones, giving different ni values in
different steps.

3.7 LF1, LF2, Unnatural Selection
Each step of the reduction part of the BKW algorithm consists of two parts.
First samples are mapped to categories depending on their position values on the
currently relevant ni positions. Next, pairs of samples within the categories are
added/subtracted to reduce the current ni positions to form a new generation
of samples. This can be done in a couple of different ways.

Originally this was done using what is called LF1. Here we pick a represen-
tative from each category and form new samples by adding/subtracting samples
to/from this sample. This approach makes the final samples independent, but
also gradually decreases the sample size. In [27] the approach called LF2 was
introduced. Here we add/subtract every possible pair within each category to
form new samples. This approach requires only 3 samples within each category
to form a new generation of the same size. The final samples are no longer
independent, but experiments have shown that this effect is negligible.

In [6] unnatural selection was introduced.The idea is to produce more sam-
ples than needed from each category, but only keep the best samples, typically
the ones with minimum norm on the current Ni positions in the columns of A.

3.8 Coded-BKW with Sieving
When using coded-BKW or LMS, the previously reduced Ni−1 positions of
the columns of A increase in magnitude with an average factor

√
2 in each

reduction step. This problem was addressed in [21] by using unnatural selection
to only produce samples that kept the magnitude of the previous Ni−1 positions
small. Instead of testing all possible pairs of samples within the categories, this
procedure was sped-up using lattice sieving techniques of [11]. This approach
was slightly improved in [22,30].

4 BKW-style Reduction Using Smooth-LMS
In this section we introduce a new reduction algorithm solving the problem of
having the same complexity and memory usage in each iteration of a BKW-style
reduction. The novel idea is to use simple LMS to reduce a certain number of
positions and then partially reduce one extra position. This allows for balancing
the complexity among the steps and hence to reduce more positions in total.

PAPER II 113

4.1 A New BKW-style Step
Assume having a large set of samples written as before in the form z = sA +
e mod q. Assume also that the entries of the secret vector s are drawn from some
restricted distribution with small standard deviation (compared to the alphabet
size q). If this is not the case, the transformation from Section 3.2 should
be applied. Moreover, in case the later distinguishing process involves some
positions to be guessed or transformed, we assume that this has been already
considered and all positions in our coming description should be reduced.

The goal of this BKW-type procedure is to make the norms of the column
vectors of A small by adding and subtracting equations together in a number of
steps. Having expressions of the form zi = sai+Ei mod q, if we can reach a case
where ||ai|| is not too large, then sai+Ei can be considered as a random variable
drawn from a discrete Gaussian distribution Xσ. Furthermore, Xσ mod q can
be distinguished from a uniform distribution over Zq if σ is not too large.

Now let us describe the new reduction procedure. Fix the number of reduc-
tion steps to be t. We will also fix a maximum list size to be 2v, meaning that
A can have at most 2v columns. In each iteration i, we are going to reduce
some positions to be upper limited in magnitude by Ci, for i = 1, ..., t. Namely,
these positions that are fully treated in iteration i will only have values in the
set {−Ci + 1, . . . , 0, 1, . . . , Ci − 1} of size 2Ci − 1. We do this by dividing up
the q possible values into intervals of length Ci. We also adopt the notation
βi = q/Ci, which describes the number of intervals we divide up the positions
into. We assume that βi > 2.

First step. In the first iteration, assume that we have stored A. We first
compute the required compression starting in iteration 1 by computing C1 (we
will explain how later). We then evaluate how many positions n1 that can
be fully reduced by computing n1 = bv/ log β1c. The position n1 + 1 can be
partially reduced to be in an interval of size C ′1 fulfilling β′1 · β

n1
1 · 3/2 ≤ 2v,

where β′1 = q/C ′1. Now we do an LMS step that "transfers between iterations"
in the following way.

We run through all the columns of A. For column i, we simply denote it as
x = (x1, x2, . . . , xn) and we compute:

kj =

{
xj div C1, x1 ≥ 0

−xj div C1, x1 < 0
, for j = 1, . . . , n1,

kn1+1 =

{
xn1+1 div C ′1, x1 ≥ 0

−xn1+1 div C ′1, x1 < 0
.

The vector Ki = (k1, k2, . . . , kn1+1) is now an index to a sorted list L, storing
these vectors1. Except for the inverting of values if x1 < 0, samples should
have the same index if and only if all position values are the same when integer
divided by C1 (C ′1 for the last position). So we assign L(Ki) = L(Ki) ∪ {i}.
After we have inserted all columns into the list L, we go to the combining part.

1The point of inverting all position values if x1 < 0 is to make sure that samples that get
reduced when added should be given the same index. For example (x1, x2, . . . , xn1+1) and
(−x1,−x2, . . . ,−xn1+1) are mapped to the same category.

114 PAPER II

We build a new matrix A in the following way. Run through all indices K
and if |L(K)| ≥ 2 combine every pair of vectors in L(K) by subtracting/adding2

them to form a new column in the new matrix A. Stop when the number of
new columns has reached 2v. For each column in A we have that:
• the absolute value of each position j ∈ {1, . . . , n1} is < C1,
• the absolute value of position n1 + 1 is < C ′1.

Next steps. We now describe all the next iterations, numbered as l =
2, 3, . . . , t. Iteration l will involve positions from Nl−1 + 1 =

∑l−1
i=1 ni + 1 to

Nl + 1. The very first position has possibly already been partially reduced
and its absolute value is < C ′l−1, so the interval for possible values is of size
2C ′l−1 − 1. Assume that the desired interval size in iteration l is Cl. In or-
der to achieve the corresponding reduction factor βl, we split this interval in
β′′l = (2C ′l−1 − 1)/Cl subintervals. We then compute how many positions nl
that can be fully reduced by computing nl = b(v− log β′′l)/ log βlc. The position
Nl + 1 can finally be partially reduced to be in an interval of size C ′l fulfilling
β′l · β

nl−1
l β′′l · 3/2 ≤ 2v, where β′l = q/C ′l .

Similar to iteration 1, we run through all the columns of A. For each column
i in the matrix A denoted as x we do the following. For each vector position in
{Nl−1 + 1, . . . , Nl + 1} , we compute (here div means integer division)

kj =

{
xNl−1+j div Cl, xNl−1+1 ≥ 0

−xNl−1+j div Cl, xNl−1+1 < 0
, for j = 1, . . . , nl,

knl =

{
xNl+1 div C ′l , xNl−1+1 ≥ 0

−xNl+1 div C ′l , xNl−1+1 < 0
. (4)

The vector K = (k1, k2, . . . , knl+1
) is again an index to a sorted list L,

keeping track of columns3. So again we assign L(K) = L(K) ∪ {i}. After we
have inserted all column indices into the list L, we go to the combining part.

As in the first step, we build a new A as follows. Run through all indices
K and if |L(K)| ≥ 2 combine every pair of vectors by adding/subtracting them
to form a column in the new matrix A. Stop when the number of new columns
has reached 2v.

For the last iteration, since Nt is the last row of A, one applies the same
step as above but without reducing the extra position. After t iterations, one
gets equations on the form (2), where the ai vectors in A have reduced norm.

4.2 Smooth-Plain BKW
The procedure described above also applies to plain BKW steps. For example, if
in the first iteration one sets C1 = 1 and C ′1 > 1, then each column vector x of A
will be reduced such that x1 = . . . = xn1 = 0 and xn1+1 ∈ {−C ′1+1, . . . , C ′1−1}.
Thus, one can either continue with another smooth-Plain BKW step by setting
also C2 = 1 in the second iteration, or switch to smooth-LMS. In both cases,

2Depending on what reduces the sample the most.
3Also here the point of inverting all position values if xNl−1+1 < 0 is to make sure

that samples that get reduced when added should be given the same index. For example
(xNl−1+1, xNl−1+2, . . . , xNl+1) and (−xNl−1+1,−xNl−1+2, . . . ,−xNl+1) are mapped to the
same category.

PAPER II 115

we have the advantage of having xn1
already partially reduced. Using these

smooth-Plain steps we can reduce a couple of extra positions in the plain pre-
processing steps of the BKW algorithm.

4.3 How to Choose the Interval Sizes Ci

To achieve as small norm of the vectors as possible, we would like the variance of
all positions to be equally large, after completing all iterations. Assume that a
position x takes values uniformly in the set {−(C−1)/2, . . . , 0, 1, . . . , (C−1)/2},
for C > 0. Then, we have that in Var (x) = (C − 1)(C + 1)/12. Assuming C
is somewhat large, we approximately get Var (x) = C2/12. When subtract-
ing/adding two such values, the variance increases to 2Var (x) in each iteration.
Therefore, a reduced position will have an expected growth of

√
2. For this

reason, we choose a relation for the interval sizes of the form

Ci = 2−(t−i)/2Ct, i = 1, . . . , t− 1.

This makes the variance of each position roughly the same, after completing all
iterations. In particular, our vectors ||ai|| in A are expected to have norm at
most

√
nCt/

√
12, and Ct is determined according to the final noise allowed in

the guessing phase. Ignoring the pre-processing step with smooth-Plain BKW
steps, the maximum dimension n that can be reduced is then n = Nt =

∑t
i=1 ni.

Example 4.1. Let q = 1601 and α = 0.005, so σ = αq ≈ 8. Let us compute
how many positions that can be reduced using 2v = 228 list entries. The idea is
that the variance of the right hand side in (2) should be minimized by making the
variance of the two terms roughly equal. The error part Ei is the sum of 2t initial
errors, so its variance is Var (Ei) = 2tσ2. In order to be able to distinguish the
samples according to (3), we set Var (Ei) < q2/2. This will give us the number
of iterations possible as 2tσ2 ≈ q2/2 or 2t ≈ 16012/(2 · 82) leading to t = 14.
Now we bound the variance of the scalar product part of (2) also to be < q2/2,
so nσ2C2

t /12 ≈ q2/2 leading to C2
t ≈ 12q2/(2nσ2) and C2

t ≈ 12 · 16012/(2n · 82)
or Ct ≈ 80 if n < 38. Then one chooses Ct−1 = bCt/

√
2e = 57 and so on.

4.4 Unnatural Selection
We can improve performance by using the unnatural selection discussed in Sec-
tion 3.7. Let us make some basic observations. Combining nl positions us-
ing interval size C gives as previously described a value in the set {−(C −
1)/2, . . . , 0, 1, . . . (C−1)/2}, and results in Var (x) = (C−1)(C+1)/12. Combin-
ing two vectors from the same category, a position value y = x1+x2, where x1, x2

are as above, results in a value in the interval {−(C − 1), . . . , 0, 1, . . . (C − 1)}
with variance Var (y) = (C − 1)(C + 1)/6. Now observe that for the resulting
reduced positions, smaller values are much more probable than larger ones.

5 A Binary Partial Guessing Approach
In this section we propose a new way of reducing the guessing step to a binary
version. This way, we are able to efficiently use the FWHT to guess many entries
in a small number of operations. In Section 6 we do the theoretical analysis and
show that this indeed leads to a more efficient procedure than all previous ones.

116 PAPER II

5.1 From LWE to LPN
First, we need to introduce a slight modification to the original system of equa-
tions before the reduction part. Assume that we have turned the distribution of
s to be the noise distribution, through the standard transformation described
in Section 3.2. The result after this is written as before

z = sA + e. (5)

Now we perform a multiplication by 2 to each equation, resulting in

z′ = sA′ + 2e,

since when multiplied with a known value, we can compute the result modulo
q.

Next, we apply the reduction steps and make the values in A′ as small as
possible by performing BKW-like steps. In our case we apply the smooth-LMS
step from the previous section, but any other reduction method like coded-BKW
with sieving would be possible. If A′ =

[
aT

1 aT
2 · · · aT

m

]
the output of this

step is a matrix where the Euclidean norm of each ai is small. The result is
written as

z′′ = sA′′ + 2E, (6)

where E = (E1, E2, . . . , Em) and Ei =
∑2t

j=1 eij as before.
Finally, we transform the entire system to the binary case by considering

z′′0 = s0A
′′
0 + e mod 2, (7)

where z′′0 is the vector of least significant bits in z′′, s0 the vector of least sig-
nificant bits in s, A′′0 = (A′′ mod 2) and e denotes the binary error introduced.

We can now examine the error ej in position j of e. In (6) we have equations
of the form zj =

∑
i siaij + 2Ej in Zq, which can be written on integer form as

zj =
∑
i

siaij + 2Ej + kj · q. (8)

Now if |
∑
i siaij + 2Ej | < q/2 then kj = 0. In this case (8) can be re-

duced mod 2 without error and ej = 0. In general, the error is computed
as ej = kj mod 2. So one can compute a distribution for ej = kj mod 2 by
computing P (kj = x). It is possible to compute such distribution either making
a general approximation or precisely for each specific position j using the known
values aj and zj . Note that the distribution of ej depends on zj . Also note that
if aj is reduced to a small norm and the number of steps t is not too large, then
it is quite likely that |

∑
i siaij + 2Ej | < q/2 leading to P (ej = 0) being large.

For the binary system, we finally need to find the secret value s0. Either
1. there are no errors (or almost no errors), corresponding to P (ej = 0) ≈ 1.

Then one can solve for s0 directly using Gaussian elimination (or possibly
some information set decoding algorithm in the case of a few possible
errors).

2. or the noise is larger. The binary system of equations corresponds to the
situation of a fast correlation attack [31], or secret recovery in an LPN
problem [13]. Thus, one may apply an FWHT to recover the binary secret
values.

PAPER II 117

5.2 Guessing s0 Using the FWHT
The approach of using the FWHT to find the most likely s0 in the binary system
in (7) comes directly from previous literature on Fast Correlation Attacks [14].

Let k denote an n-bit vector (k0, k1, . . . , kn−1) (also considered as an integer)
and consider a sequence Xk, k = 0, 1, . . . , N − 1, N = 2n. It can for example be
a sequence of occurrence values in the time domain, e.g. Xk = the number of
occurrences of X = k. The Walsh-Hadamard Transform is defined as

X̂w =

N−1∑
k=0

Xk · (−1)w·k,

where w · k denotes the bitwise dot product of the binary representation of the
n-bit indices w and k. There exists an efficient method (FWHT) to compute the
WHT in time O(N logN). Given the matrix A′′0, we define Xk =

∑
j∈J(−1)z

′′
j ,

where J is the set of all columns of the matrix A′′0 that equal k. Then, one
computes maxw |X̂w|, and we have that s0 corresponds to w̄ such that |X̂w̄| =
maxw |X̂w|. In addition, X̂w is simply the (biased) sum of the noise terms.

Soft Received Information

The bias of X̂w actually depends on the value of z′′j . So a slightly better approach
is to use “soft received information” by defining Xk =

∑
j∈J(−1)z

′′
j · εz′′j , where

εz′′j is the bias corresponding to z′′j . For each x ∈ {−(q−1)/2, ..., (q−1)/2}, the
bias εx can be efficiently pre-computed so that its evaluation does not affect the
overall complexity of the guessing procedure.

Hybrid Guessing

One can use hybrid approach to balance the overall complexity among reduction
and guessing phases. Indeed, it is possible to leave some rows of the matrix A
unreduced and apply an exhaustive search over the corresponding positions in
combination with the previously described guessing step.

5.3 Retrieving the Original Secret
Once s0 is correctly guessed, it is possible to obtain a new LWE problem instance
with the secret half as big as follows. Write s = 2s′ + s0. Define Â = 2A and
ẑ = z− s0A. Then we have that

ẑ = s′Â + e. (9)

The entries of s′ have a bit-size half as large as the entries of s, therefore (9)
is an easier problem than (5). One can apply the procedure described above
to (9) and guess the new binary secret s1, i.e. the least significant bits of s′.
The cost of doing this will be significantly smaller as shorter secret translates
to computationally easier reduction steps. Thus, computationally speaking,
the LWE problem can be considered solved once we manage to guess the least
significant bits of s. Given the list of binary vectors s0, s1, s2, ..., it is easy to
retrieve the original secret s.

118 PAPER II

Algorithm 1 BKW-FWHT with smooth reduction (main framework)
Input: Matrix A with n rows and m columns, received vector z of length m
and algorithm parameters t1, t2, t3, nlimit, σset

Step 0: Use Gaussian elimination to change the distribution of the secret
vector;
Step 1: Use t1 smooth-plain BKW steps to remove the bottom npbkw entries;
Step 2: Use t2 smooth-LMS steps to reduce ncod1 more entries;
Step 3: Perform the multiplying-2 operations;
Step 4: Use t3 smooth-LMS steps to reduce the remaining nt ≤ nlimit entries;
Step 5: Transform all the samples to the binary field and recover the partial
secret key by the FWHT. We can exhaustively guess some positions.

6 Analysis of the Algorithm and its Complexity
In this section, we describe in detail the newly-proposed algorithm called BKW-
FWHT with smooth reduction (BKW-FWHT-SR).

6.1 The Algorithm
The main steps of the new BKW-FWHT-SR algorithm are described in Algo-
rithm 1. We start by changing the distribution of the secret vector with the
secret-noise transformation [8], if necessary.

The general framework is similar to the coded-BKW with sieving procedure
proposed in [21]. In our implementation, we instantiated coded-BKW with
sieving steps with smooth-LMS steps discussed before for the ease of implemen-
tation.

The different part of the new algorithm is that after certain reduction steps,
we perform a multiplication by 2 to each reduced sample as described in Sec-
tion 5. We then continue reducing the remain positions and perform the mod
2 operations to transform the entire system to the binary case. Now we obtain
a list of LPN samples and solve the corresponding LPN instance via known
techniques such as FWHT or partial guessing.

One high level description is that we aim to input an LWE instance to the
LWE-to-LPN transform developed in Section 5, and solve the instance by using
a solver for LPN. To optimize the performance, we first perform some reduction
steps to have a new LWE instance with reduced dimension but larger noise. We
then feed the obtained instance to the LWE-to-LPN transform.

6.2 The Complexity of Each Step
From now on we assume that the secret is already distributed as the noise
distribution or that the secret-noise transform is performed. We use the LF2
heuristics and assume the the sample size is unchanged before and after each
reduction step. We now start with smooth-plain BKW steps and let lred be the
number of positions already reduced.

PAPER II 119

Smooth-Plain BKW steps.

Given m initial samples, we could on average have b 2m
3 c categories4 for one

plain BKW step in the LF2 setting. Instead we could assume for 2b0 categories,
and thus the number of samples m is 1.5 · 2b0 . Let CpBKW be the cost of all
smooth-plain BKW steps, whose initial value is set to be 0. If a step starts
with a position never being reduced before, we can reduce lp positions, where
lp =

⌊
b

log2(q)

⌋
. Otherwise, when the first position is partially reduced in the

previous step and we need β′ categories to further reduce this position, we can
in total fully reduce lp positions, where lp = 1 +

⌊
b−log2(β′)

log2(q)

⌋
.

For this smooth-plain BKW step, we compute

Cpbkw += ((n+ 1− lred) ·m+ Cd,pbkw),

where Cd,pbkw = m is the cost of modulus switching for the last partially reduced
position in this step. We then update the number of the reduced positions,
lred += lp.

After iterating for t1 times, we could compute Cpbkw and lred. We will
continue updating lred and denote npbkw the length reduced by the smooth-
plain BKW steps.

Smooth-LMS steps before the multiplication of 2.

We assume that the final noise contribution from each position reduced by LMS
is similar, bounded by a preset value σset. Since the noise variable generated in
the i-th (0 ≤ i ≤ t2 − 1) Smooth-LMS step will be added by 2t2+t3−i times and

also be multiplied by 2, we compute σ2
set =

2t2+t3−i×4C2
i,LMS1

12 , where Ci,LMS1

is the length of the interval after the LMS reduction in this step. We use
βi,LMS1 categories for one position, where βi,LMS1 = d q

Ci,LMS1
e. Similar to

smooth-plain BKW steps, if this step starts with an new position, we can reduce
lp positions, where lp = b b

log2(βi,LMS1)c. Otherwise, when the first position is
partially reduced in the previous step and we need β′p,i,LMS1 categories to further
reduce this position, we can in total fully reduce lp positions, where lp = 1 +

b b−log2(β′p,i,LMS1)

log2(βi,LMS1) c. Let CLMS1 be the cost of Smooth-LMS steps before the
multiplication of 2, which is innitialized to 0. For this step, we compute

CLMS1 += (n+ 1− lred) ·m,

and then update the number of the reduced positions, lred += lp.
After iterating t2 times, we compute CLMS1 and lred. We expect lred = n−nt

(nt ≤ nlimit) positions have been fully reduced and will continue updating lred.

Smooth-LMS steps after the multiplication of 2.

The formulas are similar to those for Smooth-LMS steps before the multiplica-
tion of 2. The difference is that the noise term is no longer multiplied by 2, so

4The number of categories is doubled compared with the LF2 setting for LPN. The differ-
ence is that we could add and subtract samples for LWE.

120 PAPER II

σf q D(Xσf ,2q||U2q) Ez=t [D(ez=t||Ub)]

0.5q 1601 −2.974149 −2.974995
0.6q 1601 −4.577082 −4.577116
0.7q 1601 −6.442575 −6.442576
0.8q 1601 −8.582783 −8.582783

Table 1: The comparison between D(Xσf ,2q||U2q) and Ez=t [D(ez=t||Ub)]

we have σ2
set =

2t3−iC2
i,LMS2

12 , for 0 ≤ i ≤ t3 − 1. Also, we need to track the a
vector of length nt for the later distinguisher. The cost is

CLMS2 = t3 · (nt + 1) ·m.

We also need to count the cost for multiplying samples by 2 and the mod2
operations, and the LMS decoding cost, which are

CmulMod = 2 · (nt + 1) ·m,
Cdec = (n− npbkw + t2 + t3) ·m.

FWHT distinguisher and partial guessing.

After the LWE-to-LPN transformation, we have an LPN problem with dimen-
sion nt and m instance. We perform partial guessing on nguess positions, and
use FWHT to recover the remaining nFWHT = nt − nguess positions. The cost
is,

Cdistin = 2nguess · ((nguess + 1) ·m+ nFWHT · 2nFWHT).

6.3 The Data Complexity
We now discuss the data complexity of the new FWHT distinguisher. In the
integer form, we have the following equation,

zj =

nt−1∑
i=0

siaij + 2Ej + kj · q.

If |
∑
siaij + 2Ej | < q/2 then kj = 0. Then the equation can be reduced mod

2 without error. In general, the error is ej = kj mod 2.
We employ a smart FWHT distinguisher with soft received information,

as described in Section 5. From [29], we know the sample complexity can be
approximated as m ≈ 4 lnnt

Ez=t[D(ez=t||Ub)] .

For different value of zj , the distribution of ej is different. The maximum
bias is achieved when zj = 0. In this sense, we could compute the divergence as

Ez=t [D(ez=t||Ub)] =
∑
t∈Zq

Pr[z = t]D(ez=t||Ub)

=
∑
t∈Zq

Pr[z = t] (

1∑
i=0

Pr[ez=t = i] log(2 · Pr[ez=t = i]))

PAPER II 121

where ez is the Bernoulli variable conditioned on the value of z and Ub the
uniform distribution over the binary field.

Following the previous research [4], we approximate the noise
∑
siaij + 2Ej

as discrete Gaussian with standard deviation σf . If σf is large, the probability
Pr[z = t] is very close to 1/q. Then, the expectation Ez=t,t∈Zq [D(ez=t||Ub)] can
be approximated as

∑
t∈Zq

1∑
i=0

Pr[z = t] Pr[ez=t = i] log(2q · Pr[ez=t = i, z = t]),

i.e., the divergence between a discrete Gaussian with the same standard devia-
tion and a uniform distribution over 2q, D(Xσf ,2q||U2q). We numerically com-
puted that the approximation is rather accurate when the noise is sufficiently
large (see Table 1). In conclusion, we use the formula

m ≈ 4 lnnt
D(Xσf ,2q||U2q)

,

to estimate the data complexity of the new distinguisher. It remains to control
the overall variance σ2

f . Since we assume that the noise contribution from each
reduced position by LMS is the same and the multiplication of 2 will double the
standard deviation, we can derive σ2

f = 4 ∗ 2t1+t2+t3σ2 + σ2σ2
set(n− npbkw).

Note: The final noise is a combination of three parts, the noise from the LWE
problem, the LMS steps before the multiplication by 2, and the LMS steps after
the multiplication by 2. The final partial key recovery problem is equivalent to
distinguishing a discrete Gaussian from uniform with the alphabet size doubled.
We see that with the multiplication by 2, the variances of the first and the second
noise parts are increased by a factor of 4, but the last noise part does not expand.
This intuitively explains the gain of the new binary distinguisher.

6.4 In Summary
We have the following theorem to estimate the complexity of the attack.

Theorem 6.1. The time complexity of the new algorithm is

C = Cpbkw + CLMS1 + CLMS2 + Cdec + Cdistin + CmulMod,

under the condition that
m ≥ 4 lnnt

D(Xσf ,2q||U2q)
,

where σ2
f = 4 ∗ 2t1+t2+t3σ2 + σ2σ2

set(n− npbkw).

6.5 Numerical Estimation
We numerically estimate the complexity of the new algorithm BKW-FWHT-
SR (shown in Table 2). It improves the known approaches when the noise rate
(represented by α) becomes larger. We should note that compared with the
previous BKW-type algorithms, the implementation is much easier though the
complexity gain might be mild.

122 PAPER II

n q α LWE estimator [7]

BKW- Coded- usvp dec dual

FWHT-SR BKW ENU Sieve ENU Sieve ENU Sieve

40 1601 0.005 34.4 42.6 31.4 41.5 34.7 44.6 39.1 47.5
0.010 39.3 43.7 34.0 44.8 36.3 44.9 51.1 57.9
0.015 42.4 52.6 42.5 54.2 43.1 50.6 61.5 64.4
0.020 46.2 52.6 ∞ ∞ 51.9 58.2 73.1 75.9
0.025 48.3 52.7 ∞ ∞ 59.2 66.1 84.7 85.4
0.030 50.0 52.7 ∞ ∞ 67.1 68.9 96.3 92.5

45 2027 0.005 37.7 55.2 31.8 41.9 35.0 44.8 41.5 51.6
0.010 43.5 55.2 39.5 51.2 41.2 48.2 57.0 64.6
0.015 48.3 55.2 50.4 61.3 51.2 58.3 74.3 74.9
0.020 51.2 55.2 ∞ ∞ 61.1 65.0 86.8 86.1
0.025 54.1 55.3 ∞ ∞ 71.0 71.4 100.7 95.0
0.030 56.3 64.1 ∞ ∞ 80.2 78.7 116.2 104.1

50 2503 0.005 41.8 46.4 32.4 42.6 35.5 45.1 46.7 58.0
0.010 48.7 56.0 46.0 57.5 47.6 54.1 66.8 65.4
0.015 52.5 56.8 ∞ ∞ 60.8 63.6 84.9 83.5
0.020 56.4 61.9 ∞ ∞ 72.1 72.1 101.9 96.5
0.025 59.3 66.1 ∞ ∞ 83.5 80.8 120.0 105.7
0.030 63.3 66.3 ∞ ∞ 94.2 89.1 134.0 115.6

70 4903 0.005 58.3 62.3 52.3 54.2 55.2 63.3 76.2 75.9
0.010 67.1 73.7 ∞ ∞ 80.4 77.1 111.3 98.9
0.015 73.3 75.6 ∞ ∞ 102.5 93.2 146.0 118.0

120 14401 0.005 100.1 110.5 133.0 93.2 135.5 111.4 181.9 133.2
0.010 115.1 124.0 ∞ ∞ 195.0 150.4 266.2 165.7
0.015 127.0 136.8 ∞ ∞ 246.4 183.2 334.0 209.8

Table 2: Estimated time complexity comparison (in log2(·)) for solving LWE
instances in the TU Darmstadt LWE challenge [2]. Here unlimited number of
samples are assumed. The last columns show the complexity estimation from
the LWE estimator [7]. "ENU" represents the enumeration cost model is

employed and "Sieve" represents the sieving cost model is used. Bold-faced
numbers are the smallest among the estimations with these different

approaches.

7 A New BKW Algorithm Implementation for
Large LWE Problem Instances

We have a new implementation of the BKW algorithm that is able to handle
very large LWE problem instances. The code is written in C, and much care
has been taken to be able to handle instances with a large number of samples.

A key success factor in the software design was to avoid unnecessary reliance
on RAM, so we have employed file-based storage where necessary and practically
possible. The implementation includes most known BKW reduction step, FFT
and FWHT-based guessing methods, and hybrid guessing approaches.

For our experiments, presented in Section 8, we assembled a machine with
an ASUS PRIME X399-A motherboard, a 4.0GHz Ryzen Threadripper 1950X
processor and 128GiB of 2666MHz DDR4 RAM. While the machine was built
from standard parts with a limited budget, we have primarily attempted to
maximize the amount of RAM and the size and read/write speeds of the fast
SSDs for overall ability to solve large LWE problem instances. We will make
the implementation available as an open source repository.

PAPER II 123

We describe below how we dealt with some interesting performance issues.

File-based Sample Storage

The implementation does not assume that all samples can be stored in RAM,
so instead they are stored on file in a special way. Samples are stored sorted
into their respective categories. For simplicity, we have opted for a fixed maxi-
mum number of samples per category. The categories are stored sequentially on
file, each containing its respective samples (possibly leaving some space if the
categories are not full). A category mapping, unique for each reduction type,
defines what category index a given sample belongs to5.

Optional Sample Amplification

We support optional sample amplification. That is, if a problem instance has a
limited number of initial samples (e.g., the Darmstadt LWE challenge), then it
is possible to combine several of these to produce new samples (more, but with
higher noise).

While this is very straightforward in theory, we have noticed considerable
performance effects when this recombination is performed naïvely. For exam-
ple, combining triplets of initial samples using a nested loop is problematic in
practice for some instances, since some initial samples become over-represented
– Some samples are used more often than others when implemented this way.

We have solved this by using a Linear Feedback Shift Register to efficiently
and pseudo-randomly distribute the selection of initial samples more evenly.

Employing Meta-Categories

For some LWE problem instances, using a very high number of categories with
few samples in each is a good option. This can be problematic to handle in an
implementation, but we have used meta-categories to handle this situation. For
example, using plain BKW reduction steps with modulus q and three positions,
we end up with q3 different categories. With q large, an option is to use only
two out of the three position values in a vector to first map it into one out of
q2 different meta-categories. When processing the (meta-)categories, one then
needs an additional pre-processing in form of a sorting step in order to divide the
samples into their respective (non-meta) categories (based on all three position
values), before proceeding as per usual.

We have used this implementation trick to, for example, implement plain
BKW reduction for three positions. One may think of the process as brute-
forcing one out of three positions in the reduction step.

Secret Guessing with FFT and FWHT

The same brute-forcing techniques are also useful for speeding up the guessing
part of the solver. We have used this to improve the FFT and FWHT solvers
in the corresponding way.

5In this section a category is defined slightly differently from the rest of the paper. A
category together with its adjacent category are together what we simply refer to as a category
in the rest of the paper.

124 PAPER II

For the FWHT case, if the number of positions to guess is too large for the
RAM to handle, we leave some of them to brute-force. This case differs from the
above by the fact that binary positions are brute-forced (so more positions can
be handled) and that the corresponding entries in the samples must be reduced.

8 Experimental Results
In this section we report the experimental results obtained in solving some LWE
problems. Our main goal was to confirm our theory and to prove that BKW
algorithms can be used in practice to solve relatively large instances. Therefore,
there is still room to run a more optimized code (for example, we did not use any
parallelization in our experiments) and to make more optimal parameter choices
(we generally used more samples than required and no brute-force guessing
techniques were used).

We considered two different scenarios. In the first case, we assumed for each
LWE instance to have access to an arbitrary large number of samples. Here
we create the desired amount of samples ourselves6. In the second case, we
considered instances with a limited number of samples. An LWE problem is
“solved” when the binary secret is correctly guessed, for the reasons explained
in Section 5.3.

Unlimited Number of Samples

We targeted the parameter choices of the TU Darmstadt challenges [2]. For
each instance, we generated as many initial samples as needed according to our
estimations. In Table 3 we report the details of the largest solved instances.
Moreover, in Example 8.1 we present our parameter choices for one of these.

n q α number of samples running time

40 1601 0.005 45 million 12 minutes
40 1601 0.01 1.6 billion 12 hours
45 2027 0.005 1.1 billion 13 hours

Table 3: Experimental results on target parameters.

Example 8.1. Let us consider an LWE instance with n = 40, q = 1601 and
σ = 0.005 · q. To successfully guess the secret, we first performed 8 smooth-plain
BKW steps reducing 18 positions to zero. We used the following parameters.

ni = 2, Ci = 1, for i = 1, . . . , 8,

(C ′1, C
′
2, C

′
3, C

′
4, C

′
5, C

′
6, C

′
7, C

′
8) = (165, 30, 6, 1, 165, 30, 6, 1).

Note that C ′4 = C ′8 = 1. In this way, we exploited the smoothness to zero 9
positions every 4 steps. For this reason, we start steps 5 and 9 by skipping one

6we used rounded Gaussian noise for simplicity of implementation.

position. Finally, we did 5 smooth-LMS steps using the following parameters:

(n9, n10, n11, n12, n13) = (3, 4, 4, 5, 6)

(C9, C10, C11, C12, C13) = (17, 24, 34, 46, 66)

(C ′9, C
′
10, C

′
11, C

′
12) = (46, 66, 23, 81).

These parameters are chosen in such a way that the number of categories within
each step is ≈ 13M and Ci ≈

√
2Ci−1. We used ≈ 40M samples in each step so

that each category contained 3 samples in average. This way we are guaranteed
to have enough samples in each step.

Limited Number of Samples

As a proof-of-concept, we solved the original TU Darmstadt LWE challenge
instance [2] with parameters n = 40, α = 0.005 and the number of samples
limited to m = 1600. We did this by sample amplifying with triples of samples,
taking 7 steps of smooth-plain BKW on 17 entries, 5 steps of smooth-LMS on
22 entries and 1 position was left to brute-force. The overall running time was
of 3 hours and 39 minutes.

9 Conclusions and Future Work
We introduced a novel and easy approach to implement the BKW reduction step
which allows balancing the complexity among the iterations, and an FWHT-
based guessing procedure able to correctly guess the secret with relatively large
noise level. Together with a file-based approach of storing samples, the above
define a new BKW algorithm specifically designed to solve practical LWE in-
stances. We leave optimization of the implementation, including parallelization,
for future work.

Acknowledgements
This work was supported in part by the Swedish Research Council (Grants
No. 2015-04528 and 2019-04166), the Norwegian Research Council (Grant No.
247742/070), and the Swedish Foundation for Strategic Research (Grant No.
RIT17-0005 and strategic mobility grant No. SM17-0062). This work was also
partially supported by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References

[1] NIST Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

125

126 PAPER II

Post-Quantum-Cryptography-Standardization, accessed: 2018-09-24

[2] TU Darmstadt Learning with Errors Challenge. https://www.
latticechallenge.org/lwe_challenge/challenge.php, accessed: 2020-05-
01

[3] Albrecht, M., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the
complexity of the Arora-Ge algorithm against LWE. Cryptology ePrint
Archive, Report 2014/1018 (2014), https://eprint.iacr.org/2014/1018

[4] Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the
complexity of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2),
325–354 (2015)

[5] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite,
E.W., Stevens, M.: The general sieve kernel and new records in lattice
reduction. In: Rijmen, V., Ishai, Y. (eds.) Advances in Cryptology – EU-
ROCRYPT 2019, Part II. pp. 717–746. Lecture Notes in Computer Science,
Springer, Heidelberg, Germany, Darmstadt, Germany (May 19–23, 2019)

[6] Albrecht, M.R., Faugère, J.C., Fitzpatrick, R., Perret, L.: Lazy modu-
lus switching for the BKW algorithm on LWE. In: Krawczyk, H. (ed.)
PKC 2014: 17th International Conference on Theory and Practice of Public
Key Cryptography. Lecture Notes in Computer Science, vol. 8383, pp. 429–
445. Springer, Heidelberg, Germany, Buenos Aires, Argentina (Mar 26–28,
2014)

[7] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. J. Mathematical Cryptology 9(3), 169–203 (2015)

[8] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. Lecture Notes in
Computer Science, vol. 5677, pp. 595–618. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2009)

[9] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011: 38th International
Colloquium on Automata, Languages and Programming, Part I. Lecture
Notes in Computer Science, vol. 6755, pp. 403–415. Springer, Heidelberg,
Germany, Zurich, Switzerland (Jul 4–8, 2011)

[10] Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond lin-
ear cryptanalysis? In: Lee, P.J. (ed.) Advances in Cryptology – ASI-
ACRYPT 2004. Lecture Notes in Computer Science, vol. 3329, pp. 432–450.
Springer, Heidelberg, Germany, Jeju Island, Korea (Dec 5–9, 2004)

[11] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Krauthgamer,
R. (ed.) 27th Annual ACM-SIAM Symposium on Discrete Algorithms. pp.
10–24. ACM-SIAM, Arlington, VA, USA (Jan 10–12, 2016)

PAPER II 127

[12] Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primi-
tives based on hard learning problems. In: Stinson, D.R. (ed.) Advances in
Cryptology – CRYPTO’93. Lecture Notes in Computer Science, vol. 773,
pp. 278–291. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 22–26, 1994)

[13] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. In: 32nd Annual ACM Sympo-
sium on Theory of Computing. pp. 435–440. ACM Press, Portland, OR,
USA (May 21–23, 2000)

[14] Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic
point of view. In: Knudsen, L.R. (ed.) Advances in Cryptology — EURO-
CRYPT 2002. pp. 209–221. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002)

[15] Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and
LPN algorithms via multiple collisions. In: 17th IMA International Confer-
ence on Cryptography and Coding. pp. 178–199. Lecture Notes in Computer
Science, Springer, Heidelberg, Germany, Oxford, UK (Dec 2019)

[16] Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR.
In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EURO-
CRYPT 2015, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
173–202. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015)

[17] Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-
BKW. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology –
CRYPTO 2018, Part II. Lecture Notes in Computer Science, vol. 10992,
pp. 638–666. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 19–23, 2018)

[18] Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology – CRYPTO 2017, Part II. Lecture Notes in
Computer Science, vol. 10402, pp. 486–514. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 20–24, 2017)

[19] Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In:
Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014,
Part I. Lecture Notes in Computer Science, vol. 8873, pp. 1–20. Springer,
Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014)

[20] Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes.
Journal of Cryptology 33(1), 1–33 (Jan 2020)

[21] Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-BKW with
sieving. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2017, Part I. Lecture Notes in Computer Science, vol. 10624,
pp. 323–346. Springer, Heidelberg, Germany, Hong Kong, China (Dec 3–7,
2017)

[22] Guo, Q., Johansson, T., Mårtensson, E., Stankovski Wagner, P.: On the
asymptotics of solving the LWE problem using coded-bkw with sieving.
IEEE Trans. Inf. Theory 65(8), 5243–5259 (2019)

128 PAPER II

[23] Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: Solving LWE using
lattice codes. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryp-
tology – CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol.
9215, pp. 23–42. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 16–20, 2015)

[24] Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of
solving LWE. Designs, Codes and Cryptography 86(1), 55–83 (2018)

[25] Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint
Archive, Report 2011/377 (2011), http://eprint.iacr.org/2011/377

[26] Kirchner, P., Fouque, P.A.: An improved BKW algorithm for LWE with ap-
plications to cryptography and lattices. In: Gennaro, R., Robshaw, M.J.B.
(eds.) Advances in Cryptology – CRYPTO 2015, Part I. Lecture Notes in
Computer Science, vol. 9215, pp. 43–62. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2015)

[27] Levieil, É., Fouque, P.A.: An improved LPN algorithm. In: Prisco, R.D.,
Yung, M. (eds.) SCN 06: 5th International Conference on Security in Com-
munication Networks. Lecture Notes in Computer Science, vol. 4116, pp.
348–359. Springer, Heidelberg, Germany, Maiori, Italy (Sep 6–8, 2006)

[28] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011.
Lecture Notes in Computer Science, vol. 6558, pp. 319–339. Springer, Hei-
delberg, Germany, San Francisco, CA, USA (Feb 14–18, 2011)

[29] Lu, Y., Meier, W., Vaudenay, S.: The conditional correlation attack: A
practical attack on Bluetooth encryption. In: Shoup, V. (ed.) Advances
in Cryptology – CRYPTO 2005. Lecture Notes in Computer Science, vol.
3621, pp. 97–117. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2005)

[30] Mårtensson, E.: The Asymptotic Complexity of Coded-BKW with Sieving
Using Increasing Reduction Factors. In: 2019 IEEE International Sympo-
sium on Information Theory (ISIT). pp. 2579–2583 (2019)

[31] Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ci-
phers. Journal of Cryptology 1(3), 159–176 (Oct 1989)

[32] Mulder, E.D., Hutter, M., Marson, M.E., Pearson, P.: Using bleichen-
bacher’s solution to the hidden number problem to attack nonce leaks in
384-bit ECDSA: extended version. J. Cryptographic Engineering 4(1), 33–
45 (2014)

[33] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Sym-
posium on Theory of Computing. pp. 84–93. ACM Press, Baltimore, MA,
USA (May 22–24, 2005)

[34] Shor, P.W.: Algorithms for quantum computation: Discrete logarithms
and factoring. In: 35th Annual Symposium on Foundations of Computer
Science. pp. 124–134. IEEE Computer Society Press, Santa Fe, New Mexico
(Nov 20–22, 1994)

Quantum Algorithms for the
Approximate k-List Problem and their

Application to Lattice Sieving

Lattice sieve algorithms are amongst the foremost methods of solv-
ing SVP. The asymptotically fastest known classical and quantum sieves
solve SVP in a d-dimensional lattice in 2cd+o(d) time steps with 2c

′d+o(d)

memory for constants c, c′. In this work, we give various quantum sieving
algorithms that trade computational steps for memory. We first give a
quantum analogue of the classical k-Sieve algorithm [Herold–Kirshanova–
Laarhoven, PKC’18] in the Quantum Random Access Memory (QRAM)
model, achieving an algorithm that heuristically solves SVP in 20.2989d+o(d)

time steps using 20.1395d+o(d) memory. This should be compared to the state-
of-the-art algorithm [Laarhoven, Ph.D Thesis, 2015] which, in the same
model, solves SVP in 20.2653d+o(d) time steps and memory. In the QRAM
model these algorithms can be implemented using poly(d) width quantum
circuits. Secondly, we frame the k-Sieve as the problem of k-clique listing
in a graph and apply quantum k-clique finding techniques to the k-Sieve.
Finally, we explore the large quantum memory regime by adapting parallel
quantum search [Beals et al., Proc. Roy. Soc. A’13] to the 2-Sieve and giv-
ing an analysis in the quantum circuit model. We show how to heuristically
solve SVP in 20.1037d+o(d) time steps using 20.2075d+o(d) quantum memory.

