
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Prototyping intrusion detection in an industrial cloud-native digital twin

Tärneberg, William; Skarin, Per; Gehrmann, Christian; Kihl, Maria

Published in:
2021 22nd IEEE International Conference on Industrial Technology (ICIT)

DOI:
10.1109/ICIT46573.2021.9453553

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Tärneberg, W., Skarin, P., Gehrmann, C., & Kihl, M. (2021). Prototyping intrusion detection in an industrial
cloud-native digital twin. In 2021 22nd IEEE International Conference on Industrial Technology (ICIT) IEEE -
Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICIT46573.2021.9453553

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICIT46573.2021.9453553
https://portal.research.lu.se/en/publications/3c5f895f-1ff1-4121-ab8e-728b05a9d421
https://doi.org/10.1109/ICIT46573.2021.9453553

Prototyping intrusion detection in an industrial
cloud-native digital twin

William Tärneberg∗, Per Skarin†‡, Christian Gehrmann∗, Maria Kihl∗
∗Dept. of Electrical and Information Technology & †Dept. of Automatic Control, at Lund University, Lund, Sweden

‡Ericsson Research, Lund, Sweden

Abstract—Digital twins are poised to play a vital role in the
industry 4.0 era. A cloud-based digital twin can augment the
entity that it represents. To that effect, we envision that digital
twins can have embedded control systems when paired with
a cyber physical system, yielding significant performance and
configurability advantages. However, relegating controllers to a
cloud-based digital twin exposes them to a new set of attack
surfaces. Given the intricacy of such systems and the plethora of
mitigating actions they can take, intrusion detection is integral
to maintaining the integrity of such system. In this paper, we
propose and prototype a cloud-native digital twin proof of concept
for evaluating the viability of the concept. The resulting platform
is evaluated for its ability to host a cyber-physical system and its
potential to incorporate an intrusion detection system.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Traditional production systems and Information and Com-
munications Technology (ICT) are converging onto what is
expected to be the fourth industrial revolution, i.e. Industry
4.0. The Digital Twin paradigm is a quintessential artifact of
Industry 4.0 and encompasses many of the integration and
security challenges present in the Industry 4.0 domain.

In the Industry 4.0 context, a Digital Twin (DT) can be
a virtual representation of anything from a component in a
production plant, to a product being assembled/manufactured,
to the entire production system. DTs can have different levels
of abstractions and can also represent other virtual processes,
including other DTs, in a hierarchical manner. More specifi-
cally, a DT maintains a state replica of the entity it represents.
The stored state can be used for further analysis of the
represented entity, in run-time. Further, all interactions with
the represented entity go through its DT. Aggregating state
presentation and analysis at a central point enables Industry
4.0 actors to observe and act, system-wide.

For scalability and expedient data-management, we also
assume that DTs are realized on a cloud. In this paper,
we adopt the notion that to successfully take advantage of
the cloud, any application that aims to do so shall be built
using Commercial off-the-shelf (COTS) cloud-native software
and tools. Here, COTS encompasses anything within cloud
computing, IP networks, and open interface production sys-
tems. Using COTS does not only enhance modularity and

This work has been partially funded by the Wallenberg AI, Autonomous
Systems and Software Program (WASP), the ELLIIT strategic research area
on IT and mobile communications, Sweden’s Innovation Agency (VINNOVA)
under the 5G-PERFECTA Celtic Next project, the Swedish Foundation for
Strategic Research under the SEC4FACTORY project.

transparency but also invites non-domain specialists to build,
integrate, and innovate Industry 4.0 systems.

In an industrial setting, we envision that DTs will also be
able to augment the physical plant or Physcial Twin (PT),
in terms of computational capacity, analytics, and security.
Relegating that functionality to the DT will allow us to
minimize what is at the plant and enable dynamic updates
of software, practices, and policies on scalable cloud-native
platforms. Arguably the most valuable beneficiaries of PT
augmentation are the resident control systems. As in [8],
we envision that a controller implementation that requires
only a small amount of computational resources in the PT is
complimented by a set of optimal or more capable controllers
in the DT. The controller in the PT, the ancillary controller,
exists as a means to keep the system functional in case the
DT-side controllers are unreachable or compromised. The DT-
side controllers, being it one or many, do not only have access
to abundant computational capacity, they can be dynamically
replaced, reconfigured, or tuned given higher level, system-
wide, objectives.

