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Figure 1. LTI system with perturbation

1. Introduction

Many practical systems can be modeled as a feedback interconnection of a
linear time-invariant (LTI) plant G and a perturbation A, as in Figure 1.
The perturbation contains everything in the system that cannot be modeled
as an LTI plant. For example, it can contain nonlinear elements, time-varying
elements, and uncertain elements with various assumptions on the uncertainty.

Several classical results from 1960-1975 give sufficient conditions for sta-
bility in terms of the Nyquist curve in the case when G is a single-input
single-output (SISO) plant for various nonlinear and/or time-varying pertur-
bations, see for example [4]. From the early 1980s much progress has been
made on computational methods for robustness analysis in the case of MIMO
plants. For example, Doyle introduced p-analysis, which can be used for ro-
bustness test of a large class of systems with structured LTI perturbations by
solving an optimization problem at a preselected grid of frequencies, see [5],
[15]. However, in the case of nonlinear and/or time-varying perturbations there
exists coupling between frequencies. It is then not possible to do frequency by
frequency optimization.

Recently, Megretski and Rantzer introduced a unified approach for anal-
ysis of systems on the form in Figure 1, [12], [17]. The main idea is to find a
description of the perturbation in terms of integral quadratic constraints. If
I is a measurable Hermitean matrix function, which is bounded on the imag-
inary axis and satisfies II(jw) = II(—jw), then a bounded perturbation A is
said to satisfy the IQC defined by II if

[ T =
—oo | A(u)(jw) A(u)(jw)

for all u € L,[0,00), where % and A{u) denotes the Fourier transforms of u
and A(u). It is often possible to find a convex set II5 such that A satisfies the
IQC defined by any II € II5. It was then proved in [17], that the system is
robustly stable if under some weak conditions there exists II € II, and ¢ > 0

such that
[G(;“’)] II(jw) [G(jw)} <—el, Yw>0 (1)

The problem of finding II € I, such that (1) is satisfied is a convex but
generally infinite dimensional problem. An approach for solving this problem is
to introduce a finite dimensional basis for the multipliers in II 5. The frequency
domain inequality in (1) can then be transformed by use of the positive real
lemma to an equivalent Linear Matrix Inequality (LMI), which can be solved
by efficient numerical algorithms such as LMI-lab [6]. More detailed description
of this approach were given in [8] and [9]. Similar ideas in a more restricted
setting can be found in [11] and [2]. The effectiveness of the approach described
above is generally dependent on the choice of basis multipliers.
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Figure 2. Feedback system

We will in this paper study the dual to the problem of finding a suitable
IT € I, such that (1) is satisfied. The dual problem will give

e Indication on existence of a feasible solution.

e A bound for the optimization problem, which gives an indication of the
quality of the basis multipliers.

e Insight into what is important for the choice of suitable basis multipliers.

For the examples in this paper it will turn out that a solution to the dual prob-
lem can be found by solving an LMI optimization problem for a preselected
set of frequencies.

The organization of the paper is as follows. The next section gives a moti-
vating example where the basic ideas of the paper are introduced. In particular
the primal optimization problem is formulated, which characterise the ability
of a certain convex set I, to prove robustness. The next two sections give the
mathematical preliminaries on duality theory and functional analysis needed
in this paper. In Section 5 a format for I, is introduced, which can be used
to describe a large class of perturbations appearing in practical problems. The
dual optimization problem is then derived for the corresponding class of ro-
bustness problems. Section 6 gives a refinement of the format for II, such
that we can derive the dual for a problem with complicated and highly struc-
tured perturbation A by putting together dual problems corresponding to the
components of A. We derive the dual for common perturbations in Section 7.
Section 8 discusses how we can achieve upper bounds for the dual optimiza-
tion problem using LMI computations and Section 9 gives some numerical
examples.

2. A Motivating Example

We will in this section give a simple example that illustrates the main points of
this paper. Consider the feedback system in Figure 2. The system is a single
loop control system with the following specifications. The plant is modeled
as an LTI system G, with multiplicative output uncertainty A,(jw), where
|A1]] < e (|||| denotes the Hy-norm). G, and G, represents the controller and
sensor dynamics, respectively. ¢, and ¢, are actuator and sensor nonlinearities.
We assume that kpinz? < ¢i(z)z < kmax2?, ¢ = 1,2, which covers the case with
saturations in the actuator and the sensor.
For a study of input/output stability we represent the system in Figure
1, with
0 G, 0
G(s) = 0 0 G,
-eG, -G,G, 0

and A = diag[A(jw), b1, d,], where A = A, /e. We notice that A satisfies the



IQC’s defined by a matrix function of the form

[ z,(jw) 0 0 0 0 0 ]
0 az, O 0 Bz, 0
M(jw) = 0 0 oz 0 ' 0 Bz @)
0 0 0 | -z1(jw) 0 0
0 Bz, O 0 —2z, 0
| 0 0 Pz 0 0 —2z3 |

where @, is such that z(jw) > 0 for allw € R, #3,23 > 0, @ = —2kninkmax and
B = kmax + kmin. We can choose a basis for #; in terms of functions in RH,
and then transform the stability condition in (1) to an LMI optimization of
the coordinates for the basis by using the positive real lemma. Two questions
arise. The first question is if there exists any suitable basis at all, i.e. if there is
any a II matrix with structure as in (2) such that (1) it satisfied. The second
question regards the quality of a particular basis. We will be able to answer
both questions by solving the dual to the following optimization problem.

PriMAL OPTIMIZATION PROBLEM 1

pp = inf —y

GGjw)| . [Gliw)
subj to l ] }H(]w)[ I }S_’ﬂ (3)

Ilelln, YER

for all w > 0, where Il is defined as the closed, bounded and convex set
consisting of the II-matrices in (2), when the multipliers are restricted such
that 0 < z;(jw)<I,VweRand 0< 2; <1,¢=1,2.

We say that the robustness test is feasible if p, < 0 and if this is the
case then |u,| is a measure of the robustness margin. The boundedness of II5
implies that p, > —oo and the maximal value of (3) is p, = 0, since 0 € Il.
We say that the robustness test is unfeasible if p, = 0.

3. A Result from Duality Theory

We will in this section present a special case of the Fenchel duality theorem,
see for example [10]. This conic formulation of the duality theorem has been
used in the finite dimensional case in for example [14] and [18].

Mathematical Preliminaries

Let X be a normed vector space. The dual of X is the normed space consisting
of all bounded linear functionals on X and it is denoted by X*. If £ € X and
z* € X*, then (z,z*) denotes the value of the linear functional z* at .

DEeFINITION 1
A set C in a vector space is said to be a cone if ¢ € C implies that az € C
forall a > 0.



DEFINITION 2
We define a positive cone P in X as any convex cone in X defining the following
relation. For any «,y € X, the notation ¢ > y, means that z —y € P.

DEFINITION 3
Given a positive cone P C X, then we define P? as

P® ={z*c X*:(x,2*) >0, Ve&e P}

DEFINITION 4
Given a subspace £ C X, then its orthogonal complement L+ is defined as

Lr={z* e X*:(x,2*) =0, Ve €L}

DEFINITION §
A translated subspace, £ + ¢, where ¢ € X, is said to be a linear variety.

