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A Format for Multiplier Optimization

Ulf Jonsson and Anders Rantzer

Dept. of Automatic Control

Lund Institute of Technology

S-221 00 Lund, SWEDEN

Abstract

Robustness problems are considered, where structural
information about uncertainty is given in terms of an
infinite class of integral quadratic constraints. We in-
troduce a flexible format for representation of such
information that supports the use of numerical soft-
ware for solution of linear matrix inequalities. Exam-
ples are given involving bounded time-variations and
nonlinearities.

1. Introduction

It has recently been demonstrated that a large num-
ber of know criteria for robustness analysis of control
systems can be unified based on the concept inte-
gral quadratic constraint (IQC, see next section for
definition), [6],[7],(9]. The idea is that every piece
of structural information about time-varying param-
eters, nonlinearities and uncertain elements, that is
characterized by an IQC, can be exploited by a mul-
tiplier in the robustness condition. Based on this idea,
robustness can be verified using convex optimization
over a set of such multipliers. This set is generally
infinite dimensional.

For example, suppose that the operator A in the
feedback configuration of Figure 1, satisfies the IQC’s
defined by the matrix functions Iy, . .., IL,. In [9], the
stability condition for the uncertain loop is written
as existence of non-negative numbers 4, ..., 2, such

that
[ G(;'w) } S adlitie) [ G(;'w) } <0

for all w € R U {oo}. This infinite number of in-
equalities can be transformed using the Kalman-
Yakubovich-Popov Lemma into a single linear matrix
inequality in the variables z1, ..., zn and a symmetric
matrix variable P of a size determined by the order
of the state space representations of IIy,...,II, and

G.

This approach to robustness analysis covers a
large majority of stability criteria based on passiv-
ity and small gain arguments, that have been stated
over the last thirty years. Indeed, the combination of
a unifying formulation of the stability theorem, with
recent progress on computations involving linear ma-
trix inequalities (LMI’s), opens up a new perspective
for analysis of uncertain systems. Old robustness cri-
teria, with respect to particular types of nonlineari-
ties and time-variations, had their main limitation in
the computability of multipliers. The use of LMI-code
for computation of the multipliers can be useful and
there is a large potential for new applications.

However, although the robustness problem has
a straightforward reformulation in terms of convex
LMI optimization, each particular type of uncertainty
structure has its own features and it is a cumbersome
task to do the reformulation well. It is therefore desir-
able to do as much of the work as possible once and for
all, and represent the IQC’s in a form that allows re-
cycling in other problems where the same type of un-
certainty structure appears. The aim of this paper is
to define such a format and to demonstrate its appli-
cability in a few examples, including stability and per-
formance analysis for uncertain time-variations with
derivative constraints, memoryless odd nonlinearities
and searches for simultaneous Lyapunov functions.

In most cases the class of IQC’s that describe
the structure of A is infinite and it is not practical
to describe them by some finite number of extreme
points ITy ..., II,. Instead we suggest in this paper the
following format for description of a class of IQC’s.

I(jw) = ¥(jw)" M(A)¥(jw)

where M is a fixed affine function of A € R™ and the
range of ) is determined by the additional constraints

fbk(jw)*M()\)@k(jw) S 0, k= 1, e .,K.

for all w € R. This description again allows trans-
formation of the stability condition by the K-Y-P
Lemma into a single linear matrix inequality.



Figure 1. Perturbation in feedback form

The suggested description of IQC classes also al-
lows convenient addition and diagonal augmentation
of classes of IQC’s. This is convenient in the study
of robust stability or robust performance of systems
composed of several uncertainties with different na-
ture.

There are other recent LMI formulations of ro-
bustness problems. In for example, [1] and [5] it is
shown that an application of the passivity theorem
with appropriate multipliers gives robustness tests
such as the computation of the real/mixed structured
singular value. The search for suitable multipliers can
then be performed using LMI optimization. Further
examples of LMI formulations of robustness tests are
given in [2].

