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Preface
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in the form of four journal articles, referred to as Paper A, B, D, and E, and one
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the �ve papers together.
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Abstract
Novel and increased use of glass in building construction has been made possible,
as a result of methods of mass production introduced during the 20th century and
advanced computational structural analyses. With modern use of glass structures, a
range of demands emerge which need to be addressed in the strength design process.
The aim of the thesis work has been to develop experimentally veri�ed prediction
models that can be used as design tools for advanced glass structures. The �rst part
of the thesis consists of an introduction and overview with a background and motiv-
ation for the work carried out, the aim and objectives, along with a summary of the
appended papers, and a conclusion and outlook with suggestions for further work. The
second part of the thesis consists of �ve appended publications, Paper A to E. Paper
A presents results from a wide-ranging survey of laboratory tests which was conducted
pertaining to the strength of new annealed soda-lime �oat glass tested in an ambient
environment. With a basis in the survey, four standard statistical distributions were
compared with respect to their performance as strength models, namely the normal,
lognormal, Weibull, and Gumbel. It was concluded that the extreme value distribu-
tions provide basic models for edge failures but perform poorly for surface fracture
origins. In Paper B, C, and E, various numerical implementations of �nite-size and
�aw-size based weakest-link systems were developed and applied to model the fail-
ure stress and fracture origins on the surface of plates subject to lateral loading, in
addition to a consideration of strength-scaling size e�ects. Applications were made
to a range of di�erent load cases including small plates subject to ring-on-ring and
ball-on-ring loading, large linearly supported plates subject to uniform pressure, and
large panels with complex geometry subject to impact loading. In Paper E, results
were presented from laboratory tests which were carried out on two series of annealed
glass plates subject to ring-on-ring and ball-on-ring loading in an investigation of the
distribution of failure stress and fracture origin, and their dependence on the sur-
face area exposed to greatest tension. The Weibull e�ective areas were expressed in
closed-form and employed to calculate a strength-scaling size e�ect. According to
the observed surface strength data, the weakest-link premise of the ordinary Weibull
model is rendered intractable and more sophisticated approaches are warranted. Fi-
nally, it was concluded that there is a need for additional research on the surface
condition of glass that can lead to more reliable information about the suitable choice
of model parameters. In Paper D it was considered that the Weibull distribution
parameters that are �tted to laboratory measurements of as-cut, arrised, ground, and
polished edge strength exhibit considerable variability. Estimates for the character-
istic 5%-fractile edge strength were obtained in a hierarchical modelling approach by
considering the Weibull parameters as nested random variables. It was shown that
glass supplier random e�ects are important to consider in addition to e�ects on the
observed strength due to environmentally assisted crack growth, applied stress rate,
and edge length exposed to maximum stress.





Populärvetenskaplig
sammanfattning
Glas är ett genomsiktligt material som används i byggnader för att utforma miljöer
som är ljusa och upplevs som öppna. Modernt byggnadsglas används i konstruktioner
som utsätts för betydande laster jämfört med ett traditionellt fönsterglas. Som
exempel kan nämnas trappsteg, balustrader, golv, tak och väggpaneler där glasets
geometriska utformning kan vara mer eller mindre komplex. Det �nns ett behov av att
utveckla metoder som kan användas för att dimensionera moderna glaskonstruktioner.
En följd av bristen på metoder är att stora säkerhetsfaktorer måste tillgripas. Det
medför att materialåtgången blir onödigt stor vilket leder till tunga konstruktioner
med extra produktionskostnader och större energiåtgång under transporten från
glasverket till byggarbetsplatsen. Avhandlingsarbetet syftar till att utveckla modeller
för hållfastheten och metoder som kan användas för att göra förutsägelser om
styrkan i avancerade glaskonstruktioner. I förlängningen kan modellerna tillämpas i
beräkningshjälpmedel som används av konstruktören.

En genomgång av forskningslitteraturen resulterade i en bred sammanställning
av hållfasthetsmätningar. Dessa har använts för att pröva en rad hypoteser om glasets
hållfasthet och för att anpassa en nydanande modell för kanthållfastheten. Bland
annat undersöktes hur de vanligast förekommande bearbetningarna av glaskanten
påverkar den uppmätta hållfastheten. I teorin är glas ett mycket starkt material. I
praktiken är emellertid hållfasthetsvärdet begränsat och förknippat med en betydande
statistisk spridning. Experiment visar även att brottets läge sällan sker just där den
största påkänningen �nns. Spridningen i uppmätt hållfasthet kan förklaras genom att
anta att glasytan är bemängd med en mångfald mikroskopiska defekter som har vissa
slumpmässiga egenskaper. Defekterna uppstår på grund av olika betingelser redan
under framställningen, hanteringen, transporten och senare medan glaset brukas och
underhålls. I närheten av defekterna koncentreras spänningarna och når kritiska nivåer
som leder till brott. Därför är glas ett sprött material som tenderar att gå till brott
till synes utan förvarning. I avhandlingsarbetet har hållfasthetsmodeller utvecklats
som bygger på att defekterna representeras av plana sprickor med en förenklad
geometrisk kon�guration. Beräkningsmodellerna tillämpades på fallstudier inbegripet
en avancerad glaskonstruktion i en lokal i en o�entlig byggnad. Konstruktionsdelen
utsätts för en mjuk stötlast som i princip motsvarar utfallet av att en människa av
en olyckshändelse faller in mot glaset. Tillämpningar gjordes även i ett studium av
glasplattor som böjs till brott under kontrollerade former i experiment. En möjlighet
är att använda modellerna som beräkningshjälpmedel i certi�eringsprocesser av glas-
konstruktionsdelar för att minska behovet av dyra och tidskrävande experiment. En
annan möjlighet är att införliva vissa av metoderna i be�ntliga beräkningshjälpmedel
som redan används av glasbranschen i Sverige för att utföra e�ektivare dimensionering
av konstruktioner.
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Introduction and overview





1

Introduction

1.1 BACKGROUND

Glass has been used in buildings since the time of ancient Rome. The functional
role of traditional window glass is to shut out the cold and weather while allowing
for transmission of daylight. Roman baths, for instance, depended on their heating
among other things on large glazed windows to retain the hot air in the rooms and
achieve some solar gain, as well as to provide natural light (Addis 2007). In addition,
signi�cant architectural use is evident in e.g. medieval cathedrals where stained
glass windows, which were made possible through skilful addition of metallic salts
during manufacture, satis�ed trends for style and design (Addis 2007, Macfarlane &
Martin 2002). Until only recently, glass in building construction was limited to such
functional and architectural use. Methods of mass production introduced in the
20th century together with new techniques for post-processing the manufactured
glass, and advanced computational structural analyses have created opportunity
for novel and increased use of glass in construction (Fröling 2013, Haldimann et al.
2008). Exposure to natural light is important for human well-being, however, the
reality is that we spend up to 80%-90% of our time indoors (Christo�ersen 2011,
Marqueze et al. 2015). The bene�t of glass in buildings on human health and
well-being can be profound. With modern use of glass in building construction,
the structural role of the glass unit is signi�cant due to its exposure to considerable
loading as it is utilized as beam, pillar, plate, or panel element. The strength design
must take into account various static load cases due to e.g. snow load or secondary
structural members, and dynamic load cases due to e.g. accidental impacting from
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Figure 1.1: Number of retrieved records per year in Scopus (www.scopus.com)
from search phrase (1.1). The data includes the year 2019.

a soft body. Hence, with modern use of glass in structures there emerges new
opportunities as well as demands on the design process which may involve a whole
range of di�erent design alternatives to be evaluated. There is a need for improved
methods to be developed which can be applied in a safe strength design of advanced
glass structures. When methods are lacking, an overly conservative strength design
is adopted which leads to considerably more material than necessary being used in
structures. This leads to additional production costs and also requires more energy
to be spent in transporting the manufactured units from the production site to the
construction site. Optimally designed glass structures are a matter of safety, cost
e�ciency, as well as sustainability.

Research into structural use of glass in building is an emerging �eld. This is re�ected
in the increased number of dedicated scienti�c journals and conferences as well as
in the overall number of peer-reviewed publications that deal with the topic. As
an indication of the increase in research activity, consider the statistics generated
by the following search string in the Scopus database (www.scopus.com) which
is an abstract and citation database for scienti�c journals, books, and conference
proceedings.

{structural glass} (1.1)

The search is limited to the title, abstract, and keywords �elds, in addition to the
subject area �engineering�. The number of retrieved records per year is illustrated in
the bar graph in Fig. 1.1. Evidently, engineering structural glass is being researched
at an increased rate.
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Figure 1.2: The strength of glass depends on a range of factors.

The strength of glass depends on a range of factors, see Fig. 1.2. To begin with,
it can only be revealed by destroying the glass. As a matter of fact, the strength
depends on the load history, environment, and temperature, as well as the overall
size of structure exposed to tension, and the state of surface, the condition of
which might be new as-received or aged and weathered. The simultaneous action of
stress and environmental conditions promote a fatigue phenomenon in glass. The
combined e�ect of load-history and climate on strength can be accounted for by
implementing the stress corrosion rate theory or some empirical formula.

A substantial number of experiments on annealed glass have been conducted over
the past decades. Those tests provide statistics about the strength and the location
of fracture origins. The results demonstrate that the strength exhibits a large
variation ranging over one order of magnitude. Also, the fracture origin often does
not coincide with the location of maximum tensile stress. There is an element of
randomness to the phenomenon of glass fracture that clearly warrants a stochastic
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approach to modelling and a statistical treatment of empirical data, more so perhaps
than for any other conventional building material in present use. In spite of e�orts
to devise probabilistic strength models for glass, it remains a great challenge to
model and predict the strength value for some structural unit in general.

On a macroscopic scale and to the naked eye, the glass surface appears smooth
almost without defect. With glass manufactured using the �oat process production
method, the surface seems also to be perfectly �at. Theoretically, such material
could be extremely strong. And yet, on a microscopic scale, it is assumed that
the surface contains numerous and minute �aws that limit the practical strength to
such magnitudes that are commonly observed in experiments. Present techniques
for modelling and predicting the strength are based either on a fracture mechanical
method that takes as starting point the microscopic scale of events, or on some
phenomenological approach that starts out from a macroscopic scale. As an ex-
ample of the latter we may take the adoption of a standard statistical distribution
such as the normal distribution to model fracture stress. Current failure predic-
tion models, however, are limited in scope. At best, they are suited to particular
test arrangements and environmental conditions. In fact, the failure prediction re-
mains a formidable challenge in the general case of a structural unit with boundary
conditions that can vary from very rigid to fairly �exible with continuous support
or point �xings, where the load is either distributed or concentrated, and with
the geometrical properties of glass depending on e.g. aspect ratio and the exist-
ence of boreholes. Additionally, although failure prediction generally pertains to
the strength value, it can also be useful to make predictions about the failure ori-
gin. There is need for further development of a failure prediction model that can
be conducive to the improvement of design methodology, structural standards and
building codes.

The failure prediction and strength design of a glass structure is dependent on a
range of theories and methods at the material as well as the structural level as
illustrated in Fig. 1.3. Fracture mechanical theories consider the microscopic be-
haviour of solids and form a basis of failure prediction models for use with brittle
materials. At the structural level, mechanical models allow for the determination
of the stresses and strains in plates and beams due to bending under various forms
of loading and support conditions. In combination, fracture mechanical and struc-
tural mechanical models provide a powerful tool for the analysis of brittle specimens
subjected to bending loads. However, the phenomenon of static fatigue complicates
prediction-making. Experimental test results can be used to validate the models
at the structural level, to make investigations into the surface condition at the
material level e.g. through the estimation of a surface �aw size density function,
and to quantify the rate of subcritical crack growth. Ultimately, it is necessary to
employ probability theory and methods of statistical inference at both the material
and the structural level to account for the various aspects of glass failure, e.g., to
represent surface microcrack concepts, and to draw inference about model para-
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meters and performance. Some of the methods thus employed are made feasible
by use of numerical techniques such as the �nite element method (FEM) which is
key to computing the stresses and strains in solids subjected to arbitrary boundary
conditions. Finally, the failure prediction model has to be put to practical use by
carefully considering the requirements and directives of modern building codes and
structural standards.

Monolithic panes of annealed �oat glass are an important object for modelling
because according to the structural standards, e.g. EN 16612:2019, the strength of
a glass pane is based on the so-called characteristic value for the bending strength of
annealed glass. In practice, a glass pane may be tempered to increase the breaking
stress, and a laminated structure may be formed by bonding together multiple
plies of glass, see further Sec. 2.1.1. In either case, knowledge of the strength of a
monolithic pane of annealed glass is key to making strength-predictions.
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1.2 AIM AND OBJECTIVES

The main aim of the research is to develop experimentally veri�ed models that can
be used as design tools for failure prediction of advanced glass structures subjected
to various loads and boundary conditions. To reach the aim, the following objectives
are considered which are dependent on a range of theories and methods as presented
in Fig. 1.3.

a) Create an overview of glass failure modelling approaches according to basic
features and underlying assumptions. What are some of the utilities and
drawbacks in general when it comes to various modelling approaches?

b) Collect and organize empirical data on the strength of new monolithic an-
nealed �oat glass that is tested in ambient conditions. Survey the laboratory
tests reported in scienti�c journals, conference proceedings, and academic
dissertations.

c) Appraise the performance of the most pertinent standard statistical distri-
butions when those are applied to model the strength observed in laboratory
tests. Does the edge strength data exhibit signi�cantly di�erent features com-
pared to the surface strength tests?

d) Develop a surface strength model assuming random sampling of Gri�th �aws
in Monte Carlo simulations of glass specimens extracted from virtual jumbo
panes. How should the surface condition be represented, e.g., what would the
stochastic properties of the Gri�th �aws be?

e) Apply the surface strength model to simulate the fracture origin and strength
of plates subject to various forms of loading. Illustrate how the method can
be used as a practical tool, e.g., in tests where the survival probability for
some structural component is assessed.

f) Investigate the surface strength-scaling size e�ect. For example, calculate and
compare the Weibull e�ective areas for nominally equal specimens subject
to diverse bending setups that expose dissimilar surface areas to maximum
tension.

g) Conduct laboratory tests to study the distribution of strength, fracture ori-
gin, and strength-scaling size e�ects, and to verify the Weibull e�ective area
solutions and the numerical surface strength model.

h) Perform an in-depth analysis of the edge strength based on surveyed data
measurements. How do common edge treatments di�er from one another if
at all? Can the empirical data be used to assess the possible in�uence that
the supplier or manufacturer has on the random variability in the observed
test results?
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1.3 LIMITATIONS

Certain limitations are necessary for the work carried out in the thesis. The main
focus is on monolithic panes of �oat glass that are new, in the as-received condition.
It is generally assumed that the glass is stressed in an ambient environment meaning
that the temperature and relative humidity correspond to indoor conditions. Flaws
in the bulk are disregarded and it is assumed that failure is governed by surface
�aws. It is assumed that the shape of �aws can be represented by planar cracks.
Mode III crack displacement is not considered in a fracture criterion. Crack healing
e�ects are not taken into account in the strength modelling. The analysis and
discussion of structural standards is limited mainly to previous drafts for a European
standard for strength of glass in building, prEN 16612:2013, prEN 16612:2017, and
the subsequent EN 16612:2019.





2

Glass material

The background information and facts in Sec. 2.1 are based on Le Bourhis (2008)
where no reference is cited explicitly.

2.1 MANUFACTURE

Soda-lime silicate glass is an amorphous and inorganic ceramic material. The man-
ufacture involves a long process line, see Fig. 2.1. Glass for use in structures is
composed of the following raw materials which are selected in the batching oper-
ation, viz. sand, sodium carbonate, calcium carbonate, and various metal oxides.
The composition of raw material is indicated in Tab. 2.1. The material composition
is further standardized in EN 572-1. The role of sodium in the batch is to soften
the glass network and reduce the melting temperature to a practical regime while
the addition of calcium stabilizes the network (McLellan & Shand 1984). Various
metal oxides are added, among other reasons, to facilitate in the �ning operation.

400 m

Melt Fining Tin bath Annealing lehr Cutting

Batch
1550 ◦C 1000 ◦C 600 ◦C 500 ◦C 100 ◦C

Figure 2.1: Flat glass production line with the �oat process. Adapted from
Haldimann (2006) and Le Bourhis (2008).
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Table 2.1: Raw material composition in a batch of soda-lime silicate �oat glass
(Le Bourhis 2008).

Raw material Sand
Sodium
carbonate

Calcium
carbonate

Metal
oxides

Concentration (%) 54 24 16 2

Table 2.2: Typical values for a range of material properties (Le Bourhis 2008)

Density (kg m−3) 2500
Thermal conductivity (W (mK)−1) 1.00
Thermal expansion coe�. (10−6 K−1) 8.5
Surface energy (J m−2) 0.6

The melting is done in a furnace which is usually combustion heated.

The glass material is formed by a network of Si�O which have covalent bonds and
that is modi�ed by Na+ and Ca2

+ ions through ionic bonds. The glass network is
characterized by a short-range order; after about �ve interatomic distances, order
almost vanishes. In three dimensions, the Si and O atoms arrange to form tet-
rahedral elements with a Si atom at the centre. The elemental tetrahedrons are
connected by the sharing of corners. The addition of Na+ causes rupture of O�O
bonds, however, the pair of tetrahedra still interact electrostatically. The modi-
�cation of the network induces a decrease in viscosity. This is of great practical
importance because it lowers the melting temperature of glass signi�cantly. In pure
silica the melting temperature is about 1700 ◦C while in soda glass it is only about
790 ◦C after addition of 25% soda to silica. Values for a range of material properties
are given in Tab. 2.2. At room temperature, the viscosity is so high that no �ow
can be observed.

In the �ning operation, the glass composition and temperature is made uniform
through convection, and bubbles are eliminated. In the �oat process, the glass melt
is �oated on a bed of molten tin at a temperature of about 1100 ◦C under a nitrogen
atmosphere. As the glass exits the �oat, it has a temperature of about 600 ◦C.
Then, it enters the annealing lehr where it is cooled down to room temperature.
The thermal history is carefully controlled to design the residual stresses. The glass
is usually cut into standard size panes with the dimensions 6×3.21 m2 (EN 572-1).
The standard thicknesses are given in EN 572-1. Some experiments (Krohn et al.
2002, Tummula & Foster 1975) indicate that the tin side of the �oat glass contains
more severe �aws than the air side. However, to the extent that there may be a
marginal di�erence in strength between the tin and air sides of glass, this should
not necessarily be attributed to the di�usion of tin atoms, but to the contact of the
tin side with the rollers as the glass exits the �oat (Haldimann 2006).
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There are many production parameters with importance for the mechanical prop-
erties of the glass end-product and some of the most important ones with respect
to the edge strength are explained in Kinsella & Lindström (2020), which can also
be found in Paper D. In addition to the edge treatments considered in Paper D,
the strength of the water-cut edge pro�le was investigated by, among others, Veer
& Rodichev (2012).

The �at glass that exits the annealing lehr in the �oat glass production line can
be further processed in several ways to produce various products with added value.
Here follows a description of the operations that are most pertinent to glass products
for structural use. The processing can be done on the manufacturing site or o�-site,
e.g. with a supplier. The basic, un-processed product is in this context understood
to be the monolithic pane of annealed �oat glass with an as-cut edge.

2.1.1 Tempering

Tempering produces a glass sheet with all surfaces subjected to compressive stresses
which are counter-balanced by tensile stresses in the interior. The compressive
surface stresses have to �rst be overcome before the tempered glass can be broken,
unless the fracture is initiated from the interior (Tooley 1984). Thermal tempering
is performed by heating up the glass article close to the transition temperature
at about 650 ◦C and rapidly quenching it by chilling the surface with blasts of
air (McLellan & Shand 1984). The rapidly cooled glass material is subjected to a
thermal gradient while it passes through the viscous-elastic domain which results
in the build-up of compressive residual stresses at the surface. The thermal and
structural histories during tempering are complex and include unknown thermal
transfer coe�cients. However, a simple model for the through-the-thickness stress
distribution can be achieved by assuming a constant rate of cooling and supposing
that no structural relaxation takes place.

A fully tempered glass pane usually has a breaking stress that is increased by a
factor of 2.5 to 3.5 compared to annealed glass (McLellan & Shand 1984). Accord-
ing to EN 16612:2019, the strength of toughened safety glass is about 2.5 times as
great as that of ordinary annealed glass while the strength of heat strengthened glass
is about 1.5 times as great. Upon failure, a fully tempered pane shatters into small
cubes and this is referred to as dicing. The dice are unlikely to cause serious injury.
Thermally toughened glass is standardized in EN 12150-1. Heat-strengthened glass
is produced similarly to fully tempered glass but with a lower rate of quenching
which produces smaller compressive surface stresses. On failure, heat-strengthened
glass does not dice into small fragments like fully tempered glass. Instead, it re-
tains a large fracture pattern similar to annealed glass. Heat-strengthened glass is
standardized in EN 1863-1.
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After thermal toughening has been performed, any occurring nickel sulphide (NiS)
inclusions undergo a slow transformation at room temperature to a lower dens-
ity phase that can prompt spontaneous failure of the glass article. The phase-
transformation can be accelerated in a heat-soak treatment that prevents trans-
formation from taking place during service. A heat-soak test is standardized in
EN 14179-1 that greatly reduces the risk of breakage due to NiS-inclusions during
use of thermally toughened components.

Chemical tempering is performed by immersing the glass in a molten salt bath. The
outer surface of the glass is strengthened through an ion exchange process. It is
possible to achieve much higher surface compression with chemical tempering than
with thermal tempering. However, the ion exchange depth is limited which results
in a much smaller compression depth compared to thermally tempered articles.
Moreover, the ion di�usion rates are very slow for ordinary soda-lime-silica glass
which is widely used in building applications (Tooley 1984).

2.1.2 Laminated glass

Laminated glass is formed by bonding together two panes by a tough polymer in
an autoclave. Polyvinyl butyral (PVB) is the most common choice of interlayer
material and normally two foils are used, each foil having a thickness of 0.38 mm.
However, there exist a whole range of alternative interlayer materials that o�er
higher sti�ness, greater temperature resistance, etc. Laminated glass units achieve
a greatly improved post-fracture behaviour compared to monolithic units due to
the way in which the polymer interlayer absorbs energy from impacting objects,
retains the fractured pieces of glass providing structural redundancy, and limits the
risk of �ying shards (McLellan & Shand 1984). The product standard for laminated
glass and laminated safety glass can be found in EN 14449. For the standard that
governs the determination of interlayer viscoelastic properties, see EN 16613.

2.1.3 Insulating glass units

An insulating glass unit is composed of two or more glass panes with closed cavities
which reduce heat transfer due to radiation, conduction, and convection. A low-
conductivity gas �ll is normally used between the panes. Radiative heat transfer can
be further limited by tinted or coated glazing. The product standard for insulating
glass units can be found in EN 1279-5.
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2.2 CONSTITUTIVE MODELLING

To model a glass material specimen under general loading, a continuum body in
Euclidian space is considered. Suppose a motion that generates a spatial displace-
ment �eld u (for the equations of motion, see further Sec. 3.3.1). The strain tensor
ε describes the deformation completely (Saabye Ottosen & Ristinmaa 2005). For
small displacement gradients and with the displacements resolved into components
parallel to the coordinate axes x, y, and z, it is given by

ε =



εxx εxy εxz
εyx εyy εxz
εzx εzy εzz


 (2.1)

where the elongation strains are

εxx =
∂u1

∂x
, εyy =

∂u2

∂y
, εzz =

∂u3

∂z
(2.2)

and the shearing strains are (Timoshenko & Woinowsky-Krieger 1959)

εxy =
1

2

(
∂u1

∂y
+
∂u2

∂x

)
, εxz =

1

2

(
∂u1

∂z
+
∂u3

∂x

)
, εyz =

1

2

(
∂u2

∂z
+
∂u3

∂y

)
. (2.3)

The Cauchy stress tensor contains all the information necessary to determine the
traction vector t for arbitrary sections through a given point, and it is given by
(Saabye Ottosen & Ristinmaa 2005)

σ =



σxx τxy τxz
τyx σyy τyz
τzx τzy σzz


 (2.4)

Both the strain and stress matrices in (2.1) and (2.4) are symmetric and for sake of
notational simplicity a vector representation is used (see further Sec. 3.3.2) in the
form of Eq. (2.5) and (2.6), viz.

ε =
[
εxx εyy εzz εxy εxz εyz

]T
, (2.5)

and,

σ =
[
σxx σyy σzz τxy τxz τyz

]T
. (2.6)

The isotropic linear elastic response is expressed using Hooke's generalized law in

σ = Dε (2.7)

with (2.5) and (2.6), and with

D =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2 (1− 2ν) 0 0
0 0 0 0 1

2 (1− 2ν) 0
0 0 0 0 0 1

2 (1− 2ν)




(2.8)
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where E is Young's modulus and ν is Poisson's ratio (Saabye Ottosen & Ristinmaa
2005). See Paper E for a table containing representative values of the elastic prop-
erties in glass. A state of plane strain exists when the only non-zero strains are εxx,
εyy, and εxy. In plane stress, the only non-zero stresses are σxx, σyy, and τxy.

The assumption of material linear elasticity is insu�cient for modelling of nonlin-
early elastic and viscoelastic materials such as are present in e.g. the interlayers in
laminated glass and in certain types of gasket in laterally supported plates. For
a further treatment of hyperelastic material modelling the reader is referred to
Holzapfel (2000).

2.3 STATIC FATIGUE AND FRACTURE

Material fatigue means that the strength deteriorates over time. The earliest record
of fatigue in glass is found in Grenet (1899) who subjected rectangular plates and
small rods of glass to three-point bending at various rates of loading. He observed
a decrease in strength as the load-duration was increased. Subsequently, many ex-
periments have manifested environmentally assisted fatigue in glass, see e.g. Baker
& Preston (1946a,b), Culf (1957), Mould & Southwick (1959). The environment
comprises agents such as water, usually in the form of humidity. Static fatigue is
not observed at temperatures below -196 ◦C (Le Bourhis 2008). It has been demon-
strated that static fatigue is not aggrevated by cyclic loading, see e.g. Lü (1997).
Fatigue in glass is conventionally termed static fatigue, perhaps to distinguish it
from cyclic fatigue which is common in the steel engineering literature (Haldimann
2006). Present theories that explain static fatigue are based on the assumption of
pre-existing surface �aws, see Sec. 2.3.2.

The phenomenon of fracture is the loss of contact between parts of a material.
Glass is brittle because it does not yield under strain. Breakage may be sudden
and catastrophic as in a laboratory strength test or a dropped glass, or it may be
slowly progressing in stages such as a crack growing in an automobile windshield
(Quinn 2016). Fracture is usually prompted by the extension of one or multiple
cracks with possible branching of the cracks. The fracture pattern can provide a
wealth of information about, e.g., whether failure was thermally or mechanically
driven, whether the stress was large or small, and whether the stresses were uniaxial
or multiaxial (Quinn 2016). As an example of the use of fractography in practice,
consider that thermally toughened glass according to EN 12150-1:2015 should break
in a prescribed manner that can be veri�ed in a fragmentation test. The test involves
to perform a particle count after fracture within a prede�ned surface area, and to
measure the diameter of the longest particle. The basis for this is the fact that the
amount of crack branching is dependent on the magnitude of residual compressive
stresses that are present. For a further treatment of visual examination of fracture
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patterns (fractography), see e.g. Mencik (1992) and Quinn (2016).

The fracture origin can mean a point where the fracture has started (Mencik 1992).
The notion of fracture origin adopted in the appended papers A to E corresponds
with Quinn (2016) who uses a broader de�nition that takes into account not just a
location but also an object, and hence it refers to the location of a �aw or defect. In
this context, a �aw does not imply something defective and should not be confused
with such.

Suppose that the strength is determined by the work necessary to separate the
atoms in a given plane which slices the material in two. From a purely theoretical
point of view then, the inert strength can be estimated at (Le Bourhis 2008, Orowan
1949, Polanyi 1921)

σf =

√
Eγ

ρ0
(2.9)

where γ is the surface energy of the cleavage surface, and ρ0 is the Si�O distance.
Taking E = 70 GPa, ρ0 = 0.15 nm, and the value of γ from Tab. 2.2, the strength
is found to be about 16 GPa (Le Bourhis 2008). However, experiments on annealed
�oat glass demonstrate that this value is incorrect by more than two orders of
magnitude, see further Paper A and E. It is well-known that a scratch can reduce
the strength of a glass sheet. In fact, glass is cut into the desired dimensions by
�exuring a pane that has been scored on the surface with the use of a cutting wheel
(Le Bourhis 2008).

In the appended papers, fracture mechanics models are used to explain how some
material �aw might prompt the onset of fracture in a solid. The basis is a rep-
resentation of the �aw as a crack, and assuming that cracks propagate in response
to stresses and strains. A crack is a �at separation bounded within the material
by a leading edge which is approximated by a simple curve (Mencik 1992). A �aw
can refer to many sorts of defects depending on the scale of things (submicroscopic,
microscopic, macroscopic), for a broader discussion see Mencik (1992). In the fol-
lowing, a crack refers to an idealization. It is a concept that represents the type
of �aw that is thought to prompt failure in glass. This is sometimes referred to as
Gri�th �aws.

Here follows a brief overview of the background to fracture mechanics. For a more
in-depth treatment of this topic, see e.g. Hellan (1984). Based on linear elasticity
theory, Inglis (1913) presented a logical explanation for the weakening e�ect of
a material �aw. He considered the elastic stresses near the edge of an elliptical
through-the-thickness hole in an in�nite plate of isotropic material subjected to
uniform uniaxial tension. It was found that the crack warps the stress �eld. The
maximum stress at the tip of the elliptical hole with radius of curvature ρ due to
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I II III

Figure 2.2: Crack displacement modes: mode I opening, mode II sliding, and
mode III tearing. Adapted from Broek (1983).

far�eld stress σ was calculated to be

σ̂ = σ

(
1 + 2

√
a

ρ

)
≈ 2σ

√
a

ρ
, if ρ� a (2.10)

where σ̂ denotes the crack tip stress and a is the half major axis. Supposing that
an elliptical crack represents a real material �aw, Inglis' (1913) model explains how
a �aw is capable of prompting failure for far�eld stresses well below the theoretical
bond strength. Taking the radius of curvature to correspond to the intermolecular
dimensions of the material and the maximum stress to correspond to the material
strength, Inglis' theory of strength shows that the following quantity is a constant,
viz.

constant =
1

2
σ̂
√
ρ ≈ σ√a (2.11)

Gri�th (1920) adopted Inglis' (1913) stress solution and developed a fracture con-
dition based on a consideration of the elastic energy released upon crack growth.
A closed and reversible thermodynamic system is studied that consists of a solid
material and an external load applied quasi-statically. The �rst and seconds laws
of thermodynamics combined then produce the following equation

U̇internal =
δW

dt
(2.12)

where U denotes the internal energy and δW/dt is the rate of mechanical work
input (Saabye Ottosen & Ristinmaa 2005). Speci�cally, Gri�th considered a plate
(the same as was studied by Inglis) of in�nite extension with a traction-free central
elliptical cavity of length 2a. The plate is subjected to a remote uniaxial stress σ.
Gri�th supposed that the internal energy is composed of elastic strain energy, U ,
and potential surface energy. He introduced as a state variable, a, the surface area
per unit thickness of the plate. In this case the rate of external work performed
equals to zero, and the system equation becomes

4aγ − U̇ = 0 (2.13)
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where γ is the surface tension. The system tends towards a state of minimum
potential energy. The condition that the crack extends is

d

da

(
4aγ − U̇

)
= 0 (2.14)

Gri�th recognizes the fact that the linear elastic solution to the strain near the
tip of the cavity is no longer valid. However, he argues that if the traction-free
crack is su�ciently large, the error in strain energy calculated according to linear
elasticity theory is negligible. Gri�th adopts an atomistic view on surface energy
as the energy required to overcome surface traction and increase the surface of a
body. When a body is split in two the work necessary to overcome the molecular
attractions corresponds directly to the surface energy.

