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ON SELF TUNING REGULATORS

K J Astrém B Wittenmark

Abstract

It has been shown in several cases that linear stochastic
control theory can be used successfully fto design regulators
for the steady state control of industrial processes. To

use this theory it 1s necessary to have mathematical models

of the system dynamics and the disturbances. In practice

it is thus necessary to go through the steps of identification
computation of control strategies and implementation. It

might also be necessary to repeat the: identification if

the system dynamics or the disturbances are changing.

Algorithms that combine the steps of identification and control
will be discussed in the lecture. The special case of discrete
time single-input single-output systems is considered. It

is assumed that the disturbances can be characterized as
filtered white noise. The main result is a theorem which

states that if the algorith converges it will in fact con-
verge to a minimum variance regulator. The behaviour of

the algorithm is illustrated with several examples which

indicate that it has nice convergence properties.

The result has several practical implications. It can be used
to construct sélf-adjusting regulators for direct digital
control. It can be interpreted as a real-time maximum
likelihood identification scheme. If the control problem
discudsed is reformulated as a stochastic control problem
the theorem implies that asymptotically there is a finite

dimensional sufficient statistic.

The implementation of the algorithm on process computers
is also discussed. It is shown that it is feasible to

implement it on small computers.
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1. INTRODUCTION

It has been shown in several cases that linear stochastic control
theory can be used successfully to design regulators for the steady
state control of industrial processesd. See e.g. [1]. To use this
theory it is necessary to have mathematical models of the system
dynamics and the disturbances. In practice it is thus necessary

to go through the steps of identification, computation of control
strategies and implementation. This procedure can be quite time
consuming in particular if the identification is done off-line.

It might also be necessary to repeat the procedure if the system
dynamics or the characteristics of the disturbances are changing.

as 1s often the case for industrial processes.

From a practical point of view it is thus meaningful to consider
the control of constant but unknown systems. It is thus desired
to find control algorithms for an unknown system which converge to
the optimal control algorithms that could be derived if the system
characteristics were known. A solution to the problem would thus

provide a gelf~tuning or self-adjusting regulator. The word adaptive

is not used in this context since adaptive, although never pnigorous-
ly defined, usually implies that the charcteristics of the process
is changing. The problem to be discussed is‘thus simpler than the
adaptive problem in the sense that the system characteristics

is assumed constant. The formulated problem can be solved using
nonlinear stochastic control theory. This will, however, even in
very simple cases lead to exorbitant computational requirements

far exceeding the capabilities of existing process control computers.

The purpose of this paper is to discuss one class of self-adjusting
regulators and to analyse their properties. The special case of
discrete time single-input single-output systems is considered. It

is assumed that the disturbances can be characterized as filtered
white noise. A class of algorithms is derived based on the hypothesis
of separation of identification and control for a class of linear
systems having a structure such that a least gguares identification
procedure can be used. It is then shown that the algorithms obtdained
have nice properties. The main result is a characterization of the

closed loop systems obtained when the algorithm is applied to a




general class of linear systems. It is shown in Theorem 5.1 that

if the algorithm:converges the closed loop system obtained will be
such that certain covariances of the inputs and the outputs of the
closed loop system are zero. This is shown under very -

weak assumptions on the system to be controlled. If it is assumed
that the system to be controlled is a sampled finmité dihensional
linear stochastic system with a time delay n the centiol sdgnal

vk iSthBthermone;dembnstrated”ih-ihé@rem;5.2 that -if thevalgdrithm
converges itﬂWill’abmuaily~éQnVerge to fhé minimum;vafiancé régdla-
tor,

The major assumptions are that the system is nonminimum phase,
that the time delay is known and that a bound can be given to

the order of the system. The first two assumptions can be removed
at the prize of a more complicated algorithm. The behaviour of
the algorithm is illustrated with several examples which indicate

that it has nice convergence properties.

The paper is organized as follows: Sections 2, 3 and 4 provide
motivation and preliminaries. Control strategies for systems with
known parameters are given in Section 2. Section 3 outlines the
version of the least squares identification scheme that is used.
The problem of identifiability is covered in Section 4. The main
results are given in Section 5. In Section 6 it is shown that

a modified version of the algorithm converges for a first order
system. The convergence properties of the algorithm are further
illustrated by the examples in Section 7. Some practical aspects
on the algorithm as well as some problems wich remain to solve are
given in Section 8. In particular it is shown that the algorithm

is easily implemented on a minicomputer.




2. MINIMUM VARTANCE CONTROL
Consider a system described by the difference equation

+ -1) + + -n) = “k=1)+...+
y(t) aly(t 1) +... any(t n) blu(t k=1)+...
+ b u(t-k-n) + A[é(t) + coe(t-1)+...+c e(t—n{] R

n 1 n

t=0,+1, +2,... (2.1)
where u is the control variable, y is the output and {e(t), t =0,
1, + 2,...} 1is a sequence of independent normal (0,1) random
variables. If the forward shift operator q, defined by

qy(t) = y(t+l)

and the polynomials

Alz) = 2"+ a 21y oo t a
1 n
n-1
= + +
B(z) blz o o1 bn bl #0

1]

Cz) =2+ 2% 4 ...+ e
1 n
are introduced the equation (2.1) describing the system can be written

in the following compact form:

A(Q)y(t) = B(q@lu(t-k) + AC(qgle(t) (2.2)

It is wellknown that (2.1) or (2.2) is a canonical representation of
a sampled finite dimensional single-input single-output dynamical
system with time delays in the output whose disturbances are gaussian

random processes with rational spectral densities.

If (2.1) is obtained by sampling a finite dimensional system
(A,B,C,D) with D = 0 then k = 0. The model (2.1) also admits a time

delay t in the system input which must not be a multiple of the sampling
interval.

The number kicorresponds to the integral part of t/h, where h is the

sampling interval. It is also wellknown that under certain assumptions
the control
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strategy
()
u(t) = - BIQI(D y(t) (2.3)

where F and G are polynomials

Z< + flzk"l b+ (2.4)

F(z) e

n-1 n-2

G(z) = g4z t gz toootg o (2.5)

determined from the identity
dClq) = A@F(@) + 6(q) (2.6)

is optimal in the sense that the criteria

v, = Ey? (t) (2.7)
and
N
_ 1 2
V2 —Eﬁ]Z-y (t) (2.8)

are minimal. Proofs of these statements are given in 121 .7 Ther following

conditions are necessary:

o The polynomial B has all zerces inside the unit circle. (The
system (2.1) is minimum phase).

o The polynomial C has all zerces inside the unit circle.

These conditions are discussed at length in [1]. Let it suffice

to mention here that if the system (2.1) is nonminimum phase the
control strategy (2.3) will still be a minimum variance strategy.
This strategy will, however, be so sensitive that the slightest
variation in the parameters will result in an unstable closed loop
system. Suboptimal strategies which are less sensitive to parameter
variations are also well known. This paper will, however, be limi-

ted to minimum phase system.




For a system described by (2.1) it is thus a straight forward
task to obtain the minimum variance regulator, if the parameters
of the model are known. If the parameters are not known it might
be a possibility to try to determine the parameters of (2.1)
using some identification scheme and then use the control law
(2.3) with the true parameters substituted by their estimates.

A suitable identification algorithm is the maximum likelihood
method which will give unbiased estimates of the coefficlents

of the A, B and C polynomials. The maximum likelihood estimates
of the parameters of (2.1) are, however, strongly nonlinear
functions of the inputs and the outputs. Since finite dimensional
sufficient statistics are not known it is not possible to com-
pute the maximum likelihood estimate of the parameters of (2.1)
recursively as the process develops. Simpler identification

schemes are therefore first considered.




3. THE LEAST SQUARES STRUCTURE.

Tdentification

The problem of determining the parameters of the model (2.1)
is significantly simplified if it is assumed that c, = 0 for

i=1,2, ..., n. The model is then given by
AlQy(t) = B(@u(t-k) + xre(t)

The parameters of this model can be determined simply by the least
squares method [3]. The model (3.1) is therefore referred to as a

least squares model .

The least squares estimate has several attractive properties. It
can easily be evaluated recursively. The estimate can be modi- = -
fied to take different model structures, e.g. known parameters,
into account. It can be shown that the least squares estimate 5
will converge to the true paranmeters e.g. under the following con-

ditions. See [3].

o The output {y(t)} is actually generated from a model (3.1)

o The residuals {e(t)} are independent.

o The input is persistantly exciting of order greater than 2n.

See” [4].

o The input sequence {u(t)} is independent of the sequence of di-
sturbance séquence {e(t)}.

These conditions are important. If the residuals are correlated
the least squares estimate will be biased. If the input is not
persistantly exciting of order 2n:-or greater or if the input
sequence {u(t)}i depends on f£(t)} it may not be possible to
determine the perameters at all. (The system is not identifiable).
When the inputs u are generated by a feedback they will obviously

depend on { e(t) } The last condition above will thus require

special consideration. This is done in'Section y,

(3.1)




Control

If kX = 0 and B has all its zerces inside the unit circle the mini-
mum variance strategy (2.3) for the least squares model (3.1)

reduces to

1
u(t) = b [aly(t)+ .o+ a y(tntl) - bult-1) -

- bnu(t—n+l)]

If there are time delays in the system i.e. k # 0 the computation
of the control strategy becomes more involved since the identity
(2.6) must be resolved. The problem is simplified if it is observed
that the computation of the minimum variance regulator for the mo-

del (3.1) is equivalent to reduce (3.1) to a model having the form
y(ttk+l) + uly(t) + ... +%ny(tfm+l)

- 1 1 \? ,
= bjult) + ...+ by Jult-2 ) +gylt)
where m = n and & = ntk. The coefficients «, and b' are related
i i
to the coefficients a. and bi through simple algebraic equations.
The disturbance v is a moving average of e.
Assuming that v(t) and v(s) are uncorxrélated.the minimum variance
control strategy for (3.3) becomes (
1
= = + -t .
u(t) bi [aly(t) el umy(t m+l)

4
- b! = - _H! _ 0

bJu(t-1) - ... - b) Jult sz)_l
In order to obtain a simple computation of the control strategy
in the case that there are time delays in the model it could thus
be attempted to use the model structure (3.3) which also admits

a least squares identification.

Identification and Control

The problem of controlling the system (3.1) in the case when k and
n are known but the parameters = and bi are unknown can now be

attempted using the following algorithm

(3.2)

(3.4)




Step 1 Determine the parameters of the least squares
model (3.1) or (3.3)

Step 2 Introduce the parameters obtained in step 1
into the control law (3.2) or (3.4) and evalu-

ate the control signal

Since the least squares estimate is easily computed recursively the
steps 1 and 2 can easily be performed at each sampling interval. An
alternative could be to keep the parameters of the control law constant
for a number of sampling intervals. This procedure or slight variations
thereof has been suggested by several authors, e.g. Kalman [g] Peterka
(8], Wieslander and Wittenmark [7] . In Astrém-Wittenmark [2]it is
shown that a modification of the algorithm which takes the uncertain-
ties in the parameter estimates into account is optimal with respect

to the criterion (2.7) but not with respect to the criterion (2.8).
Several fundamental problems related to the algorithm are also discus-
sed in [2] . In section 5 of this paper it is shown that the algorithm
given above with a few modifications will actually converge to a mini-
mum variance regulator if it converges at all. This is true when the
system to be controlled is governed by a least squares model (3.1) and
surprisingly also when the system is governed by the general linear
model (2.1).