Notation

Let RLy be the set of proper (bounded at infinity)
rational functions with real coeflicients. The subset
consisting of functions without poles in the closed
right half plane is denoted RH, and the subset
of RH,, consisting of functions without poles in
Res > —a is denoted RHy, (). The set of m x n
matrices with elements in RLy, (RHe,RHoo(a))
will be denoted RLZ*™ (RHZ™", RH " (a).

L4[0, 00) can be thought of as the space of square
integrable functions [0,00) — R', and the induced
L;-norm of an operator from Ly into Ly, is denoted
- 1l-

Introduce the truncation operator Pr, which
leaves a function unchanged on the interval [0, T and
gives the value zero on (T, 00]. Causality of an oper-
ator F means that PpF = PrFPr. I, denotes an
m X m identity matrix.

2. IQC Based Stability Analysis

We will in this section shortly review IQC based
stability analysis as presented in [9]. Consider the
feedback system in Figure 1. Here G is a stable linear
causal time-invariant operator with transfer function
G(s)in RHL’;"’. A is a bounded causal operator from
L4[0,00) to LT*[0,00). We will be concerned with
input/output stability in the following sense

Definition The system in (1) is input/output stable
if I — GA has a bounded causal inverse, i.e. if there
exists a C' > 0, such that ||(I — GA) Y| < C.

The term IQC is defined as follows. Suppose
II is rational matrix function, which takes bounded

Hermitean values on the imaginary axis. Then, A is
said to satisfy the IQC defined by II, if

[T 300 nie) [0 | s 2 0
—oo LO(jw) U(jw)
for any #,7 being the Fourier transforms of u,v €
L;[0, 00) with v(t) = A(u)(t).

It is assumed that the feedback system in Figure
(1) satisfies the extended well-posedness condition,
that for every 7 € [0,1] and for every T' > 0, there

exists a causal inverse of I — TPrGA. The main
stability result of [9] is stated as

THEOREM 1
Assume that the system in Figure 1 is well posed, and
that for all 7 € [0, 1], TA satisfies the IQC defined by
II. If

' ) G(jw
I(jw) )

[ G(jw)
I

I

}<o (1)

for all w € R U {oo} then the feedback system is
input/output stable.

Remark In most applications II has a form such that
T/ satisfies the IQC defined by II for all 7 € [0, 1],
if and only if A satisfies the IQC defined by II. This
is the case in all applications in this paper, and we
will therefore only state the simplified assumption in
what follows.

The next two obvious properties are useful when
applying Theorem 1.

Property 1 Assume A satisfies the IQC’s defined
by I,...,I,, then A also satisfies the IQC defined
by >0, aill;, for any a; > 0,4 € [1,...,n]

Property 2 Assume A has the block-diagonal struc-
ture A = diag[Ay,...,Ay], and that A; satisfies the
IQC defined by II;. Then A satisfies the IQC defined
by I = daug[Ily, ..., II,], where the operation daug
is defined as follows. If

W I
n.-:[ 'S 2], i=1,2
;" I3

where the block structures are consistent with the size
of Ay and A, respectively, then

H11 0 JIED 0
0 Hz]_ 0 H22
da'ug (HI,HZ) = .
32 0 |Hiz O
0 sz* 0 H23
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Figure 2. System setup for performance analysis.

3. IQC Based Performance Analysis

Tt is possible to use the ideas of the previous section
for analysis of robust performance of the system in
Figure 2. The transfer function has the structure

G G12}
G=
[G21 G2z

‘We define robust performance as follows.

Definition Assume that the perturbation A, satis-
fies the IQC defined by I,. Then the system in Figure
2 is said to have robust performance if

a. The system is input output stable.
b.

/°° [f(j_w)]*m(jw) [E(jf”)]dw S0 @

oo LW(Jw) B(jw)

when z = (G11 + Glez(I — GzzAz)—1G21)w.

