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There is an old Chinese saying: when you are 
taking water from a river, be grateful for the 
source. As I grow up in a city downstream the 
Yangtze River, everything I live on comes from 
the river, clean water, various food, and beautiful 
scene. This thesis is my sincere gratitude for the 
source of the river. Without carefully protection 
of the source region, there will be no prosperous 
in the downstream. Climate change is a mutual 
challenge for all human beings, and I’d like to 
contribute my efforts and stand together with 
our mother nature. 
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Popular summary 
Across the Himalaya mountains, in the inner land of the Tibet Plateau, you find the 
source region of the Yangtze River, the origin of the third-longest river in the world. 
It is a cold, barren, isolated area in the mountains where it is difficult for plant, 
animal, human or even observational equipment to survive. Climate change is 
raising more and more problems in this area, such as unstable conditions of 
grassland, decreasing number of plants, melting of glaciers, and so on. The local 
government struggles to balance economic development and environmental 
protection. To be able to take the right actions, they first need to know key factors 
for climate change:  rainfall. This is where our study can help.  

How will rainfall change from the past to the future? First, we detected a trend of 
climate variables for the past 50 years and found that rainfall amount in this area 
increased significantly. Water storage was constant despite a continuous small 
negative trend. To investigate the future, climatologists provide us simulation 
results under different greenhouse gas emission scenarios. After comparing and 
analysing the future rainfall in this area, huge increase was revealed by our analysis. 
If we take intermediate control of the greenhouse gas emission, the rainfall may 
increase by 25% by the end of 21st century. If we take no control of the greenhouse 
gas emission, the increase will double. A far-reaching plan is needed on the top list 
of the local governments.  

Beside the long-term change, the rainfall varies year to year. As rainfall comes from 
water vapor in the atmosphere, wind and temperature of land or ocean surface can 
influence the rainfall by changing the water vapor circulation, sometimes even at a 
considerable distance, which we call teleconnection. We found that two 
teleconnection patterns show a close relation with summer rainfall in our study area: 
El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). 
These patterns are indices for the surface thermal condition of the Pacific Ocean. 
We found that more rainfall occurs in our study area during cold PDO years, 
particularly when cold PDO and cold ENSO coincide. This means 6% more rainfall 
than usual. In contrast, warm PDO brings dryness to the area, and warm ENSO 
makes it even drier, with up to 10% less than average rainfall. When cold PDO 
occurs with warm ENSO or the opposite happens, warm PDO with cold ENSO, their 
influence compensates, and the change in rainfall is marginal. The reason behind is, 
the combination of ENSO and PDO affects the strength of the wind that transports 
moisture to our study area and the intensity of ascending movement. Such 
information is extremely useful since it offers us a way of predicting a changing 
future. According to many studies, a cold PDO phase may continue until 2050. Also, 
extreme El Niño (warm ENSO) and La Niña (cold ENSO) events both tend to 
increase due to greenhouse gas emissions. This means that we can expect more 
extreme ENSO years combined with a cold PDO phase in the future. In this scenario, 
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more rainfall is likely to fall in the study area, especially during extreme La Niña 
years.  

Our findings provide insights to improve the understanding of rainfall change. The 
considerable increase of future rainfall provides local government with guidance for 
adaptive solutions. The rainfall variation in relation to teleconnections can help to 
improve rainfall forecasting at a low-cost level. With such information, the local 
authorities can prepare the study area for rainfall change with higher accuracy, lower 
budget, and localized suitability. 
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Populärvetenskaplig sammanfattning 
Tvärs över Himalayabergen, i det inre av Tibet-platån, hittar man källregionen till 
Yangtzefloden, ursprunget till den tredje längsta floden i världen. Det är ett kallt, 
kargt, isolerat område i bergen där det är svårt för växter, djur, människor och till 
och med observationsutrustning att överleva. Klimatförändringar innebär fler och 
fler problem i detta område, såsom instabilt tillstånd för gräsmark, minskat antal 
växter, smältning av glaciärer och så vidare. De kinesiska myndigheterna kämpar 
för att balansera ekonomisk utveckling med miljöskydd. För att kunna vidta rätt 
åtgärder måste man först veta hur klimatförändring kommer att påverka 
nederbörden. Det är här vår studie kan hjälpa. 

Hur kommer regnet att förändras i framtiden? Först upptäckte vi en trend för 
klimatvariabler under de senaste 50 åren och fann att regnmängden i detta område 
ökade betydligt. Vattenupplagringen var konstant trots en kontinuerlig liten negativ 
trend. För att undersöka framtida förändringar ger klimatologer oss 
simuleringsresultat under olika växthusgasutsläppsscenarier. Dessa redskap 
indikerar att nederbörden kommer att öka i framtiden. Om växthusgasutsläppen 
minskar, kan nederbörden att öka med 25% till ca 2100. Om vi inte minskar 
växtgasutsläppen kan nederbörden fördubblas. En långtgående plan behövs för att 
anpassa området till dessa förändringar. 