4. IDENTIFIABILITY

When ‘the parameters of the model (3.1) or (3.3) are determined using
the least squares estimate and the inputs are generated by a feedback
(2.3), (3.2) or (3.4) the inputs are correlated with the disturbances
{e(t)}. Hence it is not obvious that the parameters can be determined.
Neither is it obvious that the input generated in this way persistantly
exciting of sufficiently high order. It will in fact be shown that the
model (3.1) with the feedback (3.2) is not identifiable in the sense
that all parameters can be determined [8]. A simple example will be

analysed.

Example 4.1

Consider the first order model
y(t) + ay(t-1) = bu(t-1) + e(t) (4.1)
Assume that a linear regulator
u(t) = ky(t) (4.2)

is used. If the parameters a and b are known the gain k = a/b would
obviously -cormespond to. alnunlmum varlanee regulator. If the parame-
ters are not known the gain k = a/b where a and b are the least squares
estimates of a and b could be attempted. The least squares parameter

estimates are determined in such a way that the loss function

N
V=2 [y + ay(o) - buct)] 2 (4.3)
1

is minimal with respect to a and b. If the feedback contrél (4.2)

is used the inputs and outputs are linearly related through
u(t) - ky(t) =0 (h.4)

Multiply (4.4) by ~o and add to the expression within brackets in (4.3).

Hence

N
V(a,b) = 3 [y(erl) + (atakdy(t) - (b+oe)u(t)]2
1




10

The loss function will thus assume the same value for all estimates

a and b such that

atok

S
a

loal ]
I

a+t+ a

It is thus not possible to determine the parameters a and b of the
model (4.1) when the feedback (4.2) is used.

To avoid the dlfflculty -illustrated in the example one of the para—
meters could: be-set toia fixed value, e.g. b bO; This ‘means that
in the model (4.1) it is only attempted to estimate the parameter a.

The. estimated gain then becomes

which equals the correct value only in the case k = a/b.

Hence if a feedback (4.2) is used and the gain k is chosen in such
a way that it corresponds to a minimum variance strategy then a
least squares estimates of the parameter a,when the value of b is
assumed given,.corresponds to a -minimim variance strategy. ThlS

holds imdependently of the value -of: b

The simple example shows that it is in general not possible to esti-
mate all the parameters of the model (3.1) when the input is genera-
ted by a feedback like (3.2). Notice, however, that all parameters
can be estimated if the control law is changed. In the particular

example it is e.g. easy to show that if the control law (4.2) is

replaced by
u(t) = ky(t-1)
or

u(t) = kly(t) + kzy(t—l)

it is possible to estimate both parameters of the model.
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5. THE MAIN RESULT
The properties of the algorithm discussed in:Section 3 will now be ana-
lysed. The example of .Section 4 shows that all the parameters of the
model cannot:be determined and it is therefore assumed that the para-
meter bi = B is given. It will be shown inSegction 6 that the choice
of Beo is not crucial. When bi is assumed given the form of the equa-
tions is if the coeffidients are renamed as>follews: - " i
— ] 1 = —

B, = bl /b] i=21,2,...,8
The algorithm which combines the steps of identification and control
is then tomposed Jf the steps'
Step 1 Determine the_parameters Gqeee G Bl ...32

of the model:

+k+1) + £t) + + -mtl) =

y (t+k+1) uly£t1 et ™. amy(t m+l)

= B [ult) + ppuCe-1+ ... B, u(t-2)] + e(t) (5.1)

The pavaweter g Is gssumed known .
Step 2 Choose the control law

ut) = i—[& y(£) + ... o (t—m+1)] =

B, L1 i
- g ult-1) = v.. - g ult- .2
Bip(t 1) Bﬁu(t L) (5.2)

which also can be written as

' -1 © —mtl
+ R . o Q-mt1l
% OLQq 0Lmq . (t) = q - ﬂ(g) (£) (5.2")
7 Y Y

Bg B (q)

u(t) =

—
B [L *+ Ba .48 g




This algorithm is called a self-tuning algorithm.

The model structure (5.1) is chosen because the regulator (5.2) derived
from it has the same structure as the minimum variance regulator for

(2.1) and (3.1).

The properties of the closed loop system obtainded when the. above

control algorithm is used will now be analysed.

We have

Theorem 5.1

Assume that the identification algorithm converges and that the closed

loop system is such that the output is ergodic (in the second moments).

Then the closed loop system has the properties

E y(t+o)y(t)
E y(t+toult)

Proof

The least squares estimate of

is given by {31
F_—Zyz(t)
-y (t)y(t-1)

-5y () y(t-mt+1)

BOZy(t)u(t—l)
Bozy(t-l)u(t—l)

Bozy(t—m+l)u(t—l)

T = k+1,...,k+m

T = ktl,...kte+l

—zy(t)y(t-1) ...
—Zy2(t—l)

BoZy(t)u(t—£+l)
Bozy(t—l)u(t—z+1)

sozy(‘c—m_Jrl)u(t—xv)'i

—‘ WZT'L‘—I)

szzuz(t-l)
O

B

B

O N O

sulCt-ult-2) ..

Zuz(t—g)

the parameters o

|
!

Ly (t)y(t-mt+1)
-2y (t=1)y(t-m+1)

—Zyz(t—m+l)

(5.3)
(5.4)

l,a 2:-')@m} Bla 62)'°}B£

12
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Zy(t+k+l)y(t) - BOZu(t)y(t)

-

Ly (trktDy(t-1) - 8 u(t)y(t-1)

Ly (t+k+l)y (t-mt1)
y et u(t-1)
BoZy(t+k+l)u(t—l)

B Eu(t)y(t-mH1)

Bilu(t)u(t—l)

BOZy(t+k+1)u(t—2) BiZu(t)u(t—z) : (5.5)

where the sums are taken over NO values.

Assume that the identification converges. For sufficiently large Ny
the coefficients of control law (5.2) will thus converge to constant

values. Introduction of (5.2) into (5.5) gives

gy (t+k+l)y(t) =0
ry(ttk+)y(t-1) =

[en]

ny (t+k+1)y(t-m+1l)
ry (tHktl)u(t-1) = 0

1t
(an]

sy (tHtl)u(t-2) = 0

Using the control law (5.2) it also follows that

Zy(ttk+liu(t) = 0

Under the ergodicity assumption-the sums can furthermore be replaced

by mathematical expectations and the theorem is proven.

O

Remark 1

It is sufficient for ergodicity that the system to be controlled is governed

by a difference equation of finite order, eig. like (2.1), and that the
closed loop system obtained by introducing the feedback law (5.2) into

(2.1) gives a stable closed loop system.




14

Notice that it is not necessary to assume that the system to be con-
trolled is governed by an equation like (2.1) or (3.1). If such an
assumption is made it is possible to obtain the following stronger
result.

Theorem 5.2

Let the system to be controlled be governed by (2.1), let the model
(541) be such that m > n and £ > ntk-1. Assume that the self-tuning
algorithm converges. The self-tuning algorithm then converges to a

minimum variance regulator.

Proof

The proof is straightforward but tedious. The idea is to use Theorem
5.1, the descriptions of the system (2.1) and of the regulator (5.2) to
show that

ry(T) = E y(ttD)ey(t) =0, |[1]> ktl (5.6)

The result then follows from the uniqueness of the minimum variance
regulator. For the proof there is no loss in generality to assume that
B, = 1. This can always be achieved through suitable choices of units

for u and y.

When the algorithm has converged it might happen that there is a common
factor in the denominator and nominator of the control law. Assume that

the common factor is of order p. Let

2—m+%A( )
u(t) = gjgazy—iL- y(t) (5.7)

denote the control law obtained in the limit and after the concellation
of the common factor. This implies that A and B are of order m-p and

%-p respectively.

The closed loop system then becomes

L-m—k

AB- q BAly(t) = CBe(t)

It is of order




r = n¥4-p > 2n+k-p-1. Let the characteristic equation be

1 0

r
+ t oty =
Z Y:LZ Yl”

It then follows that

N - + . .
I’y(T) +er‘y(T L)+... Yl_‘r’y(’[ r) =0 T > rtl

{ 1)+, 4 -r) = rtl
I’yu(r) + ~+1r’yu(r 1) yrryu("r r) =0 o

where I’y(T) is defined by (5.6) and

ryu(T) = Ey(t+tt)ult)

See[1 p.50 and p 98].

15

(5.8)

(5.9)

It follows from Theorem 5.1 that ry('r) vanishes for 7 = k+l,...,k+m.
If it could be shown that ry('l") also is zero for T = ktmtl,...,k+pr

the equation (5.6) would then follow from the Yule-Walker equation

(5.8).
[T r (ktr) ]
r-m-1"y
T r (ktr-1)
rm-2"y
R = .
N :
I.r (ktmt2)
1y
r (k+mtl)
LY =2
and
= + =1
Ir—z—eru(k )
Fﬁrez—3ryu(k+r'l)
R = :
yu -
I.r (k+u+3)
1"yu
r  (k+te+2)
yu

of orders r-m and r-¢-1 respectively where

-i

-1
= 1+ + ...tTY.
Fi 1 qu qu




16

For simplicity it is also assumed that 2+1 > m. (If this does not hold
it is necessary to increase the order of the Ryu vector to r-mxl and

to make some small modifications in the following).

Using the control law (5.7) and the equations (5.8) and (5.9) it is
straightforward but tedious to get 2r-m-%-1 equations to solve for the
2r-m-2-1 unknowns in Ry and Ryu' Using matrix notations the system will
be

Fal 0 0 1 0 0
o, ay 31 1 0
. o 0 0 0
2 i 1
1
m- B1 -
Bz—r Ry J: | (5.10)
. 0 R ! E
Yyl {
!'
|
| ‘
0 0 O 0
‘M BQ-P L J

The inverse of the matrix on the left hand side exists if the polynomials
R@) and B(z) have no common factor(9] . This now implies that all elements

in Ry are equal to zero and that (5.6) holds.
O

Remark

Since the system to be controlled is governed by (2.1) which has corre-
lated residuals the least squares estimates will be biased. The control
law (5.2) obtained under the assumption of the least squares structure
with the biased parameters will, however, correspond to the optimal

control law.
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6. CONVERGENCE OF THE ALGORITHM

It would be highly desirable to have general results giving condi-
tions for convergence of the self-tuning system. Since the system
(2.1) with the regulator (5.2) and the least squares estimator

is described by a set of nonlinear time dependent stochastic
difference equations the problem of a general convergence proof

is difficult. So far we have not been able to obtain a general
result. It has, however, been verified by extensive numerical
simulations that the algorithm dees in fact converge in many cases.
The numerical simulations as well as analysis of simple examples
have given insight into some of the conditions that must be imposed

in order to ensure that the algorithm will converge.

