Supplemental Material Spectroscopy along Flerovium Decay Chains: Discovery of ²⁸⁰Ds and an Excited State in ²⁸²Cn

The Supplemental Material provides detailed results and statistical assessments in the analysis of events stemming from decay chains starting with isotopes ^{286,288}Fl. Table I summarizes the information on correlated α -decay chains, which were observed in the present experiment, and which were associated with decays of the even-even isotopes ^{286,288}Fl.

Decay properties such as decay energies and lifetimes, relating to various ensembles of data associated with previous experiments in the direct or indirect production of 286,288 Fl and with the present experiment (cf. Table I), are compiled: Distributions of decay energies and correlation times along with determined E_{α} and $T_{1/2}$ values are presented for the different ensembles in Figs. 1 and 2 for 286 Fl and 288 Fl, respectively. An overview, together with a statistical assessment of the correlation times attributed to the single decay steps relevant to the current study, is presented Table II for the ensembles of decay chains corresponding to Figs. 1 and 2.

TABLE I: Information on observed correlated α -decay chains suggested to stem from the even-even flerovium isotopes ²⁸⁶Fl and ²⁸⁸Fl. Mid-target beam energies in the laboratory frame, $\langle E_{lab} \rangle$, and the center-of-mass frame, $\langle E_{com} \rangle$, as well as target isotope are provided. Energies of the implanted recoils, E_{rec} , the implantation detector strip numbers in x and y, and the assigned isotope of chain origin are listed for each chain. For each decay step, i, the decay energy, E_i , correlation time, Δt_i , and, if in prompt coincidence, photon energies, E_{ph} , and electron energies, E_{e-} , are given. In case of a spontaneous fission (SF) event, the number of prompt hits in the Ge-detector crystals, N_{Ge} , is provided instead of any specific photon energy. N_{random} indicates the number of chains of a given type expected to arise from random background. Entries in bold were recorded during beam-off periods. Entries in italics relate to tentative or insecure assignments, typically in connection with a missing event in a chain. Uncertainties of individual energy measurements are ≤ 10 keV at typical α -decay energies of 9-10 MeV in the implantation detector. This uncertainty is worse, ≈ 20 keV, for reconstructed events because of the energy straggling in the deadlavers of the Si detectors. See Ref. [20] for more details.

No.	$ \begin{array}{l} \langle E_{\rm lab} \rangle \; ({\rm MeV}) \\ \langle E_{\rm com} \rangle \; ({\rm MeV}) \\ {\rm target}^a \end{array} $	E _{rec} (MeV) pixel (x,y) isotope	$E_1 \text{ (MeV)}$ $\Delta t_1 \text{ (s)}$ $E_{ph} \text{ (keV)}$ $E_{e-} \text{ (MeV)}$	$E_2 \text{ (MeV)}$ $\Delta t_2 \text{ (s)}$ $E_{ph} \text{ (keV)}$ $E_{e-} \text{ (MeV)}$	$E_{SF} \text{ (MeV)} \\ \Delta t_{SF} \text{ (s)} \\ N_{\text{Ge}}$	$N_{ m random}$
01	241 37.8 $^{242}Pu^{a}$	$13.7 (1,14) {}^{286}\mathrm{Fl}$	10.16(1) ^b 0.202 c		$250 \\ 0.00161 \\ 3$	$8 \cdot 10^{-7}$
02	241 37.8 $^{242}Pu^{a}$	13.6 (13,3) 286 Fl	$9.60(1)^{b}$ 0.0526 d $0.36(1)^{e}$		239 0.00148 11	$8 \cdot 10^{-7}$
03	$\begin{array}{c} 238;\!237\\ 35.1;\!36.5\\ ^{242;244}\mathrm{Pu}^{a}\end{array}$	$14.9 \\ (1,17) \\ ^{286;288} \text{Fl}$	5.68(1) ^f 0.101 <i>c</i>		$210\\0.0264\\5$	$7 \cdot 10^{-3}$
04	237 36.5 ²⁴⁴ Pu	11.3 (18,12) ²⁸⁸ Fl	$9.91(1)^{g}$ 0.0491 $_{d}$		$246\\0.142\\5$	$8 \cdot 10^{-7}$
05	237 36.5 ²⁴⁴ Pu	$14.7 (16,14) \\ ^{288}\mathrm{Fl}$	9.91(1) 4.657 -		224 0.101	0.02
06	237 36.5 ²⁴⁴ Pu	11.9 (1,0) 288 Fl	${f 9.91(1)^g} \ {f 0.620}_d$		$171\\0.328\\6$	$8 \cdot 10^{-7}$
07	237 36.5 ²⁴⁴ Pu	$\begin{array}{c} \text{missing}^h\\ (7,17)\\ ^{288}\text{Fl} \end{array}$	9.92(1)		223 0.0133 13	0.04
08	237 36.5 ²⁴⁴ Pu	13.6 (17,18) 288 Fl	9.91(1) ^g 2.408 -	9.33(1) 0.0213	$141 + 27 \\ 0.000518 \\ 10$	$3 \cdot 10^{-12}$
09	241 39.2 $^{244}Pu^{a}$	15.3 (23,18) 288 Fl	$9.93(1)^{b} \\ 0.412 \\ {}_{d}$		$231\\0.00455\\2$	$8 \cdot 10^{-7}$
10	241 39.2 ²⁴⁴ Pu ^a	15.0 (22,11) 288 Fl	9.92(1) ^b 0.170 d		$234+3 \\ 0.165 \\ 8$	$8 \cdot 10^{-7}$