Förutom den långsiktiga förändringen varierar nederbörden också från år till år. 
Eftersom regn kommer från vattenånga i atmosfären kan vind och temperatur 
påverka regnmängden genom ändrad vattenångcirkulationen, ibland till och med på 
ett betydande avstånd, som vi kallar telekoppling. Vi fann att två 
telekopplingsmönster visar ett nära samband med sommarnedbörden i vårt 
studieområde: El Niño – Southern Oscillation (ENSO) och Pacific Decadal 
Oscillation (PDO). Dessa mönster är index för Stilla Havets termiska tillstånd. Vi 
fann att mer nederbörd faller i vårt studieområde under de kalla PDO-åren, särskilt 
under åren med kall PDO och kall ENSO, då det faller 6% mer nederbörd än vanligt. 
Däremot ger varm PDO torrt klimat, och varm ENSO gör det ännu torrare, med upp 
till 10% mindre nederbörd. När kall PDO uppträder med varm ENSO eller 
motsatsen händer, varm PDO med kall ENSO, kompenserar de varandra och 
nederbördsförändringen blir marginell. Anledningen till detta är att kombinationen 
av ENSO och PDO påverkar vindstyrkan som transporterar fukt till vårt 
studieområde och intensiteten i stigande luftmassor. Sådan information kan vara 
extremt användbar eftersom den ger oss ett sätt att förutsäga framtida 
nederbördsförändringar. Enligt många studier kan en kall PDO-fas fortsätta fram till 
2050. Extrema El Niño (varm ENSO) och La Niña (kall ENSO) händelser tenderar 
också att öka på grund av växthusgasutsläpp. Detta innebär att vi kan förvänta oss 
mer extrema ENSO-år i kombination med en kall PDO-fas i framtiden. I detta 
scenario kommer sannolikt mer nederbörd att falla i studieområdet, särskilt under 
extrema La Niña-år. 
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Våra resultat ger insikter som gör att förståelsen för nederbördsförändringar 
förbättras. Den betydande ökningen av framtida nederbörd ger de kinesiska 
myndigheterna vägledning för att anpassa området för framtiden. Regnvariationen i 
förhållande till växtgasutsläpp kan hjälpa till att förbättra prognoser för framtiden 
till en låg kostnad. Med sådan information kan de lokala myndigheterna förbereda 
studieområdet för regnförändringar med högre noggrannhet, lägre budget och lokal 
lämplighet.
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Abstract 
The source region of the Yangtze River (SRYR), the origin of the longest river in 
China, is an area with high-mountains and river ecotones that face considerable 
challenges under climate change. Precipitation is fundamental for sustainable 
ecosystems in this area and for the downstream water supplies. Thus, this study 
investigated the present and future patterns of precipitation variation in the SRYR. 

To investigate historical climate characteristics of the SRYR, analysis of hydro-
climatic components during 1957-2013 was performed. Temperature in the SRYR 
increased at a rate of 0.34°C/decade, precipitation and evaporation increased by 11.4 
and 7.6 mm/decade, respectively. Runoff depth increased by 3.3 mm/decade. 
Considering the water balance, annual water storage was constant despite a 
continuous small negative trend. Increase in precipitation is mainly caused by 
increasing evapotranspiration, leading to the relatively stable water storage during 
the study period, which also suggests an accelerating water cycle in the SRYR. This 
knowledge is essential for the understanding of water resources conditions in the 
area.  

Rainy season precipitation (June-August) in the SRYR accounts for approximately 
70% of the annual total, and its anomalies are essential for ecosystem resilience. 
Hence, analysis of rainy season precipitation variability in relation to sea surface 
temperature (SST) anomalies as well as large-scale circulations including El Niño 
Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) was 
conducted. Results indicate that the leading modes of rainy season precipitation 
variability can be explained by the variability of SST together with an integrated 
effect of ENSO and PDO. The influence of ENSO and PDO will enhance/decrease 
when they are in-/out-of-phase, respectively. Negative PDO induces more 
precipitation in La Niña years than in El Niño years for the SRYR, especially over 
central and eastern parts of the basin. Positive PDO induces precipitation decrease, 
and El Niño enhances the decrease. The mechanism behind this pattern is 
atmospheric circulation affecting the strength of westerlies that transport moisture 
to the inland areas and as well local convergence conditions. Results have 
implications for predicting the rainy season precipitation for coming decades over 
the study area. If the current negative PDO phase continues together with more 
frequent extreme La Niña events, as suggested in other research, more precipitation 
during rainy season is expected over the SRYR.  

To further quantify precipitation variability, a multi-space model for seasonal 
precipitation prediction was developed using principal component analysis (PCA) 
and artificial neural network (ANN). Correlation analysis shows that the most 
important climate indices for precipitation in the SRYR vary depending on the 
season and spatial location. The North Atlantic Oscillation (NAO), Polar/Eurasia 
Pattern (POL), Southern Oscillation Index (SOI), and Scandinavia Pattern (SCA) 
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events have influence on precipitation in the SRYR during the cold season, while 
NAO, PDO, and SOI are more important for the warm season. A spatiotemporal 
model for predicting grid precipitation using significant correlated indices was 
established for each season, the PCA-ANN model. Results show that the PCA-ANN 
model can predict precipitation in the study area. By reconstructing principal 
components, the model provides a simulated dataset with the same size as the 
original dataset. The PCA-ANN model performs well in terms of both temporal 
variability and spatial distribution following the rank summer> winter> spring> 
autumn. A small basin with many variables/grids is recommended for the PCA-
ANN model.  