Keywords: shortest vector problem (SVP), lattice sieving, Grover’s algorithm, ap-
proximate k-list problem, nearest neighbour algorithms, distributed computation.

c©IACR 2019. Reprinted, with permission, from (the full version of)
Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite and Subhayan Roy
Moulik, “Quantum Algorithms for the Approximate k-List Problem and their Appli-
cation to Lattice Sieving”, in Advances in Cryptology–ASIACRYPT 2019, the 25th
Annual International Conference on Theory and Application of Cryptology and Infor-
mation Security, pp. 521-551, 2019, Kobe, Japan.

131

PAPER III 133

1 Introduction
The Shortest Vector Problem (SVP) is one of the central problems in the theory
of lattices. For a given d-dimensional Euclidean lattice, usually described by a
basis, to solve SVP one must find a shortest non zero vector in the lattice.
This problem gives rise to a variety of efficient, versatile, and (believed to be)
quantum resistant cryptographic constructions [AD97, Reg05]. To obtain an
estimate for the security of these constructions it is important to understand
the complexities of the fastest known algorithms for SVP.

There are two main families of algorithms for SVP, (1) algorithms that re-
quire 2ω(d) time and poly(d) memory; and (2) algorithms that require 2Θ(d) time
and memory. The first family includes lattice enumeration algorithms [Kan83,
GNR10]. The second contains sieving algorithms [AKS01,NV08,MV10], Voronoi
cell based approaches [MV10] and others [ADRS15, BGJ14]. In practice, it is
only enumeration and sieving algorithms that are currently competitive in large
dimensions [ADH+19, TKH18]. Practical variants of these algorithms rely on
heuristic assumptions. For example we may not have a guarantee that the
returned vector will solve SVP exactly (e.g. pruning techniques for enumer-
ation [GNR10], lifting techniques for sieving [Duc18]), or that our algorithm
will work as expected on arbitrary lattices (e.g. sieving algorithms may fail on
orthogonal lattices). Yet these heuristics are natural for lattices often used
in cryptographic constructions, and one does not require an exact solution to
SVP to progress with cryptanalysis [ADH+19]. Therefore, one usually relies on
heuristic variants of SVP solvers for security estimates.

Among the various attractive features of lattice based cryptography is its
potential resistance to attacks by quantum computers. In particular, there is no
known quantum algorithm that solves SVP on an arbitrary lattice significantly
faster than existing classical algorithms.1 However, some quantum speed-ups
for SVP algorithms are possible in general.

It was shown by Aono–Nguyen–Shen [ANS18] that enumeration algorithms
for SVP can be sped up using the quantum backtracking algorithm of Monta-
naro [Mon18]. More precisely, with quantum enumeration one solves SVP on a
d-dimensional lattice in time 2

1
4ed log d+o(d log d), a square root improvement over

classical enumeration. This algorithm requires poly(d) classical and quantum
memory. This bound holds for both provable and heuristic versions of enu-
meration. Quantum speed-ups for sieving algorithms have been considered by
Laarhoven–Mosca–van de Pol [LMvdP15] and later by Laarhoven [Laa15]. The
latter result presents various quantum sieving algorithms for SVP. One of them
achieves time and classical memory of order 20.2653d+o(d) and requires poly(d)
quantum memory. This is the best known quantum time complexity for heuristic
sieving algorithms. Provable single exponential SVP solvers were considered in
the quantum setting by Chen–Chang–Lai [CCL17]. Based on [ADRS15,DRS14],
the authors describe a 21.255d+o(d) time, 20.5d+o(d) classical and poly(d) quan-
tum memory algorithm for SVP. All heuristic and provable results rely on the
classical memory being quantumly addressable.

A drawback of sieving algorithms is their large memory requirements. Ini-
tiated by Bai–Laarhoven–Stehlé, a line of work [BLS16,HK17,HKL18] gave a

1For some families of lattices, like ideal lattices, there exist quantum algorithms that solve
a variant of SVP faster than classical algorithms, see [CDW17,PMHS19]. In this work, we
consider arbitrary lattices.

134 PAPER III

family of heuristic sieving algorithms, called tuple lattice sieves, or k-Sieves for
some fixed constant k, that offer time-memory trade-offs. Such trade-offs have
proven important in the current fastest SVP solvers, as the ideas of tuple siev-
ing offer significant speed-ups in practice, [ADH+19]. In this work, we explore
various directions for asymptotic quantum accelerations of tuple sieves.

Our results.

1. In Section 4 we show how to use a quantum computer to speed up the
k-Sieve of Bai–Laarhoven–Stehlé [BLS16] and its improvement due to
Herold–Kirshanova–Laarhoven [HKL18] (Algorithms 2,3). One data point
achieves a time complexity of 20.2989d+o(d), while requiring 20.1395d+o(d)

classical memory and poly(d) width quantum circuits. In the Area×Time
model this beats the previously best known algorithm [Laa15] of time
and memory complexities 20.2653d+o(d); we almost halve the constant in
the exponent for memory at the cost of a small increase in the respective
constant for time.

2. Borrowing ideas from [Laa15] we give a quantum k-Sieve (Algorithm 7)
that also exploits nearest neighbour techniques. For k = 2, we recover
Laarhoven’s 20.2653d+o(d) time and memory quantum algorithm.

3. In Section 5 the k-Sieve is reduced to listing k-cliques in a graph. By
generalising the triangle finding algorithm of [BdWD+01] this approach
leads to an algorithm that matches the performance of Algorithm 2, when
optimised for time, for all k.

4. In Section 6 we specialise to listing 3-cliques (triangles) in a graph. Using
the quantum triangle finding algorithm of [LGN17] allows us, in the query
model,2 to perform the 3-Sieve using 20.3264d+o(d) queries.

5. In Section 7 we describe a quantum circuit consisting only of gates from
a universal gate set (e.g. CNOT and single qubit rotations) of depth
20.1038d+o(d) and width 20.2075d+o(d) that implements the 2-Sieve as pro-
posed classically in [NV08]. In particular we consider exponential quantum
memory to make significant improvements to the number of time steps.
Our construction adapts the parallel search procedure of [BBG+13].

Our main results, quantum time-memory trade-offs for sieving algorithms,
are summarised in Figure 1. When optimising for time a quantum 2-Sieve
with locality sensitive filtering (LSF) remains the best algorithm. For k ≥ 3
the speed-ups offered by LSF are less impressive, and one can achieve approx-
imately the same asymptotic time complexity by considering quantum k-Sieve
algorithms (without LSF) with k ≥ 10 and far less memory.

All the results presented in this work are asymptotic in nature: our algo-
rithms have time, classical memory, quantum memory complexities of orders
2cd+o(d), 2c

′d+o(d), poly(d) or 2c
′′d+o(d) respectively, for c, c′, c′′ ∈ Θ(1), which

we aim to minimise. We do not attempt to specify the o(d) or poly(d) terms.
2This means that the complexity of the algorithm is measured by the number of oracle

calls to the adjacency matrix of a graph.

PAPER III 135

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.25

0.3

0.35

0.4

0.45

0.5

log2(Memory)/d

lo
g

2
(T

im
e)
/
d

Quantum 10-Sieve
Quantum 15-Sieve
Quantum 20-Sieve

Quantum 2-Sieve with LSF
Quantum 3-Sieve with LSF

Figure 1: Time-memory trade-offs for Algorithm 2 with k ∈ {10, 15, 20} and
Algorithm 7 with k ∈ {2, 3}. Each curve provides time-memory trade-offs for a

fixed k, either with nearest neighbour techniques (the right two curves) or
without (the left three curves). Each point on a curve (x, y) represents

(Memory, Time) values, obtained by numerically optimising for time while
fixing available memory. For example, we build the leftmost curve (dotted
brown) by computing the memory optimal (Memory, Time) value for the

20-Sieve and then repeatedly increase the available memory (decreasing time)
until we reach the time optimal (Memory, Time) value. Increasing memory
further than the rightmost point on each curve does not decrease time. The

figures were obtained using optimisation package provided by MapleTM [Map].

Our techniques. We now briefly describe the main ingredients of our results.

1. A useful abstraction of the k-Sieve is the configuration problem, first de-
scribed in [HK17]. It consists of finding k elements that satisfy certain
pairwise inner product constraints from k exponentially large lists of vec-
tors. Assuming (x1, . . . ,xk) is a solution tuple, the ith element xi can be
obtained via a brute force search either over the ith input list [BLS16],
or over a certain sublist of the ith list [HK17], see Figure 2b. We replace
the brute force searches with calls to Grover’s algorithm and reanalyse the
configuration problem.

2. An alternative way to find the ith element of a solution tuple for the
configuration problem is to apply nearest neighbour techniques [Laa15,
BDGL16]. This method sorts the ith list into a specially crafted data
structure that, for a given (x1, . . . ,xi−1), allows one to find the satisfying
xi faster than via brute force. The search for xi within such a data
structure can itself be sped up by Grover’s algorithm.

3. The configuration problem can be reduced to the k-clique problem in a
graph with vertices representing elements from the lists given by the con-
figuration problem. Vertices are connected by an edge if and only if the

136 PAPER III

corresponding list elements satisfy some inner product constraint. Classi-
cally, this interpretation yields no improvements to configuration problem
algorithms. However we achieve quantum speed-ups by generalising the
triangle finding algorithm of Buhrman et al. [BdWD+01] and applying it
to k-cliques.

4. We apply the triangle finding algorithm of Le Gall–Nakajima [LGN17] and
exploit the structure of our graph instance. In particular we form many
graphs from unions of sublists of our lists, allowing us to alter the sparsity
of said graphs.

5. To make use of more quantum memory we run Grover searches in parallel.
The idea is to allow simultaneous queries by several processors to a large,
shared, quantum memory. Instead of looking for a “good” xi for one fixed
tuple (x1, . . . ,xi−1), one could think of parallel searches aiming to find
a “good” xi for several tuples (x1, . . . ,xi−1). The possibility of running
several Grover’s algorithms concurrently was shown in the work of Beals et
al. [BBG+13]. Based on this result we specify all the subroutines needed
to solve the shortest vector problem using large quantum memory.

Open questions.

1. The classical configuration search algorithms of [HKL18] offer time-
memory trade-offs for SVP by varying k (larger k requires less memory
but more time). We observe in Section 3 that time optimal classical
algorithms for the configuration problem hit a certain point on the time-
memory trade-off curve once k becomes large enough, see Table 1. The
same behaviour is observed for our quantum algorithms for the configu-
ration problem, see Table 2. Although we provide some explanation of
this, we do not rigorously prove that the trade-off curve indeed stops on
its time optimal side. We leave it as an open problem to determine the
shape of the configuration problem for these time optimal instances of the
algorithm. Another open problem originating from [HK17] is to extend
the analysis to non constant k.

2. We do not give time complexities in Section 6, instead reporting the query
complexity for listing triangles. We leave open the question of determining,
e.g. the complexity of forming auxiliary databases used by the quantum
random walks on Johnson graphs of [LGN17], which is not captured in
the query model, as well as giving the (quantum) memory requirements of
these methods in our setting. If the asymptotic time complexity does not
increase (much) above the query complexity then the 20.3264d+o(d) achieved
by the algorithm in Section 6 represents both an improvement over the
best classical algorithms for the relevant configuration problem [HKL18]
and an improvement over Algorithms 2, 3 for k = 3 in low memory regimes,
see Table 2.

3. In Section 7 we present a parallel quantum version of a 2-Sieve. We believe
that it should be possible to extend the techniques to k-Sieve for k > 2.

PAPER III 137

2 Preliminaries
We denote by Sd ⊂ Rd+1 the d-dimensional unit sphere. We use soft-O notation
to denote running times, that is T = Õ(2cd) suppresses subexponential factors
in d. By [n] we denote the set {1, . . . , n}. The norm considered in this work is
Euclidean and is denoted by ‖ · ‖.

For any set x1, . . . ,xk of vectors in Rd, the Gram matrix C ∈ Rk×k is given
by Ci,j = 〈xi,xj〉, the set of pairwise scalar products. For I ⊂ [k], we denote
by C[I] the |I| × |I| submatrix of C obtained by restricting C to the rows and
columns indexed by I. For a vector x and i ∈ [k], x[i] denotes the ith entry. For
a function f , by Of we denote a unitary matrix that implements f .

Lattices. Given a basis B = {b1, . . . ,bm} ⊂ Rd of linearly independent vec-
tors bi, the lattice generated by B is defined as L(B) = {

∑m
i=1 zibi : zi ∈ Z}.

For simplicity we work with lattices of full rank (d = m). The Shortest Vector
Problem (SVP) is to find, for a given B, a shortest non zero vector of L(B).
Minkowski’s theorem for the Euclidean norm states that a shortest vector of
L(B) is bounded from above by

√
d · det(B)

1/d.

Quantum Search. Our results rely on Grover’s quantum search algo-
rithm [Gro96] which finds “good” elements in a (large) list. The analysis
of the success probability of this algorithm can be found in [BBHT98]. We also
rely on the generalisation of Grover’s algorithm, called Amplitude Amplifica-
tion, due to Brassard–Høyer–Mosca–Tapp [BHMT02] and a result on parallel
quantum search [BBG+13].

Theorem 2.1 (Grover’s algorithm [Gro96,BBHT98]). Given quantum access to
a list L that contains t marked elements (the value t is not necessarily known)
and a function f : L → {0, 1}, described by a unitary Of , which determines
whether an element is “good” or not, we wish to find a solution i ∈ [|L|], such
that for f(xi) = 1, xi ∈ L. There exists a quantum algorithm, called Grover’s
algorithm, that with probability greater than 1−t/ |L| outputs one “good” element
using O(

√
|L| /t) calls to Of .

Theorem 2.2 (Amplitude Amplification [BHMT02, Theorem 2]). Let A be any
quantum algorithm that makes no measurements and let A |0〉 = |Ψ0〉 + |Ψ1〉,
where |Ψ0〉 and |Ψ1〉 are spanned by “bad” and “good” states respectively. Let
further a = 〈Ψ1|Ψ1〉 be the success probability of A. Given access to a function f
that flips the sign of the amplitudes of good states, i.e. f : |x〉 7→ − |x〉 for “good”
|x〉 and leaves the amplitudes of “bad” |x〉 unchanged, the amplitude amplification
algorithm constructs the unitary Q = −ARA−1Of , where R is the reflection
about |0〉, and applies Qm to the state A |0〉, where m = bπ4 arcsin(

√
a)c. Upon

measurement of the system, a “good” state is obtained with probability at least
max{a, 1− a}.

Theorem 2.3 (Quantum Parallel Search [BBG+13]). Given a list L, with each
element of bit length d, and |L| functions that take list elements as input fi : L→
{0, 1} for i ∈ [|L|], we wish to find solution vectors s ∈ [|L|]|L|. A solution has
fi(xs[i]) = 1 for all i ∈ [|L|]. Given unitaries Ufi : |x〉 |b〉 → |x〉 |b⊕ fi(x)〉 there
exists a quantum algorithm that, for each i ∈ [|L|], either returns a solution s[i]
or if there is no such solution, returns no solution. The algorithm succeeds with

138 PAPER III

probability Θ(1) and, given that each Ufi has depth and width poly log(|L|, d),
can be implemented using a quantum circuit of width Õ(|L|) and depth Õ(

√
|L|).

Computational Models. Our algorithms are analysed in the quantum cir-
cuit model [KLM07]. We set each wire to represent a qubit, i.e. a vector in a
two dimensional complex Hilbert space, and assert that we have a set of uni-
versal gates. We work in the noiseless quantum theory, i.e. we assume there is
no (or negligible) decoherence or other sources of noise in the computational
procedures.

The algorithms given in Sections 4 and 5 are in the QRAM model and
assume quantumly accessible classical memory [GLM08]. More concretely in
this model we store all data, e.g. the list of vectors, in classical memory and
only demand that this memory is quantumly accessible, i.e. elements in the list
can be efficiently accessed in coherent superposition. This enables us to design
algorithms that, in principle, do not require large quantum memories and can
be implemented with only poly(d) qubits and with the 2Θ(d) sized list stored
in classical memory. Several works [BHT97,Kup13] suggest that this memory
model is potentially easier to achieve than a full quantum memory.

In Section 6 we study the algorithms in the query model, which is the typ-
ical model for quantum triangle or k-clique finding algorithms. Namely, the
complexity of our algorithm is measured in the number of oracle calls to the
adjacency matrix of a graph associated to a list of vectors.

Acknowledging the arguments against the feasibility of QRAM and whether
it can be meaningfully cheaper than quantum memory [AGJO+15], in Section 7
we consider algorithms that use exponential quantum memory in the quantum
circuit model without assuming QRAM.

3 Sieving as Configuration Search
In this section we describe previously known classical sieving algorithms. We
will not go into detail or give proofs, which can be found in the relevant refer-
ences.

Sieving algorithms receive on input a basis B ∈ Rd×d and start by sampling
an exponentially large list L of (long) lattice vectors from L(B). There are
efficient algorithms for sampling lattice vectors, e.g. [Kle00]. The elements of L
are then iteratively combined to form shorter lattice vectors, xnew = x1 ± x2 ±
. . . ± xk such that ‖xnew‖ ≤ maxi≤k{‖xi‖}, for some k ≥ 2. Newly obtained
vectors xnew are stored in a new list and the process is repeated with this
new list of shorter vectors. It can be shown [NV08,Reg09] that after poly(d)
such iterations we obtain a list that contains a shortest vector. Therefore,
the asymptotic complexity of sieving is determined by the cost of finding k-
tuples whose combination produces shorter vectors. Under certain heuristics,
specified below, finding such k-tuples can be formulated as the approximate
k-List problem.

Definition 3.1 (Approximate k-List problem). Assume we are given k lists
L1, . . . , Lk of equal exponential (in d) size |L| and whose elements are i.i.d. uni-
formly chosen vectors from Sd−1. The approximate k-List problem is to find |L|

PAPER III 139

solutions, where a solution is a k-tuple (x1, . . . , xk) ∈ L1 × . . . × Lk satisfying
‖x1 + . . .+ xk‖ ≤ 1.

The assumption made in analyses of heuristic sieving algorithms [NV08]
is that the lattice vectors in the new list after an iteration are thought of as
i.i.d. uniform vectors on a thin spherical shell (essentially, a sphere), and, once
normalised, on Sd−1. Hence sieves do not “see” the discrete structure of the
lattice from the vectors operated on. The heuristic becomes invalid when the
vectors become short. In this case we assume we have solved SVP. Thus, we
may not find a shortest vector, but an approximation to it, which is enough for
most cryptanalytic purposes.

We consider k to be constant. The lists L1, . . . , Lk in Definition 3.1 may be
identical. The algorithms described below are applicable to this case as well.
Furthermore, the approximate k-List problem only looks for solutions with +
signs, i.e. ‖x1 + . . .+ xk‖ ≤ 1, while sieving looks for arbitrary signs. This is
not an issue, as we may repeat an algorithm for the approximate k-List problem
2k = O(1) times in order to obtain all solutions.

Configuration Search. Using a concentration result on the distribution of
scalar products of x1, . . . ,xk ∈ Sd−1 shown in [HK17], the approximate k-List
problem can be reduced to the configuration problem. In order to state this
problem, we need a notion of configurations.

Definition 3.2 (Configuration). The configuration C = Conf(x1, . . . ,xk) of k
points x1, . . . ,xk ∈ Sd−1 is the Gram matrix of the xi, i.e. Ci,j = 〈xi , xj〉.

A configuration C ∈ Rk×k is a positive semidefinite matrix. Rewriting the
solution condition ‖x1 + . . .+ xk‖2 ≤ 1, one can check that a configuration
C for a solution tuple satisfies 1TC1 ≤ 1. We denote the set of such “good”
configurations by

C = {C ∈ Rk×k : C is positive semidefinite and 1TC1 ≤ 1}.

It has been shown [HK17] that rather than looking for k-tuples that form
a solution for the approximate k-List problem, we may look for k-tuples that
satisfy a constraint on their configuration. It gives rise to the following problem.

Definition 3.3 (Configuration problem). Let k ∈ N and ε > 0. Suppose we are
given a target configuration C ∈ C . Given k lists L1, . . . , Lk all of exponential
(in d) size |L|, whose elements are i.i.d. uniform from Sd−1, the configuration
problem consists of finding a 1− o(1) fraction of all solutions, where a solution
is a k-tuple (x1, . . . ,xk) with xi ∈ Li such that |〈xi , xj〉 − Ci,j | ≤ ε for all i, j.

Solving the configuration problem for a C ∈ C gives solutions to the approx-
imate k-List problem. For a given C ∈ Rk×k the number of expected solutions
to the configuration problem is given by det(C) as the following theorem shows.

Theorem 3.1 (Distribution of configurations [HK17, Theorem 1]). If x1, . . . ,xk
are i.i.d. from Sd−1, d > k, then their configuration C = Conf(x1, . . . ,xk)
follows a distribution with density function

µ = Wd,k · det(C)
1
2 (d−k)

dC1,2 . . . dCd−1,d, (1)

where Wd,k = Ok(d
1
4 (k2−k)) is an explicitly known normalisation constant that

only depends on d and k.

140 PAPER III

This theorem tells us that the expected number of solutions to the config-
uration problem for C is given by

∏
i |Li| · (detC)

d/2. If we want to apply
an algorithm for the configuration problem to the approximate k-List prob-
lem (and to sieving), we require that the expected number of output solutions
to the configuration problem is equal to the size of the input lists. Namely,
C and the input lists Li of size |L| should (up to polynomial factors) satisfy
|L|k · (detC)

d/2
= |L|. This condition gives a lower bound on the size of the

input lists. Using Chernoff bounds, one can show (see [HKL18, Lemma 2]) that
increasing this bound by a poly(d) factor gives a sufficient condition for the size
of input lists, namely

|L| = Õ

((
1

det(C)

) d
2(k−1)

)
. (2)

Classical algorithms for the configuration problem. The first classical
algorithm for the configuration problem for k ≥ 2 was given by Bai–Laarhoven–
Stehlé [BLS16]. It is depicted in Figure 2a. It was later improved by Herold–
Kirshanova [HK17] and by Herold–Kirshanova–Laarhoven [HKL18] (Figure 2b).
These results present a family of algorithms for the configuration problem that
offer time-memory trade-offs. In Section 4 we present quantum versions of these
algorithms.

Both algorithms [BLS16, HKL18] process the lists from left to right but
in a different manner. For each x1 ∈ L1 the algorithm from [BLS16] applies
a filtering procedure to L2 and creates the “filtered” list L2(x1). This filter-
ing procedure takes as input an element x2 ∈ L2 and adds it to L2(x1) iff
|〈x1 , x2〉 − C1,2| ≤ ε. Having constructed the list L2(x1), the algorithm then
iterates over it: for each x2 ∈ L2(x1) it applies the filtering procedure to L3

with respect to C2,3 and obtains L3(x1,x2). Throughout, vectors in brackets
indicate fixed elements with respect to which the list has been filtered. Filtering
of the top level lists (L1, . . . , Lk) continues in this fashion until we have con-
structed Lk(x1, . . . ,xk−1) for fixed values x1, . . . ,xk−1. The tuples of the form
(x1, . . . ,xk−1,xk) for all xk ∈ Lk(x1, . . . ,xk−1) form solutions to the configu-
ration problem.

The algorithms from [HK17,HKL18] apply more filtering steps. For a fixed
x1 ∈ L1, they not only create L2(x1), but also L3(x1), . . . , Lk(x1). This speeds
up the next iteration over all x2 ∈ L2(x1), where now the filtering step with re-
spect to C2,3 is applied not to L3, but to L3(x1), as well as to L4(x1), . . . , Lk(x1),
each of which is smaller than Li. This speeds up the construction of L3(x1,x2).
The algorithm continues with this filtering process until the last inner product
check with respect to Ck−1,k is applied to all the elements from Lk(x1, . . . ,xk−2)
and the list Lk(x1, . . . ,xk−1) is constructed. This gives solutions of the form
(x1, . . . ,xk−1,xk) for all xk ∈ Lk(x1, . . . ,xk−1). The concentration result, The-
orem 3.1, implies the outputs of algorithms from [BLS16] and [HK17,HKL18]
are (up to a subexponential fraction) the same. Pseudocode for [HK17] can be
found in Appendix A.

Important for our analysis in Section 4 will be the the result of [HKL18]
that describes the sizes of all the intermediate lists that appear during the
configuration search algorithms via the determinants of submatrices of the target
configuration C. The next theorem gives the expected sizes of these lists and

PAPER III 141

the time complexity of the algorithm from [HKL18].

Theorem 3.2 (Intermediate list sizes [HKL18, Lemma 1] and time compleixty
of configuration search algorithm). During a run of the configuration search
algorithms described in Figures 2a, 2b, given an input configuration C ∈ Rk×k
and lists L1, . . . , Lk ⊂ Sd−1 each of size |L|, the intermediate lists for 1 ≤ i <
j ≤ k are of expected sizes

E[|Lj(x1, . . . ,xi)|] = |L| ·
(

det(C[1, . . . , i, j])

det(C[1 . . . i])

)d/2
. (3)

The expected running time of the algorithm described in Figure 2b is

T C
k-Conf = max

1≤i≤k

[
i∏

r=1

|Lr(x1, . . . ,xr−1)| · max
i+1≤j≤k

|Lj(x1, . . . ,xi−1)|

]
. (4)

Finding a configuration for optimal runtime. For a given i the square
bracketed term in Eq. (4) represents the expected time required to create all
filtered lists on a given “level”. Here “level” refers to all lists filtered with respect
to the same fixed x1, . . . ,xi−1, i.e. a row of lists in Figure 2b. In order to
find an optimal configuration C that minimises Eq. (4), we perform numerical
optimisations using the MapleTM package [Map].3 In particular, we search for
C ∈ C that minimises Eq. (4) under the condition that Eq. (2) is satisfied
(so that we actually obtain enough solutions for the k-List problem). Figures
for the optimal runtime and the corresponding memory are given in Table 1.
The memory is determined by the size of the input lists computed from the
optimal C using Eq. (2). Since the k-List routine determines the asymptotic
cost of k-Sieve, the figures in Table 1 are also the constants in the exponents
for complexities of k-Sieves.

k 2 3 4 5 6 . . . 16 17 18

Time 0.4150 0.3789 0.3702 0.3707 0.3716 0.3728 0.37281 0.37281
Space 0.2075 0.1895 0.1851 0.1853 0.1858 0.1864 0.18640 0.18640

Table 1: Asymptotic complexity exponents for the approximate k-List
problem, base 2. The table gives optimised runtime and the corresponding

memory exponents for the classical algorithm from [HKL18], see Figure 2b and
Algorithm 5.

Interestingly, the optimal runtime constant turns out to be equal for large
enough k. This can be explained as follows. The optimal C achieves the sit-
uation where all the expressions in the outer max in Eq. (4) are equal. This
implies that creating all the filtered lists on level i asymptotically costs the same
as creating all the filtered lists on level i + 1 for 2 ≤ i ≤ k − 1. The cost of
creating filtered lists Li(x1) on the second level (assuming that the first level
consists of the input lists) is of order |L|2. This value, |L|2, becomes (up to
poly(d) factors) the running time of the whole algorithm (compare the Time
and Space constants for k = 16, 17, 18 in Table 1). The precise shape of C ∈ C

3The code is available at https://github.com/ElenaKirshanova/QuantumSieve

142 PAPER III

Figure 2: Algorithms for the configuration problem. Procedures Filteri,j
receive as input a vector (e.g. x1), a list of vectors (e.g. L2), and a real number
Ci,j , the target inner product. It creates another shorter list (e.g. L2(x1)) that
contains all vectors from the input list whose inner product with the input

vector is within some small ε from the target inner product.

L1 L2 L3
. . . Lk

x1

Filter1,2

L2(x1) . . .

x2

Filter2,3

L3(x1,x2) ...

Filterk−1,k

Lk(x1, . . . ,xk−1)

(a) The algorithm of Bai et al. [BLS16] for the configuration problem.

L1 L2 L3
. . . Lk

x1

Filter1,2 Filter1,3 Filter1,k

L2(x1) L3(x1) . . . Lk(x1)

x2

Filter2,3 Filter2,k

L3(x1,x2) Lk(x1,x2)

(b) The algorithm of Herold et al. [HKL18] for the configuration problem.

PAPER III 143

that balances the costs per level can be obtained by equating all the terms in
the max of Eq. (4) and minimising the value |L|2 under these constraints. Even
for small k these computations become rather tedious and we do not attempt
to express Ci,j as a function of k, which is, in principal, possible.

Finding a configuration for optimal memory. If we want to optimise for
memory, the optimal configuration C has all its off diagonal elements Ci,j =
−1/k. It is shown in [HK17] that such C maximises det(C) among all C ∈ C ,
which, in turn, minimises the sizes of the input lists (but does not lead to optimal
running time as the costs per level are not balanced).

4 Quantum Configuration Search
In this section we present several quantum algorithms for the configuration
problem (Definition 3.3). As explained in Section 3, this directly translates
to quantum sieving algorithms for SVP. We start with a quantum version
of the BLS style configuration search [BLS16], then we show how to improve
this algorithm by constructing intermediate lists. In Appendix B we show how
nearest neighbour methods in the quantum setting speed up the latter algorithm.

Recall the configuration problem: as input we receive k lists Li, i ∈ [k] each
of size a power of two,4 a configuration matrix C ∈ Rk×k and ε ≥ 0. To describe
our first algorithm we denote by f[i],j a function that takes as input (i+1) many
d-dimensional vectors and is defined as

f[i],j(x1, . . . ,xi,x) =

{
1, |〈x` , x〉 − C`,j | ≤ ε, ` ∈ [i]

0, else.

A reversible embedding of f[i],j is denoted by Of[i],j
. Using these functions we

perform a check for “good” elements and construct the lists Lj(x1,x2, . . . ,xi).
Furthermore, we assume that any vector encountered by the algorithm fits into
d̄ qubits. We denote by |0〉 the d̄-tensor of 0 qubits, i.e. |0〉 = |0⊗d̄〉.

The input lists, Li, i ∈ [k], are stored classically and are assumed to be
quantumly accessible. In particular, we assume that we can efficiently construct
a uniform superposition over all elements from a given list by first applying
Hadamards to |0〉 to create a superposition over all indices, and then by querying
L[i] for each i in the superposition. That is, we assume an efficient circuit for

1√
|L|

∑
i |i〉 |0〉 →

1√
|L|

∑
i |i〉 |L[i]〉. For simplicity, we ignore the first qubit

that stores indices and we denote by |ΨL〉 a uniform superposition over all the
elements in L, i.e. |ΨL〉 = 1√

|L|

∑
x∈L |x〉.

The idea of our algorithm for the configuration problem is the following.
We have a global classical loop over x1 ∈ L1 inside which we run our quantum
algorithm to find a (k − 1) tuple (x2, . . . ,xk) that together with x1 gives a
solution to the configuration problem. We expect to haveO(1) such (k−1) tuples
per x1.5 At the end of the algorithm we expect to obtain such a solution by

4This is not necessary but it enables us to efficiently create superpositions |ΨLi 〉 using
Hadamard gates. Since our lists Li are of sizes 2cd+o(d) for a large d and a constant c < 1,
this condition is easy to satisfy by rounding cd.

5This follows by multiplying the sizes of the lists Li(x1, . . .xi−1) for all 2 ≤ i ≤ k.

144 PAPER III

means of amplitude amplification (Theorem 2.2). In Theorem 4.1 we argue that
this procedure succeeds in finding a solution with probability at least 1−2−Ω(d).

Inside the classical loop over x1 we prepare (k−1)d̄ qubits, which we arrange
into k − 1 registers, so that each register will store (a superposition of) input
vectors, see Figure 3. Each such register is set in uniform superposition over
the elements of the input lists: |ΨL2

〉 ⊗ |ΨL3
〉 ⊗ · · · ⊗ |ΨLk〉. We apply Grover’s

algorithm on |ΨL2
〉. Each Grover’s iteration is defined by the unitary Q1,2 =

−H⊗d̄RH⊗d̄Of[1],2
. Here H is the Hadamard gate and R is the rotation around

|0〉. We have |L2(x1)| “good” states out of |L2| possible states in |ΨL2
〉, so after

O
(√

|L2|
|L2(x1)|

)
applications of Q1,2 we obtain the state

|ΨL2(x1)〉 =
1√

|L2(x1)|

∑
x2∈L2(x1)

|x2〉 . (5)

In fact, what we create is a state close to Eq. (5) as we do not perform any
measurement. For now, we drop the expression “close to” for all the states in
this description,

Now consider the state |ΨL2(x1)〉 ⊗ |ΨL3
〉 and the function f[2],3 that uses

the first and second registers and a fixed x1 as inputs. We apply the unitary
Q2,3 to |ΨL3〉, where Q2,3 = −H⊗d̄RH⊗d̄Of[2],3

. In other words, for all vectors
from L3, we check if they satisfy the inner product constraints with respect to
x1 and x2. In this setting there are |L3(x1,x2)| “good” states in |ΨL3

〉 whose
amplitudes we aim to amplify. Applying Grover’s iteration unitary Q2,3 the

order of O
(√

|L3|
|L3(x1,x2)|

)
times, we obtain the state

|ΨL2(x1)〉 |ΨL3(x1,x2)〉 =
1√

|L2(x1)|

∑
x2∈L2(x1)

|x2〉

 1√
|L3(x1,x2)|

∑
x3∈L3(x1,x2)

|x3〉

 .

We continue creating the lists Li+1(x1,x2, . . . ,xi) by filtering the initial list
Li+1 with respect to x1 (fixed by the outer classical loop), and with respect to
x2, . . . ,xi (given in a superposition) using the function f[i],i+1. At level k − 1
we obtain the state |ΨL2(x1)〉 ⊗ |ΨL3(x1,x2)〉 ⊗ . . . ⊗ |ΨLk−1(x1,...,xk−2)〉. For the
last list Lk we filter with respect to x1, . . . ,xk−2 as for the list Lk−1. Finally,
for a fixed x1, the “filtered” state we obtained is of the form

|ΨF 〉 = |ΨL2(x1)〉 ⊗ |ΨL3(x1,x2)〉 ⊗ . . .⊗ |ΨLk−1(x1,...,xk−2)〉 ⊗ |ΨLk(x1,...,xk−2)〉 .
(6)

The state is expected to contain O(1) many (k − 1)-tuples (x2, . . . ,xk) which
together with x1 give a solution to the configuration problem. To prepare the
state |ΨF 〉 for a fixed x1, we need

TInGrover = O

(√(
|L2|
|L2(x1)|

)
+ . . .+

√(
|Lk|

|Lk(x1, . . . ,xk−2)|

))
(7)

unitary operations of the form (−H⊗d̄)RH⊗d̄Of[i],j
. This is what we call the

“inner” Grover procedure.
Let us denote by A an algorithm that creates |ΨF 〉 from |0〉 ⊗ . . . ⊗ |0〉 in

time TInGrover. In order to obtain a solution tuple (x2, . . . ,xk) we apply amplitude

PAPER III 145

A

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[1],2

−ARA−1Og

︸ ︷︷ ︸√
|L2|
|L2(x1)| iterations

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[2],3︸ ︷︷ ︸√
|L3|

|L3(x1,x2)| iterations

|0〉 H⊗d̄ −H⊗d̄RH⊗d̄Of[2],4︸ ︷︷ ︸√
|L4|

|L4(x1,x2)| iterations ︸ ︷︷ ︸
(|L2(x1)|·|L3(x1.x2)|

|L4(x1,x2)|)1/2

|ΨL2
〉⊗|ΨL3

〉⊗|ΨL4
〉 |ΨL2(x1)〉⊗|ΨL3

〉⊗|ΨL4
〉

|ΨL2(x1)〉⊗|ΨL3(x1,x2)〉⊗|ΨL4(x1,x2)〉

Figure 3: Quantum circuit representing the quantum part of Algorithm 2 with
k = 4, i.e. this circuit is executed inside the loop over x1 ∈ L1. The Hadamard
gates create the superposition |ΨL2〉 ⊗ |ΨL3〉 ⊗ |ΨL4〉. We apply

√
|L2|
|L2(x1)|

Grover iterations to |ΨL2
〉 to obtain the state |ΨL2(x2)(x1)〉 ⊗ |ΨL3

〉 ⊗ |ΨL4
〉.

We then apply (sequentially) O
(√

|L3|
|L3(x1,x2)|

)
resp. O

(√
|L4|

|L4(x1,x2)|

)
Grover

iterations to the second resp. third registers, where the checking function takes
as input the first and second resp. the first and third registers. This whole
process is A and is repeated O(

√
|L2(x1)| · |L3(x1,x2)| |L4(x1,x2)|) times

inside the amplitude amplification. Final measurement gives a triple
(x2,x3,x4) which, together with a fixed x1, forms a solution to the

configuration problem.

146 PAPER III

amplification using the unitary QOuter = −ARA−1Og, where g is the function
that operates on the last two registers and is defined as

g(x,x′) =

{
1, |〈x , x′〉 − Ck−1,k| ≤ ε
0, else.