A significant simplification of the analysis is obtained if the algo-
rithm is modified in such a way that the parameter estimates are kept
constant over long periods of time. To be specific a simple example

is considered.

Example 6.1

Let the system be described by

y(t) + ay(t-1) = bu(t-1) + e(t) + ce(t-1) le] <1 (6.1)
Assume that the control law

u(t) = 8 y(t) (6.2)

is used in the time interval ettt where the parameter o is

1
determined by fitting the least squares model

y(t+l) + ay(t) = u(t) + e(t+l) (6.3)

to the data {u(t), y(t), t = t

_Lseees t 1)

The least squares estimate is given by
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t -2
n
: oy [y<t+1)uuctﬂ
=t
= n-1
n t -2
2 2
gy (o)

t:tn—l

a - n_l (6.4)

where the last equality follows from (6.2).If: it is now assumed

that t - t > « and that
n n-1

|a - by ;] <1 (6.5)

which means that the closed loop system used during the time interval

t <t < tn is stable we find that

n-1

r (1)
%, T %1 T ry(O) (6i5p
where r (1) is the covariance function of the stochastic process
{y(t)} defined by
y(t) + (a - bqn_l)y(t-l) = e(t) + ce(t-1) (6.7)
Straightforward algebraic manipulations now give

(C-a+b§h_l)(l—ac+bc%n_l)

(6.8)

T el 1+ 02 - 2ac + 2Cb0f1—l

In the particular case the analysis of the convergence of the self-
tuning regulator thus reduces to the analysis of the nonlinear diffe-

rence equation given by (6.8).




Introduce
= wh - a-c
n n b

the equation (6.8) then reduces to
bzcx2

X = glx ) = (I-b)x_ +
et & o 1-c +2bcxn

The point x = 0 is a fixpoint of the mapping g which corregponds to
the optimal value of gain of the feedback loop, i.e a = (a-c)/b.
The problem is thus to find if the fixpoint is stable. Since the
closed loop system is stable only if

-1 < a—ban_1 <1

it is sufficient to consider

c -1 c+ 1
5 < x5

For small x is g() =< (1-b)x which implies that x = 0 is a stable
fixpoint if 0 < b < 2.

There is essentially three cases that have to be investigated.

l. c=20

2.¢c> 0,0< b< 1

3.¢c »0,1< b< 2

If c< 0 it is the same structure as in case 2 and 3 respectively.
Case 1

The .equation (6.10) is now reduced to

X 41 = (l+b)xh

and the fix point x = 0 is stable if|1<b) < 1 i.e. 0 < b < 2.
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(6.9)

(6.10)

(6.11)

(6.12)




Case 2

A graph of g for this case is shown in fig.6 .1.
It is straightforward to verify that all initial values in the

‘o : c-1 + . . ; 3
stability region - < X< Cbl will give solutions which converge
to zero.
Case 3

A graph of g is shown in fig. 6.2.

It can be shown that g(g(x)) < x which implies that x_ 0.

Summary

From the analysis above we can conclude that x = 0 is a stable fix

point if

-l1<cx< 1l
and
0<b<2

The example shows that under the condition (6.13) the version of
the self-tuning algorithm where the parameters of the control law
are kept constant over long intervals will in fact converge. The
condition (6.13) implies that it is necessary to pick the para-
meter g in a correct manner. In the particular example B, =1
was chosen while the correct value was b. The condition (6.13)

indicates that in the particular example the choice of B, is not

critical. The algorithm will always converge if B, is greater than
b. Under-estimation may be serious and the value B, < 0.5 b gives
an unstable algorithm.

The analysis presented in the simple example can be extended to
give stability conditions for the modified algorithm in more

complex cases. The analysis required is tedious.

20
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7. SIMULATTIONS

This section presents a number of simulated examples which illustmate

the properties of the self-tuning algorithm.

Example 7.1

Let the system be

y(t) + ay(t-1) = bu(t-1) + e(t) + ce(t-1) (7.1)

with a = -0.5, b = 3 and ¢ = 0.7. The minimum variance regulator for

the system is
u(t) = = y(6) = -0.4y (1) (7.2)

A regulator with this structure can be obtained by using the self-
tuning algorithm:based on the model

Fig 7.1shows for the case @o = 1 how the parameter estimate
converges to the value o = -0.4 which corresponds to the minimum

variance strategy.

In Fig7.2 is shown the expected variance of the output if the
present value of o should be used for all future steps of time.
Notice that the algorithm has practically adjusted after 50 steps.

The analysis of Example 6.1 shows that, since b > 2, and 8, = 1

the modified self-tuning algorithm obtained when the parameters

of the controller are kept constant over long intervals is unstable.
The simulation in Example 7.1 shows that at least in the special case
a conservative estimate of the convergence region is obtained by

analysing the modified algorithm.

If the value of b is increased further it has been shown that the
algorithm is unstable. Unstable realizations have been found for
b = 5. In such cases it is of course easy to obtain a stable

oL By Inovesng
£
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algorithm by increasing By This requires, however, a knowledge of

the magnitude of b. O

The system of Example 7.1 is very simple. For
example if no control is used the variance will still be reasonably

small. The next example is more realistic in this aspect.

Example 7.2

Consider the system
y(t) - 1.5y(t-1) + 0.5y(t-2) =
= ult-2) - u(t-3) + e(t) + 0.8e(t-1) (7.4)

If no control is used the variance of the output is infinite. Also
notice that B(z) = z-1. The assumption that B has all zeroves inside
the unit circle is thus violated. The minimum variance strategy for

the system is
u(t) = -2.95y(t) + 1.15y(t-1) - 1.30u(t-1) + 2.30u(t-2) (7.5)

A regulator with this structure is obtained by using the self-tuning
algorithm with the model

ytg) + o,y + ayy(téld. = -
= u(t) Q;Blugt—l))& BzugtL2)j+ e(t) ) 7.6)

The convergence of the parameters 'is rather slow as can be seen
in Fig 7,3 But the control is fairly good already after about
10 steps of time. The actual loss is shown in Fig.7.4.
O
Both examples that have been considered are such that the model
used in the self-tuning algorithm is such that the minimum variance
regulator can always be obtained. The next example shows what happens

when this i1s not the case.
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Example 7.3.
Consider the system
y(t) - 1.60y(t-1) + 1.61ly(t-2) - 0.776y(t-3) =
= 1.2u(t-1) - 0.95u(t-2) + 0.2u(t-3) + e(t) +
+ 0.le(t-1) + 0.25e(t-2) + 0.873e(t-3) (7.8)

The polynomial A(z) has two complex zeroes near the unit circle

(+0.440.91) and one real zero equal to 0.8.

If a self-tuning regulator is determined based on a model with
m=3and & = 2 it will converge to the minimum variance regula-
tor as expected. Fig7.5 shows the sample covariance of the control

error together with a plot of part of the output.

If the self-tuning algorithm instead is based on a model with m = 2

and g= 1 it is no longer possible to obtain the minimum variance re-
gulator for the system since there are not parameters enough in the
self-tuning regulator. Theorem 5.1 indicates, however, that if the
self-tuning regulator converges its parameters will be such that the
covariances ry(l), ry(z), ryu(l) and ryu(2) are all zero. The simula-
tion shows that the algorithm does in fact converge (BO = 1.0). The
covariance function of the output is shown in fig. 7.5. It is seen that

[

the sample covariance }y(l) and %y(Z) are within the 5 % confidence

interval while }y(3) is not er would be expected from Theorem 5.1.

If a self-tuning algorithm is designed based on a model with m = 1

% = 0 then Theorem 5.1 indicates that %y(l) should vamish. Again the
simulation shows that the algorithm does in fact converge and that the
sample covariance T (1) does not differ significantly from zero.

See fig. 7.5. Y

When using regulators of lower order than the optimal minimum variance
regulator the parameters in the controller will not converge to values
which for the given structure gives minimum variance of the output.
In Table 1 is shown the variance of the output for the system above

when using different regulators.
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The loss when using the self-adjusting regulator is obtained through
simulations. The optimal regulator is found by minimizing ry(O) with

respect to the parameters in the controller.

|
! N
i Loss %- z y2(t)
i t=1
m % Self-adjust. | Optimal
3 | 2 ' 1.0 ' 1.0 E
bl 2.5 1.9 |
il I 0 | 4.8 ' 3.4 !
Table 1 a

The previous examples are all wesigned to il.ustrate various pro-
perties of the algorithm. The algorithm has not yet been applied

to an industrial process, however, the following example is a sum-
mary of a feasibility study which indicates the practicality of the

algorithm for application to basis weight control of a paper machine.

Example 7.4

The applicability of minimum variance strategies to basis weight
control on a paper machine was demonstrated in [10]. In this appli-
cation the control loop is a feedback from a wet basis weight signal
to thick stock flow. The models used in [10] were obtained by esti-
mating the parameters of (2.1) using the maximum likelihood method.
In one particular case the following model was obtained.

-1 -2
+
blq b2q

y(t) = 5 u(t-2) + v(t) (7.9)

-1
1+ a4 + 2,9

where the output y is basis weight in g/m? and the control variable
is thick stock flow in normalized units. The disturbance {Wt)} was

a drifting stochastic process which could be modelled as

1+ clq—l + c2q_
v(t) =x T

— = ~ e(t) (7.10)
1+ a,q t a)q YA - g

)
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where {e(t)}is white noise. The sampling interval was 36 seconds
and the numerical values of the parameters obtained through iden-

tification were as follows

a; = -1.283
a, = 0.495

bl = 4,614

b2 = -4.050
¢ = -1.438
c, = 0.550

A= 0.382

To investigate the feasibility of the self-tuning algorithm for bagis
weight control the algorithm was simulated using the model (7.9) where
the disturbance v was the actual realization obtained from measure-
ments on the paper machine. The parameters of the regulator were chosen
as &= 3, m =4, BO = 5 and the initial estimates were set to zero. The

algorithm is thus tuning 7 parameters.

The results of the simulation are shown in Fig. 7.6 to 7.8. Fig. 7.6
compares the output obtained when using the self-tuning algorithm with
the result obtained when using the minimum variance regulator computed
from the process model (7.9) with the disturbance given by (7.10). In
the worst case the self-tuning regualtor gives a control error which
is about 1 g/m? greater than the minimum variance regulator. This

happens only at two sampling intervals.

After about 100 sampling intervals (1 hour) the output of the systems

is very close.

Fig. 7.7 compares the accumulated losses

L
yAt) =2 y )

n=0
obtained with the minimum variance regulator and the self-tuning re-
gulator. Notice that in the time interval (21, 24) minutes there is a
rapid increase in the accumulated loss of the self-tuning regulator
of about 17 units. The largest control error during this interval is

2.7 g/n? while the largest error of the minimum variance regulator is

2 ) )
1 g/m" . The accumilated losses over the last hour is 60 units for the




self-tuning regulator and 59 units for the minimum variance regulator.