	TABLE I: Continued.						
No.	$\langle E_{\rm lab} \rangle \ ({\rm MeV})$ $\langle E_{\rm com} \rangle \ ({\rm MeV})$ ${ m target}^a$	E _{rec} (MeV) pixel (x,y) isotope	$E_1 \text{ (MeV)}$ $\Delta t_1 \text{ (s)}$ $E_{ph} \text{ (keV)}$ $E_{e-} \text{ (MeV)}$	$E_2 \text{ (MeV)} \\ \Delta t_2 \text{ (s)} \\ E_{ph} \text{ (keV)} \\ E_{e} \text{ (MeV)}$	$E_{SF} \text{ (MeV)} \\ \Delta t_{SF} \text{ (s)} \\ N_{\text{Ge}}$	$N_{ m random}$	
11	241 39.2 ²⁴⁴ Pu	14.6 (5,15) 288 Fl	$9.94(1)^{g}$ 0.748 -		$\begin{array}{c} 241{+}16\\ 0.256\\ 6\end{array}$	$8 \cdot 10^{-7}$	
12	241 39.2 ²⁴⁴ Pu	$^{14.6}_{(25,15)}_{^{288}\mathrm{Fl}}$	$9.87(2)^i$ 0.0512 $_d$		$\begin{array}{c} 229\\ 0.456\\ 2\end{array}$	$8 \cdot 10^{-7}$	
13	241 39.2 ²⁴⁴ Pu	14.8 (12,15) 288 Fl	9.92(1) 0.860 -		$172+18 \\ 0.0280 \\ 6$	$4 \cdot 10^{-4}$	
14	241 39.2 ²⁴⁴ Pu	$\begin{array}{c} \text{missing}^h\\ (14,12)\\ {}^{288}\text{Fl} \end{array}$	9.94(1) 		203 0.00839 6	$9 \cdot 10^{-5}$	

^{*a*}For the first part of the experiment, the target wheel comprised one segment of enriched ²⁴²Pu and three segments of enriched ²⁴⁴Pu. For the second part of the experiment, all four segments of the target wheel were made of enriched ²⁴⁴Pu. ^{*b*}Event triggered 200-s beam shutoff.

^cEvent close to the beam-on period with many Ge crystals signaling.