(8)

Notice that in the state |ΨF 〉 it is only the last two registers storing xk−1 and
xk that are left to be checked against the target configuration. This is precisely
what we use Og to check. Let |z〉 = |x2, . . . ,xk〉 be a solution tuple. The state
|z〉 appears in |ΨF 〉 with amplitude

〈z|ΨF 〉 = O
(

(
√
|L2(x1)| · . . . · |Lk−1(x1, . . . ,xk−2)| · |Lk(x1, . . . ,xk−2)|)

−1
)
.

This value is the inverse of the number of iteration stepsQOuter which we repeat in
order to obtain z when measuring |ΨF 〉. The overall complexity of the algorithm
for the configuration problem becomes

T Q
BLS = O

(
|L1|

(√(
|L2|
|L2(x1)|

)
+ . . .+

√(
|Lk|

|Lk(x1, . . . ,xk−2)|

))
·
√
|L2(x1)| · |L3(x1,x2)| · . . . · |Lk(x1, . . . ,xk−2)|

)
,

(9)

where all the filtered lists in the above expression are assumed to be of expected
size greater than or equal to 1. For certain target configurations intermediate
lists are of sizes less than 1 in expectation (see Eq. (1)), which should be un-
derstood as the expected number of times we need to construct these lists to
obtain 1 element in them. So there will exist elements in the superposition for
which a solution does not exist. Still, for the elements, for which a solution does
exist (we expect O(1) of these), we perform O(

√
|L|) Grover iterations during

the “inner” Grover procedure, and during the “outer” procedure these “good”
elements contribute a O(1) factor to the running time. Therefore formally, each
|Li(x1, . . . ,xi−1)| in Eq. (9) should be changed to max{1, |Li(x1, . . . ,xi−1)|}.
Alternatively, one can enforce that intermediate lists are of size greater than 1
by choosing the target configuration appropriately.

The procedure we have just described is summarised in Algorithm 2. If we
want to use this algorithm to solve the Approximate k-List problem (Defini-
tion 3.1), we additionally require that the number of output solutions is equal
to the size of the input lists. Using the results of Theorem 3.1, we can ex-
press the complexity of Algorithm 2 for the Approximate k-List problem via
the determinant of the target configuration C and its minors.

Theorem 4.1. Given input L1, . . . , Lk ⊂ Sd−1 and a configuration C ∈ C ,
such that Eq. (2) holds, Algorithm 2 solves the Approximate k-List problem in
time

Tk-List = Õ

((1

det(C)

) k+1
2(k−1)

·
√

det(C[1 . . . k − 1])

)d/2 (10)

usingMk-List = Õ
((

1
det(C)

) d
2(k−1)

)
classical memory and poly(d) quantum mem-

ory with success probability at least 1− 2−Ω(d).

PAPER III 147

Algorithm 2 Quantum algorithm for the Configuration Problem
Input: L1, . . . , Lk− lists of vectors from Sd−1, target configuration Ci,j =
〈xi , xj〉 ∈ Rk×k− a Gram matrix, ε > 0.
Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t.
|〈xi , xj〉 − Cij | ≤ ε for all i, j.
1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Prepare the state |ΨL2

〉 ⊗ . . .⊗ |ΨLk〉
4: for all i = 2 . . . k − 1 do
5: Run Grover’s on the ith register with the checking function f[i−1],i to

transform the state |ΨLi〉 to the state |ΨLi(x1,...,xi−1)〉.
6: Run Grover’s on the kth register with the checking function f[k−2],k to

transform the state |ΨLk〉 to the state |ΨLk(x1,...,xk−2)〉.
7: Let A be unitary that implements steps 3–6, i.e.

A |0⊗k〉 → |ΨF 〉 .

8: Run amplitude amplification using the unitary −ARA−1Og, where g is
defined in Eq. (8).

9: Measure all the registers, obtain a tuple (x2, . . . ,xk).
10: if (x1, . . . ,xk) satisfies C then
11: Lout ← Lout ∪ {(x1, . . . ,xk)}.

Proof 4.1. From Theorem 3.1, the input lists L1, . . . , Lk should be of sizes

|L| = Õ
((

1
det(C)

) d
2(k−1)

)
to guarantee a sufficient number of solutions. This

determines the requirement for classical memory. Furthermore, since all inter-
mediate lists are stored in the superposition, we require quantum registers of size
poly(d).

Next, we can simplify the expression for T Q
BLS given in Eq. (9) by noting that

|L2(x1)| ≥ |L3(x1,x2)| ≥ . . . ≥ |Lk−1(x1, . . . ,xk−2)| = |Lk(x1, . . . ,xk−2)|. The

dominant term in the sum appearing in Eq. (9) is
√(

|Lk|
|Lk(x1,...,xk−2)|

)
.

From Theorem 3.2, the product
√
|L2(x1)| · . . . · |Lk−1(x1, . . . ,xk−2)| in

Eq. (9) can be simplified to |L|
k−2

2 (
√

det(C[1 . . . k − 1]))
d/2

, from where we
arrive at the expression for Tk-List as in the statement.

The success probability of Algorithm 2 is determined by the success probability
of the amplitude amplification run in Step 8. For this we consider the precise
form of the state |ΨF 〉 given in Eq. (6). This state is obtained by running k− 1
(sequential) Grover algorithms. Each tensor |ΨLi(x1,...,xi−1)〉 in this state is a
superposition

|ΨLi(x1,...,xi−1)〉 =

√
1− εi

|Li(x1, . . . ,xi−1)|
∑

x∈Li(x1,...,xi−1)

|x〉+

√
εi

|Li \ Li(x1, . . . ,xi−1)|
∑

x∈Li\Li(x1,...,xi−1)

|x〉 ,

where εi <
|Li(x1,...,xi)|

|Li| ≤ 2−Ω(d). The first inequality comes from the success

148 PAPER III

probability of Grover’s algorithm, Theorem 2.1, the second inequality is due
to the fact that all lists on a “lower” level are exponentially smaller than lists
on a “higher” level, see Theorem 3.2. Therefore, the success probability of the
amplitude amplification is given by

∏k−1
i=2

1−εi
|Li(x1,...,xi−1)| ·

1−εk
|Lk(x1,...,xk−2)| ≥ (1 −

2−Ω(d))
∏k−1
i=2 |Li(x1, . . . ,xi−1)|−1. According to Theorem 2.2, after performing

O
(∏k

i=2 |Li(x1, . . . ,xi)| |Lk(x1, . . . ,xk−2)|
)
amplitude amplification iterations,

in Step 9 we measure a “good” (x2, . . . ,xk) with probability at least 1− 2−Ω(d).

4.1 Quantum Version of the Configuration Search Algo-
rithm from [HKL18]

The main difference between the two algorithms for the configuration prob-
lem – the algorithm due to Bai–Laarhoven–Stehlé [BLS16] and due to Herold–
Kirshanova–Laarhoven [HKL18] – is that the latter constructs intermediate fil-
tered lists, Figure 2. We use quantum enumeration to construct and classically
store these lists.

For a fixed x, quantum enumeration repeatedly applies Grover’s algorithm
to an input list Li, where each application returns a random vector from the
filtered list Li(x) with probability greater than 1− 2−Ω(d). The quantum com-

plexity of obtaining one vector from Li(x) is O
(√

|Li|
|Li(x)|

)
. We can also check

that the returned vector belongs to Li(x) by checking its inner product with x.
Repeating this process Õ(|Li(x)|) times, we obtain the list Li(x) stored classi-
cally in time Õ(

√
|Li| · |Li(x)|). The advantage of constructing the lists Li(x)

is that we can now efficiently prepare the state |ΨL2(x)〉⊗ . . .⊗|ΨLk(x)〉 (cf. Line
3 in Algorithm 2) and run amplitude amplification on the states |ΨLi(x)〉 rather
than on |ΨLi〉. This may give a speed up if the complexity of the Steps 3–11
of Algorithm 2, which is of order Õ(T Q

BLS/ |L1|), dominates the cost of quantum
enumeration, which is of order Õ(

√
|Li| · |Li(x)|). In general, we can continue

creating the “levels” as in [HKL18] (see Figure 2b) using quantum enumera-
tion and at some level switch to the quantum BLS style algorithm. For exam-
ple, for some level 1 < j ≤ k − 1, we apply quantum enumeration to obtain
Li(x1, . . . ,xj−1) for all i > j. Then for all (j − 1)-tuples (x1, . . . ,xj−1) ∈
L1 × . . .× Lj−1(x1, . . . ,xj−2), apply Grover’s algorithm as in steps 3–11 of Al-
gorithm 2 but now to the states |ΨLj(x1,...,xj−1)〉 ⊗ . . .⊗ |ΨLk(x1,...,xj−1)〉. Note
that since we have these lists stored in memory, we can efficiently create this
superposition. In this way we obtain a quantum “hybrid” between the HKL and
the BLS algorithms: until some level j, we construct the intermediate lists using
quantum enumeration, create superpositions over all the filtered lists at level j
for some fixed values x1, . . . ,xj−1, and apply Grover’s algorothm to find (if it
exists) the (k− j + 1) tuple (xj , . . . ,xk). Pseudocode for this approach is given
in Algorithm 3.

Let us now analyse Algorithm 3. To simplify notation, we denote L(j)
i =

Li(x1, . . . ,xj−1) for all i ≥ j, letting L
(1)
i be the input lists Li (so the up-

per index denotes the level of the list). All O notations are omitted. Each

quantum enumeration of L(j)
i from L

(j−1)
i costs

√∣∣∣L(j−1)
i

∣∣∣ ∣∣∣L(j)
i

∣∣∣. On level

1 ≤ ` ≤ j − 1, we repeat such an enumeration
∏`−1
r=1

∣∣∣L(r)
r

∣∣∣ times to create the

PAPER III 149

Algorithm 3 Hybrid quantum algorithm for the Configuration Problem
Input: L1, . . . , Lk, lists of vectors from Sd−1, target configuration Ci,j =
〈xi , xj〉 ∈ Rk×k, ε > 0, 2 ≤ j ≤ k − 1, level we construct the intermediate
filtered lists until.
Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t.
|〈xi , xj〉 − Cij | ≤ ε for all i, j.
1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Use quantum enumeration to construct Li(x1) for ∀i ≥ 2
4: for all x2 ∈ L2(x1) do
5: Use quantum enumeration to construct Li(x1,x2), ∀i ≥ 3

6:
. . .

7: for all xj−1 ∈ Lj−1(x1, . . . ,xj−2) do
8: Use quantum enumeration to construct Li(x1, . . . ,xj−1), ∀i ≥
j

9: Prepare the state |ΨLj(x1,...,xj−1)〉 ⊗ . . .⊗ |ΨLk(x1,...,xj−1)〉
10: for all i = j + 1 . . . k − 1 do
11: Run Grover’s on the ith register with the checking function

f[i−1],i to transform the state |ΨLi(x1,...,xj−1)〉 to the state |ΨLi(x1,...,xi−1)〉.
12: Run Grover’s on the kth register with the checking function

f[k−2],k to transform the state |ΨLk(x1,...,xj−1)〉 to the state |ΨLk(x1,...,xk−2)〉.
13: Let A be unitary that implements Steps 9–12, i.e.

A |0⊗(k−j+1)〉 → |ΨLj(x1,...,xj−1)〉 ⊗ |ΨLk(x1,...,xk−2)〉

14: Run amplitude amplification using the unitary −ARA−1Og,
where g is defined in Eq. (8).

15: Measure all the registers, obtain a tuple (xj , . . . ,xk).
16: if (x1, . . . ,xk) satisfies C then
17: Lout ← Lout ∪ {(x1, . . . ,xk)}.

intermediate lists, once for each (x1, . . . ,x`−1). Once the lists L(j)
i , i ≥ j, are

constructed, Grover’s algorithm gives the state |Ψ
L

(j)
j
〉 . . . |Ψ

L
(k−1)
k−1

〉 |Ψ
L

(k−1)
k

〉 in

time

(√ ∣∣∣L(j)
j+1

∣∣∣∣∣∣L(j+1)
j+1

∣∣∣ + . . .+

√ ∣∣∣L(j)
k−1

∣∣∣∣∣∣L(k−1)
k−1

∣∣∣ +

√ ∣∣∣L(j)
k

∣∣∣∣∣∣L(k−1)
k

∣∣∣
)

(Steps 11–12 in Algorithm 3).

On Step 14 the unitary A must be executed
√∣∣∣L(j)

j

∣∣∣ · . . . · ∣∣∣L(k−1)
k−1

∣∣∣ · ∣∣∣L(k−1)
k

∣∣∣
times to ensure that the measurement of the system gives the “good” tuple
(xj , . . . ,xk). Such tuples may not exist: for j ≥ 3, i.e. for fixed x1,x2, we ex-
pect to have less than 1 such tuples. So most of the time, the measurement will
return a random (k− j+ 1)-tuple, which we classically check against the target
configuration C. Overall, given on input a level j, the runtime of Algorithm 3

150 PAPER III

is

T Q
Hybrid(j) = max

1≤`≤j−1

{
`−1∏
r=1

∣∣∣L(r)
r

∣∣∣ · max
`≤i≤k

{√∣∣∣L(`)
i

∣∣∣ ∣∣∣L(`+1)
i

∣∣∣} ,
j−1∏
r=1

∣∣∣L(r)
r

∣∣∣

√√√√√
∣∣∣L(j)
j+1

∣∣∣∣∣∣L(j+1)
j+1

∣∣∣ + . . .+

√√√√√
∣∣∣L(j)
k−1

∣∣∣∣∣∣L(k−1)
k−1

∣∣∣ +

√√√√√
∣∣∣L(j)
k

∣∣∣∣∣∣L(k−1)
k

∣∣∣

·
√∣∣∣L(j)

j

∣∣∣ · . . . ∣∣∣L(k−1)
k−1

∣∣∣ · ∣∣∣L(k−1)
k

∣∣∣} .
(11)

Similar to Eq. (9), all the list sizes in the above formula are assumed to be greater
than or equal to 1. If, for a certain configuration it happens that the expected
size of a list is less than 1, it should be replaced with 1 in this expression. The
above complexity can be expressed via the determinant and subdeterminants of
the target configuration C using Theorem 3.2. An optimal value of j for a given
C can be found using numerical optimisations by looking for j that minimises
Eq. (11).

Speed-ups with nearest neighbour techniques. We can further speed
up the creation of filtered lists in both Algorithms 2 and 3 with a quantum
version of nearest neighbour search. In particular, in Appendix B we describe
a locality sensitive filtering (LSF) technique (first introduced in [BDGL16]) in
the quantum setting, extending the idea of Laarhoven [Laa15] to k > 2.

Numerical optimisations. We performed numerical optimisations for the
target configuration C which minimises the runtime of the two algorithms for
the configuration problem given in this section. The upper part of Table 2
gives time optimal c for Eq. (10) and the c′ of the corresponding memory re-
quirements for various k. These constants decrease with k and, eventually,
those for time become close to the value 0.2989. The explanation for this
behaviour is the following: looking at Eq. (9) the expression decreases when
the lists Li(x1, . . . ,xi−1) under the square root become smaller. When k is
large enough, in particular, once k ≥ 6, there is a target configuration that
ensures that |Li(x1, . . . ,xi−1)| are of expected size 1 for levels i ≥ 4. So for
k ≥ 6, under the observation that the maximal value in the sum appear-
ing in Eq. (9) is attained by the last summand, the runtime of Algorithm 2
becomes T Q

BLS = |L1|3/2 ·
√
|L2(x1)| |L3(x1,x2)|. The list sizes can be made

explicit using Eq. (3) when a configuration C is such that |Li(x1, . . . ,xi−1)|
are of expected size 1. Namely, for k ≥ 6 and for configuration C that min-
imises the runtime exponent, Eq. (9) with the help of Eq. (3) simplifies to((

1
detC

) 5
2(k−1)

√
detC[1, 2, 3]

)d/2
.

The optimal runtime exponents for the hybrid, Algorithm 3, with j = 2 are
given in the middle part of Table 2. Experimentally, we establish that j = 2 is
optimal for small values of k and that this algorithm has the same behaviour for
large values of k as Algorithm 2. The reason is the following: for the runtime
optimal configuration C the intermediate lists on the same level increase in size
“from left to right”, i.e. |L2(x1)| ≤ |L3(x1)| ≤ . . . ,≤ |Lk(x1)|. It turns out that
|Lk(x1)| becomes almost |Lk| (i.e. the target inner product is very close to 0),

PAPER III 151

k 2 3 4 5 6 . . . 28 29 30

Quantum version of [BLS16] Algorithm 2
Time 0.3112 0.3306 0.3289 0.3219 0.3147 . . . 0.29893 0.29893 0.29893
Space 0.2075 0.1907 0.1796 0.1685 0.1596 . . . 0.1395 0.1395 0.1395

Quantum Hybrid version of [BLS16,HKL18] Algorithm 3
Time 0.3112 0.3306 0.3197 0.3088 0.3059 . . . 0.29893 0.29893 0.29893
Space 0.2075 0.1907 0.1731 0.1638 0.1595 . . . 0.1395 0.1395 0.1395

Low memory Quantum Hybrid version of [BLS16,HKL18] Algorithm 3
Time 0.3112 0.3349 0.3215 0.3305 0.3655 . . . 0.6352 0.6423 0.6490
Space 0.2075 0.1887 0.1724 0.1587 0.1473 . . . 0.0637 0.0623 0.0609

Table 2: Asymptotic complexity exponents for the approximate k-List
problem, base 2. The top part gives optimised runtime exponents and the

corresponding memory exponents for Algorithm 2. These are the results of the
optimisation (minimisation) of the runtime expression given in Eq. (10). The
middle part gives the runtime and memory exponents for Algorithm 3, again
optimising for time, with j = 2, i.e. when we use quantum enumeration to

create the second level lists Li(x1), i ≥ 2. The bottom part gives the
exponents for Algorithm 3 with j = 2 in the memory optimal setting.

so quantumly enumerating this list brings no advantage over Algorithm 2 where
we use the initial list Lk, of essentially the same size, in Grover’s algorithm.

5 Quantum Configuration Search via k-Clique
Listing

In this section we introduce a distinct approach to finding solutions of the con-
figuration problem, Definition 3.3, via k-clique listing in graphs. We achieve this
by repeatedly applying k-clique finding algorithms to the graphs. Throughout
this section we assume that L1 = · · · = Lk = L. We first solve the configuration
problem with k = 3, C the balanced configuration with all off diagonals equal
to −1/3 and the size of L determined by Eq. (2). We then adapt the idea to the
case for general k. In Appendix C.1 we give the k = 4 balanced case to elucidate
the jump to the general k case, and in Appendix C.2 the case for general k with
unbalanced configurations.

Let G = (V,E) be an undirected graph with known vertices and an or-
acle OG : V 2 → {True, False}. On input (x1,x2) ∈ V 2, OG returns True
if (x1,x2) ∈ E and False otherwise. A k-clique is {x1, . . . ,xk} such that
OG(xi,xj) = True for i 6= j. Given k in the balanced case, (xi,xj) ∈ E ⇐⇒
|〈xi , xj〉 + 1/k| ≤ ε for some ε > 0. In the unbalanced case (xi,xj) ∈ E ⇐⇒
|〈xi,xj〉 − Ci,j | ≤ ε (considered in Appendix C.2). In both cases, the oracle
computes a d dimensional inner product and compares the result against the
target configuration. Throughout we let |V | = n and |E| = m.

152 PAPER III

5.1 The Triangle Case
We start with the simple triangle finding algorithm of [BdWD+01]. A triangle
is a 3-clique. Given the balanced configuration and k = 3 on Sd−1, we have

n = |L| = Õ
(

(3
√

3/4)
d/2
)
, m = |L| |L(x1)| = Õ

(
n2(8/9)

d/2
)

(12)

by Eq. (2) and Theorem 3.2 respectively,6 We expect Θ(n) triangles to be
found [HKL18]. The algorithm of [BdWD+01] consists of three steps:

1. Use Grover’s algorithm to find any edge (x1,x2) ∈ E among all potential
O(n2) edges.

2. Given an edge (x1,x2) from Step 1, use Grover’s algorithm to find a vertex
x3 ∈ V , such that (x1,x2,x3) is a triangle.

3. Apply amplitude amplification on Steps 1–2.

Note that the algorithm searches for any triangle in the graph, not a fixed
one. To be more explicit about the use of the oracle OG, below we describe a
circuit that returns a triangle. Step 1 takes the state 1

n

∑
(x1,x2)∈V 2

|x1〉 ⊗ |x2〉 and

applies O(
√
n2/m) times the Grover iteration given by −H⊗2d̄RH⊗2d̄OG. The

output is the state
√

ε
n2−m

∑
(x1,x2) 6∈E

|x1〉 ⊗ |x2〉 +

√
1− ε
m

∑
(x1,x2)∈E

|x1〉 ⊗ |x2〉,

where ε represents the probability of failure. We disregard this as in the
proof of Theorem 4.1. We then join with a uniform superposition over the

vertices to create the state 1√
m

∑
(x1,x2)∈E

|x1〉 ⊗ |x2〉 ⊗
1√
n

∑
x3∈V

|x3〉 and apply

−H⊗3d̄RH⊗3d̄O∆
G O(

√
n) times. This oracle O∆

G outputs True on a triple from
V 3 if each pair of vertices has an edge. We call the final state |ΨF 〉. Let
A |~0⊗3〉 → |ΨF 〉, then we apply amplitude amplification with A repeated some
number of times determined by the success probability of A calculated below.

Given that oracle queries OG or O∆
G have some poly(d) cost, we may calculate

the time complexity of this method directly from the query complexity. The cost
of the first step is O(

√
n2/m) and the second step O(

√
n). From Eq. (12), and

that the costs of Step 1 and Step 2 are additive, we see that O(
√
n) dominates,

therefore Steps 1–2 cost O(
√
n). The probability that Step 2 finds a triangle

is the probability that Step 1 finds an edge of a triangle. Given that there are
Θ(n) triangles, this probability is Θ(n/m), therefore by applying the amplitude
amplification in Step 3, the cost of finding a triangle is O(

√
m).7

The algorithm finds one of the n triangles uniformly at random. By the
coupon collector’s problem we must repeat the algorithm Õ(n) times to find
all the triangles. Therefore the total cost of finding all triangles is Õ(n

√
m) =

Õ(|L|3/2|L(x1)|1/2) ≈ 20.3349d+o(d) using 20.1887d+o(d) memory. This matches
the complexity of Algorithm 2 for k = 3 in the balanced setting (see Table 2).

6As we are in the balanced configuration case, and our input lists are identical, Theorem 3.2
has no dependence on j.

7Note that this differs from [BdWD+01] as in general either of Step 1 or 2 may dominate
and we also make use of the existence of Θ(n) triangles.

PAPER III 153

5.2 The General k-Clique Case
The algorithm generalises to arbitrary constant k. We have a graph with |L|
vertices, |L||L(x1)| edges, . . . , |L||L(x1)| . . . |L(x1, . . . ,xi−1)| i-cliques for i ∈
{3, . . . , k − 1}, and Θ(|L|) k-cliques. The following algorithm finds a k-clique,
with 2 ≤ i ≤ k − 1

1. Use Grover’s algorithm to find an edge (x1,x2) ∈ E among all potential
O(|L|2) edges.

...

i. Given an i-clique (x1, . . . ,xi) from step i − 1, use Grover’s algorithm to
find a vertex xi+1 ∈ V , such that (x1, . . . ,xi+1) is an (i+ 1)-clique.

...

k. Apply amplitude amplification on Steps 1–(k − 1).

The costs of Steps 1–(k − 1) are additive. The dominant term is from Step
k − 1, a Grover search over |L|, equal to O(

√
|L|). To determine the cost of

finding one k-clique, we need the probability that Steps 1–(k−1) find a k-clique.
We calculate the following probabilities, with 2 ≤ i ≤ k − 2

1. The probability that Step 1 finds a good edge, that is, an edge belonging
to a k-clique.

i. The probability that Step i finds a good (i+1)-clique given that Step i−1
finds a good i-clique.

In Step 1 there are O(|L||L(x1)|) edges to choose from, Θ(|L|) of which be-
long to a k-clique. Thus the success probability of this Step is Θ(1/|L(x1)|).
Thereafter, in Step i, given an i-clique (x1, . . . ,xi) there are
O(max{|L(x1, . . . ,xi)|, 1}) (i + 1)-cliques on the form (x1, . . . ,xi,xi+1), Θ(1)
of which are good. The success probability of Steps 1–(k − 1) is equal to
Θ
(∏k−2

i=1 max {|L(x1, . . . ,xi)|, 1}−1
)
. By applying amplitude amplification at

Step k, we get the cost

O

√|L|
√√√√k−2∏

i=1

max {|L(x1, . . . ,xi)|, 1}

,
for finding one k-clique. Multiplying the above expression by Õ(|L|) gives the
total complexity for finding Θ(|L|) k-cliques. This matches the complexity of
Algorithm 2, Eq. (9), for balanced configurations for all k.

In Appendix C.2 we show how to solve the configuration problem with un-
balanced configurations using a graph approach, again achieving the same com-
plexity as Algorithm 2.

6 Quantum Configuration Search via Triangle
Listing

Given the phrasing of the configuration problem as a clique listing problem in
graphs, we restrict our attention to the balanced k = 3 case and appeal to the

154 PAPER III

wide body of recent work on triangle finding in graphs. Let the notation be
as in Section 5, and in particular recall Eq. (12) then a triangle represents a
solution to the configuration problem.

We note that the operations counted in the works discussed here are queries
to an oracle that returns whether an edge exists between two vertices in our
graph. While, in the case of [BdWD+01], it is simple to translate this cost
into a time complexity, for the algorithms which use more complex quantum
data structures [LGN17] it is not. In particular, the costs of computing various
auxiliary databases from certain sets is not captured in the total query cost.

The quantum triangle finding works we consider are [BdWD+01, Gal14,
LGN17]. In [BdWD+01] a simple algorithm based on nested Grover search and
quantum amplitude amplification is given which finds a triangle in O(n+

√
nm)

queries to OG. For sufficiently sparse graphs G, with sparsity measured as
m = O(nc) and G becoming more sparse as c decreases, this complexity at-
tains the optimal Ω(n). This is the algorithm extended in Section 5 for the
k-configuration problem. In [Gal14] an algorithm is given that finds a triangle
in Õ(n5/4) queries to OG. This complexity has no dependence on sparsity and
is the currently best known result for generic graphs. Finally in [LGN17] an
interpolation between the two previous results is given as the sparsity of the
graph increases.

Theorem 6.1 ([LGN17, Theorem 1]). There exists a quantum algorithm that
solves, with high probability, the triangle finding problem over graphs of n ver-
tices and m edges with query complexity

O(n+
√
nm) if 0 ≤ m ≤ n7/6

Õ(nm1/14) if n7/6 ≤ m ≤ n7/5

Õ(n1/6m1/3) if n7/5 ≤ m ≤ n3/2

Õ(n23/30m4/15) if n3/2 ≤ m ≤ n13/8

Õ(n59/60m2/15) if n13/8 ≤ m ≤ n2.

More specifically it is shown that for c ∈ (7/6, 2) a better complexity can
be achieved than shown in [BdWD+01,Gal14]. Moreover at the end points the
two previous algorithms are recovered; [BdWD+01] for c ≤ 7/6 and [Gal14]
for c = 2. We recall that these costs are in the query model, and that for
c > 7/6, where we do not recover [BdWD+01], we do not convert them into
time complexity.

We explore two directions that follow from the above embedding of the
configuration problem into a graph. The first is the most naïve, we simply
calculate the sparsity regime (as per [LGN17]) that the graph, constructed as
above, lies in and calculate a lower bound on the cost of listing all triangles.

The second splits our list into triples of distinct sublists and considers graphs
formed from the union of said triples of sublists. The sublists are parameterised
such that the sparsity and the expected number of triangles in these new graphs
can be altered.

6.1 Naïve Triangle Finding
With G = (V,E) and n,m as in (12), we expect to have

m = O
(
n2+δ

)
= O

(
n1.5500

)
, δ = log(8/9)/log(3

√
3/4).

PAPER III 155

Therefore finding a single triangle takes Õ(n23/30m4/15) = Õ
(
n1.1799

)
queries

to OG [LGN17]. If, to list the expected Θ(n) triangles, we have to repeat this
algorithm Õ(n) times this leads to a total OG query complexity of Õ(n2.1799) =
20.4114d+o(d) which is not competitive with classical algorithms [HK17] or the
approach of Section 5.

6.2 Altering the Sparsity
Let n remain as in Eq.(12) and γ ∈ (0, 1) be such that we consider Γ = n1−γ dis-
joint sublists of L, `1, . . . , `Γ, each with n′ = nγ elements. There are O(n3(1−γ))
triples of such sublists, (`i, `j , `k), with i, j, k pairwise not equal and the union
of the sublists within one triple, `ijk = `i ∪ `j ∪ `k, has size O(n′). Let Gijk =
(`ijk, Eijk) with (x1,x2) in `ijk× `ijk, (x1,x2) ∈ Eijk ⇐⇒ |〈x1,x2〉+ 1/3| ≤ ε
as before. Using Theorem 3.2, each Gijk is expected to have

m′ = O (|`ijk| |`ijk(x1)|) = O
(

(n′)
2
(8/9)

d/2
)

= O
(
n2γ(8/9)

d/2
)

edges. By listing all triangles in all Gijk we list all triangles in G, and as n is
chosen to expect Θ(n) triangles in G, we have sufficiently many solutions for
the underlying k-List problem. We expect, by Theorem 3.2

|`ijk||`ijk(x1)||`ijk(x1,x2)| = |`ijk|
(
|`ijk|(8/9)

d/2
)(
|`ijk|(2/3)

d/2
)

= O(n3γ)(16/27)
d/2

= O(n3γ−2)

triangles per `ijk. We must at least test each `ijk once, even if O(n3γ−2) is
subconstant. The sparsity of `ijk given γ is calculated as

m′ = O
(

(n′)
2+β(γ)

)
, β(γ) =

log(8/9)

γ log(3
√

3/4)
.

For given γ the number of `ijk to test is O(n3(1−γ)), the number of triangles to
list per `ijk isO(n3γ−2) – we always perform at least one triangle finding attempt
and assume listing them all takes Õ(n3γ−2) repeats – and we are in the sparsity
regime c(γ) = 2 + β(γ) [LGN17]. Let a, b represent the exponents of n′,m′

respectively8 in Theorem 6.1 given by m′ = (n′)
c(γ). We therefore minimise, for

γ ∈ (0, 1), the exponent of n in O(n3(1−γ)) · Õ(n3γ−2) · Õ((n′)
a
(m′)

b
),

3(1− γ) + max{0, 3γ − 2}+ aγ +

(
2γ +

log(8/9)

log(3
√

3/4)

)
b.

The minimal query complexity of n1.7298+o(d) = 20.326d+o(d) is achieved at γ = 2
3 .

The above method leaves open the possibility of finding the same triangle
multiple times. In particular if a triangle exists in Gij = (`ij , Eij), with `ij and
Eij defined analogously to `ijk and Eijk, then it will be found in Gijk for all
k, that is O(n1−γ) many times. Worse yet is the case where a triangle exists
in Gi = (`i, Ei) where it will be found O(n2(1−γ)) times. However, in both
cases the total number of rediscoveries of the same triangle does not affect the
asymptotic complexity of this approach. Indeed in the `ij case this number is
the product O(n2(1−γ)) · O(n3γ · (8/9)

d/2
) · O(n1−γ) = O(n), the product of the

8Note that we are considering Gijk rather than G here, hence the n↔ n′,m↔ m′ notation
change.

156 PAPER III

number of `ij , the number of triangles9 per `ij and the number of rediscoveries
per triangle in `ij respectively. Similarly, this value remains O(n) in the `i case
and as we are required to list O(n) triangles the asymptotic complexity remains
O(n).

7 Parallelising Quantum Configuration Search
In this section we deviate slightly from the k-List problem and the configuration
framework and target SVP directly. On input we receive {b1, . . . ,bd} ⊂ Rd, a
basis of L(B). Our algorithm finds and outputs a short vector from L(B). As in
all the algorithms described above, we will be satisfied with an approximation
to the shortest vector and with heuristic analysis.

We describe an algorithm that can be implemented using a quantum circuit
of width Õ(N) and depth Õ(

√
N), where N = 20.2075d+o(d). We therefore

require our input and output to be less than Õ(
√
N), and if we were to phrase

the 2-Sieve algorithm as a 2-List problem we would not be able to read in
and write out the data. Our algorithm uses poly(d) classical memory. For the
analysis, we make the same heuristic assumptions as in the original 2-Sieve work
of Nguyen–Vidick [NV08].

All the vectors encountered by the algorithm (except for the final measure-
ment) are kept in quantum memory. Recall that for a pair of normalised vectors
x1,x2 to form a “good” pair, i.e. to satisfy ‖x1 ± x2‖ ≤ 1, it must hold that
|〈x1 , x2〉| ≥ 1

2 . The algorithm described below is the quantum parallel version
of 2-Sieve. Each step is analysed in the subsequent lemmas.

Algorithm 4 A parallel quantum algorithm for 2-Sieve
Input: {b1, . . . ,bd} ⊂ Rd a lattice basis
Output: v ∈ L(B), a short vector from L(B)

1: Set N ← 20.2075d+o(d) and set λ = Θ(
√
d · det(B)

1/d
) the target length.

2: Generate a list L1 ← {x1, . . . ,xN} of normalised lattice vectors using an
efficient lattice sampling procedure, e.g. [Kle00].

3: Construct a list L2 ← {x′1, . . . ,x′N} such that |〈xi , x′i〉| ≥ 1/2 for x′i ∈ L1.
If no such x′i ∈ L1 exists, set x′i ← 0.

4: Construct a list L3 ← {yi : yi ← min{‖xi ± x′i‖} for all i ≤ N} and nor-
malise its elements except for the last iteration.

5: Swap the labels L1, L3. Reinitialise L2 and L3 to the zero state by trans-
ferring their contents to auxiliary memory.

6: Repeat Steps 3–5 poly(d) times.
7: Output a vector from L1 of Euclidean norm less than λ.

Several remarks about Algorithm 4.

1. The bound on the repetition factor on Step 6 is, as in classical 2-Sieve
algorithms, appropriately set to achieve the desired norm of the returned
vectors. In particular, it suffices to repeat Steps 2–5 poly(d) times [NV08].

9Given that |`i| = nγ , |`ij | = 2nγ , |`ijk| = 3nγ the expected numbers of triangles differ
only by a constant.

PAPER III 157

2. In classical 2-Sieve algorithms, if xi does not have a match x′i, it is sim-
ply discarded. Quantumly we cannot just discard an element from the
system, so we keep it as the zero vector. This is why, as opposed to the
classical setting, we keep our lists of exactly the same size throughout all
the iterations.

3. The target norm λ is appropriately set to the desired length. The algo-
rithm can be easily adapted to output several, say T , short vectors of
L(B) by repeating Step 7 T times.

Theorem 7.1. Given on input a lattice basis L(B) = {b1, . . . ,bd} ⊂ Rd, Algo-
rithm 4 heuristically solves the shortest vector problem on L(B) with constant
success probability. The algorithm can be implemented using a uniform family
of quantum circuits of width Õ(N) and depth Õ(

√
N), where N = 20.2075d+o(d).

We prove the above theorem in several lemmas. Here we only give proof
sketches for these lemmas, and defer more detailed proofs to Appendix D. In the
first lemma we explain the process of generating a database of vectors of size N
having N processors. The main routines, Steps 3–5, are analysed in Lemma 7.2.
Finally, in Step 7 we use Grover’s algorithm to amplify the amplitudes of small
norm vectors.

Lemma 7.1. Step (2) of Algorithm 4 can be implemented using a uniform
family of quantum circuits of width Õ(N) and depth poly log(N).

Lemma 7.2. Steps (3–5) of Algorithm 4 can be implemented using a uniform
family of quantum circuits of width Õ(N) and depth Õ(

√
N).

Lemma 7.3. Step (7) of the Algorithm 4 can be implemented using a uniform
family of quantum circuits of width Õ(N) and depth Õ(

√
N).

Before we present our proofs for the above lemmas, we briefly explain our
computational model. We assume that each input vector bi is encoded in
d̄ = poly(d) qubits and we say that it is stored in a single register. We also
consider the circuit model and assume we have at our disposal a set of elemen-
tary gates – Toffoli, and all 1-qubit unitary gates (including the Hadamard and
PauliX), i.e. a universal gate set that can be implemented efficiently. We further
assume that any parallel composition of unitaries can be implemented simulta-
neously. For brevity, we will often want to interpret (computations consisting
of) parallel processes to be running on parallel processors. We emphasise that
this is inconsequential to the computation and our analysis. However, thinking
this way greatly helps to understand the physical motivation and convey the
intuition behind the computation.

Proof 7.1 (Proof sketch of Lemma 7.1). The idea is to copy the cell of registers,
|B〉, encoding the basis B = {b1, . . . ,bd} to N processors, where each processor
is equipped with poly log(N) qubits. The state |B〉 itself is a classical (diagonal)
state made of d̄ 2 = O(log2(N)) qubits. To copy B to all N processors, it takes
dlog(N)e steps each consisting of a cascade of CNOT operations.

Each of the processors samples a single xi using a randomised sampling
algorithm, e.g. [Kle00]. This is an efficient classical procedure that can be im-
plemented by a reversible circuit of poly(d) depth and width. The exact same
circuit can be used to realise the sampling on a quantum processor.

158 PAPER III

Each processor i, having computed the xi, now keeps xi locally and also
copies it to a distinguished cell L1. The state of the system now can be described
as

|x1〉P1
|x2〉P2

. . . |xN 〉PN |x1,x2 . . .xN 〉L1 |ancilla〉

where Pi is the register in possession of processor i. The total depth of the circuit
is O(log(N)) to copy plus poly log(N) to sample plus O(1) to copy to the list
L1. Each operation is carried out by N processors and uses poly log(N) qubits.
Thus the total depth of a quantum circuit implementing Step (2) is poly log(N)

and its width is Õ(N).

Proof 7.2 (Proof sketch of Lemma 7.2). The key idea to construct the list L2

is to let each processor Pi, which already has a copy of |xi〉 ,xi ∈ L1, search
through L1 (now stored in the distinguished cell L1) to find a vector x′i such
that |〈xi , x′i〉| ≥ 1/2 (if no such x′i ∈ L1, set x′i = 0). The key ingredient is
to parallelise this search, i.e. let all processors do the search at the same time.
The notion of parallelisation is however only a (correct) interpretation of the
operational meaning of the unitary transformations. It is important to stress
that we make no assumptions about how data structures are stored, accessed
and processed, beyond what is allowed by the axioms of quantum theory and the
framework of the circuit model.

For each processor i, we define a function fi(y) = 1 if |〈xi , y〉| ≥ 1/2
and 0 otherwise; and let Wf and Df be the maximal width and depth of a
unitary implementing any fi. It is possible to implement a quantum circuit of
Õ(N ·Wf) width and Õ(

√
NDf) depth that can in parallel find solutions to all

fi, 1 ≤ i ≤ N [BBG+13]. This quantum circuit searches through the list in
parallel, i.e. each processor can simultaneously access the memory and search.
Note, fi is really a reduced transformation. The “purification” of fi is a two
parameter function f : X×X → {0, 1}. However, in each processor i, one of the
inputs is “fixed and hardcoded” to be xi. The function f itself admits an efficient
implementation in the size of the inputs, since this is the inner product function
and also has a classical reversible circuit consisting of Toffoli and NOT gates.
Once the search is done, it is expected with probability greater than 1−2−Ω(d) that
each processor i will have found an index ji, s.t. |〈xi , xji〉| ≥ 1/2, xi,xji ∈ L1.
One can always check if the processor found a solution, otherwise the search can
be repeated a constant number of times. If none of the searches found a “good”
ji, we set xji = 0. Else, if any of the searches succeed, we keep that index ji.

At this point we have a virtual list L2, which consists of all indices ji. We
create a list L3 in another distinguished cell, by asking each processor to compute
y+
i = xi + xji and y−i = xi − xji and copy into the ith register the shorter of

y+
i and y−i , in the Euclidean length. The state of the system now is,

|x1〉P1 . . . |xN 〉PN |y1〉P1 . . . |yL〉PN |x1 . . .xN 〉L1 |y1 . . .yN 〉L3 |ancilla〉 .