DEFINITION 6
If § C X is a nonempty set then the closed linear variety generated by 5,
v(S), is the intersection of all closed linear varieties in X that contain S.

DEFINITION 7

The relative interior of a nonempty set S is the collection of points in S, which
are interior points of S relative to v(S). This means that for every z; in the
relative interior of S, there exists ¢ > 0 such that all ¢ € v(S) satisfying
|l — || are also members of the relative interior of S. Hence, the relative
interior of § is an open subset of v(5).

The Duality Result

If we define the primal problem as the following minimization problem

Hp = inf <{B, C) (4)

zePN(L+D)

where £ is a subspace of X, C € X*, and D € X. The corresponding dual
problem is defined as the following minimization problem

pa= min  (D,z") (5)

z*ePON(LL4C)

The primal and dual problems are related as follows

PROPOSITION 1
IfPN(L+ D) contains points in the relative interior of P and £ + D, and if
inf,cpn(ct+p) {2, C) is finite, then

zePrITI(IE+D)<m’C> + x—epegﬁl(lcl¢+c)(D’ =) =({D,C) (6)
|
Remark 1. Our main usage of this proposition will be to investigate the

following inequality. Given z € P N (£ + D) and * € P® N (L* + C), then

(2,C) > inf (z,C)>(D,C)— (D,z") (7)

~ zePn(L+4D)



This shows that the primal problem is lower bounded by (D,C) — (D, z*) for
any dual feasible z* € P® N (L* + C). In our applications (D, C) will be zero.

Remark 2. The assumption that P N (£ + D) contains points in the relative
interior of P and £ + D means that P N (£ 4+ D) contains interior points of P
and £ + D relative to linear varieties generated by P and £ 4 D, respectively.

We show in Appendix A that Proposition 1 follows from the Fenchel
duality theorem.

4. More Mathematical Preliminaries

We will in this section give some further mathematical preliminaries that will
be used in the sequel. We will also introduce the notation and the vector spaces
that will be used in our applications. The following definitions are standard
and can be found in [10].

DEFINITION 8

The (Cartesian) product of two vector spaces X and X, which are defined
over the same field of scalars, is denoted X; X X, and it consists of all ordered
pairs ¢ = (z1,%2), with ; € X; and z; € X,. ; and =z, are said to be
the coordinates of X; X X,. Addition and scalar multiplication is defined as
(z1,22) + (¥1,¥2) = (€1 + y1, 22 + ¥2) and a(zy, £y) = (azy, azy).
DEFINITION 9

The dual of X; X X, is given as X} X X;, where X{ and X; are the duals of Xy
and X, respectively. Given z = (z1,2,) € X1 xX;and z* = (z3,23) € X{xX3,
then (z,z*) = (@1, 2]) + (22, 23).

Extension of the above definitions to the product of n vector spaces X;,..., X,
is obvious. We use the following notation

DEerINITION 10
The product of X, ..., Xy will be denoted Hivzl X, and the elements of this

product space are denoted {z3}1, = (1,...,en). T X; =X fori=1,...n,
then we use the notation X™ for the product.

If every X, is a product space, i.e. Xy = Hfi’; X5, then we use the
notation [[h, [T Xy for the product space and the elements are denoted

{{zu D Wy

DEFINITION 11
B(X,Y) denotes the normed space of all bounded linear operators from X
into Y, where X, Y are normed vector spaces.

DEFINITION 12
Let H € B(X,Y), then the adjoint operator H* : Y* - X is defined by

(He,y*) = (z, H*y")

for all ¢ € X and y* € Y*. We will use the following properties of the adjoint
o If Hy, H, € B(X,Y) then (H, + Hp)* = HY + Hy.
e If H; € B(X,Y) and H, € B(Y, Z) then (H.H,)* = Hy'Hy.

Here is a list of notation and vector spaces that will be used from now on.



* denotes Hermitian conjugation of a complex matrix.

o We will from now on denote the elements from any dual space X* with
with lower case letter z in order not to have ambiguity in the interpreta-
tion of the notation z*.

e L7*" is the Banach space of measurable n X n complex valued functions
that are essentially bounded on the imaginary axis and satisfy F(—iw) =
F(jw) for almost all w € R. RL,™ C L™ is the subspace consisting of
proper real rational functions with no poles on the imaginary axis.

e RHI*™ C RLI™ is the space consisting proper real rational matrix
functions with no poles in the closed right half plane. Note that G* gen-
erally means the Hilbert adjoint of G(s), defined as GT(—s). The Hilbert
adjoint reduces to the Hermitean conjugate of G when s = iw.

o SpX™ C R™™ denotes the space of symmetric m X m matrices. The
dual space can be identified with Sg-*™ itself and the linear functionals

are defined as (z, z) = tr(zz), where ¢,z € Sg*™.

o ATX™ denotes the space of skew-symmetric m X m matrices. The dual
space can be identified with AF*™ itself and the linear functionals are
defined as (z, z) = tr(z”z), where 2,z € AZ*™.

o Sc C C™ ™ denotes the space of Hermitean m X m matrices. The dual

mXm

space can be identified with SZ*™ itself and the linear functionals are

defined as (z,z) = tr{Rexz} = tr{zz}, where ,z € S¢*™.

B™*™ is the Banach space of n X n complex valued functions that are

bounded on the imaginary axis and satisfy ¢(—iw) = z(jw) for allw € R..
We define the norm on B™*™ as ||z|lp = sup,cr |2(jw)|ew. The matrix
norm | - |o, is defined as |z, = max;; |€;;| when ¢ € C™™.

o SM*™  B™*™ denotes the subspace consisting of functions in B™*™,
which satisfy z(jw) = 2*(jw) for allw € R.

¢ AM™ ™ is the Banach space consisting of the distributions of the form

2(w) = i 2 6(w — wi) + Zb(w 4 wy)

k=1

where z, € C™™ and Y ;o |2k|s < co. The norm on AM is defined
as ||z]lam = Ypei|2k|i < co. The matrix norm | - |; is defined as |z|; =
Zi,j |zij| when z € mem.

e Sam C AM denotes the subspace consisting of functions in AM™ ™,
which satisfy z(w) = 2*(w) for all w € R.. This implies that the coefficients
of the distributions § satisfy 2 = z; for all k.

o PPX™ C Sp™ is the positive cone of positive semidefinite symmetric
matrices.

o PZ*™ C SEX™ is the positive cone of positive semidefinite Hermitean
matrices.

o PIX™ C SI*™ ig the positive cone of functions ¢ € Sg*™ satisfying
z(jw) > 0 for all w € R.

o PX™ C SWX™ is the positive cone of functions z € Syy™ having coeffi-

cients satisfying z, > 0 for all k.

Remark. Note that the function spaces Sg, Sc S and Say are defined over
the scalar field R. Also note that Sg can be viewed as a subspace of S¢c and
that Sc can be viewed as a subspace of Sg, i.e. we have Sg C Sc¢ C Sg.



Remark. We search for a IT € IT, C LZ™*®™ such that (1) is satisfied. It is,
however, convenient do the search over functlons in SZ™*?™ when deriving the
dual. The reason is that it turns out that it is non-conservative to specify the
dual in terms of functions in Say. Note that S3™**™ contains nonmeasurable
functions. The next theorem shows that nothing is gained in searching over
SEm*2m which justifies our choice of function spaces.