Security in Industry 4.0 and in DTs is not a trivial matter
[12]. We assume that a DT is more vulnerable than its PT
counterpart. As with most systems, security is a complication
that tend to be addressed late in the system design process.
The spectrum of challenges range from device and network
integrity, to software system vulnerabilities. Having relegated
the plant’s controller(s) to the DTs presents a new security
challenge. If a control system is interfered with it can have
catastrophic consequences for the plant, even fatal.

Intrusion Detection Systems (IDSs) have an important pro-
tection role in many networked systems. An IDS is one of
few methods that actually has the potential to prevent zero-
day attacks. Many different intrusion detection solutions have
been introduced and they are often combined with evasion
techniques [4]. IDSs in industrial systems are different from
traditional information and communication system IDSs, in
that they have to monitor activities that are frequently au-
tomated and time driven. Furthermore, such systems contain
many legacy technologies, which are hard or very expensive
to replace [6].

The feasibility of a cloud-native DT with a mission-critical
control system and intrusion detection has not been explored
in the literature. Therefore, in this paper, we implement and
evaluate a cloud-native DT Proof of concept (PoC) platform.
The resulting platform is deployed with a time-sensitive and

mission-critical Cyber-Physical System (CPS). Controllers for
the CPS are implemented in the PT and the DT. Additionally, a
PoC intrusion detection and mitigation strategy is implemented
in the DT platform. We proceed by evaluating the performance
of the resident CPS and effectiveness of the intrusion detection
and mitigation strategy by subjecting the system to a set of
attacks aimed at the CPS’s control system. The results show
that the proposed cloud-native COTS-based DT platform is
able to host a CPS and that, with simple means, an intrusion
and mitigation system can successfully be accommodated.

II. RELATED WORK

IDSs have a long history and play an important role in
safeguarding security-critical systems and processes. The main
function in an IDS is to collect data regarding suspects and
analyzing the data. Mitchell and Chen makes a survey of
IDSs in cyber physical systems in general and classify them
according to detection technique and audit material [7]. With
respect to detection techniques, knowledge based and behavior
based are the main categories. Similar, one distinguishes
between host and network based auditing. Works on intrusion
detection specifically for control systems exist and have been
thoroughly chronicled in [1], [5], [11]. In these works, cyber
attacks on networked control systems are formally modeled
and a set of attack scenarios are provided. The authors of
[11], evaluate the models and scenarios on a real process over a
wireless link to show which attack types are the most effective.
The aim of [1] is to instigate a discussion between cyber-
security experts and control theorists. Further, [13] focuses
on detecting subtle attacks and how they can be formally
mitigated.

In a DT context, host based auditing is the natural approach
and especially auditing on the digital twin side. By applying
the intrusion detection on the digital twin, we avoid heavy
processing on the real-time physical process, while powerful
detection algorithms can run on high performance computers
in the digital domain. Both knowledge based and behavior
based detection can be applied in a DT system. In this paper
we adopt the behavior detection rule approach as suggested in
[6]. This is a natural choice, since we work with a DT model
built upon state analysis and state replication as we further
discuss in Section III.

III. SYSTEM MODEL

In this section, we detail a general adaptation of the system
model presented in [3]. The basic system model, notations,
and network assumptions are from [3]. In addition to that
work, we incorporate real-time feedback control as part of
it’s functionality. Figure 1 provides a schematic overview. A
specific implementation of this model is detailed in Section V:

The system has three fundamental entities: a Digital Twin
(DT), a Physcial Twin (PT), and a public network, depicted in
Figure 1. The system works in discrete time k at frequency
f . The components that make up those entities are as follows.
The CPS under control is denoted P and referred to as the
plant. The plant outputs its state, in message ik, at each k.

D
igital

tw
in

Physical
tw

in
Public

netw
ork

δ′

γ′

DN
2

zδ

γ

DN
3

h

P

hold

hold

DN
1

a

iu′,k

Su′,k

iu,k

+

Su,k−1

v̂ ∈ Ŝu,k

v

Su,k

v̂′ ∈ Ŝu′,k

Su′,k−1

Fig. 1: Block diagram of the proposed DT system model.