To access future precipitation pattern, historical performance, and future projections 
of monthly precipitation in the SRYR were investigated, using the National 
Aeronautics Space Administration (NASA) Earth Exchange Global Daily 
Downscaled Projections (NEX-GDDP) dataset. Performance of the 21 models were 
compared against in situ observations for the historical period 1961–2005, therefore 
rankings were listed according to their performance. Projected future changes in 
precipitation were assessed under the Representative Concentration Pathways 
(RCPs) 4.5 and 8.5 emission scenarios, for near-future (2041-2060) and far-future 
(2081–2100) time slices with respect to 1986–2005. The results show that models 
derived from NEX-GDDP data effectively produce observed precipitation 
magnitude in the study area and optimum models were selected based on 
comprehensive ranking index. The future climate projections indicate a consistent 
rise in mean precipitation, especially in summer. The average annual precipitation 
during the near-future and the far-future showed an increase of 18.6% and 24.4% 
under RCP 4.5, and a larger increase under RCP 8.5 of 22.5% and 49.7%. The 
summer precipitation shows similar increase as the annual precipitation but with a 
slightly larger amplitude.  

The findings in this thesis provide insights to improve the understanding of water 
resources variations under the background of climate change, and to establish 
sustainable management of water resources. The precipitation variability in relation 
to large-scale circulation can help to improve weather forecasting at a low-cost 
level. Besides, identification of physical mechanisms of integrated impacts from 
two major circulation patterns can improve the understanding of drivers behind 
precipitation variability. Future projections provide guidance for future adaptive 
solutions, including both spatial and temporal changes. With such information, 
adaptive plans for the study area can be set up with higher accuracy, lower budget, 
and localized suitability. 
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摘要 

长江源区是中国最长河流——长江的发源地，属于中国的高寒生态脆弱
区。气候变化引起的源区生态恶化，不仅严重制约了当地的社会、经济和文
化发展，对下游地区的用水安全也产生负面影响。因此，本论文系统分析了
气候变化背景下长江源区降水的变化趋势及异常特征，以期对该地区的生态
保护和建设提供科学依据。

        首先，为了掌握长江源区的历史气候特征，本文对 1957 到 2013 年间长
江源区的水文气象变量进行了趋势分析。结果表明，在过去五十多年间，长
江源区的年平均气温有显著的增长趋势，速率为每十年 0.34°C。源区的年
降水量、年蒸发量、年径流深度则分别以每十年 11.4、7.6、3.3 毫米的速度
增加。基于水量平衡原理，本文对流域水储量的变化进行了探究，结果表明
源区的水储量基本保持稳定，尽管出现了持续减小的趋势。综合分析得出，
源区气温升高引起蒸散量的增加，与降水量的增加相抵，共同维持了水储量
的相对稳定；与此同时，也揭示了源区日益加剧的水循环过程。这些信息对
于我们进一步掌握该地区的水资源状况至关重要。

在此基础上，本文分析了长江源区雨季降水异常特征及其影响因子。由
于长江源区的雨季降水量（6 月至 8 月）约占全年降水量的 70％以上，掌握
其异常特征对于维护生态系统的稳定十分重要。因此，本文深入分析了雨季
降水距平值与海平面温度之间的关系，并分析了与厄尔尼诺南方涛动
（ENSO）和太平洋年代际涛动（PDO）等大尺度环流模式之间的遥相关关
系。结果表明，源区雨季降水距平值与海平面温度的变化以及 ENSO和 PDO
的相位特征都有着显著关系。值得特别指出的是，ENSO 和 PDO 会对源区降
水产生叠加影响。当 ENSO 和 PDO 处于异相位（同相位）时，其综合影响
将会削弱（加强）。对于长江源区而言，当 PDO 处于负相位时，雨季降水
量整体偏多；拉尼娜年份中当年降水量将进一步增加，而厄尔尼诺年份中这
种增加会被削弱，该现象在源区中部和东部表现尤为明显。当 PDO 处于正
相位时，源区的雨季降水量整体偏少，厄尔尼诺年份中降水量进一步减少。
其原因是大尺度环流模式所代表的不同大气环流强度和水汽通量，影响了向
内陆地区输送水汽的西风强度以及源区当地的水汽收敛条件。这项结果对预
测源区未来的雨季降水具有重要意义。有研究表明，当前 PDO 负相位状态
将持续一段时间，并可能伴有更频繁的极端拉尼娜事件，结合本文的结果，
则可以推测长江源区的雨季降水可能出现异常偏多的情况。

        为了进一步量化不同季节的降水距平值，本文使用主成分分析（PCA）
和人工神经网络（ANN）建立了季节降水的预测模型。首先通过主成分分析
将各季节的网格降水数据转化为数个主成分，通过相关分析，得到与各个主
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成分相关的气候因子及其滞后相关性，选取显著相关的因子作为自变量输入
模型，通过训练人工神经网络建立预测模型，最后通过主成分的逆向重构，
生成与原始数据集具有相同维度的预测数据集。相关分析的结果显示，在冬
春季节，降水的主要影响因子有北大西洋涛动（NAO）、极地/欧亚大陆模
式（POL）、南方涛动指数（SOI）和斯堪的纳维亚模式（SCA），而在夏
秋季节，则是 NAO、PDO 和 SOI 的影响更为显著。模型评估结果表明，本
文所提出的 PCA-ANN 模型对于预测研究区域的降水表现良好，对于时间尺
度和空间分布的特征都有较好反应，其综合表现优劣顺序为：夏季，冬季，
春季，秋季。此结果对于了解源区降水距平值提供了可靠的量化依据。