The control signal generated by the self-tuning algorithm is compared
with that of the minimum variance regulator in Fig. 7.8. There are
differences in the generated control signals. The minimum variance
regulator generates an output which has more rapid variations than

the output of the self-tuning regulator.

The parameter estimates obtained have not converged in 100 sampling
intervals. In gpite of this the regulator obtained will have good
performance as has just been illustrated. The example thus indicates
that the self-tuning algorithm could be feasible as a basis weight
regulator. 0

26
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8. PRACTICAL ASPECTS

The self-tuning algorithm has not yet been tried on a real industrial
process. It has, however, been extensively studied in simulation and
it has also been tried on a laboratory process. In this section a few
practical aspects on the algorithm will be given.

A Priori Knowledge

The only parameters that must be known & priori are k, &, m and B,

If the algorithm converges it is easy to find out if the a priori
guesses of the parameterg are correct simply by analyzing the sample
covariance of the output. Compare Example 7.3. The parameter Bo should
be an estimate of the corresponding parameter of the system to be
controlled. The choice of 8, is not critical as was shown in the
Example 6.1 and 7.1. In the special cases studied in the examples.an
under-estimate led to a diverging algorithm while an over-estimate

was safe.

Improved Identifiers and Control Algorithms

The control algorithm can be modified to take into account that the
estimates are inaccurate. This is discussed in [2],|7], where it is
shown that a modification of (5.2) will give strategies that are op-
timal for the criterion (2.7) for each t. If initial estimates are
poor it could also be advisable to select an initiel input which is
designed to give good estimates and not use the feedback during the
first steps. It has been verified by simulation that the region of

convergence can be improved by introducing a bound on u.

Drifting Parameters

In the case where the parameters are drifting the least squares identi-
fier can be replaced by an identifier which discounts old data or by

a Kalman filter. See [11],[12]. Simulations have shown that the al-
gorithm can be used to control systems with slowly drifting parameters.
It has been demenstrated in [7] that the algorithm will have diffi-
culties if there are rapid parametervariations, in particular if the
gain is permitted to change sign. An example in[7] shows that the al-
gorithm in such a case may exhibit a very strange behaviour. The reason

is that the self-tuning regulator is not a dua® control strategy.




28

Nonminimum Phase Systems

Difficulties have been found by a straightforward application of the
algorithm to nonminimum phase systems, i.e. systems where the poly-
nomial B has zeros outside the unit circle. Such a case will arise

when the system to be controlled actually is nonminimum phase. Under-

estimating k can also lead to a nonminimum phase model.

Several ways to get around the difficulty have been found. By using
a model with B(z) =g o it has in many cases been possible to obtain

stable algorithms at the sacrifice of wariance.

It is well-known that the minimum variance regulators are extremely

sensitive to parameter variations for nonminimum phase systems [1].

This is usually overcome by using suboptimal strategies which are less
sensitive [1]. The same idea can be used for the self-tuning algorithms
as well. The drawback is that the computations increase because the
polynomials F and G of an identity simular to (2.6) must be determined
at each step of the iteration. An alternative is to solve a Riccati-

equation at each step.

Implementation on Process Computers

Tt is our belief that the self-tuning algorithm can be conventiently
used in process control application. There are many possibilities. The
algorithm can be used as a tool to tune regulators when they are in-
stalled. It can be installed among the systems programs and cycled
through different control loops repetitively to ensure that the regu-
lators are always properly tuned. For critical loops where the para-
meters are changing it is also possible to use a dedicated version

which allows slowly drifting parameters.
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A general self-tuning algorithm requires about 40 FORTRAN statements.
When compiled using the standard PDP 15/30 FORTRAN compiler the code
consists of 450 memory locations. The number of memory locations re-
quired to store the data is (2—1+m)2 + 3(2-1+m) + 2k + 4. Execution
times on a typical process computer (PDP 15) without floating point
hardware are given in the table below. The major part of the computing

is to update the least squares estimate..

Numper of parameters Execution time ms
1 5

3 16

5 34

8 69

|
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Fig 6.1 Principal shape of g(x) when 0<b <1l
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Fig 6.2 Principal shape of gilx) when 1<b<?2.
(a=-0.5,b=1.5 and ¢=0.7)
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Fig 7.1 Parameter estimate a obtained wheﬂ‘the self tuning algorithm
based on the model (7.3) is applied: to the system given by (7.1).:
The minimum variance regulator corresponds to a = -0.4 indi-
cated py the dashed line
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Fig 7.2 Expected variance of the output of Example 7.1 when the control
law obtained at time t is kept constant for all future times.

Notice that a(26) cofre3ponds to an unstable system.
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Fig 7.3 Parameter estimates‘xl} Wz, Pl.and PQ obtained when
the self tuning algorithm based on (7.6) is applied
to the system given by (7.4). The dashed lines cor-

respond to the minimum variance strategy parameters.

1t Ty2
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| |
0 10000 ; 20000 t
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i
Fig 7.4 Actual loss V(t) =,Z:y2(s) for a simulation of the
system (7.4) with the self tuning algorithm. The

dashed line shows expected loss for minimum variance

control.
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Sample covariances Output

Or-
L 45/ L 107 ‘50 25 50 75
Fig 7.5 Sample covariances %y(T) for the output of the

system (7.8) when controlling with self tuning
regulators of different order. The dashed lines
show the 5% confidence intervals for 7 #0. Small

sections of the outputs are also shown.
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g/m?/  ERROR IN WET BASIS WEIGHT

—_—

Selftuning regulator

Minimum variance regulator

| | | ~
0 30 60 90 t min

Fig 7.6 Error in simulated wet basis weight for the self
tuning and the minimum variance regulator based

on maximum likelihood identification

f‘\ Iy? Selftuning regulator
Minimum variance regulator
100
0 . 1 1 l >

0 30 60 ‘90 t min

Fig 7.7 Accumulated loss for Example 7.4

A THICK STOCK FLOW ————  Selftuning regulatnr
Minimum variance regulator
0
N
-y
. | ] 1 >
0 30 60 a0 t min

Fig 7.8 Control signal in normalized units for Example 7.4




e ————— A e

\
Au'lomarica, Vol. 9, pp. 185199, Pergamon Press, 1973. Printed in Greéat Britain.
|

On Self Tuning Regulators®

Sur les Régulateurs Auto-Syntonisants

Uber selbsteinstellende Regler

O camoHacTpanBaroOMuXCs Peryasaropax

K. J. ASTROM and B. WITTENMARK

Control laws obtained by combining a least squares parameter estimator and a minimum
variance strategy based on the estimated parameters have asymptotically optimal per-

Jormance.

Summary—The problem of controlling a system with con-
stant but unknown parameters is considered. The analysis
is restricted to discrete time single-input single-output
systems. An algorithm obtained by combining a least
squares estimator with a minimum variance regulator com-
puted from the estimated model is analysed. The main
results are two thcorems which characterize the closed loop
system obtained under the assumption that the parameter
estimates converge. The first theorem states that certain
covariances of the output and certain cross-covariances of
the control variable and the output will vanish under weak
assumptions on the system to be controlled. In the second
thecorem it is assumed that the system to be controlled is a
general linear stochastic nth order system. It is shown that
if the parameter estimates converge the control law obtained
is in fact the minimum variance control law that could be
computed if the parameters of the system were known.
This is somewhat surprising since the least squares estimate
is biased. Some practical implications of the results are
discussed. In particular it is shown that the algorithm can
be feasibly implemented on a small process computer.

1. INTRODUCTION

IT HAs been shown in several cases that linear
stochastic control theory can be used successfully
to design regulators for the steady state control of
industrial processes. See Ref. [1]. To use this
theory it is necessary to have mathematical models
of the system dynamics and of the disturbances. In
practice it is thus necessary to go through the steps
of plant experiments, parameter estimation, com-
putation of control strategies and implementation.
This procedure can be quite time consuming in
particular if the computations are made off-line. It
might also be necessary to repeat the procedure if
the system dynamics or the characteristics of the
disturbances are changing as is often the case for
industrial processes.

* Received 2 March 1972; revised 12 September 1972.
The original version of this paper was presented at the Sth
IFAC Congress which was held in Paris, France during
June 1972. 1t was recommended for publication in revised
form by Associate Editor A. Sage.
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From a practical point of view it is thus meaning-
ful to consider the control of systems with constant
but unknown parameters. Optimal control prob-
lems for such systems can be formulated and solved
using non-linear stochastic control theory. The
solutions obtained are extremely impractical since
even very simple problems will require computations
far exceeding the capabilities of todays computers.
For systems with constant but unknown para-
meters it thus seems reasonable to look for strate-
gies that will converge to the optimal strategies that
could be derived if the system characteristics were
known. Such algorithms will be called self-tuning
or self-adjusting strategies. The word adaptive is
not used since adaptive, although never rigorously
defined, usually implies that the characteristics of
the process are changing. The problem to be dis-
cussed is thus simpler than the adaptive problem in
the sense that the system to be controlled is
assumed to have constant parameters.

The purpose of the paper is to analyse one class
of self-adjusting regulators. The analysis is re-
stricted to single-input single-output systems. It is
assumed that the disturbances can be characterized
as filtered white noise. The criterion considered is
the minimization of the variance of the output. The
algorithms analysed are those obtained on the basis
of a separation of identification and control. To
obtain a simple algorithm the identification is
simply a least squares parameter estimator,

The main result is a characterization of the closed
loop systems obtained when the algorithm is applied
to a general class of systems. It is shown in
Theorem 5.1 that if the parameter estimates con-
verge the closed loop loop system obtained will be
such that certain covariances of the inputs and the
outputs of the closed loop system are zero. This is
shown under weak assumptions on the system to be

e —
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controlled. Moreover if it is assumed that the
system to be controlled is a sampled finite dimen-
sional linear stochastic system with a time delay in
the control signal it is demonstrated in Theorem 5.2
that, if the parameter estimates converge, the corres-
ponding regulator will actually converge to the
minimum variance regulator. This is true, in spite
of the fact that the least squares estimate is biased.

The major assumptions are that the system is
minimum phase, that the time delay is known and
that a bound can be given to the order of the
system. The first two assumptions can be removed
at the price of a more complicated algorithm.

The paper is organized as follows: sections 2 and
3 provide background and a motivation. The al-
gorithm is given in section 4. Control strategies for
systems with known parameters are given in section
2. Least squares parameter estimation is briefly
reviewed in section 3. Some aspects on the notion
of identifiability is also given in section 3. The
algorithm presented in section 4 is obtained simply
by fitting the parameters of a least squares structure
as was described in section 3 and computing the
corresponding minimum variance control strategy
as was described in section 2. The possible diffi-
culty with non-identifiability due to the feedback is
avoided by fixing one parameter,

The main result is given as two theorems in
section 5. We have not yet been able to prove that
the algorithm converges in general. In section 6 it
is, however, shown that a modified version of the
algorithm converges for a first order system. The
convergence properties of the algorithm are further
illustrated by the examples in section 7. Some
practical aspects of the algorithm as well as some
problems which remain to be solved are given in
section 8. In particular it is shown that the al-
gorithm is easily implemented on a minicomputer.