The condition for crack growth in Eq. (2.14) means that the rate of elastic en-
ergy release, typically denoted by G in most literature, is balanced by the energy
consumed during crack propagation. The critical energy release rate which can
be determined experimentally, is a measure of material toughness. The fracture
criterion is expressed in

G ≥ GIc (2.15)

where GIc denotes the mode I critical energy release rate. The three modes of crack-
ing denoted by mode I, II, and III, respectively, are illustrated in Fig. 2.2 (Irwin
1958). Mode I refers to crack opening due to displacements normal to the crack
plane surfaces. Mode II and III describe in-plane and out-of-plane shearing dis-
placement cracking (Broek 1983). With the elliptical crack used in Inglis' solution,
which pertains to pure mode I crack opening, the breaking stress under plane stress
conditions is

constant =

√
2Eγ

π
= σ
√
a (2.16)

where γ is the surface energy. In fact, both theories in (2.11) and (2.16) predict the
invariance of the quantity σ

√
a, see also Suo (2016) for a discussion of this.

Another way of representing the fracture condition is provided by a characterization
of the elastic stress �eld near the crack tip (Broek 1983). A solution in rectangular
coordinates was found by Westergaard (1939) for a sharp through-the-thickness
crack in an in�nite plate subjected to uniform biaxial tension. The basic equation
for in-plane loaded elastic plates is written by means of Airy's stress function, χ,
as follows,

∇2(∇2χ) = 0 (2.17)

where ∇ is a linear operator; for a derivation see Hellan (1984). The stress function
is a scalar valued function that speci�es the three stress components acting in a given
point. The boundary conditions for a wedge-like crack, as illustrated in Fig. 2.3,
are in polar coordinates

σθ = τrθ = 0 for θ = ±α (2.18)
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The sharp crack representation is obtained by letting α → π. By use of the Euler
identity, Irwin (1957) showed that the following expressions for the stress �eld
near the crack tip approximate those of Westergaard (1939). Expressed in polar
coordinates, the stresses near the crack tip were calculated to be

σx = σ

√
a

2r
cos

θ

2

(
1− sin

θ

2

)
sin

3θ

2
(2.19)

σy = σ

√
a

2r
cos

θ

2

(
1 + sin

θ

2

)
sin

3θ

2
(2.20)

τ = σ

√
a

2r
sin

θ

2
cos

θ

2
cos

3θ

2
(2.21)

where a is the semi-crack length. The formulation of a fracture criterion in the ap-
pended papers is directly based on Irwin (1957) who introduced the stress intensity
factor (SIF) which is denoted by KI in the case of mode I opening displacements.
Considering Eq. (2.19), (2.20), and (2.21), it follows that

σij =
KI√
2πr

fij(θ) (2.22)

where KI = σ
√
πa, and the SIF completely determines and characterizes the stress

�eld at the crack tip (Broek 1983). Irwin demonstrates how, under the assumption
of linear elasticity, the work done to close the crack corresponds exactly to the crack
driving force, G, when the stresses near the crack tip are approximated by those
obtained with the Westergaard solution, so that

GI =
βK2

I

E
β =

{
1 for plane stress

1− ν2 for plane strain
(2.23)

provided the crack moves in the plane of the existing crack. Eq. (2.23) is derived
from the expressions for stress and displacement in the vicinity of the crack tip
by considering the relation between crack driving force and separation work that
applies in a purely elastic body. For a more in-depth treatment of this including
the general situation with anti-symmetrical displacement modes, see Hellan (1984).
The fundamental di�erence between Irwin (1957) and Gri�th (1920) is that while
Irwin's analysis is predicated on a crack tip singularity, i.e. a mathematically sharp
crack, Gri�th's approach is general and does not really depend on such a represent-
ation of the �aw. Consequently, the equations given by Irwin (1957) that express
the crack driving force in terms of the stress-intensity factor are restricted to those
cases where the crack tip is conceived as a singularity. It is not evident that this
model was constructed by starting from the real world and stripping out complicat-
ing factors; the stipulation of a crack tip singularity does not present a key feature
of the real world. �Although the model world is simpler than the real world, the
one is not a simpli�cation of the other.� (Knuuttila 2009, Sugden 2002). What
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Figure 2.3: Polar stresses at a wedge-like notch. Adapted from Hellan (1984).

kind of realism is viable for glass fracture theory? Irwin's model o�ers explanatory
power and is practically useful. As applied science aims at knowledge, simplicity
and manageability is a concern and simplifying assumptions may be introduced
even at the expense of truthlikeness (Niiniluoto 1993). With an instrumentalist
approach, the unrealism of an assumption may not matter since the goal of science
is to develop hypotheses that give valid and meaningful predictions about the phe-
nomenon; unrealistic assumptions need not mean adopting a non-realist attitude
towards the theory (Knuuttila 2009). For a further discussion of the viability of
the sharp crack tip model from di�erent perspectives, see e.g. Lawn et al. (1985)
versus Han & Tomozawa (1989) and Tomozawa (1996). It lies beyond the scope
of the present work to operate outside the sharp crack-tip singularity paradigm.
However, just to see how the SIF would be altered if the crack tip geometry is not
a singularity, consider the Creager (1966) solution which presents the elastic stress
�eld equations for blunt cracks in a form equivalent to the usual sharp crack tip
stress �elds. Creager & Paris (1967) note that the tips of blunt cracks are imbedded
within the usual crack tip stress �eld and that these usual �eld equations are dis-
turbed only for mode I and mode II stress states and only in the immediate vicinity
of the crack tip.

2.3.1 Surface �aws

As a representation of surface �aws in glass, Papers A through E consider mainly
two types of part-through �at edge cracks, viz. the long straight-fronted plane edge
crack and the semi-circular edge crack. The semi-circular edge crack is also known
as the half-penny crack. It is assumed that the crack is contained in a semi-in�nite
specimen. For other crack shapes, however, it is possible to de�ne a geometry factor
Y associated with the crack shape such that

KI = Y σ
√
πa (2.24)

Flaw location distribution is generally assumed to be uniform over the surface, see
e.g. Wachtman et al. (2009) and Haldimann (2006). In Wereszczak et al. (2014),
an empirical �aw location distribution was obtained in laboratory measurements
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using optical scanning techniques. Wereszczak et al. (2014) has already been cited
frequently in recent attempts to model glass strength using a �aw-size approach in
Monte Carlo simulations, see also Paper B and E. However, due to the low resolu-
tion of the diagram in the journal article print (Wereszczak et al. 2014), it is hard
to reproduce the observed spatial distribution. In addition, the measurements were
limited to an examination of two glass panes comprising four surface sides. The con-
clusions drawn from this study are interesting but require further experimentation
to be corroborated.

Regarding the representation of the surface condition in glass, the following should
be noted. A single population concept was used by a number of researchers.
Freudenthal (1968) assumed a Cauchy distributed �aw size distribution. Poloniecki
& Wilshaw (1971) and Poloniecki (1974) proposed a �aw size density function in
the form of an inverse gamma distribution which was based on empirical results
and which was subsequently adopted in the strength model by De Jayatilaka &
Trustrum (1977). The Pareto distribution for �aw size is a logical basis for deriving
the Weibull distribution, see Wachtman et al. (2009). Yankelevsky (2014) assumed
a �aw size distribution function that can be interpreted as a truncated exponen-
tial distribution. A number of researchers implement into their strength models
a right-truncated �aw size distribution assuming arguments such as the following:
Due to optical and aesthetic performance requirements on commercial glass, strict
production controls �usually assure that glass with large defects are discarded and
not placed on the market.� (Pisano & Royer-Carfagni 2017) And, a �consequence
of the factory production control is that it eliminates those elements that present
cracks whose size is above a certain limit. From a statistical point of view, this is
equivalent to a lower truncation in the population of glass strength.� (Bonati et al.
2018)

Several authors have considered dual �aw populations concepts. In fact, the em-
pirical data suggests that �aw size in glass is bimodal. Consider e.g. Krohn et al.
(2002) who performed fractographic analyses of broken glass plates which had been
subjected to double ring bending tests. It was concluded that �there is some evid-
ence for a second �aw population to be contributing to the low strength of the �oat
glass specimens.� A statistical model for characterizing glass strength when two
�aw populations are superimposed due to abrasive phenomena was proposed by
Pisano & Royer-Carfagni (2017) and Bonati et al. (2018). Pathirana et al. (2017)
implemented a dual population of lognormally distributed �aw sizes in Monte Carlo
simulations of Gri�th �aws. Kinsella & Persson (2018b), see Paper B, implemen-
ted a dual �aws population concept consisting of a Pareto �aw size distribution
corresponding to large, �rogue� �aws of which there were assumed to be only a
small number on a given plate, and a Fréchet �aw size distribution corresponding
to numerous small �aws according to an argument based on extreme value theory.

It is interesting to note the reasoning in Mencik (1992) who distinguishes between
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four surface �aw populations according to their supposed origin. Accordingly, there
are large cracks caused by contact damage which limit the strength to 20-60 MPa.
Then, there are microscopic and submicroscopic cracks smaller than 100 microns
in size whose origin lie in the glass formation process as well as in contact damage.
These small �aws of the second category are numerous; on a given square centimetre
there may be hundreds or even tens of thousands. Then, there are �aws that arise
due to foreign microscopic particles that adhere �rmly to the surface at higher
temperatures during manufacturing in the glassworks. Such �aws act as fracture
initiators for failure at several hundred or thousands of MPa of tensile stress. Their
e�ect is generally overlapped by �aws of the �rst two categories of origin. Finally,
there are �aws occurring during manufacture and subsequent heat-treatment due
to changes in the surface resulting from reactions with the environment, e.g. in the
form of volatilization. Again, their e�ect is generally overlapped by the more severe
�aws in the �rst two categories of origin. Hence, according to Mencik (1992), there
can be a very large number of potentially fracture-inducing �aws even in a single
square centimetre, many of which would be pertinent to the technical strength in
the range of about 20 MPa to over 200 MPa.

At present, when some glass plate is tested in bending and its strength recorded
in a typical experiment such as presented in Paper E, it cannot be known exactly
what shape of �aw that prompted the observed fracture, nor can it be found out in
reality which orientation the hypothetical crack plane had with respect to the stress
�eld. A thorough investigation of each fracture site using a confocal microscope
may provide some insight into the fracture process but such detailed investigation
is rare when the main purpose is to measure the strength distribution. And, in
reality, the �aw may have a complex shape and it may not be evident how a size
and orientation should be assigned. Lindqvist (2013) attempted to measure the
critical �aw size by performing fractographical studies of the failure origin before
and after destructive testing and was unable to establish a clear relationship between
the observed strength and the measured �aw depth. The laboratory investigation
conducted by Haldimann (2006) also bears testimony to the tremendous challenge
involved in attempts to probe the actual sizes of �aws that caused failure in glass
specimens broken in bending. It is usually possible to identify a smooth mirror-like
zone around the �aw that prompted failure using an optical microscope (Quinn
2016). There exist empirical relations between the critical stress and the mirror
zone radius, although such formulae do not always produce reliable results when
comparisons are made with the calculated fracture stress (Johar 1981). As a matter
of fact there is a need for greater insight into the surface condition in glass. At
present, however, there is a lack of methods and technology available by which to
probe the surface �aws. Indeed, there are published papers on the strength of glass
that appear to sidestep the usual paradigm of Gri�th �aws, instead looking to other
explanations for failure, see Zubkov & Kondratieva (2014) for an example. It lies
beyond the scope of the present work to operate outside the established paradigm
of Gri�th �aws in glass.
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When it comes to the representation of �aws in glass, it can be said in general that
it is assumed that the e�ect of bulk �aws, if they are present at all, is overlapped
by the e�ect of surface �aws. Glass is mostly stressed in bending which results in
the surface stresses being larger than the stresses in the bulk.

The production method which includes scribing, cutting and grinding operations
alters the condition of the edge in glass. Hence, the edge condition is not neces-
sarily comparable to the surface. For a longer discussion of the edge versus surface
condition, see Kinsella et al. (2018) which can also be found in Paper A.

2.3.2 Subcritical crack growth

Present theories that explain static fatigue are based on the concept of preexisting
cracks that grow subcritically, i.e. at a rate much smaller than at catastrophic
failure. Subcritical crack growth can be characterized by velocities of the order
µm s−1 to mm s−1 while crack velocity at rupture is of the order km s−1 (Lawn
1993).

Stress corrosion

Subcritical crack growth due to stress corrosion provides an explanation for static
fatigue (Charles 1958a). There has been much debate over the chemical reaction
that supposedly takes place at the crack tip, see e.g. Lawn et al. (1985), Han
& Tomozawa (1989), and Tomozawa (1996). Charles (1958b) supposed that the
corrosion rate conforms to an arbitrary power function of the crack tip stress, i.e.

v ∝ σ̂n (2.25)

where v denotes the corrosion rate, σ̂ denotes the crack tip stress, and n is the
stress corrosion parameter. The crack tip stress σ̂ was estimated by Charles (1958b)
through adoption of the Inglis (1913) solution of the stress at the tip of an elliptical
�aw, Eq. (2.10). Charles (1958b) obtained the value n = 16 through analysis of
experimental data results from four-point bending tests carried out on 3000 glass
rods, 100 mm long and 2.5 mm in diameter, while using a dead-weight loading
system. The tests were performed at various temperatures between -170 ◦C and
242 ◦C in an atmosphere at 100% relative humidity. Moreover, Charles (1958b)
assumed the temperature dependence to be a simple Arrhenius one, i.e.

v ∝ e
(
− 1
T

)
(2.26)

where T denotes the absolute temperature.
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Wiederhorn (1967) observed that the corrosion rate in soda-lime-silicate glass is
approximately proportional to the relative humidity, i.e.

v ∝ RH (2.27)

Eq. (2.27) was veri�ed using the double-cantilever cleavage arrangement in tests
on microscope slide specimens into which cracks with a predetermined length were
introduced (Wiederhorn 1967).

Brown (1972) developed an equation which states that the cumulative e�ect of an
arbitrary stress history on a given crack is constant. This equation was integrated
into a theory sometimes referred to as Brown's Load Duration Theory. The work
done by Charles (1958a,b) and Wiederhorn (1967) form a basis for this theory,
where it is assumed that

v ∝ RH e

(
− σ̂
T

)
(2.28)

The dependence on stress in Eq. (2.28) was approximated by a power term. After
carrying out an integration and substituting the crack tip stress for the far�eld
stress, Brown (1972) obtained the following formula which is given below in original
notation ∫ tf

0
RH · exp

(
− γ0

RT

)(σ
T

)n
dt = constant (2.29)

where γ0 and R are constants, tf is the time until failure, and n is the stress
corrosion parameter. The right-hand side of Eq. (2.29) contains various constants
including the distance traversed by the subcritically propagated crack. However,
when the stress intensity is below a certain threshold limit, stress corrosion is no
longer observed in experiments (Wiederhorn & Tornsend 1970). With the use of
Eq. (2.29), the threshold limit value of stress corrosion is neglected. In Paper E it is
shown how the threshold limit can be accounted for in numerical implementations
of �nite-size weakest-link systems. In a design situation, however, it is conservative
to neglect the threshold limit.

Consider now a given crack which has been subjected to a certain amount of stress
corrosion, the corrosion being measured in terms of the distance traversed by the
growing crack. If the environmental conditions are assumed to be held constant,
Eq. (2.29) provides for an equivalence class of stress histories. Speci�cally, it is
derived from Eq. (2.29) that

∫ t1,f

0
σn1 (τ) dτ =

∫ t2,f

0
σn2 (τ) dτ (2.30)

where (σ1,t1,f ) and (σ2,t2,f ) correspond to a pair of stress histories and load-
durations until fracture.

Eq. (2.30) has been employed by various researchers to calculate 3 s and 60 s
constant stress-equivalent strength values, see e.g. Beason (1980), Mencik (1992)
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and Calderone (1999). It is the constant stress which when applied during 3 s or
60 s, respectively, would produce the same amount of stress corrosion assuming the
environmental conditions are identical. This transformation enables the comparison
of test results carried out at di�erent load-rates and with di�erent load-durations.
More speci�cally, the t-sec constant stress-equivalent strength is

σt,const =

(∫ tf
0 σn(τ)dτ

t

) 1
n

(2.31)

For a linear stress rate σ̇ at the crack tip, the stress history is given by

σ(t) = σ̇t (2.32)

from which it follows that the fracture stress at time tf is

σf = σ̇tf (2.33)

Hence, ∫ tf

0
σn(τ) dτ =

∫ tf

0
(σ̇τ)n dτ =

σ̇ntn+1
f

n+ 1
=

σn+1
f

σ̇(n+ 1)
(2.34)

where Eq. (2.33) was used in the last step. For two constant-rate stress histories,
σ1(t) and σ2(t), Eq. (2.34) can be rewritten

σn+1
1,f

σ̇1
=
σn+1

2,f

σ̇2
(2.35)

Extensive use of Eq. (2.35) was made to normalize fracture stress values in a wide-
ranging survey of laboratory strength tests which can be found in a report by
this author, see Kinsella (2018) and Sec. 3.4. However, the practical utility of
normalizing stresses according to Eq. (2.31) and (2.35) depends on the fact that
the environmental conditions are actually similar. For a longer discussion of the
applicability of equations such as (2.31) from a practical perspective, see e.g. Mencik
(1992) and Haldimann (2006).

Stress corrosion can be divided into four regions according to the rate of crack
propagation (Wiederhorn 1967). Consider the logarithm of crack growth velocity
as function of mode I SIF, see Paper E for an illustration of this in the form of a
graph. In region I, the crack growth velocity is generally modelled with Eq. (2.25)
as a basis. Region 0 denotes the domain in which no stress corrosion is observable.
The threshold limit value for detectable stress corrosion is about 0.25 MPa m−

1
2 ,

however, the estimates for this parameter value vary somewhat, see further e.g.
Wiederhorn & Tornsend (1970), Freiman et al. (1985), and Gehrke et al. (1991).
Regions II and III are generally not relevent for the strength design of glass struc-
tures because once the mode I SIF enters these regions, the time scale is very short
and catastrophic failure is imminent (Fischer-Cripps & Collins 1995).
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Evans (1974) proposed the following expression for the crack growth velocity.

v = AKn
I (2.36)

Eq. (2.36) represents an empirically based approximation of the crack growth ve-
locity which is valid for region I. In Eq. (2.36), A and n are crack growth velocity
parameters and n is moreover identical to the stress corrosion parameter in Charles
(1958b) stress corrosion theory. Eq. (2.36) can be reformulated as

v = v0

(
KI

KIc

)n
(2.37)

The bene�t of Eq. (2.37) is that the crack growth velocity parameter v0 has the
same unit as the velocity v. This is also the formulation used in the appended
papers A to E.

A classical explanation for the chemical reaction that takes place during stress
corrosion is given by Charles & Hillig (1962). It is supposed that stress enhanced
hydrolysis happens at the crack tip according to the following formula

Si−O−Si + H2O −−→ Si−OH + HO−Si

and this represents stress corrosion in region I. In region II, it is believed that
the rate of stress corrosion depends strongly on the environment since it is limited
by the transport of reactants to the crack tip (Le Bourhis 2008). However, no
general consensus exists so far about the exact reaction that happens during stress
corrosion, see e.g. Haldimann (2006) and Ciccotti (2009) for a longer discussion of
this.





3

Strength calculation and

measurements

3.1 INTRODUCTION

The strength of glass is a property that can only be revealed by destroying the
sample specimen. Glass is much stronger in compression than in tension so that in
practice, only the tensile strength is considered. One way to evaluate the strength
would be to grip the specimen at two ends and pull it thus subjecting the surface to
uniform stress. However, for practical reasons, this arrangement is usually avoided
because of the risk that the specimen would either slip or else fail at the grips. In
practice, glass plates are usually put to the test in a bending device that subjects
part of the specimen to signi�cant tensile stress. The bending stresses in a beam
subject to four-point bending are calculated according to Bernoulli-Euler theory and
closed-form expressions are given in Paper D. Closed-form expressions are also given
in Paper E for the in-plane stresses due to ring-on-ring and ball-on-ring bending.
In the case of laterally supported plates subjected to uniform pressure, the stress
distribution is non-linear and highly dependent on the boundary conditions, see
e.g. Kinsella & Persson (2018a) which can also be found in Paper C. Closed-form
solutions for the stress are not always available and numerical computation is used
instead. A background for numerical computation using �nite elements is given in
Sec. 3.3. Strength measurements and statistics are commented on in Sec. 3.4 with
a brief background to probability theory and methods of statistical inference.
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The strength is generally de�ned as the major (in-plane) principal tensile stress
component at the fracture location, and this is what the strength refers to in the
appended papers A to E. However, the strength determined from a bending test
is sometimes de�ned as the maximum tensile stress that is reached within some
prede�ned area of the specimen, e.g. within the load span in the case of four-point
bending, irrespective of whether the fracture site was contained in the same area
or not. For convenience, it is referred to as the apparent strength.

For instance, in a three-point bending setup, the apparent strength is determined
by the stress at the midpoint where the load is introduced. Hence, the strength (at
the failure origin) is generally smaller than the recorded apparent strength because
it is not unusual for the fracture origin to be located some distance away from
the midpoint. Furthermore, there are reports in the literature of a substantial
proportion of fractures occurring from outside the loading ring area in some double
ring bending tests (Reid 2007). Likewise, with a four-point bending arrangement
it is not unusual for fracture to occur outside the load span. In fact, not every
experimenter records the fracture location. Others simply discard the data point
when the fracture origin was located outside the prede�ned loading area. However,
discarding observations for such reason is not necessarily sound practice. Speaking
of the double ring bending device, Reid (2007) notes that �failure outside the loading
ring is a real physical phenomenon that cannot be eliminated by any experimental
technique, because it is an inescapable consequence of the spatial variability of glass
strength.� According to a recent review of the test results from hundreds of large
laterally supported panes subjected to uniform pressure, it was found that none
failed at the location of maximum principal tensile stress (Natividad et al. 2016).

3.2 TIME-VARIANT STRENGTH

In an ordinary environment with a normal atmosphere, the strength cannot be
revealed without intervening with the glass so as to alter the inert strength sig-
ni�cantly. Hence, what might have been the strength at the onset of testing, the
so-called inert strength, is reduced while putting the specimen to the test. Ul-
timately, delayed fracture might happen, e.g. when the specimen breaks under a
static load that was sustained to begin with. Measurements of the strength carried
out at di�erent load rates and in di�erent environments produce results that can
di�er substantially even when the test setup, specimen dimensions, and fracture
location are otherwise the same. See further Sec. 2.3.2 for a description of stress
corrosion.

In order for the strength to be well de�ned in the time domain, there exist al-
ternative routes. One way is to employ a purely empirical model for the e�ect of
static fatigue to enable a comparison of strength measurements made at di�erent



3.3 Numerical computation 31

load-histories. As an example, consider the universal static fatigue curve of Mould
& Southwick (1959) who carried out experiments on glass rods subjected to static
loads, see also Varshneya (1994),

σ

σN
= −A log

(
t

t0.5

)
+B (3.1)

In Eq. (3.1) which is valid in the linear portion in the plot of the time to fracture,
σN is the strength of pristine glass rods immersed in liquid nitrogen, B is a term
dependent on the manner of abrasion of the rod while using di�erent grits, log t0.5
is the time corresponding to σ/σN = 0.5 and A is the slope in the plots, the slopes
of which were found to be approximately the same according to laboratory tests
(Mould & Southwick 1959).

Another way to account for static fatigue is to adopt the theory of stress corrosion
and employ the logical model that follows, i.e. a subcritical crack growth velocity de-
scribed by an Arrhenius process that is stress-dependent and temperature-activated.
This modelling technique was used in the appended papers and a background was
given in Sec. 2.3.2. In the following section, however, it is explained how to calculate
the fracture stress without consideration of static fatigue.

3.3 NUMERICAL COMPUTATION

The stresses in, e.g., laterally supported plates subjected to double ring bending
or uniform pressure, can be accurately calculated with the �nite element (FE)
method. The general problem of determining the stresses at an arbitrary location
on the surface of a laterally supported plate which is subjected to uniform load-
ing does not have a tractable solution when using analytical formulae except for
some elementary cases with special boundary conditions. With the FE method,
approximate solutions are obtained to partial di�erential equations that arise in
the modelling of structures. However, the solutions are highly dependent on the
boundary conditions.

In practice a combination of analytical calculation and FE-analysis is sometimes
employed in strength analysis. As an example of this consider Vandebroek et al.
(2014) who calculate the stress due to four-point bending based on Bernoulli-Euler
beam theory. The beam is subdivided into 10 equal bins along the longitudinal axis.
The stress values in the bins closest to the load introduction points are corrected
based on calculations with the FEM. This is done in order to obtain a more accurate
measure of the stress concentration that occurs due to non-linearities at the load
introduction points. In a similar vein, Blank et al. (1994) recommend in some cases
to use a weighted mean value from FE-analyses to take into account the variations
in stress in the transversal direction due to double curvature of a bent beam that
is loaded out-of-plane in four-point bending.
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3.3.1 Equations of motion

Here follows an outline of the di�erential equations of motion with respect to the
current or spatial con�guration. The presentation follows the format found in Holza-
pfel (2000). A continuum body is considered as already introduced in Chap. 2; the
body contains a set of particles that occupy an arbitrary region Ω with bound-
ary surface ∂Ω at time t. The spatial mass density is ρ. The balance of linear
momentum is adopted according to the generalized form of Newton's principles of
motion, i.e.

D

Dt

∫

Ω
ρu̇ dv = F(t) (3.2)

where it is assumed that the structure of forces, F(t), acting on the body are such
that they can be separated into traction and body forces, respectively, i.e.

F(t) =

∫

∂Ω
t ds+

∫

Ω
b dv (3.3)

where t is the Cauchy traction vector (see Eq. (2.6)) and b = ρg with g the constant
gravitational acceleration. It is supposed that there exists a spatial tensor �eld σ
with the property that t = σn where n is an outward normal vector of unit length
to the surface. It can be shown that σ is symmetric. Cauchy's �rst equation of
motion is derived from the system-governing equilibrium Eq. (3.2) and (3.3) while
applying Cauchy's stress theorem and Gauss' divergence theorem, i.e.

∫

Ω
(divσ + b− ρü) dv = 0 (3.4)

Since Eq. (3.4) holds for any volume v, it is deduced that

divσ + b = ρü (3.5)

which is the strong form of the equation of motion. Providing that the problem is
static, the boundary conditions are

{
u = ū on ∂Ωu

t = t̄ on ∂Ωσ
(3.6)

where displacement ū and load t̄ are prescribed functions on the boundary.

The strong form, Eq. (3.5), contains functions whose derivates might not be de�ned.
The weak form is developed while noting that functions have well-de�ned integrals
even when the derivative is unde�ned thus allowing for access to the underlying
solution. An arbitrary test function v is introduced with the property that v = 0
on the boundary surface ∂Ω. The test function represents a virtual displacement
�eld on the current con�guration. After multiplication by v, integration over Ω, and
application of Gauss' divergence theorem, it can be shown that (Holzapfel 2000)

∫

Ω
(σ : gradv + ρü · v) dv =

∫

Ω
b · v dv +

∫

∂Ω
t · v ds (3.7)
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Eq. (3.7) is the weak form with the natural and essential boundary conditions,
respectively, which for the case of a static problem are the same as in Eq. (3.6).
Henceforth, a quasi-static condition is assumed which implies that the second term
on the left-hand side of Eq. (3.7) vanishes.

3.3.2 Finite Element Method

The �nite element formulation is based on the weak form of the equation of motion,
Eq. (3.7), and Galerkin's method (Bathe 2006, Saabye Ottosen & Petersson 1992).
In the following, the matrix notation from Chap. 2 is used for the stress tensor. In
addition, the vector di�erential operator is

∇ =




∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y




(3.8)

The independent displacement vector �eld u is discretized at the nodes in a �nite
element mesh and a shape function is associated with each unique node. The
displacement �eld is approximated throughout the body by

u = Na (3.9)

where N is a matrix that represents a global shape function. The vector a represents
the nodal displacements and is a vector of size equal to the total number of degrees
of freedom. Following Galerkin's method, test functions are selected according to

v = Nc (3.10)

where c is an arbitrary constant vector. Combining Eq. (3.9) and (3.10) with
Eq. (3.7) yields

∫

Ω
c′(∇N)′σ dv =

∫

∂Ω
c′N′t ds+

∫

Ω
c′N′b dv (3.11)

which can be simpli�ed to
∫

Ω
(∇N)′σ dv =

∫

∂Ω
N′t ds+

∫

Ω
N′b dv (3.12)

since c is arbitrary and constant (the prime symbol denotes the transpose of a
matrix). In the special case of a linear elastic material it follows from Eq. (3.9)
while assuming σ = D∇u that

∫

Ω
(∇N)′D(∇N)a dv =

∫

∂Ω
N′t ds+

∫

Ω
N′b dv (3.13)
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Eq. (3.13) can be rewritten in a compact form as

Ka = fl + fb (3.14)

with

K =

∫

Ω
(∇N)′D(∇N) dv (3.15)

fl =

∫

Ω
N′b dv (3.16)

fb =

∫

∂Ω
N′t ds (3.17)

where K represents the sti�ness matrix, fl is the body force vector, and fb is the
boundary force vector. Also, the essential boundary conditions must be speci�ed
in the nodes.

3.4 MEASUREMENTS AND STATISTICS

Thirty years ago Dalgliesh & Taylor (1990) commented about experimental meas-
urements of glass strength: �Test results available from around the world refer to
about 5000 panes broken in total.� Those tests were not exclusively performed
on the �oat type of glass, however. And, some experiments involved glass panes
which were submerged in water while testing. About 500 of the tests mentioned
by Dalgliesh & Taylor (1990) were performed on weathered glass, i.e. glass exposed
to service conditions in buildings. Additionally, all test results were not such that
a value for the fracture stress could be given because frequently, a failure load or
pressure was reported from laboratory testing but not the associated fracture origin;
in the case of linearly supported plates subjected to lateral loading, then a fracture
stress value is not readily determined. For all these reasons, the majority of tests
referred to by Dalgliesh & Taylor (1990) are not directly useful for an estimation of
the fracture stress of new annealed �oat glass tested in ambient conditions.

A survey (Kinsella 2018) was recently carried out of experimental data on the
strength of annealed �oat glass panes in the as-recieved condition which were tested
in an ambient environment. Many of the tests were conducted using a loading device
that generated a constant stress rate at the fracture location. The survey was a
basis for Paper A and D.

In addition, laboratory tests were carried out on nominally identical glass plates
subject to ring-on-ring and ball-on-ring bending. The test device was designed
to expose a dissimilar portion of the surface area to considerable tension in an
investigation of strength-scaling relating to size e�ect. The experimental results
and further details including a schematic of the device, can be found in Paper E.
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The strength of monolithic panes of annealed �oat glass which are tested in ambient
conditions scatters considerably. The overall strength ranges from about 20 MPa
to well over 200 MPa and coe�cients of variation as high as 25% are common with
annealed glass strength data (Beason et al. 1998). An investigation was performed
to determine the performance of standard statistical distributions when modelling
glass strength, see Paper A. A basic question addressed in this study was: is a
Weibull distribution better or worse than a normal or lognormal distribution for
modelling the strength with, generally speaking? In addition, another type of ex-
treme value distribution was considered, namely the Gumbel distribution, which
can also be derived from failure based mechanics using a weakest-link system. An-
other question addressed was whether there exists a basic di�erence in performance
for the statistical models between edge and surface strength data. Also, the im-
pact of sample size on data analysis was considered. A more in-depth treatment
of edge strength was performed in Paper D with a Weibull statistical framework
in a hierarchical model where the Weibull scale and shape parameters were treated
as nested random variables. Glass supplier e�ect on strength was considered as a
mixed-e�ect in a linear statistical model. Such a consideration, e.g., would hardly
have been feasible without an empirical basis in wide-ranging measurements.