A swap between qubits say, S and R, is just CNOTSR ◦ CNOTRS ◦ CNOTSR,
and thus the Swap in Step 5 between L1 and L2 can be done with a depth 3 cir-
cuit. Finally reinitialise the lists L2 and L3 by swapping them with two registers
of equal size that are all initialised to zero. This unloads the data from the main
memories (L2, L3) and enables processors to reuse them for the next iteration.

The total depth of the circuit is Õ(
√
N) (to perform the parallel search for

“good” indices ji), poly logN (to compute the elements of the new list L3 and

copy them), and O(1) (to swap the content in memory registers). Thus, in total
we have constructed a circuit of Õ(

√
N) depth and Õ(N) width.

Proof 7.3 (Proof sketch of Lemma 7.3). Given a database of vectors of size N
and a norm threshold λ, finding a vector from the database of Euclidean norm
less than λ amounts to Grover’s search over the database. It can be done with a
quantum circuit of depth Õ(

√
N). It could happen that the threshold λ is set to

be too small, in which case Grover’s search returns a random element form the
database. In that case, we repeat the whole algorithm with an increased value
for λ. After Θ(1) repetitions, we heuristically obtain a short vector from L(B).

Proof 7.4 (Proof sketch of Theorem 7.1). As established from the lemmas
above, each of Step 2, Steps 3–5 and Step 7 can be realised using a family of
quantum circuits of depth and width (at most) Õ(

√
N) and Õ(N) respectively.

However, Steps 3–5 run O(poly(d)) times, thus the total depth of the circuit
now goes up by at most a multiplicative factor of O(poly(d)) = O(poly log(N)).
The total depth and width of a circuit implementing Algorithm 4 remains as
Õ(
√
N) and Õ(N) respectively as Õ notation suppresses subexponential factors.

This concludes the proof.

7.1 Distributed Configuration Search: Classical Analogue
Algorithm 4 should be compared with a classical model where there are N =
20.2075d+o(d) computing nodes, each equipped with poly(d) memory. It suffices
for these nodes to have a nearest neighbour architecture, where node i is con-
nected to nodes i − 1 and i + 1, and arranged like beads in a necklace. We
cost one time unit for poly(d) bits sent from any node to an adjacent node. A
comparable distributed classical algorithm would be where each node, i, receives
the basis B and samples a vector vi. In any given round, node i sends ṽi to
node i+ 1 and receives ṽi−1 from node i− 1 (in the first round ṽi := vi). Then
each node checks if the vector pair (vi, ṽi−1) gives a shorter sum or difference.
If yes, it computes v(2)

i = min{vi ± ṽi−1} and sets ṽi := vi−1. After N rounds
every node i has compared their vector vi with all N vectors sampled. The
vectors vi can be discarded and the new round begins with v

(2)
i being the new

vector. The process is repeated poly(d) many times leading to O(N) · poly(d)

time steps. Thus this distributed algorithm needs Õ(N) = 20.2075d+o(d) time.

Acknowledgements. Most of this work was done while EK was at ENS de
Lyon, supported by ERC Starting Grant ERC-2013-StG-335086-LATTAC and
by the European Union PROMETHEUS project (Horizon 2020 Research and
Innovation Program, grant 780701). EM is supported by the Swedish Research
Counsel (grant 2015-04528) and the Swedish Foundation for Strategic Research
(grant RIT17-0005). EWP is supported by the EPSRC and the UK govern-
ment (grant EP/P009301/1). SRM is supported by the Clarendon Scholarship,
Google-DeepMind Scholarship and Keble Sloane–Robinson Award.

We are grateful to the organisers of the Oxford Post-Quantum Cryptography
Workshop held at the Mathematical Institute, University of Oxford, March
18–22, 2019, for arranging the session on Quantum Cryptanalysis, where this
work began. We would like to acknowledge the fruitful discussions we had with
Gottfried Herold during this session.

159

160 PAPER III

Finally, we would like to thank the AsiaCrypt’19 reviewers, whose construc-
tive comments helped to improve the quality of this paper.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with
worst-case/average-case equivalence. In Proceedings of the Twenty-
ninth Annual ACM Symposium on Theory of Computing, STOC
’97, pages 284–293, 1997.

[ADH+19] Martin Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova,
Eamonn Postlethwaite, and Marc Stevens. The general sieve kernel
and new records in lattice reduction. In Advances in Cryptology –
EUROCRYPT 2019, pages 717–746, 2019.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah
Stephens-Davidowitz. Solving the shortest vector problem in 2n

time using discrete gaussian sampling: Extended abstract. In Pro-
ceedings of the Forty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’15, pages 733–742, New York, NY, USA,
2015. ACM.

[AGJO+15] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-
O’Connor, Michele Mosca, and Priyaa Varshinee Srinivasan. On
the robustness of bucket brigade quantum RAM. New Journal of
Physics, 17(12):123010, dec 2015.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In Proceedings of the
Thirty-third Annual ACM Symposium on Theory of Computing,
STOC ’01, pages 601–610, 2001.

[ANS18] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum
lattice enumeration and tweaking discrete pruning. In Advances
in Cryptology – ASIACRYPT 2018, pages 405–434, 2018.

[BBG+13] Robert Beals, Stephen Brierley, Oliver Gray, Aram W Harrow,
Samuel Kutin, Noah Linden, Dan Shepherd, and Mark Stather.
Efficient distributed quantum computing. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 469(2153):20120686, 2013.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
bounds on quantum searching. Fortschritte der Physik, 46(4–
5):493–505, 1998. Fortschritte der Physik, 46(4–5):493–505, 1998.

PAPER III 161

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New
directions in nearest neighbor searching with applications to lattice
sieving. In Proceedings of the Twenty-seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’16, pages 10–24, 2016.

[BdWD+01] Harry Buhrman, Ronald de Wolf, Christoph Dürr, Mark Heilig-
man, Peter Høyer, Frédéric Magniez, and Miklos Santha. Quan-
tum algorithms for element distinctness. In Proceedings of the 16th
Annual Conference on Computational Complexity, CCC ’01, pages
131–137, Washington, DC, USA, 2001. IEEE Computer Society.

[BGJ14] Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm
based on overlattices. LMS Journal of Computation and Mathe-
matics, 17(A):49–70, 2014.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp.
Quantum amplitude amplification and estimation. Quantum
Computation and Quantum Information: A Millennium Volume,
305:53–74, 2002. Earlier version in arxiv:quant-ph/0005055.

[BHT97] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algo-
rithm for the collision problem. ACM SIGACT News (Cryptology
Column), 28, 1997.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice siev-
ing. LMS Journal of Computation and Mathematics, 19:146––162,
2016.

[CCL17] Yanlin Chen, Kai-Min Chung, and Ching-Yi Lai. Space-efficient
classical and quantum algorithms for the shortest vector problem.
arXiv e-prints, Aug 2017.

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short
stickelberger class relations and application to ideal-SVP. In Ad-
vances in Cryptology - EUROCRYPT 2017, pages 324–348, 2017.

[DRS14] D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest
vector problem with a distance guarantee. In 2014 IEEE 29th
Conference on Computational Complexity (CCC), pages 98–109,
June 2014.

[Duc18] Léo Ducas. Shortest vector from lattice sieving: A few dimensions
for free. In Advances in Cryptology – EUROCRYPT 2018, pages
125–145, 2018.

[Gal14] F. L. Gall. Improved quantum algorithm for triangle finding via
combinatorial arguments. In 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, pages 216–225, Oct 2014.

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum
random access memory. Phys. Rev. Lett., 100:160501, Apr 2008.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enu-
meration using extreme pruning. In Advances in Cryptology –
EUROCRYPT 2010, pages 257–278, 2010.

162 PAPER III

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-eighth Annual ACM Sympo-
sium on Theory of Computing, STOC ’96, pages 212–219, 1996.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for
the approximate k-list problem in Euclidean norm. In Public-Key
Cryptography – PKC 2017, pages 16–40, 2017.

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-
ups and time–memory trade-offs for tuple lattice sieving. In Public-
Key Cryptography – PKC 2018, pages 407–436, 2018.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and
related lattice problems. In Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, STOC ’83, pages 193–
206, 1983.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusu-
ally close. In SODA, pages 937–941, 2000.

[KLM07] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An intro-
duction to quantum computing. Oxford University Press, 2007.

[Kup13] Greg Kuperberg. Another subexponential-time quantum algo-
rithm for the dihedral hidden subgroup problem. In 8th Con-
ference on the Theory of Quantum Computation, Communication
and Cryptography, TQC, pages 20–34, 2013.

[Laa15] Thijs Laarhoven. Search problems in cryptography. PhD thesis,
Eindhoven University of Technology, 2015.

[LGN17] François Le Gall and Shogo Nakajima. Quantum algorithm for
triangle finding in sparse graphs. Algorithmica, 79(3):941–959, Nov
2017.

[LMvdP15] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Find-
ing shortest lattice vectors faster using quantum search. Designs,
Codes and Cryptography, 77(2):375–400, Dec 2015.

[Map] Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
Standard Worksheet Interface, Maple 2016.0, February 17 2016.

[Mon18] Ashley Montanaro. Quantum-walk speedup of backtracking algo-
rithms. Theory of Computing, 14(15):1–24, 2018.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential
time algorithms for the shortest vector problem. In Proceedings
of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 1468–1480, 2010.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the
shortest vector problem are practical. Journal of Mathematical
Cryptology, pages 181–207, 2008.

PAPER III 163

[PMHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-
svp in ideal lattices with pre-processing. In Advances in Cryptology
– EUROCRYPT 2019, pages 685–716, 2019.

[Reg05] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Proceedings of the Thirty-seventh An-
nual ACM Symposium on Theory of Computing, STOC ’05, pages
84–93, 2005.

[Reg09] Oded Regev. Lecture notes: Lattices in computer sci-
ence. http://www.cims.nyu.edu/~regev/teaching/lattices_fall_
2009/index.html, 2009. Accessed: 30-04-2019.

[TKH18] Tadanori Teruya, Kenji Kashiwabara, and Goichiro Hanaoka. Fast
lattice basis reduction suitable forÂ massive parallelization and its
application to the shortest vector problem. In Public-Key Cryp-
tography – PKC 2018, pages 437–460, 2018.

164 PAPER III

A Configuration Search Algorithm
The pseudocode of the algorithm for the configuration problem from [HK17] is
given in Algorithm 5.

Algorithm 5 Algorithm for the Configuration Problem
Input: L1, . . . , Lk – lists of vectors from Sd−1. Ci,j = 〈xi , xj〉 ∈ Rk×k – Gram
matrix. ε > 0.
Output: Lout – list of k-tuples x1 ∈ L1, . . . ,xk ∈ Lk, s.t. |〈xi , xj〉 − Cij | ≤ ε,
for all i, j.
1: Lout ← {}
2: for all x1 ∈ L1 do
3: for all j = 2 . . . k do
4: L

(1)
j ← Filter((x1, Lj , C1,j , ε))

5: for all x2 ∈ L(1)
2 do

6: for all j = 3 . . . k do
7: L

(2)
j ← Filter((x2, L

(1)
j , C2,j , ε))

8:
. . .

9: for all xk ∈ L(k−1)
k do

10: Lout ← Lout ∪ {(x1, . . .xk)}
return Lout

1: function Filter(()x, L, c, ε)
2: L′ ← {}
3: for all x′ ∈ L do
4: if |〈x , x′〉 − c| ≤ ε then
5: L′ ← L′ ∪ {x′}

return L′

PAPER III 165

B Quantum Algorithms for Locality Sensitive
Filters

We employed quantum enumeration (Grover’s algorithm) to quantumly speed
up the creation of filtered lists. Recall how these filtered lists are created classi-
cally (see Section 3): given a point x, a list L and a target inner product C1,i,
we iterate over all xi ∈ L to find those that satisfy 〈x , xi〉 ≈ C1,i. This is
precisely the problem addressed by neariest neighbour techniques. A nearest
neighbour algorithm of particular interest to us is the the Locality Sensitive
Filtering (LSF) method [BDGL16]. In this subsection we briefly explain the
method, and then we show how it can be sped up with a quantum computer.
For k = 2 this idea was proposed by Laarhoven in [Laa15].

Spherical Locality Sensitive Filters The idea of LSF is to create a data
structure D of buckets Bv of the form D = ∪vBv. Each bucket Bv, indexed by
some filter vector v ∈ Sd−1, contains all vectors from L that are α-close to v,
i.e, 〈x ,v〉 ≥ α. Let us denote by V the set of all filter vectors v. In application,
V is large set: later we set |V| to be exponential in d.

For a given set of buckets and a list L, building a data structure D for L
means that for each x ∈ L, we find all v ∈ V that are α-close to x, and, for all
such v, we put x into the bucket Bv. Now if we want to find all points from
x ∈ L that are c-close to a query point q, we first find all β-close v ∈ V to q,
and then for all these v search inside the relevant buckets Bv for x’s, which are
c-close to q. The main observation is that quantum search over the relevant
buckets can be done using Grover’s algorithm. First we create a superposition
over the content of the relevant buckets (the bucket labels are known) and then
apply Grover’s search over the vectors stored in these buckets to find a c-close
to q. As we want to find all c-close vectors, we repeat this process until all these
vectors are found.

To solve the task of finding relevant filter vectors v for a given x (or q)
efficiently, vectors v are chosen with some structure. On the one hand, it enables
us to find filter vectors relevant for a given x in time (up to lower order terms)
proportional to the number of such filter vectors. On the other hand, even with
such structure, we can argue that the joint distribution of v’s is sufficiently close
to |V| independent vectors from Sd−1. For further details on this technique, we
refer the reader to [BDGL16]. Here we simply assume that v’s are independent
and that we can find all relevant v’s for a given query point in time essentially
equal to the size of the output. Note that because we can find all the relevant
filters in time asymptotically equal to the output size, applying Grover’s search
will not speed up this part of the algorithm. The main routines Insert(x) –
putting x into all α-close buckets, and Query(q) – finding all c-close points
for q, are listed in Algorithm 6. The only difference between the classical and
quantum routines are in the algorithm Query(q), where the search inside a
relevant bucket is done using quantum enumeration.

The three parameters α, β, c govern the complexity of LSF. First, they
determine the size of V necessary to find all vectors from a list, which are c-
close to a given query point. The insertion parameter α determines the number
of buckets a vector is put into and thus, controls the size of buckets. The query
parameter β determines the number of relevant buckets for a query q. In the

166 PAPER III

next theorem, adapted from [HKL18, Theorem 3], we give closed formulas for
these costs.

Algorithm 6 Algorithms for spherical locality-sensitive filtering
Parameters: α, β, c,V
D = ∪v∈VBv.

1: function Insert(x)
2: Find all v ∈ V s.t. 〈v , x〉 ≈ α
3: for all v ∈ V s.t. 〈v , x〉 ≈ α do
4: Bv ← Bv ∪ {x}

1: function Query(q) . Find x ∈ L with 〈x , q〉 ≥ c
2: PointsFound← ∅
3: Find all v ∈ V s.t. 〈v , x〉 ≈ β
4: Create a superposition over all relevant buckets v, query all vectors in

these buckets

|Ψ〉 =

√
1

|V| (1− β2)d/2 · |L| (1− α2)d/2

∑
v relevant

|v〉
∑
x∈Bv

|x〉

5: Run Grover’s algorithm on |Ψ〉 to output an x using the checking func-
tion

f(x,x′) =

{
1, 〈x , q〉 ≈ c
0, else.

6: PointsFound← PointsFound ∪ {x}
7: Repeat Steps 4–6 Õ(|L| (1−c2)d/2) times until all the c-close vectors are

found
8: return PointsFound

Theorem B.1 (Complexity of spherical LSF, adapted from [HKL18, Theo-
rem 3]). Assume we are given a list L of iid. uniform points from Sd−1 of size
exponential in d, a target 0 ≤ c ≤ 1, and fixed 0 ≤ α, β ≤ 1. Then the costs of
LSF procedures given in Algorithm 6 determined by:

• Number of buckets (filter vectors) used in creating the data structure
D = ∪v∈VBv:

|V| = (det (1 c
c 1))

d/2(
det
(1 α β
α 1 c
β c 1

))d/2 ;

• Update cost per x ∈ L to find all α-close v ∈ V: TUpdate = |V| ·(1−α2)d/2;

• Preprocessing time to build the data structure D = ∪v∈VBv:

TPrep = |L| · |V| · (1− α2)d/2;

• Memory to store the the data structure D is |L| · |V| · (1− α2)d/2;

PAPER III 167

• Quantum query cost per q to find all relevant β-close v ∈ V and to find
all c-close x’s:

TQuery = |V|·(1−β2)d/2+
√
|V| (1− β2)d/2 · |L| (1− α2)d/2 · |L| (1− c2)d/2.

A proof of this theorem can be found in [HKL18, Appendix D]. The intuition
behind all these complexities is the following: for a point x ∈ L ⊂ Sd−1 and
a fixed vector v, the probability that 〈v , x〉 ≈ α is (1 − α2)d/2. Different to
the classical case, we do not assume that the buckets are of expected size 1
(intuitively, this is because iterating over the buckets becomes cheaper in the
quantum setting). The number of buckets is determined by the probability that
the triple (x,v,q), conditioned on the fact that 〈x ,q〉 ≈ c, satisfies all the inner
product constraints: 〈x,q〉 ≈ c, 〈x,v〉 ≈ α, 〈v ,q〉 ≈ β. The quantum query cost
consists of first, finding all the relevant buckets in V and second, enumerating
the expected number of |L| (1− c2)d/2 many c-close vectors. The expected size
of each bucket is |L| (1− α2)d/2.

Using LSF for the configuration problem. We make use of locality sensi-
tive filters for the configuration problem as follows: given a target configuration
C and the lists Li, preprocess the lists Li for i ≥ 2 using the data structures
Di and the LSF parameters αi, βi. Once the preprocessing is done, we can con-
struct the intermediate lists Li(x1) using quantum queries into Di’s for x1 ∈ L1.
When Li(x1) are constructed we can either run Grover’s algorithm to find the
(k − 1)-tuple analogously to Algorithm 2, or we can construct new LSF data
structures now for Li(x1)’s and “delay” Grover’s search for deeper levels. In
general, to create all the filtered lists on level j ≥ 2, we first prepare the LSF
data structures D(j−1)

i for the lists L(j−1)
i on level j − 1, for all i ≥ j. This is

done classically. Then for each xj−1 ∈ L(j−1)
j−1 , we create the filtered lists L(j)

i by
calling Query(xj−1) into the corresponding D(j−1)

i . Contrary to Algorithm 3,
here we run quantum enumeration over the relevant buckets rather than over
L

(j−1)
i , which brings a speed-up provided the construction of D(j−1)

i ’s was not
too costly.

Pseudocode of the algorithm for the configuration problem with LSF is given
in Algorithm 7. Let us again denote L(j)

i := Li(x1, . . . ,xj−1) for all i ≥ j,
assuming L(1)

i are the input lists. Then the time needed to construct an inter-
mediate list L(j)

i , i ≥ j is

T (i, j) =

j−2∏
r=1

∣∣∣L(r)
r

∣∣∣ (TPrep(i, j − 1) +
∣∣∣L(j−1)
j−1

∣∣∣TQuery(j − 1, j − 1)
)
,

where TPrep(i, j − 1) is the preprocessing cost for L(j−1)
i and TQuery(j − 1, j − 1)

is the query costs for the elements from L
(j−1)
j−1 . Therefore, to create all the

intermediate lists on level j, we need time

T (j) = max
j≤i≤k

T (i, j).

These costs can be established from Theorem B.1. Once all the lists on level j
are constructed, we run Grover search for a good (k− j + 1) tuple analogous to

168 PAPER III

Algorithm 3. Overall complexity of Algorithm 7 (cf. Eq. (11)) is:

T Q
LSF(j) = max

T (j),

j−1∏
r=1

∣∣∣L(r)
r

∣∣∣

√√√√√
∣∣∣L(j)
j+1

∣∣∣∣∣∣L(j+1)
j+1

∣∣∣ + . . .+

√√√√√
∣∣∣L(j)
k−1

∣∣∣∣∣∣L(k−1)
k−1

∣∣∣ +

√√√√√
∣∣∣L(j)
k

∣∣∣∣∣∣L(k−1)
k

∣∣∣

·
√∣∣∣L(j)

j

∣∣∣ · . . . ∣∣∣L(k−1)
k−1

∣∣∣ · ∣∣∣L(k−1)
k

∣∣∣} .
(13)

The best runtime exponents are obtained when the locality sensitive tech-
niques are used to construct the intermediate lists, Algorithm 7. It is again
optimal to set j = 2 (as in the case of Algorithm 3), i.e., when the LSF data
structure is used to quantumly construct the second level lists. For k = 2 the
exponent was established in [Laa15] and is currently the best known when we
seek for optimal time. Locality sensitive filters also speed up the configuration
search algorithm for k = 3, 4. However, the advantage of near neighbour tech-
niques decreases when the lists become smaller, which is what we observe when
k increases. Furthermore, the LSF technique (and near neighbour methods,
in general) become more expensive when the target inner product c becomes
smaller: one requires a larger data structure to allocate c-close vectors, which
is why we did not run numerical optimisations for large k’s.

k 2 3 4 5

Quantum k-List with LSF
Time 0.2653 0.2908 0.3013 0.3048
Space 0.2653 0.2908 0.3013 0.3048

Quantum k-List with LSF, low-memory regime
Time 0.2925 0.3266 0.3178 0.3281
Space 0.2075 0.1887 0.1724 0.1587

.

Table 3: Asymptotic complexity exponents for the approximate k-List problem
using the LSF techniques, Algorithm 7 with j = 2.

PAPER III 169

Algorithm 7 Quantum algorithm for the Configuration problem with LSF
Input: L1, . . . , Lk− lists of vectors from Sd−1, target configuration Ci,j =
〈xi ,xj〉 ∈ Rk×k− a Gram matrix, ε > 0, 2 ≤ j ≤ k−1− level until we construct
the intermediate filtered lists; LSF parameters {αi,r, βi,r}1≤i≤k,1≤r≤j−1

Output: Lout− list of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk, s.t.
|〈xi , xj〉 − Cij | ≤ ε for all i, j.
1: Lout ← ∅
2: Create LSF data structures D(1)

i with parameters {αi,1, βi,1} ∀Łi, i ≥ 2
3: for all x1 ∈ L1 do
4: Call Query(x1) using D(1)

i to construct Li(x1) ∀i ≥ 2

5: Create LSF data structures D(2)
i with parameters {αi,2, βi,2} ∀Łi, i ≥ 3

6: for all x2 ∈ L2(x1) do
7: Call Query(x1) using D(2)

i to construct Li(x1,x2), ∀i ≥ 3

8:
. . .

9: for all xj−1 ∈ Lj−1(x1, . . . ,xj−2) do
10: Call Query(x1) using D(j−1)

i to construct Li(x1, . . . ,xj−1),
∀i ≥ j

11: Prepare the state |ΨLj(x1,...,xj−1)〉 ⊗ . . .⊗ |ΨLk(x1,...,xj−1)〉
12: for all i = j + 1 . . . k − 1 do
13: Run Grover’s on the ith register with the checking function

f[i−1],i to transform the state |ΨLi(x1,...,xj−1)〉 to the state |ΨLi(x1,...,xi−1)〉.
14: Run Grover’s on the kth register with the checking function

f[k−2],k to transform the state |ΨLk(x1,...,xj−1)〉 to the state |ΨLk(x1,...,xk−2)〉.
15: Let A be unitary that implements Steps 9–12, i.e.

A |0〉 → |ΨLj(x1,...,xj−1)〉 ⊗ |ΨLk(x1,...,xk−1)〉

16: Run amplitude amplification using the unitary −ARA−1Og,
where g is defined in Eq. (8).

17: Measure all the registers, obtain a tuple (xj , . . . ,xk).
18: if (x1, . . . ,xk) satisfies C then
19: Lout ← Lout ∪ {(x1, . . . ,xk)}.

170 PAPER III

C Some More k-clique Cases

C.1 The k = 4 Case
Here we modify the idea of applying quantum triangle listing to the 3-List
problem developed in Section 5, to the k = 4 case. We use the notations from
Section 5. The general case is covered in Section 5.2. For k = 4, we obtain
a graph with n = |L| = O

((
4 3
√

4/5
)d/2)

edges, m = |L||L(x1)| vertices, t =

|L||L(x1)||L(x1,x2)| triangles and Θ(n) 4-cliques (cf. Eq. (12)). The algorithm
from Section 5.1 can be modified to give an algorithm for finding 4-cliques as
follows.

1. Use Grover’s algorithm to find an edge (x1,x2) ∈ E among all potential
O(n2) edges.

2. Given an edge (x1,x2), use Grover’s algorithm to find a vertex x3 ∈ V ,
such that (x1,x2,x3) is a triangle.

3. Given a triangle (x1,x2,x3), use Grover’s algorithm to find a vertex x4 ∈
V , such that (x1,x2,x3,x4) is a 4-clique.

4. Apply amplitude amplification on steps 1–3.

As in the k = 3 case, the algorithm returns any 4-clique in the graph, rather
than a fixed one. Step 1 searches for any edge, and given that edge Step 2
searches for any triangle containing it.

Step 1 costs O(
√
n2/m) and Step 3 costs O(

√
n). As an edge is expected to

be in many triangles, t/m = αd/2, α > 1, the cost of Step 2 is below O(
√
n). As

steps 1–3 are additive, step 3 dominates and their cost is O(
√
n), as before.

For steps 1–3 to find a 4-clique, two things must happen. First, Step 1 needs
to pick a good edge, that is, an edge in a 4-clique. Given there are Θ(n) 4-
cliques, this happens with probability Θ(n/m). Next, given that Step 1 picks a
good edge, Step 2 must pick a triangle, including the good edge, which itself is
in a 4-clique. This happens with probability Θ(m/t). The success probability
is therefore Θ(n/t). Using amplitude amplification the total cost of finding a
4-clique is therefore O(

√
t).

By the coupon collector’s problem, the total cost of finding all 4-cliques is
Õ(n
√
t) = Õ

(
|L|3/2(|L(x1)||L(x1,x2)|)1/2

)
≈ 20.3418d+o(d) using 20.1724d+o(d)

memory. This also matches the complexity of Algorithm 2 in the k = 4 balanced
setting.

C.2 The General k-clique Case for Unbalanced Configu-
rations

The graph approach of Section 5 can also be applied to unbalanced configu-
rations. Given the matrix C of a good configuration we form the following
coloured, undirected graph, G = (V,E). We have lists L = L1 = · · · = Lk and
vertices are elements of L. Let there be an edge of colour ci,j between vertices
x1 and x2 if and only if |〈x1 , x2〉 − Ci,j | ≤ ε, with ε as before. Define oracles
OGi,j : V 2 → {True, False} such that OGi,j (x1,x2) = True if and only if there
is an edge of colour ci,j between x1,x2. That is, we have

(
k
2

)
coloured edges and

PAPER III 171

for each colour we have an oracle that checks whether there is an edge of this
colour between two vertices.

In this setting we search for a coloured k-clique. That is, a set of vertices
{x1, . . . ,xk} such that there is an edge of colour ci,j between the vertices xi and
xj , for all i 6= j.

With small changes, we can apply the same k-clique finding algorithm in
this setting. The algorithm is the following, with 2 ≤ i ≤ k − 1

1. Use Grover’s algorithm to find an edge (x1,x2) of colour c1,2 among all
potential O(|L|2) edges of colour c1,2.

...

i. Given a coloured i-clique (x1, . . . ,xi), use Grover’s algorithm to find
a vertex xi+1 ∈ V , such that (x1,xi+1), . . ., (xi,xi+1) are edges of
colours c1,i+1, . . ., ci,i+1 respectively, to form a coloured (i + 1)-clique
(x1, . . . ,xi+1).

...

k. Apply amplitude amplification on steps 1− (k−1) .

The complexity analysis is similar to the one in Section 5.2. The dominant
cost of Steps 1 − (k−1) is a Grover search over the |Li| = |L| vertices. What
differs slightly is the calculation of the success probability.

Let us first look at the triangle case. An unbalanced configuration implies
that the number of edges of colours c1,2, c1,3 and c2,3 may be different. However,
by having picked a good configuration and the right initial list size |L| we still
have n = Θ(|L|) triangles with one edge of colour c1,2, one edge of colour
c1,3 and one edge of colour c2,3. The total number of edges of colour c1,2 is
m = O(|L||L2(x1)|). The probability that Steps 1–2 succeed is equal to the
probability that Step 1 picks an edge of colour c1,2, belonging to a coloured
triangle. This probability is equal to Θ(n/m) = Θ(1/|L2(x1)|).

In the k = 4 case, by having picked a good configuration and the right initial
list size |L|, even though the number of edges of different colours varies, the ex-
pected number of coloured 4-cliques is still n = Θ(|L|). The probability in Step
1 of picking a coloured edge belonging to a 4-clique is Θ(n/m) = Θ(1/|L2(x1)|).
Given such an edge (x1,x2), comparing with Figure 2b, we see that the num-
ber of coloured triangles (x1,x2,x3), such that (x1,x2) is an edge of colour
c1,2, is equal to O(|L3(x1,x2)|). Given that we have picked an edge belong-
ing to a 4-clique, the number of these triangles belonging to a 4-clique is
Θ(1). Thus, the total success probability for the k = 4 case is equal to
Θ(1/(|L2(x1)||L3(x1,x2)|)).

In the general case, in the first step the probability of finding an edge of
colour c1,2 belonging to a coloured k-clique is Θ(1/|L2(x1)|). Next, assume
that step i − 1, for 2 ≤ i ≤ k − 2, has found a coloured i-clique (x1, . . . ,xi)
belonging to a coloured k-clique. The number of coloured (i + 1)-cliques on
the form (x1, . . . ,xi,xi+1) is Θ(max(|Li+1(x1, . . . ,xi)|, 1)). This corresponds
to the diagonal elements of Figure 2b. Of these (i + 1)-cliques, Θ(1) belong to
a coloured k-clique. Thus the probability of picking a coloured (i + 1)-clique
belonging to a coloured k-clique is Θ(1/max(|Li+1(x1, . . . ,xi)|, 1)). The total

172 PAPER III

success probability is thus

Θ

(k−2∏
i=1

max (|Li+1(x1, . . . ,xi)|, 1)

)−1
 .

By applying the amplitude amplification on Step k, we get the cost

O

√|L|
√√√√k−2∏

i=1

max (|Li+1(x1, . . . ,xi)|, 1)

 ,

for finding one k-clique. The total complexity of this algorithm is thus equal to

Õ

|L|3/2
√√√√k−2∏

i=1

max (|Li+1(x1, . . . ,xi)|, 1)

 .

This matches the complexity of Algorithm 2 in the unbalanced setting,
i.e. Eq. (9).

PAPER III 173

D Proofs of Lemmas from Section 7
Here we present the proofs of Lemmas 7.1, 7.2, 7.3 essentially giving a blueprint
of the construction of the circuit implementing Algorithm 4. We will often de-
scribe unitaries (and reduced transformations) in detail, but equally often simply
describe the operation and just claim there is some unitary that implements it.
Particularly, when it is clear or can be derived by observation, such as when
it can be shown there is an efficient classical reversible circuit implementing a
function, using only Toffoli and NOT gates, one can as well construct an effi-
cient quantum circuit to implement that. This allows us to focus on conveying
the non-trivial and interesting aspects of the construction, rather than tiring
an interested reader with trivialities such as presenting a unitary comprised of
elementary gate sets that carries out matrix multiplication efficiently in the size
of the input bitstrings. Lastly, we assume the setup as described earlier and
crucially the fact that the circuit is prepared and initialised before the input,
which consists of basis vectors, is received.

Proof D.1 (Proof of Lemma 7.1). We denote the input as a state |B〉. We
begin by copying |B〉 into N processors. To do this, first define unitary RCA,B
that implements a CNOT to registers A and B, with A being the control and B
the target. Assume both registers are of same size.

RCA,B := CNOTA1,B1 ⊗ CNOTA2,B2 ⊗ CNOTAd̄,Bd̄, (14)

where Ai and Bi are the i−th qubit of register A and B respectively. Notice thst
all control and target qubits are different and can be composed in parallel. Thus
the operator RCA,B can be applied applied with a depth-1 circuit. Operationally,
a register of arbitrary size can be correlated with another register of (at least)
the same size in 1 time step.

To copy |B〉 to all N processors a cascade of RC operations suffice. To be
more precise, we first copy |B〉 to register R1 in processor P1. In the next time
step copy |B〉 and R1 to registers R2 and R3 in processors P2, P3respectively.
Continue the process for log(N) steps, where |B〉 , R1 . . . RN/2−1 are copied to
RN/2, RN/2+1 . . . RN−1 registers of the last N/2 processors respectively (wlog, we
assume N is even). Effectively, a log(N) depth circuit copies |B〉 to all N
processors. The width of the circuit is Õ(N), since each processor only needs a
poly(d) = poly logN to store all the basis vectors.

Each processor Pi samples a vector xi from the lattice L(B) using an efficient
randomised sampling procedure. There are various ways to do it, we employ the
standard technique due to Klein [Kle00]. It consists of sampling a vector ti from
Rd and running Babai’s decoding algorithm to find a lattice point close to ti.
Babai’s algorithm can be implemented using a reversible circuit of depth poly(d).
To sample ti ∈ Rd we first put some (hard wired) large enough bound C and
produce a vector ti ∈ [−C,C]d coordinate-wise using the following process. We
construct a C + 1 dimensional maximally entangled state, 1√

C+1

∑C+1
j=0 |jj〉 and

discard the second of the two subsystems. Thus ti = Tr2(1
C+1

∑
i,j |ii〉 〈jj|12).

Operationally this would be equivalent to picking a random value less than C+1.
For purposes of the circuit the first value picks the sign, and rest of it a number
between 0 and C. This corresponds to picking one element of the vector ti.
Repeating the same construction d times in parallel gives the complete vector ti.

174 PAPER III

It is efficient to construct a C-dimensional maximally entangled state as O(C)
depth circuit suffices. Note that the requirement on the maximally entangled
state and C are independent of the input vectors themselves, hence this can
be considered as a resource from the initialisation phase. Thus a circuit that
samples x1, . . . ,xN needs O(poly log(N)) depth and Õ(N) width.

Finally to write each of these xi into a distinguished memory cell L1, the
unitary

RCR1,L1[1] ⊗RCR2,L1[2] . . .⊗RCRN ,L1[N]

is applied and this is again of depth 1. Note that L1[0] is the zero vector.
Thus the list L1 can be sampled efficiently, given an input |B〉, of poly(d)

qubits, and the circuit that implements it, is of depth poly log(N) and width
Õ(N). This concludes proof of Lemma 7.1.

Proof D.2 (Proof sketch of Lemma 7.2). With a new list L1 that stores N
vectors, we want to construct another list L2, such that for any i ∈ [N] it holds
that x′i ∈ L2 is such that |〈x′i , xi〉| ≥ 1/2 and xi ∈ L1 (If no such xi ∈ L1 exist
for a given xi, then set xi = 0).

We begin by defining a checking function f(x,y) = 1 if |〈x , y〉| ≥ 1/2 and 0
otherwise. The corresponding unitary is of the form

Uf : |x〉 |y〉 |b〉 → |x〉 |y〉 |b⊕ f(x,y)〉 .

First notice this unitary can be implemented efficiently in the size of the inputs
x,y since it only computes the inner product and already has an classically
efficient algorithm.

Now for each processor i, define fi(y) = 1 if |〈xi ,y〉| ≥ 1/2 and 0 otherwise
with the corresponding unitary

Ufi : |y〉 |b〉 → |y〉 |b⊕ f(xi,y)〉 .

It is important to stress that xi is fixed for the fi, thus the domain of fi is
only the set of d-dimensional vectors, whereas for f it is the set of d2 dimensional
vectors and the unitaries Ufi are really reduced unitaries.

Next, in order to load the data on which parallel Grover’s search is performed,
we define the unitary

V : |j1 . . . jN 〉 |y1 . . .yN 〉 |x1 . . .xN 〉 → |j1 . . . jN 〉 |y1 ⊕ x1 . . .yN ⊕ xN 〉 |x1 . . .xN 〉 .

One of the results of [BBG+13] states that there is a uniform family of cir-
cuits of width O(N(d·logN)) and depth O(logN ·log(d·logN)) that implements
V . We use this unitary together with Ufi to construct

W = V ◦ Uf1
⊗ . . .⊗ UfN ◦ V.

The purpose of W is to load the database in the memory using V , compute
fi on each of the processor in parallel using Ufi , and then unload the database
using V † = V . The action of W on the initial state is

|j1 . . . jN 〉 |0 . . . 0〉 |y1 . . .yN 〉 |x1 . . .xN 〉
V−→|j1 . . . jN 〉 |xj1 . . .xjN 〉 |y1 . . .yN 〉 |x1 . . .xN 〉
⊗Ufi−→ |j1 . . . jN 〉 |xj1 . . .xjN 〉 |y1 ⊕ f1(xj1) . . .yN ⊕ fN (xjN)〉 |x1 . . .xN 〉
V−→|j1 . . . jN 〉 |0 . . . 0〉 |y1 ⊕ f1(xj1) . . .yN ⊕ fN (xjN)〉 |x1 . . .xN 〉

PAPER III 175

Setting |yi〉 = |−〉, for all i, the reduced unitary becomes

W : |j1 . . . jN 〉 → (−1)f1(xj1) |j1〉 . . . (−1)fN (xjN) |jN 〉 .

The unitary W can be implemented using a uniform family of circuits of width
N · (logN + d) = N · poly logN and depth O(logN log(d logN) + poly(d)) =
poly log(N).

Define |Ψ〉 = 1√
N

∑
i |i〉, and let R = (2 |Ψ〉 〈Ψ| − I)⊗N . Notice that R can

be implemented using a O(logN) depth circuit. Executing R ◦ W (Grover’s
iteration) Θ(

√
N) times on the initial state∑

j1,...jN

|j1 . . . jN 〉 |0 . . . 0〉 |− . . .−〉 |x1 . . .xN 〉

leads to the sate (close to)

|J〉4 |0〉3 |−〉2 |X〉1 ,

where J = (j′1 . . . j
′
N), X = {x1 . . .xN}, with the property that if the first block

|J〉 measured, it would give a sample of indices, J = (j′1 . . . j
′
N) such that Θ(N)

of them would be ‘good indices’. Namely, for (almost) all j′i, we have that
|〈xj′i , xi〉| ≥ 1/2 for the xi from the first block |X〉 . This is an instantiation of
parallel quantum search over a single database and is the key ingredient of the
algorithm. The circuit implementing this procedure is width and depth Õ(N)

and Õ(
√
N) respectively [BBG+13].

The success probability of each processor Pi to find j′i is at least 1−Θ(1/N)
(see Theorem 2.1 and the fact that we expect to have Θ(1) “good” ji’s for xi).
We might as well repeat this procedure a constant number of times, and collect
the set of indices J0, . . . Jq and check if there exits a jlk ∈ {j0

k, . . . j
q
k} such that

|〈xjlk , xk〉| ≥ 1/2 (where jlk denotes the k-th register of J l). Each processor
can do this check in parallel, i.e. the kth processor checks among the collected
q-elements to find if there is a correct solution. If there is one, it copies, using
the RC operator defined in Eq. (14), this index to a distinguished register, called
L2[k] corresponding to the kth processor Pk. If no solution is found, L2[k] is set
to the zero vector. This repetition contributes with a small poly(d) overhead in
depth and width. Now we have virtual list L3 stored at the memory block L2,
whose kth register holds the index of a “good” vector.

To create the list L3, the crucial idea is to imagine a classical reversible
subroutine, for each processor k, that first computes two vectors y+

k = xk+xL2[k]

and y−k = xk − xL2[k]. Then if ||y+
k || < ||y

−
k ||, copy y+

k to a designated register
L3[k] otherwise copy y−k to L3[k]. It can be verified that a circuit implementing
this subroutine using only Toffoli and NOT gates has poly(d) depth and width.