为了进一步研究未来情景下长江源区的降水模式，本文采用美国国家航
空航天局发布的 NEX-GDDP 高分辨率统计降尺度模型数据集，对该数据集
内的 21 个模式在长江源区的历史表现和未来降水进行了研究。将 1961-2005
年间的模型降水与实测降水进行了深入比较，结果表明该数据集对长江源区
的月降水表现出了较强的模拟能力。根据泰勒图和综合指数排序结果，本文
对模式进行了进一步的优选。基于模型优选和多模式平均的结果，本研究对
于两种典型排放情景 RCP4.5 和 RCP8.5 下，近未来（2041-2060）和远未来
（2081-2100）期间的年降水量，相对于基准期（1986-2005）的变化幅度进
行了评估。结果表明，未来的降水量将持续增加，尤其是夏季降水。近未来
和远未来的年平均降水量在RCP4.5下分别增加了 18.6%和 24.4%，在RCP8.5
下则增加了 22.5%和 49.7%。夏季降水量与年降水量增长整体一致，但幅度
更大。

本论文的研究结果有利于提高气候变化背景下，对长江源区水资源变化
的认识，为建立可持续的水资源管理体系提供科学指导。与大尺度环流相关
的降水变异性分析有助于在较低成本水平上实现降水预报。此外，从两个主
要环流模式中识别其叠加作用的机制，有助于提高对降水变异性机理的认识。
对未来降水变化的分析结果则为今后适应性的解决方案指明了工作方向。这
些信息对于在长江源区制定更准确、更经济、更因地制宜的水资源规划将起
到不可或缺的作用。
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1.Introduction 

An ecotone is a transition area where two biological communities meet and 
integrate. The source region of the Yangtze River (SRYR), the origin of the longest 
river in China, is one of the cold region ecotones, which faces considerable 
challenges: degraded grassland, endangered biodiversity, and frequent natural 
disasters. Topography in the source region is contrasting compared with the 
downstream basin as the average elevation is above 4500 m amsl (90°33'-95°20'E, 
32°26'-35°46'N), and the area is covered with glaciers, permafrost, alpine grassland, 
and meadow, thus makes it a rigorous habitat for all lives. Moreover, due to the high 
elevation and low temperature in the region, a huge water volume is retained in 
glaciers, permafrost, and lakes. Therefore, water resources are fundamental for 
sustainable local ecosystem and secure downstream water supplies. 

Over the past century, global climate has undergone a significant warming. The 
general warming of the Tibet Plateau during the past 50 years has been stronger than 
in other regions on the same latitude (Bibi et al., 2018, Yao et al., 2000). 
Precipitation shows great sensitivity to climate change and its variations bring 
considerable renewal to vegetation types, land cover, and species evolution, as it is 
an important medium of thermal exchange. Short-term variations and long-term 
imbalance of precipitation may affect the ecotone negatively. Therefore, adaptation 
strategies balancing economic, ecological, and social development are urgent tasks 
for the local government, which necessitate reliable scientific information of 
precipitation variation.  

Based on this demand, a comprehensive investigation to access present and future 
variations of precipitation in this area is conducted. We firstly analyse historical 
climate change in a view of water balance. Then, precipitation variability and drivers 
of this variability are investigated by analysing relations with large-scale climate 
indices. An artificial neural network model is established to simulate seasonal 
precipitation variability using significantly related climate indices. Finally, we 
investigate future precipitation pattern under different emission scenarios. The 
findings of this study will benefit stakeholders and policymakers who need 
scientifically robust climate information to guide societal responses to changing 
climate.  

Specific objectives of this study are (Figure 1): 
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to determine the state of art of research with respect to climate and water resources 
for the SRYR and investigate the water balance variation and historical 
hydroclimatic trend during the last 50 years (Paper I). 

to identify the spatial and temporal variability of rainy season precipitation in the 
SRYR in relation to teleconnection patterns and access the integrated impact of the 
teleconnections (Paper II). 

to quantify seasonal precipitation variability in the SRYR by simulating 
precipitation patterns using significantly correlated teleconnection indices (Paper 
III). 

to investigate future precipitation change under different scenarios in the SRYR 
using high resolution NEX-GDDP dataset (Paper VI).  

Figure 1. Structure of the thesis. 

Precipitation variation in SRYR

Change

Historical change
(Paper I) 

Future change
(Paper VI)

Variability

Teleconnection
(Paper II)

Simulation
(Paper III)
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2. Theoretical background

2.1. Climate variability and climate change 
When investigating the characteristics of regional climate, it is important to include 
both variability and change, which are different but intricately connected.  

Figure 2. Illustration of climate variability and climate change. 