3.4.1 Probability theory

This section provides some of the background to probability theory and is based
on the textbook presentation by Gut (1995). In probability theory, one assumes a
sample space, Ω, which contains the set of elementary events ω. For any collection
of such events, A, its probability is de�ned, P (A), so that it satis�es the three
Kolmogorov axioms. A random variable X is a function from the probability space
to the real numbers

X : Ω→ R (3.18)

The cumulative distribution function (CDF), FX , provides a complete description
of a random variable and is de�ned by

FX(x) = P (X ≤ x) for x ∈ R (3.19)

For a discrete distribution the probability function, pX , is de�ned by

pX(x) = P (X = x) for x ∈ Z (3.20)

For a continuous distribution the density function, fX , has the property that

FX(x) =

∫ x

−∞
fX(y)dy for x ∈ R (3.21)
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A random variable can be characterized by its moments. The kth moment, mk, is
de�ned by

mk =





∑

i

xki pX(xi) if X is discrete

∫

R
xkfX(x)dx if X is continuous

(3.22)

provided that the sum or integral is absolutely convergent. The �rst moment is
the mean denoted by E(X), i.e. the expected value. The variance, V ar(X), is a
measure of dispersion

V ar(X) =





∑

k

(xk − E(X))2pX(xk) if X is discrete

∫

R
(x− E(X))2fX(x)dx if X is continuous

(3.23)

3.4.2 Methods of statistical inference

This section provides some of the background to statistical inference theory and is
based on the textbook presentation by Young & Smith (2005). Statistical inference
is an important tool used to draw conclusions of the underlying distribution of a
random variable X on the basis of its observed value x. Typically, there are a
number of n observations so that the data has the form x = (x1, . . . , xn) ∈ Rn. In
a parametric model, the distribution of X is of known analytical form, but involves
a �nite number, d, of real unknown parameters θ = (θ1, θ2, . . . , θd). The parameter
space is de�ned by the region Θ ⊆ Rd of possible values of θ.

In a hypothesis test, the following is considered.

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 (3.24)

where Θ0 and Θ1 are two disjoint subsets of Θ that possibly, but not necessarily,
satisfy the condition that Θ0 ∪Θ1 = Θ. The unknown parameter value θ is the
quantity to make inference about. According to the likelihood principle, the general
problem of inference for θ is solved by examining the likelihood function, L(θ).
In the case when X = (X1, X2, . . . , Xn) is an independent identically distributed
sample, and after observing x, the likelihood function is de�ned by

L(θ) =
∏

i

f(xi,θ) (3.25)

In Eq. (3.25), L(θ) is viewed as a function of θ for the �xed value x. The max-
imum likelihood estimate, θ̂(x), is de�ned to be the value of θ that maximizes the
likelihood function.
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When parametric models are applied to �nd solutions to real-world problems, the
question arises if this distribution adequately �ts the sampled data. A goodness-
of-�t test is one way of measuring the potential of a statistical model. The general
test of �t is a test of the null-hypothesis

H0 : A random sample of n observations of X comes from F0(x,θ) (3.26)

where F0(x,θ) is the hypothetical distribution under consideration.

Next, consider tests based on the empirical distribution function (EDF) which is
a step function that estimates the CDF that generated the observed data points.
Suppose a random sample X1, . . . , Xn drawn from a distribution with CDF FX .
The Kaplan-Meier EDF is de�ned by (Forbes et al. 2011, Wasserman 2006)

F̂n(x) =





0 for x < X(1)
i
n for X(i) ≤ x < X(i+1), i = 1, . . . , n− 1

1 for x ≥ X(n)

(3.27)

where X(i) denotes the ith order statistic. An EDF statistic measures the discrep-
ancy between the EDF and a hypothetical distribution. A classic EDF statistic is
the Kolmogorov-Smirnov statistic de�ned by

D = sup
x

{
|F̂n(x)− F0(x,θ)|

}
(3.28)

and it measures the largest vertical di�erence between F̂n(x) and F0(x,θ). A gen-
erally superior set of EDF statistics are based on the class of quadratic statistics of
the form (D'Agostino & Stephens 1986)

Q = n

∫

R

(
F̂n(x)− F0(x,θ)

)2
ω(x) dF0(x,θ) (3.29)

where ω(x) is a weight function. The Anderson-Darling (Anderson & Darling 1952)
statistic is obtained by choosing

ω(x) = (F0(x,θ)(1− F0(x,θ)))−1 (3.30)

This statistic was employed in Paper A, B, and E.
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Failure modelling approaches

A background to glass failure prediction models can be found, e.g., in Haldimann
(2006) and Haldimann et al. (2008) who provide, among other things, a thorough
comparison of the North American ASTM E-1300 with various European coun-
terparts including the prEN 13474. Lamon (2016) examines strength models for
application on brittle materials in general and considers statistical-probabilistic
theories based on �aw size density as well as �aw strength density. Rinne (2009)
provides an in-depth treatment of the Weibull distribution.

4.1 OVERVIEW

The strength (and sometimes fracture origin) prediction of a glass structure is a
challenging task which is based on a range of theories and techniques depending
on the modelling approach. Fig. 4.1 presents an overview of failure modelling ap-
proaches with a list of references which have already been cited in the appended
papers. The overview in the �gure is not intended to be an exhaustive account
of all models suggested in literature, but rather to highlight how a selected set of
approaches can be categorized with respect to key features. The shaded gray box in
Fig. 4.1 corresponds to models that implement stress corrosion theory in one form
or another. Many of the modelling approaches involve a weakest-link based system
(Peirce 1926, Weibull 1939b), the premise of which is further explained in Paper E.
The categorization in the �gure is in�uenced by Lamon (2016), who makes a dis-
tinction between models that take a macroscopic or phenomenological approach to
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fracture on the one hand, and on the other hand those in which failure is derived
from pre-existing �aws on the microscopic level, i.e. where �aws are understood to
be real physical entities that are operated on by stresses. In the latter case the
models can be separated into those with a �aw size approach and those with an
elemental strength approach. The �aw size approach depends on a more or less
rigorous representation of the surface �aws in terms of a �aw size distribution,
a �aw shape, and an orientation of the �aw in the plane. Hence, those models
are fundamentally rooted on notions of the physical processes that take place in
a brittle material. The elemental strength approach does not depend on a direct
representation of the �aw geometry. Instead, it is based on the isotropic material
resistance to uniaxial tension leading to a critical stress magnitude for the charac-
terization of �aw severity. The main issue with the elemental strength approach is
how to properly deal with failure when it is supposed that the elemental strength
is dependent on a multiaxial state of stress. The advantage compared to the �aw
size approach is that it more readily conforms to the kind of information that is
acquired from laboratory tests on glass; usually the fracture load and origin are
measured from which the fracture stress is subsequently calculated. Hypothetical
cracks with a size and crack plane orientation are not directly measured with com-
mon test setups, although these entities may be inferred from the fracture stress
data based on fracture mechanics concepts. In addition, the edge strength model
developed in Kinsella & Lindström (2020), which can also be found in Paper D,
draws on both a �aw-size based and a macroscopic/phenomenological approach and
thus does not �t smoothly into the categorization in the �gure.

4.1.1 Flaw-size based approaches

The approaches in Pathirana et al. (2017), De Jayatilaka & Trustrum (1977), Kin-
sella & Persson (2018b), and Yankelevsky (2014) have already been mentioned in
Sec. 2.3.1. The common feature is the �aw-size based approach as described by
Lamon (2016). The models developed in Haldimann (2006), Yankelevsky et al.
(2017), and Osnes et al. (2018) are similarly based on this premise; the latter two
present an adoption of the modelling approach already described in Yankelevsky
(2014). In addition, in Kinsella et al. (2018) which can also be found in Paper A, the
Gumbel distribution is applied as a strength model based on assumptions that infer
its position among the �aw-size approaches. The Gumbel distribution is an inter-
esting object to study because it is the extreme value distribution associated with
a whole range of standard-type distributions which lie in its domain of attraction,
including the exponential, normal, and lognormal distributions. It is apparently
rarely applied to model glass strength, in contrast with the Weibull distribution
which appears frequently in the literature. Both the Weibull and Gumbel models
share key features. They can be derived in a �aw-size based approach using an
in�nite size weakest-link system and assuming a single population of �aws with a
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Figure 4.1: Failure modelling approaches.
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�aw size distribution that decays either exponentially (to generate the Gumbel type
distribution), or as a power-law (to generate the Weibull type distribution). The
Gumbel and Weibull distributions represent two of the three types of extreme value
distributions, the Fréchet distribution being the third (see Paper B for an account
of the latter distribution). In the case of the Weibull distribution, let

Mn = min
1≤i≤n

{Xi} (4.1)

denote the minimum value of a sample {Xi; 1 ≤ i ≤ n} of independent and identic-
ally distributed random variables. Then, for certain conditions on the sampled
variable and provided thatMn is non-degenerate as n→∞, it holds that the limit-
ing distribution is of the Weibull type. The speci�c condition for this to happen is
that the sampled distribution is bounded from below for some xu, i.e., x ∈ [xu,∞),
and the sampled distribution has a �nite number of moments only (the moment is
de�ned in Eq. (3.22)). The uniform distribution over some interval [A,B] as well as
the Weibull distribution itself are two prototypes of distributions which lie in the
domain of attraction of the type of limiting extreme value distribution that is the
Weibull distribution (Rinne 2009).

The Weibull distribution certainly has descriptive virtue (Weibull 1951), and ac-
cording to a recent survey (Rinne 2009) there are a great number of papers and
monographs that demonstrate its successful application in some 180 distinct top-
ics that encompass nearly all scienti�c disciplines. However, the descriptive virtue
can become a liability when the sample sizes are small because the Weibull model
maintains its �exibility all the same; in such case, the better �tting means nothing
(Danzer et al. 2001). According to Danzer (1994), the size di�erence between the
smallest and largest critical defect is expected to be small for a data set of limited
size, e.g. 30 specimens. The �aw-size density function can always be approximated
by a power law over a small interval, and �this would explain the good description
of small sets of data by the Weibull distribution.� (Danzer 1994)

Finally, the failure model in Paper E that emerges from the modi�ed �aw-size
concept presented therein is considered as follows and further compared to an or-
dinary Weibull model. As evidenced in the paper, this model has explanatory
power because it is able to model the outcome from both the ring-on-ring and
the ball-on-ring tests. To further investigate its potential for prediction-making,
consider Fig. 4.2 which shows a series of normalized histograms representing the
outcome when the numerical method from Paper E is applied to model the res-
ults from various double ring bending tests recorded in literature. In addition, a
pair of Weibull distributions are also plotted in each of the diagrams. These are
explained in the following. Beginning with the last diagram, i.e., subplot f , the
semitransparent bars in blue colour represent the numerical simulation results and
the white bars with black edge colour represent the experimental observations from
the double ring bending tests recorded in Paper E. The modi�ed �aw-size concept
from Paper E is used which means that: 1) a decent �t is simultaneously obtained
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with the ball-on-ring test data (not shown in �gure) using this method, and; 2)
the �aw-size distribution is truncated at a �aw size of about 200 microns. The
solid line represents a two-parameter Weibull model �tted to the ring-on-ring ex-
perimental data. The dashed line represents the model obtained when a Weibull
distribution originally �tted to the ball-on-ring data from Paper E (not shown in
�gure) is used to predict the outcome of the ring-on-ring tests, based on the e�ective
area strength-scaling. Considering next the �rst diagram, i.e., subplot a, the white
bars represent the experimental results from ring-on-ring bending tests conducted
by Simiu et al. (1984). The semitransparent bars represent the outcome when using
the same numerical method and �aw-size concept from Paper E as already men-
tioned. The solid line represents the model obtained when a Weibull distribution
originally �tted to the ring-on-ring data from Paper E is scaled using the calculated
e�ective areas to �t the geometrical setup of the test conducted by Simiu et al.
(1984). The dashed line represents the model obtained when a Weibull distribution
originally �tted to the ball-on-ring data from Paper E is scaled to �t the setup of
the test recorded in Simiu et al. (1984). With the diagrams in subplot b to e, the
semitransparent bars, and solid and dashed lines, are analogous to the diagram in
subplot a, and the white bars now correspond to experimental data from ring-on-
ring tests conducted by, in order from b to e, Fink (2000) data set 1, Fink (2000)
data set 2, Schula (2015), and Muniz-Calvente et al. (2016). For a list of summary
statistics including the load ring radii from these experiments, see also Tab. 3 in
Paper B. In order to generate the numerical results illustrated in semitransparent
bars, a simpli�cation was made to the numerical modelling tool in Paper E. The
in-plane stresses were calculated using the closed-form solutions instead of being
obtained in a FE-analysis. In the ring-on-ring setups considered in Fig. 4.2, the
geometrical properties of the glass specimens and bending apparatus are quite sim-
ilar and the fracture loads are generally not exceedingly large. Therefore, the errors
obtained due to the simpli�cation are assumed to be negligible within this context;
the purpose of the �gure is to provide a basic impression that permits a comparative
analysis, and not to estimate precisely, e.g., a low-strength quantile. In addition,
the applied stress rate was generally around 2 MPa s−1 during laboratory testing
in a controlled environment in the experiments, thus suggesting that the presence
of stress corrosion e�ects can be assumed to be relatively even among the tests; an
exception being the �rst data set in subplot a where testing was done at around 1
MPa s−1. The following conclusions should be drawn from the results presented in
the �gure.

The numerical modelling results tend to produce strength predictions (in subplot a,
d, and e) that overestimate the strength in the left-hand tail. However, the degree
to which it overestimates appears to vary considerably. In at least one case (subplot
b) the predicted strength distribution has too little spread. In another case, (in sub-
plot c), a reasonable prediction may be obtained somewhat conservatively, with the
exception of a conspicuously strong specimen in the empirical data set at about 200
MPa. When strength prediction is based on a Weibull model originally �tted to the
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ring-on-ring tests reported in Paper E (solid line) and scaled according to a Weibull
weakest-link system (see further how this is done in Paper E), the results in sub-
plots a through e are very similar to what is obtained with the numerical procedure
(shown in semi-transparent bars). As a matter of fact, the overall geometrical di-
mensions of the specimens and bending setup are similar throughout the considered
tests. The strength prediction from a Weibull model originally �tted to ball-on-ring
tests (dashed line) and scaled according to a Weibull weakest-link system produces
overly conservative results in some cases (notably in subplot f) compared to a model
originally �tted to ring-on-ring tests (solid line), but produces a better �t with em-
pirical data in other cases. What appears to be an overly conservative strength
model from one experimental campaign may turn out to o�er a viable strength pre-
diction in another campaign, when operating within a Weibull weakest-link system.
The following should be noted in summary. A Weibull weakest-link scaling system
is able to produce reasonable predictions of size e�ect for relatively small changes in
e�ective area only. Apparently, the surface condition properties exhibit substantial
variability from one experimental campaign to another. It may be possible to �t
a logical failure model that has explanatory power in one experimental campaign,
and also �nd that the same model performs rather well in another campaign, but
in general it is evident that random variability occurs between experimental cam-
paigns to such an extent that the original (well-performing) model can be rendered
ine�ective. It is not evident how such random variability should be estimated from
the outcome of one campaign only. This should probably be further investigated in
wide-ranging experiments involving multiple laboratories and glass suppliers.

4.1.2 Elemental-strength based approaches

Batdorf & Crose (1974) and Matthews et al. (1976) present models that are rep-
resentative of the elemental strength approach to failure modelling. A recent de-
velopment of the Batdorf model with application to glass can be found in Pisano
& Royer-Carfagni (2017) where also a left-truncated strength distribution is de-
veloped. In addition, consider the basic model proposed in Veer (2007) for the edge
strength of glass using two superposed �aw strength distributions with normally
distributed elemental strengths. The concept is based on test results from plates
which were machine cut and ground, and subjected to in-plane four-point bending
tests. A subset of the data sample is selected by Veer and associated with one type
of defect denoted Q and which is supposed to occur once in every two meters of
edge length with a mean failure stress of 30 MPa and a coe�cient of variation of
7%. The other type of defect denoted N, is deemed to have a frequency of once in
every millimetre with a mean failure stress of 60 MPa and a coe�cient of variation
of 12%.
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Figure 4.2: Application of numerical method from Paper E on ring-on-ring loading
cases. Histograms (white bars) represent test data obtained from: (a)
Simiu et al. (1984), (b) and (c) Fink (2000), (d) Schula (2015), (e)
Muniz-Calvente et al. (2016), and (f) Paper E.

4.1.3 Macroscopic approaches

According to Weibull (1939a), the development of the equation for the Weibull
distribution (see e.g. Eq. (1) in Paper A) depends on two basic premises. The �rst
involves a logical deduction of the governing equation in an in�nite-sized weakest-
link scaling system based on a limiting operation on a �nite-sized system. Basically,
if the �nite-sized system is composed of individual elements (links) with failure
probabilities equal to S0, then the system survival function is

1− S =
n∏

i=1

(1− S0) (4.2)
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Now, S0 tends to zero as n tends to in�nity while the volume element V vanishes.
In the limit, the following approximation holds

S0 ≈ f(x) · dV (4.3)

where f(x) is a �nite non-decreasing function of stress. Taking the logarithm of
Eq. (4.2) and approximating log(1 − S0) by −S0 for a vanishingly small quantity
S0 while observing Eq. (4.3), Weibull derives

log(1− S) = −
∫
f(x) dV (4.4)

In the case of a uniformly distributed stress in a uniaxial state of loading, this
becomes

S(x) = 1− e−V · f(x) (4.5)

As a matter of fact, there is a complete analogy so far with a development based
on a homogeneous spatial Poisson process with random sized events, see further
Mesarovic et al. (1992).

The second premise in Weibull (1939b) pertains to the choice of function f(x), the
socalled �risk function�. Here, Weibull claims that his particular choice represents
�the most simple function satisfying the condition� (Weibull 1951) and that �exper-
ience has shown that [this] expression . . . in many cases gives an excellent reproduc-
tion of the observations� (Weibull 1949), that �it appears that good agreement with
measuring results may frequently be obtained� (Weibull 1939b), etc. When the func-
tional form of the socalled �risk function� is based on such heuristical argument, the
Weibull distribution should be categorized among macroscopic/phenomenological
failure modelling approaches (Gumbel 1954).

The normal distribution was employed early in, e.g., Pilkington glass design charts
assuming a coe�cient of variation of 0.20 (Calderone 1999). The normal distribu-
tion was employed in fracture statistics by, e.g., Peirce (1926), and more recently
considered in Lu et al. (2002) although it seems generally to be neglected in frac-
ture statistics. The use of a normal distribution as a standard model for data is
generally due to the Central Limit Theorem (Beirlant et al. 2004) which states that
averages of many samples will tend to follow a normal distribution. In spite of the
convenience of the normal (and lognormal) distributions, it might be said that they
focus on the symptoms instead of the causes of fracture (Lamon 2016); in fact,
the physical processes underlying fracture including the presence of microcracks
with stochastic properties which prompt failure (Gri�th 1920), become masked
and concealed when applying a standard statistical distribution such as the normal
distribution.

Finally, the Glass Failure Prediction Model (Beason & Morgan 1984) should be loc-
ated among the macroscopic/phenomenological models. With the GFPM, fracture
in glass is assumed to be dependent on the existence of surface microcracks and, it
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is further supposed that a biaxial stress correction factor can be applied to account
for random crack plane orientations. Speci�cally, an equivalent stress is calculated
�which acts normal to the axis of a �aw� (Beason 1980). While the adoption of the
fundamental Eq. (4.5) is stringent, the particular selection and further treatment
of the socalled risk function is essentially heuristical. The GFPM does not directly
deploy a �aw size density function nor an elemental strength distribution. It relies
on a sophisticated procedure for the estimation of the socalled surface �aw para-
meters which unfortunately cannot be measured directly at present. The way in
which the surface �aw parameters represent the actual surface �aws is not evident
(Reid 1991). The unit of the surface �aw parameter which is denoted by k depends
on the value for m and hence varies from one model �t to another. For instance,
with the Dallas glass plates that were extracted from the Johnson Chevrolet Build-
ing and subsequently analyzed by Beason (1980), the value of k including its unit
was estimated at 3.01 · 10−15 mm10 N−6 (Beason & Morgan 1984). For further
discussion of this model, see e.g. Haldimann (2006) and Reid (1991).

4.1.4 Miscellaneous approaches

The strength model proposed in Kinsella & Lindström (2020), which can also be
found in Paper D, draws on elements from both a �aw size approach and a mac-
roscopic approach towards failure. The linear statistical model is based on an
approach with Weibull distributed errors which are explicitly connected to �aw
characteristics such as shape and scale parameters in a �aw size Pareto density
function. At the same time, the adopted hierarchical approach and the subsequent
statistical modelling adds another layer on top of the basic Weibull model which
ultimately generates a strength model that has key features in common with a mac-
roscopic/phenomenological treatment of failure, such as when a normal distribution
is applied to model data, in the sense that, e.g., size-e�ects are no longer neces-
sarily understood or obtained directly from a weakest-link system (although such a
system is part of the original makeup).
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Summary of publications

Paper A, B, and D have been published in international peer-reviewed journals,
and Paper E has been submitted for possible publication in an international peer-
reviewed journal. In addition, Paper C has been peer-reviewed and published in the
proceedings of an international conference. The �ve publications are summarized
in the following. In the given descriptions of the contributions by this author, use is
made of the Contributor Roles Taxonomy (CRediT), see further, e.g., Brand et al.
(2015).

5.1 APPENDED PAPERS

5.1.1 Paper A

Kinsella, D., Lindström, J., Persson, K. (2018): Performance of Standard Statistical
Distributions for Modeling Glass Fracture. International Journal of Structural Glass
and Advanced Materials Research 2, (178.190).

Summary

A comparison is made between four standard statistical distributions, namely the
normal, lognormal, Gumbel, and Weibull with respect to the performance in mod-
elling the strength results from a wide-ranging survey of laboratory data on new
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annealed �oat glass when it is tested in an ambient environment. The Weibull
distribution outperforms the normal and lognormal distributions and is at least as
well-performing as the Gumbel distribution when the fracture data is selected to
comprise edge only failure origins. In the case of surface only failure origins, it is
indicated that the extreme value distributions perform worse than the normal and
lognormal distributions. However, the surface strength is complicated to model
and none of the standard distributions which were examined are truly capable of
producing a compatible model. The sample size also has a profound impact on the
performance of the surface strength models in particular.

Contributions by David Kinsella

David Kinsella was the main author. He contributed to the conceptualization of
ideas, development of methodology, creation of models, implementation of com-
puter code and supporting algorithms, and conclusions drawn. He conducted the
investigation process and performed the data collection and curation including man-
agement activities to annotate and maintain research data. He planned the research
activities, prepared the initial manuscript for the published work and participated
in reviewing and editing.

5.1.2 Paper B

Kinsella, D., Persson, K. (2018): A Numerical Method for Analysis of Fracture

Statistics of Glass and Simulations of a Double Ring Bending Test. Glass Structures
& Engineering 3(2), 139�152.

Summary

The fracture stress and failure locations in small glass plates subjected to double
ring bending are computed with a numerical method that considers the stochastic
properties of surface microcracks in a fracture mechanics approach to brittle failure
based on a weakest-link system. The results are compared with laboratory data
from a double ring bending test recorded in literature. The numerical method is
dependent on a representation of the surface �aws condition in glass and two types
of �aw-size distributions are �tted according to a single and a dual population
concept which are motivated by empirical results and extreme value theory. The
e�ect of using di�erent fracture criteria is investigated, however, the incorporation
of mode II shearing displacement into the fracture criterion has only a minor impact
on the simulated strength distribution when the glass is subjected to double ring
bending.
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Contributions by David Kinsella

David Kinsella was the main author. He contributed to the conceptualization of
ideas, development of methodology, conclusions drawn, and applied the numerical
models, performed the statistical analysis and �nite-element computations, and im-
plemented the computer code and supporting algorithms. He planned the research
activities, prepared the initial draft for the published work, and participated in
reviewing and editing.

5.1.3 Paper C

Kinsella, D., Persson, K. (2018): An Analysis of Glass Fracture Statistics. In:
Challenging Glass Conference 6: Conference on Architectural and Structural Ap-
plications of Glass, Delft, The Netherlands.

Summary

A numerical method is applied to model the failure stress and fracture origin in
linearly supported glass panes subjected to various forms of lateral loading including
a uniform pressure and an impact from a soft body. The stresses are computed in
a �nite-element analysis and the strength and failure origins are revealed using a
numerical procedure based on a stochastic approach to brittle fracture assuming a
weakest-link system and Pareto distributed �aw sizes. Two types of gasket support
materials are considered, namely neoprene and nylon, and the softer gasket material
produces a greater number of fractures nearer the corners in plates exposed to
uniform lateral pressure. A comparison is made with the recorded fracture origins
from a number of laboratory tests which are reported in the literature. In addition,
failure modelling is performed for a tall vertical panel of laminated glass with a
complex geometry that is subjected to dynamic impact loading.

Contributions by David Kinsella

David Kinsella was the main author. He contributed to the conceptualization of
ideas, development of methodology, conclusions drawn, planning of research activ-
ities, �nite-element modelling, and applied the numerical methods, performed the
statistical analysis, developed software, and implemented the computer code and
supporting algorithms. He prepared the initial draft for the published work and
participated in reviewing and editing.
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5.1.4 Paper D

Kinsella, D., Lindström, J. (2020): Using a Hierarchical Weibull Model to Predict

Failure Strength of Di�erent Glass Edge Pro�les. International Journal of Struc-
tural Glass and Advanced Materials Research 4, (130.148).

Summary

Laboratory measurements of edge strength from four-point bending tests are sur-
veyed from literature and analyzed in a Weibull statistical framework. The estim-
ated Weibull parameters exhibit considerable scatter and a hierarchical modelling
approach is adopted in which the Weibull parameters are treated as nested random
variables. Estimates are obtained for the characteristic 5%-fractile strength of four
common edge pro�les as function of load rate and load span while accounting for
statistical e�ects due to glass supplier. A mixture distribution is computed by av-
eraging over the e�ect of di�erent suppliers to produce a model that represents the
strength when no prior knowledge exists for the glass supplier, as would be useful
in a practical design situation. In addition, it is suggested that the Weibull shape
parameter is scale-dependent for the raw-cut edge pro�le.

Contributions by David Kinsella

David Kinsella was the main author. He contributed to the conceptualization of
ideas, planning of research activities, conclusions drawn, and implementation of
computer code. He was a supporting contributor to the development of method-
ology, creation of models, and application of statistical techniques to analyze the
data. He performed the data collection and curation including management activ-
ities to annotate and maintain the research data. He prepared the initial draft for
the published work and participated in reviewing and editing.

5.1.5 Paper E

Kinsella, D., Serrano, E. (2021): Failure Modelling of Glass Plates in Biaxial Load-

ing: Using Flaw-Size Based Weakest-Link Systems. Submitted for possible journal
publication.

Summary

Laboratory tests are conducted with a ball-on-ring and ring-on-ring bending setup
and the results are modelled using �aw-size based weakest-link systems. With ana-
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lytical calculation and numerical computation of the stress �eld, the e�ective area
and strength-scaling size e�ect are expressed in closed-form assuming a Weibull
system. Using a computationally intensive numerical method, the fracture stress
and origins are simulated in virtual glass specimens that contain randomly distrib-
uted surface cracks depending on di�erent �aw population concepts. Comparisons
of modelled and predicted strength and fracture origin distribution are performed
and it is suggested that surface size-e�ects in glass cannot be represented only by
a Weibull strength-scaling because the shape of the observed distributions in ex-
periments di�er thus rendering intractable the weakest-link scaling premise of the
ordinary Weibull model. The numerical implementations of �nite-size weakest-link
systems using an exponentially decaying �aw-size distribution produce better pre-
dictions for the strength-scaling compared to a Weibull distribution. Low-strength
quantiles for the glass in ball-on-ring and ring-on-ring bending are estimated based
on results from a large number of virtual tests. However, the simulated ball-on-ring
fracture origins exhibit greater spread in the radial direction from the centre point
than observed in laboratory tests.

Contributions by David Kinsella

David Kinsella was the main author. He contributed to the conceptualization of
ideas, development of methodology, creation of models, conclusions drawn, design
of experiments, performing statistical analysis, developing software, and planning of
research activities. He applied the analytical and numerical models and performed
the �nite-element computations. He contributed to the preparation of experiments,
the veri�cation of test results, and was a supporting contributor in carrying out the
experiments. He prepared the initial draft for the submitted manuscript.

5.2 OTHER CONTRIBUTIONS

The following contributions are related to, but not included in, the thesis.

Kinsella, D., Persson, K. (2016): On the Applicability of the Weibull Distribution

to Model Annealed Glass Strength and Future Research Needs. In: Challenging
Glass Conference 5: Conference on Architectural and Structural Applications of
Glass, Ghent, Belgium.

Karlsson, S., Kozlowski, M., Kinsella, D., Haller, K., Andersson, S., Hellman, F.,
Persson, K. (2018): Kvalitetshöjning av planglas. Icke-förstörande provning av

glasets hållfasthet. Report no. 2018-001, Smart Housing Småland.
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Kozlowski, M., Kinsella, D., Persson, K., Kubica, J., Hulimka, J. (2018): Struc-

tural Analysis of Slender Glass Panel Subjected to Static and Impact Loading.
In: Challenging Glass Conference 6: Conference on Architectural and Structural
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Conclusions and outlook

With respect to objective a), see further the objectives on p. 8 in Sec. 1.2, it is
concluded that glass failure modelling approaches can generally be divided into;
1) models with a phenomenological approach towards failure where failure is con-
sidered at the macroscopic level and no particular representation of the surface con-
dition is assumed, and; 2) models which consider fracture at the microscopic level by
supposing pre-existing material �aws from which failure is derived. Flaws in glass
can be represented more or less rigorously with stochastic cracks of a certain shape,
size and orientation, or �aws can be represented by an elemental strength distribu-
tion. The main issue with the latter approach is how to properly deal with failure
when it is supposed that the elemental strength is dependent on a multiaxial state
of stress. A problem facing the �aw-size density-based approach is the di�culty
to detect �aws due to practical limitations, as well as to distinguish between the
potentially fracture-inducing �aws; additionally, �aws may have a complex shape.

With respect to objective b), a survey was performed of laboratory strength meas-
urements on glass tested in an ambient environment and which were conducted
within the last 40 years. The experiments which comprise some 3100 tests of in-
dividual specimens in nearly 200 samples, record the fracture stress of new and
monolithic annealed �oat glass panes. Four di�erent testing devices were employed
in the experiments, namely the three-point and four-point bending devices, the
double ring bending device, and the setup that allows for linearly supported plates
to be subjected to uniform lateral pressure.

With the results from Paper A (objective c), it is concluded that the Weibull distri-
bution provides a basic model for the surveyed edge strength data, that it outper-
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forms a normal or lognormal distribution and is at least as well-performing as an
extreme value Gumbel distribution. When the edge strength is considered, there is
a tendency towards a unimodal �aw-size distribution that governs failure. In the
case of surface strength tests, the extreme value distributions generally make a poor
�t with data samples and multiple �aw populations that co-exist on the pristine
surface are likely what causes the comparatively better performance of the normal
and lognormal distributions. Ultimately, the standard statistical distributions, at
least those considered, are insu�cient for the modelling of surface strength, and
more sophisticated approaches are warranted. From a practical perspective, both
the edge and surface condition are important to account for in a strength design
situation. Laboratory tests on hundreds of linearly supported plates subject to uni-
form lateral pressure demonstrate that on average about one in every third fracture
occurred along an edge. In the case of linearly supported plates, numerical investig-
ations performed in Paper C show how profound an e�ect the boundary conditions
have on the resulting stress distribution which can attain equally large magnitudes
on the �tension� side as the �compression� side of glass, in addition to exposing the
edges to potentially critical magnitudes of stress concentration.

