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Abstract

A numerical implementation of a recently published rigorous theory that ana-

lyzes electromagnetic scattering by randomly located particles in a slab geom-

etry is presented. In general, the particles can be of quite arbitrary shape, but,

in this �rst implementation, all particles are identical dielectric spheres. The

coherent part of the re�ected and transmitted intensity at normal incidence is

treated. An e�ective wave number of the slab is obtained from transmission

data, and this value is compared with existing results in the literature with

good agreement. Moreover, comparisons with the results of the Bouguer-Beer

law (B-B) are made. The present theory also gives a small re�ected coherent

�eld, which is not predicted by the Bouguer-Beer law, and these results are

discussed in some detail.

1 Introduction

Electromagnetic scattering by randomly located particles is frequently encountered
in science. It is an important topic in terrestrial and atmospheric research, biomed-
ical and life sciences, astrophysics, nanotechnology, just to mention a few. The
literature is comprehensive, and we refer to the textbook literature and references
therein, see e.g., [9, 10,21,22,27�30] for a survey of the �eld.

The literature contains several methods of computing the e�ective wave number,
keff , for a half space containing a collection of randomly located spheres, see e.g.,
[23�25,31,32] and [27, Chapter 6], and references therein. The e�ective wave number
is obtained by solving a determinant relation and there are in general many solutions
to this problem [6, 7]. The new method presented in Part I, [15, 16], does not
su�er from these de�ciencies and we are able to compute the coherent transmitted
and re�ected �elds from a �nite or an in�nite slab containing randomly located
scatterers. In this paper, we present transmission and re�ection results for slabs with
di�erent thicknesses and spherical, non-magnetic particles (radius a) with relative
permittivity εr = 1.332. These data correspond to the permittivity of fresh water at
optical frequencies. Both the electrical size of the spheres and the volume fraction
are varied.

We organize the paper as follows: In Section 2 a brief introduction to the theory
is presented. The numerical implementation is explained in Section 3 and the nu-
merical results are presented in Section 4. We conclude the paper with a discussion
in Section 5 and an appendix.

2 Theory

The theory of electromagnetic scattering by an ensemble of particles is reviewed
in [9, 10,19,21,22,27�29].

The underlying theoretical treatment of the problem handled in this paper is
presented in detail in Kristensson [15, 16]. The purpose of this section is to review
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Figure 1: The geometry of the scattering region. The yellow region denotes the
domain of possible locations of local origins, i.e., the interval [z0, zd] = [a, d− a].

and highlight some of the more important steps in the theory. For a more complete
reference, we refer to Kristensson [15,16].

We simplify the theoretical results in [15, 16] to a geometry of a slab (z ∈ [0, d])
and to spherical dielectric particles of radius a. These assumptions simplify the
results considerably, and make the numerical implementation less demanding. The
geometry is depicted in Figure 1. Notice that the domain of possible locations of
local origins, [z0, zd], is slightly smaller than the extent of the slab, i.e., the interval
is [z0, zd] = [a, d− a], where a is the radius of the spheres.

Assume the incident �eld on the slab is1

Ei(z) = E0eik0z

The coherent part (ensemble average) of the total electric �eld on either side of the
slab is

〈E(z)〉 =

{
Ete

ik0z, z > d

E0eik0z + Ere
−ik0z, z < 0

where the re�ected and transmitted amplitudes, Et and Er, respectively, are given

1Vectors are denoted in italic boldface, and matrices in roman boldface. A caret over a vector
denotes a vector of unit length.
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as2

Et = E0 +
3f

4(k0a)3

∞∑
l=1

i−l
√

2l + 1

2π

(
x̂k0

∫ zd

z0

e−ik0z′ (f1o1l(z
′) + if2e1l(z

′)) dz′

− ŷk0

∫ zd

z0

e−ik0z′ (f1e1l(z
′)− if2o1l(z

′)) dz′

)
(2.1)

and

Er =
3f

4(k0a)3

∞∑
l=1

il
√

2l + 1

2π

(
x̂k0

∫ zd

z0

eik0z′ (f1o1l(z
′)− if2e1l(z

′)) dz′

− ŷk0

∫ zd

z0

eik0z′ (f1e1l(z
′) + if2o1l(z

′)) dz′

)
(2.2)

in terms of the volume fraction f of spheres, and the (unknown) coe�cients fn(z).
The coe�cients fn(z) are the solution to a system of linear, one-dimensional integral
equations in z, viz.,

fn(z) = eik0z
∑
n′

Tnn′an′ + k0

∫ zd

z0

∑
n′

Knn′(z − z′)fn′(z′) dz′, z ∈ [z0, zd]