^dDelayed γ ray(s) observed within $\Delta t = [1, 7]$ µs. Delayed hits in the germanium detectors are disregarded in the

interpretation because more than one randomly correlated hit of delayed character is expected [20].

^eThe random probability for a full-energy α -event in the energy interval [6,12] MeV being in prompt coincidence with an

electron was < 0.01 for the experiment. See Ref. [20] for details.

 ${}^f\!\mathrm{Escape}$ event. See Ref. [20] for details.

 g Event triggered 300-s beam shutoff.

^hImplantation event searched for in a period of 8 s prior to the fission event concluding the decay chain.

^{*i*}Reconstructed event; the detected energies were 0.56(1) MeV in the implantation detector and 8.86(1) MeV in the box DSSSD.

FIG. 1: (Color online) The left column provides experimental decay-energy spectra from events associated with the decay step $^{286}\text{Fl} \rightarrow ^{282}\text{Cn}$. For a single entry, a Gaussian with integral one and a width compliant with its measured uncertainty was added into the respective spectrum. The numbers at the top left of each panel in the left column are the (α -decay) energies extracted by computing the histogram mean in the interval [9.9,10.5] MeV. The middle and right columns provide the correlation times for the decays of ^{286}Fl and ^{282}Cn , respectively. Experimental data points are comprised in the histograms (black lines). The shaded areas (green) provide correlation-time distributions expected for the corresponding half life, $T_{1/2}$, which are given in the top left corner of each panel. For all panels, the number behind the hashtag, #, indicates the number of available data points. The first row, panels (a)-(c), refers to previous direct production of ^{286}Fl [33–36]. The second row, panels (d)-(f), refers to previous indirect production of ^{286}Fl [37–39] The spectra in the third row, panels (g)-(i), are the sums of the spectra in the first and second row. The fourth row, panels (j)-(l), refer to the present data (cf. Table I). The event of main interest (excited state in ^{282}Cn , cf. chain 02 in Table I and main article) is highlighted with a yellow background. The spectra in the fifth row, panels (m)-(o), are the sums of the spectra in the third and fourth row, i.e. comprise current best values for the main decay characteristics of ^{286}Fl and ^{282}Cn .

FIG. 2: (Color online) The left column provides experimental decay-energy spectra from events associated with the decay step 288 Fl \rightarrow 284 Cn. For a single entry, a Gaussian with integral one and a width compliant with its measured uncertainty was added into the respective spectrum. The numbers at the top left of each panel in the left column are the (α -decay) energies extracted by computing the histogram mean in the interval [9.5,10.3] MeV. The middle and right columns provide the correlation times for the decays of 288 Fl and 284 Cn, respectively. Experimental data points are comprised in the histograms (black lines). The shaded areas (green) provide correlation-time distributions expected for the corresponding half life, $T_{1/2}$, which are given in the top left corner of each panel. For all panels, the number behind the hashtag, #, indicates the number of available data points. The first row, panels (a)-(c), refers to previous direct production of 288 Fl [48,9,28,33,37]. The second row, panels (d)-(f), refers to previous indirect production of 288 Fl [40–42]. The spectra in the third row, panels (g)-(i), are the sums of the spectra in the first and second row. The fourth row, panels (j)-(l), refer to the present data (cf. Table I). The event of main interest (discovery of 280 Ds, cf. chain 08 in Table I and main article) is highlighted with a yellow background. The spectra in the fifth row, panels (m)-(o), are the sums of the spectra in the third row, i.e. comprise current best values for the main decay characteristics of 288 Fl and 284 Cn.