With respect to objective d), the models developed in Paper B, C, and E demon-
strate how the strength and fracture origin can be simulated in numerical imple-
mentations of �nite-size weakest-link (FSWL) systems assuming random sampling
of Gri�th �aws which are distributed over the surface area. The method has great
potential for use in connection with failure modelling and prediction-making of
glass structures. It is to begin with capable of approximating an ordinary Weibull
weakest-link system as a special case. Yet provision is made for greater �exibility
as it readily allows for custom surface �aw representations and a range of fracture
criteria to be applied. However, the method is dependent on a rigorous repres-
entation of the surface condition which is challenging to acquire insight into due
to the current lack of techniques by which to probe it. The use of a mixed mode
fracture criterion has only a limited impact on the simulated strength distribution
compared to a pure mode I criterion, at least in those cases studied which include
ring-on-ring bending and linearly supported plates subject to uniform lateral pres-
sure. When the FSWL systems are �tted to laboratory strength data (Paper E),
in some cases the predicted fracture origins have signi�cantly larger spread than
observed in experiments. More work is required to further investigate simultaneous
prediction-making of strength and fracture origins which are intrinsically intercon-
nected in weakest-link systems. More research is needed to better understand which
surface condition parameter values to use in numerical implementations of FSWL
systems, e.g., pertaining to the �aw density value, or the choice of �aw-size dens-
ity function. The application of multiple co-existing �aw populations are tractable
with this method and more work is required to address the full potential and to deal
with ensuing complexities. The results from Paper A pertaining to the observed
surface strength characteristics (see objective c) provide justi�cation for an invest-
igation of multiple �aw populations as was pursued in Paper B and E. In addition,
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there is random variability in the surface condition properties of glass that occurs
between experimental campaigns that should be further addressed in wide-ranging
experiments involving multiple laboratories and glass suppliers. It is also import-
ant in future work to address the stress corrosion parameters and how in particular
the crack growth velocity parameter in Eq. (2.37) should be estimated for use in
modelling of the surface condition in a range of environments including the ambient
conditions of an indoor laboratory. For example, it would be tractable to treat this
parameter as a random variable within the framework of the numerical method.

With respect to objective e), Paper C and E illustrate the application of the surface
strength model to a range of di�erent load cases including small plates subject
to ring-on-ring and ball-on-ring loading, large linearly supported plates subject
to uniform pressure, and large panels with complex geometry subject to impact
loading. The analysis of a tall panel and soft impactor as was carried out in Paper C
suggests a promising application of the numerical method for implementation of
FSWL systems. In the study, an impact load with a �xed weight and fall height was
applied on a panel with a complex geometry in a repeated series of virtual tests and
the strength and fracture origin were recorded only if the structure was deemed to
have failed. This procedure is similar to a certi�cation test and it is anticipated that
this can lead to a practicable simulation tool with potential to reduce signi�cantly
the need for time-consuming and costly laboratory tests. In addition, possible
areas of application would be wide-ranging including, e.g., product certi�cation of
photovoltaic solar panels subject to certain prede�ned loads. It would therefore be
of interest to continue the research on FSWL systems and to further calibrate the
model parameters in experimental tests.

With respect to objective f), it is shown in Paper E how the theoretical strength-
scaling in glass plates subject to ring-on-ring and ball-on-ring bending can be de-
termined on the basis of a Weibull weakest-link system using the calculated e�ective
areas which are expressed in closed-form. However, the results from laboratory tests
(objective g) show that usage of the Weibull e�ective area is error-prone and thus
the weakest-link premise of the ordinary Weibull model is rendered intractable from
a practical point of view; it leads to non-conservative strength predictions on smal-
ler e�ective areas, and to too low strength predictions than are viable for glass
design on larger areas. To further address surface strength-scaling size e�ects, the
study performed in Paper E could be expanded on by considering larger specimens
extracted from a single jumbo pane and subjected to ring-on-ring and ball-on-ring
bending using multiple loading ring dimensions in order to probe a greater range of
the underlying �aw-size distribution. At the same time, careful attention should be
paid to the observed fracture origins to promote a better understanding for their
modelling.

With Paper D, an in-depth analysis of the edge strength is performed based on sur-
veyed data measurements (objective h). Di�erent edge treatments are associated
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with di�erent strength distribution characteristics, e.g., the polished edge is asso-
ciated with the largest coe�cient of variation on average and the arrised with the
smallest whereas as-cut and ground edges lie in-between. The results from Paper A
pertaining to the observed edge strength characteristics (see objective c) provide
justi�cation for an analysis in a Weibull statistical framework. However, the recor-
ded data shows that the estimated Weibull parameters scatter considerably from
one data sample to another even in cases where tests are done on specimens with
equal dimensions that are obtained from the same supplier and are subjected to a
uniform load rate in an indoor climate. A tractable way of dealing with this variab-
ility is to adopt a hierarchical modelling approach in which the Weibull parameters
are treated as nested random variables. The as-cut edge may be associated with a
scale-dependent shape parameter with an inverse proportionality. Supplier e�ects
on edge strength are signi�cant and important to consider alongside other e�ects
due to, e.g., applied stress rate and length of edge exposed to maximum stress.
A 45 MPa characteristic strength value can be conservatively used with arrised,
ground, and polished edges if related to a reference length of 100 mm at an applied
stress rate of 2 MPa s−1. Static fatigue is best accounted for with a value of stress
corrosion parameter equal to about 16.

In summary, the results from Paper A provide justi�cation for key assumptions
made in Paper B, D, and E, namely, the consideration of multiple �aw populations in
surface fracture modelling, and the analysis of edge strength data within a Weibull
statistical framework. In addition, Paper C and E present various applications of
the surface strength model including linearly supported plates subject to uniform
lateral pressure, a laminated glass panel located in a public hall which is subject to
dynamic impact loading, and laboratory results from ring-on-ring and ball-on-ring
bending tests with a consideration of surface size e�ects.

Another important area for future research pertains to the joint modelling of sur-
face and edge fracture. In a numerical implementation of a FSWL system, the unit
cells corresponding to the edge perimeter can be sampled from one type of �aw
population while the unit cells corresponding to the surface from another. The
work carried out and presented in Paper D and E, respectively, could be combined
to promote such a model. In Paper D a mixture distribution for the edge strength
is computed (see Fig. 8 in the paper) which represents the strength at a 2 MPa s−1

stress rate for various load spans and edge types. It also represents the strength
when no prior knowledge is had about the particular supplier from which the glass
was obtained, thus corresponding to a realistic design situation. The computed
mixture distribution could be adapted and used as an elemental strength distribu-
tion for application in a FSWL context. When it comes to the surface condition,
more research is recommended to produce a reliable representation including fur-
ther work on multiple �aw population concepts. This should include wide-ranging
laboratory testing with glass sampled from numerous suppliers and tested at mul-
tiple laboratories. As a starting point, however, the modi�ed �aw-size concept that
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was applied in Paper E could be used. Supposing such joint modelling of surface
and edge fractures in a FSWL system, the tall panel and soft impactor case from
Paper C could be revisited in a future investigation using an elemental strength ap-
proach for the edge subregions and a �aw-size approach for the surface subregions.
This would present a signi�cantly improved analysis of the structure because the
complex geometry in this case results in a substantial portion of the edge and sur-
face to be simultaneously exposed to considerable tension. However, a question to
be further addressed is the possible di�erence in edge strength characteristics when
a glass specimen is subjected to an out-of-plane bending load compared to the more
commonly adopted con�guration of in-plane loading (as in laboratory tests using a
four-point bending �xture).

A promising opportunity is to integrate some of the methods covered in the thesis
into the ClearSight glass design program which is used by industry in Sweden.
ClearSight is a �nite element-based design tool that was developed at the Division
of Structural Mechanics at Lund University in collaboration with the Swedish glass
associations. The program consists of a user interface, a simulation module, a result
viewer, and a report window, see further Fröling (2013) for a description of some of
the features. ClearSight can be used to determine the strength due to various load
cases and boundary conditions with a large number of capabilities including bolt or
clamp �xed laminated glass units subjected to, e.g., a uniformly distributed load or
a uniform line load along one edge. A special reduced integration scheme is utilized
so that only one element layer per material layer in the thickness direction is required
which makes for very time-e�cient computations in particular for laminated glass
units which consist of several material layers. When ClearSight is used as a tool in
the design process to evaluate di�erent design alternatives, at present it does so by
comparing the computed maximum principal tensile stress with the allowable stress
which can be inferred from the standards. The methods presented in this thesis
can be applied in a tool like ClearSight to facilitate a strength-design process that
accounts for glass material characteristics and is consistent with present knowledge
of advanced glass structures in building construction.
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Abstract: Experimental data on the strength of new annealed float glass 

tested in an ambient environment was collected. A comparison was made 

between four standard distributions, the normal, lognormal, Gumbel and 

Weibull, with respect to the performance in modelling the strength. The 

Weibull distribution outperformed the normal and lognormal distributions 

when the data contained edge only failure origins. When the data was 

selected to contain surface only failure origins it is indicated that the 

extreme value distributions performed poorly. The Weibull model is known 

to have a basis in a failure-mechanism concept based on the weakest-link 

principle. The Gumbel distribution can also be derived from failure-based 

mechanics and be associated with certain types of flaw size distribution. 

The Weibull model, however, is a better choice for a failure model of glass 

edge strength compared to the normal and lognormal distributions and at 

least as good as a Gumbel distribution. The surface strength is complicated 

to model and none of the standard distributions which were examined are 

capable of producing a proper model. The sample size also has a profound 

impact on the performance of the surface strength models. 

 

Keywords: Glass, Strength, Fracture statistics, Weibull distribution 

 

Introduction 

The normal distribution was previously used by 

glass manufacturers to model the fracture stress. In e.g., 

the early Pilkington design charts, the design stress was 

based on the 1%-fractile of a normal distribution with a 

coefficient of variation of 0.20 (Calderone, 1999). 

Today, the Weibull distribution is commonly used to 

model the fracture stress data from experiments on 

glass. However, a number of researchers have 

questioned whether the Weibull distribution is in fact 

superior to an ordinary normal or lognormal 

distribution as a model of the fracture stress in glass. 

Based on the test results of a large set of full-size 

rectangular plates of both new and old annealed float 

glass, Calderone (1999) found that the lognormal 

distribution provided a better fit with the experimental 

data than the Weibull distribution. The lognormal 

distribution has support on the right half axis only and 

that gives it a logical advantage over the normal distribution 

because the strength is a positive number. Later studies by 

Calderone et al. (2001) and Calderone et al. (2005) 

recommended that the Weibull distribution should in fact 

not be used to predict the strength of window glass 

panels. However, the 32 samples of data in Calderone 

(1999) were of limited size ranging from 5 to 9 

specimens each. Lü (1997) carried out tests on glass in 

three-point and four-point bending and concluded, based 

on the correlation coefficient of the fitted line in the 

probability plots, that all three standard distributions, i.e., 

the normal, lognormal and Weibull, were applicable as 

failure models. Veer et al. (2009) carried out tests on glass 

beams in four-point bending and concluded that on the 

one hand, the lognormal distribution provided a fit that 

was at least as good as the Weibull model. On the other 

hand, it was concluded that none of the standard 

distributions properly modelled the data on annealed glass. 

So far and to the best of our knowledge, no one has 

made a comparison of the standard distributions based 

on a comprehensive survey of the published data results 

that are available in the open literature. In fact, a 

substantial portion of the total number of experiments 

that have been reported were conducted only recently 

within the last decade. 



David Kinsella et al. / International Journal of Structural Glass and Advanced Materials Research 2018, ■ (■): ■■■.■■■ 
DOI: 10.3844/sgamrsp.2018.■■■.■■■ 

 

■■ 

Moreover, it is sometimes believed that the edge 

strength in glass differs from the surface strength. This 

is reflected in the structural standards in different ways. 

For example, DIN 18008:2010 gives a reduction factor 

to be applied when calculating the edge strength, the 

factor of which is 0.8. Hence, the edge condition is 

always considered to be inferior to the surface 

condition. On the other hand, prEN 16612:2017 

provides a different set of reduction factors for the edge 

strength depending on the edge treatment, i.e., cut, 

arrised, ground, or polished. In the case of the polished 

edge, the edge reduction factor is unity which amounts 

to no reduction at all. This implies that the polished 

edge condition is considered to be equal to the pristine 

surface. In summary it is possible then, but not self-

evident perhaps, that different models should be used 

for the edge and surface fractures in glass. 

The question of which standard distribution that 

provides the best fit has important implications. 

Currently, there is a draft for a European standard for 

strength of glass in building, prEN 16612:2017, that 

bases its estimate of the characteristic value of the 

strength of glass on test results that were fitted with a 

Weibull distribution. The characteristic value of the 

bending strength is defined from the 5% fractile in the 

distribution for monolithic panes of annealed float glass. 

In this study, the performance of the following four 

standard statistical distributions is examined, viz. the 

normal, lognormal, Gumbel and Weibull distributions. 

Standard Distributions 

A Weibull distribution with the parameter values 
m = 6 and k = 74 MPa was fitted to test results on 
annealed float glass specimens that were performed as 
a basis for the DIN 1249-10:1990 (Haldimann, 2006). 
The tests were carried out using the R400 double ring 
bending device at a stress rate of approximately 
2 MPa s

−1
. The characteristic value of the bending 

strength was estimated at 45 MPa which was the 5% 
fractile in the distribution. This value was subsequently 
adopted in the draft standard which currently is referred 
to as prEN 16612:2017. 

The Weibull distribution (Weibull, 1939) has the 

cumulative distribution function: 

 

( ) 1 exp

m

F
k

σ

σ

  
= − −     

 (1) 

 

where, k and m>0 denote the scale and shape parameters, 

respectively. Glass strength is governed by the existence 

of surface flaws which magnify the stresses locally 

(Griffith, 1920). The stress-raising property of a given 

flaw can be determined from the associated crack size 

and shape using fracture mechanics (Mencik, 1992). Let 

f(a) denote the flaw size density function with a 

signifying the flaw size. Suppose ac denotes the critical 

crack size that prompts failure of the crack. In the case of 

a plane crack with geometry factor Y that is subjected to 

a uniform uniaxial stress σ, it can be shown that: 
 

2

2 2

Ic

c

K
a

Y σ π

=  (2) 

 
where, KIc represents the fracture toughness (Mencik, 

1992). Let Pf(∆A, ac) denote the failure probability in the 

small region ∆A at the critical crack depth ac. It can be 

shown that (Lamon, 2016): 

 

( ) ( ),

c

f c
a

P A a A f a da
∞

∆ = ∆ ∫  (3) 

 

Suppose the total area is: 
 
A N A= ∆  (4) 
 
for some number N. By application of the weakest link 

principle while assuming that the regions are non-

interacting it is found that the survival probability is: 

 

( ) ( )( )1 , 1 ,
N

f c f cP A a P A a− = − ∆  (5) 

 

Substituting for Equation 3 and 4 in Equation 5 while 

observing the standard limit: 

 

lim 1

N

x

N

x
e
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 
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 (6) 

 

it follows after some rearrangement that: 
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c
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Suppose f(a) is a Pareto density function, i.e.: 

 

( ) ( )1
0

cc

f a ca a
− +

=  (8) 

 

where, c and a0 are scale and shape parameters 

(Forbes et al., 2011). Inserting Equation 8 into Equation 

7 while substituting for Equation 2 yields the Weibull 

distribution, Equation 1, with: 
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and: 
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In fact, for reasons of extreme value theory 

(Beirlant et al., 2004), the Weibull distribution is the 

limiting distribution when the flaw size distribution 

decays like a power-law in the tail. This means that the 

Weibull distribution emerges for the strength model 

when the flaw size distribution is e.g., Pareto, Cauchy, t, 

or F. Another common extreme value distribution is the 

Gumbel distribution which has the density function: 

 

( )
1
exp exp expf

s s s

σ µ σ µ
σ

 − −   
= −    

    
 (11) 

 

where, µ and s signify the location and scale parameters, 

respectively. It is the limiting distribution when the flaw 

size distribution decays exponentially in the tail. This 

includes flaw size distributions such as the normal, 

lognormal, exponential, gamma and χ
2
 (Trustrum and De 

Jayatilaka, 1983). 

The normal distribution has the probability density 

function (Forbes et al., 2011): 

 

( )
( )

2

22

1
exp

22
f

ss

σ µ
σ

π
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 = −
 
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 (12) 

 

where, µ and s
2
 are the mean and variance, respectively. 

The use of a normal distribution as a standard model for 

data is due to the Central Limit Theorem (Beirlant et al., 

2004) which states that averages of many samples will 

tend to follow a normal distribution. 

The lognormal distribution arises from the normal 

distribution through a change of variables transformation. If 

Y is a random variable with a normal distribution, then X 

= exp(Y) has a lognormal distribution with the density 

function (Forbes et al., 2011): 
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log1
exp
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 (13) 

 

In Equation 13, µ and s
2
 denote the mean and 

variance of the related normal distribution. By token of 

the Central Limit Theorem, the lognormal distribution 

would be a natural model for geometric means. 

Method 

Data on the strength of annealed float glass was 
collected from a set of references, see Table 1 for the 
complete list including details on the experimental 
setups. The strength was the maximum principal tensile 
stress at the fracture origin location. Only those data 
samples were extracted from the references and included 
in the analysis which fulfilled the following conditions: 
the glass was monolithic annealed float glass in the as-

received condition that was tested in an ambient 
environment. The experiments were conducted using 
either the double ring bending device, the three or four-
point bending device, or the setup that allows for a 
uniform pressure to be applied to a laterally supported 
plate. In the case of four-point bending tests, the 
recorded strength value was discarded in case the failure 
origin was located outside the load span. In one case of 
double ring bending tests, viz. Simiu et al. (1984), the 
fracture stress values that corresponded to failure origins 
outside the loading ring area were adjusted using 
Equation 14 in order to reflect the maximum principal 
tensile stress at the failure origin. This was possible to 
do because the fracture origins were recorded by   
Simiu et al. (1984). Otherwise, all the recorded strength 
values were taken as-received. The radial stress outside 
the loading ring area in a double ring bending setup at 
the distance r from the centre point is: 
 

( ) ( )
( )2 2 2

0 1
1

02 2 2

2

3
1 ln 1 ,

2 2
r

r r rF r
v v r r

b r r r
σ

π

 −
 = + + − >
 
 

 (14) 

 

where, r2 is the equivalent outer radius used for a square 

shaped specimen with side length 2L, viz: 

 

( )2
1 2r L= +  (15) 

 

In Equation 14, F is the failure load, b is the plate 

thickness, v is Poisson's ratio, r0 is the loading ring 

radius and r1 is the support ring radius. 

An overview of the experiments including a more 

detailed presentation of each data sample can be found 

in Kinsella (2018). All data samples that were larger 

in size than 5, 15, 30 and 45, respectively, were fitted 

with the four standard probability distributions. The 

parameter estimation was performed with the 

maximum likelihood method. The goodness-of-fit was 

calculated with the Anderson-Darling statistic 

(D'Agostino and Stephens, 1986) and a set of four p-

values were derived for each sample, the p-values 

being associated with the normal, lognormal, Gumbel 

and Weibull distributions, respectively. 

The float process production method causes the 

diffusion of tin into the surface that was in contact with 

the molten tin bath and this side is termed the tin side. 

The other side is the air side. When the statistical models 

were fitted to the data samples, it was not taken into 

account whether the fracture origin was located on the 

tin side of the glass or on the air side. 

The method used to measure and compare the potential 

of various statistical models allows for the effect of 

different surface area size or edge length and different 

stress state to be taken into account by adaptation of the 
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two parameter values. This is done in the maximum 

likelihood estimation. However, the method of analysis 

used in this study does not take into account that the 

strength in e.g., uniaxial stress states is of one type of 

distribution, e.g., Weibull, while in biaxial stress states is 

of a different type of distribution, e.g., normal. 

In some experiments the fracture origin mode was not 

recorded while the data contained a mixture of surface 

and edge fractures or there was an ambiguity towards 

the fracture origin due to multiple potential fracture 

locations. Hence only a mixed failure origin mode 

could be determined in those cases. This pertains to a 

number of cases with the four-point bending device 

with the loading taking place out-of-plane and with 

laterally supported plates subjected to uniform 

pressure. In the examination that follows, it was 

assumed that when a glass beam was tested in the four-

point bending device with in-plane loading, then the type 

of fracture produced was an edge failure origin. For an 

illustration of the meaning of in-plane and out-of-plane 

loading with the four-point bending device, see Fig. 1. The 

model fitting was performed in the following three cases, 

viz. mixed failure origins, edge only failure origins and 

surface only failure origins. 

In a first procedure, the resulting measures of 

performance were visualized in the form of boxplots. 

Subsequently, the multiple models over multiple data 

sets were compared in a Friedman test (Friedman, 1937; 

1940) under the null-hypothesis that all models perform 

equally. In case the null-hypothesis was rejected, a post-

hoc test was performed to determine which of the 

models that were significantly different. For this, the 

Wilcoxon signed-rank test (Wilcoxon, 1945) was used 

and the family-wise error was controlled with the 

Bonferroni-Holm method (Holm, 1979). 

 

 

 
Fig. 1: Illustration of the (a) out-of-plane loading of a beam in 

four-point bending and the (b) in-plane loading 

Friedman Test 

The Friedman test is a non-parametric test for 

comparing models over multiple data sets. The performance 

of the m models is calculated for each of the n data sets and 

then ranked with rank 1 corresponding to the best 

performance. The ranks can be organized in a matrix: 

 

11 12 1

21 22 2

1 2
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m m mn

R R R

R R R
R

R R R

 
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 
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⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 (16) 

 

where, Rij is the rank of model i in data set j (Benavoli et al., 

2016). Under the null-hypothesis, there is no difference in 

performance between the models, in which case the average 

value of each row in R is 
( )1

2

n m +

. The test statistic is: 

 

( )

( )
2

1 1

112

1 2

n n

jk

j k

n m
T R

nm m
= =

 + 
= − 

+  
∑ ∑  (17) 

 

which under the null-hypothesis is χ
2
-distributed with m-

1 degrees of freedom. 

Wilcoxon Signed-Rank Test 

The Wilcoxon signed-rank test is a non-parametric 

test for comparing the performance of two models over 

multiple data sets. Under the null-hypothesis, both 

models perform equally and hence the distribution of the 

pairwise difference is symmetrical about the value 0. Let 

di denote the difference in performance between the two 

models for data set number i among n sets when the first 

model outperforms the second. In case di = 0, i.e., a tie, 

one has to exclude observations. Suppose there are an 

odd number of ties. Then one tie is excluded and half of 

the remaining ties are included. Suppose there are an 

even number of ties. Then half of the ties are included. 

The rank sum R is calculated: 

 

( ) ( )
0 0

1

2
i i

i i

d d

R rank d rank d

> =

= +∑ ∑  (18) 

 

The test statistic is: 

 

( )

( )( )

1
1

4

1
1 2 1

24

R n n

z

n n n

− +

=
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 (19) 

 

which for a large number of samples is approximately 

normally distributed under the null-hypothesis 

(Demsar, 2006). 
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Bonferroni-Holm Method 

When making multiple comparisons between pairs of 

models, the Bonferroni-Holm method (Holm, 1979) can 

be used to adjust the significance level to control the 

family-wise Type 1 error, i.e. the probability of making at 

least one Type 1 error in any of the comparisons (Demsar 

2006). Suppose the desired significance level is α. Then, 

with the Bonferroni method, the corrected significance 

level is simply 
m

α

. However, this is very conservative. 

Holm (1979) provided a sequentially rejective version of 

the Bonferroni method that has larger probability of 

rejecting the false hypothesis. The hypotheses are ordered 

by their significance levels p1, p2,... with p1≤p2≤...≤pm. 

Starting with the most significant p-value, p1 is compared 

with 
m

α

 and if it is greater than so, the procedure stops 

and no p-values are significant. If, however, 
1
p

m

α

≤ , the  

corresponding hypothesis is rejected and the second p-

value is compared with 
1m

α

−

. If the corresponding 

hypothesis is also rejected, the third p-value is compared 

with 
2m

α

−

, etc. Hence, pi is compared sequentially to 

m i

α

−

 in a step-down procedure that stops when there is 

failure to reject the hypothesis. 

Limitations 

The glass included in the investigation was new and 
in the as-received condition when it was tested. 
Moreover, the glass was stressed in an ambient 
atmosphere, typically represented by an indoor 
temperature of about 20°C and a relative humidity 
between 40-70%. Only monolithic panes of annealed 
float glass was considered. Static fatigue was not taken 
into account in the analysis of the data.

 
Table 1:  List of references which were the basis for an investigation. ULP = Plate bending due to Uniform Lateral Pressure, CDR = 

Co-axial Double Ring bending, 4PB = Four-Point Bending, 3PB = Three-Point Bending 

Reference No. samples No. observations Bending mode 

Johar (1981) 9 78 ULP 

Johar (1982) 5 106 ULP 

Simiu et al. (1984) 2 85 CDR 

Carre (1996) 5 81 4PB 

Calderone (1999) 32 195 ULP 

Hess (2000) 3 15 4PB 

Fink (2000) 2 127 CDR 

Haldimann (2006) 2 20 CDR 

Veer et al. (2006) 3 32 4PB 

Sglavo et al. (2007) 8 115 3PB 

Veer et al (2009) 2 54 4PB 

Postigo (2010)* 1 41 CDR 

Veer and Rodichev (2011) 2 177 4PB 

Veer and Rodichev (2012) 2 60 4PB 

Vandebroek et al. (2012) 4 77 4PB 

Lindqvist (2013) 32 478 4PB 

Vandebroek et al. (2014) 8 202 4PB 

Kozlowski (2014) 1 6 4PB 

Kleuderlein et al. (2014) 33 830 4PB 

Schula (2015) 1 15 CDR 

Kinsella and Persson (2016) 2 58 4PB 

Muniz-Calvente et al. (2016) 2 73 CDR 4PB 

Navarrete et al. (2016) 8 69 CDR 

Yankelevsky et al. (2017) 1 56 4PB 

Osnes et al. (2018b) 3 93 4PB 

Total: 173 3143 ULP CDR 3PB 4PB 
*Obtained from Huerta et al. (2011) 

 

Table 2: Friedman test p-values based on the samples that contained at least 15 observations of the strength 

 Edge fail. origins Surf. fail. origins 

p-value 0.0000 0.0104 
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Fig. 2: Boxplots for the p-values from the Anderson-Darling tests that measured the goodness-of-fit of various standard statistical 

models of the fracture stress of annealed float glass. The results are separated according to the failure origin mode as well as 

according to the minimum number of observations per sample included in the analysis. W = Weibull, N = normal, L = 

lognormal and G = Gumbel distribution  
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Fig. 3: p-values for the pairwise comparison of model performance with the signed-rank test. (*) indicates that the p-value was 

significant while controlling for the family-wise type I error. A plus sign in front indicates that the row had a higher rank 

while a minus sign indicates that the column had a higher rank. Analysis comprises all samples of size 15 or greater. W = 

Weibull, N = Normal, L = Lognormal and G = Gumbel distribution 

 

Results 

The samples from the references in Table 1 which 

fulfilled the limitations, see Sec. Limitations, were 

modelled using the normal, lognormal, Gumbel and 

Weibull distributions. The goodness-of-fit was tested with 

the Anderson-Darling statistic. The models were fitted in 

the following three cases, viz. mixed failure origins, edge 

only failure origins and surface only failure origins. An 

overview of the performances is provided in Fig. 2 which 

contains a set of boxplots separated according to the 

failure origin mode as well as according to the minimum 

sample size in the analysis. Note that under the null-

hypothesis the p-values are uniformly distributed between 

0 and 1. Fig. 2 only contains the results from pure edge 

and surface failures, i.e., not mixed failure origins. Due to 

the fundamental difference that is apparent in the 

behaviour between edge and surface failure mode, it is not 

effective to combine the results in an analysis, see further 

the Discussion section. 

A further investigation was performed based on all 

samples that included at least 15 observations of the 

strength, the results of which follow. Similar features 

were exhibited when the analysis was selected to 

comprise minimum sample sizes of 30 and 45 

observations, respectively. A Friedman test was 

performed to make multiple comparisons over the data 

sets and the null-hypothesis was rejected in both cases 

corresponding to edge only failure origins and surface 

only failure origins, see further Table 2 for the p-values. 

Finally, pairwise comparisons were made between the 

models using the Wilcoxon signed-rank test and the 

family-wise Type I error was controlled using the 

Bonferroni-Holm correction method, see Fig. 3. The 

results show that in the case of edge failure origins, the 

normal and lognormal distributions did not perform as 

well as the Weibull distribution. In the case of surface 

only failure origins, however, none of the pairwise 

comparisons rendered a statistical significance. 

Discussion 

The Weibull model has been praised for its utility in 

a wide range of applications (Weibull, 1959). 

According to a recent survey (Rinne, 2009), there are a 

great number of papers and monographs that 

demonstrate the successful application of the Weibull 

model in some 180 distinct topics that encompass 

nearly all scientific disciplines. Part of the reason for 

the versatility may lie in the fact that the Weibull 

distribution is one of the three extreme value distributions. 

It emerges naturally as the limiting distribution of the 

minimum or maximum value in a sample. 

The utility of the Weibull model has been called into 

question, however, both from within the structural glass 

engineering community and from outside. As was noted 

in the Introduction section, certain experiments on glass 

have indicated that the Weibull model does not perform 

better than a normal or lognormal distribution. These 

experiments have included laterally supported plates 

subjected to uniform loading as well as beams in three-

point and four-point bending. However, the fact that the 

Weibull model does not appear to outperform other 

standard models may be due to the sample sizes being 

too limited. In order to illustrate this, consider Fig. 4 

which illustrates the results when drawing 1000 random 

samples from a Weibull distribution with different 

sample sizes and fitting the standard distributions to the 

drawn samples. The Weibull parameter values were 

selected as m = 6 and k = 74 MPa, i.e., the same 

distribution as was mentioned already in Sec. Standard 

Distributions. The figure indicates that it may be hard or 

indeed impossible to distinguish properly between a 

Weibull model and models based on other standard 

distributions when the sample sizes are limited. In 

particular this applies to detecting a difference in 

performance between the Weibull model with these 

parameter values and the model based on a normal 

distribution. 
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Fig. 4: Simulations of the p-values based on 1000 random samples from a Weibull distribution of varying sample size 
 

From the point of view of structural glass 

engineering, however, the Weibull model has a logical 

basis. According to experiments with Hertzian 

indentation fracture (Poloniecki and Wilshaw, 1971; 

Poloniecki, 1974), flaw size in glass can be closely fitted 

by an inverse gamma distribution: 

 

( )
( )

1

/

2 !

n

n r a
r

f a a e
n

−

− −

=

−

 (20) 

 

which is like a Pareto distribution in the tail. In Sec. 

Standard Distributions, it was shown that the Weibull 

distribution can be derived from the weakest-link 

principle when supposing a Pareto flaw size density 

function, see Equation 3 to 10. Hence, a strong case 

can be made for applying the Weibull distribution to 

model glass strength when the stress state is uniform 

and uniaxial over each crack (De Jayatilaka and 

Trustrum, 1977). Notwithstanding, a number of 

studies have questioned the utility of the Weibull 

distribution while noting that it does not perform 

better than a normal or lognormal distribution. In fact, 

some studies have recommended to abandon the 

Weibull model altogether and use a normal or 

lognormal distribution instead. However, when one is 

unable to distinguish between fitted distributions, 

preference should be given to the model that has a 

physical and theoretical foundation, in this case a 

model that is logically based on fracture mechanics. 

In recent attempts to model glass surface fracture 

in Monte Carlo simulations with distributed Griffith 

flaws, it was assumed by some researchers that flaw 

size is governed by a density function that decays like 

an exponential distribution (Yankelevsky, 2014; 

Pathirana et al., 2017; Osnes et al., 2018a; 2018b). 

Assuming a single population of flaws with a size 

distribution that decays exponentially would naturally 

lead to Gumbel-like distributions for the strength in the 

limit, assuming a uniform and uniaxial stress normal to 

the crack planes. However, a Gumbel-like distribution 

for the strength model of the surface of glass is not 

supported by the empirical data. 