2. MINIMUM VARIANCE CONTROL

This section gives the minimum variance strategy
for a system with known parameters. Consider a
system described by

YN+ay@—D+ ... +a,yt—nm)=bu(it—k—1)
+ ... b u(t—k—n)+ Ale(t)+ce(t—1)
+ ... +cpe(t—n),

=0, +1, +2,... (2.1)

where u is the control variable, y is the output and

{e(n), 1=0, +1, 42, ... } is a sequence of indepen-

dent normal (0, 1) random variables. If the for-
ward shift operator ¢, defined by

gy()=y(t+1)

and the polynomials

A@Z)=z"+a;z" '+ ... +a,

B(z)=byz" '+ ... +b,, b +0
C@)=z"+c,z" '+ ... +¢,

are introduced, the equation (2.1) describing the
system can be written in the following compact
form:

Al@y()=B(qu(t—k)+ 1 C(q)e(t). 2.2)
It is well known that (2.1) or (2.2) is a canonical
representation of a sampled finite dimensional
single-input single-output dynamical system with
time delays in the output and disturbances that are
gaussian random processes with rational spectral
densities.

The model (2.1) also admits a time delay 7 in the
system input which need not be a multiple of the
sampling interval. The number k corresponds to
the integral part of t/h, where h is the sampling
interval.

Let the criterion be

Vi=Ey«1) 2.3)
or
1 N
V,=E_Y y¥1). 2.4
NT
The optimal strategy is then
K
q°G(q)
u()=——————y(f) (2:5)
B(q)F(q)
where F and G are polynomials
F@)=z"+fiz""'+ ... +4 (2.6)
G@)=goz" ' 4+9:2" 4+ ... +g,-r  (2T)
determined from the identity
4*C(q)=A(@)F(9) +G(q). (2.8)

Proofs of these statements are given in [2]. The
following conditions are necessary:

—The polynomial B has all zeroes inside the unit
circle. Thus the system (2.1) is minimum
phase.

—The polynomial C has all zeroes inside the unit
circle.

These conditions are discussed at length in [1].

" Let it suffice to mention here that if the system (2.1)
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is non-minimum phase the control strategy (2.5)
will still be a minimum variance strategy. This
strategy will, however, be so sensitive that the
slightest variation in the parameters will create an
unstable closed loop system. Suboptimal strategies
which are less sensitive to parameter variations are
also well known. This paper will, however, be
limited to minimum phase systems,

3. PARAMETER ESTIMATION

For a system described by (2.1) it is thus straight
forward to obtain the minimum variance regulator,
if the parameters of the model are known. If the
parameters are not known it might be a possibility
to try to determine the parameters of (2.1) using
some identification scheme and then use the control
law (2.5) with the true parameters substituted by
their estimates. A suitable identification algorithm
is thé maximum likelihood method which will give
unbiased estimates of the cocflicients of the 4, B
and C polynomials. The maximum likelihood esti-
mates of the parameters of (2.1) are, however,
strongly non-linear functions of the inputs and the
outputs. Since finite dimensional sufficient statistics
are not known it is not possible to compute the
maximum likelihood estimate of the parameters of
(2.1) recursively as'the process develops. Simpler
identification schemes are therefore considered.

The least squares structure

The problem of determining the parameters of
the model (2.1) is significantly simplified if it is
assumed that ¢;=0 for i=1, 2, ..., n. The model
is then given by

A@y()=B(Qu(t—k)+ Ae(t+n). (3.1)

The parameters of this model can be determined
simply by the least squares method [3]. The model
(3.1) is therefore referred to as a least squares model.

The least squares estimate has several attractive
propertics. It can easily be evaluated recursively.
The estimator can be modified to take different
model structures, e.g. known parameters, into
account. The least squares estimates will converge
10 the true parameters e.g. under the following con-
ditions.

—The output {y(¢)} is actually generated from a
model (3.1).

—The residuals {e(r)} are independent.

—The input is persistently exciting, see Ref. [3].

—The input sequence {u(f)} is independent of the
disturbance sequence {e(¢)}.

These conditions are important. If the residuals
are correlated the least squares estimate will be
biased. If the input sequence {u(f)} depends on

{e(t)} it may not be possible to determine all para-
meters.

When the inputs are generated by a feedback they
are correlated with the disturbances and it is not
obvious that all the parameters of the model can be
determined. Neither is it obvious that the input
generated in this way is persistently exciting of suffi-
ciently high order. A simple example illustrates the
point,

Example 3.1
Consider the first order model

YO +ay(t—1)=bu(t—1)+e(r). 3.2)
Assume that a linear regulator with constant gain

u()=ay(r) (3.3)

is used. If the parameters @ and b are known the
gain a=a/b would obviously correspond to a mini-
mum variance regulator. If the parameters are not
known the gain «=4a/b where 4 and b are the least
squares estimates of @ and b could be attempted.
The least squares parameter estimates are deter-
mined in such a way that the loss function

N
V(a, b)= 21: v+ D) +ay)—-bu()]* (3.4)

is minimal with respect to @ and b. If the feedback
control (3.3) is used the inputs and outputs are
linearly related through

u(f)—oy(n)=0, 3.5)

Multiply (3.5) by —y and add to the expression
within brackets in (3.4).
Hence

N
V(a, b)= le e+ D+ (a+ap)y(®)— (b +y)u()]?

=V(a+ay, b+y).

The loss function will thus have the same value for
all estimates ¢ and b on a linear manifold. Thus
the two parameters @ and b of the model (3.2) are
not identifiable when the feedback (3.3) is used.

The simple example shows that it is in general not
possible to estimate all the parameters of the model
(3.1) when the input is generated by a feedback.
Notice, however, that all parameters can be esti-
mated if the control law is changed. In the par-
ticular example it is possible to estimate both
parameters of the model, if the control law (3.3)
is replaced by

u(f)=ay(t—1)
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or
u(®=o, y(O)+ay(t—1)

or if a time varying gain is used.

4. THE ALGORITHM

In order to control a system with constant but
unknown parameters the following procedure
could be attempted. At each step of time determine
the parameters of the system (3.1) using least
squares estimation based on all previously observed
inputs and outputs as was described in section 3.
Then determine a control law by calculating the
minimum variance strategy for the model obtained.
To compute the control law the identity (2.8) must
be resolved in each step. The problem of computing
the minimum variance regulator is simplified if it is
observed that by using the identity (2.8) the system
(3.1) can be written as

Y+k+D+ay®O+ ... +ay(t—m+1)
=Bolt()+ Pyu(t—1)+ ... +Bu(t—1)]

+e(t+k+1) @.1)

where m=nand /=n+k—1. The coefficients «; and
B; are computed from the parameters g; and b, in
(3.1) using the identity (2.8). The disturbance &(¢)
is a moving average of order k of the driving noise
e(1).

The minimum variance strategy is then simply

u(t)=El-[oz1y(t)+ e +amy(t4m+1)]
(4]
—Bu(—1)— ... —=Bu(t--1). ‘ 4.2

In order to obtain simple computation of the
control strategy it could thus be attempted to use
the model structure (4.1) which also admits least
squares estimation. The trade-off for the simple
calculation of the control law is that &k more para-
meters have to be estimated.

As was shown in Example 3.1 all parameters of
the model (4.1) can not necessarily be determined
from input-output observations if the input is
generated by a feedback (4.2) with constant para-
meters. In order to avoid a possible difficulty it is
therefore assumed that the parameter f, is given.
It will be shown in section 6 that the choice of g,
is not crucial.

Summing up, the algorithm can be described as
follows.

Step 1 parameter estimation
At the sampling interval ¢ determine the para-
meters oy, ... 0y, fy,..., 5 of the model
YO+ay(t—k—1)+ ... +a,y(t—k—m)
=Bolu(t—k—1)+Bu(t—k—2)
+ .o Pult—k—I1—-D)+e() 4.1)

using least squares estimation based on all data
available at time ¢, i.e.

3 (k)
k=0

minimum. The parameter 8, is assumed known.

Step 2 control
At each sampling interval determine the control
variable from

u(t)¥t71[a1y(t)+ oo o yt—m+1)]
/]

~pyu(t—1)— ... —pu(t-10 4.2)

where the parameters o; and B; are those obtained
in Step 1.
The control law (4.2) corresponds to

~-m+1

’ =a1+a2q_l+ .o to,q
€ Bol14+B1g7 "+ ... +ﬁl‘1—l]y(t)
=ql-m+ld(q) . 43

“ag) ¥ “4.3)

Since the least squares estimate can be computed
recursively the algorithm requires only moderate
computations.

It should be emphasized that the algorithm is not
optimal in the sense that it minimizes the criterion
(2.3), or the criterion (2.4). It fails to minimize
(2.3) because it is not taken into account that the
parameter estimates are inaccurate and it fails to
minimize (2.4) because it is not dual in FELDBAUM’s
sense [4]. These matters are discussed in [2]. It will
however, be shown in section 5 that the algorithm
has nice asymptotic properties.

The idea of obtaining algorithms by a combina-
tion of least squares identification and control is
old. An early reference is KALMAN [5]. The par-
ticular algorithm used here is in essence the same as
the one presented by PETERKA [6]. A similar al-
gorithm where the uncertainties of the parameters
are also considered is given in WIESLANDER—
WITTENMARK [7].
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5. MAIN RESULTS

The properties of the algorithm given in the
previous section will now be analysed. We have

Theorem 5.1

Assume that the parameter estimates o (?),
i=1,...,m, B(), i=1,...1 converge as (-
and that the closed loop system is such that the
output is ergodic (in the second moments). Then
the closed loop system has the properties

Ey(t+y(t)=r/(t1)=0 t=k+1,...k+m (5.1)

Ey(t4+u®)=r,(0)=0 t=k+1,..., k+I+1.
(5.2)

Proof

The least squares estimates of the parameters

Oy Oz «ovy Oy By Bas ..., By is given by the
equations

Assume that the parameters converge. For suffi-
ciently large N, the coeflicients of control law (4.2)
will then converge to constant values. Introduction
of (4.2) into (5.3) gives

Iy(t+k+ Dy(f) =0
Ep(t+k+ Dy(e—1)=0

Ty(e+k+Dy(t—m+1)=0
Zy(+k+ Du(t—1)=0

Zy(t+k+ Du(t—1)=0.
Using the control law (4.2) it also follows that
2y(t+k+ Du()=0.

Under the ergodicity assumption the sums can
furthermore be replaced by mathematical expecta-
tions and the theorem is proven.

where the sums are taken over Ny values. See Ref. [3].