THEOREM 1
The Primal Optimization Problem 1 gives the same objective value regardless

) ) )
if we consider I, C L2™**™ or T, C SE™**™,

Proof:  The proof is given in Appendix B
O

Remark. The dual (Sg™*™)* of S§™™™ is not easily characterized. It is clear
that Sin™ C (Smxm) and we will prove that in the applications we consider
there is nothmg lost in restricting attention to the functions in SiHy™

Remark. If G € RHZ™ and z € AM™™ then Gz € AM™ ™ and

(G2)(w) = Z (jwr)zb(w — wi) + G(jwr)zb(w + wi)

/ )z(w)dw
LEMmMmA 1

The dual of SP%™ can be identified with S§™*™ and if 2 € S{y™ and z €
Sp*™, then

oo

Z 2tr{Rez,z(jwi)} E 2tr{ze(jwr)}

k=1

and
(2, 2)| < ||2]lamllz||B

Proof: The proof of the lemma follows from the proof of Theorem 3 in [3].
O

5. Dual Formulation of a Class of Robustness
Problems

The general robustness test of finding II € I, such that (1) is satisfied can
be formulated as Primal Optimization Problem in 1. II, is the convex set of
structured II-matrices corresponding to the robustness problem under consid-
eration.

We will consider problems where the perturbation can be described by
IQC’s defined by a convex set II5, with elements defined in terms of a set
of multipliers. More precisely we consider bounded and convex sets II, with
0 € II5 defined as follows

7



Here z) is an element of a suitably defined normed vector space Xy;. The
range of z); is restricted by the constraint Lyzy + Dy € Py, where Ly :
Xum +— Yy is a bounded linear operator from Xy into the normed vector
space Yy, Py is a positive cone in Yy, and Dy is an element in Yy. The
constraint Lyxy + Dy € Py is defined such that the coordinates in zy; are
upper and lower bounded in such a way that z); = 0 satisfies the constraint,
which implies that 0 € 5. Further, IIyy : Xy > SZ™**™ is a bounded linear
operator. We assume that Xy; and Yy are products of vector spaces from the
listing in Section 4.
The optimization problem in (3) can now be stated as

PriMAL OPTIMIZATION PROBLEM 2

pp =inf —y
— Mellyey — vI € PR*™
subj to { Lyzy + Du € Py
zy € Xm, YER

(9)

where Mg : S™**™ s SF*™ is the bounded linear operator defined as

e[

for any II € SZ™>**™,

O

This optimization problem can now be stated in the formalism for the primal
problem in (4). This follows if we let

X=8""xYuxR

P=Pmmy Pux R

D =(0,Dy,0) € X (10)
¢ =(0,0,-1) € X*

L = {(-Mcllyzy — vI, Ly, v) 1 2 € Xu,7 € R}

Remark. We will in our applications always choose 11, such that the con-
straint set P N (£ 4+ D) contains points in the relative interior of P and L.
Note that it is important to allow v to be arbitrary in R in order to ensure
that this is the the case for the first coordinate.

In order to obtain the corresponding dual optimization problem formu-
lated as in (5) we need to derive P® and L. It is straightforward to see that

we have
X" =(Sg"")" x Yy xR

P® = (Pp*™)® x P2 x {0}
where, Yy is the dual of Yy and P is the positive convex cone in the dual
space, which corresponds to the positive cone Py in Yy. In order to derive

L1 we need to find the set of z € X* satisfying (z,z) = 0 for all z € L. Let
z = (20, 2um, 2y) € X*, then

(:c, z) =<—MGHM1’M - 71, 20> + (LM-T!M, ZM) +vz
=7(2zy — (I, 20)) + (zm, Ljgom — Iy Mg z0) = 0



should hold for arbitrary ¥ € R and arbitrary )y € Xu. Hence it follows that
zy = (I, 20) and Lyjzy = I Mg 2. We get

LY = {(20, 2, (I, 20)) € X* : Lam = Iy ME 20} (11)

The dual optimization problem is defined in terms of functions in P® N (£* +
C), which contains coordinates from Sj. In order to use the dual in practice
we need to restrict the coordinate z; to be in Py3™. A similar restriction must
hold for the coordinates in zy that are in Sj;. We use the notation (P )an for
this restriction of P2, Similarly, (Y3;)am denotes the subspace of Yy; obtained
by restricting the coordinates in 8§ to be in Say. The dual optimization
problem can now be stated as

DuaL OPTIMIZATION PROBLEM 1

Hd = lIlf<DM, ZM)

zy € Piy™, 2m € (Pum)am

12
subj to ¢ (I,z) =1 (12)
Loy = 5 MG 2
where restricted adjoint Mg : Spu™ — Sap ™ is defined as
¢l [a]
Miz=|"\|2z
I I
for any Z € Siy™
O

Remark. It would be more appropriate to us the notation Mél Ay for the
adjoint restricted to AM. However, for convenience of notation, we will not
distinguish the adjoint and the adjoint restricted to AM. This remark will
hold throughout the paper.

The resulting optimization problem can be viewed as an LMI involving com-
plex matrices, which easily is transformed to an LMI involving real-valued
matrices. We can use the dual in (12) to estimate the quality of a particular
finite dimensional restriction of the primal in (2) as follows. Given the optimal
dual objective pg and the optimal objective fi, corresponding to the restricted
primal, then the relative duality gap (pq + Hp)/|Ep| is @ measure of the qual-
ity of the basis for the multipliers in the primal. In general, we only have an
approximate solution to the dual fiz, and the duality gap (fs + [,)/| 1, gives
a measure of both the dual and primal approximation. It is shown in Section
9 how the example in Section 2 can be treated in this way.

We say that robustness condition corresponding to Primal Optimization
Problem 2 is unfeasible if p, = 0. The associated unfeasibility test can be
formulated in the following way.

UNFEASIBILITY TEST 1
The robustness condition corresponding to Primal Optimization Problem 2 is
unfeasible if there exists 2z, € Piai™ and 2y € (Pg)am such that

L1>\</IZM = H&Mé( 20

(Du,zm) =0



O
We will show in the next section that the unfeasibility test corresponding to
the example in Section 2 can be formulated as an attractive LMI problem.
The next theorem gives conditions which ensure that the dual optimiza-
tion problem in (12) is non-conservative.

THEOREM 2

Assume Py is closed and that the restriction of IIjj Mg to Syy™ and the
restriction of LY to (Yy:)am have closed range spaces in (Xj;)am. Further
assume that the equation L2y = I Mg 2 has a solution (2o, 2m) € Pay ™ X
(P2)am in the relative interior of Pyyi™ x (Py). Then the dual optimization

problem in (12) is non-conservative, i.e. gg = pyp.

Proof: The proof is given in Appendix C.

d
In Section 7 we show that all the conditions of the theorem are satisfied in the
applications we will consider. Note that the positive cones Py, Pc and Py are
closed.

6. Refinement of the Multiplier specification

The definition of IT, in (8) is compact but it does not reveal how the different
multipliers come into play. We will here give a refined definition of Il from
which it is possible to derive a dual robustness test where the contribution of
every multiplier is explicitly revealed.

For this we will use two properties of IQC’s, which are useful when deriv-
ing IQC:s for complex perturbations with diagonal structure.