In connection with this study, a comprehensive 

survey of the data on annealed glass strength was 

performed (Kinsella, 2018). Based on the results it was 

noted that when taking the whole collection of empirical 

data into account, the Weibull distribution turns out to be 

a better model for the strength than the normal and 

lognormal distributions in the case of edge failure 

origins. The performance was investigated in a statistical 

testing procedure and found to be significant, see Fig. 3, 

with the following exception: The Weibull distribution 

was not found to be significantly better than a Gumbel 

distribution. Nevertheless, it is indicated in Fig. 2 and 3 

that the Weibull model is at least as good as the Gumbel 

distribution. The test procedure was based on the 

Friedman non-parametric method and a post-hoc test 

with the Wilcoxon signed-rank test. In the case of 

surface only failure origins, the multiple comparisons 

using the Friedman test rendered a rejection of the null-

hypothesis meaning that it can be concluded that there 

are significant differences in performance between the 

four standard models in this case. In fact, the boxplots in 

Fig. 2 clearly suggest that the extreme value Weibull and 

Gumbel distributions can be dismissed as a model for the 

surface strength of glass. However, the number of 

relevant data samples is limited in the case of surface 

failure origin data. 



David Kinsella et al. / International Journal of Structural Glass and Advanced Materials Research 2018, ■ (■): ■■■.■■■ 
DOI: 10.3844/sgamrsp.2018.■■■.■■■ 

 

■■ 

The analysis depends on a choice for the minimum 

sample size to be included. In this study, the main 

analysis considered samples of size 15 or greater, cf. Fig. 

3. It might be argued that even greater sample sizes are 

needed to distinguish properly between the different 

models when only a limited or moderate number of 

samples are available, such as is typically the case in the 

respective experimental campaigns considered in this 

study. The dependence on sample size is clearly 

indicated in Fig. 4 which contains simulation results of 

the goodness-of-fit while varying the underlying sample 

size. However, the empirical data only provides a limited 

number of samples when the sample size is 30 or greater. 

Nonetheless, the following conclusions can be drawn 

from Fig. 2 while noting the effect of the minimum 

sample size upon the results. When all samples are 

included which contain at least five observations, no 

particular effect can be seen between the different 

models for the surface strength. However, as the 

minimum sample size increases, the Weibull distribution 

performs poorly while the normal and lognormal 

distributions appear to perform better. In order to address 

this phenomenon properly, an investigation was carried 

out into the properties of the underlying samples. Fig. 5 

illustrates the results from this investigation in the form 

of three diagrams. The top diagram shows the size of 

surface area in maximum tension as a function of the 

minimum sample size. The y-axis scaling is logarithmic 

for the sake of visual clarity. The surface areas were not 

included in Fig. 5 in the case of laterally supported plates 

subjected to uniform pressure because of the difficulty 

associated with assigning a value to the size of surface 

area in maximum tension. The diagram shows that the 

whole range of surface sizes are present at the first two 

levels, i.e., sample sizes greater than or equal to 5 and 

15. However, already as the sample sizes are restricted to 

15 or greater, the extreme value Gumbel distribution is 

clearly performing poorly as can be seen in Fig. 2. The 

extreme value Weibull distribution seems to be 

performing worse than at the first level, i.e. for sample 

sizes restricted to 5 or greater. Furthermore, a 

considerable portion of the whole range of surface sizes 

is still present at the third level, i.e., for sample sizes 

restricted to 30 or greater. However, both the extreme 

value distributions perform poorly as can be seen in Fig. 2. 

Finally, at the last level, i.e., for sample sizes restricted to 

45 or greater, the surface area sizes that remain are the 

following, viz. approx. 2000, 2400 and 3800 mm
2
. The 

extreme value distributions perform poorly again. The 

conclusion is that the poor performance of the extreme 

value distributions cannot simply be explained as a 

consequence of the surface size converging towards a 

small size or a large size. In other words, it is not simply 

the surface size that governs the features of Fig. 2. Next, 

consider the middle diagram in Fig. 5 which shows the 

bending modes of the underlying samples. Here, ULP 

refers to the setup that allows for a uniform lateral 

pressure to be applied to linearly supported plates, CDR 

refers to the coaxial double ring bending device, while 

3PB and 4PB refer to the three and four-point bending 

devices, respectively. The diagram shows that both a 

uniaxial stress state from the four-point bending device 

and an equibiaxial stress state from the double ring 

bending device are present at all levels of samples sizes. 

Hence, the attributes of Fig. 2 cannot be explained as a 

consequence of the stress state converging towards one or 

the other configuration. Rather, there is a mixture of stress 

states present at each level. Next, the bottom diagram in 

Fig. 5 shows whether the fracture origin was located on 

the tin side, air side, or whether it was unknown because 

it was not recorded in the publication. With many of the 

samples, the publication did not record the configuration 

of the glass specimens in terms of the tin and air side 

being in the tension zone. This likely implies that there 

was a mixture of tin and air side failures. This would be 

so, because if the experimentor made the effort to 

identify the tin and air side of each specimen properly 

and configure them accordingly in the testing device, 

then this would probably have been recorded or at least 

mentioned in the ensuing publication. Hence, the 

conclusion can be drawn that a mixture of tin and air 

side failures are present at all levels of sample size. 

This demonstrates that the features of the surface origin 

failures in Fig. 2 probably cannot be explained as a 

consequence of the configuration of the test specimens 

in the testing device with respect to the air or tin side 

in tension. In other words, it is probably not the case 

that the fracture origins converge towards either pure 

tin side or pure air side failures as the sample sizes are 

restricted to at least 15, 30 and 45, respectively.  

The following explanation for the features of the 

surface origin failures in Fig. 2 is suggested. When the 

surface condition in glass is considered, there is no 

single population of flaws that govern the failure because 

if so were the case, then the Weibull and Gumbel 

distributions would have performed much better. Hence 

it is indicated that multiple flaw populations are present 

on the surface. If the underlying flaw size distribution is 

governed by multiple unimodal populations which are 

superposed, it is natural to expect a more symmetrical 

and “rounded out" shape for the extreme value such as 

would correspond better with a normal distribution. By 

the same token, when the minimum sample sizes are 

small, then it would be logical that the Weibull and 

Gumbel models perform better because the probability 

decreases that you sample all the underlying flaw 

populations hence resulting in a better fit. 
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Fig. 5: Properties of the underlying samples that generated the surface origin boxplots in Fig. 2 

 
On the other hand, the generally equal performance 

of the models in the case of ≤5 sample size may just as 
well be attributed to small-sample effects, i.e., the 
difficulty of detecting any effects when the sample sizes 
are small. Moreover, the fact that the normal distribution 
performs better when the sample sizes increase should 
not be taken as argument for adopting this distribution as 
a model for the surface strength. From a weakest-link 
perspective, the normal distribution is not suitable. As 
already mentioned, there may be a logical explanation 
for the better performance of the normal distribution 
compared to the extreme value distributions that has to 
do with the presence of multiple flaw populations. 

However, attempts to address the presence of 
multiple flaw populations may lead to more or less 
exotic distributions for the flaw size. So far, attempts 
have been made by Pathirana et al. (2017), Kinsella and 
Persson (2018b) and Pisano and Royer-Carfagni (2017) 
to model surface failure in glass with a multimodal flaw 
size distribution approach. 

With the edge strength data, the conclusions are 

different. Here, it is readily seen that the Weibull 

distribution overall performs better than the normal and 

lognormal distributions and at least as well as the 

Gumbel distribution, irrespective of the minimum 

sample size in the analysis. This indicates that when the 

edge strength is considered, there is a tendency towards a 

unimodal flaw size distribution that governs the failure. 

This may be logical when you consider the mechanical 

treatment of the edge which undergoes various operations 

such as scoring and machining. As a comparison, consider 

when the glass surface is artificially scratched by 

sandblasting (Blank, 1993; Schula, 2015). Then the 

result is generally to produce a better Weibull fit 

compared with the original pristine surface. 

In summary then, it can be concluded that the edge 

and surface condition in glass differ fundamentally. A 

proper analysis of the strength has then to discriminate 

between these failure origins. However, it may be that 

certain kinds of testing device can be used as a proxy for 

either the edge of the surface condition. In other words, 

when a given test device produces failures with the 

majority of one kind, then it may be that this data can be 

combined without producing significant errors. This 

proxy-effect has not been quantified in the present study 
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but it will be considered in a future investigation. In a 

recent paper (Yankelevsky et al., 2018), it was examined 

whether edge failures should be excluded from the 

analysis of the data sample that is produced with the four-

point bending device with out-of-plane loading or whether 

they may be included. The examination was based on a 

reference sample of 83 specimens that were tested in 

accordance with ASTM C158-02. The results from the 

investigation were not conclusive with regards the 

possible proxy-effect of the bending device, nevertheless 

the authors recommended to exclude edge failures. 

The majority of experimental data points included in 

this investigation pertain to the edge strength of glass. As 

a matter of fact, the edge strength is of great importance 

for the strength design of a structural glass component. 

The edge is thought to contain more weaknesses than the 

surface, probably due to machining operations done to the 

edge while scoring, cutting and processing (Veer and 

Rodichev, 2011; Vandebroek et al., 2014). When a 

laterally supported plate is subject to uniform pressure, 

significant tensile stresses occur near the edges, see e.g., 

Kinsella and Persson (2018a) which contains an analysis 

of the fracture origins in laterally supported plates 

subject to uniform pressure. For glass beams and pillars, 

the edges are always subject to significant tensile stress 

in the design state. Hence, in practical situations the edge 

strength can hardly be neglected for most types of 

structural units, including laterally supported plates. Also 

during handling, transportation and maintenance, the 

edge is prone to damage. The fact that the Weibull 

distribution outperforms the normal and lognormal 

distributions in the case of edge only failure origins is an 

argument for adopting this model rather than the others. 

The lognormal distribution might seem like a better 

candidate than the normal distribution because the strength 

is a positive number and the lognormal model lacks support 

on the left-hand side of the real axis. Nevertheless, a better 

fit was indicated using the normal distribution. 

In summary, the Weibull distribution is 

recommended as a basic model for the edge strength of 

glass for reasons of empirical evidence and physics. The 

empirical evidence is that the Weibull model is generally 

superior to a normal and lognormal distribution and at 

least as good as a Gumbel distribution in the case of 

edge failure origins. For physics-based reasons, the 

extreme value Weibull and Gumbel models are 

preferable because they derive from the weakest-link 

principle and thus harmonize with an essential brittle 

material concept. In fact, assuming a population of 

material flaws with a unimodal crack size distribution that 

is Pareto, F, Cauchy, or t in the tail, the Weibull 

distribution can be deductively derived from the weakest-

link principle. This supposes that the stress state is 

uniform and uniaxial over each crack. In the case of the 

normal and lognormal distributions, however, there is no 

such failure-mechanism basis. However, the Weibull and 

Gumbel models are unsuited to represent the strength of 

glass when the fracture originates from the surface. 

Finally, there exist numerous strength prediction 

models for use with glass. For example, Monte Carlo 

simulations of glass fracture with stochastic Griffith flaws 

have recently been performed by Yankelevsky (2014), 

Pathirana et al. (2017), Yankelevsky et al. (2017),     

Osnes et al. (2018a; 2018b) and Kinsella and Persson 

(2018b). In such case, no closed form exists for the 

probability distribution. It could be an interesting future 

research project to compare the performance of a larger 

set of models over a comprehensive set of data samples. 

Conclusion 

Based on a large set of empirical data, the Weibull 

distribution outperforms the normal and lognormal 

distributions and is at least as good as a Gumbel 

distribution as a model for glass strength when the 

fracture data is selected to comprise edge only failure 

origins. In the case of surface only failure origins, it is 

indicated that the normal and lognormal distributions 

perform better than the extreme value distributions. The 

analysis of the surface strength is dependent on the 

sample size. A proper distinction between the tentative 

models is more straight-forward to make, the greater the 

sample sizes that are included in the analysis. It is 

suggested that when the minimum sample size is much 

smaller than 15 then no distinction is possible to make. 

The Weibull and Gumbel models have a logical basis in 

a failure-mechanism that applies to brittle glass 

behaviour assuming a weakest-link argument. The 

Weibull model is therefore recommended instead of a 

normal or lognormal distribution to model glass fracture 

when the edge strength is considered. The analysis of the 

surface strength distribution is complicated. This is 

probably due to the presence of multiple flaw 

populations. Neither extreme value Weibull or Gumbel 

nor normal or lognormal distributions are able to 

properly model the surface strength of glass. 
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Abstract The results from a new numerical method
for simulating the strength and fracture locations of
small glass specimens subjected to double ring bend-
ing are compared with experimental data. The method
implements the weakest-link principle while assuming
the existence of Griffith flaws. A Weibull distribution
for the strength is simulated based on a single popula-
tionofPareto distributed crack sizes. The effect of using
different fracture criteria is investigated. An alternative
distribution is simulated based on two populations of
flaws. This distribution models the apparent bimodal-
ity in the empirical data set. The numerical method is
dependent on a representation of the surface flaws con-
dition in glass. As new techniques become available
for examining the surface characteristics, this numeri-
cal method is promising as a means for modelling the
strength better than current methods do.
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1 Introduction

In order to explain and predict the strength of annealed
glass a range of concepts and methods have been
applied with mixed results. Typically, the strength is
explained assuming the existence of Griffith flaws and
supposing the weakest-link principle. Predictions are
based either on some standard distribution or on tables
and diagrams obtained using a modelling tool such
as the Glass Failure Prediction Model (GFPM) (Bea-
son and Morgan 1984). There is disagreement among
researchers as to which prediction model is the correct
one to use (Fischer-Cripps and Collins 1995). A range
of experiments have shown a consistent bilinearity in
the probability plots when the Weibull distribution is
used for modelling the strength of annealed glass (Veer
2007; Veer et al. 2009). As regards the GFPM, it has
been said that it “is best suited to representing glass
strength for specific test conditions.” (Reid 2007) Nei-
ther the standard distributions nor theGFPMare able to
consistently provide for an acceptable goodness-of-fit
whilemodelling data from experiments, something that
is called for in a predictionmodelwith true potential. At
the same time, structural glass is gaining in popularity
among designers and units are being installed in build-
ings and public spaces worldwide at an increasing rate.
The search for a failure prediction model is therefore
as topical as ever. Moreover, a study has indicated that
shear stress might affect the observed strength of glass
in double ring bending tests (Reid 2007). Shear stress
is generally not considered in current failure models
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for glass. In this article, a numerical method for pre-
dicting the failure of glass is investigated and applied
to double ring bending tests. The method is general
and can be applied to a range of specimen geome-
tries, loading setups and support conditions. The results
are compared with experimental data. The presented
method depends on a model that is based on fracture
mechanics and theweakest-link principle while assum-
ing a preexisting population of surface cracks. Stress
corrosion is not directly considered in this study. The
presented method should not be taken as a complete
and final strength design tool. The aim is to promote
a failure model for glass that is based on a logical and
tractable representation of the surface condition in glass
with a suitable consideration of the fracture mechanics.
With further research, this could in the end lead to an
improved strength design tool for use with glass.

2 Background

Flaws in glass are capable of promoting brittle failure
due to the lack in capacity for plastic flow.While assum-
ing that the surface contains a large number of minute
flaws that act like cracks, so-called Griffith flaws, it
is possible to explain the scatter in fracture location
observed in experiments. It also helps to explain the
variation in failure stress observed and the relatively
low strength attained in practice. Surface flaws arise
in the production line during manufacture as well as
in subsequent handling, transportation, assembly, use,
and maintenance. Bulk flaws are disregarded in the fol-
lowing, cf. Bourhis (2008). Griffith (1920) modelled
crack growth as a reversible thermodynamical process.
For a crack subjected to mode I opening displacement,
fracture is governed by the following criterion

KI ≤ KIc (1)

where KI is the Stress Intensity Factor (SIF) and
KIc denotes the fracture toughness (Irwin 1957). The
value of KIc for glass has been estimated at about
0.75 MPa m1/2 (Mencik 1992). It is assumed that the
individual cracks do not interact with each other. The
shape of a surface crack in glass is typically conceived
of as being either a long, straight-fronted plane crack
or a semi-circular crack (Haldimann 2006). There exist
several solutions to the calculation of the SIF for a semi-
circular crack subjected to a uniform tensile stress field
σn oriented perpendicular to the crack plane. Accord-

σ1

σ2
θ

Fig. 1 A plane crack subjected to a biaxial stress field with the
crack plane inclined at an angle θ in the coordinate system of the
principal stresses σ1 and σ2

ing to one solution the SIF at the deepest point on the
crack contour is (Newman and Raju 1981)

KI = 1.14 × 2

π

√
πa × σn (2)

where a denotes the crack depth, see also Thiemeier
et al. (1991). Figure 1 illustrates a crack subjected to
a biaxial stress field with the crack plane inclined at
an angle θ in the coordinate system of the principal
stresses σ1 and σ2. If the crack plane is oriented per-
pendicular to the Maximum Principal Tensile Stress
(MPTS) σ1 then

σn = σ1 (3)

is substituted into Eq. (2). Otherwise, the tensile stress
acting normal to the crack plane can be calculated as

σn = σ1 cos
2 θ + σ2 sin

2 θ (4)

The presence of shear stress does not have any effect in
a pure mode I fracture criterion. There exists a range of
fracture criteria for a crack subjected to both normal and
shear stresses while assuming mode I crack opening
andmode II in-plane shearing displacements. One such
mixed mode fracture criterion which is based on the
maximumnon-coplanar energy release rate (Hellen and
Blackburn 1975) is given by the following inequality

4
√
K 4
I + 6K 2

I K
2
II + K 4

II ≤ KIc (5)
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where the left-hand side of inequality (5) is a mode I-
equivalent SIF, cf. Thiemeier et al. (1991). For a semi-
circular crack KII can be approximated as (Thiemeier
et al. 1991)

KII = 1.14 × 4

π

1

2 − ν

√
πa × τ (6)

In Eq. (6) ν is Poisson’s ratio. τ is the shear stress in the
crack plane which can be calculated from the in-plane
principal stresses as

τ = 1

2
|σ1 − σ2| sin 2θ (7)

The idea that you can calculate the distribution of
macroscopic strength of a stressed solid by starting
from an analysis of the microscopic defects dates back
at least to Peirce (1926). Peirce (1926) formulated the
Weakest-Link Principle (WLP), i.e. that the strength of
a chain is governed by its weakest link, and applied it
in the study of the tensile strength of cotton yarn. Also
using the WLP, Weibull (1939) came up with the fol-
lowing distribution function for the strength of a brittle
solid

S = 1 − e−B , B ≥ 0 (8)

where B, denoted “the risk of rupture”, is a function
of body size and tensile stress. According to Weibull
(1939), a simple mathematical form that is in general
accord with experimental data is

B =
(σ

k

)m
, σ ≥ 0 (9)

where k and m denote the scale and shape parame-
ters, respectively. Inserting Eq. (9) into Eq. (8) gives
the standard two-parameter Weibull distribution func-
tion where k is also the 63rd percentile (Wachtman
et al. 2009). Various derivations of the strength dis-
tribution function for a brittle solid are offered by
e.g. Freudenthal (1968), Matthews et al. (1976), Bat-
dorf and Heinisch (1978), Evans and Jones (1978)
and Danzer (1992). In general, the derivation is based
on a subdivision of the stressed solid into regions.
It is assumed that there exists a population of non-
overlapping cracks which are distributed among the
regions. Each crack is associated with a critical stress.
It is assumed that the stress state varies slowly so that
all cracks within a subdivided region are subjected to
the same nominal stress. The solution methods, which
are analytical, vary. Also varying are certain assump-
tions, such as whether or not it is supposed that the
fracture of the crack depends only on the compo-
nent of stress normal to the crack plane, whether or

not there exist multiple crack populations, etc. Essen-
tially, the analytical expression for the strength distri-
bution is obtained through a limit operation in which
the region size shrinks infinitesimally while the num-
ber of subdivided regions increases indefinitely. All
these solution methods are capable of producing the
fundamental Eq. (8). However, the mathematics soon
become intractable when all but the simplest assump-
tions are made for the stress state, fracture criterion,
crack size distribution, flaw density, crack plane orien-
tation, and the existence of multiple flaw populations.
Yankelevsky (2014) offers a numerical solutionmethod
to the problem of determining the strength distribution
of a brittle solid while building upon the same gen-
eral ideas as in the aforementioned studies except that
the limit operation is not carried out. In other words, it
is not necessary to assume that a crack of some finite
size is contained within an infinitesimally small space,
cf. Afferrante et al. (2006). Yankelevsky illustrates the
method in a study of a glass square plate subjected to
bending. He neglects bulk flaws and considers failures
starting from the surface area only. The surface area of
the plate is subdivided into unit cells measuring 1 cm2.
One crack is distributed into each cell. The flaw size
density function proposed by Yankelevsky (2014) and
which is motivated for use with glass material can be
interpreted as a truncated exponential distribution. The
square plate is laterally supported along two opposite
edges and subjected to a line-load at midspan produc-
ing a uniaxial state of stress in the plane of the ten-
sioned surface. A Monte Carlo simulation is carried
out for a large sample of thousands of virtual speci-
mens. This numerical method offers a tractable way
of calculating the strength distribution as well as the
fracture location distribution for arbitrary stress states,
fracture criteria, crack plane orientations, crack size
distributions, and multiple flaw populations. However,
in Yankelevsky (2014), only a uniaxial tensile stress
field is considered where the cracks are stressed nor-
mal to their crack planes. Subcritical crack growth is
not considered. Nor is the method applied to a double
ring bending test which is quite a common and rela-
tively inexpensive method to evaluate the strength of
small glass plates (Dalgliesh and Taylor 1990).

Based on Hertzian indentation tests it has been sug-
gested that flaw size in glass can be closely fitted by
a Pareto distribution (Poloniecki and Wilshaw 1971;
Poloniecki 1974; Tandon et al. 2013). The Pareto dis-
tribution has the scale and shape parameters a0 > 0
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and c > 0 and the distribution function is (Forbes et al.
2010)

F(x) = 1 −
(a0
x

)c
, x ≥ a0 (10)

It has moreover been shown that the Weibull distribu-
tion function is derived from the WLP if it is assumed
that the surface flaws condition is represented by a sin-
gle population of crackswhose size is Pareto distributed
in the tail (Jayatilaka and Trustrum 1977). In this view
the Weibull shape parameter is a true material parame-
ter. Then, the relation between the shape parameters m
and c of the Weibull and Pareto distributions, respec-
tively, is found to be

m = 2c (11)

When stressed in an ambient atmosphere, glass
strength is reduced over time due to a process known
as static fatigue which is due to subcritical crack
growth, the effects of which are only observed when
the mode I SIF lies above a threshold limit value at
about 0.25 MPa m1/2 (Wiederhorn and Bolz 1970). In
Charles’ stress corrosion rate theory (Charles 1958a, b),
subcritical crack growth is explained as a thermally
activated chemical process whereby water moisture
interacts with tensile stress at the crack tip. Equa-
tion (12), however, often approximates observed values
of subcritical crack growth (Mencik 1992)

v = AKn
I (12)

where v is the subcritical crack growth velocity, A is a
constant, and n is the stress corrosion parameter. While
the value of n was repeatedly estimated at about 16 for
soda-lime glass in ambient conditions, the value of A at
50% relative humidity was estimated in a range span-
ning more than two orders of magnitude, see Schula
(2015) for an overview of those experiments. Hence,
it is generally challenging to predict subcritical crack
growth in ambient conditions.

3 Surface flaws concept

For the representationof the surfaceflaws condition,we
consider two models. The first one comprises a single
population of semi-circular edge cracks with a Pareto
distributed crack size. The second model comprises a
dual population of semi-circular edge cracks with a
Pareto and Fréchet distributed crack size, respectively.

In both cases, a choice of crack density at 2 cm−2 is
made. The purposewith the dual populationmodel pre-
sented here is to provide a logical basis for a strength
distributionwith a bimodality. The choice of crack den-
sity at 2 cm−2 is guided by the following observa-
tion. Based on optical scanning techniques applied to
a pair of small soda-lime silicate glass plates in the as-
received condition there were 632 flaws observed and
it was noted that the flaw mean density varied between
1.2 and 2.6 cm−2 for flaw sizes greater than approxi-
mately 8 microns (Wereszczak et al. 2014).

3.1 Single population model

For the single population model, it is assumed that the
cracks are uniformly distributed over the surface area of
the original plate and that the crack planes are oriented
between [0, π) according to a uniform distribution.

The logical basis for the selected choice of single
population model are the Hertzian indentation tests
that have been carried out in the past (Poloniecki and
Wilshaw 1971; Poloniecki 1974; Tandon et al. 2013)
and which have provided data that could be closely fit-
ted by a Pareto distribution, see Sect. 2.

3.2 Dual population model

For the dual populationmodel it is assumed that it com-
prises two populations of semi-circular edge cracks
with a Pareto and Fréchet distributed crack size, respec-
tively. All cracks are uniformly distributed over the sur-
face area of the original plate and the crack planes are
oriented perpendicular to the MPTS. The Pareto popu-
lation cracks represent large surface flaws. The Fréchet
cracks represent small surface flaws. It is assumed that
the number of Pareto cracks is a small fraction of the
total number of cracks. It is assumed that the fraction
is 0.002.

The logical basis for the dual populationmodel is the
following. First, glass fracture statistics tend to produce
bimodalities in the probability plots according to e.g.
Veer et al. (2009). In fact, the experiment considered
in Sect. 5 is no exception because the histogram of
the data appears to exhibit two modes, see also Fig. 3.
Other researchers have suggested to represent the sur-
face cracks using two populations. Mencik (1992) dis-
tinguishes between several populations of surface flaws
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according to their origin. In doing so, Mencik (1992)
distinguishes between a large flaws and a small flaws
population of cracks with relevance for the practical
engineering strength of glass. Mencik (1992) charac-
terizes the large flaws population as being responsible
for the tensile stress to decrease to 20–60 MPa. Sub-
stituting these values into Eq. (2) while assuming that
the SIF equals to 0.75 MPa m1/2, the corresponding
crack depth is found to be 94–850 microns. Mencik
(1992) characterizes the small flaws population as con-
taining cracks smaller than a hundredth of a millimeter
in depth. He associates this with a strength reduced
to 60–200 MPa. Substituting these values into Eq. (2)
yields a corresponding crack depth of 8–94 microns.
A statistical model for characterizing glass strength
when two flaw populations are superimposed due to
abrasive phenomena has been proposed in Pisano and
Carfagni (2017). Pathirana et al. (2017) implemented
a dual population of cracks in a numerical model for
the evaluation of the strength distribution in panels sub-
jected to point contact actions. Second, the choice for
the value of the fraction of large cracks, i.e. 0.002,
is guided by the following observation. Out of the
total number of flaws detected in the investigations by
Wereszczak et al. (2014), the proportion of large flaws
greater in size than or equal to about 200 microns was
approximately 0.002. This corresponds with a crack
depth of 100 microns assuming that the flaws are semi-
circular surface cracks. Taking a crack depth of about
100 microns as a value that separates large flaws from
small flaws is through adoption of the line of reason-
ing in Mencik (1992). Third, the logical basis for the
Pareto distribution are the Hertzian indentation tests
that have been carried out in the past and which have
beenmentioned earlier in this paper already. Fourth, the
logical basis for the Fréchet distribution is motivated
as follows. Assuming that small flaws are exceedingly
numerous, onemight select only the greatest small flaw
in a given region and let this one determine the fracture
mechanical behaviour of the small flaws population in
that region (Freudenthal 1968). Because it is assumed
that the cracks in the small population are abundant,
it is supposed that the selected crack plane is oriented
approximately normal to the maximum principal ten-
sile stress. If the numerous small flaws have an indepen-
dent Pareto size distribution then in the limit the largest
flaw size is Fréchet distributed (Beirlant et al. 2004).
For extreme-value theoretical reasons the greatest flaw
size among a large set of flaws whose size is iden-

tically and independently distributed is approximately
Fréchet distributed if the following holds (Horst 2009);
the sampled distribution has a range which is unlimited
from above and its distribution function F is such that
there exist some positive numbers k, A such that

lim
x→∞ xk(1 − F(x)) = A (13)

Hence, the Pareto distribution lies in the domain of
attraction of the Fréchet distribution (Beirlant et al.
2004).

4 Numerical modelling tool

Here follows a description of a numerical modelling
tool for the strength of glass plates in bending based
on an implementation of the weakest-link principle
and some concept for the surface flaws condition. The
numerical method adopted in this study is based on
the Monte Carlo simulation method carried out by
Yankelevsky (2014). The most important difference
between the present study and Yankelevsky (2014) is
that the present study considers multiple flaw popu-
lations with arbitrary crack plane orientations and a
mixed mode fracture criterion.

Float glass is usually produced and shipped in a stan-
dard size so-called jumbo plate with the dimensions
3.21 × 6.00 m2. Taking the standard jumbo plate as
a starting point, the plate is subdivided into unit cells
of 1 mm2. This cell size provides a reasonable com-
promise between resolution and computational cost.
A set of flaws are randomly scattered across the cells
according to a uniform distribution, although in gen-
eral another spatial distribution could be adopted. It is
supposed that the stochastic orientation of the crack
planes is uniformly distributed. This assumption might
not be conservative, however, if there is a tendency for
the flaws to lie in some particular direction due to e.g.
machining abrasion or contact with the rollers during
manufacture. The total number of flaws on the jumbo
plate is fixed and depends on the flaw density. It is
assumed that the flaw density is 2 cm−2 yielding a total
of 385,200 flaws on either face of the plate. Each flaw is
independently assigned a size based on some statistical
distribution function which depends on the particular
flaws concept that is adopted. The random flaws are
resampled in each new simulation of the jumbo plate.
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a b c

Fig. 2 Main steps leading up to the creation of the SIF envelope.
a Random flaws are sampled and located across the unit cells.
b The bending stresses are determined and compared with the
flaws. c The resulting SIFs with magnitudes illustrated by discs

are calculated based on one of the fracture criteria. The large
white disc represents the critical event that the SIF exceeds the
fracture toughness

The stochastics of the flaws are the location, the orien-
tation in the plane, and the size. Next, a specimen of
given dimensions is extracted and separated from the
jumbo plate. In the following the cut out specimen is
analysed.

The cut out specimen is subjected to an arbitrary
loading in increments and the stress field history at the
centre of each flaw-containing unit cell determined. It
is supposed that the load type is such that tensile stress
actually develops on the face of the cut out specimen
otherwise failure will not be detected based on fracture
mechanics. In general the stress response is non-linear.
The loading increment is chosen so as to produce a ten-
sile stress increase of nomore than 1MPaper increment
anywhere on the specimen. However, if the response is
linear then it suffices with one increment and to scale
the results. The complete stress history needs only to be
calculated once for a given loading type and specimen
geometry because the stochastics of the cracks do not
affect the distribution of nominal bending stresses. It is
assumed that the sum of load increments is sufficiently
large in relation to the given flaw characteristics, i.e.
flaw density, flaw size distribution, etc., to prompt frac-
ture. Otherwise, failure might not have been detected
by the end of the last load increment. There exists a
SIF envelope that meets with the fracture toughness at
some point in time, the smallest of which is identified
as the time of failure. If the crack planes are always
oriented perpendicular to the MPTS then the SIF enve-
lope is calculated using Eqs. (2) and (3). For reference,
this case is denoted MPTS mode I fracture criterion.
If the crack planes are inclined at an oblique angle in

the coordinate system of the principal stresses while
mode I opening displacement is considered then the
SIF envelope is calculated using Eqs. (2) and (4). This
case is denoted oblique angle mode I fracture criterion.
If both mode I opening and mode II shearing displace-
ments are accounted for then the SIF envelope is cal-
culated using the left-hand side of inequality (5). This
is the mixed mode fracture criterion. By token of the
WLP, the fracture origin is determined from the first
unit cell that contains a flaw with a SIF exceeding the
fracture toughness. A search algorithm is used to detect
this cell. By carrying out simulations on a whole series
of cut out specimens it is possible to obtain a sample of
the fracture stress which is defined as the MPTS at the
failure origin. In this study the number of cut out spec-
imens in a simulation series is 5,000. This sample size
offers a reasonable compromise between precision and
computational cost. Figure 2 illustrates the main steps
leading up to the creation of the SIF envelope; (a) the
flaw stochastics are sampled, (b) the in-plane principal
stresses are determined at each load increment and (c)
the SIF envelope is calculated per load increment based
on either of the fracture criteria. Failure is prompted
at the first instance of intersection between SIF enve-
lope and fracture toughness (white disc). Likewise, the
failure origin is determined by the first unit cell that
contains a SIF which exceeds the fracture toughness.
The so-called critical stress is the uniform tensile stress
perpendicular to a given crack plane that would bring
about failure with a pure mode I fracture criterion. The
critical stress can be calculated with Eqs. (1) and (2).
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5 Experimental data comparison

Double ring bending tests are frequently carried out to
evaluate the strength of glass. In this testing device a
glass plate is supported on a reaction ring and subjected
to an applied loading through a smaller concentric ring
on its opposite side.An equibiaxial state of stress is pro-
duced within the loading ring. Failures that start from
edges are eliminated because tensile stress diminishes
near the edges. Some experimenters discard any obser-
vation associatedwith a failure originating fromoutside
the loading ring radius. Simiu et al. (1984) carried out
experiments on 56 small square glass plates in double
ring bending. The plates had the nominal dimensions
179× 179× 6 mm3. The mean thickness was 5.4 mm.
The glass was new in the as-received condition and
it had been obtained from the same manufacturer and
batch. The loading ring radius was 25.4 mm and the
segmented reaction ring radius 60.3 mm. All speci-
mens were subjected to ramp loads that generated an
average rate of stress of 0.8 MPa/s inside the loading
ring. The load-duration until failure ranged from 48 to
117 s. It is not known whether it was the tin side or
air side of the glass plates that was subjected to tensile
stress. The tin side is defined as the side of the glass
that was in contact with the molten tin bath in the float
process production method.