Climate variability refers to a climatic variable of a region deviating from its long-
term mean, which can be referred to as ‘anomalies’. Figure 2 shows that the average 
annual temperature at the Yushu station in the SRYR during 1961-2010 is 4.5oC. 
The interannual fluctuation around the long-term mean is referred to as variability. 
The time scale for investigating climate variability ranges from month to decades. 
Variability may result from natural internal processes within the local climate 
system or from variation in natural external forces, for example the atmospheric and 
oceanic circulation.  

Climate change refers to alterations that occur over several decades to millennia. In 
Figure 2, the annual temperature at Yushu station presents an increasing trend over 
the period 1961-2010, with a slope of 0.4oC per decade, which is referred to as 
‘climate change’. While climate change can be caused by natural processes at 
geological time scales, more concern is given to changes attributable to human 
activity such as the increase of greenhouse gas emissions. The Fifth Assessment 
Report from the Intergovernmental Panel on Climate Change (IPCC, 2013) 
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concluded that more than half of the observed increase in global average 
temperature is caused by elevated emission of carbon dioxide and other greenhouse 
gases.  

2.2. Large-scale circulation patterns 
Large-scale circulation patterns refer to atmospheric and oceanic circulation over 
different parts of the earth, caused by different heating mechanisms. The atmosphere 
and ocean jointly interact with each other by energy exchange, which triggers 
climate to vary at a seasonal or annual time scale. Large-scale circulation patterns 
are indices of climate variability. Important patterns that have impacts on global-
scale climate are delineated in the below (Table 1).  

2.2.1 El Niño Southern Oscillation (ENSO) 
ENSO is a quasi-periodic climate pattern that occurs across the tropical Pacific 
Ocean and couples two processes: the warm oceanic phase (El Niño) accompanying 
high air surface pressure in the western Pacific and the cold phase (La Niña) 
accompanying low air surface pressure in the western Pacific (Ropelewski and 
Jones, 1987, Gong and Wang, 1999, Wang and Xu, 2018). The fluctuations in ocean 
temperatures during El Niño and La Niña are accompanied by even larger-scale 
fluctuations of the overlaying atmosphere, known as the Southern Oscillation. Sea 
Surface Temperature (SST) and the Southern Oscillation Index (SOI) are the most 
commonly used indicators to quantify the strength of an ENSO event (Chiew et al., 
1998). SOI is measured by the difference in surface pressure anomalies between 
Tahiti and Darwin, Australia (Power and Kociuba, 2011). Prolonged periods of 
negative (positive) SOI values coincide with abnormally warm (cold) ocean waters 
across the eastern tropical Pacific typical of El Niño (La Niña) episodes. In warm 
ENSO years, anticyclone circulation may bring moisture to the Yangtze River basin, 
leading to above-normal rainfall (Ping et al., 2006, Cao et al., 2017). 

2.2.2 Pacific Decadal Oscillation (PDO) 
PDO is a Pacific climate variability pattern that usually shifts phase on a 20-30-year 
inter-decadal timescale (Trenberth and Hurrell, 1994, Mantua and Hare, 2002, 
Canedo-Rosso et al., 2019). It is detected as warm/cool surface water in the Pacific 
Ocean (north of 20oN). During a ‘warm’ or ‘positive’ phase, the western Pacific 
becomes cool and part of the eastern ocean warms while during a ‘cold’ or ‘negative’ 
phase, the opposite pattern occurs (Zhang et al., 1997, Mills and Walsh, 2013). 
Research has stated that precipitation over the Yangtze River basin decreases during 
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a warm PDO phase, and increases when the PDO enters a cold phase (Ouyang et al., 
2014). Joint effects of ENSO and PDO will result in complex  precipitation 
variability (Xiao et al., 2015).  

2.2.3 North Atlantic Oscillation (NAO)  
NAO is based on the surface sea-level pressure difference between the Subtropical 
(Azores) High and the Subpolar Low (Barnston and Livezey, 1987). The positive 
phase of the NAO reflects below-normal height and pressure across high latitudes 
of the North Atlantic and above-normal height and pressure over the central North 
Atlantic, eastern United States, and western Europe (Yuan, 2015). The negative 
phase reflects the opposite pattern of height and pressure anomalies over these 
regions. Both phases of the NAO are associated with basin-wide changes in the 
intensity and location of the North Atlantic jet stream and storm track, and in large-
scale modulations of the normal patterns of zonal and meridional heat and moisture 
transport, which in turn results in changes in temperature and precipitation patterns 
often extending from eastern North America to western and central Europe 
(https://www.ncdc.noaa.gov/teleconnections/nao/). 

2.2.4 Indian Ocean Dipole (IOD) and Dipole Mode Index (DMI) 
Indian Ocean Dipole (IOD) is defined by opposite signs of sea surface temperature 
anomalies in the western tropical Indian Ocean and that in the eastern tropical India 
ocean (Saji and Yamagata, 2003). Intensity of the IOD is represented by anomalous 
SST gradient between the western equatorial Indian Ocean (50oE-70oE and10oS-
10oN) and the south eastern equatorial Indian Ocean (90oE-110oE and 10oS-0oN). 
This gradient is called Dipole Mode Index (DMI). During a positive IOD, above-
warmer SSTs develop over tropical western Indian Ocean, and above-cooler SSTs 
develop over tropical eastern Indian Ocean. During a negative IOD, the opposite 
happens and results in westerly winds blowing toward the Indian subcontinent (Paul 
and Rashid, 2017). 