PROPOSITION 2
Assume A satisfies the IQC’s defined by I, ..., II,, then A also satisfies the
IQC defined by 337, o;II;, for any a; > 0,2 € [1,...,7]

O

PROPOSITION 3
Assume A has the block-diagonal structure A = diag[A4,...,A,], and that

A; satisfies the IQC defined by II;. Then A satisfies the IQC defined by II =
daug(Il,, ..., 1I,], where the operation daug is defined as follows. If

Ly I ;
H,‘ = " , = 1,2
Ip" Tl

where the block structures are consistent with the size of A; and A,, respec-
tively, then

Hll 0 HIZ 0
0 I 0 II

daug(Hl,Hz) = s 2
HIZ* 0 H13 0

0 Hzg* 0 H23

O
The propositions above suggests the following refined definition of a set IIa
describing a perturbation A = diag[A,, ..., Ay], where the size of Ay is my X
mg.
HA = {H = daug(Hl, .o .,HN) . Hk S HA,‘}

10



where

M),
Ma, ={Ilx = anlmkl ‘2 € Xp, Lk + Dy € Pu}

=1
Here 2;; is a multiplier defined on a suitably defined normed function space
X;1. The range of xy; is restricted by the constraint Lyzg; + Dy € Py, where
Ly : X3y — Yy, is a bounded linear operator from Xj; into the normed function
space Yy, Py is a positive cone in Yz, and Dy, is an element in Yy;. Further,
I : Xi — SZ™X?™k is 3 bounded linear operator. Let us illustrate this by
continuing the example from Section 2.

ExaMPLE 1—Example from Section 2 continued
The convex set IT, can be described in the format given in (8) as follows.

HA & {da’ug(ﬂlanhna)lni € HAhi = 1:273}

where

z 0 .
Oa; = {2, = [ 01 . 0 < 2y(jw) = Liz: + D: € Pr}
-]

_2kmin kmax kmin + kmax

Mp; = {2y = 2, [ ] |Lyzs + Dy € Pa}

kmin'l’ kmax -2
“2kminkmax kmin + kmax
HAa :{H3$3:$3 I:kmln_l_kmax 9 ] |L2$3+D2 S PZ}
where
L, : Sg+— Sp x Sp, is defined as Lz = (2, —z)
Dl = (O,I)
P, =Pz X Py
Ly :Sp+> Sg X Sg, is defined as L,z = (z,—z)
D2 = (O,I)
P, = Py X Py

Let X, = Hfi"i Xy for k=1,...,N. Then in the notation above we can
describe the primal optimization problem in terms of

N N M,
Xm = HXk: HHXM
k=1 k=11=1
N M,
Yu =[] [I¥u
k=11=1
N M,
Py = H HPkl € Yu
k=11=1

Dy = {{DuhiZi Feon € Yar

The operators Ly : Xy — Yu, defined as Lyz = {{Luzu}ii Y ,, for any
& € X, and the operator Iy : Xy — S2m%2™ is defined as

Iyz = daug(Il;z,,...,Iyzy)

M1 MN
. da,ug(z Mz, ..., Z Myiz)
=1

=1
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for any & = {2, }i_; = {{mkl}{:'i}fcvﬂ-
The dual optimization is defined in terms of

N M
Xy = H ]_—_[X;:l
k=11=1
N M,
Yﬁ = H HYI:;
k=11=1
N M,
=[TJ]P% c v
k=11=1
where X}, and Y3, is the dual of X}, and Yy, respectively, and Pg is the positive
cone in the dual space, which corresponds to the positive cone Py; in Y. It
remains to determine the adjoints Ly; and II;;. We have that L3 : Y3 — X3y
is defined as
Lz = {{Liza it Hs
for any z € Y. To derive IIY : (SEF™*™)* — Xy, let ¢ € Xy and z €
(Sg™**™)*. Then

(e, 2) = (davg(ILiz4,. .., dyey), 2)

N
= Z Hkmk,'sz>

=

(@x, GyPe2) = (=, T3y2)

1

Pllﬂz il

o
1

1

where Pj, : (82m><2m)* (SZmwx2mw)* is defined as follows. Introduce Ef =
diag(0,...,0,I,,,0,...,0), then

Pz= [Ek Ek+N]TZ[Ek Ek+N]

-~
1

Hence,
IRy = ({15 Pez i Heo
The dual optimization problem becomes (restricted to AM) becomes.

Duar OPTIMIZATION PROBLEM 2

N M,

Mg = min Z Z Dkbzkl

29 c PAM y 2kl € (Pkl)AM (13)
subj to § (I,z) =1
lel —_ HklPkMG ZO

The corresponding unfeasibility test is

UNFEASIBILITY TEST 2
The robustness condition corresponding to Primal Optimization Problem 2 is
unfeasible if there exists zp € Pyu™ and zi € (P)am such that

E;;(IZM == H;flpkMé 20

N M,

ZE Dy, zit) =

k=11=1
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It is clear from (13) and (2) that we can derive the dual optimization problem
for a system with block-diagonal perturbation A from the dual of its diagonal
parts. We will in the next section derive the dual of some perturbations that
are common in practice. The conditions of Theorem 5 will be satisfied for all
of them.

7. Examples

In this section the dual is derived for four perturbations that are common in
applications. We will only consider one block perturbations. More complicated
perturbation structures built by diagonalization of these four perturbations
are treated using the ideas in Section 6. We will restrict dual spaces and the
domain of the adjoints to AM. It is trivial to check that the conditions of
Theorem (5) are satisfied for all examples in this section.

The Real Structured Singular Value

We consider the case with one repeated bounded real parameter, i.e. the case
when A = 61, where § € [—1,1]. Then II, consists of the matrix functions of

the form
X (iY)
M=
Y)Y -X
where X,Y € Sg*™ satisfies 0 < X(jw) = X*(jw) < T and —I < Y(jw) =
Y*(jw) < I for all w. The multiplier constraints can be written as LX + D, €
P, and LY 4+ D, € P,, where
D,=(0,I) and D,=(I,I)
L SEX™ oy Spvxm o Sovxm - defined as LX = (X, —-X)
The adjoint L* : STE™ X Sip™ > Sam™ is defined as L*z = z; — 2z, for any
zZ = (Zl,Z2) S S;nﬁm X Sznﬁm
We have II = II, X 4 II,Y, where
X 0 0 Y
ILX = Cmy=| 2
0 -X (iY) 0
and the corresponding adjoints IL, ILX : SImx2m _, STX™ are given as
0;Z =21y — 2y, W Z=1Z;+ (1Z412)"
for any
Z _ le Z12
Ziy  Za
The dual optimization problem is according to (13)

:| € Sirl\rzx2m

pa = min(l, z55) + (I, 251 + 2y2)
205 Zo1y Zo2y Zy1, Zy2 € PRy
(I,z) =1
Zg1 = Zgz + G20G* — 2

Zy]_ = Zyz + ’iGZO + ('LGZ())*

subj to

It is possible to simplify this optimization problem by noticing

13



1. We can eliminate z;; from the optimization problem. This makes the
constraint involving 2,; and 2., into a positivity constraint. For notation
we use 2z = Zgs.

2. We can eliminate z,; from the optimization problem. This makes the
constraint involving z,; and z,, into a positivity constraint. For notation
we use 2z, = 2.