Further, the plant is manipulated by a control signal v at each
k. δ and δ′ are the processes where the perceived state from
k−1 meets the inputs iu,k and iu′,k, at k, for the physical and
digital twin, respectively. δ and δ′ observe and act on the PT
and the DT, respectively. Consequently, δ and δ′ each produce
a perceived system state Ŝu,k and Ŝu′,k for k, for the physical
and digital twin, respectively. At process z, Ŝu,k and Ŝu′,k are
arbitrated, to produce the state of the physical plant at k, Su,k.
Su,k is sent to process h in the digital twin. The function of h
is applied to Su,k to form Su′,k, the state of the system, at k,
from the point of view of the digital twin. Further, Su,k and
Su′,k are recorded in Databases (DBs).

The messages iu,k, Ŝu′,k, and Su,k, between the PT and the
DT are communicated over a public network and are therefore
subject to a delay. The delays incurred by the network are
denoted DN

1 , D
N
2 , and DN

3 . The aggregate delay from the time
the plant produces an output ik to the time Ŝu′,k reaches z,
for k, is denoted DDT

z . Similarly, the aggregate delay from
the time the plant produces an output to the time it receives a
control signal v, for k, is denoted DDT

P .
Embedded into the system is a set of feedback controllers.

The DT and the PT each have a controller, referred to as the
ancillary controllers and networked controllers, respectively.
The controllers, denoted γ and γ′, are in processes δ and δ′,
respectively. Their respective control signals are denoted v̂ and
v̂′. v̂ and v̂′ are tuples of arbitrary size and are specific for
the controller implementation and plant. Further, v̂ and v̂′ are
communicated in messages Ŝu,k and Ŝu′,k, respectively. At
process z, v̂ and v̂′ are arbitrated to produce v.

With two controllers, γ can be augmented by γ′. In the
case the DT is unreachable or intruded upon, the system falls
back on γ. Another example of this controller structure can
be found in [10].

A feedback controller is a real-time system that relies on

D
igital
tw

in
Public

netw
ork

d

a

ā

iu,k

iu′,k

Fig. 2: Attack model for a.

timely feedback from the plant to maintain stability. To achieve
stability, such systems are typically designed to operate at a
near constant frequency. The controllers operate at frequen-
cies fγ and fγ′ , respectively. The operating frequency is a
consequence of the properties of the controller and the plant.
Typically fγ = fγ′ = f . Consequently, to incorporate a
feedback controller into the presented system model, it needs
to execute at a rate dictated by the controller frequency fγ .
Analogously, DDT

P ≤ 1
fγ

.
The DT receives additional inputs from the world at large

through the message a. a is an auxiliary input to the DT. a
can for example be a high precision measurement of the plant
or an external input from another system. a is communicated
over the public network. a is additive to iu,k and forms iu′,k.

IV. THREAT MODEL

In this section, a threat model based on the system model
described in Section III is presented. In this system, the
public network, DT, and PT are considered secure, except the
peripheral input a.

We use a threat model were we consider outsider and insider
attacks. In previous works on DT-based security, threats on
both the plant and external entities and interfaces have been
considered. Meanwhile, the DT has been considered to be
trusted. For instance, in [2], a threat model with reliable input
and output signals is assumed to be available as well as a
secure execution environment for the digital twin, while the
DT itself was considered potentially compromised. In [3] a
broader threat model is used. According to that model, only
the state reading from the PT and the security of the digital
twin can be guaranteed. We essentially adopt the threat model
in [3].

In our threat model, we assume the attacker is able to ma-
nipulate the peripheral input a with the intention to influence
δ′. This is indeed possible due to the fact that a is a part of
the input iu′,k to δ′. Hence, by maliciously manipulating δ′

(through a), the attacker can drive the DT’s controller γ′, v̂′,
and ultimately v, to incur unfavorable control decisions. These
can be detrimental to the operational efficiency of the plant,
even catastrophic.

To incorporate the attack model, we make the following
additions to the model from Section III. a is subject to
manipulation d. d is the representation of the actions of an
attacker. The resulting manipulated signal is denoted ā. This
addition is illustrated in Figure 2.