(2.3)
where the transition matrix of the scatterers is denoted Tnn′ , and where the explicit
form of the kernel Knn′ is (rc = xx̂ + yŷ) is

Knn′(z) =
n0

k3
0

∑
n′′

Tnn′′k2
0

∫∫
R2

g(|rc − zẑ|)Pn′′n′(k0(rc − zẑ)) dx dy

Here, g(r) is the pair distribution function [3,20,29,34], and Pnn′(k0d) is the trans-
lation matrix for the outgoing spherical vector waves [2]. The most simple pair
distribution function models the hole correction (HC)

g(r) = H(r − 2a) (2.4)

where H(x) is the Heaviside function and a is the radius of the spheres. The double
integral in the de�nition of the kernel can be solved analytically for the hole cor-
rection in terms of a series of spherical waves [16, 17]. More complex distributions
functions, e.g., the hypernetted-chain equation, the Percus-Yevick approximation
(P-YA), the self-consistent approximation, and Monte Carlo calculations are not
employed in this paper [3, 20,29,34].

2In this paper, we adopt the multi-index notation n = τσml, where the integer indices τ = 1, 2,
l = 1, 2, 3, . . ., m = 0, 1, . . . , l, and σ = e,o (even and odd in the azimuthal angle). In this paper,
only m = 1 is employed, since the particles are spherical and the incidence is normal.
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The particles are completely characterized by the transition matrix Tnn′ , which
for a spherical particle is diagonal in its (pairwise) indices, i.e., δnn′ = δττ ′δσσ′δmm′δll′ .
The coe�cients an are the expansion coe�cients of the incident plane wave in regular
spherical vector waves. If the incident direction is along the positive z-direction, i.e.,
k̂i = ẑ, these are (σ = e is the upper line, and σ = o is the lower line)

a1σml = −ilδm1

√
2π(2l + 1)

(
ẑ ×

{
x̂
ŷ

})
·E0

a2σml = −il+1δm1

√
2π(2l + 1)

{
x̂
ŷ

}
·E0

k̂i = ẑ

where the vector E0 denotes the polarization state in the x-y plane.
The complex-valued transmission and re�ection coe�cients, t and r, that map

the incident �eld to the transmitted and re�ected �elds, respectively, are de�ned by

Et = tE0, Er = rE0 (2.5)

The transmissivity T and the re�ectivity R of the slab are given by

T =
|Et|2

|E0|2
= |t|2, R =

|Er|2

|E0|2
= |r|2 (2.6)

3 Numerical implementation

3.1 Numerical solution of the system of integral equations

To compute the re�ection and the transmission coe�cients of the slab, we need to
solve (2.3) for given geometrical and material data. The equation is a linear system
of Fredholm integral equations of the second kind [5], and we use the Nyström's
method to solve the system of integral equations numerically [8, 14]. The unknown
quantity, fn(z), is evaluated at set of quadrature points, z = z1, z2, . . . , zp, in the
interval [z0, zd], and the integral in (2.3) is evaluated by the use of the Simpson or
Legendre quadrature rule at the points of discretization. The spatially discretized
vector fn(zp) is denoted F . Remembering that n is a multi-index of n = {τσml}
(m = 1 in our application), the entries of the vector are organized as

F = (f1e11(z1) · · · f1e11(zp) · · · f2o1lmax(z1) · · · f2o1lmax(zp))
t (3.1)

The discretized system has, in general, an overall linear dimension of N = 4lmaxp,
3

and the underlying integral equation in (2.3) is discretized as

F = P + B · F ⇔ (I−B) · F = P

3For a linearly polarized wave, the number of equations is reduced to N = 2lmaxp for each
Cartesian component, since there is no coupling between the set {τσ} = {1e, 2o} and {τσ} =
{1o, 2e}.
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where I is the identity matrix, and the elements of matrix B, Bnn′ , are given by (3.2)
below, which are the Simpson or Legendre quadrature weighted discretized kernel
in (2.3) for n and n′, respectively. The integration variable is discretized at the same
points as the left-hand side and ordered the same way as the discrete vector F . The
form of the matrix Bnn′ is

Bnn′ = k0


w1Knn′(0) w2Knn′(z1 − z2) · · · wpKnn′(z1 − zp)

w1Knn′(z2 − z1) w2Knn′(0) · · · wpKnn′(z2 − zp)
...