This experiment is selected for a number of reasons.
The data report is complete with values for the fracture
stress even when the failure originated from outside
the loading ring. Because Simiu et al. (1984) reported
the fracture locations it is possible to make compar-
isons with the simulated failure origin data. The data
is challenging to model. A Weibull distribution for the
strength can be rejected, cf. Sect. 6.1. The modelling
of the surface flaws condition is simplified when edge
failures are eliminated.

Using a formula for a flat circular plate of constant
thickness, Simiu et al. (1984) calculated the in-plane
MPTS for each fractured specimen. The stress was cal-
culated at the centre of the plate, evenwhen the fracture
origin was not located within the loading ring radius.
Twelve of the data points, however, were associated
with failures originating from outside the loading ring.
Those values have been readjusted by this author in
order to reflect the MPTS at the actual failure loca-
tion rather than the MPTS inside the loading ring. The
adjustments were made based on finite element cal-
culations with the computer software ABAQUS/CAE

(2013). The loading rings were modelled by analytic
rigid surfaces. The glass part was modelled with 20-
node quadratic solid elementswith reduced integration,
although it would also be possible to use continuum
shell elements. The number of through-the-thickness
elements was 5 and the number of elements in the
plane was about 9500. Only a quarter of the plate was
modelled for symmetry reasons. It was assumed that
Young’s modulus is 70 GPa and Poisson’s ratio is 0.23
(Bourhis 2008). A friction coefficient of 0.1 was used
inmodelling the contact between loading ring and glass
parts.

6 Results

Virtual glass specimenswere tested until failure in dou-
ble ring bending and the results were compared with
data from the experiment conducted by Simiu et al.
(1984). The analysis was carried out using the software
ABAQUS/CAE (2013) andMATLAB (2016). The fol-
lowing cases were investigated, viz. a single population
of Pareto distributed flaw sizes using either the MPTS
mode I fracture criterion or oblique angle mode I crite-
rion or the mixed mode criterion, and a two-population
concept for the flaw sizes using only the MPTS mode I
fracture criterion.

6.1 Single population of flaws

A fracture stress distribution was simulated based
on the oblique angle mode I fracture criterion, cf.
Eqs. (1), (2) and (4) while supposing that the sur-
face condition is characterized by a single population
of Pareto distributed flaw sizes. This is illustrated in
Fig. 3a and the values shown are the MPTS at the fail-
ure origins. The histogram in Fig. 3a is normalized so
as to reflect a probability density function. The area of
each bar is the relative number of observations. The
total sum of the bar areas is less than or equal to 1
depending on whether or not some of the data lies out-
side the bin limits. The sampled distribution was com-
pared with a Weibull distribution and the goodness-of-
fit was tested using the Anderson–Darling (AD) statis-
tic (D’Agostino and Stephens 1986). No significance
was obtained in a test at the 5% level. The simulated dis-
tribution appears to be indistinguishable fromaWeibull
distribution. An ordinary Weibull distribution was fit-
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Fig. 3 Simulated and
empirical fracture stress
and failure location
distributions. Semi-
transparent (red) histograms
represent the empirical data.
Opaque (black) histograms
represent the simulated data.
Overlapping histograms are
dark red. Sturges binning
method was used for the
simulated data sets
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ted to the empirical data set using the maximum likeli-
hood method and the estimated parameter values were
k = 78 MPa and m = 3.8. Using the AD statistic
it could be rejected at the 0.4% level that the empiri-
cal data set is Weibull distributed. The simulated dis-
tribution was optimized so as to match the ordinary
Weibull model which was fitted to the empirical data.
The optimization was carried out by varying the under-
lying Pareto distribution parameters until the simulated
strength distribution was similar to the Weibull distri-
bution that was fitted to the empirical data. The sim-
ilarity was measured by fitting a Weibull distribution
to the simulated sample and comparing the so fitted
Weibull parameters with the parameter estimates of
the Weibull model that was fitted to the empirical data
set. See Fig. 3a where both the empirical data set (red
bars), the fittedWeibull density function (solid line) and
the simulated distribution (black bars) are illustrated.

Table 1 Pareto parameter values that generated an estimated
Weibull distribution with the scale and shape parameters k =
78 MPa and m = 3.8 while using the numerical method

Fracture criterion Scale param. (µm) Shape param.

MPTS 8.4 2.34

Oblique angle 8.3 2.13

Mixed mode 8.8 2.26

The strength distribution was further simulated using
the MPTS mode I criterion and the mixed mode crite-
rion. The Pareto parameters were selected so that the
strength distribution could be fitted by a Weibull dis-
tribution with scale and shape parameters k = 78 MPa
and m = 3.8. Table 1 contains the Pareto parameter
values so far discussed according to the three fracture
criteria.
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Fig. 4 Left: Simulated
fracture locations. Right:
Critical stresses in a single
cut out specimen
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In Fig. 3b the simulated fracture locations in the
radial direction are shown together with the empiri-
cal for the oblique angle mode I case. Using a two-
sample AD test (Scholz and Stephens 1987; Trujillo
et al. 2007), a significant deviation between the pair of
data sets could be detected. The spatial distribution of
failures is further illustrated in Fig. 4a.

The critical stresses in a single cut out specimen are
obtained by solving for σn in Eq. (2) after substituting
for the fracture toughness value in Eq. (1) as illustrated
in Fig. 4b.

Considering the various fracture criteria, the follow-
ing was noted while using identical Pareto parame-
ter values for generating the strength distribution. The
mode I fracture criterion in the oblique angle case pro-
duced only a very small difference in the strength data
sample compared with the mixed mode criterion, cf.
Eqs. (1), (2), (4) and (5). The 63rd percentiles deviated
by less than 3%. However, taking mode II shearing dis-
placement into consideration increased the proportion
of failures originating from outside the loading ring
by 20%. Comparing the flaw-orientation independent
MPTSmode I criterion, Eqs. (1), (2) and (3), with either
of the two other criteria yielded a significant difference
in the data samples; the 63rd percentile of the simu-
lated strength was more than 10% lower while using
the MPTS case. The proportion of failures originating
from outside the loading ring increased by over 60%.
The results are illustrated in Fig. 5.

6.2 Two populations of flaws

It is possible to obtain a simulated distribution like the
one shown in Fig. 3c while assuming that the flaws

originate from two different populations, see Sect. 3.
The flaw model parameters are given in Table 2. The
resulting distribution could not be distinguished from
the empirical data set with any statistical significance
at the 5% level judging from the two-sample AD test
statistic (p = 0.64). In Fig. 3d the simulated fracture
locations are shown together with the empirical. It was
found using the same test statistic that a significant
departure exists from the hypothesis that the experi-
mental and simulated fracture location data sets come
from equal distributions.

7 Discussion

Providing for consistency in a glass failure prediction
model calls for its foundation to be laid on physically
sound concepts such as the WLP. The WLP captures
an essential feature of brittle material failure. The exis-
tence of Griffith flaws is another physical concept to
build upon. The Weibull distribution implements the
WLPwhichmakes it an attractive choice for a glass fail-
ure predictionmodel, at least from a theoretical point of
view. All major standards including the European draft
of aEurocode of glass acknowledgeWeibull’s Eq. (8) in
one form or another (prEN 16612:2013). A number of
studies, however, have indicated that theWeibull distri-
bution does not provide a superior fit compared with a
lognormal or normal distribution (Lü 1997; Calderone
et al. 2001; Veer et al. 2009; Huerta et al. 2011; Kin-
sella and Persson 2016). It has been noted that the
estimated value of the Weibull shape parameter varies
quite significantly from one sample to another in exper-
iments (Ritter et al. 1985; Carre 1996; Huerta et al.
2011). Some researchers have called for abandoning
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Fig. 5 Left: Oblique angle
versus MPTS mode I
fracture criterion. Right:
Oblique angle mode I
versus mixed mode fracture
criterion. Semi-transparent
(red) bars indicate the
oblique angle mode I data.
Overlapping histograms are
dark red
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Table 2 Pareto and Fréchet parameter values used in the dual
population model that was implemented with the numerical
method

Pareto Fréchet

Scale (μm) Shape Scale (μm) Shape

130 4.0 11 3.0

the Weibull model altogether in favour of a normal or
lognormal distribution (Calderone et al. 2001). But to
adopt a normal distribution in this case is to favour with
a model lacking in failure-based physical concept. In
contrast, by using the numerical method in this paper it
is possible to keep intact the WLP as well as the Grif-
fith flaws assumption while producing data fits equal
or superior to the Weibull model. Figure 3a illustrates
that it is possible to simulate a Weibull distribution
using this numerical tool while assuming that the sur-

face flaws are sampled from one single population of
Pareto distributed sizes. In keeping with recent exper-
imental findings using optical scanning techniques, cf.
Wereszczak et al. (2014), it was assumed that the flaw
density is 2 cm−2. From a theoretical point of view, the
shape parameter of the simulated Weibull distribution
should relate with the Pareto shape parameter accord-
ing to Eq. (11) if the stress state is uniform uniaxial.
At any rate, the Weibull distribution doesn’t actually
model the experimental data that was compared with.

While exploring the possibility of implementing two
flaw populations, the idea is to distinguish between one
large flaws population of flaws greater in depth than
about 100 microns and one smaller flaws population.
An idea along a similar line was proposed by Mencik
(1992), cf. Sect. 3. The purpose is tomodel the bimodal-
ity that is frequently encountered in the strength distri-
bution from practical experiments. Turning to Fig. 3c
it is evident that an acceptable fit can be achieved with
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Table 3 Weibull shape parameter estimates from 16 experiments on new annealed glass plates in double ring bending, tested in ambient
conditions

Reference Load. ring diam. (mm) Approx. stress rate (MPa/s) Sample size Weib. shape param.

Peeken (1982)a 600 2 97 10.1

Peeken (1982)a 600 2 99 11.3

Simiu et al. (1984) 51 0.8 56 4.0

Simiu et al. (1984) 51 1.0 29 3.6

Mellmann and Maultzsch (1989)a 600 2 113 5.1

Mellmann and Maultzsch (1989)a 600 2 108 3.9

Fink (2000) 55 2 20 3.5

Fink (2000) 55 2 107 5.9

Overend (2002) 51 0.7 10 2.4

Overend (2002) 51 0.9 10 1.8

Overend (2002) 51 0.6 10 4.9

Haldimann (2006) 51 0.2 10 3.7

Haldimann (2006) 51 21 10 4.2

Postigo (2010)b 180 2.4 41 2.9

Schula (2015) 80 2 15 7.8

Muniz et al. (2016) 60 2 28 4.5

aObtained from Sedlacek et al. (1999)
bObtained from Huerta et al. (2011)

a two-population flaws concept. Moreover, this fit is at
least as good as thefittedWeibullmodel inFig. 3a as can
be seen by comparing the p-values from the AD tests.
Moreover, the tail of the distribution is important when
calculating the design value. Therefore, when choosing
between the simulated distributions as seen in Fig. 3a
and c, as a matter of fact, the ordinaryWeibull distribu-
tion appears to provide themost conservative approach.

With a two-parameterWeibull distribution, only two
parameters are fitted to the data. With the numerical
model presented in this paper, the Pareto and Fréchet
distributions each require two parameters. As the num-
ber of parameters increase, it is only logical that a better
fit might be produced. Therefore, the outcome while
comparing Fig. 3a with c is rather predictable. How-
ever, if it were possible to estimate some of the surface
flaw parameters a priori, the numerical modelling tool
would gain in potential. Then, these parameter esti-
mates would be based on the material physics. There
is a need for more data on the surface flaws condition
in glass. Up to date, the published data is scarce. As
new techniques become available for examination and
assessment of the surface condition in glass, more reli-
able input data will likely become available for use in
this kind of numerical prediction tool.

Moreover, with this numerical tool it is possible to
simulate the distribution of fracture locations. The sim-
ulations were not quite able to model the empirical dis-
tribution of fracture location. This is due to the lower
mean value in the simulations as well as the longer tail,
cf. Fig. 3b and d. However, it may also be due to the fact
that a large number of fractures in the empirical data set
occured at the loading ring contact circle. About one
in five specimens failed under the loading ring. This
could have an impact not only on the failure location
statistics but also on the fracture stress statistics.

The Weibull shape parameter value that was esti-
mated based on the double ring bending experiment
carried out by Simiu et al. (1984), i.e. m = 3.8, might
indicate a high dispersion for the experimental data
because the value is quite low. The data refers to an
experimental campaign carried out almost 40years ago.
In order to investigate the dispersion, a table was orga-
nized, cf. Table 3,which contains the estimatedWeibull
shape parameter values from a range of experiments
with the double ring bending device. All listed items
in Table 3 refer to experiments on new, annealed glass
that was tested in ambient conditions. The experiment
carried out by Simiu et al. (1984) is included in Table 3
where the estimated shape parameter value was based
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on the original data, unadjusted with respect to the true
stress at the fracture origin, see also Sect. 5. The results
found in Table 3 show clearly that there appears to
be nothing unusual about the estimated Weibull shape
parameter value in the experimental data of Simiu et al.
(1984). However, it is possible that the estimated shape
parameter values in Table 3 were affected by the fol-
lowing circumstances. The table comprises both the
results from glass tested with the tin side in tension
and glass tested with the air side in tension. It has been
noted that some experimentswith the double ring bend-
ing device generate a substantial number of fractures
near the loading ring contact area, see e.g. Simiu et al.
(1984).

Reid (2007) studied the proportion of failures occur-
ing inside and outside the loading ring in coaxial double
ring bending tests and compared the observed results
with what might be expected based on theoretical con-
siderations using Weibull statistics. He found that a
series of 59 small specimens of annealed plates 6 mm
in thickness produced anomalous results. The propor-
tion of failures occuring outside the loading ring was
substantially greater than expected. Reid hypothesized
that this might be related to the glass having to with-
stand shear stresses outside the loading ring. Due to
the equibiaxial state of stress within the loading ring,
shear stresses are not present there. Our results show
that if a uniformly distributedflaworientation is consid-
ered in the fracture criterion, then there is a significant
effect on the observed proportion of failures originat-
ing from outside the loading ring while taking mode II
shearing displacement into consideration. The propor-
tion increases by 20% with the mixed mode failure
criterion. However, disregarding flaw orientation alto-
gether in the fracture criterion, i.e. considering only the
MPTS, yields the highest proportion of failures orig-
inating from outside the loading ring. Our results are
therefore not conclusive with respect to Reid’s hypoth-
esis. It depends on whether or not it is assumed that
flaw orientation matters. More experiments need to be
carried out in order to verify or disprove this hypothe-
sis while taking note of the fracture statistics of failures
occuring outside the loading ring.

Although the simulations are more time-consuming
than fitting a standard statistical distribution, signifi-
cant improvements in computational efficiency can cer-
tainly be made. There is mounting evidence in the lit-
erature, see e.g. Veer (2007), that the fitted models for
glass fracture data in general are lacking in potential

when using a standard distribution such as the Weibull
or Normal distributions. The present study was under-
taken in order to explore a novel approach towards the
failure prediction of glass. In order to further validate
thismethod,more experiments could be carried out and
the surface condition of glass should be investigated
further.

The effects of stress corrosion on the strength of
glass were neglected in this study. In a future paper,
the implementation of subcritical crack growth into the
numerical method will be considered.

8 Conclusions

Using anumerical simulation tool basedon theweakest-
link principle and assuming the existence of Griffith
flaws it is possible to simulate a Weibull distribution
for the strength of glass. The incorporation of mode II
shearing displacement into the fracture criterion has
only a very small impact on the simulated strength dis-
tribution when the glass is subjected to double ring
bending. In the case of small plates in double ring bend-
ingwhere edge failures can be neglected, it is feasible to
model the strength based on a large-flaws and a small-
flaws concept while capturing a bimodality in the data
set. There is a need for more knowledge and data on
the surface condition in glass.
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A numerical method is applied to model the fracture stress and failure location in glass panes subjected to various 
bending arrangements. The method assumes the weakest-link principle and the existence of surface microcracks. The 
fracture stress and failure origin are revealed through a search algorithm. The magnitude of strength and the location of 
fracture are stochastic in nature and can be predicted based on a suitable representation of the surface flaws condition. 
When the crack size distribution is assumed to be Pareto, the strength distribution is found to be very similar to a 
Weibull distribution. The stresses in large laterally supported plates which are subjected to uniform pressure are 
modelled and the distribution of fracture location is determined based on a single population of cracks with a Pareto 
distributed crack size. Two types of gasket support materials are considered, neoprene and nylon. The softer gasket 
material produces a greater number of fractures nearer the corners of the plate. A comparison is made with the 
recorded fracture locations according to various experiments. In addition, a tall vertical panel of laminated glass with a 
complex geometry and which is subjected to dynamic impact loading is modelled and the distribution of fracture 
location is determined based on a single population of cracks with a Pareto distributed crack size. 

Keywords: Glass, fracture statistics, fracture mechanics, Monte Carlo 

1. Introduction 
Various models for predicting the fracture stress have been proposed for use on glass (Beason and Morgan 1984, 
Sedlacek et al. 1999). Some of the models have been implemented in national building codes (DIN 18008-1, ASTM 
E 1300-04). The failure models proved to have potential for prediction-making within limited domains. However, 
making accurate predictions of the strength remains a challenge to the general design case of a glass structure with 
varying boundary conditions and loading types. In fact, large safety factors are implemented in the building codes. 
Until recently, little attention was paid to the prediction of fracture location. In the following, a method for 
predicting the failure stress as well as the failure origin of a glass plate subjected to both static and dynamic loading 
is investigated. The method which assumes the existence of surface microcracks and the governing principle of the 
weakest-link is applied to different specimen geometries and loading setups. The results are compared with 
experimental data. 

2. Background 
The strength of a glass pane can be revealed by subjecting it to bending until it breaks while noting the fracture load 
(or pressure). The fracture stress at the origin of failure can be calculated assuming that the fracture location is 
known. The observed fracture stress varies generally within a large range of about 20-200 MPa and is further 
dependent on a number of factors including the load history, the surface condition (new or weathered or artificially 
scratched), the size of surface area in tension, the environmental conditions in particular the relative humidity, and 
the origin of failure, i.e. edge or surface (Mencik 1992). 

It has been suggested to use a Weibull distribution for predicting the strength of a structural unit made from 
annealed float glass (Weibull 1939; prEN 16612:2017). In Eq. (1), the Weibull distribution function for the strength 
σ is given where k and m denote the scale and shape parameters, respectively.  

𝐹(𝜎) = 1 − 𝑒)
*
+

,

 (1) 

It has also been suggested to make predictions of the strength based on the Glass Failure Prediction Model (GFPM) 
(Beason and Morgan 1984). The GFPM was calibrated with experiments in which uniform lateral pressure was 
applied to full-scale plates with continuous lateral support along all four edges. The American building code ASTM 
E 1300 implements the GFPM. 

The scatter in failure stress magnitude can be explained by assuming that fracture is governed by microscopic 
surface flaws. Tensile stress is magnified in a localized region near the flaw tip (Griffith 1920). Flaws in glass can 
cause brittle failure because of the lack in capacity for plastic flow. Surface flaws arise in the production line during 
manufacture as well as in subsequent handling, transportation, assembly, use, and maintenance. Bulk flaws are 
disregarded as potential fracture sites in the following. 
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Variations in the surface condition of glass causes the observed strength to scatter, in general, for some given set of 
glass specimens, even when identical testing arrangements and specimen geometries are maintained. In fact, 
experiments have shown that even when the specimens are extracted from the same original standard size plate, the 
so-called jumbo plate, significant variations in the observed strength remain (Veer et al. 2009; Veer and Rodichev 
2011; Vandebroek et al. 2014). Hence, surface flaw characteristics vary significantly not just between plates from 
different manufacturing batches but also between plates in the same batch. 

In this paper, we consider semi-circular cracks that are uniformly distributed over the surface of some glass 
specimen. The corresponding mode I stress intensity factor (SIF) is determined using the following equation with a 
referring to the crack depth (Irwin 1957; Newman and Raju 1981) 

nI aK sp
p
214.1=  (2) 

In Eq. (2), σn is the tensile stress normal to the crack plane. The mode I fracture criterion is 

IcI KK £  (3) 

and it is assumed that the fracture toughness KIc equals to 0.75 MPa m½ (Mencik 1992). It is assumed that the 
individual cracks do not interact with each other. As a mixed mode criterion we take 

IcIIIIII KKKKK £+++4 4224 )(6  (4) 

which is based on the maximum non-coplanar energy release rate (Hellen and Blackburn 1975), see also Thiemeier 
et al. (1991). In Eq. (4), KII can be approximated as (Thiemeier et al. 1991)  
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with ν referring to Poisson's ratio and τ the shear stress in the crack plane. 

According to experimens with Hertzian indentation fracture in glass, flaw size can be closely fitted by a Pareto 
distribution (Poloniecki and Wilshaw 1971; Tandon et al. 2013). The Pareto distribution is (Forbes et al. 2010)  
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where the scale and shape parameters are a0 and c, respectively. It has been demonstrated that the Weibull 
distribution function can be derived from the WLP while assuming that the surface flaws condition is represented by 
a single population of cracks with a crack depth that is Pareto distributed (Jayatilaka and Trustrum 1977). It is then 
supposed that the stress state is uniform tensile and that the crack planes are oriented normal to the uniaxial stress. 
Let f(a) denote the probability density function of the crack depth. Then the probability of failure at stress σ for a 
single crack is 
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where ac is the critical crack depth that prompts failure for a crack subjected to tensile stress perpendicular to the 
crack plane. The critical crack depth is obtained through combination of Eqs. (2) and (3) 
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where for the sake of convenience, the geometry factor Y has been substituted for. The geometry factor is in this 
case given by 
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p
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Supposing that crack depth is Pareto distributed, we derive from Eqs. (6) and (7) while substituting for Eq. (8) that 
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For N cracks, the probability of failure, Pf, is given by the following equation, supposing the WLP 

( )Nf FP )(11 s--=  (11) 

When N is large, Eq. (11) can be approximated by the following equation which can be shown by performing a 
Taylor series expansion 
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so that for large N, we have approximately 
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Eq. (13) can be simplified to Eq. (1), i.e. the Weibull distribution function, with the scale parameter 
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and the shape parameter 

cm 2=  (15) 

Hence, it is possible to calculate the distribution of macroscopic strength of a stressed solid by starting from an 
analysis of the microscopic defects and applying the WLP. Others who have considered this include e.g. Matthews 
et al. (1976) and Batdorf and Heinisch (1978). However, the mathematics soon become intractable as various 
assumptions are made for the stress state, fracture criterion, crack size distribution, flaw density, crack plane 
orientation, and the existence of multiple flaw populations.  

Stress corrosion causes subcritical crack growth when the glass is stressed in tension in an ambient atmosphere 
which relates, in particular, to the relative humidity being greater than zero (Charles 1958a, 1958b). However, 
subcritical crack growth is only observed when the mode I SIF exceeds a threshold limit value estimated at about 
0.25 MPa m1/2 (Wiederhorn and Bolz 1970). In this paper the effect of stress corrosion is neglected. 

3. Numerical method 
Yankelevsky (2014) proposed a numerical solution method for calculating the strength distribution of a brittle solid 
that starts from an analysis of the microscopic defects. The weakest-link principle was applied in Monte Carlo 
simulations with Griffith flaws to model the fracture stress and fracture location of square glass plates subjected to 
bending. In Yankelevsky (2014), the plates were laterally supported along two opposite edges and subjected to a 
line-load at midspan. A Monte Carlo simulation was carried out for a large sample of 5000 virtual specimens. The 
method offers a tractable way to calculate the distribution of strength and fracture location for arbitrary stress states, 
fracture criteria, crack plane orientations, and crack size distributions, while allowing for the implementation of 
multiple flaw populations. The standard size so-called jumbo plate which measures 3.21x6.00 m2 is taken as a 
starting point. The surface area is divided into unit cells and cracks are distributed over the cells according to a 
uniform distribution. It is supposed that the orientation of the crack plane is uniformly distributed. In this study, the 
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total number of cracks on the jumbo plate is fixed and depends on the flaw density. It is assumed for the model that 
the flaw density is 2 cm-2 (Wereszczak et al. 2014). The sampled crack size is based on some statistical distribution, 
e.g. the Pareto distribution. The random flaws are resampled each time a new jumbo plate is modelled. In summary, 
the stochastics of the flaws comprise the location, the crack plane orientation, and the size. A specimen is extracted 
from the jumbo plate and analyzed. The analysis depends on a comparison of the cracks with the time-dependent 
stress field using fracture mechanics. However, the stress distribution over time only needs to be calculated once for 
any given specimen type and bending arrangement. It is the distributed set of cracks that is resampled in each new 
simulation of the glass fracture. Fracture is prompted when the SIF envelope for the first time intersects with the 
fracture toughness. When this happens, the fracture stress and location can be determined based on the first unit cell 
that contains a failing crack. 

In a recent paper (Kinsella and Persson 2018), this type of numerical method was applied to model the fracture 
stress and failure location of small glass plates subjected to double ring bending. The results allowed for making 
comparisons between different fracture criteria. Furthermore, a dual population concept of flaws was fitted to model 
the fracture stress in an empirical data set, the purpose of which was to model the apparent bimodality in the fracture 
stress distribution (Simiu et al. 1984). Glass fracture data tends to exhibit bimodalities (Veer et al. 2009). 

This kind of numerical method was also used by Pathirana et al. (2017) who implemented a dual population concept 
in Monte Carlo simulations of Griffith flaws for the determination of the strength distribution in panels subjected to 
point contact actions. 

4. Application to laterally supported plates subjected to uniform pressure 
In this paper, the results from new simulations are presented that were carried out using the numerical method 
described in Sec. 3. The results pertain to laterally supported plates subjected to uniform pressure. As a background, 
the following is noted. Bending tests that record the fracture location in new full-scale plates which are laterally 
supported along all four edges and subjected to uniform pressure have previously been carried out by Johar (1981, 
1982), Kanabolo and Norville (1985), and Calderone (1999). In Johar’s and Kanabolo and Norville’s experiments, 
the glass plates were supported between (approximately) 6 mm wide neoprene gaskets. In Calderone’s experiment, 
20 mm thick nylon gaskets were used. The plate nominal thickness was 6 mm in all experiments whereas the 
average thickness was 5.8 mm. Tab. 1 lists the sample sizes as well as the relative frequency of surface failures to 
edge failures. In Tab. 1, only those failures which were unambiguously identified as originating from either the 
surface or the edge were included in the statistics. In other words, when there was recorded multiple potential 
fracture origins which included a mixture of surface and edge sites, these were not counted and included in the Tab. 
1 statistics. This was done for the sake of consistency because it is generally believed that the edge condition and 
hence the edge strength differs from the surface condition. Fig. 1 shows the recorded fracture locations and depicts 
the various plate dimensions that were used in the experiments. 

Two square plates measuring 1200x1200 mm2 and with a thickness of 5.8 mm were modelled using the FEM with 
ABAQUS/CAE (2013). The plates were laterally supported along all four edges between continuous 6 mm wide 
gaskets which were 6 mm in thickness. In one case the gasket material was neoprene (Shore A55) and in the other 
case it was nylon. The neoprene was modelled as an incompressible Neo-Hookean hyperelastic material with shear 
modulus G=1 MPa (Gent 2012). The nylon was modelled as an isotropic linear elastic material with Young’s 
modulus E=3 GPa and Poisson’s ratio ν=0.34. The gaskets were rigidly supported on the side opposite to the contact 
surface with the glass. A friction coefficient of 0.19 was adopted for the contact between gasket and glass. The glass 
material was assumed to have a Young’s modulus E=72 GPa and a Poisson’s ratio ν=0.23. Solid-shell elements 
were used for the glass part while employing a quadrilateral mesh generator. Hybrid elements were used for the 
hyperelastic material parts. In the case of the neoprene material, an adaptive meshing technique was employed for 
the gasket parts to improve the convergence. For symmetry reasons only one quarter of the plate was modelled. The 
plate was subjected to uniform lateral pressure. Fig. 2 shows the deformed state of the plate as seen from one corner 
when the gasket material was neoprene. Figs. 3 and 4 show the maximum in-plane principal stresses on the “tension” 
and “compression” sides of the plate, respectively, for both plates at a pressure magnitude of 40 kPa. The maximum 
tensile stress at this pressure was 97 MPa (nylon) and 164 MPa (neoprene), respectively, on the “tension” side, and 
165 MPa (nylon) and 48 MPa (neoprene), respectively, on the “compression” side. The “tension” side refers to the 
side of the plate that is in tension at the centre point. The results show that with the softer gasket material, the tensile 
stresses concentrated nearer towards the edges of the plate. In fact, on the “tension” side, the maximum tensile stress 
was also significantly greater in this case. However, with the harder gasket material, it was observed that on the 
“compression” side, there is a very high build-up of tensile stress near the edges. 
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The strength and fracture locations were simulated using the numerical method that was described in Sec. 3. It was 
assumed that the surface condition is characterized by a single population of semi-circular cracks with a Pareto 
distributed crack depth. The Pareto scale and shape parameter values were chosen as a0=4 µm and c=3.0, 
respectively, cf. Eq. (6). The cracks were uniformly distributed over the surface area and the unit cell size was 5x5 
mm2. The crack density was 2 cm-2. The motivation behind the choice of Pareto distribution parameter values comes 
from assuming a Weibull distribution for the strength with the parameter values k=74 MPa and m=6. Eq. (14) and 
(15) then give (approximately) the said Pareto parameter values with N=5655. In fact, this Weibull distribution gives 
a characteristic value of the bending strength σb,ch=45 MPa defined as the 5% fractile, cf. Sedlacek et al. (1999). 
According to Haldimann (2006), this Weibull distribution represents the breakage stress of new glass plates in R400 
double ring bending tests at a stress rate of 2 MPa s-1 the tests of which were conducted as a basis for the DIN 1249-
10:1990. With an assumed flaw density of 2 cm-2 the number N=5655 is obtained because the stressed area within 
the loading ring is 0.2827 m2. 

Figs. 5 and 6 show the simulated fracture locations based on a series of 5000 simulations each for the two types of 
gaskets, i.e. neoprene and nylon. In Fig. 5, the fracture criterion that was used assumes that the crack planes are 
oriented normal to the maximum principal stress, whereas in Fig. 6, the mixed mode fracture criterion, Eq. (4), was 
used. In this case, it was assumed that the crack plane angles were uniformly distributed in [0,p). 