Fig. 3: A high level overview of the proposed PoC, composed
of a physical plant and an edge Data Center (DC) that hosts
a DT, which hosts a feedback control system as well as an
intrusion detector and mitigation strategy.

An attack can be applied gradually, over a long time period,
slowly driving the system to teeter into catastrophic instability.
Alternatively, disturbances can be applied in bursts.

The rather simple threat model used in this paper is mo-
tivated by the fact that the peripheral input a comes from
an external source and is the most likely attack target. In the
future, we will extend our threat model to also cover alternative
attacks, but here we limit our analysis to attacks on a.

V. PROOF OF CONCEPT

In this section, we present a COTS-based DT PoC based
on the Industry-4.0 test-bed presented in [9]. That test-bed
was built to demonstrate the feasibility of edge computing for
feedback control systems in an Industry 4.0 context. In this
work, the proposed PoC builds on the components in [9] to
realize the model presented in Section III and it is used to
demonstrate the feasibility of a COTS-based DT and its basic
security measures.

A high-level overview of the system is illustrated in Fig-
ure 3. The PoC incorporates a physical plant with an uncom-
plicated CPS, an edge Kubernetes (K8S) cluster, COTS-based
PT and DT, and a control system that spans the production
process and the edge cluster.

A. Edge K8S cluster

Proximal to the physical plant is a six-node K8S 1 cluster.
K8S is an open-source container orchestration platform, often
viewed as the de-facto industry standard. Additionally, K8S
is extensible though a large number of open-source projects 2

ranging from security to tracing.
The six nodes of the cluster are identical, unimposing,

but sufficient COTS desktop PCs, reminiscent of what one

1https://kubernetes.io/
2https://www.cncf.io/

might find in a corporate ICT infrastructure. The nodes solely
host the cluster and they are connected over a solitary COTS
1000BASE-T network. Further, the cluster is shared with other
tenants and their processes. The original test-bed [9] includes
a set of off-site public cloud resources. Those are beyond the
scope of this PoC.

The cluster has been equipped with an nginx ingress 3 and
prometheus operator 4. The nginx ingress is exposed using the
K8S NodePort paradigm. Storage is realized with Rook 5.

B. Physcial Twin (PT)/Digital Twin (DT) pair

A Physcial Twin (PT)/Digital Twin (DT) pair is imple-
mented using Python and container technology and is hosted
on the K8S cluster. To reiterate, the PT is the plant-side repre-
sentation of the plant and the DT is the virtual representation
in the cloud. In the proposed PoC, the PT is deployed to a
plant-side Raspberry Pi that can interface with the physical
plant to produce iu,k and act on v. The DT implementation is
deployed to the aforementioned K8S cluster as a pod.

For the PoC, the DT implementation has five primary
functions: 1) communication gateway to the plant 2) plant
state-store 3) feedback controller augmentation 4) input aug-
mentation 5) intrusion detection and mitigation

All communication between the PT and the DT is over a
Local Area Network (LAN) and uses a protocol defined in
Protocol Buffers (Protobuf) 6 which is realized in gRPC 7. As
specified in [3] and subsequently Section III, all communi-
cation with the plant from the outside world goes through
the DT. This communications includes, for example, new
configurations and health checks.

The state of the plant is synced every 1/f seconds to the
DT, using the protocol specified in Section III. The state, Su,k,
includes for example 1) the position of the ball 2) the angle
of the beam 3) the control signal 4) the health of the plant
5) current controller.

The PT/DT-pair is equipped with a set of feedback con-
trollers, γ and γ′, respectively. The DT controller augments
the local controller at the plant. The choice of controller can
be made dynamically at the plant in a manner presented in
[10] or be set externally through the communication gateway.
The controllers are also implemented in Python.

C. Plant

The plant is a simple mechanical contraption, the ball and
beam process. The ball and beam is a classic feedback control
system that has a simple and clear objective. The process has
a well-described model [8] and it requires timely feedback to
remain stable, must be operated at reasonably high frequency,
and it is a naturally constrained problem. These properties are
well suited for our targeted evaluation.