Finally to swap the labels of L1 and L3 register blocks, apply a single swap
gate CNOTi,j ◦CNOTj,i ◦CNOTi.j pairwise for each qubit pair, i.e., swap the
first two qubits of the register block L1 and L3, then in parallel the second two
qubits of L1, L3 and so on. The swap procedure is a depth 3 circuit.

Finally we would want to free the memory from L2 and L3 for later compu-
tations. The easiest way is to simply transfer the content (by using a SWAP
gate like before) to auxiliary memory cells of the same size that were already
initialised to state |0〉.

176 PAPER III

Thus we have shown Steps (3)-(5) of Algorithm 4 can be implemented
with a circuit of depth Õ(

√
N) and width Õ(N). This concludes the proof of

Lemma 7.2.

Proof D.3 (Proof sketch of Lemma 7.3). We now want to find an element
in the list L1 with Euclidean norm less than a given threshold λ. We set λ =√
d · det(B)1/d to satisfy Minowski’s bound for L(B). This bound is tight up

to a constant, which we do not know a priori. In order to avoid too many
vectors from L1 to satisfy the bound, we run several trials of Grover’s algorithm
starting with a small value for λ and re-iterating Grover’s search with this value
increased. We expect to terminate after O(1) iterations. The checking function
for each Grover’s search is g(x) = 1 if ||x|| < λ, and 0 otherwise, and the
corresponding unitary implementing the function T : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉.
This admits efficient classical and quantum circuits of depth and width poly(d).
As each Grover’s iteration requires O(

√
N) depth circuit, we show that Step 7

of Algorithm 4 needs Õ(N) width (input) and Õ(T
√
N). It concludes the proof

of Lemma 7.3.

Some Cryptanalytic and
Coding-Theoretic Applications of a Soft

Stern Algorithm
Using the class of information set decoding algorithms is the best known

way of decoding general codes, i.e. codes that admit no special structure,
in the Hamming metric. The Stern algorithm is the origin of the most
efficient algorithms in this class. We consider the same decoding problem
but for a channel with soft information. We give a version of the Stern
algorithm for a channel with soft information that includes some novel steps
of ordering vectors in lists, based on reliability values. We demonstrate
how the algorithm constitutes an improvement in some cryptographic and
coding theoretic applications. We also indicate how to extend the algorithm
to include multiple iterations and soft output values..

Keywords: Soft decoding, Stern algorithm, Side-channel attacks, Information set
decoding, Soft Stern algorithm.

c©AIMS 2019. This is an invited submission to a special issue on “Applications of
Discrete Mathematics in Secure Communication”, reprinted, with permission, from
Qian Guo, Thomas Johansson, Erik Mårtensson and Paul Stankovski Wagner, “Some
Cryptanalytic and Coding-Theoretic Applications of a Soft Stern Algorithm”, in Ad-
vances in Mathematics of Communications, vol. 13, no. 4, pp. 559-578, 2019.

179

PAPER IV 181

1 Introduction
For a general code with no special structure used for communication on the
binary symmetric channel (BSC), the maximum-likelihood decoding problem
(with some assumptions) is NP-hard. Still, decoding random linear codes is
a central problem for many applications in cryptography, for example code-
based crypto. Information set decoding (ISD) algorithms are the most promising
candidates for solving instances of this problem.

The performance of these algorithms determines the security and hence the
necessary parameters for many cryptosystems. The development of ISD al-
gorithms include the Prange algorithm [23], the Lee-Brickell algorithm [18],
the Stern algorithm [25], Canteaut-Chabaud [8], Ball-Collision Decoding [6],
Finiasz-Sendrier [13], BJMM [3] and the recent improvement from May and
Ozerov [19]. The Stern algorithm is the starting point for the most efficient al-
gorithms in this class as it introduced a collision step that significantly decreased
the complexity.

In this paper, we consider the decoding problem for a general code with no
special structure used for communication on the Additive White Gaussian Noise
(AWGN) channel using the Euclidean metric. This is motivated by the fact that
we have seen some recent applications for such decoding algorithms in coding
theory and cryptography. One such application is the recently proposed version
of the McEliece Public Key Cryptosystem (PKC) using soft information [2].
Another is the use of such algorithms in side-channel cryptanalysis, see, e.g., [22].
A third one is a new hybrid decoding of low-density parity-check (LDPC) codes
in space telecommand links [1].

The soft decoding problem has been studied extensively in coding and com-
munication, see, e.g., [10, 17], but mostly for special codes allowing efficient
decoding. The study of general codes has been less intense. Early work by
Chase [9] was followed by some work in the communication direction and a
highly cited paper is [14]. More recently, fast soft-decision decoding of linear
codes was considered in [1, 11, 26, 28] and by Wu and Hadjicostis in [30]. The
same problem considered in the context of side-channel cryptanalysis in cryp-
tology can be found in [4, 5, 12].

In this paper, we give a version of the Stern algorithm for the decoding
problem with soft information, named the soft Stern algorithm. The algorithm
reuses some ideas from previous work, such as ordered statistics [14]. It uses
the idea of sorting of error vectors in lists, based on reliability values [27], and
presents a novel way of combining this idea with the structure of the Stern
algorithm. This leads to better performance compared to previously suggested
algorithms like the one in [22]. Initially we consider a one-pass algorithm that
succeeds with some probability q. We can then repeat this one-pass algorithm
to achieve a higher success probability, where the way it is repeated depends on
the application. Later, we briefly consider extending the algorithm to also allow
for multiple iterations.

Next, we demonstrate how this new algorithm can be used in cryptographic
and coding theory applications. First, we present a very efficient attack on an
idea of using soft information in McEliece-type cryptosystems presented at ISIT
2016 [2]. Not only do we severely break the proposed schemes, but our algorithm
shows that the whole idea of using soft information in this way is not fruitful.
Secondly, we show how our algorithm can be applied to side-channel attacks.

182 PAPER IV

The problem of soft decoding of general codes appears in side-channel attacks in
both [21] and [22]. Using our algorithm, both of those attacks can be improved.
Thirdly, we show how our algorithm can be used to improve the hybrid decoding
of low-density parity-check (LDPC) codes [1]. Finally, we indicate that by using
soft output, our algorithm can be applied to the problem of decoding product
codes.

The remaining parts of the paper are organized as follows. In Section 2 we
give some preliminaries on coding theory and the considered channel. Section 3
gives an overview of the new algorithm, and in Section 4 we give a complete
example of the algorithm. In Section 5 we analyze its time complexity and
give simulation results demonstrating the improvement compared to previously
proposed algorithms. In Section 6 we indicate how to generalize our algorithm by
allowing for multiple iterations and soft output. In Section 7 we cover different
applications of the algorithm. Finally, Section 8 concludes the paper.

2 Preliminaries
We present some basic concepts in coding theory. Let F2 denote the binary
finite field, |x| the absolute value of x for x ∈ R, and ln(·) the logarithm with
base e. Let π be a permutation of {1, . . . , n} and π−1 be its inverse. For a
matrix G, we let π(G) denote the matrix obtained from G by permuting its
column indices according to π.

2.1 Basics in Coding Theory
Definition 2.1. An [n, k] binary linear code C is a k-dimensional vector sub-
space of Fn2 . Its co-dimension is r = n−k, characterizing the redundancy of the
code.

A generator matrixG of the linear code C is defined as a k×nmatrix in Fk×n2

whose rows form a basis of the code. Equivalently, the code can be defined by a
matrix H in Fr×n2 whose kernel is the code C, called a parity-check matrix of C.
For a length n vector v, the support supp(v) is defined as {i : vi 6= 0, 1 ≤ i ≤ n}.
The Hamming weight of v is wH(v) = |{i : vi 6= 0, 1 ≤ i ≤ n}| and the Hamming
distance is dH(v,v′) = wH(v + v′).

Suppose an [n, k] binary linear code C with generator matrix G is used for
transmission on the AWGN channel. Let c = (c1, c2, · · · , cn) be a codeword
to be transmitted. In Binary Phase-Shift Keying (BPSK) transmission, the
codeword c is mapped to a bipolar sequence ĉ = (ĉ1, ĉ2, · · · , ĉn), where ĉi ∈ R
through ĉi = (−1)ci , for 1 ≤ i ≤ n. For any binary vector x, we use the notation
x̂ to denote the result after applying the above mapping.

After transmission, where AWGN noise is added, the received vector is de-
noted r = (r1, r2, · · · , rn), ri ∈ R for 1 ≤ i ≤ n, where ri = ĉi + wi and wi are
iid Gaussian random variables with zero mean and standard deviation σ. Since
the values are floating-point, we say that we have soft information. If the noise
would be binary, we would have worked with hard information. If we would
translate each value of the r vector to its most probably binary value in c, we
we would make a so called hard decision.

PAPER IV 183

In the continuation, when discussing the reliability value of a position we
refer to ri. When discussing how reliable a position is we refer to the absolute
value of ri.

Our soft-decision decoding problem is now the following: Find the most
likely codeword being transmitted when receiving r. We consider maximum-
likelihood decoding (MLD). It is well known that the MLD metric becomes the
squared Euclidean distance and that the codeword c closest to a received vector
r is the one that minimizes the distance D(ĉ, r) =

∑n
i=1(ri− ĉi)2 (see, e.g., [29]).

For binary codes, it is common to use the log likelihood ratio (LLR), which
is defined as

Li = ln

[
p(ri|ci = 0)

p(ri|ci = 1)

]
,

where p(ri|ci) is the pdf of ri conditioned on ci. After some calculations one
can rewrite this for the AWGN channel as

Li =
2ri
σ2
.

We point out that we actually only need soft information in LLR form and the
algorithm to be proposed works for any noise distribution, not just AWGN.

Finally, we introduce a class of codes for later use.

Definition 2.2. A low density parity-check (LDPC) code is a linear code admit-
ting a sparse parity-check matrix, while a moderate density parity-check (MDPC)
code is a linear code with a denser but still sparse parity-check matrix.

In previous work, the Hamming weight of the row vector is usually em-
ployed to characterize its sparsity; LDPC codes have small constant row weights,
MDPC codes have row weights O(

√
n log n). These classes of codes are of in-

terest since they are efficiently decodable using iterative decoding techniques
exploiting the sparsity of the codes.

The class of quasi-cyclic MDPC (QC-MDPC) codes are of special interest
as they are used in the QC-MDPC code-based McEliece cryptosystem [20].
The codes used in the cryptosystem are linear codes with sparse parity-check
matrices of the form,

H = (H0 H1 . . . Hn0−1) , (1)

where n0 is a small integer and each block Hi, 0 ≤ i ≤ n0 − 1, is a circulant
matrix with size r × r, and Hn0−1 is invertible. For simplicity, we assume that
n0 = 2 throughout the paper, unless otherwise specified. Thus, we consider
codes with rate R = 1/2, length n = 2r, and dimension k = r.

2.2 Soft McEliece
Soft McEliece [2] is a recent code-based McEliece PKC proposal using soft in-
formation. Instead of generating intentional errors from a Hamming ball, the
authors generate noise according to a Gaussian distribution. In the key gener-
ation, as in the QC-MDPC scheme, they generate a sparse parity-check matrix
H with the form of (1) and use it as the secret key. The public key can be
derived as the (dense) generator matrix G in systematic form corresponding to
H.

184 PAPER IV

Algorithm 1 The Stern algorithm

Input: Generator matrix G, parameters p, l

1. Choose a column permutation π and form π(G), meaning that the
columns in G are permuted according to π.

2. Bring the generator matrix π(G) to systematic form:

G∗ = (I Q J) .

3. Let z run through all weight p vectors of length k/2. Store all
vectors x = (z,0)G∗ in a sorted list L1, sorted according to φ(x).
Then construct a list L2 sorted according to φ(x), containing all
vectors x = (0, z)G∗ where z runs through all weight p vectors.
Add all pairs of vectors x ∈ L1 and x′ ∈ L2 for which φ(x) = φ(x′)
and put in a list L3.

4. For each x ∈ L3, check if the weight of x is w − 2p. If no such
codeword is found, return to 1.

Given a message u ∈ Fk2 , let c = uG be the encoded codeword and ĉ the
codeword in Rn. The ciphertext is

r = ĉ + w,

where w = (w1, w2, . . . , wn) and wi (1 ≤ i ≤ n) is AWGN. The generation of w
is repeated until the number of bit errors in r reaches a certain threshold. The
decryption – decoding the received vector – can be performed using an iterative
soft LDPC/MDPC decoder that uses the secret H, see [2, 20].

Parameter settings

In [2], the authors suggested parameters
(n, σ) = (7202, 0.44091) for 80-bit security, and (15770, 0.41897) for 128-bit
security. The complexity of decoding a received vector r knowing only the
public generator matrix G must be larger than 280 and 2128, respectively.

2.3 The Stern Algorithm
The Stern algorithm finds a low weight codeword of Hamming weight w in the
code described by G. Transform the generator matrix G to systematic form
with generator matrix

G∗ = (I Q J) ,

where I is the k×k identity matrix, Q is a k× l matrix and J is a k× (n−k− l)
matrix. Let φ(x) be the value of a vector x in positions k+1 to k+ l, i.e. φ(x) =
(xk+1, xk+2, · · · , xk+l). The algorithm description is given in Algorithm 1.

PAPER IV 185

3 A Soft Version of the Stern Algorithm
We now present as the main contribution a version of the Stern algorithm that
uses soft information.

3.1 A One-Pass Soft Stern Algorithm
Receiving the vector r, one can obtain a binary vector by making bitwise hard
decisions. We define

sgn(ri) =

{
1, if ri ≤ 0,

0, otherwise.

Assuming that ci is uniformly distributed over F2, according to Bayes’ law, the
conditional probability Pr [ci = sgn(ri)|ri], denoted pi, can be written as

pi =
1

1 + e−|Li|
. (2)

Also, define the bias as τi = |pi − 1/2|. The problem of recovering the message
from a ciphertext is solved by finding a minimum-weight codeword from a linear
code with a generator matrix(

G
sgn(r1), sgn(r2), . . . , sgn(rn)

)
.

This would, however, give a poor performance compared to what can be achieved
when we use the soft information. Instead, we suggest to use the Stern algorithm
as a basis and to modify the different steps to make use of the soft information in
the best possible way. Initially, we consider only a single round in this algorithm,
which will give a (small) probability q of success. In many (cryptographic)
applications this is sufficient as one might repeat the decoding attempt many
times and thus achieve an expected complexity which is a factor 1/q larger than
the complexity of a single round. Later on, in Section 6.2, we indicate how to
extend the algorithm to allow for multiple iterations.

The new algorithm can be divided into three steps in the following way:

Transformation

This step performs a column permutation and some transformations. Instead
of selecting a random column permutation as in the original Stern algorithm,
we consider only a single round and we use a permutation that puts the most
reliable positions as the k + l first columns. These columns will correspond to
the information set and l additional positions.

Firstly, all the n coordinates ri are sorted according to the absolute value
of their LLR and then we choose a set S containing the k + l most significant
coordinates. Denote the set containing the other positions by O. We use π to
denote a permutation such that π(S) = {1, . . . , k + l}.

The second condition on π is that the first k columns of π(G) are indepen-
dent, forming a basis. We then derive a systematic generator matrix G∗ from G
by permuting the columns using π and performing Gaussian elimination, giving

G∗ = (I Q J) ,

186 PAPER IV

where Q is a k× l matrix. The received vector r is permuted accordingly, giving
vector π(r). The k first positions are now an information set, denoted I.

We next perform a transformation to ensure that the reliability value for
each variable in the information set is positive. We first determine the most
likely value for the variables in the information set, denoted by m, where mi =
sgn(rπ−1(i)), for 1 ≤ i ≤ k. This m corresponds to the codeword c′ = mG∗.
Then the vector π(r) is transformed to the vector r′ = (r′1, . . . , r

′
n), where

r′i = rπ−1(i) · (−1)c
′
i , 1 ≤ i ≤ n. (3)

We have the following proposition.

Proposition 3.1. If D(ĉ, r) = δ, then D(ĉ′′, r′) = δ, where c′′ = c + c′.

Therefore, the transformation has not changed the problem, but the first k
positions now all have positive reliability, which may ease the description in the
continuation.

For the next step, we will consider the shortened code from (I Q) and try
to find a list of codeword candidates close to r′ in the first k + l positions. For
columns with indices in {k+ 1, . . . , k+ l} corresponding to the matrix Q in G∗,
we determine a syndrome s by si = sgn(r′k+i), for 1 ≤ i ≤ l.

Codewords for the shortened code are vectors c(s) such that c(s)H′ = 0,

where H′ =

(
Q
Il

)
. As we change the signs of position k + 1, . . . , k + l to

be all positive when we introduced the syndrome, our problem is finding the
most probable low weight vectors z such that zH′ = s, assuming that the
reliability values in position 1, . . . , k + l are all positive, i.e., assuming r′i ≥ 0,
for 1 ≤ i ≤ k + l.

We next partition the set π(S) = {1, . . . , k + l} into two disjoint equal-sized
parts, S1 and S2, such that ∏

i∈S1

pi ≈
∏
j∈S2

pj ,

where pi = Pr
[
c
(s)
i = 0|r′i

]
as in (2). For simplicity, we assume that

S1 = {1, . . . , (k + l)/2} and S2 = {(k + l)/2 + 1, . . . , (k + l)}. In the algorithm,
this is yet another condition to consider when selecting π. In the original Stern
algorithm the choice of indices for the two sets does not influence the per-
formance, but for the soft case it does, and this is the reason for the above
condition.

Creating Bit Patterns and Partial Syndromes

We now create the most probable (low weight error words) z(1) having nonzero
values only in S1. We store the corresponding partial syndrome for the code
with transposed parity check matrix H′, created as (z(1),0)H′. As all reliability
values are positive, the zero word is the most likely one, then different vectors
of weight one, etc. Let z(1) run through T length-(k + l)/2 binary vectors with
the largest probability

∏
i∈S1

Pr
[
c
(s)
i = z

(1)
i |r′i

]
. We build a table L1 to store

all selected z(1) together with the vector (z(1),0)H′. The table L1 is sorted
according to this partial syndrome.

PAPER IV 187

We now repeat the same thing but for the subset S2, creating another table
L2 in a similar manner. In this case we run through the most probable vectors
z(2) with nonzero positions only in S2. Each entry in the table consists of z(2)

together with the partial syndrome s+(0, z(2))H′ sorted according to the latter.
Note that we add s in this case.

Colliding Partial Syndromes

Next, we search for partial syndrome collisions between the tables L1 and L2.
On average we obtain T 2/2l colliding vectors. Later we assume that we choose
T ≈ 2l to minimize time-complexity.

For each collision, we add the corresponding vectors (z(1),0) and (0, z(2)),
and create a new vector u by choosing its first k entries. Then we get a candidate
codeword uG∗. As a final step, we check the Euclidean distance between each
candidate codeword and the received vector r′. If it is sufficiently small we
return it as the desired closest codeword.

3.2 How to Create the Most Probable Vectors
In this part, we explain how to create the T most probable vectors required in
Step 2 of the previous description.

Since the reliability values are all transformed to be positive, for the par-
titions Sm, m = 1, 2, the most probable pattern is the all-zero vector 0, with
probability Pm =

∏
i∈Sm pi. The probability for a pattern with ones in positions

in J and the remaining positions all zero is exp(−
∑
j∈J Lj) · Pm.

For S1, our problem can then be described as follows. Given (k + l)/2 pos-
itive real numbers (L1, . . . , L(k+l)/2) which are sorted in increasing order, i.e.,
L1 ≤ L2 ≤ . . . ≤ L(k+l)/2, define a function f(I) =

∑
j∈I Lj , where I ⊂

{1, . . . , (k+l)
2 }. Our goal is to find the T different index sets Ii, 1 ≤ i ≤ (k+ l)/2

with smallest corresponding values f(Ii). The method for solving this problem
is based on [27].

Let Ii1,i2,...,ik , where i1 < i2 < · · · ik, denote the bit pattern with the value 1
in positions i1, i2, . . . , ik, and the value zero in the other positions. For such a bit
pattern, its function value is again f(I) =

∑
j∈I Lj , where I = {i1, i2, . . . , ik}.

Now, let Ri denote the set of bit patterns with a 1 in position i and zeros in
all positions after i. Sort the elements in Ri by its function values in increasing
order to form the list Ri. Given a pattern I ∈ Ri, by the successor of I we mean
the next pattern in Ri.

To solve our original problem we use a binary tree, where each node repre-
sents one of the lists R2, R3, . . . , R(k+l)/2. Initially, let the nodes store the top
element in each list Ri, being the patterns I2, I3, . . . , I(k+l)/2, respectively. Also,
let each node store an index value 0. The root of the tree will have the pattern
with the smallest function value, which initially is I2. Each parent node in the
tree has a smaller function value than its child nodes.

Let A denote a list of the bit patterns we have found sofar, and their corre-
sponding function values. Initialize this list with the all zeros pattern at index
0 and the pattern with a 1 in the first position at the index 1.

In each step of our algorithm we add the pattern of the root node to A.
Assume the root node has the pattern Ii1,i2,...,im,i. Then we replace the node
label by the next pattern in the list Ri. This is found by starting in A at the

188 PAPER IV

Algorithm 2 The Soft Stern algorithm

Input: Generator matrix G, received vector r, parameters T = 2l, δ

Step 1

(1a) Choose a column permutation π such that 1) the first k + l
positions in π(G) have the k + l largest |ri|’s and 2) the
first k columns are independent and 3)

∏
i=1,2,...(k+l)/2 pi ≈∏

i=(k+l)/2+1,...(k+l) pi.

(1b) Make the permuted generator matrix π(G) systematic:

G∗ = (I Q J) .

Permute and transform the received sequence r to make the
reliability value for each coordinate in positions 1, 2, . . . k pos-
itive, following (3), giving r′.

(1c) Calculate the corresponding partial syndrome s and change
the sign of any negative values of r′k+1, . . . r

′
k+l.

Step 2 Construct a list L1 storing the most probable vectors z(1) and
the corresponding partial syndromes (z(1),0)H′. Then construct
another list L2 storing the most probable vectors z(2) and the
corresponding partial syndromes s + (0, z(2))H′.

Step 3 Sort the two lists according to their partial syndromes and
search for collisions. For each colliding syndrome (z(1),0)H′ and
s+(0, z(2))H′, create a new vector u by choosing the first k entries
of (z(1), z(2)) and compute the corresponding ĉ = (ĉ1, . . . , ĉn), s.t.
ĉi = (−1)ci , where c = uG∗.

If D(ĉ, r′) ≤ δ, invert the transformations to get the codeword
close to the original r and return it. If no c with D(ĉ, r′) ≤ δ is
found, return failure.

index of the pattern Ii1,i2,...,im and finding the next pattern Ij1,j2,...,jn,i in A such
that jn < i. If no such pattern exists, we have used all patterns in Ri and we
can delete the node from the tree. Otherwise, we replace the node label by the
pattern Ij1,j2,...,jn,i and we also store the index in A of the pattern Ij1,j2,...,jn .
In either case, we end by rearranging the tree such that each parent node has a
smaller function value than its child nodes.

The most expensive part of the algorithm is rearranging the tree. This
requires at most dlog2(k + l)/2e function comparisons. If we store the function
value for each pattern in A, calculating the function value for a new pattern in
the tree only requires a single addition.

PAPER IV 189

Example of How to Find the Most Probable Vectors

An example of how to find the most probable bit patterns is illustrated in Figure
1. In this case we work with vectors of length 8 and the corresponding 8 real
values are

[0.1622, 0.1656, 0.2630, 0.3112, 0.5285, 0.6020, 0.6541, 0.7943].

For the sake of clarity we work with the whole bit patterns, but storing only
the indices of the positions with the value 1 is of course more efficient. At the
beginning the list A = [(00000000, 0), (10000000, 0.1622)]. In each step we add
the root node and its corresponding function value to A. We use the index of
the root node to determine where in A we start looking for a new bit pattern.
When we have found the next pattern we modify the root node and rearrange
the tree. Notice that the bit pattern 11000000 does not have a successor node.
Therefore, after adding the pattern to A the corresponding node in the tree is
removed. By the time we have reached the sixth binary tree in Figure 1 we have

A = [(00000000, 0.0000), (10000000, 0.1622), (01000000, 0.1656), (00100000, 0.2630),

(00010000, 0.3112), (11000000, 0.3278), (10100000, 0.4252)].

The bit patterns in A gives us the 7 most probable bit patterns. By looking at
the root node we see that pattern number 8 is 01100000.

4 A Decoding Example
This section contains a complete example of how a message is encoded, how
Gaussian noise is added, how the errors are corrected using the proposed Soft
Stern algorithm, and finally how the original message is recovered. The ex-
tended, binary Golay code is a linear, systematic, error-correcting code with
parameters (n, k, dmin) = (24, 12, 8) and generator matrix G equal to

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1

.

Assume sending the message u = [0 0 0 1 0 1 0 1 1 0 0 0], transforming each
1 to -1 and each 0 to 1, and adding Gaussian noise with σ = 1. In this example
the received vector r is

190 PAPER IV

01000000|0

00100000|0 00010000|0

00001000|0 00000100|0 00000010|0 00000001|0

00100000|0

11000000|1 00010000|0

00001000|0 00000100|0 00000010|0 00000001|0

00010000|0

11000000|1 10100000|1

00001000|0 00000100|0 00000010|0 00000001|0

11000000|1

10010000|1 10100000|1

00001000|0 00000100|0 00000010|0 00000001|0

10100000|1

10010000|1 00000010|0

00001000|0 00000100|0 00000001|0

01100000|2

10010000|1 00000010|0

00001000|0 00000100|0 00000001|0

Figure 1: An ilustration of what the binary tree in the algorithm for finding
the most probable bit patterns looks like in the first six steps.

[0.8437 −0.8059 1.5800 −0.1491 0.5741 0.6922 1.0734 −1.9306
−1.5678 1.1405 0.8998 2.6440 1.2390 −0.6847 0.0724 −0.2315
0.1800 −0.8032 −1.3533 −2.8248 0.1319 0.0888 −1.2301 −0.3469].

Let us use l = 4 and T = 2l = 24 = 16. After performing a permutation of
the positions such that the first k + l are the most reliable, such that the first
k columns in the generator matrix are linearly independent, and such that the
first k + l positions are split into two parts with approximately equal products
of pi values, we obtain an r∗ vector equal to

[−1.2301 0.6922 0.8437 −1.3533 1.1405 1.0734 2.6440 −0.6847
−1.5678 1.5800 0.8998 −0.8059 −2.8248 −1.9306 1.2390 −0.8032
0.5741 −0.3469 −0.2315 0.1800 −0.1491 0.1319 0.0888 0.0724].

PAPER IV 191

The corresponding systematic generator matrix G∗ is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1

.

Encoding the message m, where each of the k positions of m are 1 if the
corresponding position in r∗ is positive and 0 otherwise, then changing the sign
for each position in r∗ where the corresponding position in the encoded vector
mG∗ is positive, results in an r′ vector equal to

[1.2301 0.6922 0.8437 1.3533 1.1405 1.0734 2.6440 0.6847
1.5678 1.5800 0.8998 0.8059 2.8248 1.9306 −1.2390 −0.8032
0.5741 0.3469 0.2315 0.1800 −0.1491 −0.1319 0.0888 −0.0724].

We notice that the partial syndrome is s = [0 0 1 1] (by looking at the signs
of positions k + 1 to k + l). Picking the first k + l values of r′, switching signs
to make all the values positive, calculating the corresponding LLR values, and
sorting the LLR values such that each half of the values are in increasing order,
gives a vector of LLR values equal to

[1.3694 1.3844 1.6875 2.1468 2.2811 2.4602 2.7066 5.2879
1.6063 1.6119 1.7996 2.4779 3.1356 3.1600 3.8611 5.6495].

Picking the parity-check matrix corresponding to the first k + l columns of
G∗, then permuting the columns according to the permutation done to sort the
LLR values, results in the permuted parity-check matrix H equal to

H =

1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0
0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0
0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0

 .

Using the first half of the LLR values to create the T most probable vectors
on the form (z1 0) and their corresponding syndromes (z1 0)HT we get the
following list of vectors and syndromes

192 PAPER IV

L1 =

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1 1 0 0
1 1 0 0 0 0 0 0 1 1 1 0
1 0 1 0 0 0 0 0 0 1 1 1
0 1 1 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 0 0 0 1 1 1
1 0 0 0 1 0 0 0 0 0 1 1
0 1 0 0 1 0 0 0 1 1 0 1
1 0 0 0 0 1 0 0 1 0 1 0

.

Using the last half of the LLR values to create the T most probable vectors
on the form (0 z2) and their corresponding syndromes (0 z2)HT + s we get the
following list of vectors and syndromes

L2 =

0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 1 1
1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0 1 0 1 1

.

Colliding these vectors we get the following list of possible candidates for a
solution (where the first half of each row corresponds to z1 and the second half
corresponds to z2)

PAPER IV 193

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

.

For each candidate we invert the permutation corresponding to the sorting
of the LLR values. Then we pick the k first bits and create the message u0.
We then encode the message using G∗ to c0 = u0G

∗ and transform each 1
to -1 and each 0 to 1, creating ĉ0. Then we calculate the Euclidean distance
between ĉ0 and r′. The vector c0 that will lead us to the original message is
probably the one with the smallest Euclidean distance. In this example the
smallest Euclidean norm corresponds to candidate number 4.

Inverting the sorting step and picking the k first bits gives us

u0 = [0 1 0 0 0 0 0 0 0 0 0 1].

We then get

c0 = [0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1].

To get back to the solution to the original problem we flip the bits in c0 where
the corresponding positions in r′ and r∗ differ in sign and get the vector

[1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 0].

Then we invert the first transformation and get the vector

[0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1].

Now we notice that the first k positions in this vector are identical to the original
message u and we have thus found the original message.

5 Complexity Analysis and Simulations
A suitable complexity measure is given by Cone-pass/Pr [A], where Cone-pass
is the complexity of one pass of the algorithm and A represents the event that
after the permutation and the transformation, the actual error pattern in the

194 PAPER IV

first (k+ l) positions is a summation of two vectors in the two lists, respectively
(i.e., that the Soft Stern algorithm will find the correct message).

When estimating complexity for matrix operations, we note that we can
inductively implement the vector/matrix multiplication of vM by adding a new
vector to an already computed and stored vector ṽM, where supp(ṽ) ⊂ supp(v)
and dH(ṽ,v) = 1. Thus, Cone-pass measured in simple bit-oriented operations
is roughly given by CGauss + 4T · (n − k) + Ccreate, where CGauss is the
complexity of Gaussian elimination that usually equals 0.5nk2 and Ccreate is
the complexity for creating these most probable vectors. From Section 3.2 we
have that Ccreate = 2T dlog2((k + l)/2)e. Notice that the cost of creating the
lists is low compared to calculating the partial syndromes and colliding these.

The probability Pr [A] is given by

Pr [A] = Ql · P (1) · P (2),

where

P (i) = Pi
∑
J∈P(i)

exp

−∑
j∈J

Lj

 ,

for i = 1, 2. Here Ql is the probability that k+l columns in a uniformly random,
binary k × (k + l) matrix have full rank. Also, P(i) is the set containing the T
index sets corresponding to the T different vectors in Li, for i = 1, 2. For the
sizes of k used in this paper, with very good precision we have

Ql =

∞∏
i=1+l

(1− 2−i).

Here we have Q0 ≈ 0.2888, and for each new column that is added the probabil-
ity of not getting a matrix with full rank is roughly halved. Thus the probability
of getting a full rank matrix increases fast with l. The next subsection will try
to estimate (the remaining factors of) the probability Pr [A].

5.1 Estimating and Simulating Pr [A]
As Pr [A] depends on the received vector r, it appears to be quite complicated
to provide a useful explicit expression or approximation for E(Pr [A]), where the
expectation is over r. We choose instead to provide thorough simulation results
to illustrate how Pr [A] compares to other previous algorithms. In our compar-
ison, Pr [A] directly translates to the success probability for the algorithm in
question. We have simulated the following algorithms:

• The Soft Stern algorithm as proposed in the paper.

• Ordered Statistics Decoding (OSD). As explained in for example [15, 27,
30], we select the k most reliable and independent positions to form the
most reliable basis (MRB). The error patterns in the list are chosen ac-
cording to their reliability.

• Box-and-Match approach [28]. The essence of this algorithm is Stern-type,
choosing the operated information set from the most reliable positions
(i.e., an extension of MRB). However, they ignore the bit reliability when

PAPER IV 195

building the two colliding lists. For ease of comparison, we estimate the
performance of its variant similar to the newly proposed algorithm but
without choosing the error patterns in the colliding lists according to their
reliability.

• A hard-decision Stern algorithm. This is a simple approach where we
first make a hard decision in each position and then apply the original
Stern algorithm. Each position of the received vector is Xi ∼ N(1, σ) if
zero is sent and hard decision gives a bit error if Xi < 0. The bit error
probability is p = φ(1/σ). The probability of t errors is

∑(
n
t

)
pt(1−p)n−t.

The simulation results show that for the simulated parameter setting, this
algorithm performs much worse than its three counterparts. We thereby
removed it from our comparisons in the plots for readability.

For simplicity of analysis we compare single iteration versions of the al-
gorithms. Techniques for taking advantage the soft information in multiple
iterations is discussed briefly in Section 6.2, and can be applied to any of the
algorithms. For a fair comparison, we assume that the complexity in one-round
is approximately CGauss + C · (n − k)T , where C is a small constant. Thus,
we assume that for every algorithm, the size of one list is limited to T = 2l

(to 2T for OSD, since only one list is built in this algorithm). The comparison
of E(Pr [A]) for various k, σ, T is shown in figures below. In all figures we let
n = 2k. Thus, we have a code rate of 1/2. In all figures we ignore the Ql
factor.1 We look at two different scenarios, one with parameters applicable to a
cryptographic scenario and one with parameters applicable to a coding theoretic
scenario.

We have implemented the algorithm in Sage [24] 2. The implementation
covers the algorithm as described in Section 3. It was used to create the example
from Section 4 and for simulating the success probability in this section. The
source code for the implementation can be obtained upon request.

Cryptographic Scenario

In cryptographic applications of general soft decoding algorithms it is not un-
common to see a very small, but still non-negligible success probability Pr [A].
A large value of T is typically used. To compare the performance of the al-
gorithms in a crypto scenario we use large σ values. We let σ vary between
0.65 and 1 (in the latter case the capacity of the channel and the code rate are
equal). We let T = 2l = 220. In Figure 2, we plot the logarithm of the success
probability as a function of σ in the cases where k = 256 and k = 1024. In both
cases our soft Stern algorithm performs much better than the other algorithms.
Notice that the scale on the y-axis is not the same in the two plots.

Coding Scenario

In a coding scenario it is crucial that the word error probability 1 − Pr [A] is
small. The acceptable value of T is smaller than in the cryptographic setting.

1In a practical application of the algorithm one would have to swap in a few slightly less
reliable positions if the first k positions are not linearly independent. Unless k is small this
should not change the probabilities significantly.

2The implementation is available at https://github.com/ErikMaartensson/SoftStern

196 PAPER IV

Figure 2: The logarithm of the success probability for the different algorithms
as a function of σ.

To compare the algorithms we look at their probability of failing for small σ
values. We vary σ between 0.4 and 0.65. We let T = 2l = 210. In Figure 3, we
plot the failure probability as a function of σ in the cases where k = 128 and
k = 512. again, in both cases our soft Stern algorithm outperforms the other
algorithms. Again, notice that the scale on the y-axis is not the same in the
two plots.

PAPER IV 197

Figure 3: The failure probability for the different algorithms as a function of σ.

6 Generalizations

6.1 Soft Output
The algorithm can easily be modified to allow for soft output. The algorithm
above outputs either the codeword ĉ closest to the received vector r, or the first
vector that is within some distance δ of r. Instead, we can keep a number of the
vectors ci closest to r. Based on the probabilities of each of the corresponding

198 PAPER IV

bit patterns we can then calculate the weighted average for each position. Now
the algorithm can output soft information.

6.2 Multiple Iterations
If we are unsuccessful in our one-pass algorithm, we might want to allow for a
new iteration, or many, to increase the success probability. We then suggest to
swap one column from S with one column from O. We want to take advantage of
the reliability values, while still having a degree of randomness in the swapping.
The technique we suggest is the approach experimentally tested as the optimal
in [22]. Here the probability of swapping out i ∈ S is proportional to the
probability that the corresponding position is wrongfully classified, that is, (1−
pi)/

∑
pj∈S(1− pj), where pi is the conditional probability of having a correct

bitwise hard decision, as being defined in (2). The probability of swapping in
j ∈ O is proportional to the squared bias of j, that is, τ2

j /
∑
τk∈O τ

2
k , where τj

is the respective bias, i.e., τj = |pj − 1
2 |. The complexity can be analysed by

employing a Markov-chain model, as was done in [7, 8].

7 Applications

7.1 Breaking Soft McEliece
In [2], using soft information to enhance the performance of an attacking al-
gorithm has been discussed, but no attacks below the security level have been
presented. We show that soft McEliece can be broken by a trivial variant of
Algorithm 2. The adversary will employ a simplistic version, i.e., keeping one
element in each list. Therefore, she chooses l to be 0 and the considered error
pattern is 0 in the k most reliable positions.

The attack can also be described as follows. The adversary chooses the
k most reliable indices to form an information set I, makes a bit-wise hard
decision sgn(·), and calculates the message u via a Gaussian elimination. She
then tests whether this is a valid message. Otherwise, the adversary selects
another ciphertext and tries again (if a single ciphertext can be broken the
scheme is considered insecure). For one pass, the attack succeeds in case (i)
that the sub-matrix corresponding to this information set is invertible and (ii)
that there exist no errors among these positions. In implementation this latter
probability is 0.98 if 80-bit security is targeted, and the expected complexity for
recovering one message is about 3.5 Gaussian eliminations.

We give some intuition why this basic strategy can solve the decoding prob-
lem in soft McEliece for the proposed security parameters. In [2], one key se-
curity argument is that the total number of bit errors in one ciphertext follows
a modified binomial distribution, which gives at least n

2 erfc
(

1√
2σ

)
bit errors.

However, for the most reliable coordinates, the number of bit errors are very
few. We see that the expected number of bit errors among the n

2 most reliable
bits is only 0.022 (or 0.015) using the parameters for 80 (or 128)-bit security.
Most of the error positions are among the least reliable ones.

PAPER IV 199

Moving to a higher noise level

Though this simplistic attack works well for soft McEliece, Algorithm 2 per-
forms much better when the size of the targeted instance increases. Therefore,
one should employ the full algorithm when aiming for cryptosystems with a
reasonable security level.

A higher noise level increases the decryption (decoding) error probability. If
(n, σ) = (7202, 0.66), for instance, the 3601 most reliable bits are error-free with
probability 2−13.0. Hence, on average about 29, 000 Gaussian eliminations are
required using this simplistic attack. By using soft Stern, setting l = 23 and
choosing a suitable δ in Algorithm 2, we can reduce the expected complexity to
around 23 Gaussian eliminations3.

7.2 Applications in Side-channel Attacks
Transforming some problems in side-channel analysis to that of decoding ran-
dom linear codes originates in [5]. In this context, although the noise distribu-
tion is not exactly a Gaussian, soft information can still be exploited, making
Algorithm 2 more efficient than other ISD variants. For side-channel attacks
in [21, 22], the following modified version of the LPN problem occurs. Here,
Ber(p) denotes a random variable that takes the value 1 with probability p and
0 with probability 1 − p, and 〈·, ·〉 denotes the binary inner product of two
vectors.

Definition 7.1 (Learning Parity with Variable Noise (LPVN) [22]). Let s ∈ Fk2
and ψ be a probability distribution over [0, 0.5]. Given n uniformly sampled
vectors ai ∈ Fk2 , n error probabilities εi sampled from ψ, and noisy observations
bi = 〈ai, s〉+ ei = ci + ei, where ei is sampled from Ber(εi), find s.