The resulting dual becomes

DuaL OpTIMIZATION PROBLEM 3—The Real Structured Singular Value

pa =min{l, z) + (I, z, + 1G 2 + (iGz)")
20, 20,2y € Payp™
(I,z) =1 (14)
2y + GzG* — 2o € P™
z, +1Gz + (iGz)" € Py ™

subj to

This dual optimization problem can also be formulated as

min / tr({zo — GzG*})dw + / tr]iGzy + (1G2o)" |dw

2o € P‘,‘Tl\;l(m —eo

(I,20) =1

where |T'| denotes the positive square root of T € S5 ™ and {T}* = 2(|T|+T)
denotes the positive part of 7.

It is clear that for the case when we only consider a perturbation A = §1,,
with delta as above then this becomes a one frequency optimization problem.
This means that we should let z,z, and z, have only one dirac at some
frequency w, and the problem becomes an LMI optimization problem involving
complex matrices. We can solve for the optimum by sweeping over w. We also
notice that if A = A(jw)I, with A(jw) the transfer function of a SISO LTI
system then the primal and dual are as above with the exception that only
the variables X and 2, appear in the optimization problems.

UNFEASIBILITY TEST 3

The robustness test for the real structured singular value is unfeasible iff there
exists a frequency wp > 0 such that G(jwo) has a real valued eigenvalue with
magnitude greater that one.

Proof:  This is a well known result, but we give the proof in any case. We

first conclude from (14) that the dual corresponding to real-u is unfeasible iff

there exists wy > 0 and z, € P¢ such that
G(jLUO)ZoG*(ij) — 29 € PC

G(jwo)z0 = 20G* (jwo) (15)

Now assume G(juwo) has a real valued eigenvalue with corresponding eigenvec-
tor v. Let zy = vv*. With this 2, we have

G(jwo)20G* (jwo) — 20 = zo(A? — 1) € Pc
G(jCUO)ZO = ZoG*(ij) =0

For the converse we need the following lemma, which follows from a result in
[16]

14



LEMMA 2
If R € C™ ™ satisfies RS = SR* for some § € PZ™™, then § = Y ), S5k,
where Rs;s; = spspR*.

The second condition from (15) and the lemma implies that 2o = Y 3-, 22,
where G(jwo)zrzi = z23G(jwo)* for k = 1,...,m. Assume z # 0, then
multiplication with z; from the right in the last identity gives

G(jwo)zr = Aezk, M = 2,G(jwo)ze/ (2 2x)
This implies
0 = G(jwo)z 2z — 212 G* (jwo) = zu 2k (A — Ax)
from which we conclude that Ay is real-valued for all k = 1, ..., m with nonzero
z,. Hence, with 2o = 5, 212, the first condition in (15) gives
0< 3 Glivn) st G un) - 2z = SN - s
k=1 k=1

which implies that |Ax| > 1 for at least one k € {1,...,m}.

Time-varying Parameter

Consider the case with a repeated time-varying parameter, i.e. the case when
A = §(t)I, where §(t) € [—1,1]. We assume that the rate of time-variation is
arbitrary. One possible choice of I is the set of matrix functions

X Y
II =
=

where 0 < X = XT < I and where Y = —Y7 is bounded as —1 <Y < 1.
The multiplier constraint on X can be written as L, X + D, € P, where

Pm — Pl‘l_‘;'nXm % Pl‘;'nxm
D, = (I, In)
Ly : SPX™ s SEXm x Spxm defined as L, X = (X, —X)

The adjoint of L, is defined as
LY : SP@™ x Sp* o Sg*™,  defined as L} 2z, = 21 — 242

for any z; = (251, 2z2) € Sp™ X Sg™. The constraint on Y can be written

as L,Y + D, € P,, where

Py — Pc2:'m.)<2m % P(2:mX2m
Dy = (In, I'm)
Ly, : AmX™ o STX™ o SmX™ - defined as LY = (iY, —iY)

The adjoint of L, is defined as
LX : SEX™ x §¢X™ = ARX™, defined as Lz, =Imz, —Imz,

15



for any z, = (2,1, zy2) € S¢*™ x 8¢*™.

We have IT = I, X + II,Y, where

X 0
II, : Sp*™ s SE™*?™  defined as I X = [ 0 X]

0 Y
IL, : AR*™ o SZ™*?™,  defined as 1LY = [YT 0]

The corresponding adjoints are given as

I ; SImxIm L, gmxm  defined as I1XZ = / (221 — 733)dw

I : SIX™ s Ap*™ defined as Iz = / (215 — #z12)dw

— 00

for any

Zi1 F12 2mx2m
= . € Sy
12 %22

The dual optimization becomes
pa =mintr{z;} + tr{z: + 2,2} = mintr{z;;} + tr{Rez,; + Rez,;}

mxm mxm mxm
rZOEPAM 7Zy17zy2€PC aln,ZzzEPR

<I) ZO) =1
subjto ¢ 5. =2, -|-/ (GzG* — 2)dw

Imz,; = Imz,; + / (2,G* — Gzp)dw

We can simplify this optimization problem by noticing the following

(16)

1. We can eliminate 2z,; from the optimization problem. This makes the
constraint involving z, into a positivity constraint. For notation we use

Zy = Zg3.

2. If we invoke Lemma 3 in the next Section, then the constraints involving

zy becomes

Rez,; Imzy, -
—Imz,; Rezy | —

(17)

(18)

Rezy, Imz,; + [7°, Hm{G 2 }dw 0
~Imz,; — [% Hm{Gz}dw Rez,, =
where Hm{Gz2y} = 20G* — Gz,. It is possible reduce these two constraints
into
zy I2 (2.G* — Gzp)dw .
- fjooo(ZoG* - G’zo)dw 2y -

where 2z, € Pg™™. This follows from the following argument. First it
is clear that (18) follows from (17) when Rez,; = Imz,; and if we let
z, = Rez,;. Next we need to show that the reduced constraint in (18)
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does not impose conservativity on the objective value in (16). First notice
that

ReZ.y]_ Imzy 1 2 0 — Rezyl —I'[nzyl
—Imz,; Rez,

>0 (19)
Imz,; Rezp,

which follows since the matrices are related by a similarity transform.
Next assume that Rez,;, Rez,; and Imz,, are such that the constraints in
(17) are satisfied. Then using the equivalence in (19) it follows that the
sum of the constraints gives

Rez,1 + Rezy, I (20G* — Gzp)dw .
- ffooo(zoG* — Gzp)dw Rezy; + Rezy, -

from which our statement follows. The resulting dual optimization prob-
lem becomes

DuaL OPTIMIZATION PROBLEM 4—Time-Varying Parameter

pq =mintr{z, } + tr{z,}

subj to
(20 € PRX™, 2,, 2, € PT*™
(I,20) =1 (20)
< [ 2z 2 (2,G* — Gzo)dw} >0
=2 (2,G* — Gzy)dw z
2z + /oo (G2oG* — zp)dw > 0
“ - 0

This dual can equivalently be formulated as

min tr{/ (20 — G2G*)dw}t + tr| / (20G* — Gzp)dw|
{ZO e P - -
(I, Zo> =1
where |T| denotes the positive square root of T € Sg™™ and {T}* =
2(IT| + T) denotes the positive part of T.
The corresponding unfeasibility test is