...
. . .

...
w1Knn′(zp − z1) w2Knn′(zp − z2) · · · wpKnn′(0)


(3.2)

where wi, i = 1, 2, . . . , p, are the ordinary Simpson or Legendre quadrature weights
for numerical integration. The discretization of the single scattering contribution
de�nes the vector P in the same format as F , see (3.1), with vector elements given
by

Pn(zi) = eik0zi
∑
n′

Tnn′an′ i = 1, 2, . . . , p

We solve for the unknown vector F by the solution of a linear system of equa-
tions in MATLAB or Python 3.8, which also provides an implicit validation of the
code. The transmitted and re�ected �elds are then found by using (2.1) and (2.2),
respectively.

3.2 Computations of the e�ective wave number keff

Algorithm for determination of the e�ective wave number keff

We assume the spheres are non-magnetic, i.e., µr = 1.

1. Compute the transmission coe�cient t with the method presented in
Sections 2 and 3.1.

2. Compare the transmission coe�cient t with the transmission coe�cient
th of a homogeneous slab of thickness dh and wave number k. For a
normally incident plane wave onto a non-magnetic slab, the transmission
coe�cient is [13]

th(k) =
(1− Γ2

h)ei(k−k0)dh

1− Γ2
he

2ikdh

where Γh = (k0 − k)/(k0 + k) and k0 = ω/c0 is the wave number in
vacuum.

3. Compute the e�ective wave number keff by �nding the zeros of the func-
tion G(k) = t − th(k), i.e., the e�ective wave number, keff , satis�es
G(keff) = 0.
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The numerical algorithm for the determination of e�ective wave number keff of
the slab, z ∈ [0, dh], is presented in the high-lighted note above. It di�ers from the
traditional way of determining the e�ective wave number, which is done by solving
for the roots of a determinant equation in the complex plane [27]. The e�ective
wave number determined this way depends on the thickness of the slab, since the
boundary e�ects are encapsulated in the algorithm.

To �nd the complex roots ki of G(k) in a given domain Ω in the complex plane,
we employ either the secant method or the method described in Theorem A.1 in
Appendix A (see also [18]). The secant method is fast and accurate, and the root
�nding algorithm is initialized by the e�ective wave number in the long wavelength
(Rayleigh) limit, where the e�ective wave number is obtained by the Clausius-
Mossotti's law [11] viz.,

εeff =
εr + 2 + 2f(εr − 1)

εr + 2− f(εr − 1)
=

{
1.0061, f = 0.01

1.0625, f = 0.1

keff/k0 =
√
εr =

{
1.0031, f = 0.01

1.0308, f = 0.1

With the latter method, the area Ω is subdivided into n su�ciently small rectangular
domains, Ωq, with boundaries γq. For each γq, the expression (A.1) is calculated
using the midpoint rule. No initial value is needed with this method. If ki ∈ Ωq, a
test is made with a smaller contour to ensure that ki is the single root inside γq. The
process is repeated for every γq ∈ Ω, and then for every frequency. Both methods
give the same result. Among the available roots, the root closest to the solution at
the previous frequency is chosen. For convenience, Ω was restricted to the region
0 ≤ Im Ω ≤

√
0.1k0,

√
0.99k0 ≤ Re Ω ≤

√
2k0 in our application.

In some of the �gures below, see Figures 10, and 11, we compare the results of
re�ection and transmission with the corresponding results of a homogenized slab.
With the particles con�ned within the slab z ∈ [0, d], it is legitimate to ask what
thickness the homogenized slab should have. The phase centers of the particles are
located in the slab [z0, zd] = [a, d − a], which di�ers from the con�ning slab by a
diameter 2a of the particles. This issue is developed further in Section 4.4.

4 Results

In the numerical illustrations, we study the transmissivity and the re�ectivity in (2.6)
varying the thickness of the slab and the electrical size of the particles, which are
assumed to be non-magnetic, µr = 1, spheres with relative permittivity εr = 1.332,
corresponding to rain drops at optical frequencies. We also investigate how the vol-
ume fraction of scatters, f , a�ects the results. The parameters of the computations
are summarized in Table 1.