2.2.5 Pacific/North American Pattern (PNA)  
PNA pattern is one of the most prominent modes of low-frequency variability in the 
Northern Hemisphere extratropics (Barnston and Livezey, 1987). The PNA pattern 
reflects a quadripole pattern of 500 millibar height anomalies of the similar sign 
located south of the Aleutian Islands and over the south-eastern United States. 
Anomalies with signs opposite to the Aleutian center are located in the vicinity of 
Hawaii, and over the intermountain region of North America (central Canada) 
during winter and fall (https://www.ncdc.noaa.gov/teleconnections/pna/ ). The PNA 
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pattern is associated with strong fluctuations in the strength and location of the East 
Asian jet stream. It is strongly influenced by the El Nino-Southern Oscillation 
phenomenon (https://www.cpc.ncep.noaa.gov/data/teledoc/pna.shtml). 

2.2.6 Scandinavia Pattern (SCA)   
The primary influence centre of SCA locates above the Scandinavian Peninsula, 
with two weaker centres of opposite sign, one over the western Europe and the other 
over eastern Russia/ western Mongolia (Barnston and Livezey, 1987, Bueh and 
Nakamura, 2007). Its positive phase is characterized by prominent anticyclone 
anomalies over Scandinavian Peninsula and western Russian, give above-normal 
precipitation across southern Europe, and dry conditions over the Scandinavian 
region (https://www.cpc.ncep.noaa.gov/data/teledoc/scand.shtml). 

2.2.7 Polar/Eurasia Pattern (POL)   
POL consists of two opposite height anomalies, one over the polar region and the 
other over northern China and Mongolia (Barnston and Livezey, 1987). This pattern 
is associated with fluctuations of the strength of the circumpolar circulation, with a 
positive phase reflecting an enhanced circumpolar vortex and a negative phase 
reflecting a weaker than average polar vortex. The POL is mainly associated with 
above average temperatures in eastern Siberia and below-average temperatures in 
eastern China and above average precipitation in the polar region of Scandinavia 
(https://www.cpc.ncep.noaa.gov/data/teledoc/poleur.shtml).   

Table 1. Summary of atmospheric circulation patterns considered in this study. 
Circulation pattern Definition and center(s) of circulation Reference 

SOI difference in surface air pressure between Tahiti and Darwin Ropelewski and 
Jones (1987) 

PDO 
leading pattern under empirical orthogonal function analysis of sea 
surface temperature anomalies in the poleward of 20°N in North 
Pacific Ocean 

Trenberth and 
Hurrell (1994) 

NAO pressure difference between Greenland and the central latitudes of 
the North Atlantic between 35°N and 40°N 

Barnston and 
Livezey, 1987 

DMI 
anomalous sea surface temperature gradient between the western 
equatorial Indian Ocean (50°E-70°E and 10°S-10°N) and the south 
eastern equatorial Indian Ocean (90°E-110°E and 10°S-0°N) 

Saji and 
Yamagata (2003) 

PNA 

a quadripole pattern of 500 millibar height anomalies of similar sign 
located south of the Aleutian Islands and over the southeastern 
United States, opposite sign located in the vicinity of Hawaii, and over 
the intermountain region of North America 

Barnston and 
Livezey 1987 

SCA primary center of influence above the Scandinavian Peninsula, with 
two other centers of action with the opposite sign, one over the north-
eastern Atlantic and the other over central Siberia to the southwest of 
Lake Baikal 

Bueh and 
Nakamura 2007 

POL opposite height anomalies over the polar region and the region of 
northern China and Mongolia 

Barnston and 
Livezey 1987 
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2.3. General circulation models and NEX-GDDP dataset 
To prepare for future climate change with more accurate information, increasingly 
advanced climate models are being developed over time. General Circulation 
Models (GCMs), representing physical processes in the atmosphere, ocean, 
cryosphere, and land surface, are currently indispensable tools that complement 
researchers for understanding the change of global climate system due to increasing 
greenhouse gas concentrations (https://www.ipcc-
data.org/guidelines/pages/gcm_guide.html). Numerous studies have confirmed that 
GCMs can well simulate the main characteristics of global warming attributed by 
natural processes and anthropogenic effects. However, most GCMs run on grids of 
relatively coarse resolution, typically more than 100 km, which limits their ability 
to capture the spatial details of regions. This results in large biases for precipitation 
(Suzuki-Parker, 2012). In addition, the interacting influence of East Asian and South 
Asian monsoon, plus complex topography of the Tibet Plateau, add more 
restrictions for the application of GCMs on the Tibet Plateau (Su et al., 2013). 

To overcome this limitation of GCMs, downscaling methods, including both 
statistical and dynamical procedures, are applied to obtain more refined 
precipitation patterns, reduce the simulation error of the models, and thus improve 
forecasting of future regional precipitation (Murphy, 1999, Knutson et al., 2013, 
Ekstrom et al., 2015). In June 2015, a high-resolution downscaled NASA Earth 
Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was released 
by the National Aeronautics and Space Administration of the United States 
(NASA), which statistically downscaled 21 GCMs from the Coupled Model 
Intercomparison Project 5 (CMIP5).  