Label	previous	previous	previous	this work	all
	(Cn&Fl)	(Lv&Og)			
$^{286}\mathrm{Fl}$ and $^{282}\mathrm{Cn}$					
No. of chains	11	16	27	2	29
References	[33 - 36]	[37 - 39]			
$T_{1/2}(^{286}\text{Fl} \text{ (ms)})$	$133(^{57}_{31})$	$115(^{57}_{31})$	$124\binom{34}{22}$	$93\binom{224}{39}$	$121\binom{31}{20}$
data points; $\sigma_{\Theta_{exp}}$	11; 1.00	11; 1.44	22; 1.26	2; 0.67	24; 1.22
$[\sigma_{\Theta, \text{low}}, \sigma_{\Theta, \text{high}}]$ [43]	[0.67, 1.81]	[0.67, 1.81]	[0.82, 1.74]	[0.04, 1.83]	[0.84, 1.72]
data points; E_{decay} (MeV)	$6 ; 10.23(5)^a$	$8; 10.18(5)^a$	14; $10.20(4)^a$	1; 10.16(1)	$15 ; 10.19(3)^{a}$
				1 ; 9.60(1)	1 ; 9.60(1)
$T_{1/2}(^{282}Cn) (ms)$	$0.74(^{45}_{20})$	$1.24(^{75}_{34})$	$0.96(^{35}_{20})$	$1.42(^{343}_{59})$	$0.98(^{33}_{20})$
data points; $\sigma_{\Theta_{exp}}$	7 ; 1.05	$7 ; 0.43^{b}$	14; 0.92	2; 0.04	16; 0.87
$[\sigma_{\Theta,\text{low}}, \sigma_{\Theta,\text{high}}]$ [43]	[0.52, 1.87]	[0.52, 1.87]	[0.73, 1.77]	[0.04, 1.83]	[0.77, 1.75]
288 Fl and 284 Cn					
No. of chains ^{c}	24	12	36	11	47
References	$[4,\!8,\!9,\!28,\!33,\!37]$	[40-42]			
$T_{1/2}(^{288}\text{Fl})$ (s)	$0.67(^{18}_{11})$	$0.53(^{23}_{12})$	$0.62(^{13}_{9})$	$0.77(^{38}_{19})$	$0.65(^{12}_{8})$
data points; $\sigma_{\Theta_{exp}}$	23; 0.87	11; 0.91	$34 ; 0.88^{b}$	9; 1.48	43; 1.04
$[\sigma_{\Theta,\text{low}}, \sigma_{\Theta,\text{high}}]$ [43]	[0.83, 1.73]	[0.67, 1.81]	[0.91, 1.65]	[0.62, 1.84]	[0.95, 1.61]
data points; E_{decay} (MeV)	$22 ; 9.92(2)^d$	$10; 9.92(3)^d$	$32; 9.92(2)^d$	$11 ; 9.92(1)^d$	$43 ; 9.92(1)^d$
$T_{1/2}(^{284}{\rm Cn}) \ {\rm (ms)}$	$128(^{31}_{21})$	$126({}^{54}_{29})$	$128(^{25}_{18})$	$96\binom{42}{22}$	$121\binom{20}{15}$
data points; $\sigma_{\Theta_{exp}}$	27; 1.05	11; 1.03	38; 1.05	11; 1.52	49; 1.20
$[\sigma_{\Theta \text{ low}}, \sigma_{\Theta \text{ high}}]$ [43]	[0.87.1.69]	[0.67.1.81]	[0.93.1.63]	[0.67.1.81]	[0.97.1.59]

TABLE II: Overview of correlation time analyses of single decay steps according to Ref. [43] of various ensembles of decay chains associated with previous direct ('Cn&Fl') and indirect ('Lv&Og') and present direct production of ^{286,288}Fl and ^{282,284}Cn, respectively. These are the same ensembles as displayed in the corresponding rows of Figs. 1 and 2.

^aResult from the integration of the energy spectra in the left column of Fig. 1 in the interval [9.9,10.5] MeV. ^bThe experimental value for $\sigma_{\Theta_{exp}}$ falls outside the confidence limit, but such that the agreement with a single decay curve rather fits too well. See Fig. 1(f).

^cHalf-life analysis of 284 Cn includes in addition four decay chains from element 114 chemistry experiments behind TASCA [8,9].

^dResult from the integration of the energy spectra in the left column of Fig. 2 in the interval [9.5,10.3] MeV.