They solve the problem by translating it into decoding a random linear code
with soft information. They apply Stern’s algorithm, but they do not sort the
error patterns based on their probability of occurring. In this case the error
is not Gaussian, but with some minor modifications our algorithm can still be
applied. We sort the positions based on the εi values. The smaller εi is, the
more reliable the position is. Next, we have

pi = Pr [bi = ci|εi] = 1− εi.

After having done the transformations, such that the all-zero vector is the
most probable vector in an index set S, the probability of a bit pattern with
ones in positions in J ⊂ S and zeros in the other positions is∏

i∈J
εi ·

∏
i/∈J ,i∈S

(1− εi) =

∏
i∈J εi∏
i∈J (1− εi)

·
∏
i∈S

(1− εi) =
∏
i∈J

εi
(1− εi)

·
∏
i∈S

pi.

With some minor adjustments, the method for finding the most probable bit
patterns, described in Section 3.2, can now be used.

3In the conference version [16], we presented an upper bound on the time complexity of
solving this instance, i.e., 31 Gaussian eliminations. After careful simulation, we can now
show a more accurate complexity estimation.

7.3 Hybrid Decoding
Another problem suited for our algorithm can be found in [1], where the prob-
lem of decoding linear codes with soft information appears. They analyze
two codes proposed for space telecommanding. Both are LDPC codes, with
(n, k) = (128, 64) and (n, k) = (512, 256) respectively. A hybrid approach for
decoding is used. First one applies an efficient iterative decoder. In the few cases
when the iterative decoder fails, one uses a decoder based on ordered statistics,
thereby reducing the risk of decoding failure drastically.

However, the proposed ordered statistics algorithm does not make use of a
Stern-type speed-up. It orders the positions after decreasing reliability. Then
they try different error patterns in the k most reliable positions. Using our soft
Stern algorithm, we instead divide the most reliable k + l positions into two
sets, and then look for collisions between the partial syndromes of the bit error
patterns in the two sets. Adding such a Stern-type modification would greatly
improve their ordered statistics decoder.

7.4 Product Codes
An application of the soft Stern algorithm with soft output is the decoding of
product codes. Consider the serial concatenation of two codes, that do not
have an efficient decoder with soft output. A small example would be the Golay
code. An iterative decoder for this product code can be constructed by using the
soft Stern algorithm with soft output together with a message-passing network
(Tanner graph) between code symbols in the product code. Investigating this
idea in more detail is an interesting research direction.

8 Conclusions
We have presented a new information set decoding algorithm using bit reliability,
called the soft Stern algorithm. The algorithm outperforms what has been
previously suggested for decoding general codes on the AWGN channel and
similar tasks.

It can be utilized for a very efficient message-recovery attack on a recently
proposed McEliece-type PKC named Soft McEliece [2], for an improved hybrid
approach of decoding LDPC codes as in [1], and for side-channel attacks as
in [21,22]. We have also mentioned its use for decoding product codes.

Some modifications, such as multiple iterations of the algorithm, and pro-
ducing soft output values, were discussed but not explicitly analyzed. Some
ideas of future work may include further analyzing its use in iterative decod-
ing and extending and deriving the exact algorithmic steps when considering
multiple iterations.

Acknowledgments
The authors would like to thank the anonymous reviewers from ISIT 2017 and
the reviewers for Advances in Mathematics of Communications for helping us

200

PAPER IV 201

improve the quality of this paper.

References

[1] M. Baldi, N. Maturo, E. Paolini and F. Chiaraluce, On the use of ordered
statistics decoders for low-density parity-check codes in space telecommand
links, EURASIP Journal on Wireless Communications and Networking,
2016 (2016), 1–15.

[2] M. Baldi, P. Santini and F. Chiaraluce, Soft McEliece: MDPC code-based
McEliece cryptosystems with very compact keys through real-valued inten-
tional errors, in IEEE International Symposium on Information Theory
ISIT, IEEE, (2016), 795–799.

[3] A. Becker, A. Joux, A. May and A. Meurer, Decoding random binary
linear codes in 2n/20: How 1 + 1 = 0 improves information set decod-
ing, in Advances in Cryptology – EUROCRYPT (eds. D. Pointcheval and
T. Johansson), Springer, (2012), 520–536.

[4] S. Belaïd, J.-S. Coron, P.-A. Fouque, B. Gèrard, J.-G. Kammerer and
E. Prouff, Improved Side-Channel Analysis of Finite-Field Multiplica-
tion., in Cryptographic Hardware and Embedded Systems – CHES (eds.
T. Güneysu and H. Handschuh), Springer, (2015), 395–415.

[5] S. Belaïd, P.-A. Fouque and B. Gèrard, Side-channel analysis of multi-
plications in GF(2128), in Advances in Cryptology – ASIACRYPT (eds.
P. Sarkar and T. Iwata), Springer, (2014), 306–325.

[6] D. J. Bernstein, T. Lange and C. Peters, Smaller decoding exponents:
Ball-collision decoding, in Advances in Cryptology – CRYPTO (eds. P. Ro-
gaway), Springer, (2011), 743–760.

[7] D. J. Bernstein, T. Lange and C. Peters, Attacking and Defending the
McEliece Cryptosystem, in International Workshop on Post-Quantum
Cryptography – PQCrypto (eds. J. Buchmann and J. Ding), Springer,
(2008), 31–46.

[8] A. Canteaut and F. Chabaud, A new algorithm for finding minimum-
weight wordsin a linear code: application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511, IEEE Transactions on Information
Theory, 44 (1998), 367–378.

[9] D. Chase, A class of algorithms for decoding block codes with channel
measurement information, IEEE Transactions on Information theory, 18
(1972), 170–182.

202 PAPER IV

[10] J. Conway and N. Sloane, Soft decoding techniques for codes and lattices,
including the Golay code and the Leech lattice, IEEE Transactions on
Information Theory, 32 (1986), 41–50.

[11] I. Dumer, Sort-and-match algorithm for soft-decision decoding, IEEE
Transactions on Information Theory, 45 (1999), 2333–2338.

[12] S. Dziembowski, S. Faust, G. Herold, A. Journault, D. Masny and F. Stan-
daert, Towards sound fresh re-keying with hard (physical) learning prob-
lems, in Advances in Cryptology – CRYPTO (eds. M. Robshaw and
J. Katz), Springer, (2016), 272–301.

[13] M. Finiasz and N. Sendrier, Security bounds for the design of code-based
cryptosystems, in Advances in Cryptology – ASIACRYPT, (eds. M. Mat-
sui), Springer, (2009), 88–105.

[14] M. P. Fossorier and S. Lin, Soft-decision decoding of linear block codes
based on ordered statistics, IEEE Transactions on Information Theory, 41
(1995), 1379–1396.

[15] D. Gazelle and J. Snyders, Reliability-Based Code-Search Algorithms for
Maximum-Likelihood Decoding of Block Codes, IEEE Transactions on
Information Theory, 43 (1997), 239–249.

[16] Q. Guo, T. Johansson, E. Mårtensson and P. Stankovski, Information
Set Decoding with Soft Information and some Cryptographic Applications,
in IEEE International Symposium on Information Theory – ISIT, IEEE,
(2017), 1793–1797.

[17] R. Koetter and A. Vardy, Algebraic soft-decision decoding of Reed-Solomon
codes, IEEE Transactions on Information Theory, 49 (2003), 2809–2825.

[18] P. J. Lee and E. F. Brickell, An observation on the security of McEliece’s
public-key cryptosystem, in Workshop on the Theory and Application of
Cryptographic Techniques, Springer, (1988), 275–280.

[19] A. May and I. Ozerov, On computing nearest neighbors with applications to
decoding of binary linear codes, in Advances in Cryptology - EUROCRYPT
(eds. E. Oswald and M. Fischlin), Springer, (2015), 203–228.

[20] R. Misoczki, J. P. Tillich, N. Sendrier and P. S. Barreto, MDPC-McEliece:
New McEliece variants from moderate density parity-check codes, in IEEE
International Symposium on Information Theory – ISIT, IEEE, (2013),
2069–2073.

[21] P. Pessl, L. Groot Bruinderink and Y. Yarom, To BLISS-B or not to be:
Attacking strongSwan’s Implementation of Post-Quantum Signatures, in
ACM SIGSAC Conference on Computer and Communications Security –
CCS, ACM, (2017), 1843–1855.

[22] P. Pessl and S. Mangard, Enhancing side-channel analysis of binary-
field multiplication with bit reliability, in RSA Conference Cryptographers’
Track (CT-RSA) (eds. K. Sako), (2016), 255–270.

PAPER IV 203

[23] E. Prange, The use of information sets in decoding cyclic codes, IRE
Transactions on Information Theory, 8 (1962), 5–9.

[24] The Sage Developers, SageMath, the Sage Mathematics Software System,
http://www.sagemath.org, 2018.

[25] J. Stern, A method for finding codewords of small weight, in Coding Theory
and Applications (eds. G. Cohen and J. Wolfmann), (1988), 106–113.

[26] A. Valembois, Fast soft-decision decoding of linear codes, stochastic res-
onance in algorithms, in IEEE International Symposium on Information
Theory – ISIT, IEEE, (2000), 91.

[27] A. Valembois and M. Fossorier, Generation of binary vectors that optimize
a given weight function with application to soft-decision decoding, in IEEE
Information Theory Workshop, IEEE, (2001), 138–140.

[28] A. Valembois and M. Fossorier, Box and match techniques applied to soft-
decision decoding, IEEE Transactions on Information Theory, 50 (2004),
796–810.

[29] A.J. Viterbi and J.K. Omura, Principles of Digital Communication and
Coding, McGraw-Hill, New York, 1979.

[30] Y. Wu and C. N. Hadjicostis, Soft-decision decoding using ordered recod-
ings on the most reliable basis, IEEE transactions on information theory,
53 (2007), 829–836.

204 PAPER IV

On the Asymptotics of Solving the LWE
Problem Using Coded-BKW with Sieving

The Learning with Errors problem (LWE) has become a central topic
in recent cryptographic research. In this paper, we present a new solving
algorithm combining important ideas from previous work on improving
the Blum-Kalai-Wasserman (BKW) algorithm and ideas from sieving in
lattices. The new algorithm is analyzed and demonstrates an improved
asymptotic performance. For the Regev parameters q = n2 and noise level
σ = n1.5/(

√
2π log2

2 n), the asymptotic complexity is 20.893n in the standard
setting, improving on the previously best known complexity of roughly
20.930n. The newly proposed algorithm also provides asymptotic improve-
ments when a quantum computer is assumed or when the number of sam-
ples is limited. Also for a polynomial number of samples an asymptotic
improvement is shown. For concrete parameter instances, improved per-
formance is indicated..

Keywords: LWE, BKW, Coded-BKW, Lattice codes, Lattice sieving.

c©IEEE 2019. Reprinted, with permission, from
Qian Guo, Thomas Johansson, Erik Mårtensson and Paul Stankovski Wagner, “On
the Asymptotics of Solving the LWE Problem Using Coded-BKW with Sieving”, in
IEEE Transactions on Information Theory, vol. 65, no. 8, pp. 5243-5259, 2019.

207

PAPER V 209

1 Introduction
Post-quantum crypto, the area of cryptography in the presence of quantum
computers, is currently a major topic in the cryptographic community. Cryp-
tosystems based on hard problems related to lattices are currently intensively
investigated, due to their possible resistance against quantum computers. The
major problem in this area, upon which cryptographic primitives can be built,
is the Learning with Errors (LWE) problem.

LWE is an important, efficient and versatile problem. One famous appli-
cation of LWE is the construction of Fully Homomorphic Encryption schemes
[15–17, 22]. A major motivation for using LWE is its connections to lattice
problems, linking the difficulty of solving LWE (on average) to the difficulty of
solving instances of some (worst-case) famous lattice problems. Let us state the
LWE problem.

Definition 1.1. Let n be a positive integer, q a prime, and let X be an error
distribution selected as the discrete Gaussian distribution on Zq. Fix s to be a
secret vector in Znq , chosen according to a uniform distribution. Denote by Ls,X
the probability distribution on Znq × Zq obtained by choosing a ∈ Znq uniformly
at random, choosing an error e ∈ Zq according to X and returning

(a, z) = (a, 〈a, s〉+ e)

in Znq × Zq. The (search) LWE problem is to find the secret vector s given a
fixed number of samples from Ls,X .

The definition above gives the search LWE problem, as the problem de-
scription asks for the recovery of the secret vector s. Another variant is the
decision LWE problem. In this case the problem is to distinguish between sam-
ples drawn from Ls,X and a uniform distribution on Znq ×Zq. Typically, we are
then interested in distinguishers with non-negligible advantage.

For the analysis of algorithms solving the LWE problem in previous work,
there are essentially two different approaches. One being the approach of cal-
culating the specific number of operations needed to solve a certain instance for
a particular algorithm, and comparing specific complexity numbers. The other
approach is asymptotic analysis. Solvers for the LWE problem with suitable pa-
rameters are expected to have fully exponential complexity, say bounded by 2cn

as n tends to infinity. Comparisons between algorithms are made by deriving
the coefficient c in the asymptotic complexity expression.

1.1 Related Work
We list the three main approaches for solving the LWE problem in what follows.
A good survey with concrete complexity considerations is [6] and for asymptotic
comparisons, see [27].

The first class is the algebraic approach, which was initialized by Arora-
Ge [8]. This work was further improved by Albrecht et al., using Gröbner
bases [2]. Here we point out that this type of attack is mainly, asymptotically,
of interest when the noise is very small. For extremely small noise the complexity
can be polynomial.

The second and most commonly used approach is to rewrite the LWE prob-
lem as a lattice problem, and therefore lattice reduction algorithms [18,46], such

210 PAPER V

as sieving and enumeration can be applied. There are several possibilities when
it comes to reducing the LWE problem to some hard lattice problem. One is
a direct approach, writing up a lattice from the samples and then to treat the
search LWE problem as a Bounded Distance Decoding (BDD) problem [36,37].
One can also reduce the BDD problem to a unique-SVP problem [5]. An-
other variant is to consider the distinguishing problem in the dual lattice [40].
Lattice-based algorithms have the advantage of not using an exponential number
of samples.

The third approach is the BKW-type algorithms.

BKW variants

The BKW algorithm was originally proposed by Blum, Kalai and Wasser-
man [13] for solving the Learning Parity with Noise (LPN) problem (LWE for
q = 2). It resembles Wagner’s generalized birthday approach [47].

For the LPN case, there has been a number of improvements to the basic
BKW approach. In [35], transform techniques were introduced to speed up the
search part. Further improvements came in work by Kirchner [30], Bernstein
and Lange [11], Guo et al. [23], Zhang et al. [49], Bogos and Vaudenay [14].

Albrecht et al. were first to apply BKW to the LWE problem [3], which
they followed up with Lazy Modulus Switching (LMS) [4], which was further
improved by Duc et al. in [21]. The basic BKW approach for LWE was improved
in [25] and [31], resulting in an asymptotic improvement. These works improved
by reducing a variable number of positions in each step of the BKW procedure
as well as introducing a coding approach. Although the two algorithms were
slightly different, they perform asymptotically the same and we refer to the
approach as coded-BKW. It was proved in [31] that the asymptotic complexity
for Regev parameters (public-key cryptography parameter) q = n2 and noise
level σ = n1.5/(

√
2π log2

2 n) is 20.930n+o(n), the currently best known asymptotic
performance for such parameters.

Sieving algorithms

A key part of the algorithm to be proposed is the use of sieving in lattices. The
first sieving algorithm for solving the shortest vector problem was proposed by
Ajtai, Kumar and Sivakumar in [1], showing that SVP can be solved in time and
memory 2Θ(n). Subsequently, we have seen the NV-sieve [43], List-sieve [41], and
provable improvement of the sieving complexity using the birthday paradox [26,
44].

With heuristic analysis, [43] started to derive a complexity of 20.415n+o(n),
followed by GaussSieve [41], 2-level sieve [48], 3-level sieve [50] and overlattice-
sieve [10]. Laarhoven started to improve the lattice sieving algorithms employing
algorithmic breakthroughs in solving the nearest neighbor problem, angular
LSH [32], and spherical LSH [34]. The asymptotically most efficient approach
when it comes to time complexity is Locality Sensitive Filtering (LSF) [9] with
both a space and time complexity of 20.292n+o(n). Using quantum computers,
the complexity can be reduced to 20.265n+o(n) (see [33]) by applying Grover’s
quantum search algorithm.

PAPER V 211

1.2 Contributions
We propose a new algorithm for solving the LWE problem combining previous
combinatorial methods with an important algorithmic idea – using a sieving
approach. Whereas BKW combines vectors to reduce positions to zero, the
previously best improvements of BKW, like coded-BKW, reduce more positions
but at the price of leaving a small but in general nonzero value in reduced
positions. These values are considered as additional noise. As these values
increase in magnitude for each step, because we add them together, they have
to be very small in the initial steps. This is the reason why in coded-BKW the
number of positions reduced in a step is increasing with the step index. We
have to start with a small number of reduced positions, in order to not obtain
a noise that is too large.

The proposed algorithm tries to solve the problem of the growing noise from
the coding part (or LMS) by using a sieving step to make sure that the noise from
treated positions does not grow, but stays approximately of the same size. The
basic form of the new algorithm then contains two parts in each iterative step.
The first part reduces the magnitude of some particular positions by finding
pairs of vectors that can be combined. The second part performs a sieving step
covering all positions from all previous steps, making sure that the magnitude
of the resulting vector components is roughly as in the already size-reduced part
of the incoming vectors.

We analyze the new algorithm from an asymptotic perspective, proving a
new improved asymptotic performance. For the asymptotic Regev parameters
q = n2 and noise level σ = n1.5, the result is a time and space complexity
of 20.8951n+o(n), which is a significant asymptotic improvement. We also get
a first quantum acceleration (with complexity of 20.8856n+o(n)) for the Regev
parameters by using the performance of sieving in the quantum setting.

In addition, when the sample complexity is limited, e.g, to a polynomial
number in n like Θ(n log n), the new algorithm outperforms the previous best
solving algorithms for a wide range of parameter choices.

Lastly, the new algorithm can be flexibly extended and generalized in various
ways. We present three natural extensions further improving its asymptotic
performance. For instance, by changing the reduction scale in each sieving
step, we reduce the time and space complexity for the Regev parameters to
20.8927n+o(n) in the standard setting. With the help of quantum computers, the
complexity can be even further reduced, down to 20.8795n+o(n).

1.3 Organization
The remaining parts of the paper are organized as followed. We start with some
preliminaries in Section 2, including more basics on LWE, discrete Guassians
and sieving in lattices. In Section 3 we review the details of the BKW algorithm
and some recent improvements. Section 4 just contains a simple reformulation.
In Section 5 we give the new algorithm in its basic form and in Section 6 we
derive the optimal parameter selection and perform the asymptotic analysis.
In Section 7 we derive asymptotic expressions for LWE with sparse secrets,
and show an improved asymptotic performance when only having access to
a polynomial number of samples. Section 8 contains new versions of coded-
BKW with sieving, that further decrease the asymptotic complexity. Finally,

212 PAPER V

we conclude the paper in Section 9.

2 Background

2.1 Notations
Throughout the paper, the following notations are used.

• We write log(·) for the base 2 logarithm and ln(·) for the natural logarithm.

• In an n-dimensional Euclidean space Rn, by the norm of a vector x =
(x1, x2, . . . , xn) we refer to its L2-norm, defined as

‖x‖ =
√
x2

1 + · · ·+ x2
n.

We then define the Euclidean distance between two vectors x and y in Rn
as ‖x− y‖.

• An element in Zq is represented as the corresponding value in [− q−1
2 , q−1

2].

• For an [N, k0] linear code, N denotes the code length and k0 denotes the
dimension.

• We use the following standard notations for asymptotic analysis.

– f(n) = O(g(n)) if there exists a positive constant C, s.t., |f(n)| ≤
C · g(n) for n sufficiently large.

– f(n) = Ω(g(n)) if there exists a positive constant C, s.t., |f(n)| ≥
C · g(n) for n sufficiently large.

– f(n) = Θ(g(n)) if there exist positive constants C1 and C2, s.t.,
C1 · g(n) ≤ |f(n)| ≤ C2 · g(n) for n sufficiently large.

– f(n) = o(g(n)) if for every positive C, we have |f(n)| < C · g(n) for
n sufficiently large.

2.2 LWE Problem Description
Rather than giving a more formal definition of the decision version of LWE, we
instead reformulate the search LWE problem, because our main purpose is to
investigate its solving complexity. Assume that m samples

(a1, z1), (a2, z2), . . . , (am, zm),

are drawn from the LWE distribution Ls,X , where ai ∈ Znq , zi ∈ Zq. Let
z = (z1, z2, . . . , zm) and y = (y1, y2, . . . , ym) = sA. We can then write

z = sA + e,

whereA =
[
aT

1 aT
2 · · · aT

m

]
, zi = yi+ei = 〈s,ai〉+ei and ei

$← X . Therefore,
we have reformulated the search LWE problem as a decoding problem, in which
the matrix A serves as the generator matrix for a linear code over Zq and z is
the received word. We see that the problem of searching for the secret vector s
is equivalent to that of finding the codeword y = sA such that the Euclidean
distance ||y − z|| is minimal.

PAPER V 213

The Secret-Noise Transformation

An important transformation [7, 30] can be applied to ensure that the secret
vector follows the same distribution X as the noise. The procedure works as
follows. We first write A in systematic form via Gaussian elimination. Assume
that the first n columns are linearly independent and form the matrix A0. We
then define D = A0

−1 and write ŝ = sD−1 − (z1, z2, . . . , zn). Hence, we can
derive an equivalent problem described by Â = (I, âT

n+1, â
T
n+2, · · · , âT

m), where
Â = DA. We compute

ẑ = z− (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

Using this transformation, one can assume that each entry in the secret vector
is now distributed according to X .

The noise distribution X is usually chosen as the discrete Gaussian distri-
bution, which will be briefly discussed in Section 2.3.

2.3 Discrete Gaussian Distribution
We start by defining the discrete Gaussian distribution over Z with mean 0
and variance σ2, denoted DZ,σ. That is, the probability distribution obtained
by assigning a probability proportional to exp(−x2/2σ2) to each x ∈ Z. The
discrete Gaussian over Zn with variance σ2, denoted DZn,σ, is defined as the
product distribution of n independent copies of DZ,σ.

Then, the discrete Gaussian distribution X over Zq with variance σ2 (also
denoted Xσ) can be defined by folding DZ,σ and accumulating the value of the
probability mass function over all integers in each residue class modulo q.

Following the path of previous work [3], we make the following heuristic
assumption about our discussed instances.

Heuristic 1. The discrete Gaussian distribution can be approximated by the
continuous counterpart. For instance, if X is drawn from Xσ1

and Y is drawn
from Xσ2

, then X + Y is regarded as being drawn from X√
σ2

1+σ2
2

.

This approximation, which is widely-adopted in literature (e.g., [4, 25, 28]),
is motivated by the fact that a sufficient wild Gaussian1 blurs the discrete struc-
tures.2

1It is proven in [39] that the noise is sufficiently large for the integer lattice of Zn if σ is of
order Ω(nc) for c > 0.5.

2The LWE noise distribution is formally treated in [21] and in [31]. However, in [21], only
the original BKW steps are investigated, and in [31], a non-standard LWE noise distribution
is assumed. Both are non-applicable.

On the other hand, the adopted assumption from the literature to approximate the discrete
Gaussian is strong. We can simplify it to two weaker heuristic assumptions in our deviation.
Firstly, many noise variables with small variance will be generated and be added or subtracted.
We assume that all the small noise variables are independent so that we can add their variance
as can be done in the continuous Gaussian case. Secondly, by intuition from the central limit
theorem, we assume that the final noise variable is close to a continuous Gaussian mod q.
Thus, we can use the formula from [36] to estimate the required number of samples.

214 PAPER V

The sample complexity for distinguishing.

To estimate the solving complexity, we need to determine the number of required
samples to distinguish between the uniform distribution on Zq and Xσ. Relying
on standard theory from statistics, when the noise variance σ is sufficiently large
to approximate the discrete Gaussian by a continuous one mod q, using either
previous work [36] or Bleichenbacher’s definition of bias [42], we can conclude
that the required number of samples is

C · e2π
(
σ
√

2π
q

)2

, (1)

where C is a small positive constant.

2.4 Sieving in Lattices
We here give a brief introduction to the sieving idea and its application in
lattices for solving the shortest vector problem (SVP). For an introduction to
lattices, the SVP problem, and sieving algorithms, see e.g. [9].

In sieving, we start with a list L of relatively short lattice vectors. If the
list size is large enough, we will obtain many pairs of v,w ∈ L, such that
‖v ±w‖ ≤ max{‖v‖ , ‖w‖}. After reducing the size of these lattice vectors a
polynomial number of times, one can expect to find the shortest vector.

The core of sieving is thus to find a close enough neighbor v ∈ L effi-
ciently, for a vector w ∈ L, thereby reducing the size by further operations
like addition or subtraction. This is also true for our newly proposed algorithm
in a later section, since by sieving we solely desire to control the size of the
added/subtracted vectors. For this specific purpose, many famous probabilis-
tic algorithms have been proposed, e.g., Locality Sensitive Hashing (LSH) [29],
Bucketing coding [20], and May-Ozerov’s algorithm [38] in the Hamming metric
with important applications to decoding binary linear codes.

In the Euclidean metric, the state-of-the-art algorithm in the asymptotic
sense is Locality Sensitive Filtering (LSF) [9], which requires 20.2075n+o(n) sam-
ples. In the classic setting, the time and memory requirements are both in the
order of 20.292n+o(n). The constant hidden in the running time exponent can be
reduced to 0.265 in the scenario of quantum computing. In the remaining part
of the paper, we choose the LSF algorithm for the best asymptotic performance
when we need to instantiate the sieving method.

3 The BKW Algorithm
The BKW algorithm is the first sub-exponential algorithm for solving the LPN
problem, originally proposed by Blum, Kalai and Wasserman [12,13]. It can also
be trivially adopted to the LWE problem, with single-exponential complexity.

3.1 Plain BKW
The algorithm consists of two phases: the reduction phase and the solving
phase. The essential improvement comes from the first phase, whose underlying
fundamental idea is the same as Wagner’s generalized birthday algorithm [47].
That is, using an iterative collision procedure on the columns in the matrix A,

PAPER V 215

one can reduce its row dimension step by step, and finally reach a new LWE
instance with a much smaller dimension. The solving phase can then be applied
to recover the secret vector. We describe the core procedure of the reduction
phase, called a plain BKW step, as follows. Let us start with A0 = A.

Dimension reduction: In the i-th iteration, we look for combinations of
two columns in Ai−1 that add (or subtract) to zero in the last b entries.
Suppose that one finds two columns aT

j1,i−1,a
T
j2,i−1 such that

aj1,i−1 ± aj2,i−1 = [∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
b symbols

],

where ∗ means any value. We then generate a new vector aj,i = aj1,i−1 ±
aj2,i−1. We obtain a new generator matrix Ai for the next iteration, with
its dimension reduced by b, if we remove the last b all-zero positions with
no impact on the output of the inner product operation. We also derive a
new “observed symbol” as zj,i = zj1,i−1 ± zj2,i−1.

A trade-off: After one step of this procedure, we can see that the new noise
variable is ej,i = ej1,i−1 ± ej2,i−1. If the noise variables ej1,i−1 and ej2,i−1

both follow the Gaussian distribution with variance σ2
i−1, then the new

noise variable ej,i is considered Gaussian distributed with variance σ2
i =

2σ2
i−1.

After t0 iterations, we have reduced the dimension of the problem to n− t0b.
The final noise variable is thus a summation of 2t0 noise variables generated
from the LWE oracle. We therefore know that the noise connected to each
column is of the form

e =

2t0∑
j=1

eij ,

and the total noise is approximately Gaussian with variance 2t0 · σ2.
The remaining solving phase is to solve this transformed LWE instance.

This phase does not affect its asymptotic complexity but has significant impact
on its actual running time for concrete instances.

Similar to the original proposal [13] for solving LPN, which recovers 1 bit in
the secret vector via majority voting, Albrecht et al. [3] exhaust one secret entry
using a distinguisher. The complexity is further reduced by Duc et al. [21] using
Fast Fourier Transform (FFT) to recover several secret entries simultaneously.

3.2 Coded-BKW
As described above, in each BKW step, we try to collide a large number of
vectors ai in a set of positions denoted by an index set I. We denote this sub-
vector of a vector a as aI . We set the size3 of the collision set to qb−1

2 , a very
important parameter indicating the final complexity of the algorithm.

3Naively the size is qb. However, using the fact that vectors with subsets aI and −aI can
be mapped into the same category, we can reduce the size to qb−1

2
. The zero vector gets its

own category.

216 PAPER V

In this part we describe another idea that, instead of zeroing out the vector
aI by collisions, we try to collide vectors to make aI small. The advantage of
this idea is that one can handle more positions in one step for the same size of
the collision set.

This idea was first formulated by Albrecht et al. in PKC 2014 [4], aiming for
solving the LWE problem with a small secret. They proposed a new technique
called Lazy Modulus Switching (LMS). Then, in CRYPTO 2015, two new algo-
rithms with similar underlying algorithmic ideas were proposed independently
in [25] and [31], highly enhancing the performance in the sense of both asymp-
totic and concrete complexity. Using the secret-noise transformation, these new
algorithms can be used to solve the standard LWE problem.

In this part we use the notation from [25] to describe the BKW variant
called coded-BKW, as it has the best concrete performance, i.e., it can reduce
the magnitude of the noise by a constant factor compared with its counterpart
technique LMS. The core step – the coded-BKW step – can be described as
follows.

Considering step i in the reduction phase, we choose a q-ary [ni, b] linear
code, denoted Ci, that can be employed to construct a lattice code, e.g., using
Construction A (see [19] for details). The sub-vector aI can then be written
in terms of its two constituents, the codeword part cI ∈ Ci and an error part
eI ∈ ZNiq . That is,

aI = cI + eI . (2)
We rewrite the inner product 〈sI ,aI〉 as

〈sI ,aI〉 = 〈sI , cI〉+ 〈sI , eI〉 .

We can cancel out the part 〈sI , cI〉 by subtracting two vectors mapped to the
same codeword, and the remaining difference is the noise. Using the same kind
of reasoning, the size of the collision set can be qb−1

2 , as in the plain BKW step.
If we remove ni positions in the i-th step, then we have removed

∑t
i=1 ni

positions (ni ≥ b) in total. Thus, after guessing the remaining secret symbols
in the solving phase, we need to distinguish between the uniform distribution
and the distribution representing a sum of noise variables, i.e.,

z =

2t∑
j=1

eij +

n∑
i=1

si(E
(1)
i + E

(2)
i + · · ·+ E

(t)
i), (3)

where E(h)
i =

∑2t−h+1

j=1 ê
(h)
ij

and ê(h)
ij

is the noise introduced in the h-th coded-

BKW step. Here at most one error term E
(h)
i is non-zero for one position in the

index set, and the overall noise can be estimated according to Equation (3).
The remaining problem is to analyze the noise level introduced by coding.

In [25], it is assumed that every E(h)
i is close to a Gaussian distribution, which

is tested in implementation. Based on known results (e.g., [19]) on lattice codes,
in [25], the standard deviation σ introduced by employing a q-ary [N, k] linear
code is estimated by

σ ≈ q1−k/N ·
√
G(ΛN,k), (4)

where G(ΛN,k) is a code-related parameter satisfying

1

2πe
< G(ΛN,k) ≤ 1

12
.

PAPER V 217

In [25], the chosen codes are with varying rates to ensure that the noise
contribution of each position is equal. This is principally similar to the operation
of changing the modulus size in each reduction step in [31]. It is trivial to get a
code with G(LN,k) larger than 1/12. While choosing a better code is important
for concrete complexity, for asymptotic complexity this trivial code is as fast as
any other code.

4 A Reformulation
Let us reformulate the LWE problem and the steps in the different algorithms
in a matrix form. Recall that we have the LWE samples in the form z = sA+e.
We write this as

(s, e)

(
A
I

)
= z. (5)

The entries in the unknown left-hand side vector (s, e) are all i.i.d. The matrix

above is denoted as H0 =

(
A
I

)
and it is a known quantity, as well as z.

By multiplying Equation (5) from the right with special matrices Pi we are
going to reduce the size of columns in the matrix. Starting with

(s, e)H0 = z,

we find a matrix P0 and form H1 = H0P0, z1 = zP0, resulting in

(s, e)H1 = z1.

Continuing this process for t steps, we have formed Ht = H0P0 · · ·Pt−1, zt =
zP0 · · ·Pt−1.

Here the dimensionality of the Pi matrices depends on how the total number
of samples changes in each step. If we keep the total number of samples constant,
then all Pi matrices have size m×m.

Plain BKW can be described as each Pi having columns with only two
nonzero entries, both from the set {−1, 1}. The BKW procedure subsequently

cancels rows in the Hi matrices in a way such that Ht =

(
0
H′t

)
, where

columns of H′t have 2t non-zero entries4. The goal is to minimize the magnitude
of the column entries in Ht. The smaller magnitude, the larger advantage in
the corresponding samples.

The improved techniques like LMS and coded-BKW reduce the Ht similar
to the BKW, but improve by using the fact that the top rows of Ht do not have
to be canceled to 0. Instead, entries are allowed to be of the same norm as in
the H′t matrix.

4Sometimes we get a little fewer than 2t entries since 1s can overlap. However, this prob-
ability is low and does not change the analysis.

218 PAPER V

Algorithm 1 Coded-BKW with Sieving (main steps)

Input: Matrix A with n rows and m columns, received vector z of
length m and algorithm parameters t, ni, 1 ≤ i ≤ t, B

change the distribution of the secret vector (Gaussian elimination)
for i from 1 to t do:

for all columns h ∈ Hi−1 do:
∆ = CodeMap(h, i)
put h in list L∆

for all lists L∆ do:
S∆ = Sieve(L∆, i,

√
Ni ·B)

put all S∆ as columns in Hi

guess the sn entry using hypothesis testing

ni

Ni−1 Ni

1. Coded Step

L∆1

...
L∆i

...
L∆K

L∆i

2. Sieving Step
S∆i

1.
∥∥(a1 − a2)[Ni−1+1:Ni]

∥∥ < B
√
ni

2.
∥∥a[1:Ni]

∥∥ < B
√
Ni

Figure 1: A micro picture of how one step of coded-BKW with sieving works.

5 A BKW-Sieving Algorithm for the LWE Prob-
lem

The algorithm we propose uses a similar structure as the coded-BKW algorithm.
The new idea involves changing the BKW step to also include a sieving step. In
this section we give the algorithm in a simple form, allowing for some asymptotic
analysis. We exclude some steps that give non-asymptotic improvements. We
assume that each entry in the secret vector s is distributed according to X .

A summary of coded-BKW with sieving is detailed in Algorithm 1.
Note that one may also use some advanced distinguisher, e.g., the FFT

distinguisher, which is important to the concrete complexity, but not for the
asymptotic performance.

5.1 Initial Guessing Step
We select a few entries of s and guess these values (according to X). We run
through all likely values and for each of them we do the steps below. Based on
a particular guess, the sample equations need to be rewritten accordingly.

PAPER V 219

For simplicity, the remaining unknown values are still denoted s after this
guessing step and the length of s is still denoted n.

5.2 Transformation Steps
We start with some simplifying notation. The n positions in columns in A
(first n positions in columns of H) are considered as a concatenation of smaller
vectors. We assume that these vectors have lengths which are n1, n2, n3, . . . , nt,
respectively, in such a way that

∑t
i=1 ni = n. Also, let Nj =

∑j
i=1 ni, for

j = 1, 2, . . . , t.
Before explaining the algorithmic steps, we introduce two notations that will

be used later.
Notation CodeMap(h, i): We assume, following the idea of coded-BKW,

that we have fixed a lattice code Ci of length ni. The vector h fed as input to
CodeMap is first considered only restricted to the positions Ni−1 + 1 to Ni, i.e.,
as a vector of length ni. This vector, denoted h[Ni−1+1,Ni], is then mapped to
the closest codeword in Ci. This closest codeword is denoted CodeMap(h, i).

The code Ci needs to have an associated procedure of quickly finding the
closest codeword for any given vector. One could then use a simple code or a
more advanced code. From an asymptotic viewpoint, it does not matter, but in
a practical implementation there can be a difference. We are going to select the
parameters in such a way that the distance to the closest codeword is expected
to be no more than

√
ni ·B, where B is a constant.

Notation Sieve(L∆, i,
√
Ni · B): The input L∆ contains a list of vectors.

We are only considering them restricted to the first Ni positions. This procedure
will find differences between any two vectors such that the norm of the difference
restricted to the first Ni positions is less than

√
Ni ·B. All such differences are

put in a list S∆ which is the output of the procedure. On average, the list S∆

should have roughly the same amount of vectors as L∆.
We assume that the vectors in the list L∆ restricted to the first Ni positions,

all have a norm of about
√
Ni ·B. Then the problem is solved by algorithms for

sieving in lattices, for example using Locality-Sensitive Hashing/Filtering.
For the description of the main algorithm, recall that

(s, e)H0 = z,

where H0 =

(
A
I

)
. We are going to perform t steps to transform H0 into

Ht such that the columns in Ht are "small". Again, we look at the first n
positions in a column corresponding to the A matrix. Since we are only adding
or subtracting columns using coefficients in {−1, 1}, the remaining positions in
the column are assumed to contain 2i nonzero positions either containing a −1
or a 1, after i steps5.

5.3 A BKW-Sieving Step
We are now going to fix an average level of "smallness" for a position, which is
a constant denoted B, as above. The idea of the algorithm is to keep the norm
of considered vectors of some length n′ below

√
n′ ·B.

5Sometimes we get a little fewer than 2t entries since 1s can overlap. However, this prob-
ability is low and does not change the analysis.

220 PAPER V

Coded-BKW

L∆1

S∆1

L∆2

S∆2

· · ·

Sieving

· · ·

L∆K

S∆K

Figure 2: A macro picture of how one step of coded-BKW with sieving works.
The set of lists S∆1

, . . . ,S∆K
constitutes the samples for the next step of

coded-BKW with sieving.

A column h ∈ H0 will now be processed by first computing
∆ = CodeMap(h, 1). Then we place h in the list L∆. After running through
all columns h ∈ H0 they have been sorted into lists L∆. Use K to denote the
total number of lists.

We then run through the lists, each containing roughly m/K columns. We
perform a sieving step, according to S∆ = Sieve(L∆,

√
N1 · B), for all ∆ ∈ Ci.

The result is a list of vectors, where the norm of each vector restricted to the
first N1 positions is less than

√
N1 ·B. The indices of any ij , ik are kept in such

a way that we can compute a new received symbol z = zij − zik . All vectors in
all lists S∆ are now put as columns in H1. We now have a matrix H1 where
the norm of each column restricted to the first n1 positions is less than

√
N1 ·B.

This is the end of the first step.
Next, we repeat roughly the same procedure another t− 1 times. A column

h ∈ Hi−1 will now be processed by first computing ∆ = CodeMap(h, i). We
place h in the list L∆. After running through all columns h ∈ Hi−1 they have
been sorted in K lists L∆.

We run through all lists, where each list contains roughly m/K columns. We
perform a sieving step, according to S∆ = Sieve(L∆, i,

√
Ni ·B). The result is a

list of vectors where the norm of each vector restricted to the first Ni positions
is less than

√
Ni ·B. A new received symbol is computed. All vectors in all lists

S∆ are now put as columns in Hi. We get a matrix Hi where the norm of each
column restricted to the first Ni positions is less than

√
Ni ·B. This is repeated

for i = 2, . . . , t. We assume that the parameters have been chosen in such a way
that each matrix Hi can have m columns.

We make the following heuristic assumption.

Heuristic 2. After each step i of coded-BKW with sieving, we make the as-
sumption that the vectors of L∆ are uniformly distributed on a sphere with

PAPER V 221

radius
√
Ni ·B.

