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DATA-DRIVEN STABILITY ANALYSIS AND ENFORCEMENT
FOR LOEWNER DATA-DRIVEN CONTROL
PAULINE KERGUS
LUND UNIVERSITY
DEPARTMENT OF AUTOMATIC CONTROL

LOEWNER DATA-DRIVEN CONTROL: GENERAL FORMULATION
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Input data

• Frequency-domain data from the
plant P: {ωi,Φi}, i = 1 . . . N.

• Reference model M.

Proposed methodology

1. Computation of the ideal con-
troller K? frequency-response:

K?(ıωi) = Φ−1i M(ıωi)(I−M(ıωi))
−1.

2. Interpolation and reduction of the
ideal controller K? through the
Loewner framework.

A simple example

P(s) = 0.03616(s−140.5)(s−40)3
(s2+1.071s+157.9)(s2+3.172s+1936) M(s) = 1

0.01s2+0.25s+1

K?(s) = k
(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)

s(s+ 10)(s− 140.5)(s− 40)3

→ The reference model should be achievable by the plant.{
yTziP(zi) = 0
ypjP(pj) =∞ ⇒

{
yTziM(zi) = 0
M(pj)ypj = ypj

.

→ A data-driven closed-loop stability analysis is needed.

• Data {ωi,Φi}Ni=1

• Performance specifications

Construction of an
achievable reference model M

Definition of the associated
ideal controller K? Controller K identification

Data-driven stability analysis and
reduction of the controller Kr

CHOICE OF THE REFERENCE MODEL

1) Projection of the available data to determine the
nature of P:
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→ The system is stable but Non-Minimum Phase
(NMP).

2) Principal Hankel Components technique to de-
termine the number of NMP zeros and obtain an
estimate of the instabilities.
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3) Construction of an achievable reference model
Mf .

Mf = MBz

Bz(s) =

nz∏
i=1

s− z̃i
s+ z̃i

|Bz(ıω)| = 1
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CONTROLLER IDENTIFICATION

The objective is to obtain a rational model K =
(E,A,B,C,D) such that:

∀i = 1 . . . N,K(ıωi) = K?(ıωi).

→ Use of the Loewner pencil [L,Lσ]
1. Embedded order reduction
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2. Stability of the identified model K
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Proposed choice of M → no more compensation
of instabilities in the open-loop!

CONTROLLER REDUCTION

K?

K − K?

P
+ − +

+

Achievable reference model Mf

Uncertainty ∆

The resulting closed-loop is well-posed and inter-
nally stable for all stable ∆ such that ‖∆‖∞≤ β if
and only if ‖(1−Mf )P‖∞< 1

β .

→ Limiting the controller modelling error allows
to ensure closed-loop internal stability!
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→ Conservatism of the small-gain theorem and
importance of the choice of the initial specifica-
tions

M2(s) = 1
0.04s2+0.4s+1 Mf 2 = M2Bz
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STRUCTURED LDDC DESIGN

General structuration of the controller:

K(s, θ) =
1

D(s, θ)
N(s, θ)

At iteration k, problem Pk is solved:

min
θk
‖M(ıωi)−H(θk, ıωi)‖2F

s.t. ‖K(θk)−K(θk−1)‖∞ < 1
βk−1

Pθ < 0

where
H(θk, ıωi) = (I + ΦiK(θk, ıωi))

−1ΦiK(θk, ıωi)

x
Ki−1

1
γi−1 x
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1
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