The radiative transfer equation (RTE) is frequently used to infer the coherent
and di�use intensities of scattering by random particles in a slab geometry [9]. The
coherent contribution in RTE is Bouguer-Beer law, which speci�es the drop in the
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Parameter Value

εr 1.332

µr 1
d/a 10, 50, 100
k0a 0− 10
f 0.01, 0.1

Table 1: Parameters of the numerical illustrations presented in this paper.

coherent intensity Ic(z), due to scattering and absorption in the material. The
explicit form of the law is [9]

Ic(z) = Ic(0)e−n0σextz (4.1)

where σext is the single particle extinction cross section of the spheres [11], and the
number density n0 = 3f/(4πa3).

We also compare the method with the results of [27, Chapter 6]. This approach
uses the same underlying theory � translations of spherical vector waves � to
obtain a relation for the expansion coe�cients of the scattered �elds of the particles.
A half-space geometry is employed and the expansion coe�cients are assumed to
have the form Ane

ikeffz. This leads to an in�nite set of equations, and the e�ective
wave number, keff , is found by a determinant relation. To generate results from [27,
Chapter 6] a MATLAB code was downloaded from [26]. For comparison reasons,
the Percus-Yevick pair distribution function was modi�ed to the hole correction pair
distribution function, see (2.4), by changing Equation (6.1.60) in [27, Chapter 6].
Even if the method in [27] and the one presented in this paper are based on the
same underlying principles, the analysis diverges, and a comparison of the results
is relevant. In addition, our method predicts the re�ection properties of the slab as
shown in Figures 10, and 11.

4.1 Computation parameters

The maximum number of terms included in the expansion is determined by the index
l, which highest value is denoted lmax. The spatial discretization in the z variable is
varied, depending on the slab thickness. The number of spatial discretization points,
p, is increased until the variation of the result is su�ciently stable.The index m is
�xed and takes the value m = 1, due to the excitation and the properties of the
transition matrix of a spherical object. If we restrict the polarization of the incident
�eld to the x axis, only {τσ} = {1o, 2e} are engaged. This means that in practise
the system (2.3) has 2lmaxp number of unknowns to be solved for.

4.2 Transmissivity as function of k0a

In Figures 2 and 3, we compare the transmissivity de�ned in (2.6) as a function
of k0a with the transmissivity computed with Bouguer-Beer law (B-B), (4.1), for
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a slab with thickness D/a = 98, where D = d − 2a, consisting of non-magnetic
dielectric spheres of radius a and εr = 1.332. Two di�erent volume fractions are used,
f = 0.01 and f = 0.1. With B-B law, (4.1), the transmissivity is T = Ic(D)/Ic(0),
where D = d − 2a.4 In Figure 2, we notice a very good agreement for f = 0.01
between the Bouguer-Beer law and the method presented in this paper. For f = 0.1
(Figure 3), the agreement is � in relative measures � less good, but good in absolute
values, as both methods predict low transmissivity. For both volume fractions, the
transmissivity has a global minimum in the studied frequency interval at k0a ≈ 6.
The increase in transmissivity at larger k0a is due to the fact that the extinction
cross section σext decreases, see insert in Figure 3. This means that the spheres
scatter less, and, hence, the coherent transmissivity increases.

There is a �ne ripple in the transmissivity at low frequencies that is non-visible
on the scale of the �gure and hidden in the line thickness. This is illustrated in
the insert in Figures 2 and 3. The e�ect diminishes at higher frequencies and the
period of the ripple is di�erent in the two �gures (di�erent volume fractions generate
di�erent e�ective wave numbers). The reason for this ripple is interference e�ects
between the front and trailing end discontinuities in particle densities at z = a and
z = d− a. The period of the oscillation ∆(k0a) is

∆(k0a) = 2π
k0

Re keff

a

2D
(4.2)

where D = d− 2a. We discuss this ripple in more detail in Section 4.5 dealing with
the re�ectivity as a function of k0a.

In Figure 4 the real and imaginary part of transmission coe�cient are plotted
for f = 0.01 and f = 0.1 in the complex t plane with k0a as a parameter along the
curves. At higher volume fractions, the curve rapidly approaches the origin.

4.3 Transmissivity as function of volume fraction f

In Figure 5, the transmissivity T is plotted as a function of the volume fraction f
at k0a = 10. We note good agreement between our method and Bouguer-Beer law
for small f , but at higher volume fractions the curves start to deviate. A possible
explanation to the discrepancies between the Bouguer-Beer law and the present
method at higher volume fractions is that the far �eld criterion is assumed between
the scatterers in the Bouguer-Beer law. At lower concentrations, this assumptions is
more accurate, hence the Bouguer-Beer law and our method agree more. Moreover,
no boundary e�ects are included in the Bouguer-Beer law.