UNFEASIBILITY TEST 4

The robustness test for a time-varying real parameter is unfeasible if there
exists a set of frequencies w; > 0 and corresponding zo, € PZ*™ such
that

iRe{ZOkG*(iwk) - G(iwk)z()k} =0

k=1

iRe{G(iwk)zo,cG*(iwk) — 2o} >0

k=1

17



Sector Bounded Nonlinearity

Here we consider the case when the perturbation is a sector bounded static
nonlinear gain, possibly time-varying, defined by the relation Kpyiz(t) <
d(t,2(t)) < Kmaxz(t) for all (¢,2(t)) € R X R. ¢ satisfies the set of IQC:s
defined by the following matrices

o= —2KminKmax Kmin + Kmax
B Kmin + Kmax -2

where 0 < ¢ < 1. The multiplier constraint is treated exactly as in the

last section. We can write II = II,z, where IT : R — S3*? is defined in an

obvious way and the adjoint IIX : S357 — R is defined as
H:Z = / [(Kmin + Kmax)(zlz + ZIz) - 2I(min}-(malel - 2z22]dw

The dual becomes

DuaL OpTIMIZATION PROBLEM 5—Sector Nonlinearity
4 = min z,
29 € P2X2 2, € Pr
. ® . (21)
Slle to Zg + [(Kmin + Kmax)(ZOG + Gzo)
— 2KminKma.xGZ0G* — 220]dw Z 0

This dual can also be formulated as

min  max (0, - f I} Mé‘zodw>
2y € PA,E‘XM2 =
(I, Zo> = 1

where
H: Mé( 29 = (Kmin + Kmax)(zOG* + GZO) - 2KminKmaxGZOG* — 220

Multiplication with Harmonic Parameter

Consider the case when (Au)(t) = u(t) cos(wot), then A satisfies the IQC
defined by any matrix function with structure, [13].

0.5(X (j(w + wo)) + X (§(w — wo))) 0

0 -X(jw) (22)

where 0 < X(jw) = X*(jw), Yw € R. The multiplier constraint can be

written as L, X + D, € P,, where

P, = PJX™ x Pp<m
Ly : SPX™ o SPX™ x Sp*™,  defined as L, X = (X, -X)

18



The adjoint LY : Sym™ X Sam — Sim is defined as L*z = z; — 2, for
any z = (21, 2;) € Sg™. We have II = II, X, where II, : Sg*™ - SEF™*%™
is defined as

0.5(X (j(w + wo)) + X (j(w — wo))) 0

e [ 0 X (ju)

The adjoint IT¥ : SATX*™ s STX™ is defined as
H:Z = 0.5(211((.0 + UJO) 4+ le(w — wo)) — Zzz((.l))

for any

211 212
z= I: € Siﬁxzm

*
%12 %22

As in the derivation of the dual corresponding to real-p we arrive at the fol-
lowing dual optimization problem

DuaL OPTIMIZATION PrOBLEM 6—Harmonic Oscillation

pa = min(T, z;)

subj to
20, 25 € pmxm
0 AM (23)
<I, 2'0) = ].
75 + 0.5G(j(w + wo))z0(w + wo)G" (§(w + wo)) +
0.5G(j(w — wo))zo(w — wo)G*(§(w — wo)) — 20(w) € Pyt ™
O

This can equivalently be formulated as

min / {-TIX Mg 2} dw
{Zo € PAnl\;I(m ~o0
<I, Zo> =1

where

I Mg zo(w) =0.5G(J (w + wo))z0(w + wo )G (§(w + wo))
+ 0.5G(j(w — wo))2o(w — wo)G* (§(w — wo)) — 2o(w)

We can get an approximate solution to the dual optimization problem in (23)
by restricting attention to a finite set of frequencies & = {w,...,wy}. The
structure of the last constraint in (23) suggests that we choose the set  such

that
Wj = Wpmtj — Wo

Wk-1)M+j T+ Wo = WrM+j = Wkt1)M+j — Wo
WL-1)M+j T Wo = Wrpm+j

fork=1,...,L—-1and j=1,...,M. This gives M diracs within a frequency
spann of wy. The corresponding dual optimization problem becomes
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DuAL OPTIMIZATION PROBLEM 7—Harmonic Oscillation

L M
pa=inf> > tr{zpmin}

k=0j=1
subj to
( Zo(kM+§)s Zo(kM+j) € PC™
L M
Z Z tr{ZO(kM+j)} =1 (24)
k=0j5=1
3 Zzj + 0.5GM+J'Z()(M+J')G%}+J- — 205 Z 0
Zoenr+5] + 0-5G (4 1yn+iZo((k+1)m 471G (g 1)pras T

O'5G(k—1)M+jzo[(k—1)M+J']G:([;<:—1)M+j — Zofkm+4] 2 0

| Zoizarts) + 0.5G (o nya+iZo(b-1)m+i1G{p—1yar+i — Zopms) = 0

fork=1,...,L—-1landj=1,...,M,

O
This is an LMI problem involving complex matrices. We will in the next section
see how such problems can be transformed into LMI problems involving only
real-valued matrices.

8. Computational Issues

In problems involving block-diagonal perturbations with elements from the last
section gives a dual optimization problem as in (13) and an unfeasibility test as
in (2) that are infinite-dimensional LMI problems involving complex matrices.
We can obtain upper bounds of the dual by restricting the optimization to
a finite set of matrices @ = {wy,...,x}. The corresponding optimization
problem is a finite dimensional LMI problem which can be transformed to an
LMI problem involving only real-valued matrices by invoking the following
lemma.

LEmmMmA 3
Let z = z, + iz; € C™ ™ be a complex valued matrix with z,,z € R™™. We
can represent z as a matrix in R*™**™ as

Zy 2§
—Zi %

We then have the following properties.

1. The conditions for z to be Hermitian can be stated as z = 2* & Z = Z7,

which implies that z, = 27 and z = —27.

2. If z is Hermitian, then z > 0 & Z2 > 0.

3. Multiplication and addition of complex matrices corresponds to multipli-
cation and addition of the corresponding real valued matrices. Hence, we
have z; + 2, & Z1+ Zy and 212, & Z125.

4. The identity I,, € C™*™ corresponds to I, € R*™*™.
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5. jI, € C™™ corresponds to

0 I
E RmeZm

Proof:  This is a trivial fact from algebra.

9. Numerical Examples

In this section we apply the ideas of this paper in two examples.

ExamMpPLE 2—Example from Section 2 continued

We obtain the dual optimization problem by putting together the duals cor-
responding to the three components as in (13). The component duals are
obtained as described in Section 7. We use the following notation, where e; is
the i** identity vector in R°.

=~ def
Pz =Pz Z eFzey — el zey

I} Pyz = / Prz(w)dw = Y 2RePaz,

- k=1

I3 P3z = / ﬁ3z(w)dw e Z 2RePsz;

- k=1

where

~ def
Paz 2 (Fmin + kmax) (X zes + €l zey) — 2k minkmaxes ze; — 2el zes

~ g
Pz 2 (Fmin + kmax)(€X zeg + es ze3) — 2k minkmaxes 263 — 2ex zeg

for any z € S5*°.