Iy Iyy(-1) Zyy(t—m+1) | —BoZy(tu o =BoZy(u(t—1) )
Zy(Oy(t-1) Zy(t—Dy(t—m+1) ' '

Zy()y(t—m+1) Iyi(t—m+1) —BZy(t—m+Du(t—1). .. =BoZy(t—m+Du(t—1)
= BoZy(t)u(t—1) BETu*(t1—1) e BEEu(t=Du(t-1)
=BoZy(Du(t—-10) . .. Bozu*(t—1)

oy —=Zy(t+ k+1)y(t) + BoZu(t)y(r) i

o, Zy(t+k+1)y(t— 1)+ B Zu(dy(t—1)

o =Zy(t+k+Dy(t—m+ D+ B Zu(y(t—m+1) ¢.3)
B - = BoZy(t+k+ Du(t—1)—BiZu(t)u(t —1)

B BoZy(t-+k+ Du(t—1)— BiZu(tyu(t—1)

el e
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Remark 1

Notice that the assumptions on the system to be
controlled are very weak. In particular it is not
necessary to assume that the system is governed by
an equation like (2.1) or (3.1).

Remark 2

It is sufficient for ergodicity that the system to be
controlled is governed by a difference equation of
finite order, e.g. like (2.1), and that the closed loop
system obtained by introducing the feedback law
into (2.1) gives a stable closed loop system.
Remark 3

The self tuning algorithm can be compared with
a Pl-regulator. If the state variables of a deter-
ministic system with a Pl-regulator converge to
steady state values, the control error must be zero
irrespective of the properties of the system. Analo-
gously theorem 5.1 implies that if the parameter
estimates of the self tuning algorithm converge the
covariances (5.1) and (5.2) are zero.

Remark 4

Theorem 5.1 holds even if the algorithm is modi-
fied in such a way that the parameter estimation
(Step 1) is not done in every step.

If it is assumed that the system to be controlled
is governed by an equation like (2.1) it is possible
to show that the conditions (5.1) and (5.2) in
essence imply that the self tuning regulator will
converge to a minimum variance regulator. We
have
Theorem 5.2

Let the system to be controlled be governed by

- the equation (2.1). Assume that the self tuning

algorithm is used with m=n and /=n+k—1. If
the parameter estimates converge to values such
that the corresponding polynomials & and & have
no common factors, then the corresponding regu-
lator (4.2) will converge to a minimum variance
regulator.

L g ... B 0O
01 8
o ...01 8

oy o, O
0 oy

Proof

Assume that the least squares parameter esti-
mates converge. The regulator is then given by
4.3) i.e.

u(t)=

¢ ) _ 9D
%(q) & 2(q)

where the coefficients of &/ and # are constant.
Since the system to be controlled is governed by
(2.1) the closed loop system becomes

[A(@)B(q) — B(g) () =AC(q) B(g)e(r).  (5.4)

The closed loop system is of order r=n+1/. Intro-
duce the stochastic process {v(¢)} defined by

]
= 7¢(9) e(f). 5.5
= pag-spra " O
Then
y(O)=q""'B(@v(?) (5.6)
and
u(t)=q~"* Ll (g)v(1). 6.7

Multiplying (5.6) and (5.7) by y(¢+7) and taking
mathematical expectations gives

ry(r)=ryu(1)+ﬂlryu(t+ l) v +ﬂlryu(1’-+[) (58)
ryu(T)=alryv(T)+a2ryv(t+ 1)
+ ... taury(t+m—1). 5.9

Furthermore it follows from Theorem 5.1, equa-
tions (5.1) and (5.2), that the left member of (5.8)
vanishes for t=k+1, ..., k4+m and that the left
member of (5.9) vanishes fort=k+1,...,k+/+1.
We thus obtain the following equation for r, (7).

Tr - _
0 ry(k+1)
ryk+2)
0
B = i (5.10)
0
0
L Lr,,(k +1+m) 0

Tt TIIVe. 4
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Since the polynomials .« and 4 have no common
factor it follows from an elementary result in the
theory of equations [8, p. 145] that the (/4+m)
x (/+ m)-matrix of the left member of (5.10) is non-
singular,

Hence

ry(t)=0 t=k+1,...,k+l+m. (5.11)
Since v is the output of a dynamical system of
order r=n+/=m+ [/ driven by white noise it follows

from (5.11) and the Yule-Walker equation that
r,(1)=0 =2k+1. (5.12)

The equation (5.8) then implies

ry(7)=0 t=k+1. (5.13)
The output of the closed loop system is thus a

moving average of white noise of order k. Denote
this moving average by

V() =g~ *F(g)e(?) (5.19)

where F is a polynomial of degree k. [t follows
from (5.4) and (5.14) that

q"C=FA—£d.
B

Since ¢*C and FA are polynomials BFs//% must
also be a polynomial.

Hence
q*C=FA+G (5.15)
where
G= B (5.16)
B

is of degree n—1 and F of degree k. A comparison
with (2.8) shows, however, that (5.15) is the identity
which is used to derive the minimum variance
strategy. It thus follows from (2.5) that the mini-
mum variance strategy is given by

k
u))=-1250).

The equation (5.16) then implies that

=0e6_git

e (5.17)

and it has thus been shown that (4.2) is a minimum
variance strategy.

Remark

The conditions m=n and /=n+k—1 mean that
there are precisely the number of parameters in the
model that are required in order to obtain the
correct regulator for the process (2.1). Theorem
5.2 still holds if there are more parameters in the
regulator in the following cases.

(i) Theorem 5.2 still holds if m=n and
IZn+k—1. In this case the order of the system is
r=n-+1and since m=n the equation (5.10) implies
(5.11)-(5.13) and the equation (5.16) is changed to

ql—k—m+ lBFM
7 .

G=-— (5.16")

The rest of the proof remains unchanged.

(i If m=n and I=n+k—1 the theorem will also
hold. The closed loop system is of order r<m+1/
but the equation (5.10) will still imply (5.11) and
(5.16) is changed to (5.16"). The rest of the proof
remains unchanged.

(iii) If m>n and /I>n+k—1 the theorem does
not hold because &/ and 4 must have a common
factor if the parameter estimates converge. It can,
however, be shown that if the algorithm is modified
in such a way that common factors of .« and % are
eliminated before the control signal is computed,
Theorem 5.2 will still hold for the modified al-
gorithm.

6. CONVERGENCE OF THE ALGORITHM

It would be highly desirable to have general
results giving conditions for convergence of the
parameter estimates. Since the system (2.1) with
the regulator (4.2) and the least squares estimator
is described by a set of nonlinear time dependent
stochastic difference equations the problem of a
general convergence proof is difficult. So far we
have not been able to obtain a general result. It has,
however, been verified by extensive numerical simu-
lations that the algorithm does in fact converge in
many cases. The numerical simulations as well as
analysis of simple examples have given insight into
some of the conditions that must be imposed in
order to ensure that the algorithm will converge.

A significant simplification of the analysis is
obtained if the algorithm is modified in such a way
that the parameter estimates are kept constant over
Jong periods of time. To be specific a simple
example is considered.

Example 6.1
Let the system be described by

YO +ay(t—1)=bu(t—1)+e()+ce(t—1) |c|<]1.
(6.1)

T
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Assume that the control law

u(t) =, () (6.2)

is used in the time interval t,<¢<t,,, where the
parameter o, is determined by fitting the least
squares model

Y+ D+oay()=u(t)+e(t+1) 6.3)

to the data {u(?), y(1), t=t,_q, ..., t,—1)}.
The least squares estimate is given by

th-2

2 YO+ D —u())]

0 = — =it th-2
Y Y

t=tn-1

h-2
Y Y+
=gy Al (6.4)

fn-2

Y Y@

t=1ip-1

where the last equality follows from (6.2). Assume
that ¢,—¢,_,— o0 and that

la—ba,_|<1 (6.5

which means that the closed loop system used
during the time interval ¢,_  <¢<t, is stable then

—o,_ DD
0 =ty - 0) 6.6)

where r (1) is the covariance function of the
stochastic process {y(¢)} defined by

YO +(a—ba,_)y(t—1)=e(t)+ce(t—1). (6.7)

Straightforward algebraic manipulations now
give

_(c—a+ba,_,)(1—ac+bca,

n—l)
. (6.8
1+c¢*—2ac+2bea,_, 68)

o,=a,

The problem is thus reduced to the analysis of the
nonlinear differerence equation given by (6.8).
Introduce

a—c
Xp =0 — b (6.9)
the equation (6.8) then becomes
bZex?
Xpr1=9x)=1-b)x,+ —>""___, (6.10
+1=g(x)=( ' ) 1—c?+ 2bex, (6.10)

The point x=0 is a fixed point of the mapping g
which corresponds to the optimal value of gain of
the feedback loop, i.e. a=(a—c)/b. The problem is
thus to determine if this fixed point is stable. Since
the closed loop system is assumed to be stable it is
sufficient to consider

—_—<x< (6.11)

Three cases have to be investigated

1. ¢=0
2. ¢>0o0rc<0,0<bg 1
3. ¢c>0o0rec<0, 1<b<2.

For all cases g(x)~(1—b)x if x is small. This
implies that solutions close to 0 converge to x=0
if0<b<2.

Case 1
The equation (6.10) reduces to

x,,.,. 1 =(1 _b)x"

and the fixed point x=0 is stable if |1 —5|<]1 i.e.
0<b<2.

Case 2

The pincipal behavior of g(x) when ¢>0 and
0<b<g1isshownin Fig. 1. Tt is straightforward to
verify that all initial values in the stability region
(c—1)/b<x<(c+1)/b will give solutions which
converge to zero.

1

e

X0

-1
-1 : 0 1
Fi16. 1. Graph of the function ¢ when 0<b<1. The

figure is drawn with the parameter values a=-—0-5,
b=0-5 and ¢=0-7.

Case 3 -

The function g(x) for this case is shown in Fig. 2.
It is not obvious that x will converge to zero,
because there might exist a “limit cycle”.
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X0

-1

-1 0 1

Fi1a. 2. Graph of the function ¢ when 1<b<2. The
figure is drawn with the parameter values a=—0-5,
b=1-5 and ¢=0-7.

If ¢>0 and starting with x,>0 then if g(x,)<0
it can be shown that after two iterations the new
value x, will satisfy 0 <x,<x, i.e.

0<g(g(x)<x if x>0, g(x)<0.

If (¢ —1)/b < x <0 then g(x) will be positive and can
be taken as a new initial value for which the con-
dition above will be satisfied. If ¢<O then it can
be shown that g(g(x)) > x if x<0 and g(x)>0.

Summary
From the analysis above we can conclude that
x=0is a stable fixed point if

—-l<cxl

and

0<b<2. (6.12)

The example shows that under the condition (6.12)
the version of the self-tuning algorithm where the
parameters of the control law are kept constant
over long intervals will in fact converge. In the
analysis above ,=1 was chosen. If f,#1 then the
condition (6.12) is replaced by

0<b/B,<2 (6.12)

or

0.5b<p,<00. (6.13)

The condition (6.13) implies that it is necessary to
pick the parameter f§, in a correct manner. The
algorithm will always converge if B, is greater than
b. Under-estimation may be serious and the value
B,<0-5b gives an unstable algorithm.