3https://github.com/kubernetes/ingress-nginx
4https://github.com/coreos/prometheus-operator
5rook.io
6https://developers.google.com/protocol-buffers/
7https://grpc.io/

The objective of the control problem is to move a rolling
ball on a horizontal beam by manipulating the beam’s angle
around an one-dimensional axis at the centre of the beam. The
ball’s targeted position on the beam is referred to as the set-
point. The angle of the beam is adjusted by applying an input
voltage to a motor that sets the angular velocity of the beam
around its axis. The plant outputs the position of the ball and
the angle of the beam, which is sent to a controller and used
to calculate the control signal.

The plant is connected to a Raspberry Pi. The Raspberry Pi
is connected to the internet and the LAN. The Raspberry Pi
is constrained yet capable of running COTS software and the
controller γ.

D. Feedback control system

The PoC incorporates two controllers as enabled by the
system model presented in Section III. An ancillary controller
(γ) in the PT (δ) and a networked controller (γ′) in the DT
(δ′). The plant can be successfully controlled at a rate of 20 Hz.
Therefore, both controllers operate at 20 Hz, and dictate the
system’s operating frequency, f = 20 Hz. When γ fails to
deliver v̂′ at the targeted rate or if the DT is unresponsive, the
system relies on v̂ from γ. We refer to [10] for a full detail
of the controller implementations.
γ is implemented as a Linear Quadratic Regulator (LQR).

The LQR is a simple, analytically solved controller which
provides a globally optimal solution but does not handle
system constraints. It requires little computational capacity to
produce v̂.
γ′ is implemented as a Model Predictive Controller (MPC).

A MPC is an optimal controller which provides explicit speci-
fication of system constraints and must therefor also execute a
numerical optimization online. The MPC runs its optimization
to find a series of control signals that represent the optimal
control of the plant, based on the given constraints and a
prediction of the plant state. The parameter N , commonly
referred to as the controller horizon, dictates the size of that
series. Further, an MPC-based implementation’s computational
requirements grows with an increased N and are significantly
greater than that of an LQR-based implementation. However,
the MPC-based networked controller (γ′) is intended to per-
form far better than the LQR-based implementation of the
ancillary controller (γ).

VI. INTRUSION DETECTION AND MITIGATION

In this section, we address the threat model presented in
Section IV by applying a detection and mitigation strategy
implemented in the test-bed presented in Section V. Our
method adopts the rule-based intrusion detection approach
from [6]. The proposed rule-based method uses the physical
properties of the process in question, and detects and mitigates
attacks on the speed sensor. Note that the proposed intrusion
detection method is intended to prototype such a system and
not to provide a general and/or best-in-class intrusion detection
and mitigation strategy.

0 1,000 2,000 3,000 4,000
0

2

4

6

Sample instance

M
ag

ni
tu

de
Ramp
Burst

Fig. 4: Time-series representation of attacks.

The reasoning for using a rule-based method is as follows.
The principal target for such an attack is the control signal v
through the manipulation of a to affect v̂′ from γ′. At δ or
δ′, where detection is done, it is non-trivial to determine the
feasibility of the v̂′ without replicating the γ′ in δ. Replicating
the controller in γ′ in δ would defeat the design goal of
offloading and reducing the resource footprint of the PT.
Further, comparing v̂ and v̂′, when they are based on different
controller implementations is also non-trivial. Therefore, and
due to the simple nature of the plant, our intrusion detection
method relies on determining the feasibility of v̂′ given the
current state of the plant.

In detail, the detection works as follows. The DT estimates
the speed of the ball by observing the speed from the past
observations. An estimation of the ball’s acceleration is derived
from the angle of the current angle of the beam, Equation (1).

∆v = ∆t · g
5

7
sin(θ) (1)

Where g is the gravitational constant, and θ is the current
angle of the beam.

The absolute difference in speed between two samples and
the change in speed, is temporally averaged using an expo-
nential moving average. When the temporal average exceeds
a threshold thdintr, the system is assumed to be intruded upon.
A reasonable component for thdintr is expected maximum
difference in speed measurements from the two sensors. To
mitigate the intrusion, when the system is deemed to be
intruded upon, the system switches to γ.

The intrusion detection and mitigation implementation
choices for the PoC are as follows. The detection is done
in δ′ at each k, whenever iu′,k is received. If an intrusion
is detected, that is incorporated into the proposed state Ŝu′,k

which is securely received by z in the PT. In the final state,
Su,k, intrusion detection outcome is computed by a logical
OR operation on the individual intrusion detection outcome
of the DT and the PT, in z. If an intrusion is detected, and
thus the control signal from γ′ has deemed unsafe, z will fall
back on the control signal from a local ancillary controller γ,
using the secure inputs iu,k or iu′,k.