The standard transformation from robust perfor-
mance to robust stability, gives

PROPOSITION 2

Assume A, satisfies the IQC defined by II;. Then
under some nonrestrictive conditions on II; and well
posedness of the loop, the system in Figure 2 has
robust performance if

G(jw)

]<0 (3)

for allw € RU{c0}.

Remark If we introduce the class of perturbations
A4 that satisfy the IQC defined by II;, then Theorem
2 states that the the system in Figure 2 has robust
performance if the system in Figure 1 is stable ac-
cording to Theorem 1, when A = diag(Aj, Az).

Remark An example of the second condition in the
definition of robust performance is when we require
the induced Ljy-norm of the system to be less than
one. In this case we can chose II; as

0] w

4. LMI Formulation of the Robustness
problem

It follows from the last two sections that it is possible
to analyze a wide variety of stability and performance
robustness problems by means of application of The-
orem 1. There are many examples of perturbation
structures A, which satisfies a class of IQC’s that can
be described in terms of the following set of matrix
functions, which we denote P(¥, ®, M).

F(Gw)M(A)®k(jw) <0
fork=1,...,K,A€ R"
(5)
Here M is an affine function of A € R™, which takes
values in the set of symmetric matrices in RV*¥,
and ¥ = [¥* U] € RLY*(+m) g structured
consistently with the structure of A, i.e. ¥* and wh
has column size I and m respectively. The inequalities
involving ®; € RLY*M* k = 1,..., K are used to
restrict the range of A. In the next section, we give
several examples of perturbation structures, which
can be described by IQC classes defined as above.

It is often convenient to derive the IQC class
for a perturbation with complicated structure from
simple IQC classes. For this means, we need to add
and augment such classes. Addition and diagonal
augmentation of the IQC classes defined by the sets
P]_ = 'P(‘I’]_,‘I’]_,M]_) and Pz = ’P(‘I’z,@z,Mz) is
performed in the following way.

roem=n( ] [V] [ [0 )

and

daug (P1, P2) = P(¥, [qz)l] ! [q?z] ’ [A;—Jrl 1‘0’-’2])

{\I’*(J‘w)M(A)‘I’(J‘w)

where
- [\I"{ 0 ¥ o ]
“lo w2 o Wi’

Robust stability and performance analysis can
now be approached in the following way. Derive a
class of IQC’s describing the perturbation and the
performance criterion. The system is then stable or
has robust performance if the following feasibility
problem has a solution.

Robustness Test Find A € RV, such that
3 (jw)M(N)®;(jw) <0, 1€][0,...,K]

for all w € RU {oo}. Here

s



It is possible to obtain a LMI formulation of this
robustness test as follows. Introduce representations
®; = Ci(sI — A;)"'B; + D;, for i = 0,..., k. Then by
the KYP lemma as stated below, the robustness test
is equivalent to the following LMI problem.

LMI Formulation of Robustness Test
Find suitable A € RY and matrices P; = PiT, 7 =
0,...K, such that

A?P,' + P;A; P;B;

cr
[ BT, o | <¢

Df‘] M(A)[C1 Dl]—l-

fori=0,...,k

LemMMa 3—KYP
For the system ®(s) = C(sI — A)™'B + D, where
det(jw — A) # 0, the following inequalities are equiv-

alent. M is a symmetric matrix.
a.

&* (ju)M®(jw) <0, Vw e RU{oo}
b. There exists a matrix P = PT, such that

[CT]M[C D]+[ATP+PA PB 2
DT BTP 0

Proof. The lemma follows in the case when (4, B)
is controllable, from [12]. The formulation here does

not require controllability and a proof for this case is
given in [8]. QED

Remark. For Example 3 in the next section we
need the lemma above for the case of non-strict
inequalities. In that example we have controllability
of (4, B) and equality of the non-strict versions of the
statements above follows from [12].

5. Examples of IQC Classes

This section will give several examples of how im-
portant perturbation structures, can be described in
terms of IQC classes defined as in (5).