NEX-GDDP provides global-scale, high-resolution (spatial resolution: 0.25o 
longitude × 0.25o latitude) data and corrects the deviation of future estimates, which 
provides possibilities to improve the simulation and projection of precipitation at a 
regional scale. The NEX-GDDP dataset is produced using results from downscaled 
climate models under two of the four greenhouse gas emission scenarios known as 
Representative Concentration Pathways (RCPs) (Meinshausen et al., 2011), which 
are derived from the GCM runs conducted under CMIP5 (Taylor et al., 2012). The 
dataset was provided to promote scientific research at regional scales and enhance 
public understanding about future climate change.  

To generate the NEX-GDDP dataset, two steps are conducted: first, biases of the 
CMIP5 model data are corrected by comparing with observation data; secondly, 
high-resolution model data is obtained through the Bias Correction/Spatial 
Disaggregation (BCSD) method, which is specifically designed to address some 
limitations of current GCMs’ outputs (Maurer and Hidalgo, 2008, Wood et al., 2004, 
Thrasher et al., 2012). For more information on the dataset, see 
https://nex.nasa.gov/nex/ projects/1356/. 
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After its release, the NEX-GDDP dataset was applied to study the near- and long-
term climate, and proved robust, even in regions with complex topography. 
Compared with raw CMIP5 model data, NEX-GDDP can provide more detailed 
information at regional scales on climate change, and the biases of model simulation 
results are greatly reduced. Previous findings suggest that NEX-GDDP is consistent 
with historical observations at the monthly scale  (Raghavan et al., 2018, Jain et al., 
2019, Bao and Wen, 2017).  
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3. Study area 

The Yangtze River (Changjiang River) is the longest river in Asia and the third 
longest river in the world, with a length of 6380 km. The source region of the 
Yangtze River (SRYR) refers to the area upstream of Zhimenda runoff station 
(Figure 3) located in the hinterland of the Qinghai-Tibet plateau. The topography of 
the source region contrasts the downstream basin as the average elevation is above 
4500 m amsl (90°33'-95°20'E, 32°26'-35°46'N), with an area of approximately 
13.77×104 km2 covered with glaciers, permafrost, alpine grassland, and meadow.  

Over the past century, global climate has undergone a significant warming. The 
average warming in the Tibet Plateau during the past 50 years has been stronger 
than in other regions on the same latitude (Yao et al., 2000). Consequences of 
climate change on ecotones like the SRYR will be tremendous because they are 
fragile and less stable than other ecosystems. Long-term continuous change of water 
resources together with short-term fluctuant variabilities emphasize the need of 
scientific support for water resources management and ecosystem protection. 

Meanwhile, the monsoon circulation in the SRYR is different from other parts of 
the basin due to the attenuation of the East Asian monsoon at high altitudes and 
large distance from the ocean. Previous studies on water vapor origin have identified 
the SRYR as a transition zone, suggesting shifting influences between the westerlies 
and the Indian monsoon (Yao et al., 2013, Zhang et al., 2016), which gives rise to a 
complex precipitation pattern in terms of spatial and temporal variation. The full 
understanding of this complexity is yet to be addressed. Thus, further research is 
needed to resolve influencing mechanisms for precipitation variability in this area.  

The SRYR consists of three sub-basins, namely Chumar (north source), Tuotuohe 
(middle source), and Dangqu (south source) River. These three sub-basins collect 
more than 200 smaller river tributaries that discharge from Zhimenda into the lower 
section. Due to the harsh climatic conditions, only about 15,000 people live in the 
area (0.09 person per km2). Thus, the river system is mainly pristine. As a result, the 
direct human impact on the hydrological processes is small. Based on Köppen 
Geiger climate classification system (Peel et al., 2007), the SRYR is characterized 
by a monsoon-influenced subarctic climate (Dwc), which means dry winters and 
cool summers. 
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Figure 3. (a) Location of the source region of the Yangtze River; (b) topography and gauge locations. The 9 
meteorological stations are represented with black triangles (Paper I and Paper IV). The Zhimenda 

hydrological station is represented with green circle. The unit grid of interpolated precipitation dataset is 
shown with black squares (Paper II and Paper III). 
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4. Data 

4.1. Climate variables  
Monthly observed temperature and precipitation were obtained from the data-
sharing website of National Meteorological Information Center, China 
(http://data.cma.cn/). In total, 4 stations inside (Station No.1-4, Table 2) and 5 
stations outside (Station No.5-9, Table 2) the catchment boundary were used to 
analyse the trend of water balance components during 1957-2015 (Paper I). 
Monthly discharge data of Zhimenda hydrological station (Station No.10, Table 2) 
from Yangtze River Conservancy Commission, China, was used to determine runoff 
from the SRYR (1957-2013). Detailed information of the stations used are listed in 
Table 2 and locations are depicted in Figure 3.  

To access model performances of NEX-GDDP dataset and investigate future pattern 
on monthly precipitation in the SRYR, stations inside the study area (Station No. 1 
to No. 4) were selected (Paper IV). 

Table 2. Hydro-climatic stations used in the analysis. 