This is a standard assumption6 in papers on lattice sieving.
After performing these t steps we end up with a matrix Ht such that the

norm of columns restricted to the first n positions is bounded by
√
n · B and

the norm of the last m positions is roughly 2t/2. Altogether, this should result
in samples generated as

z = (s, e)Ht.

The values in the z vector are then roughly Gaussian distributed, with variance
σ2 · (nB2 + 2t). By running a distinguisher on the created samples z we can
verify whether our initial guess is correct or not. After restoring some secret
value, the whole procedure can be repeated, but for a smaller dimension.

5.4 Illustrations of Coded-BKW with Sieving
A micro picture of how coded-BKW with sieving works can be found in Fig. 1.
A sample gets mapped to the correct list L∆i , based on the current ni positions.
Here L∆1 , . . . ,L∆K

denote the set of all the K such lists. In this list L∆i , when
adding/subtracting two vectors the resulting vector gets elements that are on
average smaller than B in magnitude in the current ni positions. Then we only
add/subtract vectors in the list L∆i

such that the elements of the resulting
vector on average is smaller than B in the first Ni positions. The list of such
vectors is then denoted S∆i .

A macro picture of how coded-BKW with sieving works can be found in
Fig. 2. The set of all samples gets divided up into lists L∆1

, . . . ,L∆K
. Sieving

is then applied to each individual list. The resulting sieved lists S∆1
, . . . ,S∆K

then constitute the set of samples for the next step of coded-BKW with sieving.

5.5 High-Level Comparison with Previous BKW Versions
A high-level comparison between the behaviors of plain BKW, coded-BKW and
coded-BKW with sieving is shown in Fig. 3.

Initially the average norm of all elements in a sample vector a is around q/4,
represented by the first row in the figure. Plain BKW then gradually works
towards a zero vector by adding/subtracting vectors in each step such that a
fixed number of positions gets canceled out to 0.

The idea of coded-BKW is to not cancel out the positions completely, and
thereby allow for longer steps. The positions that are not canceled out increase
in magnitude by a factor of

√
2 in each step. To end up with an evenly dis-

tributed noise vector in the end we can let the noise in the new almost canceled
positions increase by a factor of

√
2 in each step. Thus we can gradually increase

the step size.
When reducing positions in coded-BKW, the previously reduced positions

increase in magnitude by a factor of
√

2. However, the sieving step in coded-
BKW with sieving makes sure that the previously reduced positions do not
increase in magnitude. Thus, initially, we do not have to reduce the positions
as much as in coded-BKW. However, the sieving process gets more expensive

6For finding the shortest vector in a lattice, the problem gets easier using this assumption.
However, in our case, if the distribution of vectors is biased, it gets easier to find pairs of
vectors close to each other.

222 PAPER V

Plain BKW Coded-BKW Coded-BKW with Sieving

Figure 3: A high-level illustration of how the different versions of the BKW
algorithm work. The x-axis represents positions in the a vector, and the y-axis
depicts the average absolute value of the corresponding position. The blue
color corresponds to positions that have not been reduced yet and the red

color corresponds to reduced positions.

the more positions we work with, and we must therefore gradually divide our
samples into fewer buckets to not increase the total cost of the later steps. Thus,
we must gradually decrease the step size.

6 Parameter Selection and Asymptotic Analysis
After each step, positions that already have been treated should remain at some
given magnitude B. That is, the average (absolute) value of a treated position
should be very close to B. This property is maintained by the way in which we
apply the sieving part at each reduction step. After t steps we have therefore
produced vectors of average norm

√
n ·B.

Assigning the number of samples to be m = 2k, where 2k is a parameter that
will decide the total complexity of the algorithm, we will end up with roughly
m = 2k samples after t steps. As already stated, these received samples will
be roughly Gaussian with variance σ2 · (nB2 + 2t). We assume that the best
strategy is to keep the magnitudes of the two different contributions of the same
order, so we choose nB2 ≈ 2t.

Furthermore, using Equation (3), in order to be able to recover a single secret
position using m samples, we need

m = O
(
e

4π2·σ
2·(nB2+2t)

q2

)
.

PAPER V 223

Thus, we have

ln 2 · k = 4π2 · σ
2 · (nB2 + 2t)

q2
+O (1) . (6)

Each of the t steps should deliver m = 2k vectors of the form described
before.

Since we have two parts in each reduction step, we need to analyze these
parts separately. First, consider performing the first part of reduction step
number i using coded-BKW with an [ni, di] linear code, where the parameters
ni and di at each step are chosen for optimal (global) performance. We sort the
2k vectors into K = qdi−1

2 different lists. Here the coded-BKW step guarantees
that all the vectors in a list, restricted to the ni considered positions, have an
average norm less than

√
ni · B if the codeword is subtracted from the vector.

So the number of lists qdi−1
2 has to be chosen so that this norm restriction is

true. Then, after the coded-BKW step, the sieving step should leave the average
norm over the Ni positions unchanged, i.e., less than

√
Ni ·B.

Since all vectors in a list can be considered to have norm
√
Ni · B in these

Ni positions, the sieving step needs to find any pair that leaves a difference
between two vectors of norm at most

√
Ni ·B. Using Heuristic 2, we know that

a single list should contain at least 20.208Ni vectors to be able to produce the
same number of vectors. The time and space complexity is 20.292Ni if LSF is
employed.

Let us adopt some further notation. As we expect the number of vectors
to be exponential we write k = c0n for some c0. Also, we adopt q = ncq and
σ = ncs . By choosing nB2 ≈ 2t, from (6) we derive that

B = Θ(ncq−cs) (7)

and
t = (2(cq − cs) + 1) log2 n+O (1) . (8)

6.1 Asymptotics of Coded-BKW with Sieving
We assume exponential overall complexity and write it as 2cn for some coefficient
c to be determined. Each step is additive with respect to complexity, so we
assume that we can use 2cn operations in each step. In the t steps we are
choosing n1, n2, . . . positions for each step.

The number of buckets needed for the first step of coded-BKW is (C ′ ·ncs)n1 ,
where C ′ is another constant. In each bucket the dominant part in the time
complexity is the sieving cost 2λn1 , for a constant λ. The overall complexity, the
product of these expressions, should match the bound 2cn, and thus we choose
n1 such that (C ′ · ncs)n1 ≈ 2cn · 2−λn1 .

Taking the log, cs log n · n1 + logC ′n1 = cn− λn1. Therefore, we obtain

n1 =
cn

cs log n+ λ+ logC ′
.

To simplify expressions, we use the notation W = cs log n+ λ+ logC ′.
For the next step, we get W · n2 = cn− λn1, which simplifies in asymptotic

sense to
n2 =

cn

W

(
1− λ

W

)
.

224 PAPER V

Continuing in this way, we have W · ni = cn− λ
∑i−1
j=1 nj and we can obtain an

asymptotic expression for ni as

ni =
cn

W

(
1− λ

W

)i−1

.

After t steps we have
∑t
i=1 ni = n, so we observe that

t∑
i=1

ni =
cn

W

t∑
i=1

(
1− λ

W

)i−1

,

which simplifies to

n =

t∑
i=1

ni =
cn

λ

(
1−

(
1− λ

W

)t)
.

Now, we know that

c = λ

(
1−

(
1− λ

W

)t)−1

.

Since t and W are both of order Θ(log n) that tend to infinity as n tends to
infinity, we have that

c = λ

(
1−

(
1− λ

W

)W
λ ·

tλ
W

)−1

→ λ
(

1− e− tλW
)−1

,

when n→∞.
Since t/W → (1 + 2 (cq − cs)) /cs when n→∞ this finally gives us

c =
λ

1− e−λ(1+2(cq−cs))/cs
.

Then we obtain the following theorem.

Theorem 6.1. Under Heuristics 1 and 2, the time and space complexity of the
proposed algorithm is 2(c+o(1))n, where

c =
λ

1− e−λ(1+2(cq−cs))/cs
,

and λ = 0.292 for classic computers and 0.265 for quantum computers.

Proof 6.1. Since c > λ, there are exponential samples left for the distinguish-
ing process. One can adjust the constants in (7) and (8) to ensure a success
probability of hypothesis testing close to 1. �

6.2 Asymptotics when Using Plain BKW Pre-Processing
In this section we show that Theorem 6.1 can be improved for certain LWE
parameters. Suppose that we perform t0 plain BKW steps and t1 steps of coded-
BKW with sieving, so t = t0 + t1. We first derive the following Lemma 6.1.

PAPER V 225

Lemma 6.1. It is asymptotically beneficial to perform t0 plain BKW steps,
where t0 is of order (2 (cq − cs) + 1− cs/λ · ln (cq/cs)) log n, if

cs
λ

ln
cq
cs
< 2 (cq − cs) + 1.

Proof 6.2. Suppose in each plain BKW step, we zero-out b positions. There-
fore, we have that

qb = 2cn+o(n),

and it follows that asymptotically

b =
cn

cq log n
+ o

(
n

log n

)
. (9)

Because the operated positions in each step will decrease using coded-BKW
with sieving, it is beneficial to replace a step of coded-BKW with sieving by a
pre-processing step of plain BKW, if the allowed number of steps is large. We
compute t1 such that for t ≥ i ≥ t1, we have ni ≤ b. That is,

cn

W

(
1− λ

W

)t1−1

=
cn

cq log n
.

Thus, we derive that t1 is of order cs/λ · ln (cq/cs) · log n. �

If we choose t0 = t−t1 plain BKW steps, where t1 is of order cs/λ·ln (cq/cs)·
log n as in Lemma 6.1, then

n− t0b =

t1∑
i=1

ni =
cn

λ

(
1−

(
1− λ

W

)t1)
.

Thus

1− c

cq

(
2 (cq − cs) + 1− cs

λ
ln

(
cq
cs

))
=
c

λ

(
1− cs

cq

)
.

Finally, making the same heuristic assumptions as in Theorem 6.1, we have
the following theorem for characterizing its asymptotic complexity.

Theorem 6.2. Under Heuristics 1 and 2, if c > λ and cs
λ ln

cq
cs
< 2 (cq − cs)+1,

then the time and space complexity of the proposed algorithm with plain BKW
pre-processing is 2(c+o(1))n, where

c =
λcq

(1 + 2λ)(cq − cs) + λ− cs ln
(
cq
cs

) ,
and λ = 0.292 for classic computers and 0.265 for quantum computers.

Proof 6.3. The proof is similar to that of Theorem 6.1. �

226 PAPER V

Algorithm Complexity exponent (c)

QS-BKW(w/ p) 0.8856
S-BKW(w/ p) 0.8951
S-BKW(w/o p) 0.9054
Coded-BKW [25,31] 0.9299
DUAL-POLYSamples [27] 4.6720
DUAL-EXPSamples [27] 1.1680

Table 1: Asymptotic complexity for the Regev parameters

6.3 Case Study: Asymptotic Complexity of the Regev Pa-
rameters

In this part we present a case-study on the asymptotic complexity of Regev
parameter sets, a family of LWE instances with significance in public-key cryp-
tography.

Regev parameters: We pick parameters q ≈ n2 and σ = n1.5/(
√

2π log2
2 n) as

suggested in [45].

The asymptotic complexity of Regev’s LWE instances is shown in Table 1.
For this parameter set, we have cq = 2 and cs = 1.5, and the previously best al-
gorithms in the asymptotic sense are the coded-BKW variants [25,31] (denoted
Coded-BKW in this table) with time complexity 20.9299n+o(n). The item DUAL-
POLYSamples represents the run time exponent of lattice reduction approaches
using polynomial samples and exponential memory, while DUAL-EXPSamples
represents the run time exponent of lattice reduction approaches using expo-
nential samples and memory. Both values are computed according to formulas
from [27], i.e., 2cBKZ · cq/(cq − cs)2 and 2cBKZ · cq/(cq − cs + 1/2)2, respec-
tively. Here cBKZ is chosen to be 0.292, the best constant that can be achieved
heuristically [9].

We see from the table that the newly proposed algorithm coded-BKW with
sieving outperforms the previous best algorithms asymptotically. For instance,
the simplest strategy without plain BKW pre-processing, denoted S-BKW(w/o
p), costs 20.9054n+o(n) operations, with pre-processing, the time complexity, de-
noted S-BKW(w/ p) is 20.8951n+o(n). Using quantum computers, the constant
hidden in the exponent can be further reduced to 0.8856, shown in Table 1 as
QS-BKW(w/ p). Note that the exponent of the lattice approach is much higher
than that of the BKW variants for the Regev parameters.

6.4 A Comparison with the Asymptotic Complexity of
Other Algorithms

A comparison between the asymptotic time complexity of coded-BKW with
sieving and the previous best single-exponential algorithms is shown in Fig. 4,
similar to the comparison made in [28]. The upper and lower picture show
the state-of-the-art algorithms before and after coded-BKW with sieving was
introduced. We use pre-processing with standard BKW steps (see Theorem 6.2),
since that reduces the complexity of the coded-BKW with sieving algorithm for

PAPER V 227

Figure 4: A comparison of the asymptotic behavior of the best
single-exponential algorithms for solving the LWE problem for different values

of cq and cs. The different areas show where in the parameter space the
corresponding algorithm beats the other algorithms in that subplot.

the entire plotted area. Use of exponential space is assumed. Access to an
exponential number of samples is also assumed.

First of all we notice that coded-BKW with sieving beats coded-BKW for
all the parameters in the figure. It also outperforms the dual algorithm with an
exponential number of samples on some areas where that algorithm used to be
the best. It is also worth mentioning that the Regev instances are well within
the area where coded-BKW with sieving performs best.

We have omitted the area where cs < 0.5 in Fig. 4 and the subsequent
figures. Here the Arora-Ge algorithm [8] is polynomial. This area is not partic-
ularly interesting in cryptographical terms, since Regev’s reduction proof does
not apply for cs < 0.5.

7 Asymptotic Complexity of LWE with Sparser
Secrets

In this part, we discuss the asymptotic solving complexity of an LWE variant
whose secret symbols are sampled from a distribution with standard deviation
ncs1 and the error distribution is a discrete Gaussian with standard deviation
ncs2 , where 0 < cs1 < cs2 . We make the same heuristic assumptions as in
Theorem 6.1 in the derivations in this section. One important application is the
LWE problem with a polynomial number of samples, where cs1 equals cs, while
cs2 changes to

cs + 1
2 if we start with Θ(n log n) samples,

cs + 1
2 +

cq
cm−1 if we start with Θ(cmn) samples,

after the secret-noise transform and the sample amplification procedure (cf. [28]).
We assume that the best strategy is to choose nB2n2cs1 ≈ 2tn2cs2 . There-

fore, we know that B = C · ncq−cs1 and t = log2D + (2(cq − cs2) + 1) · log2 n,
for some constants C and D. We then derive similar formulas except that now
W = cs1 · log n+ o(log n).

We have the following theorem.

228 PAPER V

Theorem 7.1. Under Heuristics 1 and 2, the time and space complexity of the
proposed algorithm for solving the LWE problem with sparse secrets is 2(c+o(1))n,
where

c =
λ

1− e−λ(1+2(cq−cs2))/cs1
,

and λ = 0.292 for classic computers and 0.265 for quantum computers.

Lemma 7.1. It is asymptotically beneficial to perform t0 plain BKW steps,
where t0 is of order (2 (cq − cs1) + 1− cs1/λ · ln (cq/cs1)) log n, if

cs1
λ

ln
cq
cs1

< 2 (cq − cs1) + 1.

If we choose t0 = t − t1 plain BKW steps, where t1 is of order cs1/λ ·
ln (cq/cs1) · log n as in Lemma 7.1, then

n− t0b =

t1∑
i=1

ni =
cn

λ

(
1−

(
1− λ

W

)t1)
.

Thus

1− c

cq

(
2 (cq − cs2) + 1− cs1

λ
ln

(
cq
cs1

))
=
c

λ

(
1− cs1

cq

)
.

Finally, we have the following theorem.

Theorem 7.2. Under Heuristics 1 and 2, if c > λ and cs1
λ ln

cq
cs1

< 2 (cq − cs1)+

1, then the time and space complexity of the proposed algorithm with plain BKW
pre-processing for solving the LWE problem with sparse secrets is 2(c+o(1))n,
where c is

λcq

(cq − cs1) + λ (2 (cq − cs2) + 1)− cs1 ln
(
cq
cs1

) ,
and λ = 0.292 for classic computers and 0.265 for quantum computers.

7.1 Asymptotic Complexity of LWE with a Polynomial
Number of Samples

Algorithm Complexity exponent (c)

QS-BKW 1.6364
S-BKW 1.6507
Coded-BKW [25,31] 1.7380
DUAL-POLYSamples [27] 4.6720

Table 2: Asymptotic complexity for the Regev parameters with a polynomial
number of samples

Applying Theorems 7.1 and 7.2 to the case where we limit the number of
samples to Θ(n log n) gives us the comparison of complexity exponents for the

PAPER V 229

Figure 5: A comparison of the asymptotic behavior of the best
single-exponential algorithms for solving the LWE problem for different values

of cq and cs. The different areas show where in the parameter space the
corresponding algorithm beats the other algorithms in that subplot. The

number of samples is limited to Θ(n log n).

Regev parameters in Table 2. Notice that, asymptotically speaking, the BKW
algorithms perform much better compared to the lattice reduction counterparts
in this scenario. Also, since pre-processing with plain BKW steps does not lower
the complexity in the polynomial case, we just call the algorithms S-BKW and
QS-BKW.

In Fig. 5 we compare the asymptotic behavior between the different algo-
rithms for varying values of cq and cs, when the number of samples is limited
to Θ(n log n). The upper and lower picture show the state-of-the-art algorithms
before and after coded-BKW with sieving was introduced. Notice here that the
area where the BKW algorithms perform better is much larger than in the case
with exponential number of samples. Coded-BKW is best only in a very small
area.

8 New Variants of Coded-BKW with Sieving
We come back to the general LWE problem (without a limit on the number of
samples). In this section, we present three novel variants, the first two showing
unified views for the existing BKW algorithms, and the other improving the
asymptotic complexity for solving many LWE instances including the important
Regev ones, both classically and in a quantum setting. We make the same
heuristic assumptions as in Theorem 6.1 in the derivations in this section.

The results can easily be extended to the solving of LWE problems with
sparse secrets, by replacing cs2 below by cs + 1/2, like we did in Section 7. The
improvements in the sparse case are similar to the ones we show below, so for
ease of reading we omit this analysis.

To balance the noise levels for the best performance, we always perform
t = (2(cq − cs) + 1) log2 n + O (1) reduction steps and make the noise in each
position approximately equal to B = Θ(ncq−cs). For the t reduction steps, we
have three different choices, i.e., plain BKW, coded-BKW, and coded-BKW
with sieving. We assume that plain BKW steps (if performed) should be done

230 PAPER V

S-BKW-v1 S-BKW-v2 S-BKW-v3a S-BKW-v3b

Figure 6: A high-level illustration of how the different new variants of
coded-BKW with sieving work. The x-axis represents positions in the a

vector, and the y-axis depicts the average absolute value of the corresponding
position. The blue color corresponds to positions that have not been reduced
yet and the red color corresponds to reduced positions. Notice that the two
rightmost columns both correspond to the same version of the algorithm, but

with γ > 1 and γ < 1 respectively.

before the other two options7.

8.1 S-BKW-v1
We start with a simple procedure (named S-BKW-v1), i.e., first performing t1
plain BKW steps, then t2 coded-BKW steps, and finally t3 steps of coded-BKW
with sieving. Thus,

t1 + t2 + t3 = t = (2(cq − cs) + 1) log2 n+O (1) ,

and we denote that t3 = α log n+O (1), t2 = β log n+O (1), and t1 = (2(cq −
cs) + 1− α− β) log n+O (1). A straight-forward constraint is that

0 ≤ α, β ≤ α+ β ≤ 2(cq − cs) + 1.

This is a rather generic algorithm as all known BKW variants, i.e., plain
BKW, coded-BKW, coded-BKW with sieving (with or without plain BKW pre-

7Assume that we apply coded-BKW or coded-BKW with sieving to the first steps and then
plain BKW steps to the last steps. The noise corresponding to the first positions would then
increase by a factor of

√
2 for each plain BKW step we take. Reversing the order, performing

the plain BKW steps first and finishing with the coded-BKW/coded-BKW with sieving steps,
we do not see the same increase in noise.

PAPER V 231

processing), can be treated as specific cases obtained by tweaking the parameters
t1, t2 and t3.

We want to make the noise variances for each position equal, so we set

Bi =
B√
2t3+i

,

for i = 1, . . . , t2, where 2Bi is the reduced noise interval after (t2 − i + 1)-th
coded-BKW steps.

Let mi be the length of the (t2 − i+ 1)-th coded-BKW step. We have that,(
q

Bi

)mi
≈ 2cn,

which simplifies to

cn = mi(cs log n+
t3 + i

2
+ C0).

Thus,
mi =

cn

(cs + α
2) log n+ i

2 + C1

, (10)

where C1 is another constant. We know that
t2∑
i=1

mi = 2cn · ln
cs + α+β

2

cs + α
2

+ o(n). (11)

Let ni be the length of the i-th step of coded-BKW with sieving, for 1 ≤ i ≤
t3. We derive that

ni ≈
cn

cs log n
exp(− i

cs log n
λ).

Therefore,
t3∑
i=1

ni =
cn

λ
(1− exp(− α

cs
λ)) + o(n). (12)

We then have the following theorem.

Theorem 8.1. Under Heuristics 1 and 2, one (cq, cs) LWE instance can be
solved with time and memory complexity 2(c+o(1))n, where c is the solution to
the following optimization problem

minimize
α,β

c(α, β) = (
2(cq − cs) + 1− α− β

cq

+ 2 ln
cs + α+β

2

cs + α
2

+ λ−1(1− exp(− α
cs
λ)))−1

subject to 0 ≤ α, β ≤ 2(cq − cs) + 1,

α+ β ≤ 2(cq − cs) + 1.

Proof 8.1. Since n = t1b+
∑t2
i=1mi +

∑t3
i=1 ni, we have

1 =c(
2(cq − cs) + 1− α− β

cq
+ 2 ln

cs + α+β
2

cs + α
2

+ λ−1(1− exp(− α
cs
λ))),

where b is obtained from (9).

232 PAPER V

Example 1. For the Regev parameters, i.e., (cq, cs) = (2, 1.5), we derive that
β = 0 for the best asymptotic complexity of S-BKW-v1. Thus, in this scenario,
this generic procedure degenerates to coded-BKWwith sieving using plain BKW
processing discussed in Section 6.2, i.e., including no coded-BKW steps.

8.2 S-BKW-v2
Next, we present a variant (named S-BKW-v2) of coded-BKW with sieving by
changing the order of the different BKW reduction types in S-BKW-v1. We first
do t1 plain BKW steps, then t2 coded-BKW with sieving steps, and finally t3
coded-BKW steps. Similarly, we let t3 = α log n + O (1), t2 = β log n + O (1),
and t1 = (2(cq − cs) + 1− α− β) log n+O (1). We also have the constraint

0 ≤ α, β ≤ α+ β ≤ 2(cq − cs) + 1.

This is also a generic framework including all known BKW variants as its
special cases.

Let mi represent the length of the (t3 − i + 1)-th coded-BKW step, for
1 ≤ i ≤ t3, and nj the length of the j-th step of coded-BKW step with sieving,
for 1 ≤ j ≤ t2.

We derive that,

m1 =
cn

cs log n
+ o

(
n

log n

)
,

mt3 =
cn(

cs + α
2

)
log n

+ o

(
n

log n

)
,

t3∑
i=1

mi = 2cn · ln
cs + α

2

cs
+ o(n),

nt2 =
cn

(cs + α
2) log n

exp

(
− β
cs
λ

)
+ o

(
n

log n

)
,

t2∑
j=1

nj =
ccs · n

λ(cs + α
2)

(
1− exp

(
−βλ
cs

))
+ o(n).

We then have the following theorem.

Theorem 8.2. Under Heuristics 1 and 2, one (cq, cs) LWE instance can be
solved with time and memory complexity 2(c+o(1))n, where c is the solution to
the following optimization problem

minimize
α,β

c(α, β) =

(
cs

λ
(
cs + α

2

) (1− exp

(
−βλ
cs

))
+

2 ln
cs + α

2

cs
+

1

cq
(2 (cq − cs) + 1− α− β)

)−1

subject to 0 ≤ α, β ≤ 2(cq − cs) + 1,

α+ β ≤ 2(cq − cs) + 1.

Proof 8.2. The proof is similar to that of Theorem 8.1.

PAPER V 233

Example 2. For Regev parameters, we derive that α = 0 for the best asymp-
totic complexity of S-BKW-v2, so it also degenerates to coded-BKW with sieving
using plain BKW processing discussed in Section 6.2.

8.3 S-BKW-v3
We propose a new variant (named S-BKW-v3) including a nearest neighbor
searching algorithm after a coded-BKW step, which searches for a series of new
vectors whose norm is smaller with a factor of γ, where 0 ≤ γ ≤

√
2, by adding

or subtracting two vectors in a ball. This is a generalization of coded-BKW
and coded-BKW with sieving from another perspective, since coded-BKW can
be seen as S-BKW-v3 with reduction parameter γ =

√
2, and coded-BKW with

sieving as S-BKW-v3 with reduction parameter γ = 1.
We denote the complexity exponent for the nearest neighbor searching algo-

rithm λ, i.e., 2λn+o(n) time and space is required if the dimension is n. We can
improve the asymptotic complexity for the Regev parameters further.

We start by performing t1 plain BKW steps and then t2 steps of coded-
BKW with sieving using parameters (λ, γ). Let t2 = α log n + O (1) and t1 =
t − t2 = (2(cq − cs) + 1 − α) log n + O (1). We also have the constraint that
0 ≤ α ≤ 2(cq − cs) + 1.

Let n1 be the length of the first step of coded-BKW with sieving. We have
B1 = B/γt2 , so

(t2 log γ + cs log n) · n1 = cn− λn1.

Thus,

n1 =
cn

(cs + α log γ) log n+ C

=
cn

(cs + α log γ) log n
·
(
1 + Θ

(
log−1 n

))
,

where C is a constant.
For the i-th step of coded-BKW with sieving, we derive that

((t2 − i+ 1) log γ + cs log n) · ni = cn− λ
i∑

j=1

nj . (13)

Thus,

ni =

(
1 +

log γ − λ
(t2 − i+ 1) log γ + cs log n+ λ

)
· ni−1

234 PAPER V

and if γ 6= 1, we have that

nt2 =

t2∏
i=2

(
1 +

log γ − λ
(t2 − i+ 1) log γ + cs log n+ λ

)
· n1

= n1 · exp

(
t2∑
i=2

ln

(
log γ − λ

(t2 − i+ 1) log γ + cs log n+ λ

+1

))

= n1 · exp

(
t2∑
i=2

(
log γ − λ

(t2 − i+ 1) log γ + cs log n+ λ

+Θ
(
log−2 n

)))

= n1 · exp

(∫ α

0

log γ − λ
t log γ + cs

dt+ Θ
(
log−1 n

))
= n1 · exp

(
log γ − λ

log γ
· ln cs + α log γ

cs
+ Θ

(
log−1 n

))
=

n

log n
· c

cs + α log γ
exp

(
log γ − λ

log γ
· ln cs + α log γ

cs

)
+o

(
n

log n

)
.

We also know that

N =

t2∑
j=1

nj = λ−1 (cn− (log γ + cs log n) · nt2)

Thus,

N = λ−1

(
cn−

(
cs

α log γ + cs

) λ
log γ

· cn+ o(n)

)
. (14)

If t1b+N = n, then the following equation holds,

n = (2(cq − cs) + 1− α)
cn

cq

+
cn

λ

(
1−

(
cs

α log γ + cs

) λ
log γ

)
.

Thus, we derive the following formula to compute the constant c, i.e.(
2
(

1− cscq + 1−α
2cq

)
+ 1
λ

(
1−(cs

α log γ+cs
)

λ
log γ

))−1

.

Theorem 8.3. Under Heuristics 1 and 28, if 0 ≤ α0 ≤ 2(cq−cs)+1 and γ 6= 1,
then a (cq, cs) LWE instance can be solved with time and memory complexity

8The heuristic here is slightly reformulated, we assume that after step i of coded-BKW with
sieving, the vectors of L∆ are uniformly distributed on a sphere with radius

√
Ni ·B/(γt2−i)

PAPER V 235

Figure 7: The optimal γ value for version D of the algorithm, as a function of
(cq, cs).

2(c+o(1))n, where c is
((

2
(

1− cscq
)

+
1−α0
cq

)
+ 1
λ

(
1−
(

cs
α0 log γ+cs

) λ
log γ

))−1

. (15)

γ 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

λ
classic 0.610 0.577 0.544 0.512 0.482 0.452 0.423 0.395 0.368 0.342 0.317 0.292 0.269 0.246
quantum 0.574 0.541 0.509 0.478 0.448 0.419 0.391 0.364 0.338 0.313 0.289 0.265 0.243 0.221

c
classic 0.8933 0.8930 0.8928 0.8927 0.8927 0.8928 0.8930 0.8932 0.8936 0.8940 0.8946 0.8951 0.8959 0.8967
quantum 0.8796 0.8795 0.8795 0.8797 0.8800 0.8805 0.8810 0.8817 0.8825 0.8835 0.8845 0.8856 0.8870 0.8884

Table 3: The complexity Exponent c for various reduction factors when
(cq, cs) = (2, 1.5).

Example 3. The numerical results for the Regev parameters using various
reduction factors are listed in Table 3, where the complexity exponent λ of
the nearest neighbor searching is computed by the LSF approach [9]. Using
S-BKW-v3, we can further decrease the complexity exponent c for solving the
Regev LWE instance from 0.8951 to 0.8927 classically, and from 0.8856 to 0.8795
in a quantum setting. For these parameters, the choice of γ to achieve the best
asymptotic complexity is 0.86 classically (or 0.80 using a quantum computer).

Optimal Choice of γ

The optimal choice of γ depends on the parameters cq and cs, illustrated in Fig.
7. The gap between cq and cs is important, since this optimal γ value increases
with cq for a fixed cs, and decreases with cs when cq is determined.

8.4 An Asymptotic Comparison of the New Variants
We present a comparison describing the asymptotic behavior of the best single-
exponential algorithms for solving the LWE problems with varying (cq, cs) in
Fig. 8. The upper sub-plot includes all previous algorithms, which have been
shown in Figure 4. S-BKW refers to coded-BKW with sieving with preprocess-
ing, as defined in Section 6.2. We further add the new BKW variants from this
section in the lower part.

236 PAPER V

Figure 8: A comparison of the asymptotic behavior of the best
single-exponential algorithms for solving the LWE problem for different values

of cq and cs. The different areas show where in the parameter space the
corresponding algorithm beats the other algorithms in that subplot.

Notice that all previous BKW variants are special cases of the three new
algorithms, i.e., S-BKW-v1, S-BKW-v2, and S-BKW-v3, so in the lower sub-
plot and for a particular pair of (cq, cs), the best algorithm is always among
these three variants and DUAL-EXP. From this sub-plot, firstly, the area where
DUAL-EXP wins becomes significantly smaller. Secondly, with respect to the
area that the BKW variants win, S-BKW-v3 beats the other two in most pairs
of parameters. S-BKW-v2 is the best algorithm in a thin strip, and by comparing
with Fig. 7, we notice that this strip corresponds to an area where the optimal
γ value is close to 1. Therefore, for the pairs of (cq, cs) in this area, optimizing
for γ does not help that much, and S-BKW-v2 is superior. S-BKW-v1 never wins
for parameters considered in this graph.

8.5 A High Level Description
A high level comparison showing how the different new versions of coded-BKW
with sieving work, similar to Fig. 3, can be found in Fig. 6. In all versions,
pre-processing with plain BKW steps is excluded from the description.

In S-BKW-v1, we first take coded-BKW steps. This means longer and longer
steps, and gradually increasing noise. Then we switch to coded-BKW with
sieving steps. Here the steps get shorter and shorter since we have to apply
sieving to an increasing number of previous steps.

In S-BKW-v2, we begin with shorter and shorter coded-BKW with sieving
steps, keeping the noise of the positions low. Then we finish off with longer and
longer coded-BKW steps. Here we do not apply sieving to the previously sieved
positions, thus the added noise of these positions grow.

For S-BKW-v3 we have two versions; S-BKW-v3a and S-BKW-v3b. These
are identical except that they use different reduction factors γ. In S-BKW-v3a,
we use regular coded-BKW with sieving steps with a reduction factor γ > 1.
The steps get shorter and shorter because we need to sieve more and more
positions. The added noise is small in the beginning, but in each sieved position
it becomes larger and larger for each step. S-BKW-v3b is the same, except that
we use γ < 1. This means that the noise is large in the beginning, but gets
smaller and smaller for each step.

8.6 More Generalization
A straight-forward generalization of all the new variants described in Sections
8.1-8.3 is to allow different reduction parameter γi in different steps, after having
pre-processed the samples with plain BKW steps. In addition, we can allow a
sieving operation on positions in an interval Ii (or even more generally on any
set of positions), using a flexible reduction factor γi. This optimization problem
is complicated due to the numerous possible approaches, and generally, it is
even difficult to write a closed formula for the objective function. We leave
the problem of finding better asymptotic algorithms via extensive optimization
efforts as an interesting scope for future research.

9 Conclusions and Future Work
In the paper we have presented a new BKW-type algorithm for solving the LWE
problem. This algorithm, named coded-BKW with sieving, combines important
ideas from two recent algorithmic improvements in lattice-based cryptography,
i.e., coded-BKW and heuristic sieving for SVP, and outperforms the previously
known approaches for important parameter sets in public-key cryptography.

For instance, considering Regev parameters, we have demonstrated an
asymptotic improvement, reducing the time and space complexity from 20.930n

to 20.893n. Additionally, we showed a similar improvement, when restricting
the number of available samples to be polynomial. Lastly, we obtained the first
quantum acceleration for this parameter set, further reducing the complexity
to 20.880n if quantum computers are provided.

In the conference version [24], this algorithm has proven significant non-
asymptotic improvements for some concrete parameters, compared with the
previously best BKW variants. But one should further investigate the analysis
when heuristics like unnatural selection9 are taken into consideration, in order
to fully exploit its power on suggesting accurate security parameters for real
cryptosystems. Moreover, the influence on the concrete complexity of using
varying reduction factors is unclear. For this purpose, further analysis and
extensive simulation results are needed, which can be a very interesting topic
for future work.

Another stimulating problem is to search for new algorithms with better
asymptotic complexity by solving the general optimization problem raised in
Section 8.6, numerically or analytically.

Lastly, the newly proposed algorithm definitely also has importance in solv-
ing many LWE variants with specific structures, e.g., the Ring-LWE problem.
An interesting research direction is to search for more applications, e.g., solving
hard lattice problems, as in [31].

Acknowledgment
The authors would like to thank the anonymous reviewers from ASIACRYPT
2017 and the reviewers for IEEE Transactions on Information Theory for their

9Unnatural selection means creating more reduced vectors than needed and then choosing
the best ones for the next step of the reduction. The idea is from [4].

237

238 PAPER V

invaluable comments that helped improve the quality of this paper.

References

[1] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: Proceedings of the thirty-third annual ACM
symposium on Theory of computing. pp. 601–610. ACM (2001)

[2] Albrecht, M., Cid, C., Faugere, J.C., Robert, F., Perret, L.: Algebraic al-
gorithms for LWE problems. Cryptology ePrint Archive, Report 2014/1018
(2014), http://eprint.iacr.org/2014/1018

[3] Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the
complexity of the BKW algorithm on LWE. Designs, Codes and Cryptog-
raphy 74(2), 325–354 (2015)

[4] Albrecht, M.R., Faugère, J.C., Fitzpatrick, R., Perret, L.: Lazy Modulus
Switching for the BKW Algorithm on LWE. In: Krawczyk, H. (ed.) Public-
Key Cryptography–PKC 2014, Lecture Notes in Computer Science, vol.
8383, pp. 429–445. Springer Berlin Heidelberg (2014)

[5] Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving
LWE by reduction to unique-SVP. In: International Conference on Infor-
mation Security and Cryptology. pp. 293–310. Springer (2013)

[6] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

[7] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Prim-
itives and Circular-Secure Encryption Based on Hard Learning Problems.
In: Halevi, S. (ed.) Advances in Cryptology–CRYPTO 2009, Lecture Notes
in Computer Science, vol. 5677, pp. 595–618. Springer Berlin Heidelberg
(2009)

[8] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
Automata, Languages and Programming, pp. 403–415. Springer (2011)

[9] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in near-
est neighbor searching with applications to lattice sieving. In: Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms. pp. 10–24. Society for Industrial and Applied Mathematics (2016)

[10] Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices.
LMS Journal of Computation and Mathematics 17(A), 49–70 (2014)

[11] Bernstein, D.J., Lange, T.: Never trust a bunny. In: Radio Frequency
Identification. Security and Privacy Issues, pp. 137–148. Springer (2013)

PAPER V 239

[12] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant Learning, the Parity
Problem, and the Statistical Query Model. In: Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing–STOC 2000,
pp. 435–440. ACM (2000)

[13] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

[14] Bogos, S., Vaudenay, S.: Optimization of LPN solving algorithms. In: Ad-
vances in Cryptology–ASIACRYPT 2016: 22nd International Conference
on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22. pp. 703–728.
Springer (2016)

[15] Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Advances in Cryptology–CRYPTO 2012, pp.
868–886. Springer (2012)

[16] Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryp-
tion from (Standard) LWE. In: Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science. pp. 97–106. IEEE Com-
puter Society (2011)

[17] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Annual Cryptology
Conference. pp. 505–524. Springer (2011)

[18] Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In:
Advances in Cryptology–ASIACRYPT 2011, pp. 1–20. Springer (2011)

[19] Conway, J. H., Sloane, N. J. A.: Sphere packings, lattices and groups. In:
(Vol. 290). Springer Science and Business Media (2013)

[20] Dubiner, M.: Bucketing coding and information theory for the statistical
high-dimensional nearest-neighbor problem. IEEE Transactions on Infor-
mation Theory 56(8), 4166–4179 (2010)

[21] Duc, A., Tramèr, F., Vaudenay, S.: Better Algorithms for LWE and LWR.
In: Advances in Cryptology – EUROCRYPT 2015, pp. 173–202. Springer
(2015)

[22] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In: Advances in Cryptology–CRYPTO 2013, pp. 75–92. Springer (2013)

[23] Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes.
In: Advances in Cryptology–ASIACRYPT 2014, pp. 1–20. Springer (2014)

[24] Guo, Q., Johansson, T., Mårtensson, E., Stankovski, P.: Coded-BKW with
Sieving. In: Advances in Cryptology–ASIACRYPT 2017, Part I, pp. 323–
346. Springer (2017)

[25] Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: Solving LWE us-
ing lattice codes. In: Advances in Cryptology–CRYPTO 2015, pp. 23–42.
Springer (2015)

240 PAPER V

[26] Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest
lattice vector problems. In: Coding and Cryptology, pp. 159–190. Springer
(2011)

[27] Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of
solving LWE. IACR Cryptology ePrint Archive 2015, 1222 (2015), http:
//eprint.iacr.org/2015/1222

[28] Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of
solving LWE. J. Designs, Codes and Cryptography, pp. 1–29 (2017)

[29] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing
the curse of dimensionality. In: Proceedings of the thirtieth annual ACM
symposium on Theory of computing. pp. 604–613. ACM (1998)

[30] Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint
Archive, Report 2011/377 (2011), http://eprint.iacr.org/2011/377

[31] Kirchner, P., Fouque, P.A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: Advances in Cryptology–
CRYPTO 2015, pp. 43–62. Springer (2015)

[32] Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Annual Cryptology Conference. pp. 3–22. Springer
(2015)

[33] Laarhoven, T., Mosca, M., Van De Pol, J.: Finding shortest lattice vectors
faster using quantum search. Designs, Codes and Cryptography 77(2-3),
375–400 (2015)

[34] Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using
spherical locality-sensitive hashing. In: International Conference on Cryp-
tology and Information Security in Latin America. pp. 101–118. Springer
(2015)

[35] Levieil, É., Fouque, P.A.: An improved LPN algorithm. In: Prisco, R.D.,
Yung, M. (eds.) SCN. Lecture Notes in Computer Science, vol. 4116, pp.
348–359. Springer-Verlag (2006)

[36] Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based
Encryption. In: Kiayias, A. (ed.) Topics in Cryptology–CT-RSA 2011, Lec-
ture Notes in Computer Science, vol. 6558, pp. 319–339. Springer Berlin
Heidelberg (2011)

[37] Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In:
Topics in Cryptology–CT-RSA 2013, pp. 293–309. Springer (2013)

[38] May, A., Ozerov, I.: On computing nearest neighbors with applications
to decoding of binary linear codes. In: Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I. pp. 203–228 (2015)

[39] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput., pp. 372-381 (2004)

PAPER V 241

[40] Micciancio, D., Regev, O.: Lattice-based Cryptography. In: Bernstein,
D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp.
147–191. Springer Berlin Heidelberg (2009)

[41] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: Proceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms. pp. 1468–1480. SIAM (2010)

[42] Mulder, E.D., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichen-
bacher’s solution to the hidden number problem to attack nonce leaks in
384-bit ECDSA: extended version. J. Cryptographic Engineering 4(1), 33–
45 (2014)

[43] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Mathematical Cryptology 2(2), 181–207 (2008)

[44] Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time
22.465n. IACR Cryptology ePrint Archive 2009, 605 (2009), http://eprint.
iacr.org/2009/605

[45] Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. Journal of the ACM 56(6), 34:1–34:40 (Sep 2009)

[46] Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical programming
66(1-3), 181–199 (1994)

[47] Wagner, D.: A generalized birthday problem. In: Advances in cryptology–
CRYPTO 2002, pp. 288–304. Springer (2002)

[48] Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve
algorithm for shortest vector problem. In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security. pp.
1–9. ACM (2011)

[49] Zhang, B., Jiao, L., Wang, M.: Faster algorithms for solving LPN. In:
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 168–195. Springer (2016)

[50] Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest
vector problem. In: International Conference on Selected Areas in Cryp-
tography. pp. 29–47. Springer (2013)

242 PAPER V

The Asymptotic Complexity of
Coded-BKW with Sieving Using

Increasing Reduction Factors
The Learning with Errors problem (LWE) is one of the main candidates

for post-quantum cryptography. At Asiacrypt 2017, coded-BKW with siev-
ing, an algorithm combining the Blum-Kalai-Wasserman algorithm (BKW)
with lattice sieving techniques, was proposed. In this paper, we improve
that algorithm by using different reduction factors in different steps of
the sieving part of the algorithm. In the Regev setting, where q = n2

and σ = n1.5/(
√
2π log2

2 n), the asymptotic complexity is 20.8917n, improving
the previously best complexity of 20.8927n. When a quantum computer is
assumed or the number of samples is limited, we get a similar level of
improvement.

c©IEEE 2019. Reprinted, with permission, from (the full version of)
Erik Mårtensson “The Asymptotic Complexity of Coded-BKW with Sieving Using In-
creasing Reduction Factors”, in 2019 IEEE International Symposium on Information
Theory (ISIT), pp. 2579-2583, 2019, Paris, France.