Let 2z, z; and z3 correspond to @y, £; and 5 respectively. Then the dual
optimization problem can be stated as

Hg = infz2zlk + 22+ 23

k=1
subj to
(zox € S§™2, 215 > 0,2, 2 0,23 >0

2 Z tI‘{ZOk} =1
k=1

} z; + 731M§(iwk)20k € Pc

(25)

2+ 2ReP, M} (iwy) 205 > 0

k=1

23 + Z 2Reﬁ3Mg(iwk)20k >0

k=1

\

If we restrict attention to a finite set of frequencies Q = {wy,...,wy}, then (25)
becomes an LMI involving complex-valued matrices, which can be transformed
to an LMI involving only real-valued matrices by invoking Lemma 3.
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Let

and

and let P; i = 2,3 be defined in terms of (e7,0), for ¢ = 1,..., 6. Finally define
the map Mg (w) : R®® s R?#*1? a5

M (w)Z =
ReG, ImG, ReG, ImG,]"
I o |, I 0
—ImG, ReG, ~ImG, ReG,
0 I 0 I

where G, = G(iw). The dual becomes

N
Ba = igfz tr{Z} + 22+ 2

k=1
subj to

[ZOk;ZIk;Z21Z3ZOa kzla"')N
N
Ztr{ZOk} =1
k=1
Zy, +731M5(wk)20k >0, k=1,...,N

N
29 + 2Z'P2Mé:(wk)Z0k Z 0

k=1

N
23 + 2ZP3Mg(wk)ZOk Z 0
L k=1

The corresponding unfeasibility test becomes

UNFEASIBILITY TEST 5
The robustness test in (3) is unfeasible if there exists a set of frequencies
Q = {wy,...,wy} and corresponding matrices Zy, > 0 such that

PiME(wi)Z0r >0, k=1,...,N
N

Z ;ﬁzMg (wk)Z()k Z 0

N
Z ’PaMg(wk)ZOk Z 0
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Lo | A |

{0} [o0.8725
{1} |o0.0188
{0,1} | 0.0101

Table 1. Dual for ¥ = 0.05

| s [ & |

1 —0.0077
Ritz(1,1) | —0.0093
Ritz(1,2) | —0.010
Ritz(1,3) | —0.010

Table 2. Primal for k£ = 0.05

Numerical Results

Assume that the plant G, is a resonant system and that the controller G, is
a lag compensator and finally that the sensor dynamics is of first order. Let
the transfer functions be

1
Go(8) = Z 0251
s+1
Grls) =k 151
10
Gi(s) = s+10

Further, let kg = 1, ks = 0, and € = 0.3.

If the controller gain k£ = 0.05 then LMI optimization as in (26) with LMI-
lab gave numerical results as in Table 1. No other combination of frequencies
appear to give lower dual objective. We solved the primal problem in (3) with
¢, = R*UR, where R € RHY*" is the basis multiplier and U = U7 the
coordinates that should be optimized. We achieved numerical results as Table
2. where

s " T
thz(p,n):[l oo %ﬁ?’,’%,_—]

We see that even for simple choices of basis functions there is a relative duality
gap (fp + 2a)/|Bp| = 0.5%, which is very small.

The control system we have studied is not of much practical intersest,
since it has a small loop gain, (G,(0)G,(0)G,(0) = 0.5). The problem here
is that we describe the nonlinearities with IQC:s that are very general in the
sense that they allow a large class of nonlinear functions. This is restrictive if ¢,
and ¢, are for example saturations. If we use a more precise IQC description
of the saturations then we expect that we can allow for a larger loop gain.
However, the purpose of the example is to study how a primal-dual analysis
can indicate the quality of certain finite dimensional restictions of the primal
problem. The example is very succesful in this sense.

EXAMPLE 3—Ship Steering
We will in this example consider ship steering dynamics as in Example
9.6 in [1]. The dynamics for the ship can, with notation as in Figure 3, be
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Figure 3. Notation used to describe the motion of ships.

approximated by the Nomoto model

(t) = o(t)(—aa(t) + bo((1))
() = (1)
where 9 denotes the heading of the ship, v denotes the rudder angle and v
is the speed of the ship. It is assumed that v(t) > 0. We will as in [1] study

stability of the ship dynamics for an unstable tanker, which is controlled by a
PD regulator

v=-Kiy
K(s) = k(14 sTy)

where & = 2.5 and T; = 0.86. It is also assumed that a = —0.3 and b = 0.8.
The closed loop system can be illustrated as in Figure 1, with §(t) = v(t)I;
and G(s) replaced by

B —a/s b
Gols) = (——K(s)/s2 0)

We will here study the particular case when v(t) = vy + 9(t), and 9(t) =
A cos(wot). It is easy to see that the closed loop system is stable for a constant
speed of Veonst > bnom/(@nomkTs) = 0.1744. This implies that v, > 0.1744 + A
is necessary for stability. We transform the system as in Figure 4 which gives
an equivalent system with §(t) = cos(wot) and the transformed system

G(s) = A(I — voGo(8)) "Go(s) € RH>*?

The primal optimization problem becomes

Mp = inf —y
subj to
G - * G -
[ () ] () [ G < a1

IIe HAharmonic; 7 ER
for all w > 0, where Mapermonic is the set of matrix functions defined as in
(22). We solve the primal using LMI-computations as described in [7] with
X = R*UR, where R € RHY*? is a basis for X and U = UT > is the
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Go(S) — AI2

vol,

O

6(t) I, AL

—vol;

Figure 4. Transformed system

corresponding coordinates. For the dual optimization problem we transform
(24) to an LMI involving real valued matrices. Let

Z; Z;
7, = kR kI
—Zikr  Zikr

fori=0,zand k=1,...,N, where N = (L 4+ 1)M. Here Zy = Z%, € R¥?
and Zyy = —Z%; € R?*%. Further let

G = [ ReG(jwy) ImG(jwk)]

~ImG(jwr) ReG(jwy)

Then we arrive at the following LMI optimization problem

L M
Hae = i-?lfz Ztr{zm(kM+j)}
k=0j=1
subj to
( ZokM+i) Dormts) > 0

> 2 tr{Zograr+i} (27)

k=0j=1
4 ij + 0.5GM+jZ0(M+j)GIA‘4—+j - Zoj Z 0
Zarar 441+ 0-5G (k1)00 45 Zo(r+ )M 431G (k4 1ype 5 +

0-5G(k—1)M+jZ0[(k—1)M+j]Gf(I;c_1)M+j - ZO[kM+J'] >0

| Zozar+q) + 0.5G @ -1ym+i Do - 1)M+1G (L -1ypr+5 — Zotnamd) > 0
fork=1,...,L—-1landj=1,..., M.

Numerical Results

We have have made computations for two cases.
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[ 2e) [ m | [2]M]w | ma |

I, —0.6543 2| 1 [0.28]0.7847
R(1,2,1) | —0.6643 4|1 |0.280.6906
R(1,2,3) | —0.6793 6| 1 |0.280.6900
R(1,2,4) | —0.6830 8| 1 |0.28]0.6899
R(1,2,5) | —0.6882 8| 2 |0.28]0.6899

Table 3. Numerical results for the case v =1, 4 = 0.2 and wo = 0.5.