Example 1 Assume A is defined by multiplication
with a real number of magnitude less that 1, this cor-
responds to the real u problem, [3]. Then A satisfies
the IQC’s defined by (we suppress some arguments
for compactness of notation)

e =[7 ] wte =[]

for any X,Y € RL*™, where X (jw) = X*(jw) > 0,
and Y(jw) = —Y*(jw), for all w € R. Introduce
"basis multipliers” R, S € RHY*™ and let X =
R*UR, Y = VS — §*VT, where U € RV*N, with

U=UT >0, and V € R™*N_If we let A correspond
to the elements in U and V, respectively, then we can
define a class of IQC’s corresponding to Iy by

oy L0 5D

and a class of IQC’s corresponding to IIy by

I 0 0 0 VvV 0
0 I 0 0 0 -V

P(OS’VTOOO)
5 0 0 -vT 0 0

Note that no & constraints are needed for the last
class of IQC’s.

Example 2 Let § € Ly with |§lc < 1. Then
A = §(t)I, is defined by multiplication in the time
domain with a time-varying scalar function, and A

satisfies the IQC defined by

A "

for any X,Y € R™*™ satisfying X = X7 > 0 and
Y = —YT. If we let ) represent the elements of X
and Y and if we let M () have the value given by (6)

for a given X and Y, then we can regresent a class of
IQC’s describing A, by P(I1,(0 I)" ,M).

Example 3 Consider the system
z = (A+ BA(t)C)z (7

where A(t) is a time-varying matrix variable, which
takes values in a convex polytope. Simultaneous Lya-
punov theory states that this system is stable if there
exists P = PT > 0 such that

(A+BACY'P+P(A+BAC)<0  (8)

for all corners A; of the polytope. We can view the
system in (7) as a system in Figure 1, with G(s) =
(sI—A)~! and with the perturbation BAC. It is easy
to see that the stability condition in (8) is equivalent
to the robustness test of finding @ = QT, P = PT >0
and ¢ > 0, such that

(ij—A)—l]* [Q+6I —P] [(ij—A)‘l <0
[ I ~-P 0 I ] -
Vw € R, subj to

(Bi,-c)T [_Qp _OP] (BAI,.(;) >0

for all corners A; of the polytope. This is again of the
form (5), with K equal to the number of corners of
the polytope.



Example 4 If A = §(t)I,, where §(t) is a real-
valued and differentiable parameter, with 0 < kmin <
6(t) < Fmax < 00, and —2a8(t) < 6(2) < 2p6(t), for
some &, 3 > 0. Then A satisfies the IQC defined by

) M*(jw
N(jw) = , ( )]
M(jw) 0

Here M = M; + M}, where My € RH*™(8), M €
RHZ*™(a), satisfies

M (jw — B) + M (jw —B8) >0
My(jw — o)+ My (jw —a) >0

for all w € R. This follows from the ideas in [10].
Introduce basis multipliers M; € RHf,Voxm(,B),Mz €
RHY*™(q) and let My = UM, and M, = VM;,
where U,V € R™¥, 1t is now straight forward to
define a representation as in (5) of a class of IQC’s
describing A.

Example 5 Suppose A operates scalar signals ac-
cording to the nonlinear map (Av)(t) = 68(v(t)),
where § is an odd, monotone non-deceasing function
on R with 6(0) = 0 and |6(z)| < k|z|, for some posi-
tive constant k. Then A satisfies the IQC defined by

) 0 I+ H(jw)
M(jw) = s )
I+ H*(jw) —2(I+ReH(jw))/k

for any H € RLy with Li-norm of its impulse
response is no larger than one, this follows from [13]. If
we Testrict our attention to the subset of RLgo, which
have transfer functions that can be represented in the
form

H(s)=), B g

- | aq
i=1 +ai

then we can find an representation as in (5) in the
following way. Introduce a basis multiplier on the

form T
H= [1,s+1al,...,s+1aN]
and define variables )\3',)\5,...,)\}'\},)\;\, > 0. Then,
His) = ot oy L + -
(s)_;()‘i - A )s+ai+}‘0 — o

and an upper bound of the L; norm of H’s impulse
response is given as

N
STOF +27) ladl + (O +25) < 1

i=1

This is essentially of the form (5).