The analysis presented in the simple example can
be extended to give stability conditions for the
modified algorithm in more complex cases. The
analysis required is tedious.

7. SIMULATIONS

The results in section 5 are given under the
assumption that the least squares estimator really
converges, but yet we have not been able to give
general conditions for convergence. But simulation
of numerous examples have shown that the al-
gorithm has nice convergence properties.

This section presents a number of simulated
examples which illustrate the properties of the self-
tuning algorithm.

Example 7.1
Let the system be

YO +ay(t—D=bu(t—1)+e(@®)+ce(t—1) (7.1)

with a=—0.5, b=3 and ¢=0-7. The minimum
variance regulator for the system is

u(t)=£‘_;_cy(t)= —04y(f). (7.2)

A regulator with this structure can be obtained
by using the self-tuning algorithm based on the
model

Y+ D+oay()=Fu(t)+e(t+1). (7.3)

Figure 3 shows for the case f,=1 how the para-
meter estimate converges to the value a=—0-4
which corresponds to the minimum variance
strategy (7.2).

In Figure 4 is shown the expected variance of
the output if the current value of « should be used
for all future steps of time. Notice that the algor-
ithm has practically adjusted over 50 steps.

0.0

=0.5~

Poramaeter estimate

Time

FiG. 3. Parameter estimate a(¢) obtained when the self

tuning algorithm based on the model (7.3) is applied to

the system given by (7.1). The minimum variance regu-

lator corresponds to a=—0-4 and is indicated by the
dashed line.
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FiG. 4. Expected variance of the output of Example 7.1

if the control law obtained at time r is kept constant for

all future times. Notice that the estimate at time r==26
would give an unstable system.

The analysis of Example 6.1 shows that, since
b>2, and f,=1 the modified self-tuning algorithm
obtained when the parameters of the controller are
kept constant over long intervals is unstable. The
simulation in Example 7.1 shows that at least in the
special case a conscrvative estimate of the con-
vergence region is obtained by analysing the modi-
fied algorithm. If the value of b is increased further
it has been shown that the algorithm is unstable.
Unstable realizations have been found for b=S5.
In such cases it is of course easy to obtain a stable
algorithm by increasing f8,. This requires, however,
a knowledge of the magnitude of b.

The system of Example 7.1 is very simple. For
instance, if no control is used the variance will still
be reasonably small. The next example is more
realistic in this aspect.

Example 7.2
Consider the system

YO—-19p(t—1)+0:9p(t-2)=u(t—2)
+u(t—3)+e(£)—0-5¢e(t—1). (1.4)
If no control is used the variance of the output is
infinite. Also notice that B(z)=z—1. The assump-
tion that B has all zeroes inside the unit circle is
thus violated. The minimum variance strategy for
the system is
u(@)=—1-76p(H+1:26y(t —1)—0-4u(t—1)
+1-4u(t—2). (1.5

A regulator with this structure is obtained by
using the self-tuning algorithm with the model

Yt+2)+o y(1)+ayy(t—1)
=u(t)+ pu(t— 1+ fou(t—2)+e(t+2). (7.6)

The convergence of the parameters is shown in
Fig. 5. Figure 6 showsthe accumulated losses when

Parameter estimates

0 200 400
Time

F1G. 5. Parameter estimates ag, a, f1 and £, obtained

when the self tuning algorithm based on (7.6) is applied

to the system given by (7.4). The thin lines indicate the

parameter values of the minimum variance strategy.

1500

g
1

Accumvulated loss

o

Time

Fi6. 6. Accumulated loss
I
Y Y
s=1

for a simulation of the system (7.4) when using the self
tuning algorithm (thick line) and when using the optimal
minimum variance regulator (7.5) (thin line).

using the self-tuning algorithm and when using the
optimal minimum variance regulator (7.5).

In both examples above, the models in the self-
tuning algorithm have had enough parameters so it
could converge to the optimal minimum variance
regulator. The next example shows what happens
when the regulator has not enough parameters.

Example 7.3
Consider the system

Y()—1-60p(t—1)+1-61y(t —2)—0-776y(t—3)
=1.20(t ~ 1) — 0:95u(t — 2) + 0-2u(t — 3) + e(t)
+0-le(t—1)+0-25¢(t—2)+0-87e(r—-3). (1.7)
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The polynomial A(z) has two complex zeroes near
the unit circle (+0-4-£0-9/) and one real zero equal
to 0-8.

If a self-tuning regulator is determined based on
a model with m=3 and /=2 it will converge to the
minimum variance regulator as expected. Figure
7(a) shows a small sample of the output together
with the sample covariance of the output, #,(t).

5 1
M4
c
i
- A - 5 0O - —— i - —
- [}
H Y
3 H
0 -5 T T -1 T
'] 25 S0 7% 0 5 10
Time Time
5= 1
L4
H
1]
H A -
L3 0 E a- e e
3 Ky
H £
E 1 T ol T
0 p=) 50 K [ 5 10
Time Time
-3 1
o
S
[
EANA
W 0 2 0 -y —_—
I AVAVAN
- -
[-8
§ .
8 s T T v T
1] 5 50 7% 0 5 10
Time - Time

F1G. 7. Output of the system (7.7) and sample covariance
of the output #y(t) when controlling with self tuning
regulator is having different number of parameters

(@) m=3 (b) m=2 (¢) m=1
1=2 =1 1=0.
The dashed lines show the 5 per cent confidence intervals
for 0.

If the self-tuning algorithm instead is based on a
model with m=2 and /=1 it is no longer possible
to obtain the minimum variance regulator for the
system since there are not parameters enough in
the self-tuning regulator. Theorem 5.1 indicates,
however, that if the self-tuning regulator con-
verges, its parameters will be such that the co-
Variances r,(1), r,(2), r,.(1) and r;,(2) are all zero.
The simulation shows that the algorithm does in
fact converge with B,=1-0. The covariance func-
lion of the output is shown in Fig. 7(b). It is seen
that the sample covariances £(1) and £,2) are
Within the 5 per cent confidence interval while #,(3)
13 not as would be expected from Theorem 5.1.

If a self-tuning algorithm is designed based on a
model with m=1, /=0 then Theorem 5.1 indicates
that r(1) should vanish. Again the simulation

shows that the algorithm does in fact converge and
that the sample covariance 7 (1) does not differ
significantly from zero. See Fig. 7(c).

When using regulators of lower order than the
optimal minimum variance regulator, the para-
meters in the controller will not converge to values
which for the given structure gives minimum
variance of the output. In Table 1 is shown the
variance of the output for the system above when
using different regulators.

The loss when using the self-adjusting regulator
is obtained through simulations. The optimal regu-
lator is found by minimizing r,(0) with respect to
the parameters in the controller.

TabLE 1

N
Loss 1 X Hy(¢)
Ni=1

m 1 Self-adjusting Optimal
3 2 10 1-0
2 1 2:5 19
1 0 48 34

The previous examples are all designed to illus-
trate various properties of the algorithm. The
following example is a summary of a feasibility
study which indicates the practicality of the al-
gorithm for application to basis weight control of
a paper machine.

Example 7.4

The applicability of minimum variance strategies
to basis weight control on a paper machine was
demonstrated in [9]. In this application the control
loop is a feedback from a wet basis weight signal to
thick stock flow. The models used in [9] were
obtained by estimating the parameters of (2.1) using
the maximum likelihood method. In one particular
case the following model was obtained.

blq_l'l‘bzq_z
D=—21 27 L u(t—2)+u(t 7.8
) TFaq " azq_z I=2+u(®) (7.8)

where the output y is basis weight in g/m? and the
control variable is thick stock flow in g/m2. The
disturbance {v(s)} was a drifting stochastic process
which could be modelled as

A=A 14+c,g  +epq™?
(1+a,q7 " +a,q7*)(1~¢q
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where {e(r)} is white noise. The sampling interval
was 36 sec and the numerical values of the para-
meters obtained through identification were as
follows

a,=—1-283
a,=0-495
by =2.307
by=—2-025
c;=—1:438
¢,=0:550
2=0-382.

To investigate the feasability of the self-tuning
algorithm for basis weight control, the algorithm
was simulated using the model (7.8) where the
disturbance v was the actual realization obtained
from measurements on the paper machine. The
parameters of the regulator were chosen as k=1,
I=3, m=4 and p,=2-5 and the initial estimates
were set to zero. The algorithm is thus tuning 7
parameters.

The results of the simulation are shown in Figs.
8-10. Figure 8 compares the output obtained when
using the self-tuning algorithm with the result
obtained when using the minimum variance regu-
lator computed from the process model (7.8) with
the disturbance given by (7.9). The reference value
was 70 g/m?. In the worst case the self-tuning
regulator gives a control error which is about
1 g/m? greater than the minimum variance regu-
lator. This happens only at two sampling intervals.

After about 75 sampling intervals (45 min) the
output of the system is very close to the output
obtained with the minimum variance regulator.

75

~
o
1

Wet bosis welght [g[mz)

[+]
v

1 T
30 60 90

Time [min]

FiG. 8. Wet basis weight when using the self tuning

regulator (thick line) and when using the minimum

variance regulator based on maximum likelihood identi-

fication (thin line). The reference value for the con-
troller was 70g/m2.
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FiG. 9. Accumulated loss for Example 7.4 when using
the self tuning regulator (thick line) and when using the
minimum variance regulator (thin line).
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Fig. 10. The control signal in g/m2 for Example 7.4
when using the self tuning regulator (thick line) and
when using the minimum variance regulator (thin line).

Figure 9 compares the accumulated losses
1
V=Y, y*(n)
n=0 .

obtained with the minimum variance regulator and
the self-tuning regulator. Notice that in the time
interval (21, 24) minutes there is a rapid increase in
the accumulated loss of the self-tuning regulator of
about 17 units. The largest control error during
this interval is 2-7 g/m? while the largest error of
the minimum variance regulator is 1 g/m%. The
accumulated losses over the last hour is 60 units for
the self-tuning regulator and S9 units for the mini-
mum variance regulator.

The control signal generated by the self-tuning
algorithm is compared with that of the minimum
variance regulator in Fig. 10. There are differences
in the generated control signals. The minimum
variance regulator generates an output which has
more rapid variations than the output of the self-
tuning regulator.

The parameter estimates obtained have not con-
verged in 100 sampling intervals. In spite of this
the regulator obtained will have good performance
as has just been illustrated. The example thus indi-
cates that the self-tuning algorithm could be feasible
as a basis weight regulator.
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8. PRACTICAL ASPECTS

A few practical aspects on the algorithm given in
section 4 are presented in this section which also
covers some possible extensions of the results

A priori knowledge

The only parameters that must be known & priori
are k, I, m and B,. If the algorithm converges it is
easy to find out if the & priori guesses of the para-
meters are correct simply by analyzing the sample
covariance of the output. Compare Example 7.3.
The parameter 8, should be an estimate of the
corresponding parameter of the system to be con-
trolled. The choice of 8, is not critical as was
shown in the Examples 6.1 and 7.1. In the special
cases studied in the examples an under-estimate led
to a diverging algorithm while an over-estimate was
safe.