4.4 Computations of the e�ective wave number keff

The e�ective wave number, keff , is calculated using the transmission coe�cient of
the coherent �eld, as described in Section 3.2, for di�erent slab-thicknesses d. For

4Notice that the thickness of the slab is D = d − 2a. There is a slight di�erence between
the geometrical thickness d of the containing slab (thickness of the material), and the quantity
D = d − 2a, which measures the thickness of the scatterer's phase centers in the slab, see also in
Section 4.5 below.
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Figure 2: The transmissivity T (coherent part) as a function of the electrical size
k0a for a slab thickness of d/a = 100 and constant volume fraction f = 0.01. The
blue line is the result obtained by the Bouguer-Beer law (B-B). The insert shows
the �ne ripple that occurs at low frequencies.
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Figure 3: The same data as in Figure 2, but with f = 0.1 and in log-scale on the
vertical axis. The insert to the left shows the extinction cross section σext/(2πa

2) for
a single sphere as a function of the frequency ka. Notice that minimum transmission
coincides with the maximum in the extinction cross section.
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Figure 4: The components of the complex-valued transmission coe�cient, t(k0a),
in the complex plane as a function of the electrical size k0a for a slab of thickness
d/a = 100 and constant volume fraction f = 0.01 (blue curve) and f = 0.1 (green
curve).

each choice of d, the algorithm in the high-lighted note in Section 3.2 determines a
set of e�ective wave numbers that match the transmission data. It is, however, not
obvious what slab thickness to use in this algorithm. Speci�cally, the geometrical
extent of the containing slab is d, and the extent of the phase centers is D = d− 2a.
In the discussion above in Section 4.2, we found that using a thickness D gave
consistent periodicity of the �ne ripple at low frequencies for the re�ection data. This
observation validates that the electrical thickness of the slab is D (also supported
by the integration interval in the system of integral equations in (2.3)), and in this
paper we use this value in our computations as the thickness of the homogenized
slab.

In Figures 6 and 7, we compare the results of [27] and the results presented
in this paper of determining the e�ective wavenumber keff . The wave number keff

is normalized with the wave number of vacuum, k0. The result computed with
the method in [27] originates from a half-space. We notice that the values of keff

computed with the present method for both dh/a = 10, 50, 100 and dh/a = 8, 48, 98
and the results given in [27] di�er. The di�erences get smaller as the slab gets wider,
and the values dh/a = 8, 48, 98 have a better �t, which further supports the fact
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Figure 5: The transmissivity T (coherent part) in log scale as a function of the
volume fraction f for a slab of thickness d/a = 100 and constant electrical size
k0a = 10. The blue line is the result obtained by the Bouguer-Beer law (B-B).

that the thickness of the electrical thickness is D.

4.5 Re�ectivity as function of k0a

The re�ection coe�cient for a homogeneous slab of thickness dh and wave number
k is given by [13]

rh(k) = Γh
1− e2ikdh

1− Γ2
he

2ikdh
(4.3)

where Γh is given in the high-lighted note in Section 3.2.
The re�ectivity R as a function of the frequency parameter k0a for d/a = 100

and volume fractions f = 0.01, 0.1 is shown in Figures 8 and 9, respectively. The
low-frequency ripple is clearly shown in these �gures, and the period of the ripple
depends of the volume fraction f as well as the thickness D, see (4.2). The �gures
also contain a comparison of the re�ectivity with a homogenized slab using the
e�ective wave number computed in Section 4.4 (see Figures 6 and 7). The e�ective
wave number keff depends on the parameters f and D.