L Be) [ wm |

I, unfeasible W | M‘ w1 | Ha ”
R(1,2,1) | unfeasible 2] 1 |0.185 | 0.2305
R(1,2,2) | —0.0651 4| 1 |0.185 | 0.2264
R(1,2,3)| —0.1718 6| 1 |0.185 | 0.2264
R(1,2,4) —0.1844 2] 2 10.185|0.2304
R(1,2,5) —-0.2173 4| 2 |0.185 | 0.2264

R(1,2,6) | —0.2182

Table 4. Numerical results for the case v = 0.5, 4 = 0.1 and wp = 0.5,

e v =1, A =0.2and wy = 0.5. The numerical results are given in Table 3,

where .
Rip,mn)=[In 35 - Grords ]
The relative duality gap is (¢a + #p)/|tp| = 0.0025.

e vo = 0.5, A= 0.1 and wy = 0.5. The numerical results are given in Table
4. The relative duality gap is (ua + gp)/|ps| = 0.0375.

We see that the relative duality gap is quite small in both cases.

10. Conclusions

We have derived a format for deriving the dual of a large class of robustness
problems involving multipliers. Solutions to the dual optimization problem can
be achieved by LMI optimization. The results of the paper have been applied
to two examples.

11. Appendix A: Proof of the Duality Result

We will here put Proposition 1 into perspective of the Fenchel duality theorem
as stated in [10]. If C and D are convex sets and f and g is a convex and concave
functional respectively, then we define the convex sets [f,C] and [g, D] as

[f,Cl={(r,e)eRx X :2€C,f(z)<r}
[9,P)={(r,2) e Rx X :z€D,r < g(z)}

THEOREM 3—Fenchel Duality Theorem
Assume that f and g are, respectively, convex and concave functionals on the
convex sets C and D in a normed space X. Assume that C N D contains points
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in the relative interior of C and D and that either [f,C] or [g, D] has nonempty
interior. Suppose further that inf,ccnp{f(z) — g(z)} is finite. Then
inf {f(z)—g(z)} = max {g"(z")- f"(z")} (28)

zeCND T*€C*ND*
where the maximum on the right is achieved by some z,* € C* N D*.

Let C=L+D,D =P, f(2) = (2,C) and g(z) = 0. We can then state the
primal optimization problem in (4) as

pp = _inf {f(e) - g(2)}
It is clear that C and D are convex sets and by the assumption in Proposition 1
we have that CND contains points in the relative interior of C and D, and that
Kp is finite. Further f is a continuous convex functional by the definition of
X and g is clearly continuous and concave. The continuity of f and g implies
that the convex sets [f,C] and [g, D] have interior points. This follows from
Proposition 1 in Section 7.9 of [10]. The conjugate sets C* and D* are defined

> C*={z" € X" :sup[(z,z*) — f(=)] < oo}

T€eC
={z* € X*: sup (z,2" —C)< oo} =L +C
ceL+D
D*={z* e X* z11€1£[(:13,:L'*) —g(z)] > —o0}
={z* e X*: ire11f;(m,m*) > —o0} = P®

The conjugate functionals f* and g* defined on C* and D*, respectively are

defined as
F@W=gy@mﬂ—ﬂ@]
= :glg(w,w* -C)=(D,z") - (D,C)

g'(z") = inf[(=,2") - g(z)]
= ;161};(:0,:0 )y=20
From Theorem 3 we have

pp = inf {f(z)-g(2)}

TeCND
= .max {g"(z") - f"(=")}
=(D,C) - min (D, z")

z*ePON(LL4C)

from which Proposition 1 follows.

12. Appendix B: The proof of Theorem 1

Assume that we consider optimization over a set I, C S3™**™ and that p,

is the resulting objective value. Let ¢ > 0. We will show that there exists a
piece-wise constant function IT,. € II, such that

05 1, 1[0

T <(pp+€), Yw2>0 (29)
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Then the theorem follows since ¢ is arbitrary. We will actually prove more than
that since we will construct a IL,., with only a finite number of discontinuities.
By assumption there exists Il € ITx C SZ™**™ such that

[G(;w)]*ﬂo(jw) [G(jw)] < (pp+e/2)I, Yw>0

Let Mg : S&™*™ x R — SZ*™ be the operator defined as

G(jw)]*n [G(m}

Me(Iw) = [ 7 T

By the properties of G € RH.*™, the exists @ such that

max p( Mo (Tlo(jw), w) — Me(Ilo(@), @)) < /2

where p(H) = Apax(H), for H € S¢*™. Further by the uniform continuity of
G € RHZ"™ on [0,@], there exist § > 0 and N such that

UX [(2k — 2)6, 2k6] = [0,
and

p(Mg(TLo(jw,w) — Mo (To(5(2k — 1)8), (2k — 1)6)) < /2

max
wel(2k—2)6,2k6]
Then the choice

I, (w) = {EOU@k - 1)), w€|[(2k—2)5,2kb),k=1,...,N

O(Q)’ WZ@

satisfies (29).

13. Appendix C: The proof of Theorem 5

The main idea for our proof is to use the symmetry in Proposition 1. We will
show the dual optimization problem in (12) satisfies the conditions of the the
primal in Proposition 1 and that the corresponding dual in Proposition 1 is
the optimization problem in (2).

We will first derive a compact description of £ in (10) and £+ in (11).
Let L: Xy X R — X be the operator defined as

Lz = (—Mellyey — 71, Lyew, )
for any z = (zy,7v) € Xy X R. The corresponding adjoint L* : X* — Xy X R

18
L*Xz = (L1>\(/[ZM - HﬁMéZOa 2y — (I,Z()))

for any z = (2, 2m, 2y) € X*. We then have

L={Lz:ze XuXxR}=R(L)
Lt ={z€ X*: Lz =0} = N(L*)
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where R(L) denotes the range space of L and M(L*) denotes the nullspace of
Lx.
Next let us define Z and P; as

Z = (X")am=Sam" X (Yy)am X R
Pz = (P®)am = PRy™ x (P)am x {0}

Further, let Ly be the restriction of L* to Z. By the assumptions of the
theorem we have that Lz has closed range in (Xf)am X R. Finally let £z =
N(Lz). The dual problem in (12) can now be stated as

) SIS (30)
We will next show that (30) qualifies as the primal in Proposition 1 by proving
that P; N (Lz + C) contains points in the relative interior of Pz and £z + C.
The second statement follows trivially since Ly is a closed subspace of Z. The
second statement follows from the assumption that there are solutions (2o, 2m)
of L2y = IS M% 2 in the relative interior of PJy™ X (P3)awm.
It now remains to show that the dual of (30) is the optimization problem
in (3). In order to do this we need to show

1. P? = P, which follows since P5™*™ and Py are closed.

2. L+ = L, which follows since Lj = L and that N (Lz)" = R(L3) = R(L).
The last statement follows from Theorem 6.2 in [10] since Lz has closed
range.

To see that LS = L, we first note that Ly : Xy X R — X, which follows from
Lemma 1 and the fact that the coordinates in Xy are taken from Sg, S¢ and
Sg. We have by the definition of Ly

(Lgz,z) = (z, Lz)

for any z € Xy X R and z € (X*)am. Hence (z,(Ly — L)z) = 0 for any for any
¢ € Xy X R and z € (X*)am, which implies that L; = L, by the properties
of the vector spaces involved.
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