Implementation on process computers

It is our belief that the self-tuning algorithm can
be conveniently used in process control applications.
There are many possibilities. The algorithm can be
used as a tool to tune regulators when they are in-
stalled. It can be installed among the systems pro-
grams and cycled through different control loops
repetitively to ensure that the regulators are always
properly tuned. For critical loops where the para-
meters are changing it is also possible to use a dedi-
cated version which allows slowly drifting
parameters.

A general self-tuning algorithm requires about 40
FORTRAN statements. When compiled using the
standard PDP 15/30 FORTRAN compiler the code
consists of 450 memory locations. The number of
memory locations required to store the data is
(/I=14+m)*+3(/—14+m)+2k+4. Execution times
on a typical process computer (PDP 15) without
floating point hardware are given in the table below.
The major part of the computing is to update the
least squares estimate.

Number of parameters Execution time ms

I4+m
1 5
3 16
5 34
8 69

Improved convergence rates

The results of this paper only shows that if the
parameters converge the regulator obtained will
tend to a minimum variance regulator. Nothing is
said about convergence rates, which of course is of
great interest from practical as well as theoretical
points of view. There are in fact many algorithms

that have the correct asymptotic properties. Apart
from the algorithm given in section 4 we have the
algorithm which minimizes (2.4). Butthatalgorithm
is impossible to use due to the computational re-
quirements. It is of interest to investigate if other
possible algorithms have better convergence rates
than the algorithm of section 4. No complete
answer to this problem is yet known. A few possi-
bilities will be indicated. It could be attempted to
take into account that the parameter estimates are
uncertain. See Refs. [2, 7 and 10]. The least squares
identifier can be improved upon by introducing
exponential weighting of past data. This has in
some cases shown to be advantageous in simula-
tions. Algorithms of this type have in simulations
been shown to handle slowly drifting parameters.

Another possibility is to assume that the para-
meters are Wiener processes, which also can be
incorporated fairly easily [2, 7]. It has been verified
by simulation that the region of convergence can be
improved by introducing a bound on the control
signal.

Feed forward

In many industrial applications the control can
be improved considerable if feed forward is used.
The self tuning regulators in this paper can include

feed forward control by changing the process model
4. to

yt+k+D)+a @O+ ... +oyt—m+1)
=Bolu(?)+Bru(t—1)+ ... +Bu(t—Dl+y,5(t)

+ .oy s—p+1D+e(t+k+1) ®&.1)

where s(¢) is a known disturbance.
The parameters «;, f§; and y; can be identified as
before and the control law (4.2) will be changed to

u(t)=ﬁl[a,y(t)+ cos Fay(t—m+1)—y,s(1)
0

— oo =78t =p+ )] -Bu(t—1)
— oo =But—1). 82

Nonminium phase systems

Difficulties have been found by a straightforward
application of the algorithm to nonminimum phase
systems, i.e. systems where the polynomial B has
zeroes outside the unit circle.

Several ways to get around the difficulty have
been found. By using a model with B(z)=$, it has
in many cases been possible to obtain stable al-
gorithms at the sacrifice of variance.
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It is well-known that the minimum variance regu-
lators are extremely sensitive to parameter varia-
tions for nonminimum phase systems [1]. This is
usually overcome by using suboptimal strategies
which are less sensitive [1]. The same idea can be
used for the self-tuning algorithms as well. The
drawback is that the computations increase because
the polynomials F and G of an identity similar to
(2.8) must be determined at each step of the itera-
tion. An alternative is to solve a Riccati-equation
at each step. '

Multivariable and nonlinear systems

It is possible to construct algorithms that are
similar to the one described in section 4 for multi-
variable and nonlinear systems as long as a model
structure which is linear in the parameters [3, p. 131]
is chosen. For multivariable systems the structure
given in equation (3.2) of Ref. [3] can thus be
attempted. Analyses of the properties of the
algorithm obtained when applied to a multivariable
or a nonlinear system are not yet done.

9. CONCLUSIONS

The paper has been concerned with control of
systems with constant but unknown parameters.
The analysis has been limited to single-input single-
output systems with disturbances in terms of filtered
white noise. A control algorithm based on least
squares parameter estimation and a minimum
variance regulator computed from the estimated
parameters has been analysed. Assuming that the
parameter estimates converge the closed loop
system has been analysed. A characterization of
the closed loop system has been given under weak
assumption on the system to be controlled. Under
stronger assumptions on the system to be controlled
it has been shown that the regulator obtained will
actually converge to the minimum variance regu-
lator if the estimates converge.

Since the closed loop system is characterized as a
nonlinear stochastic system it is very difficult to
give general conditions that guarantee that the
estimates converge. The convergence has only been
treated for simple examples and under further
assumptions as in section 6. But simulations of
numerous examples indicate that the algorithm has
nice convergence properties.

The simplicity of the algrorithm in combination
with its asymptotic properties indicate that it can
be useful for industrial process control. The feas-
ibility has also been demounstrated by experiments
on real processes in the paper and mining indust-
ries.
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Résumé—On considére le probléme du contrdle d’un systéme
avec paramétres constants mais inconnus. L’analyse se
limite aux systémes discrets a entrée unique et sortie unique.
Un algorithme obtenu en combinant un estimateur a carrés
minimum avec un régulateur 4 variance minimum calculée
du modele estimé, est analysé. Les résultats principaux sont
deux théorémes qui caractérisent le systtme a boucle fermée
obtenu en supposant que les estimations des paramétres
convergent. Le premicr théoréme dit que certaines co-
variances de la sortie et certaines covariances transverses de
la variable de contrdle et de la sortie disparaitront avec des
suppositions faibles du systéme contrdlé. Dans le second
théoréme il est supposé que le systéme & contrdler est un
systéme général linéaire stochastique du néme ordre. 1l est
montré que si les estimations des paramétres convergent, la
loi de contrdle obtenuce est en fait la loi de contrdle de
variance minimale qui pourrait étre calculée si les para-
métres du systéme étaient connus. Ceci est quelque peu
surprenant car Iestimation des carrés minimum est partiale,
On discute certaines des implications pratiques des résultats.
Il est montré en particulier qu’il est possible d’appliquer
T'algorithme & un petit ordinateur.

Zusammenfassung—Betrachtet . wird das Problem der
Steuerung eines Systems mit konstanten, aber unbekannten
Parametern. Die Analyse wird auf Systeme mit Diskretzeit
und einem Eingang bzw. einem Ausgang beschrinkt. Ein
durch Kombination einer Schitzeinrichtung und der
Methode der kleinsten Quadrate mit einer aus dem Schitz-
modell berechneten Regeleinrichtung erhaltener Algorithmus
wird analysiert. Die Hauptergebnisse sind zwei Theoreme,
die unter der Annahme, daBl die Parameterschiitzungen
konvergieren, den erhaltenen geschlossenen Regelkreis
charakterisieren. Das erste Theorem konstatiert, daf3
bestimmte Kovarianzen des Ausganges und bestimmte
Kreuz-Kovarianzen der Steuervariablen und des Ausgangs
unter schwachen Annahmen iiber das zu regelnde System
verschwinden. Im zweiten Theorem wird angenommen, daB
das zu regelnde Systein ein allgemeines lincares stochastisches
System n-ter Ordnung ist. Gezeigt wird, daf3 bei Konvergenz
der Parameterschilzung des erhaltenen Steuergesetzes in der
Tat das Steuergesctz bei minimaler Varianz ist, das berechnet
werden kann, wenn die Parameter des Systems bekannt
waren. Das ist ctwa Uiberraschend, weil die Schitzung nach
den kleinsten Quadraten angesteuert wird. Einige prak-
tische Folgerungen aus den Ergebnissen werden diskutiert.
Speziell wird gezeigt; daB der Algorithmus auf cinem kleinen
ProzeBrechner leicht verwirklicht werden kann.

Peslome—PaccmarpuBaetct  npobieMa  pPeryimpoBaHHs
CHCTEM NIPH MOMOLIH {IOCTOSHHBIX HO HEH3BECTHBIX Mapa-
METpPOB. AHAJ3 OrPaRHYHBACTCS CHCTEMAMH THCKDETHOTO
BPEMEHH C OAHKM BBOIOM H C OJHHM BbIBOAOM. AHAIH3H-
PYETCA alropuT™M, [OJYYEHHBIH NyTeM KOMOMHHDPOBAHMS
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OlleHOK HaHMEHBUIMX KBAJIDATOB C DPEryJHpOBKOH MHHH-
w(a,1b11bIX KOoNeOaHui, BLIMUCICHHBIX U3 PACYETHONH MOMAEITH,
OCHOBHDBIMK  PE3YNBTATAMHU  SIBAAIOTCA [OBE TEODEMBI,
\APAKTEPH3YIOLYE CUCTEMY 3aMKHYTOTO KOHTYpa, I1OJIyYeH-
poro B MNPEANOJNIOXEHUH, YTO OLCHKM NMapamMeTpPOB CXO.-
grcn.,  JlepBasa  Teopema YTBEPXAAET, YTO HEKOTOpas
FODAPHAHTHOCTE  BBIBOJA M HEKOTOpas Iepecekalolas
XOBAPHAHTHOCTE KOHTPOJBHBIX NEPEMEHHBIX BhIBOJA HCYE3-
HyT 0PIt HEOONBUIKX KOTYILEHHSIX B PEryTUPYEMOil CHCTEME,
Bo RTOPOIl TEOPEME MPEANOATACTCS, YTO KOHTPOJIMPpYyeMas
cHcTeMa  SIBJAIETCA  OOLLEH  JIHHEMHOW CTOXACTHYECKOM

cuctemolt mopsaaka n:th. Tlokazano, uTo, €C/IM OueHKH
NMapaMeTPOB CXOJATCS, TO NONYYSHHBIA 3aKOH PeryIHPOBKS
MBJIeTCST (PAKTHYECKM 3aKOHOM PETYIHPOBKH MHHHMATb-
HOro KoJiebaHus, KOTOPOE MOIJIO OBl GBITH BBIMHMCIIEHO NPH
M3BECTHBIX [ApaMeTpax CHUCTEMBI. ODTO IO HEeKOTOpoil
CTeneH HEOXMOAHHO, TAK KaK OLEHKA HAWMEHBIIMX KBaIl-
paToB ABHSETCA CMeuleHHON, OOCYKOAIOTCE HEKOTOpbIE
TPAaKTHYECKUE BBIBOALI H3 pe3ylbTaTOB. B YacTHOCTH,
MOKA3aHO, YTO 3TOT AJITOPHTM MOXKET ObITh NPUMEHEH Ha

HEeOOBINOR CYETHO-BLIYHCIUTENILHON MalIHHe JUIst npojec-
COB.
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