Fig. 7 depicts the distribution in fracture stress for both types of gasket materials while assuming a mode I criterion 
with the crack planes oriented perpendicular to the maximum principal tensile stress. A two-parameter Weibull 
distribution was fitted to the data samples and is also shown in the diagrams. It can be noted that the mean fracture 
stress is slightly lower with the mixed mode fracture criterion. 

5. Application to tall panels subjected to impact load 
The dynamic impact load case is often relevant when performing a strength design of a glass structure. With an 
accurate description of the stress distribution in the impacted pane, it is possible to predict the likely fracture 
location. However, it is not necessarily the case that the failure location coincides with the maximum principal 
tensile stress (Natividad et al. 2016). By implementing the numerical method described in Sec. 3 it is possible to 
model the distribution of fracture location. The European standard EN-12600 details a method for testing glass to 
classify it in terms of impact strength.  

The distribution in fracture location was studied for a tall vertical panel subjected to an impact load. The panel 
consists of a laminated unit with two glass plies. The panel measures approximately 1x4 m2 in surface area and each 
ply has a thickness of 10 mm. The full transient FE simulation of the panel and impactor were based on a previous 
model which is described in Fröling et al. (2014). The panel was supported on two sides (top and bottom edges) and 
it had a 6x6 array of ventilation holes near the bottom edge, cf. Fig. 8a for an illustration. The impactor consists of a 
weight encased in two tyres, the weight of the impactor being 50 kg according to standard (EN-12600). The tyre was 
swung into the panel in a pendulum motion thus generating a soft impact with a long pulse time. The glass and PVB 
interlayer parts were modelled by means of a hexahedral solid-shell element. The rubber supports were modelled 
using a solid element. The glass, interlayer and supports were modelled as linear elastic materials and the material 
parameters which were adopted from Persson and Doepker (2009) and prEN 16612:2017 are shown in Tab. 2. The 
initial velocity of the impactor was 2.97 m s-1 which corresponds to a fall height of 0.450 m. The centrical impact 
occurred at a height of 1.2 m. 

 

 

 

Table 1: Sample size and relative frequency of surface to edge failure in experiments with laterally supported plates subjected to uniform pressure. 
Some data points were excluded in the case of multiple potential fracture locations which contained a mixture of surface and edge failure sites. 

Reference Total no. of failures No. of surface fail’s Rel. freq. of surf. fail’s 

Johar (1981) 78 54 0.69 

Johar (1982) 106 71 0.67 

Kanabolo and Norville (1985) 206 152 0.74 

Calderone (1999) 195 152 0.78 
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(a)  

 

(b)  

(c)  

(d)  
Fig. 1 Fracture origins according to four experiments (a) Johar (1981), (b) Johar (1982), (c) Kanabolo and Norville (1985), and (d) Calderone 

(1999). 
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Fig. 4 Stress contours (maximum in-plane principal) on the “compression” side of the plate with (left) nylon gaskets and with (right) neoprene 

gaskets at the lateral pressure magnitude 40 kPa. 

 
Fig. 2 Deformed state of a plate which is supported laterally between neoprene gaskets and subjected to uniform pressure. As seen from one corner. 

For symmetry reasons only one quarter of the plate is visible. 

  
Fig. 3 Stress contours (maximum in-plane principal) on the “tension” side of the plate with (left) nylon gaskets and with (right) neoprene gaskets at 

the lateral pressure magnitude 40 kPa. 
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Fig. 5 Simulated fracture locations in the case of (left) nylon gaskets and (right) neoprene gaskets with a pure mode I fracture criterion assuming all 

crack planes to be oriented perpendicular to the max. princ. stress. 

 

  
Fig. 7 Simulated fracture stress in the case of (left) nylon gaskets and (right) neoprene gaskets with the MPTS fracture criterion, i.e. assuming all 

crack planes to be oriented perpendicular to the max. princ. stress. Solid line corresponds to a fitted Weibull distribution. The histograms are 
normalized to reflect a probability density. 

 

  

  
Fig. 6 Simulated fracture locations in the case of (left) nylon gaskets and (right) neoprene gaskets with a mixed mode fracture criterion. 
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Fig. 8b shows the maximum in-plane principal stress contours at time equal to 15 ms when the maximum stress was 
about 45 MPa. Fig. 8c shows the stress contours at time equal to 30 ms when the maximum stress had reached about 
82 MPa. The greatest stress (82 MPa) was located near the top row of ventilation holes. Fig. 9a shows the 
distribution of fracture location using a mode I fracture criterion without consideration of crack plane orientation, i.e. 
assuming that all crack planes are oriented normal to the maximum principal tensile stress. It was assumed that the 
surface condition is represented by a single population of cracks with a Pareto distributed depth with parameter 
values a0=4 µm and c=3.0, and that the crack density is 2 cm-2. Fig. 9a depicts in total 989 fractures which occurred 
during the simulation of 5000 virtual panel impacts. About 40% of the failures in total occurred near one of the 
ventilation holes. The area near a ventilation hole was in this case defined by a bounding box around the whole 6x6 
array. Fig. 9b shows the resulting strength distribution which is not necessarily in agreement with a Weibull 
distribution. 

Discussion 
In theory, brittle fracture in glass is promoted by the existence of a large set of surface microcracks with a location 
and size distribution that can be described using some random variable. Because of the limited capacity for plasticity 
in glass, the failure mode is governed by the WLP, i.e. the first fracturing flaw prompts global breakage. A failure 
prediction model that is consistent with theory must therefore take into account the existence of surface microcracks 
including the stochastics of these, and the WLP. The Weibull model adopts the WLP and can, in theory, be 
associated with a single population of surface cracks having a Pareto distributed crack size. The Weibull model is 
preferred in major standards including the European draft prEN 16612:2017. However, the Weibull models that are 
fitted to empirical data are so different in scale and shape that is hard to predict the strength in general while 
adopting this type of distribution. A similar limitation appears to apply to the GFPM of which it has been said that it 
“is best suited to representing glass strength for specific test conditions.” (Reid 2007) As a matter of fact, it is not 
just the fracture stress magnitude that scatters, the failure location is also variable. It has been shown that the 
fracture origin rarely occurs at the point of MPTS in laterally supported plates subjected to uniform out-of-plane 
loading (Natividad et al. 2016). 

The method which was investigated in this paper offers a promising alternative to the ordinary Weibull model for 
use in failure prediction of structural glass units. Firstly, the method is based on the physics of brittle fracture. A 
representation of the surface condition is implemented and fracture mechanics are combined with the WLP to reveal 
the breakage stress and location. By assuming that the surface condition is represented by a single population of 
cracks with a Pareto size distribution, it is possible to obtain a Weibull distribution for the strength. The new model 
differs from the Weibull model in that a greater freedom is afforded towards the representation of the surface 
condition in glass. Now, the available data on the surface condition is scarce. As current techniques are improved, 
and new methods are developed to probe the surface condition, more reliable data can be supplied as input to this 
kind of failure model. It is moreover possible to evaluate failure based on different fracture criteria including mixed 
mode criteria in a way that would be more tractable than while using the ordinary Weibull distribution. The 
mathematics soon become intractable when evaluating the analytical expressions necessary to implement different 
fracture criteria, cf. e.g. Batdorf and Heinisch (1978). With the new method, it is possible to control the crack plane 
orientations in a way that would not be feasible using the ordinary Weibull distribution. If one for instance assumes 
that the crack planes lie in some particular direction on certain parts of the surface due to, for example, mechanical 
abrasion, then it would be quite possible to implement this in the new model through a suitable setup of the surface 
condition. It is also possible to implement multiple flaw populations. The new method offers the possibility to 
predict the fracture location which can be useful in certain situations. For example, glass structures with more 
complicated geometry containing corners and holes, and glass structures subjected to more advanced loading 
situations such as uneven static loading and dynamic loading. 

 

Table 2: Material parameters 

Material E (MPa) ν ρ (kg m-3) 

Glass 70000 0.2 2500 

PVB interlayer 180 0.49 1250 

Rubber support 15 0.44 1250 

Impactor 2 0.3 900 
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(a) 

 
(b) 

Fig. 9 (a) Simulated fracture origins. (b) Strength distribution. 

In the present study, a method was applied to model the strength and fracture location of laterally supported plates 
subjected to uniform pressure. The comparison of the empirical data appears to indicate that a significant portion of 
failures in tests of large plates occur near or on the edges. This might indicate that failure is sensitive to shear stress. 
According to one study (Reid 2007), a series of 59 small specimens of annealed glass plates generated unexpected 
results when tested in a double ring bending device. The proportion of failures outside the loading ring was much 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 (a) Tall panel and soft impactor. (b) Stress contours (max. in-plane princ.) when the max stress had reached 45 MPa at time 15 ms. (c) Stress 
contours when the max stress had reached 82 MPa at time 30 ms. NB, maximum stress in (c) is near the edges of the top row of ventilation holes. 

Red colour corresponds to tensile stress. 
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greater than expected based on Weibull statistics which do not factor shear stress into the failure criterion. There is 
no shear stress in the loading ring area because the stress state is equibiaxial. In the case of a large laterally 
supported plate subjected to uniform pressure, there emerges shear stress near the corners of the plate. In this paper, 
such large plates were investigated while using both a mode I fracture criterion and a shear sensitive mixed mode 
criterion. However, from the simulation results, it is hard to see a significant impact on the fracture location due to 
the presence of shear stress near the corners of the plate. Nevertheless, the fracture origin was increasingly located 
nearer the corners when the support gaskets were made from a softer material, i.e. neoprene. As the Figs. 3 and 4 
show, the tensile stress on the “compression” side of the plates are significant, especially in the case with the nylon 
gaskets. At the applied pressure 40 kPa, the maximum tensile stress on the “compression” side of the nylon 
supported plate was in fact on par with the maximum tensile stress on the “tension” side of the neoprene supported 
plate. This implies that a thorough analysis of the failure of laterally supported plates subjected to uniform pressure 
should consider both faces of the plate. This was not done in the present study but could be conducted in a future 
investigation. However, according to one study on large plates subjected to uniform loading (Calderone 1999), there 
were only two fractures occurring from the “compression” side of 195 specimens tested in total corresponding to a 
relative frequency of about 1%. In that study, nylon gaskets were used and the glass was fixed firmly between the 
nylon supports. This indicates that failures from the “compression” side are unlikely in practical situations. However, 
further investigation is required in order to verify this. More important perhaps, is the fact that a significant 
proportion of failures occur from the edges according to experimental data, cf. Tab. 1. In the modelling that was 
done in connection with this paper, only the surface condition in glass was considered. The edge condition was not 
represented separately. This is an important issue, however, that might be considered in future research work.  

The case with the vertical panel impacted by a soft body illustrates how the new method can be applied to model 
specimens with a more complex geometry subjected to dynamic loading. This loading leads to a time-dependent 
stress distribution that initially affects a relatively large portion of the glass surface to moderate tensile stress and 
subsequently a much smaller portion is affected, in particular at the ventilation holes, to higher tensile stress. Even if 
the strength distribution is known a priori, i.e. a Weibull distribution, the question remains as to how the fracture 
location is distributed. The simulations which were carried out show that ultimately about 40% of the failures 
occurred near the holes. However, the edge condition in glass is very relevant in this case and should perhaps be 
represented differently than the surface condition. Further research needs to be conducted in order to properly model 
this load case while taking the edge condition into consideration. In the simulation of the panel, stress corrosion was 
not considered. However, in this particular case, the dynamic impact load produces a very high stress rate. In fact, 
the overall maximum tensile stress was reached within about 30 ms which corresponds to an average stress rate of 
approximately 2700 MPa s-1. Presumably, any effects of static fatigue would be limited because there would be very 
little time for stress corrosion to take place. It is therefore believed that stress corrosion in this case would have only 
a negligible effect on the results. Interestingly, Haldimann (2006) carried out experiments on glass plates which 
were loaded at both low and very high stress rates (0.2 MPa s-1 and 21 MPa s-1, respectively) and compared the 
results. His findings seemed to indicate that the behaviour of a specimen subjected to a stress rate of as much as 21 
MPa s-1 in ambient conditions nearly approaches that of a specimen in inert conditions. 

6. Conclusions 
The distribution of fracture stress and failure location in glass can be modelled using a numerical method that is 
based on well-established concepts including the WLP and the existence of surface microcracks. The method is 
applied to model the strength and fracture origin in large laterally supported plates subjected to uniform pressure and 
in a tall panel with a complex geometry that is subjected to impact loading. By assuming that the surface condition 
is represented by a single population of cracks with a Pareto distributed crack size it is possible to obtain a strength 
distribution that is similar to a Weibull distribution. As current methods are refined and new techniques are 
developed to probe the surface condition of glass, this new numerical tool has potential for greater versatility in 
modelling glass fracture statistics since it allows for various surface flaws conditions and fracture criterions to be 
used.  
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Abstract: The edge strength of glass is analyzed using a Weibull statistical 

framework based on 78 data samples from a range of experiments recorded 

in literature. Based on the analysis, a 45 MPa strength value (computed as 

the lower bound in a one-sided confidence interval at the 75% level for the 

5-percentile in the distribution) could be conservatively used with arrised, 

ground and polished edges when related to a reference length of 100 mm at 

an applied stress rate of 2 MPa/s. The size effect can be represented by the 

usual weakest-link scaling formula with the Weibull modulus taken to be 

8.0, 12.0, 8.0 and 6.5, respectively, for as-cut, arrised, ground and polished 

edges. It is estimated that static fatigue is best accounted for with a value of 

stress corrosion parameter about n = 16. The results are obtained with 

random sampling MC in a hierarchical modelling approach with the 

Weibull parameters treated as nested random variables. By accounting for 

the influence of glass supplier as a mixed-effect in a linear statistical model, it 

is found that supplier effects are significant and important to consider along 

with others due to, e.g., stress rate and edge length exposed to maximum stress. 

The data samples which are limited to glass tested in an ambient environment 

using four-point bending fixture, show that Weibull statistics generally scatter 

considerably. Numerical investigations with random sampling show that shape 

parameter estimates scatter substantially when sample size is limited, which can 

explain some of the observed variability in shape more so for ground and 

polished edges than for as-cut and arrised. For the as-cut edge, it is suggested 

that the shape parameter is scale-dependent. The Weibull parameters are also 

estimated using a clustered likelihood estimator under the condition that the 

shape factor has constant value for each edge type. 

 

Keywords: Glass, Edge, Strength, Statistics, Weibull, Hierarchical Modelling 
 

Introduction 

According to the latest European standard for glass in 

building, EN 16612:2019, there has not been a large-scale 

assessment of edge strength of the type undertaken for 

surface strength. From a practical perspective, it is 

conservative to assume that the edge is exposed to 

significant stress when a structure is subjected to the design 

load. For instance, even though maximum tensile stress 

occurs at the surface center point in a laterally supported 

plate subjected to uniform pressure, nevertheless, the corner 

edges are subject to considerable tension. Regarding other 

kinds of structural elements, such as beams and columns, it 

is evident that edge resistance cannot be neglected in the 

design process, in particular if edge resistance is deemed to 

be inferior to surface strength as standards would have it 

(EN 16612:2019, compare also DIN 18008-1:2010). 

Experimental measurements of edge strength can be 

found in a wide range of journal articles, conference 

proceedings and academic dissertations which are available 

in the open literature (Table 1 gives a summary of the data 

used here). A comprehensive investigation into these results 

allow for an unprecedented analysis of glass edge strength 

within a Weibull statistical framework. 

Background 

Manufacture 

The manufacture of float glass involves a long 

process line with production operations comprising a 

range of parameters of importance for the mechanical 

properties of the glass end-product, e.g., the thermal 

history which is carefully controlled to design the 
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residual stresses (Le Bourhis, 2008; McLellan and 

Shand, 1984). The float process causes diffusion of tin 

into the surface that was in contact with the molten tin 

bath. This side is denoted the tin side whereas the 

opposite side is termed the air side (Krohn et al., 2002). 

The annealed glass is transferred to automatic cutting 

machines that produce standard size sheets with dimensions 

63.21 m2 (EN 572-1, 2012). When glass is cut it is first 

scribed under a sharp roller with oil applied in front of the 

cutting head to generate cracks which are subsequently 

driven through the thickness of the pane by flexuring the 

glass and breaking it in two. The result of the cut depends 

on the type of roller and the force, angle and velocity 

applied to it, in addition to the composition of cutting oil, all 

of which are controlled to generate median cracks and limit 

the introduction of lateral cracks, which degrade the edge 

quality, see also Müller-Braun et al. (2020) (Lawn, 1993; 

Le Bourhis, 2008). Moreover, the quality depends on the 

flexure stress and magnitude of surface residual stresses that 

may be present. In addition, the environment plays a role in 

the result (Le Bourhis, 2008). 

By subjecting the as-cut edge to grinding operations, 

a range of edge profiles are produced. Here we consider 

the arrised, ground and polished types as illustrated 

schematically in Fig. 1. The arrising is performed with a 

cross-belt or cup wheel edging machine which introduce 

bevels at an angle of about 45° to the surface. The result 

of arrising depends on the belt speed and direction for 

crossbelt machines and on the rotation speed for machines 

with cup wheels, as well as on the grinding pressure, the 

selected grain size and the order of application of grit sizes, 

in addition to the total age and usage of the machines 

(Kleuderlein et al., 2014; Veer, 2007). The optical quality 

of the ground edge is characterised by its roughness and 

smooth spots of as-cut glass may be present on the surface 

edge (site S23 in Fig. 1) depending on the amount of 

grinding performed (Vandebroek et al., 2014). The action 

of polishing is carried out in a similar manner to grinding, 

however, very little material is removed in the process 

(McLellan and Shand, 1984). 

Weibull Distribution 

The Weibull distribution (Weibull et al., 1952) for 

the strength σ is: 
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where, k and m are scale and shape parameters. The 

corresponding density function is: 
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and the coefficient of variation is: 
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where, (·) is the Gamma function, i.e., (m) = (m − 1)! 

and generalized for non-integer m (Rinne, 2009). For 

glass the Weibull distribution has been derived from 

assumptions regarding crack occurrences and sizes (see 

overview in Sec. Mathematical development of the 

Weibull model), providing links between the parameters 

in Equation (1) and the physical parameters of the glass; 

these links can be used when modelling glass strength. 

Parameters of the Weibull distribution can be estimated 

using standard statistical theory, see Appendix A. To 

illustrate how the uncertainty in parameter estimates 

depends on the sample size, 50 point estimates of Weibull 

scale and shape parameters together with confidence 

bounds obtained from numerical simulations with random 

Weibull samples are shown in Fig. 2. The underlying scale 

and shape parameter values are k = 75 and m = 10. 

Mathematical Development of the Weibull Model 

The strength of glass is governed by the presence of 

flaws which turn into fracture sites when tensile stress 

reaches a critical level. The flaws are represented by 

cracks and the extension of a crack is modelled by an 

energy balance. Crack growth is prompted by either of 

three modes of deformation, viz. mode I, mode II and 

mode III (Irwin, 1958). Mode I refers to crack opening 

due to displacements normal to the crack plane surface. 

Mode II and III describe in-plane and out-of-plane 

shearing displacement cracking (Broek, 1983). As a 

simplification we consider only the impact of Mode I 

displacements. Failure is governed by the critical release 

rate of elastic strain energy. The mode I Stress Intensity 

Factor (SIF) for a sharp crack subjected to far-field 

tensile stress σ acting perpendicular to the crack plane is: 

 

,IK Y a   (4) 

 

where, a is the crack size and Y is a geometrical 

configuration factor whose value in many cases is 

roughly equal to unity (Irwin, 1957; Hellan, 1984); e.g., 

for a straight-fronted planar edge crack Y = 1.12 (Irwin, 

1958). The fracture criterion is: 

 

,I IcK K  (5) 

 

where, KIc is the fracture toughness which for sodalime 

glass equals to about 0.75 MPa m1/2 (Mencik, 1992). 
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Fig. 1: Edge types. (A) As-cut with scored, 1 and non-scored, 2, edge. (B) Arrised. (C) Ground with smooth spots of as-cut glass 

remaining visible. (D) Ground. (E) Polished. Cross-sectional edge perimeter for (i) as-cut and (ii) arrised, ground and 

polished, respectively, is divided into zones where S = surface, E = edge 

 

 

 
Fig. 2: Estimated confidence bounds for Weibull scale and shape parameters in numerical simulations of samples with varying size. 

True values: k = 75 and m = 10 
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Combining Equation (4) with (5) and assuming a 

homogeneous Poisson process for crack occurrence with 

Pareto distributed crack sizes, it can be shown 

(Mesarovic et al., 1992; Haldimann, 2006) that the total 

failure probability for an edge of length L subjected to 

uniform stress is: 
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where, λ0/L0 is the crack density, a0 and r are Pareto scale 

and shape parameters and the Pareto distribution is: 
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While subjected to tensile stress in an atmosphere 

that contains water moisture, cracks in glass propagate 

subcritically due to stress corrosion (Charles, 1958a,b). 

For structural glass design considerations, subcritical 

crack growth is modelled using Equation (8) in which v0 

and n are stress corrosion parameters and Kth is a 

threshold value of SIF below which crack growth arrest 

occurs, at approximately 0.20-0.27 MPa m1/2 (Evans, 

1974; Haldimann, 2006): 

 

0 , ,

0, 0 .

n

I
th I Ic

Ic

I th

K
v dt K K K

da K

K K

  
    

   


 

 (8) 

 

Combining Equation (4) to (8), neglecting the 

crack growth arrest limit and assuming in addition a 

constant applied stress rate until failure, subcritical 

crack growth is accounted for in an approximation of 

the total failure probability as expressed in Equation 

(9) (Haldimann, 2006): 
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Equation (9) is a good approximation in the case of 

low to moderate loading rates when v0 is large enough 

(Haldimann, 2006). 

Both Equation (6) and (9) can be written in the 

form of the Weibull distribution (1). For Equation (9), 

the corresponding scale and shape parameters are 

identified as: 
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Four-Point Bending Test Results Reviewed 

A schematic of the four-point bending arrangement is 

shown in Fig. 3. The bending strength is calculated as: 
 

0

2
3

Fl

wd
   (11) 

 

where, l0 is the distance between force and support and d 

and w refer to the cross-sectional width and height, 

respectively. Here, the beam is standing up on its edge 

and subjected to an in-plane configuration of bending. 

The maximum stress rate as function of deformation rate, 

u̇, is given by: 
 

0

3

3 4

Ed
u

L l
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
 (12) 

 

where, E is Young’s modulus equal to about 72 GPa and 

L is the distance between the supports (Mencik, 1992). 

A total of 78 samples from four-point bending tests 

comprising some 1800 observations of edge strength 

were collected from literature and reviewed, see Table 1 

for an overview. The data samples were obtained from 

experiments conducted on new annealed glass specimens 

broken in a four-point bending fixture in an ambient 

environment. No special coating was applied to the 

tension side of glass. The configuration of bending 

fixture was such that it took place in the plane of the 

specimen, i.e., with the glass beam standing up on its 

edge. The edge type was either as-cut, arrised, ground, or 

polished. The experiments were by all accounts 

consistently performed according to best practices and in 

many cases the procedure was guided by some standard 

document, e.g., EN 1288-3:2000. About 85% of recorded 

data was observed using a stress rate lower than 3 MPa/s. 

The maximum stress rate used in any of the experiments 

was below approx. 55 MPa/s. In total 19 suppliers of glass 

were identified, however, where it was not verified in a few 

cases that those are not confounded with each other, as 

indicated in the table; the reason being that it was not 

verified that the glass tested in Veer et al. (2006; 2009) and 

Veer and Rodichev (2011) and Vandebroek et al. (2012; 

2014), respectively, were obtained from separate original 

batches even though it is likely so because experiment 

designs including specimen dimensions were different. 
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Fig. 3: Four-point bending test setup 

 

According to one study on beams tested with an in-

plane configuration of bending, on average 20% and 

13% of failures in as-cut and ground specimens, 

respectively, occurred from either site S0 or S5 in Fig. 1, 

i.e., from the main surfaces (Vandebroek et al., 2014). 

For the distribution of failure origins between sites 

E1, S14 and E4, for the as-cut edge, Kleuderlein et al. 

(2014) found that some 92% occurred at the scored 

part of edge while in Vandebroek et al. (2014) it was 

75%. The statistics in Kleuderlein et al. (2014) and 

Vandebroek et al. (2014) show that failure origins in 

beams subjected to in-plane bending are distributed over 

the entire cross-sectional edge perimeter and extend even 

beyond into the main surface. In this context, we 

consider the surface to be defined by the pristine 

surfaces of glass that were in contact with the molten 

tin or air in the float process, whereas the edge is 

those parts of material subjected to various 

mechanical actions of scoring, cutting, arrising and 

grinding operations, etc. As a simplification, in this 

paper it is assumed that the in-plane bending 

configuration is a proxy for edge failures. 

Ritter et al. (1984) reports the results from a wide-

ranging testing programme on small annealed glass 

plates with ground edges subjected to four-point 

bending. A significant strength variability from 

laboratory to laboratory was noted and the estimated 

Weibull shape parameter for the edge population ranged 

from about 4.6 to 12.5. 

Hierarchical Modelling of a Weibull Random 

Variable 

To model the 1782 observations we use a hierarchical 

approach with Weibull distributed errors: 

 

 ,ij i iWeibull k m  (13) 

 

where, σij is the jth observation from the ith sample. 

Models for the resulting 78 shape and scale parameters, 

ki and mi, are obtained by taking logarithms of Equation 

(10) and rewriting as: 

 

0

0

0

0

1 1
log log log

1

2 1 log
log

2 1

log
1

1 1
log 2 ,

1 2

eq

Ic

eq

L
k

m L n

n

n a r

n K

n Y

n

n n v











  


 
   

  

 


 
     

 (14a) 

 

 
1

log log log 2 .
2

n
m r

n


 


 (14b) 

 
Equation (14) is then used as a basis to formulate a 

statistical linear mixed effects model (McCulloch et al., 

2008, Ch. 6) as follows: 
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 (15b) 

 
Here are indicator functions for the categorical 

regressors; Li and i are the recorded load span and 

stress rate in the ith sample; and we have chosen the 

reference load span and reference (or “equivalent”) stress 

rate as L0 = 100 mm and eq = 2 MPa s1 respectively. 

The model in Equation (15) is obtained from 

Equation (14) by the following steps and assumptions: 

 

1. The first term on the Right-Hand Side (RHS) of 

Equation (14a), representing edge length (size) 

effect, has been included in the response variable on 

the LHS of Equation (15a) 

2. The second term on the RHS of Equation (14a) rep- 

resents the effect of the constant stress rate and 

depends on the stress corrosion parameter n. The 

reciprocal of n + 1 is identified with the fixed-effect 

β5 in Equation (15a) 

3. Term number three on the RHS of Equation (14a) and 

the second term on the RHS of Equation (14b) 

correspond to the edge condition of glass. This depends 

on manufacturing processes (as outlined in Sec. 

Manufacture) and edge type, which governs the 

characteristics of flaw population, as modelled by a0, r 

and λ0 in the Poisson process and Pareto distribution. 

The different edge types are considered as fixed-

effects, given by βl and γl for l = 1 through 4, while the 

supplier is a random effect captured in bl and cl 

l0 
F/2 F/2 

d 

L w 
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4. Term number four on the RHS in Equation (14a) 

contains both a material parameter KIc and the 

fracture mechanics geometrical configuration 

factor Y the latter of which is assumed to be 

approximately equal to unity. The effect of these 

are incorporated in the intercept value of the 

linear model 

5. The last term on the RHS of Equation (14a) contains 

both stress corrosion parameters n and v0 of which 

the latter is assumed to be, on average, constant as 

long as the environmental conditions (temperature 

and RH) are similar between experiments. Any 

random variability in v0 will be captured in the error 

term ϵi and the dependence on n is neglected as a 

simplification in the linear model 

6. Finally, since n ≫1, it is assumed that the ratios n/(n 

+ 1) and (n − 2)/(n + 1) are approximately constant 

 

The motivation for using a mixed effects model is 

that the effect of edge types and stress rate have physical 

interpretation, but differences between suppliers (and 

batches) are due to variability in the manufacturing 

process. Thus we are interested in the actual effect of 

edges and stress rate, while for the manufacturers we are 

more interested in categorizing the amount of variability 

among different manufacturers (see also Appendix B for 

a longer discussion). 

Ideally the hierarchical model defined by Equation 

(13) and (15) should be estimated jointly, while 

accounting for the coupling in Equation (15). This 

could potentially be done using more advanced 

statistical algorithms such as Markov chain Monte 

Carlo and expectation maximization (Givens and 

Hoeting, 2013). However, to obtain a practically 

useful model we use a pragmatic two step approach 

where shape and scale for each sample are first 

estimated from Equation (13) and then used as 

response variables in two separate regressions in Equation 

(15) (Sampson et al., 2011, for a similar pragmatic 

approach to air pollution data.). In addition, a more 

involved model with mixed-effects for laboratory or with 

interactions between edge type and supplier would be 

desirable, but such a model is infeasible due to data 

sparsity; e.g., there are no cases in the published data where 

two (or more) laboratories uses the same batch of glass. 

Given values of edge-type, stress rate and load span 

the model in Equation (15) can be used to predict shape 

and scale parameters; these parameters can then be used 

in Equation (13) to compute 5-percentile values. 

However, this would ignore the uncertainty due to 

different suppliers, a more correct model is obtained by 

integrating out (e.g., averaging over) the effect of 

different suppliers: 

     
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i i

i

f f p d
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
 (16) 

 

Here, f(σ|supp) is the Weibull distribution with 

parameters from Equation (15) given a known 

supplier and p(supp) characterises the uncertainty in 

supplier effect, e.g., the variance of bl and cl. The 

integral in Equation (16) is intractable and we use 

Monte Carlo integration to compute the distribution 

f(σ) using the following steps: 

 

1. Sample pairs of scale and shape parameters from 

Equation (15) while assuming that the glass could 

have been obtained from any supplier 

2. Given scale and shape parameters the corresponding 

Weibull density, Equation (13), is computed 

3. Steps 1 and 2 are repeated 10 000 times and the 

results are averaged, providing a numerical 

approximation of the integral in Equation (16) 

 

Results 

The ordinary ML-estimates of the Weibull 

parameters, cf. Equation (19), for the data sets 

included in Table 1 are computed and illustrated in 

Fig. 4 where also the confidence bounds are shown. 

The results are grouped according to edge-type and 

load span dimension, additionally differences in 

supplier/batch (cf. Table 1) and edge thickness are 

indicated. For the as-cut and polished edge types 

additional samples with edge failures recorded in out-

of-plane configuration of four-point bending are 

included. These additional samples were obtained from 

Veer and Rodichev (2011), Muniz-Calvente et al. 

(2016) and Osnes et al. (2018) and were given 

supplier/batch indices 4, 22 and 23, respectively, cf. 

Table 1 and see also Table. 4. 

Using Equation (15b), a LME model is applied and a 

constant shape factor per edge type is computed as fixed-

effect, the value of which is provided in Table 2. The 

LME model of the shape factor is further illustrated in 

Fig. 5 which shows the computed fixed and random 

effects with approximate and simultaneous 95% 

confidence bounds. 