VII. EXPERIMENTS

In this section, a set of experiments that evaluate the validity
of the COTS-based DT and the effectiveness of the proposed

intrusion detection and mitigation method are detailed.
An attack and its repercussions are effectively studied in

time. Therefore the duration of the experiments is kept short,
at 4000 sample instances (200 seconds when f = 20 Hz).

The plant and its accompanied controllers run through-
out each experiment. To make detection more challenging,
the plant’s set-point is altered between −0.35 meters to
0.35 meters every 140 samples. At that rate, under normal
circumstances, both controllers γ and γ′ will be able to
successfully move and stabilize the ball at the set-point.
Additionally, given γ and γ′, that rate of set-point change
allows for some disturbance tolerance.

A. Validity of COTS-based DT

Other than basic functionality, the primary metric for the
validity of the proposed COTS-based DT is that it is able to
execute timely. To qualify as timely, the end-to-end latency
(DDT

P), shall be within one sample instance. At f = 20 Hz,
one sample instance is DDT

P ≤ 50 ms. Consequently, DDT
P

was measured in the system, the Round-Trip Time (RTT). To
improve the contrast of the results, the execution time as well
as the infrastructure primitive latency is provided.

B. Effectiveness of intrusion detection and mitigation method

The effectiveness of the proposed intrusion detection and
mitigation method from Section VI, is primarily determined
by its ability to timely detect the attack and mitigate its
effects. Here, timely means that an attack shall be detected
and mitigated before the plant reaches a catastrophic state.
Secondarily, the proposed method shall be able to do so over
a set of attack types. Thirdly, as γ′ provides the preferred
control signal v̂′, the proposed method shall be able to detect
when the attack is over and consequently revert back to γ′

from γ.
As stated in Section IV, the targeted attack is a malicious

manipulation of a as a means to influence γ′, to produce
control decisions v̂′ that will lead to degraded performance
and/or catastrophic failure of the plant. Here, a is an improved
speed measurement for the benefit of the MPC in γ′.

Assuming no access to the rest of the system nor any
knowledge of the system’s model, it is assumed that an attacker
does not have sufficient context to produce reasonable speed
values. Therefore, the attacker applies a Gaussian noise to a.
Based on this notion, two types of attacks are presented below.

1) Attack: We subject the intrusion detection and mitigation
method to two types of attacks. In both cases, Gaussian noise is
applied to a. An attack is conducted between sample instance
k = 1000 and k = 3000. For simplicity, ka denotes a sample
instance in space of the attack. Both attacks are designed to
lead to a catastrophic outcome. Note that the parameters of the
attacks have been tuned to, on average, produce a catastrophic
failure in the last 3rd of the attack window.
Ramp A Gaussian noise is applied to a, increasing with time.

Formally,N (0, σ(kai)2) where sigma is increased linearly
with time, σ(kai) = A·(kai −ka0), where A = 0.005. Thus,
ā(kai) = a(kai) +N (0, σ(kai)2).

0 2 4 6 8 10
0.00

0.20

0.40

0.60

0.80

1.00

Delay (ms)

D
en

si
ty

Ping Exec. time e2e ctrl

Fig. 5: Round trip time for different stages of the DT

Burst A time-invariant Gaussian noise is applied to a in
ON/OFF bursts. An ON period is followed by an OFF-
period. The duration of such a period is sampled from a
uniform distribution, U(b, c), where b = 10, c = 200. An
attack consists of as many bursts that can fit into the des-
ignated attack time-frame. Consequently, during an ON-
period, a is manipulated as ā(kai) = a(kai) +N (0, σ2).

We rely in the metric Relative Accumulated Error (RAE)
to measure the impact of the attack on the performance of the
controller. RAE is a measure of the controllers ability to reach
the requested set-point. pk is the state (scalar) at sample k and
rk is the set-point at sample k.

1

T

T∑
k=0

|pk − rk| (2)

VIII. RESULTS

In this section, the results from the experiments detailed in
Section VII are presented.