6. Numerical Examples

We will in this section illustrate the previous discus-
sion with two simple numerical examples. The LMI
optimization has been done with LMI-lab, [4].

Example 1 We will consider robust performance of

the system

s+1
s34+ (3+61)s2+ (4+b2)s+ (3 +62)

P(s) =

where 6; and 6, are real-valued constant parameters
with magnitude less that one. We first consider the
problem of finding a a stability margin for the system,
i.e. we want to find an as large as possible value of
v, such that the system is stable for the perturbation
4A. We represent the system as in Figure 2, with
A = diag (81, 6212) and with G(s) = C(sI — A)™'B,
where C = I3 and

-3 -4 3 1 11
A=|l1 0 o0, B=]0 00
0 1 0 0 00

We let the basis multipliers be §; = (s +1)7%, S, =
(sI -1)7'I

Ri= [(s+;-1)—1:| ) Ra= [(34—0{21)‘1&]

define IQC classes, which describes 6; and &z, as in
Example 1 of the last section. Addition and diagonal
augmentation gives a class of IQC’s that describe the
perturbation A.

Application of the robustness test in Section 4 to
the system yG, gives the maximal value 9% = 2.162.
This is very close to the optimal value.

Next we consider the robust performance prob-
lem of finding an upper bound on the induced Lo-
norm of the system. We represent the system as in
Figure 2, with

G(s) = (“’Cé)(sI—Arl(ﬁ B)

where A, B and C are as above, and B= (1 00 )T,
C=(0 1 1). We represent the performance crite-
ria as in (4) and the perturbation A as above. The
robustness test in section 4 is satisfied with the max-
imal value v° = 1.28, which gives 1 /%° as an upper
bound of the induced Lz-norm. The problem in this
example can be solved in a number of simple ways.
However, it is remarkable that a very simple choice
of multipliers turns out to be close to optimal.



Example 2 We will here consider a robust perfor-
mance problem as in figure 2, when

P 4P
. [7 v ]
P P
where
2 2
P(s) = _(s + 4s + 11)(s* + 200s + 20)

(s2 + 25 + 10)(s% + s + 16)

and when A = 6(t)I where é(t) is a real positive and
time-varying parameter with —§(t) < 6(t) < 66(t).
We will try to find an as large as possible value of
4. This gives 1/ as an upper bound on the maximal
induced Lgy-norm of the system. Let us describe the
performance criteria as in (4), and the perturbation A
by the class of IQC’s in Example 4 of the last section,
defined by the basis multipliers

. 1 1%
Mlz[l,—]
s+4

1 s
"s2 + 45+ 16" 82 + 4s + 16

Mzz |:1

Numerical computations in LMI-lab with these basis
multipliers gives the minimal upper bound of the in-
duced Lj-norm to be 345 and the optimal parameter
values are

U= (158 871)107*
vV =(1.58 8.71 850)107*

In [10] robust stability was studied for this system
system.

7. Conclusions

We have suggested a format for representation of
classes of IQC’s and demonstrated its applicability
on a few examples. The format is designed to give
conditions in terms of linear matrix inequalities and
it also allows for convenient addition and diagonal
augmentation of classes of IQC’s. The last point is
essential in the development of software for analysis
of problems with combinations of several uncertainty
structures.

The approach is based on finite-dimensional re-
strictions of convex optimization problems, that are a
priori infinite-dimensional. The choice of good finite-
dimensional restrictions, remains to a large extent an
open problem. Also to estimate the conservatism of
the finite-dimensional analysis remains to be a chal-
lenge. A approach using duality theory is reported in
[11].
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