Figure 6 illustrates the results for the scale factor 

when the LME model, Equation (15a), is fitted. In the 

middle is a subplot of the fixed-effects with approximate 

and simultaneous 95% confidence bounds included. In 

the bottom is a subplot of the fixed+random effects. The 

fixed-effect in Equation (15a) that corresponds to the 

reciprocal of n + 1 is estimated at 0.0612 which produces 

a value of stress corrosion parameter at n = 15.3 with 

approximate 95% confidence bounds [14.0, 16.9]. 
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 (a) 
 

 
 (b) 
 

 
 (c) 

 

 
 (d) 
 
Fig. 4: Weibull statistics and sample data for the as-cut, arrised, ground and polished edge type in tests with in-plane bending 

configuration. Supplier/batch numbers are indicated on left-hand side and nominal edge thickness is indicated in symbolic 

marker +, o, *, etc., on right-hand side. For comparison additional points are added corresponding to fracture statistics with 

out-of-plane bending where the originally scored edge was in the tension (green marker) and compression (red marker) zone, 

respectively, as indicated in the right-hand subplots 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

40 
 

35  
 

30  
 

25  
 

20  
 

15  
 

10 
 

5 
 

0 

S
h

ap
e 

p
ar

am
 

Scale param 
40     50      60     70      80      90    100   110 

Scale param 
40      50     60     70      80      90    100   110 

40     50     60     70     80      90    100  110 40     50     60     70     80      90    100  110 

40     50     60      70     80      90    100   110 40     50     60     70     80      90    100  110 

40     50     60     70     80      90    100  110 40     50     60     70     80      90    100  110 

40-50 

90 

175-200 

250 

500 

4 mm 

6 mm 

8 mm 

4 mm 

6 mm 

8 mm 

50 

200 

50 

200 

230-250 

500 

4 mm 

6 mm 

8 mm 

10 mm 

4 mm 
6 mm 
8 mm 
10 mm 
19 mm 

40 
125 
200 
230-250 
500 

S
h

ap
e 

p
ar

am
 

S
h

ap
e 

p
ar

am
 

S
h

ap
e 

p
ar

am
 

3.2 
 

3.6 
 

4.2 
 

5 
 

6.2 
 

8.2 
 

12 
 

22.9 

3.2 
 

3.6 
 

4.2 
 

5 
 

6.2 
 

8.2 
 

12 
 

22.9 

3.2 
 

3.6 
 

4.2 
 

5 
 

6.2 
 

8.2 
 

12 
 

22.9 

C
O

V
 (

%
) 

C
O

V
 (

%
) 

C
O

V
 (

%
) 

Load span (mm) Load span (mm) 

3.2 
 

3.6 
 

4.2 
 

5 
 

6.2 
 

8.2 
 

12 
 

22.9 

C
O

V
 (

%
) 



David Kinsella and Johan Lindström / International Journal of Structural Glass and Advanced Materials Research 2020, Volume 4: 130.148 

DOI: 10.3844/sgamrsp.2020.130.148 

 

137 

 
 

Fig. 5: Shape factor fixed and random effects according to LME model Equation (15b) 

 

 
 

Fig. 6: Scale factor fixed and random effects according to LME model Equation (15a) 

 

10,000 pairs of values of scale and shape parameter 

are drawn in random samples using the LME models, 

Equation (15b) and (15a), while assuming that the glass 

could have been obtained from either supplier (but with 

the same supplier, edge type, load span, etc., per each 

pair of parameters sampled). The stress rate is 

assumed to be 2 MPa s−1. Since Equation (15a) 

contains the value of shape parameter, the shape 

factor is first simulated and then inserted into the model 

for scale parameter which is subsequently sampled. 

Then, median, 5% fractile and 1 in 10,000 probability 

values of strength are computed in MC-simulations of 

Weibull distributions using the sampled pairs of random 

scale and shape parameters and the results are illustrated 

in Fig. 7 for each edge type and separated according to 

assumed load span dimension. The whiskers in the 
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boxplots are extended beyond the quartile by one and a 

half times the interquartile range which implies about 99% 

coverage if the data are normally distributed. Also in these 

figures is indicated the lower bound of a one-sided 

confidence interval for the 5-percentile value at the 

approximate 75% confidence level. In addition, a mixture 

distribution function is computed, assuming that the glass 

could have been obtained from either supplier, in a MC-

simulation based on the approximation formula in (16). 

Figure 8 shows the resulting mixture distributions per 

edge type and load span. 

The proportion of variability in the response 

explained by the fitted models is given in Table 3 in 

addition to the fraction of the total unexplained variance 

that is explained by differences in supplier, 

 2 2 2/c c   . 2

c  is the supplier variance, 2  the 

residual variance (see also App. B) and 2 2

c   is the 

total variance not explained by fixed effects. 

The LME model described so far results in the same 

shape factor for all data corresponding to the same edge-

type. In the following, this is compared with the results 

from a clustered likelihood estimator, the clusters 

corresponding to each edge type, see also App. A. Given 

in Table 2 are the estimated shape factors calculated 

using Equation (20) and (15b). With Equation (20), the 

same edge-type has the same shape factor. The 

computation is based on the derivatives (21a) and (21b) 

and on the second derivatives (22a), (22b) and (22c) and 

is performed using a nonlinear minimization algorithm 

in MATLAB (MathWorks Inc., 2018). When the ML-

estimates are computed using either of Equation (19) and 

(20), i.e. with ordinary ML-estimation or alternatively 

with an estimation procedure that conditions the same 

edge-type to have the same shape factor, there is hardly 

any difference in resulting scale factor, as can be seen in 

the top subplot in Fig. 6 which compares these values. 

 
Table 1: Batch/supplier index numbers corresponding to cited publication with samples of strength in in-plane conguration of 

four-point bending tests. Items marked with a star or dagger, respectively, refer to batches for which it was not verified 

that they are not confounded with each other. Edge finishing: c = as-cut, a = arrised, g = ground, p = polished 

Publication No. of samples Total no. edge fail's Batch index no. Edge finishing 

Carre (1996) 6 81 1 p 

Veer et al. (2006) 3 32 2* g 

Veer et al. (2009) 1 30 3* p 

Veer and Rodichev (2011) 2 83 4* c 

Vandebroek et al. (2012) 4 77 5† cp 

Lindqvist (2013) 4 110 6 cp 

" 1 19 7 c 

" 4 73 8 cg 

" 4 84 9 ca 

" 6 101 10 ag 

" 2 39 11 g 

Vandebroek et al. (2014) 8 202 12† cg 

Kozlowski (2014) 1 6 13 p 

Kleuderlein et al. (2014) 6 131 14 cag 

" 6 163 15 cag 

" 6 169 16 cag 

" 6 138 17 cag 

" 6 157 18 cag 

" 3 74 19 cag 

 
Table 2: Estimated shape factor per edge type using Equation (20) or (15b) with approximate 95% confidence bounds within 

parentheses 

 As-cut Arrised Ground Polished 

ML-estimation procedure 10.3 13.6 11.0 7.2 

LME modelxed-effect 9.7 (8.4, 11.2) 14.6 (12.2, 17.5) 10.2 (8.5, 12.2) 8.0 (6.4, 10.0) 

 
Table 3: The proportion of variability in the response explained by the fitted model and the fraction of the total unexplained variance 

that is explained by differences in supplier 

LME model R2  2 2 2/c c    

Scale factor 0.66 0.55 

Shape factor 0.66 0.59 
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Table 4: Data on the relative frequency of edge failures in laterally supported plates subjected to Uniform Pressure (ULP) and in 

Four-Point Bending (4PB) tests. For the ULP tests, only those edge failures are included that were unambiguosly 

identified as such. In some cases the experimenter recorded multiple potential fracture origins for a single specimen. In 

case of a mixture of potential surface and edge fracture sites for the same specimen, the associated observation was not 

included in the edge failure statistic. Hence, the statistic represents a lower bound on the relative frequency. OP = out-

of-plane bending configuration  

Reference Bend. type Total no. fail's No. edge fail's Rel. freq. edge fail. 

Johar (1981) ULP 78 17 0.22 

Johar (1982) ULP 106 23 0.22 

Kanabolo and Norville (1985) ULP 206 54 0.26 

Calderone (1999) ULP 195 41 0.21 

Veer and Rodichev (2011) 4PB OP 89 84 0.94 

Muniz-Calvente et al. (2016) 4PB OP 30 14 0.47 

Osnes et al. (2018) 4PB OP 93 21 0.23 

Ritter et al. (1984) 4PB OP 1263† 1015† 0.80† 

*According to private correspondence 

†Test conducted either in distilled water or in dry nitrogen gas 

 

 

 
Fig. 7: Simulation of various strength percentiles per edge type at 2 MPa/s stress rate as function of load span dimension. The 

boxplots correspond with 5-percentile values. Dashed line is a curve fitted to the lower bound in a 75% one-sided confidence 

interval for the 5-percentile. Solid line traces the estimated median strength (computed as median value of 10,000 point 

estimates per load span). Dotted line is the 1 in 10,000 probability failure stress (median value of point estimates) 
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Fig. 8: Simulated mixture distributions for the strength at 2 MPa/s stress rate per edge type as function of load span 

 

Discussion 

The edge strength is important to consider in design 

of glass structures because in practice, the edge is prone 

to significant tensile stress even when maximum stress 

occurs away from the edge elsewhere on the surface. 

This is demonstrated in various experiments with four-

sided laterally supported plates subjected to uniform 

pressure for which the maximum tensile stress occurs at 

the centre point of the surface. According to a recent re- 
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view of test results from hundreds of large laterally 

supported panes subjected to uniform pressure, it was found 

that none failed at the location of maximum principal 

tensile stress (Natividad et al., 2016). Moreover, according 

to a survey of almost 600 specimens tested with uniform 

lateral pressure, more than one in five failed at the edge, see 

Table 4. In addition, Table 4 shows that in four-point 

bending tests, on average more than half of failures 

originated from the edge when the configuration of bending 

was out-of-plane. 

The additional mechanical action to the edge that 

occurs during production processes suggests that 

strength properties of the edge may not be equal to those 

of the pristine surface. According to EN 16612:2019, 

edge strength is generally considered to be inferior to 

surface strength and this is reflected in the prescription 

of an edge strength factor; the largest reduction is 

applied to the raw-cut edge and none at all to the 

polished edge. In a study involving eight participating 

laboratories (Ritter et al., 1984), it was found that for the 

results from seven out of eight laboratories the surface and 

edge failures were evenly mixed throughout the distribution 

so that a unimodal strength distribution often fitted the data 

well. However, it was also reported that with the results 

from one of eight laboratories, there was no intermixing of 

strength values from the edge and surface flaw 

populations and moreover, all of the surface failures were 

in the low strength portion of the distribution while edge 

failures were in the high strength portion. This clearly 

indicates that in some cases there can be significant 

differences in surface and edge strength distribution even 

as the specimens in this case (Ritter et al., 1984) were 

obtained from the same supplier and were randomized 

prior to being delivered to each of the participating 

laboratories. Moreover, these results apparently contradict 

the concept in EN 16612:2019 where the edge strength is 

deemed to be inferior to surface strength. Evidently, more 

research is needed to verify if the edge reduction factors 

adopted in the standards are correct. Figure 8 indicates that 

polished edges are generally the strongest. 

Comparing different edge types with each other, see 

also Fig. 4, the polished edge corresponds with samples 

of either a similar or a larger coefficient of variation, on 

average, than other edge types. The optical appearance 

of the polished edge is superior, however, prediction-

making of its strength value is potentially associated 

with greater uncertainty than for other finishings. The 

selected values for edge strength factor in EN 16612: 

2019 could be non-conservative. 

The edge strength is complex to model due to the 

range of factors that can have a confounding effect. Even 

when the number of factors are limited by restricting the 

analysis to e.g., a fixed load span for a specific edge type 

at a specified rate of applied stress in a controlled 

environment, it is seen that strength values scatter 

substantially and it is concluded that the variation cannot be 

accounted for by a single standard statistical distribution, 

compare also Veer (2007). Rather, samples are fitted by 

Weibull distributions with scale and shape parameters that 

exhibit random variability in addition to systematic effects 

according to e.g., weakest-link scaling. 

Considering the recorded data results in a Weibull 

statistical framework, it appears that a major 

confounding factor is related to manufacturing and 

production line processes which can be assumed to vary 

with location and over time due to e.g., variability in 

grinding wheel settings and machine properties, presence 

of residual compressive stresses and variations in 

environmental conditions during manufacture to the 

extent that it may affect the end-product (Veer, 2007; 

Kleuderlein et al., 2014; Le Bourhis, 2008). Table 3 

shows that about two thirds of the variability in the LME 

models fitted to the Weibull scale and shape factors is 

explained by physical interpretation (edge-type, stress rate, 

weakest-link scaling). Of the remaining variability, between 

55%-60% is related to supplier or batch effects. Approx. 

14% of total variability is not explained by the model and 

can be attributed to, e.g., local effects during testing of each 

individual specimen and sample-to-sample effects including 

inter-laboratory differences, presence of residual 

compressive stresses and of course errors in the treatment of 

stress corrosion with the approximate theory applied. 

The numerical investigation into sample size effect 

on computed Weibull parameter estimates, see Fig. 2, 

shows clearly that when sample size is limited, the shape 

parameter estimate scatters substantially to produce what 

might appear like a statistical artefact. This might 

explain most of the variability in observed shape 

parameter estimates from recorded test results for ground 

and polished edges (cf. Fig. 4c and 4d). It corresponds to 

the conclusion drawn in a previous large scale 

investigation of the strength of small glass plates with 

ground edges according to Ritter et al. (1984), where it 

was noted that whereas “the variability observed in the 

Weibull slope parameter, m, was close to that expected 

from the statistical reproducibility of the strength test [...] 

the variability in the median strength from laboratory to 

laboratory was much greater than that due only to statistical 

considerations.” For the arrised and in particular as-cut edge 

(Fig. 4a and 4b), however, variability in shape parameter is 

hardly within statistical reproducibility. 

The environmental conditions are known to 

significantly affect the observed strength due to stress 

corrosion (Charles, 1958b; Brown, 1974); at higher rates 

of applied loading, the strength is increased. In the 

present analysis, it was assumed that the environmental 

conditions during testing were approximately identical. 

This is a simplifying assumption however, as the 

recorded values of temperature and relative humidity in 

the experiments ranged from 15°C to 25°C and from 
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about 23% to 70%, respectively. According to a survey 

of measurements of stress corrosion parameter v0 in 

Haldimann (2006) and Schula (2015), its value was 

found to vary substantially even under seemingly 

identical environmental conditions. This points to a 

potentially confounding effect on the estimation of scale 

factor in the present study and it is expected to contribute 

to the error terms in the LME model (15a). In addition, 

while applying Equation (9), the existence of the 

threshold limit value KIth is ignored, however, this is 

assumed to have a limited effect on the results. 

Although a general size effect is evident when 

considering Fig. 4, due to the scatter of individual 

statistics it is hard to verify that a proper assessment of it 

was made when based on a few sample statistics alone. 

The variation in estimated scale parameter for an 

identical load span at the same loading rate can be 

considerably large as the results for the as-cut and arrised 

edge type demonstrate. In conclusion it is recommended 

that size effect for glass edge be addressed in wide-ranging 

studies with a diversity in glass supplier, thickness, etc., 

perhaps also including diversity in participating 

laboratories. According to results from MC-simulations, see 

Fig. 7, the size effect can be expressed in terms of the value 

of 5-percentile strength with the ordinary weakest-link 

scaling formula, Equation (17), i.e., the decrease in strength 

from σ1 to σ2 as the load span increases from L1 to L2 is 

approximated well by the usual formula: 

 
1

1
2 1

2

mL

L
 

 
  

 
 (17) 

 

if m is taken as 8.0, 12.0, 8.0 and 6.5, respectively, 

for the as-cut, arrised, ground and polished edge types. 

These values are close to those given in Table. 2. The 

corresponding fit is illustrated in Fig. 7 with a dashed red 

line where scaling is performed from a baseline strength 

value at load span 100 mm. The load spans represented in 

the experiment data range from about 50 mm to 500 mm. 

In practical circumstances when glass is used in structures, 

the effective load span can be larger than so and more 

research is needed to verify how the size effect is manifest 

and properly extrapolated. Figure 4 also shows the 1 in 

10,000 probability failure stress with a dotted line which 

lies above 20 MPa for all load spans that are represented 

in the data that was used to fit the model. 

The characteristic 5-percentile strength values that 

were estimated in the present study, see Fig. 7, suggest 

that the 45 MPa value for glass strength that is 

mentioned in EN 572-1:2012 (and which is further 

discussed in an annex to EN 16612:2019) could be used 

for the edge if it is computed as the lower bound in a 

one-sided confidence interval at the 75% level and, if it 

is related to a reference length of 100 mm at an applied 

stress rate of 2 MPa s−1 except for the as-cut edge which 

warrants a reduction of about 5% and the ground edge 

which allows for a increase of 5%. The size scaling would 

then follow from Equation (17). However, the difference in 

estimated strength between edge types is not large and a 

simplification could be made. So long as the as-cut edge is 

not considered, the characteristic values for the polished 

edge in Fig. 7 could be adopted conservatively for either of 

the arrised, ground and polished edge types. 

In the present study, the edge size was measured by 

its length, however, weakest-link scaling could be 

considered in terms of edge area rather than edge length 

so that if w0 denotes a reference thickness then: 
 

0 01
log log

L w
k

m L w





 (18) 

 
where, L0w0 is the reference area and Lw is the given 

edge area. With increasing thickness, edge size is greater 

and in consequence, the probability for the edge to 

contain a severe flaw increases according to classical 

weakest-link scaling argument. Or, another measure 

might be used, such as a representative volume that 

extends into part of the main surfaces (zone S0 and S5 in 

Fig. 1) in which case edge size would no longer be a 

simple product of thickness times length. However, 

increasing thickness is associated with differently chosen 

cutting angles in the production method. Therefore, it 

can be assumed that flaw population characteristics vary 

with thickness (Lindqvist, 2013; Veer, 2007). For such 

reason, glass thickness may interact with edge length and 

edge type to produce an effect on strength in ways that 

may not be self-evident. Consequently, Equation (18), 

although logical from the point of view of classical 

weakest link scaling principles, does not sufficiently 

express the effect on strength due to edge thickness 

variations. This was noted in the present study when 

various adaptations of the LME in (15a) and (15b) were 

investigated and compared using the AIC information, 

see App. A. For the shape parameter, it was seen that 

supplier/batch, edge type and thickness where the most 

important factors (in the given order) to consider in 

search of better performing models. For the scale 

parameter, slightly better performing models where 

produced when edge thickness was included as a fixed-

effect rather than accounted for by using Equation (18) 

and, in fact, the same was seen for load span length, 

too. This indicates that weakest-link scaling of strength 

due to edge size is not entirely a simple matter of 

scaling according to the formula in Equation (18). 

Instead, it is suggested that edge characteristics in 

terms of flaw population vary with thickness and even 

with length. More research is needed to verify the 

effect on strength due to edge thickness and to better 

understand the proper way to measure edge size for 

weakest-link scaling purposes. 
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According to Veer and Rodichev (2011), lateral 

cracks generated by scribing are located at a greater 

depth than the initial surface microcracks. The length of 

lateral cracks is also greater than the width of the score 

itself. The hypothesis laid forward in Veer and Rodichev 

(2011) is that some of the lateral cracks are so large and 

are located at such depth that they remain partially or in 

full even after grinding and polishing operations. Others, 

however, appear to disagree. In Vandebroek et al. (2014) 

it is said that “[a]fter grinding, one can assume that the 

damage caused by cutting has vanished.” And in 

Kleuderlein et al. (2014) it is suggested that “damages in 

the form of microcracks caused by the cutting process 

are eliminated or at least significantly reduced by 

arrising or grinding.” On a similar note, Sglavo et al. 

(2007) who performed three-point bending tests on 

monolithic glass beams with an out-of-plane configuration 

of the bending, reported that the position of the originally 

scored edge, i.e., in the tension zone or in the compression 

zone, had an insignificant effect on the strength when the 

glass was processed, i.e., arrised, ground or polished. At 

the same time, Sglavo et al. (2007) write that the various 

edge processing methods are responsible for creating new 

flaw populations. This is in agreement with Veer (2007), 

who claims that grinding operations might increase the 

damage because the experimental data results he obtained 

indicated that some as-cut specimens were stronger on 

average. This has been noted by others too (Lindqvist, 

2013; Vandebroek et al., 2014). In summary, there is an 

on-going debate in the literature over the significance of 

grinding and polishing operations on edge flaw 

population characteristics. The data in the present 

study suggests that grinding and polishing operations 

could be responsible for increasing the average value 

of COV for strength. 

Figure 4a representing the as-cut edge statistics indicates 

a possible scale-dependency of the shape parameter. 

Although such scale-dependency has not been addressed 

previously in the context of structural glass engineering so 

far as the authors are aware, it has been noted elsewhere for 

metal fatigue in components such as gears, shafts and 

turbine blades, the strength of gear pairs made from plastic 

and roller bearings (Juskowiak and Bertsche, 2014, see also 

Seo et al., 2009). The salient feature is that the shape 

parameter decreases with increasing scale within a Weibull 

analysis framework. Considering the statistics in Fig. 4, it 

appears that one effect of grinding and polishing could be to 

remove a scale-dependency on the shape of the Weibull 

distribution, although more research is needed to verify this. 

Considering the as-cut edge type, for which one side 

has been scribed and thus subjected to mechanical action 

(compare Fig. 1A), it is logical to expect the mean 

strength to increase when the non-scored edge (part 1 in 

Fig. 1A) is positioned in the tension zone compared to 

the scored edge (part 2 Fig. 1A) when applying four-

point bending with an out-of-plane configuration. This is 

also reflected in Fig. 4a for the four data samples that 

represent this type of bending configuration (green 

marker colour in the figure corresponds to out-of-plane 

bending configuration with the scored edge positioned in 

tension zone while red marker corresponds to the non-

scored edge subjected to tension). However, what about 

potential differences in edge strength with an in-plane 

bending configuration compared to an out-of-plane 

configuration? Most of the data on the edge strength comes 

from specimens loaded with an in-plane configuration of 

bending. There are significant ad- vantages with the in-

plane compared to the out-of-plane configuration when 

measurements of edge strength are sought if it is assumed 

that results from in-plane bending tests can be used as a 

proxy for edge strength. In contrast, with an out-of-plane 

configuration, a substantial portion of failures may not 

occur from the edge, but on the centre part of the surface. 

Table 4 provides an indication of the ratio of edge to surface 

failures that may occur in practical circumstances. If the 

purpose is to obtain a sample of, e.g., 30 observations of 

edge strength using an out-of-plane bending configuration 

then according to Table 4 one may in the worst case have to 

be prepared to put some 150 specimens to the test, although 

on average about 60 will suffice. There is the additional 

time and effort involved in identifying each fractured 

specimen according to whether it failed at the surface or 

from the edge. More research is needed however, to verify 

whether the recorded edge strength distribution is the same 

for in-plane loading as for out-of-plane. 

In this study, the influence of the cross-sectional and 

longitudinal fracture location was generally not 

considered except in the analysis of the as-cut edge, cf. 

Fig. 1. The influence of these location descriptors was 

studied by Vandebroek et al. (2014) who found that in 

the case of raw-cut edges, a considerably larger number 

of failures originated from the mechanically scribed 

edge. The same was found by Kleuderlein et al. (2014). 

However, according to Vandebroek et al. (2014), the 

observed strength was “almost not depending” on cross-

sectional location. Moreover, the edge strength value was 

“hardly dependent” on longitudinal failure location, 

although the frequency of failures varied in the longitudinal 

direction (Vandebroek et al. 2014). This is in general 

accord with the results reported in Sglavo et al. (2007). 

Kleuderlein et al. (2014) obtained their glass 

specimens from six different suppliers. The process 

parameters were documented by each manufacturer and 

the protocols were compared. The results showed that 

the suppliers used cutting machines from different 

companies and moreover, used different cutting pressure, 

cutting speed, cutting wheel angle and cutting fluid, even 

for the same glass thickness. Kleuderlein et al. (2014) 

also noted significant differences in how the arrised edge 

type in particular was produced, e.g. in terms of the 
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optical quality. Their results are not entirely conclusive 

as to the effect on strength due to edge processing type, 

i.e. cut, arrised, or ground. However, they conclude that 

different production parameters lead to different strength 

levels. This is in general agreement with other studies, 

see e.g. Veer et al. (2006); Le Bourhis (2008); Lindqvist 

(2013); Vandebroek et al. (2014). According to Veer 

(2007), the degree of maintenance is more important for 

the strength than the other settings of the grinding 

machine. According to EN 16612:2019, the edge 

strength reduction factor is defined so that when the 

abrasive action is across the edge, the strength is 11% 

lower than when the abrasive action is along the length 

of edge for arrised and ground processing types. 

Vandebroek et al. (2014) note that glass which originates 

from different manufacturers and which is processed at 

different points in time or in different factories might 

exhibit varying strength levels due to the presence of 

residual compressive stresses. Residual stresses develop 

as a consequence of the annealing process. The pre-stress 

levels are not very consistent according to Veer et al. 

(2009) who measured the residual stresses in specimens 

prior to testing them until failure and they conclude that the 

production process is less controlled than commonly 

assumed. All of this suggests that it is relevant to quantify 

and include in a model the potentially confounding effect 

due to glass supplier/batch. This was also considered in the 

present analysis where the supplier was included as a 

mixed-effect in a linear statistical model. The results show 

that the incorporation of supplier effects can help to explain 

a significant part of the total variability in observed Weibull 

parameter estimates. 

Conclusion 

A comprehensive analysis of glass edge strength is 

performed based on a survey of experimental 

measurements which can be found in a range of journal 

articles, conference proceedings and academic 

dissertations available in the open literature. Tests with 

four types of glass edge in a four-point bending fixture 

show that there is substantial variability in Weibull 

distribution parameter estimates, even when specimens 

with the same dimensions from the same supplier are 

subjected to the same loading rate in an in-door climate. 

Numerical investigations show that when sample size is 

limited, Weibull shape parameter estimates scatter 

substantially and this can provide an explanation for 

some of the observed variability (in shape). Data from 

some 1800 measurements comprising up to 19 suppliers 

of glass strongly suggest that there are differences in 

Weibull shape factor between edge types. The polished 

edge is associated with the lowest Weibull shape factor on 

average and the arrised with the highest whereas as-cut and 

ground edges lie in-between. Additionally, the data 

indicates that for the as-cut edge, the shape parameter is 

scale-dependent with an inverse proportionality, i.e., the 

lower the scale the higher is the shape value. This scale-

dependency of shape appears to vanish with ground and 

polished edge types thus indicating a possible effect of 

grinding operations on the strength distribution. 

The variability in parameter estimates can be 

further explained by considering the parameters as 

random variables nested within a Weibull random 

variable. The linear mixed-effects statistical model is 

used with the supplier as mixed-effect. Predictions 

made while assuming that glass is obtained from an 

unknown batch or supplier (i.e., from any of the 

suppliers in the study) show that the characteristic, 5-

percentile strength (considering its lower bound in a 

one-sided confidence interval at the 75% level) is 42 

MPa, 45 MPa, 48 MPa and 46 MPa for the as-cut, 

arrised, ground and polished edge type, respectively, 

on a reference 100 mm load span at 2 MPa s−1 stress 

rate. The size effect can be represented by the usual 

weakest-link scaling formula if the Weibull modulus 

is taken to be 8.0, 12.0, 8.0, 6.5, for the respective 

edge-types. The estimated stress corrosion parameter is 

close to n = 16 with an approximate 95% confidence 

interval (14.0, 16.9). The size effect in this study is 

based on a simplified representation of the edge as a 

line and thickness is neglected. In reality, glass 

thickness may interact with edge length and edge type 

to produce an effect on strength in ways that may not 

be self-evident, e.g. due to modified machine settings 

that apply when cutting glass of different thickness. 

More research is needed to assess the effect on strength 

due to thickness and how this may interact with edge 

length and edge profile. The equations used in this 

study to motivate the chosen linear mixed-effects 

statistical models are in reality coupled and this was 

neglected in a simplified approach. In future work this 

may be addressed and resolved more fully. 

The hierarchical modelling approach results in the 

same distribution shape parameter for all data 

corresponding to the same edge-type. By considering the 

data sets in groups according to edge type, it is possible 

to estimate the Weibull parameters using a clustered 

likelihood estimator under the condition that the shape 

value is the same for the same edge type. It is found that 

the as-cut, arrised, ground and polished edge has a shape 

value quite close to those estimated with the hierarchical 

model and a very similar scale value. 
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A) Maximum Likelihood Estimation 

The Weibull parameters can be estimated with the 

maximum likelihood (ML) method (Lehmann and 

Casella, 1998, Ch. 6.3), as the (numerical) maximum of 

the log-likelihood function for the two-parameter 

distribution in Equation (1): 
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where, n0 is the sample size. Approximate confidence 

intervals for the parameters can be computed using 

asymptotic theory for ML-estimators (Lehmann and 

Casella, 1998, Ch. 6.3, for details.). In practice the 

computations are performed by the wblfit-function in 

MATLAB (Math Works Inc., 2018). 

Likelihood Function for Grouped Data 

An alternative to the model in Equation (19) is to 

assume that the shape parameter is constant for all 

samples with the same edge type, while still allowing for 

different scale parameters. Figure 9 for an illustration of 

this model. The resulting log-likelihood for all samples 

from the qth edge-type becomes: 
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Here mq is the shape parameter of the qth edge-type, 

kqj is the jth sample for that edge-type, nqj are the number 

of observation in the jth sample, nq = j nqj is the total 

number of observations for the qth edge-type and σqji are 

the observations (indexed by edge-type, sample and 

observation number). 
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Fig. 9: Model assuming different scale parameters for each sample but a fixed shape parameter for each edge type 

 

To obtain ML-estimates of the parameters in Equation 

(20) we use the fminunc nonlinear minimization algorithm 

in MATLAB. The numerical optimization is aided by the 

computation of first and second derivatives of Equation 

(20). For a given q and ignoring the q subscripts to simplify 

notation, we have first: 
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and second derivatives: 
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Model Comparison 

For likelihood based parameter estimation different 

models can be compared using information criteria, such 

as the Akaike information criterion (Akaike, 1969), with 

smaller values indicating better models. The AIC for a 

model is given by: 

 

 2 2log ,AIC k L   (23) 

 

where, k is the number of unknown (or estimated) 

parameters and log( L̂ ) is the maximum-value of the 

log-likelihood. The AIC provides a trade-off between 

better models (higher value of L̂ ) and increasing 

model complexity (more parameters, k). When 

comparing models those within 2 units are considered 

equivalent, 3-7 units indicates some differences and 

more than 10 units of difference is seen as strong 

evidence against the model with larger AIC (Burnham and 

Anderson 1998, pp. 75- 117). 

B) Linear Mixed Effects Statistical Model 

Linear Mixed Effects (LME) models are used to identify 

the source of variation and correlation that arise from 

clustered data, e.g., when data-collection is undertaken in a 

hierarchical manner where observational units are related, 

violating assumptions of independence (McCulloch et al., 

2008, Ch. 6). Considering Equation (15b): 
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this constitutes a LME model where we see the effect of 

edge-type, γl, as fixed regression coefficients but assume 

that both the supplier (or batch) effect, cl and the 

residuals, εi, are samples from normal distributions: 

 

   2 20, , 0, .l c ic N and N     (24) 

 

The suppliers/batch are seen as random effects since: (1) 

we could expect substantially similar behaviour for glass 

from the same batch, violating the independence 

Edge type 1 Edge type 2 Edge type q 

m1 m2 mq 

k1 

k2 

k1 

k2 

k1 

k2 

1N
k  

2N
k  

qN
k  



David Kinsella and Johan Lindström / International Journal of Structural Glass and Advanced Materials Research 2020, Volume 4: 130.148 

DOI: 10.3844/sgamrsp.2020.130.148 

 

148 

assumptions regarding residuals in a standard regression. 

(2) It is unlikely that the list of suppliers considered here is 

exhaustive, i.e., that we include all suppliers on the market. 

(3) Due to the large number of supplier and batches it is 

more realistic (and useful) to characterise the variability 

between suppliers/batches than to try to form a complete list 

of supplier effects. The relative values of the estimated 

variances in Equation (24) will indicate how much of the 

variability in shape and scale parameters is due to supplier 

and how much has to be considered random errors not 

captured by the regression models in Equation (15). 

When predicting from the LME the division in 

fixed and random effects allows us to consider both 

the case of a known edge-type and supplier, or the 

case of a known edge-type but unknown supplier. In 

both cases standard predictions for the LME will 

produce expected values for shape and scale 

parameters, as well as associated uncertainties in these 

predictions. The uncertainties will be based on the 

Normal models in Equation (24), with variances 

estimated from the data. 
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