A. Validity of COTS-based DT

1) Latency: As a basic requirement, the system’s response
time shall be able to accommodate the controllers’ sampling
rate, (γ and γ′). Both controllers work at 20 Hz, thus f =
20 Hz. The desired outcome is thus DDT

P ≤ 50 ms.
The line furthest to the left in Figure 5 shows the ICMP echo

response time between the plant and the K8S cluster. In the
absence of a cloud and a DT-platform, this infrastructure RTT
primitive is 0.13 ms, which is significantly below the 50 ms
target.

The execution time of the resident controller γ′ in δ′ is
represented by the line second to the left Figure 5. At a mean
delay of 1.97 ms, with a large margin, the execution time of
γ′ can be accommodated for.

The line second to the right in Figure 5 shows DDT
P . At

this point, having transgressed the K8S platform, at a mean
of 4.94 ms, the delay is significantly greater than the sum of
the execution time of γ′ and the infrastructure RTT primitive.
Since 99.99% of messages experience an average below 8 ms
delay, the proposed platform is capable of hosting the ball and
beam process. Further, the mean total end-to-end latency, from

Noise None Ramp Burst
IDS No No No Yes No Yes
Controller γ γ′ γ′ γ′ & γ γ′ γ′ & γ
RAE 0.06 0.05 0.26 0.05 0.21 0.05

TABLE I: RAE for all scenarios.

the time the plant outputs a signal to the instance Su,k arrives
at h and Su′,k is produced, is 6.07 ms.

2) Rudimentary controller performance: As a controller
performance baseline, the first 1000 sampling instances in
each plot in Figure 6 show the plant’s response to control
signal v̂′ from γ′. The figure shows the position of the ball
and the set-point in the span of an experiment. During these
periods, the system is not subject to an attack. Therefore, γ′

is the active controller. Evidently, the controller is able to
maintain stability as it is able to keep the ball on the beam and
successfully and timely move the ball to a fleeting set-point.
This outcome will act as our controller performance baseline.
It can therefore be concluded that the proposed DT platform
and the resulting PoC are functional and we can move on to
evaluate the intrusion and mitigation method

B. Effectiveness of intrusion detection and mitigation method

With a functioning PoC and a controller performance base-
line we can begin to assess the effectiveness of the proposed
intrusion detection and mitigation method. The upper two
plots in Figure 6 show the outcome of the attacks detailed
in Section VII-B1, without any detection nor mitigation.
The grey-shaded area demarks the time-period under which
the system is under attack. As presented in section VII-B1,
the general metric RAE quantifies the performance of the
controller over a time window. Table I holds the RAE-value
for each experiment. The two first columns shall be seen as
performance baselines. In particular, with γ′, no noise, and no
intrusion mitigation and detection (IDS) case is the expected
best performer.

The upper left most plot shows the outcome from a ramp
attack. At k = 2381 the system succumbs to the attack and
the ball falls off the beam. Further, the upper right most plot
shows the outcome of a bust attack. Here, the ball falls of
the beam at k = 2800. In either case, the performance of the
controller γ′ is negatively affected. From Table I, in contrast
to the baseline case (RAE= 0.05), the RAE drops to 0.26 and
0.21, for the ramp and bust attacks, respectively. These are
significant and undesirable reductions in performance. In both
cases the RAE is measured up until the point where the ball
falls off the beam.

The two lower plots show the attack outcomes when in-
trusion detection and mitigation is enabled. The blue-dashed
area demarks when the intrusion detector determines that the
system is under attack. Consequently, in those areas, v̂ from
γ is applied to the plant.

The proposed method is able to detect the attack in 29 and 8
sample instances, for the ramp and burst attacks, respectively.
Further, the method detects that the attack has subsided after
216 and 122 sample instances, for the ramp and burst attacks,
respectively. In either case, the system is successfully able to

−0.55
−0.40

−0.20

0.00

0.20

0.40
0.55

Po
si

tio
n

(m
et

er
)

Ramp attack without detection nor mitigation

Intrusion window Intrusion detected Position Set point

Burst attack without detection nor mitigation

0 500 1,000 2,000 3,000 3,500
−0.55
−0.40

−0.20

0.00

0.20

0.40
0.55

Sample instance

Po
si

tio
n

(m
et

er
)

Ramp attack with detection and mitigation

0 500 1,000 2,000 3,000 3,500

Sample instance

Burst attack with detection and mitigation

Fig. 6: Result of experiments: The effects of intrusion detection and the success of detection and mitigation.

quickly determine when the system is under attack. It is worth
noting that a lag at the tail-end is tolerable, and in some cases
perhaps even desirable.