Notice that the period of the blue curves overlap the correct re�ectivity (black
curves). This is an indirect proof that D = d − 2a is the electric thickness of the
slab �lled with particles. This is also supported by the integration interval in the
system of integral equations (2.3), and the period of the ripple supports that the
period is related to the length scale 2D. The re�ectivity of the homogenized slab
agrees well for low frequencies, and deviates at higher frequencies. In contrast to
the transmissivity, the ripple in the re�ectivity extends to higher frequencies.
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Figure 6: The real component of the scaled e�ective wave number, keff/k0, as a
function of the electrical size k0a for a slab of thickness dh/a = 8, 48, 98 (red, blue,
and black solid curves, respectively) and dh/a = 10, 50, 100 (red, blue and, black
dotted curves, respectively) and constant volume fraction f = 0.1. The crosses are
the result by [27].
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Figure 7: The imaginary component of the scaled e�ective wave number, keff/k0,
as a function of the electrical size k0a. Data are identical to the ones in Figure 6.
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Figure 8: The re�ectivityR (coherent part) in log scale as a function of the electrical
size k0a (black curve). The slab thickness is d/a = 100 and the volume fraction
f = 0.01. The blue and green curves show the re�ectivity from an homogeneous
slab with e�ective wave number for f = 0.01 and slab thickness dh/a = 98, 100,
respectively. The blue and green vertical lines show the periods π/1.0031/98 and
π/1.0031/100, respectively.
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Figure 9: The same as in Figure 8, but with f = 0.1. The re�ectivity from the ho-
mogenized slabs uses the e�ective wave number from Figures 6 and 7. The blue and
green vertical lines show the periods π/1.0308/98 and π/1.0308/100, respectively.
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In Figures 10 and 11, we show the re�ectivity, R, see (2.6), for a volume fraction
f = 0.01, with containing slab thickness d/a = 10, 50, respectively. The thickness
of the homogenized slab is dh/a = D/a = 8, 48, respectively. As the ripple mention
above is present, it is di�cult to make an illustration over the entire frequency
interval ka ∈ [0, 10], because the many oscillations obstruct the curve. However, in
Figure 12 we depict the re�ectivity over a larger frequency interval, but for a denser
and thicker particulate material (d/a = 50, f = 0.1).

The results shown in Figures 10 and 11 are compared with the re�ectivity, com-
puted with (4.3) with e�ective wave number keff obtained with the algorithm in the
high-lighted note in Section 3.2. These �gures show the re�ectivity for a thinner
slab than the ones in Figures 8 and 9. We obtain good agreement between the two
ways of computing re�ection data for small k0a. This means that keff is a solution
to both G(k) = 0, see Section 3.2 for de�nition, and r − rh(k) ≈ 0 when k0a is
small, where r is computed by (2.5) and rh(k) is given in (4.3). For these parameter
values, when the wavelength of the electromagnetic �eld is large compared with the
size of the particles, classical homogenization methods hold (e.g., see [1, 4, 12, 33]).

5 Discussion and conclusions

We have presented numerical results for the method described in [16] to model the
coherent re�ected and transmitted �elds for a slab of �nite thickness containing
randomly distributed spherical particles of equal size and relative permittivity, εr.
The wave number for the transmitted �eld agrees well with the e�ective wave number
obtained by the method given in [27, Chapter 6] if the thickness of the slab is large.

We have observed that the re�ection by the slab is consistent with the re�ection
by a homogeneous slab at low frequencies and veri�es that homogenization methods
are useful.

We have used the hole correction, which is applicable for e.g., gases. In the
future, another type of hole correction should be implemented. Extensions to oblique
incidence are also planned.

Appendix A Zeros and poles of an analytic function

The determination of the location of zeros of an analytic function is vital in the
computations of the e�ective wave number in this paper. The following theorem is
then useful [18]:

Theorem A.1. Let Ω be an open domain in the complex z-plane, and let f(z) be

an analytic function in Ω with a simple zero at z0. Then

z0 =

∮
γ

z dz

f(z)∮
γ

dz

f(z)
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Figure 10: Re�ectivity R (coherent part) v.s. frequency in log scale for a slab of
thickness d/a = 10 and constant volume fraction f = 0.01. The green line is the
result obtained by re�ection by a homogeneous slab.
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Figure 11: Re�ectivity R (coherent part) v.s. frequency in log scale for a slab of
thickness d/a = 50 and constant volume fraction f = 0.01. The green line is the
result obtained by re�ection by a homogeneous slab.
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Figure 12: Re�ectivity R (coherent part) v.s. frequency in log scale for a slab of
thickness d/a = 50 and constant volume fraction f = 0.1. Noticed that the ripple at
low frequencies vanishes at higher frequencies. The green line is the result obtained
by re�ection by a homogeneous slab.

where γ is any contour that lies inside Ω, and that encircles the zero z0.

We give the proof of this theorem.

Proof. Since the zero is simple the function f(z) is

f(z) = g(z)(z − z0), z ∈ Ω

where g(z) has no zeroes in Ω. The residue theorem then gives∮
γ

z dz

f(z)
= 2πiRes

z

f(z)

∣∣∣∣
z=z0

= 2πi
z0

g(z0)

Similarly, ∮
γ

dz

f(z)
= 2πi

1

g(z0)

and the theorem is proved.
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