245

PAPER VI 247

1 Introduction
Given access to large-scale quantum computers, Shor’s algorithm solves both
the integer factoring problem and the discrete logarithm problem in polynomial
time. To remedy this, National Institute of Standards and Technology (NIST)
has an ongoing competition to develop post-quantum cryptosystems [1]. One of
the main underlying mathematical problems in the competition is the Learning
with Errors problem (LWE).

The LWE problem was introduced by Regev in [2]. It has some really nice
features, such as a reduction from average-case LWE instances to worst-case in-
stances of hard lattice problems. An application of LWE is Fully Homomorphic
Encryption (FHE) [3]. An important special case of LWE is the Learning Parity
with Noise problem (LPN), essentially a binary version of LWE with Bernoulli
distributed noise.

There are mainly three types of algorithms for solving the LWE problem. For
surveys on the concrete and asymptotic complexity of these algorithms see [4]
and [5] respectively.

The first type is the Arora-Ge algorithm, which was introduced in [6], and
then improved in [7]. This type of algorithm is mostly applicable when the noise
is too small for Regev’s reduction proof to apply [2].

The second type of approach is lattice-based algorithms, where LWE is trans-
formed into a lattice problem and then solved by methods like lattice-reduction,
lattice sieving and enumeration. Lattice-based algorithms are currently the
fastest algorithms in practice, and have the advantage of not needing an expo-
nential amount of samples. For more details see [4] and the references therein.

The third type of approach is the Blum-Kalai-Wasserman (BKW) set of
algorithms. These will be the focus of this paper.

The BKW algorithm was introduced in [8] as the first sub-exponential algo-
rithm for solving the LPN problem. It was first used to solve the LWE problem
in [9]. This was improved in [10] using Lazy Modulus Switching (LMS). Further
improvements were made in [11, 12] by using a varying step size and a varying
degree of reduction. In [13] coded-BKW with sieving was introduced, where
lattice sieving techniques were used to improve the BKW algorithm. The full
version in [14] improved the coded-BKW with sieving algorithm by finding the
optimal reduction factor used for lattice sieving.

In this paper we further improve upon the coded-BKW with sieving algo-
rithm by increasing the reduction factor for each step of the algorithm. We
achieve a record low time complexity of 20.8917n in the Regev setting; that is,
when q = n2 and σ = n1.5/(

√
2π log2

2 n). The previous best result was 20.8927n

from [14]. Also if a quantum computer is assumed or the number of samples is
limited we get a similar level of improvement.

The remaining parts of the paper are organized the following way. We start
off in Section 2 by introducing the LWE problem. In Section 3 we go over
the previous versions of the BKW algorithm, when used for solving the LWE
problem. In Section 4 we introduce the new algorithm and in Section 5 we cover
the asymptotic complexity of it and other algorithms for solving LWE. We show
our results in Section 6 and conclude the paper in Section 7.

248 PAPER VI

2 Preliminaries
Let us define the LWE problem.

Definition 2.1 (LWE). Let n be a positive integer, q a prime. Let s be a
uniformly random secret vector in Znq . Assume access to m noisy scalar products
between s and known vectors ai, i.e.

zi = 〈ai, s〉+ ei,

for i = 1, . . . ,m. The small error terms ei are discrete Gaussian distributed
with mean 0 and standard deviation σ. The (search) LWE problem is to find
the secret vector s.

In other words, when solving LWE you have access to a large set of pairs
(ai, zi) and want to find the corresponding secret vector s. In some versions
there are restrictions on the number of samples you have access to.

3 BKW
BKW was introduced as the first sub-exponential algorithm for solving LPN
(essentially LWE with q = 2) in [8]. It was first used for solving LWE in [9].

3.1 Plain BKW
The BKW algorithm consists of two steps, dimension reduction and guessing.

Reduction

Map all the samples into categories, such that the first b positions get canceled
when adding/subtracting a pair of a vectors within the same category.

Given two samples ([±a0,a1], z1) and ([±a0,a2], z2) within the same cate-
gory. By adding/subtracting the a vectors we get

a1,2 = [0 0 · · · 0︸ ︷︷ ︸
b symbols

∗ ∗ · · · ∗].

By also calculating the corresponding z value we get z1,2 = z1± z2. Now we
have a new sample (a1,2, z1,2). The corresponding noise variable is e1,2 = e1±e2.
Thus the variance of the new noise is 2σ2, where σ2 is the variance of the originial
noise. By going through all categories and calculating a suitable amount of new
samples we have reduced the dimensionality of the problem by b, at the cost of
increasing the noise. If we repeat the reduction process t0 times we end up with
a dimensionality of n− t0b, and a noise variance of 2t0 · σ2.

Guessing

The final positions of the secret vector s can be guessed and then each guess
can be tested using a distinguisher. The guessing procedure does not affect the
asymptotics, but is important for concrete complexity. The guessing procedure
was improved in [15] using the Fast Fourier Transform (FFT).

PAPER VI 249

3.2 Lazy Modulus Switching
The basic BKW algorithm was improved in [10] by Albrecht et al. The main
idea there was to map samples that, almost but not completely, canceled each
other, into the same category. This technique is called Lazy Modulus Switching
(LMS).

By doing this an extra error term gets added in each step. The variance of
this noise also doubles in each new reduction step. However, LMS allows us to
use a larger step size, allowing us to solve larger LWE problems.

One problem with this version of the algorithm is that the extra added noise
of the earlier steps grows in size much more than the noise of the later steps,
leading to an uneven noise distribution among the positions of the final samples
used for the guessing procedure.

3.3 Coded-BKW
The problem with the uneven noise distribution was adressed independently
in [11,12]. The idea was to use a small step size and almost reduce the positions
in the a vectors to 0 in the first step, and then gradually increase the step size
ni and use less strict reduction for each step.

In [11] different q-ary linear codes Ci with parameters [ni, b] were used, to
vary the strictness of reduction. That version of BKW is called coded-BKW.
For simplicity, consider the first reduction step. Pick two samples, such that
the first n1 positions of the a vectors map to the same codeword c0 in C1. In
other words, we can write

z1 = 〈[c0 + ê1,a1], s〉+ e1

z2 = 〈[c0 + ê2,a2], s〉+ e2,

where ê1 and ê2 have small Euclidean norms. We can get a new sample by
calculating

z1 − z2 = 〈[ê1 − ê2,a1 − a2], s〉+ e1 − e2.

Just like when using LMS, using this version of BKW adds an extra noise
term, but allows us to use larger step sizes.

3.4 Coded-BKW with Sieving
In [13] an idea for combining BKW with lattice sieving techniques was intro-
duced. Just like in [11,12] in step i, samples were mapped into categories based
on the current ni positions. Let Ni =

∑i
j=1 nj . The new idea was to only

add/subtract samples within a category such that also the previous Ni−1 posi-
tions of the resulting a vector were equally small. This could have been done by
looking at all possible pairs and picking only the ones with the smallest values
in these positions. However, a more efficient way of doing this was to use lattice
sieving techniques to find close pairs of vectors within a category faster.

A micro picture of coded-BKW with sieving can be found in Figure1. After
step i, the average magnitude of the first Ni positions in the a vector is less
than a constant B.

250 PAPER VI

ni

Ni−1 Ni

1. Coded Step

L1

...
Lj

...
LK

Lj
2. Sieving Step

Sj

1.
∥∥(a1 − a2)[Ni−1+1:Ni]

∥∥ < B
√
ni

2.
∥∥a[1:Ni]

∥∥ < B
√
Ni

Figure 1: A micro picture of how one step of coded-BKW with sieving works.
Slightly changed version of Figure 1 from [14]. Each sample gets mapped to

one list Lj out of K lists. Sieving is then applied to each list to form new lists
Sj .

Using Different Reduction Factors

In [14] the idea of finding an optimal reduction factor was introduced. Instead
of making sure the Ni positions currently considered are as small as the Ni−1

positions in the previous step, they are made to be γ times as large. Depending
on the parameter setting the optimal strategy is either to use γ < 1 or γ > 1,
or in other words to gradually decrease or increase the values in the a vector.
The final average magnitude is still less than the same constant B.

The original coded-BKW with sieving algorithm from [13] is the special case
where γ = 1 and coded-BKW is the special case where γ =

√
2.

For an illustration of how the different BKW algorithms reduce the a vector,
see Figure 2.

4 Coded-BKW with Sieving with Increasing Re-
duction Factors

The new idea in this paper is to use different reduction factors γi in different
steps i. The idea is that in the earlier steps the sieving is cheap, and we can
therefore use small values of γi. Gradually the sieving procedure gets more and
more expensive, forcing us to increase the value of γi.

Assume that we take t2 steps of coded-BKW with sieving in total and let
γ1 = γs andγt2 = γf . We ended up choosing an arithmetic progression, that is
we let

γi = γs +
γf − γs
t2 − 1

(i− 1).

We also tried a geometric and logarithmic progression of the γi values, both
leading to a slightly worse complexity. A power progression lead to an expression
that had to be estimated numerically and resulted in almost exactly the same
results as the arithmetic progression.

PAPER VI 251

Plain BKW Coded-BKW With Sieving (γ = 1) With Sieving (γ < 1)

Figure 2: A high-level illustration of how the different versions of the BKW
algorithm work. The x-axis represents positions in the a vector, and the y-axis
depicts the average absolute value of the corresponding position. The blue
color corresponds to positions that have not been reduced yet and the red
color corresponds to reduced positions. The last few positions are used for
guessing. The figure is a modified version of Figures 3 and 8 from [14].

5 Asymptotic Complexity
Asymptotically we let q = ncq and σ = ncs , where cq and cs are constants.
For most algorithms and settings the asymptotic complexity of solving LWE is
2cn+o(n), where the exponent c depends on cq and cs. We leave settings such as
a binary secret or a superpolynomial q for future research.

We will now quickly cover the asymptotic complexities of the Arora-Ge al-
gorithm, lattice-based algorithms and all the previous versions of BKW, as a
function of cq and cs. Initially, the assumed setting is one with a classical com-
puter and an exponential amount of samples. Other settings will be discussed
later.

Complexity Exponent for Lattice Sieving

The value λ(γ) for lattice sieving using a reduction factor γ is the best available
complexity exponent for doing lattice sieving. It is (currently) calculated by
doing the optimization from the section about the total cost of sieving in [16],
replacing the angle π/3 by θ = 2 arcsin(γ/2) and replacing N = (4/3)n/2 by
(1/ sin(θ))n. For γ = 1 we get λ ≈ 0.292.

Quantum Setting

If having access to a quantum computer, Grover’s algorithm can be used to
speed up the lattice sieving, see [17], resulting in slightly improved complexity
exponents. For γ = 1 we get λ ≈ 0.265.

252 PAPER VI

5.1 Arora-Ge and Lattice-based Methods
The Arora-Ge algorithm is polynomial when cs < 0.5 and superexponential
when cs > 0.5, making it viable if and only if cs is too small for Regev’s reduc-
tion proof to apply [2]. Lattice-based algorithms can solve LWE with a time
complexity exponent of 2λcq/(cq − cs + 1/2)2, using an exponential amount of
memory [5].

5.2 Plain and Coded BKW
The time and space complexity for solving LWE using plain BKW is cq/(2(cq−
cs) + 1) [9], and using Coded-BKW is (1/cq + 2 ln(cq/cs))

−1 [12].

5.3 Coded-BKW with sieving
The time (and space) complexity of solving the LWE problem using coded-
BKW with sieving gets calculated by solving increasingly difficult optimization
problems. In both Theorem 5.1 and 5.2, the parameter α decides how large part
of the samples should be pre-processed with plain BKW steps.

Theorem 5.1. The time and space complexity of coded-BKW with sieving and
a constant value of the reduction factor γ, is 2cn+o(n), where c is the solution
to the following optimization problem.

minimize
α,γ

c(α, γ) =

(
2(cq − cs) + 1− α

cq
+

1

λ(γ)

(
1− cs

α log2 γ + cs
· exp(I(α, γ))

))−1

subject to 0 ≤ α ≤ 2(cq − cs) + 1,

0 < γ ≤
√

2.

Here, we have

I(α, γ) =

∫ α

0

log2 γ − λ(γ)

t log2 γ + cs
dt.

By setting γ = 1 we get (a restatement of) the complexity of the original
coded-BKW with sieving algorithm [13].

Proof 5.1. The theorem is a slight restatement of Theorem 7 from [14], to make
it more similar to Theorem 5.2 of this paper. Theorem 7 from [14] includes both
the proof and the underlying heuristic assumptions the proof is based on.

5.4 Coded-BKW with Sieving with Increasing Reduction
Factors

The complexity of the new algorithm is covered in the following theorem.

Theorem 5.2. The time and space complexity of coded-BKW with sieving and
an arithmetic progression of the γi values, is 2cn+o(n), where c is the solution
to the following optimization problem.

PAPER VI 253

minimize
α,γs,γf

c(α, γs, γf) =

(
2(cq − cs) + 1− α

cq
+∫ α

0

cs

(t · `(t) + cs)
2 · exp(I(t;α, γs, γf))dt

)−1

subject to 0 ≤ α ≤ 2(cq − cs) + 1,

0 < γs < γf ≤
√

2.

Here, we have

I(t;α, γs, γf) =

∫ t

0

log2 γ(s)− λ(γ(s))

s · `(s) + cs
ds,

and

γ(s) = γs +
α− s
α

(γf − γs),

`(s) =

(
γf ln(γf)− γ(t) ln(γ(t))

γf − γs
α

s
− 1

)
/ ln(2).

It should be mentioned that the objetive function of the optimization prob-
lem here would change slightly if another method for the progression of the γi
values was chosen.

Proof 5.2. A proof of Theorem 5.2 can be found in the appendix.

5.5 Polynomial Number of Samples
With access to only a polynomial number of samples the complexity exponent
of lattice-based algorithms changes to 2λcq/(cq − cs)2 [5].

When using BKW with access to only a polynomial number of samples,
amplification is used to increase the number of samples, at the cost of an in-
creased noise. For plain and coded BKW the complexity exponents change to
cq/(2(cq − cs)) and (1/cq + 2 ln(cq/cs))

−1 [5].
In the optimization problems in Theorem 5.1 and 5.2 the upper limit of α

changes to 2(cq − cs). For each theorem the numerator in the first term of the
objective function changes to 2(cq − cs)− α.

6 Results
Let us use the Regev instances as a case study, in other words, let cq = 2 and cs =
1.5 [2]. Table 1 shows the complexity exponent for coded-BKW with sieving,
with γ = 1, an optimized constant γ and an arithmetic progression of the γ
values, for four different scenarios. Either we use classical or quantum computers
and either we have access to a polynomial or an exponential number of samples.
Notice how using increasing reduction factors improves the complexity exponent
in all the scenarios.

In all the scenarios in the Regev setting BKW algorithms beat lattice-based
algorithms. For a picture comparing the asymptotic complexity of the different

254 PAPER VI

BKW versions with lattice-based algorithms in other settings, see Figure 5 and
7 in [14]. The new version constitutes an improvement compared to the constant
γ algorithm for all parameter pairs (cq, cs), as can be seen in Figure 3.

Figure 3: The improvement in the complexity exponent when going from a
constant γ to an arithmetic progression of the γ values

The source code used for calculating all the complexity exponents in the
different scenarios can be found on GitHub1.

Classical Quantum
Setting Setting

Ex
po

ne
nt

ia
l

sa
m

pl
es 0.8951 (γ = 1)

0.8927 (γ constant)
0.8917 (γ arithmetic)

0.8856 (γ = 1)

0.8795 (γ constant)
0.8782 (γ arithmetic)

Po
ly

no
m

ia
l

sa
m

pl
es 1.6507 (γ = 1)

1.6417 (γ constant)
1.6399 (γ arithmetic)

1.6364 (γ = 1)

1.6211 (γ constant)
1.6168 (γ arithmetic)

Table 1: The asymptotic complexity exponent for the different versions of
BKW in the Regev setting.

7 Conclusions
We have developed a new version of coded-BKW with sieving, achieving a fur-
ther improved asymptotic complexity. We have also improved the complexity
when having access to a quantum computer or only having access to a poly-
nomial number of samples. All BKW algorithms solve a modified version of
the 2-list problem, where we also have a modular reduction and have a limited
number of total steps. Generalizing the optimization of the BKW algorithm
from this perspective is an interesting new research idea. Another possible

1https://github.com/ErikMaartensson/BKWIncreasingReductionFactors

further research direction is looking at the complexity of different versions of
BKW when only having access to a limited amount of memory, like was briefly
started in [18]. Finally, it is interesting to investigate the concrete complexity
of coded-BKW with sieving and implement it to see when BKW starts to beat
lattice-type algorithms in practise.

Acknowledgment
The author would like to acknowledge Qian Guo, whose idea of using a reduc-
tion factor γ 6= 1 this paper generalizes. The author would also like to thank
Thomas Johansson and Paul Stankovski Wagner for fruitful discussions during
the writing of this paper.

References

[1] National Institute of Standards and Technology, “The post-quantum cryp-
tography standardization process,” 2019, https://csrc.nist.gov/projects/
post-quantum-cryptography.

[2] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography,” in STOC. ACM Press, 2005, pp. 84–93.

[3] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
STOC. ACM Press, 2009, pp. 169–178.

[4] M. R. Albrecht, R. Player, and S. Scott, “On The Concrete Hardness Of
Learning With Errors,” J. Mathematical Cryptology, vol. 9, no. 3, pp. 169–
203, 2015.

[5] G. Herold, E. Kirshanova, and A. May, “On the asymptotic complexity of
solving LWE,” Designs, Codes and Cryptography, vol. 86, no. 1, pp. 55–83,
2018.

[6] S. Arora and R. Ge, “New Algorithms for Learning in Presence of Errors,”
in Automata, Languages and Programming. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 403–415.

[7] M. R. Albrecht, C. Cid, J.-C. Faugère, and L. Perret, “Algebraic algorithms
for LWE,” Cryptology ePrint Archive, Report 2014/1018, 2014, http://
eprint.iacr.org/2014/1018.

[8] A. Blum, A. Kalai, and H. Wasserman, “Noise-Tolerant Learning, the Par-
ity Problem, and the Statistical Query Model,” in STOC. ACM Press,
2000, pp. 435–440.

255

256 PAPER VI

[9] M. R. Albrecht, C. Cid, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “On
the complexity of the BKW algorithm on LWE,” Designs, Codes and Cryp-
tography, vol. 74, no. 2, pp. 325–354, 2015.

[10] M. R. Albrecht, J.-C. Faugère, R. Fitzpatrick, and L. Perret, “Lazy Modu-
lus Switching for the BKW Algorithm on LWE,” in PKC, ser. LNCS, vol.
8383. Springer, Heidelberg, Germany, 2014, pp. 429–445.

[11] Q. Guo, T. Johansson, and P. Stankovski, “Coded-BKW: Solving LWE
Using Lattice Codes,” in CRYPTO, ser. LNCS, vol. 9215. Springer, Hei-
delberg, Germany, 2015, pp. 23–42.

[12] P. Kirchner and P.-A. Fouque, “An Improved BKW Algorithm for LWE
with Applications to Cryptography and Lattices,” in CRYPTO, ser. LNCS,
vol. 9215. Springer, Heidelberg, Germany, 2015, pp. 43–62.

[13] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski, “Coded-BKW
with Sieving,” in ASIACRYPT, ser. LNCS, vol. 10624. Springer, Heidel-
berg, Germany, 2017, pp. 323–346.

[14] Q. Guo, T. Johansson, E. Mårtensson, and P. Stankovski Wagner, “On
the Asymptotics of Solving the LWE Problem Using Coded-BKW with
Sieving,” IEEE Transactions on Information Theory, 2019.

[15] A. Duc, F. Tramèr, and S. Vaudenay, “Better Algorithms for LWE and
LWR,” in EUROCRYPT, ser. LNCS, vol. 9056. Springer, Heidelberg,
Germany, 2015, pp. 173–202.

[16] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New Directions in Near-
est Neighbor Searching with Applications to Lattice Sieving,” in SODA.
ACM-SIAM, 2016, pp. 10–24.

[17] T. Laarhoven, M. Mosca, and J. van de Pol, “Finding shortest lattice vectors
faster using quantum search,” Designs, Codes and Cryptography, vol. 77,
no. 2, pp. 375–400, 2015.

[18] A. Esser, F. Heuer, R. Kübler, A. May, and C. Sohler, “Dissection-BKW,”
in CRYPTO, ser. LNCS, vol. 10992. Springer, Heidelberg, Germany, 2018,
pp. 638–666.

PAPER VI 257

A Proof of Theorem 5.2
Let us prove Theorem 5.2.

Proof A.1. This proof is generalization of the proof of Theorem 5.1, as proven
in [14]. The proof structure is similar, but the proof is also much longer. To
avoid making it longer than necessary, some notation is borrowed from the proof
in [14].

Instead of using a constant reduction factor γ, we use a low reduction factor
in the first steps when the sieving is cheap, and then gradually increase the
reduction factor. Let γi denote the reduction factor in step i. We have the
constraints

0 < γ1 < γ2 < . . . < γt2 ≤
√

2.

Let λi = λ(γi) denote the corresponding complexity exponent for nearest
neighbor searching using the LSF algorithm. By log we denote log2.

Later we will let γi increase arithmetically. Other progressions also work,
and as long as possible we will use a general progression of the γi values.

We start by performing t1 plain BKW steps and then t2 coded-BKW with
sieving steps with parameters (λi, γi) in the ith of the latter steps. Let t2 =
α log n+O(1) and t1 = β log n = (2(cq − cs) + 1−α) log n+O(1). We have the
constraint that 0 ≤ α ≤ 2(cq − cs) + 1. Like previously the step size of the plain
BKW steps is

b =
cn

cq log n
.

Let n1 be the length of the first coded-BKW with sieving step. Let Bi denote
the magnitude of the values at step i and B denote the final magnitude of the
values. Then we get

B1 =
B

Πt2
i=1γi

.

Therefore, (
log(Πt2

i=1γi) + cs log(n)
)
· n1 = cn− λ1 · n1.

Thus,

n1 =
cn

cs log n+ log(Πt2
i=1γi) + λ1

=
cn

cs log n+ log(Πt2
i=1γi)

· (1 + Θ(log−1 n)).
(1)

Analogously with step 1, for step i we get

(
log(Πt2

j=iγj) + cs log(n)
)
· ni = cn− λi

i∑
j=1

nj . (2)

Use ?i to denote the expression within the outer parantheses in the left hand-
side of (2), for step i. Multiply (2) for step i by λi−1, for step i− 1 by λi and
subtract the expressions to get

258 PAPER VI

λi−1 ?i ni − λi ?i−1 ni−1 = cn(λi−1 − λi)− λi−1λini. (3)

Solving (3) for ni gives

ni =
λi ?i−1 ni−1 + cn(λi−1 − λi)

λi−1 ?i +λi−1λi
. (4)

Calculating nt2 from (4) gives

nt2 = n1

t2∏
i=2

λi?i−1

λi−1(?i + λi)
(5)

+ cn

t2∑
i=2

λi−1 − λi
λi−1(?i + λi)

t2∏
j=i+1

(
λj?j−1

λj−1(?j + λj)

)
. (6)

Let us next look at the term (6). First we rewrite the product as

t2∏
j=i+1

(
λj?j−1

λj−1(?j + λj)

)
=

t2∏
j=i+1

λj
λj−1

(
?j−1

?j + λj

)

=
λt2
λi

t2∏
j=i+1

(
?j + log(γj−1) + λj − λj

?j + λj

)

=
λt2
λi

t2∏
j=i+1

(
1 +

log(γj−1)− λj
?j + λj

)
.

Use Πi to denote the product and ai to denote ?i + λi. We can then write
the term (6) as

cn

t2∑
i=2

λi−1 − λi
λi−1ai

λt2
λi

Πi

= cn

t2∑
i=2

1

ai

λt2
λi

Πi − cn
t2∑
i=2

1

ai

λt2
λi−1

Πi

= cn

(
1

at2
− 1

a2

λt2
λ1

Π2 +

t2−1∑
i=2

λt2
λi

(
Πi

ai
− Πi+1

ai+1

))
.

(7)

Next, we write the expression within paranthesis in the sum in (7) as

PAPER VI 259

Πiai+1 −Πi+1ai
aiai+1

=

Πi+1

((
1 + log(γi)−λi+1

log(Π
t2
j=i+1γj)+cs log(n)+λi+1

)
ai+1 − ai

)
aiai+1

=
Πi+1 (ai+1 + log(γi)− λi+1 − ai)

aiai+1

=
Πi+1 (λi+1 + log(γi)− λi+1 − (log(γi) + λi))

aiai+1

= − λi
aiai+1

Πi+1.

The product (5) can be written as

cn

a1

λt2
λ1

Π1.

Thus, adding the two parts (5) and (6) gives

cn

(
1

at2
− λt2

t2−1∑
i=1

Πi+1

aiai+1

)
. (8)

Next, we want to evaluate Πi+1, which can be rewritten as

t2∏
j=i+2

1 +
log(γj−1)− λj

log(Πt2
k=jγk) + cs log(n) + λj

= exp

ln

 t2∏
j=i+2

1 +
log(γj−1)− λj

log(Πt2
k=jγk) + cs log(n) + λj

= exp

(∑t2
j=i+2

log(γj−1)−λj
log(Π

t2
k=jγk)+cs log(n)+λj

+ Θ
(
log−2 n

))
.

Now the progression of the γi values needs to be specified. Use an arithmetic
progression from γ1 = γs up to γt2 = γf , where 0 < γs < γf ≤

√
2. That is, let

γi = γs + d(i− 1) = γs +
γf − γs
t2 − 1

(i− 1).

The idea now is to let n go towards infinity and let the sum in (8) approach
an integral. If we let n go towards infinity and make a change of variables we
get

260 PAPER VI

t = (t2 − j + 1)/ log(n)

j = t2 − t log(n) + 1

dt = − 1

log(n)
dj

j = 1⇒ t =
t2

log(n)
=
α log(n)

log(n)
= α

j = t2 ⇒ t = 1/ log(n)→ 0, as n→∞

γj = γt2−t log(n)+1 = γs +
γf − γs
t2 − 1

(t2 − t log(n))

→ γs +
α− t
α

(γf − γs), as n→∞

λj = λ(γj)→ λ

(
γs
α− t
α

(γf − γs)
)
, as n→∞

.

Let us denote γ(t) = γs + α−t
α (γf − γs). We also want to evaluate

log(
∏t2
k=j(γk)). First of all we have

t2∏
k=j

γk = d · γj
d
· d ·

(γj
d

+ 1
)
· · · d ·

(γj
d

+ t2 − j
)

= dt2−j+1 Γ
(γj
d + t2 − j + 1

)
Γ
(γj
d

) .

(9)

Let us denote t′ = t log(n). Since γj/d = (γs + (j − 1)d)/d = γs/d + j − 1
we can rewrite (9) as

dt
′ Γ

(
γs
d + t2

)
Γ
(
γs
d + t2 − t′

) = dt
′ Γ

(γf
d

)
Γ
(
γ(t)
d

) . (10)

The natural logarithm of the gamma function is equal to

ln (Γ(z)) = z(ln(z)− 1) +O(log(z)).

Thus, the dominant part of (10) can be written as

log

dt′ Γ
(γf
d

)
Γ
(
γ(t)
d

)

=

(
t′ ln(d) +

γf
d

(
ln
(γf
d

)
− 1
)

− γ(t)

d

(
ln

(
γ(t)

d

)
− 1

))
/ ln(2)

=

(
γf ln(γf)− γ(t) ln(γ(t))

d
− t′

)
/ ln(2)

=

(
γf ln(γf)− γ(t) ln(γ(t))

γf − γs
α

t
− 1

)
t log(n)/ ln(2).

(11)

PAPER VI 261

Now, the sum in (8) approaches the following double integral as n approaches
infinity. ∫ α

0

1

(t · `(t) + cs)
2 exp(I(t;α, γs, γf))dt,

where

I(t;α, γs, γf) =

∫ t

0

log(γ(s))− λ(γ(s))

s`(s) + cs
ds,

and

`(s) =

(
γf ln(γf)− γ(t) ln(γ(t))

γf − γs
α

s
− 1

)
/ ln(2).

Now, let i = t2 in (2) to get

N =

t2∑
j=1

nj =
cn− (log(γf) + cs log(n))nt2

λf
. (12)

The dominant part of this expression can be written as

cn

∫ α

0

cs

(t · `(t) + cs)
2 exp(I(t;α, γs, γf))dt.

Like in previous derivations t1 steps of plain-BKW with step-size b is in total
equal to

t1 · b = (2(cq − cs) + 1− α)
cn

cq
.

We have n = N + t1 · b. Using the expression for N from (12) and solving
for c finally gives us

(
2(cq−cs)+1−α

cq
+
∫ α

0
cs

(t·`(t)+cs)2 exp(I(t;α, γs, γf))dt
)−1

.

262 PAPER VI

Popular Scientific Summary
in Swedish

263

Populärvetenskaplig
sammanfattning

Att kunna skicka krypterade meddelanden är inte längre bara angeläget för
militärer och underrättelsetjänster. Varje gång du betalar räkningar via din
internetbank eller handlar varor över internet vill du kryptera meddelanden du
sänder så att inte obehöriga kan ta del av känslig information.

Symmetrisk kryptering
Tänk dig situationen att Alice vill skicka ett hemligt meddelande till Bob. Inom
det som kallas symmetrisk kryptering använder Alice då ett hemligt ord (ny-
ckel) för att göra meddelandet oläsligt (kryptera). Bob använder sen samma
nyckel för att göra det krypterade meddelandet läsligt igen (dekryptera). Med
symmetrisk kryptering kan stora mängder data skickas snabbt och säkert. Ett
problem är dock hur Alice och Bob ska komma överens om en gemensam nyckel.
Ett sätt detta kan göras på är med asymmetrisk kryptering.

Asymmetrisk kryptering
Inom asymmetrisk kryptering har Bob två nycklar, en publik nyckel som vem
som helst kan se och en privat nyckel som bara Bob kan se. Alice skickar nu ett
krypterat meddelande med hjälp av Bobs publika nyckel. Bob dekrypterar sen
meddelandet med hjälp av sin privata nyckel.

Kvantdatorer
För att kunna dekryptera meddelandet utan tillgång till den privata nyckeln
måste en attackerare lösa ett matematiskt problem. Kryptering idag är baserat
på att det är svårt att faktorisera väldigt stora tal eller att hitta diskreta logar-
itmer i ändliga grupper. Trots decennier av intensiv forskning har ingen lyckats
hitta effektiva algoritmer för att lösa dessa problem med en klassisk dator.

En klassisk dator arbetar med bitar, som kan anta värdet 0 eller 1. Ett
register med n bitar kan i sin tur vara i något av 2n tillstånd. En kvantdator
är en dator baserad på kvantbitar, där n kvantbitar befinner sig i superposition
mellan dessa 2n tillstånd. När man mäter tillståndet på kvantbitarna kollapsar

265

dessa till ett av de 2n tillstånden. Kvantalgoritmer applicerar unitära trans-
formationer på kvantbitarna på ett sätt så att sannolikheten är hög att dessa
kollapsar till rätt tillstånd när man väl gör en mätning.

Med hjälp av Shors algoritm kan kvantdatorer både faktorisera tal och hitta
diskreta logaritmer på ett effektivt sätt. Idag kan kvantdatorerna bara hantera
ett fåtal kvantbitar. Men får vi storskaliga kvantdatorer i framtiden visar det
sig att det är lätt att faktorisera stora tal och då behöver vi basera kryptering
på andra matematiska problem.

Postkvantkryptering
Forskningsområdet där man studerar ersättare till dagens system för asym-
metrisk kryptering kallas postkvantkryptering. Två av huvudspåren inom postk-
vantkryptering är gitterbaserad kryptering och kodbaserad kryptering.

Gitterbaserad kryptering
Ett gitter i tre dimensioner beskriver den diskreta placeringen av atomer i en
kristallstruktur. Matematiskt kan man generalisera denna struktur till godtyck-
ligt antal dimensioner. I högre dimensioner visar det sig vara ett svårt problem
att, givet en godtycklig punkt, hitta den närmaste gitterpunkten. Gitterbaserad
kryptering är baserad på att detta problem är svårt. I artikel 3 studerade vi hur
algoritmer för att lösa detta problem kan förbättras med hjälp av en kvantdator.

LWE
Att lösa linjära ekvationssystem med tusentals ekvationer och obekanta är enkelt
för en modern dator. Learning with Errors (LWE) är en variant av detta prob-
lem, men med små brustermer tillförda varje ekvation. Ett sätt att lösa LWE på
är att översätta problemet till att leta efter den närmaste punkten i ett gitter.

En annan typ av algoritm kallas Blum-Kalai-Wasserman (BKW) och innebär
en generalisering av Gausselimination, som används för att lösa brusfria, linjära
ekvationssystem. Artikel 1, 2, 5 och 6 handlar om olika aspekter av denna typ
av algoritm, från olika tekniker för att förbättra algoritmen till implementering
av algoritmen för att lösa konkreta instanser av LWE.

Kodbaserad kryptering
Kodbaserad kryptering använder tekniker från felkorrigerande koder för att
kryptera meddelanden. Alice transformerar sitt meddelande till ett kodord i
en linjär kod. Sen lägger hon medvetet på nog med brus till meddelandet så
att det blir oläsligt för attackeraren. Bob har hemlig tillgång till den linjära
kodens struktur och kan med hjälp av denna korrigera bort bruset och på så
sätt läsa meddelandet. Normalt används binärt brus (0:or och 1:or). I artikel 4
studerade vi vad som händer om man istället använder normalfördelat brus och
visade att detta leder till allvarliga sårbarheter. Algoritmen vi utvecklade för
att lösa detta problem visade sig ha applikationer även inom andra områden av
kryptering och inom kodningsteknik.

266

		memory		 time

		0.1158		 0.438695

		0.117641		 0.389028

		0.119477		 0.368853

		0.121308		 0.354503

		0.123135		 0.343486

		0.124957		 0.334417

		0.126774		 0.32663

		0.128587		 0.319837

		0.130396		 0.314786

		0.1322		 0.311154

		0.133999		 0.308441

		0.135794		 0.306391

		0.137585		 0.304849

		0.139371		 0.303715

		0.141152		 0.302919

		0.14293		 0.30242

		0.144702		 0.30217

		0.14475		 0.302123

		memory		 time

		0.09297710515		 0.5013419270

		0.09487694055		 0.4398133330

		0.09677178540		 0.4148766938

		0.09866166590		 0.3976104366

		0.1005466080		 0.3843510026

		0.1024266374		 0.3735485232

		0.1043017796		 0.3644732949

		0.1061720601		 0.3565792690

		0.1080375039		 0.3495827132

		0.1098981360		 0.3433260695

		0.1117539812		 0.3376392396

		0.1136050640		 0.3324070058

		0.1154514088		 0.3275554342

		0.1172930398		 0.3230462582

		0.1191299810		 0.3188218264

		0.1209622563		 0.3148960596

		0.1227898892		 0.3115804596

		0.1246129033		 0.3088264299

		0.1264313218		 0.3065510172

		0.1282451678		 0.3046808507

		0.1300544644		 0.3031580848

		0.1318592341		 0.3019381044

		0.1336594997		 0.3009853003

		0.1354552836		 0.3002705054

		0.1372466080		 0.2997693508

		0.1390334950		 0.2994612253

		0.1400522510		 0.2993217912

		

		

		

		memory		 time

		0.081787		 0.459

		0.085		 0.426318

		0.0881987		 0.405024

		0.0913833		 0.388951

		0.0945539		 0.375877

		0.0977106		 0.364804

		0.103983		 0.346688

		0.107099		 0.338994

		0.110201		 0.331957

		0.11329		 0.325441

		0.116366		 0.31936

		0.119429		 0.31372

		0.122479		 0.30916

		0.125516		 0.30646

		0.128541		 0.303047

		0.131552		 0.301155

		0.134552		 0.299913

		0.137538		 0.2992

		0.139001		 0.298966

		

		memory		 time

		0.207523		 0.297097

		0.212864		 0.286609

		0.21819		 0.282405

		0.223481		 0.279297

		0.228736		 0.276759

		0.233953		 0.274586

		0.239134		 0.272672

		0.244278		 0.270954

		0.249387		 0.269391

		0.254459		 0.267956

		0.259497		 0.266627

		0.264499		 0.265389

		0.265048		 0.265257

		

		memory		 time

		0.188726		 0.326646

		0.199666		 0.310998

		0.210473		 0.306187

		0.221126		 0.302837

		0.231627		 0.300211

		0.241977		 0.298038

		0.252181		 0.29618

		0.262242		 0.294558

		0.272165		 0.29312

		0.281952		 0.29183

		0.290392		 0.290804