Note the reduction in the ball’s erratic movements when the
attack is detected and mitigated. Although γ′ is the desired
controller, the system is able to quickly detect the attack and
switch over to γ. Additionally, from movement of the ball
in the two lower plots in Figure 6, it is analogous when
the system reverts back to γ′ once the attack has subsided.
Consequently, one can conclude that the detection and the
resulting mitigation is timely. In fact, as seen in Table I, there
is no drop in RAE, in either case.

IX. CONCLUSIONS

In this paper, the validity of a COTS cloud-native DT with
an embedded control system and intrusion detection for the
industry 4.0 era was investigated. The evaluation was done on
a PoC that has a CPS, a Kubernetes cluster, and a COTS-based
cloud-native PT/DT pair. A demonstrative intrusion detection
method that exploits the state of the plant was implemented
in that system. The evaluation shows that such a system
can feasibly accommodate a CPS. Further, experimentation
showed that the intrusion detection and mitigation can be
accommodated in the architecture and with the performance of
the distributed cloud infrastructure. Additionally, the system
was able to effectively mitigate the attack and maintain the
integrity of the CPS.

REFERENCES

[1] Alvaro A Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang,
Chi-Yen Huang, and Shankar Sastry. Attacks against process control

systems: risk assessment, detection, and response. In Symposium on
information, computer and communications security. ACM, 2011.

[2] Matthias Eckhart and Andreas Ekelhart. Towards security-aware virtual
environments for digital twins. In Workshop on Cyber-Physical System
Security. ACM, 2018.

[3] Cristian Gehrmann and Martin Gunnarsson. A digital twin based
industrial automation and control system security architecture. IEEE
Transactions on Industrial Informatics, 2020.

[4] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzza-
man. Survey of intrusion detection systems: techniques, datasets and
challenges. Oxford University, Journal of Cybersecurity, 2019.

[5] Werner Kritzinger, Matthias Karner, Georg Traar, Jan Henjes, and
Wilfried Sihn. Digital twin in manufacturing: A categorical literature
review and classification. In IFAC Symposium on Information Control
Problems in Manufacturing. Elsevier, 2018.

[6] Robert Mitchell and Ing-Ray Chen. Adaptive intrusion detection of
malicious unmanned air vehicles using behavior rule specifications.
IEEE Transactions on Systems, Man, and Cybernetics, 2014.

[7] Robert Mitchell and Ing-Ray Chen. A survey of intrusion detection
techniques for cyber-physical systems. ACM Computer Survey, 2014.

[8] Per Skarin, Johan Eker, Maria Kihl, and Karl-Erik Årzén. Cloud-
assisted model predictive control. In International Conference on Edge
Computing. IEEE, 2019.

[9] Per Skarin, William Tärneberg, Karl-Erik Årzén, and Maria Kihl. To-
wards mission-critical control at the edge and over 5G. In International
Conference on Edge Computing. IEEE, 2018.

[10] Per Skarin, Tärneberg William, Karl-Erik Årzén, and Maria Kihl.
Control-over-the-cloud: A performance study for cloud-native, critical
control systems. In Accepted to UCC. IEEE, 2020.

[11] André Teixeira, Daniel Pérez, Henrik Sandberg, and Karl Henrik Jo-
hansson. Attack models and scenarios for networked control systems.
In Int. conf. on High Confidence Networked Systems. ACM, 2012.

[12] Lane Thames and Dirk Schaefer. Cybersecurity for industry 4.0.
Springer, 2017.

[13] David I Urbina, Jairo A Giraldo, Alvaro A Cárdenas, Nils Ole Tippen-
hauer, Junia Valente, Mustafa Faisal, Justin Ruths, Richard Candell, and
Henrik Sandberg. Limiting the impact of stealthy attacks on industrial
control systems. In Conference on Computer and Communications
Security. ACM, 2016.