Station  Longitude 
(° E) 

Latitude 
(°N) 

Elevation 
(m) 

Mean annual temp. 
(°C/year) 

Mean annual precip. 
(mm/year) 

1 Wudaoliang 93.08 35.22 4612 -5.2 290.8 

2 Tuotuohe 92.43 34.22 4533 -3.9 292.3 

3 Qumalai 95.78 34.13 4175 -2.0 414.7 

4 Yushu 97.02 33.02 3717 3.4 488.8 

5 Qingshuihe 97.08 33.48 4415 -4.5 518.2 

6 Geermu 94.90 36.42 2808 5.2 42.1 

7 Zaduo 95.30 32.90 4066 0.7 359.1 

8 Naqu 92.07 31.48 4507 -1.1 292.7 

9 Suoxian 93.78 31.89 4023 1.9 381.4 

10 Zhimenda 97.22 33.03  -2.9 (Basin Average) 327.4 (Basin 
Average) 

Monthly gridded precipitation data (0.5° × 0.5°) for the period 1961-2016 over the 
SRYR were obtained from the China Meteorological Administration (CMA) (Paper 
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II, Paper III, depicted in Figure 3). Regular grid points were interpolated by CMA 
based on observed precipitation data and a Digital Elevation Model from GTOPO30 
(Hutchinson, 1998). This dataset has been widely used in climate analysis, 
numerical model verification, and hydrological studies (Shi et al., 2017, Wang et 
al., 2017). 

To interpret the spatial distribution of climate variables, topography information of 
The Shuttle Radar Topography Mission (SRTM) 90 m digital elevation data (Figure 
3) were downloaded from the Consortium for Spatial Information under
Consultative Group on International Agricultural Research (CGIAR-CSI).

4.2. Large-scale circulation 
Monthly global sea surface temperature (SST) data (1° × 1°), version HadISST 1.1 
(Rayner et al., 2003), were obtained from the British Atmospheric Data Centre 
(online at https://www.metoffice.gov.uk/hadobs/hadisst/, Paper II). As HadISST1 
can capture trends in global, hemispheric, and regional SST, it is widely used in 
studies of the large-scale signals associated with interannual to decadal climate 
variability (Chelton and Risien, Zhang et al., 2018). 

To describe modes of atmospheric circulation, this study considers six climate 
indices influencing climate variability over the Northern Hemisphere and especially 
China: Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), North 
Atlantic Oscillation (NAO), Pacific/North American (PNA) Pattern, Scandinavia 
Pattern (SCA), (Paper II and Paper III) and Polar/Eurasia Pattern (POL) (Paper 
III). Standardized monthly data of climate indices are available from the Climate 
Prediction Centre (CPC) at the National Weather Service of the United States 
(http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml) and Dipole Mode 
Index (DMI) from Japan Agency for Marine-Earth Science and Technology 
(JAMSTEC). Further explanation of each climate index is described by Barnston 
and Livezey (1987) and Washington et al. (2000).  

4.3. Reanalysis data 
Monthly atmospheric reanalysis data were obtained from NCEP (National Centers 
for Environmental Prediction of the United States) dataset (Kalnay et al., 1996) 
provided by National Oceanic and Atmospheric Administration of the United States 
(NOAA) at a horizontal resolution of 2.5° × 2.5°, and vertical layers from 1000 to 
10 millibar. Physical variables used in this study are specific humidity, meridional, 
zonal wind components, and pressure (Paper II).  
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4.4. NEX-GDDP dataset 
Daily precipitation data were obtained at each grid (0.25° × 0.25°) covering the four 
observation stations, for the period 1961–2005 (historical period), and future 
projection 2041–2060 (near-future period), and 2081-2100 (far-future period) under 
RCP4.5 and RCP8.5 scenarios (Paper IV). The scenarios include the historical 
experiment and the RCP 4.5 and 8.5 experiments developed for the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). 
Table 3 shows the 21 GCM models that were downscaled to obtain the NEX-GDDP 
dataset. 

Table 3. The 21 GCM models in NEX-GDDP dataset. 
No. Model Country Institution 

1 ACCESS1-0 Australia Commonwealth Scientific and Industrial 
Research Organization 

2 BNU-ESM China College of Global Change and Earth System 
Science, Beijing Normal University 

3 CCSM4 
USA National Center of Atmospheric Research 

4 CESM1-BGC 

5 CNRM-CM5 France National Centre of Meteorological Research 

6 CSIRO-Mk3-6-0 Australia 
Commonwealth Scientific and Industrial 
Research Organization/Queensland Climate 
Change Centre of Excellence 

7 CanESM2 Canada Canadian Centre for Climate Modelling and 
Analysis 

8 GFDL-CM3 

USA NOAA Geophysical Fluid Dynamics Laboratory 9 GFDL-ESM2G 

10 GFDL-ESM2M 

11 IPSL-CM5A-LR 
France Institute of Pierre-Simon Laplace 

12 IPSL-CM5A-MR 

13 MIROC-ESM 

Japan 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology 

14 MIROC-ESM-CHEM 

15 MIROC5 

16 MPI-ESM-LR 
Germany The Max Planck Institute for Meteorology 

17 MPI-ESM-MR 

18 MRI-CGCM3 Japan Meteorological Research Institute, Japan 

19 NorESM1-M Norway Norwegian Climate Center, Norway 

20 BCC-CSM1-1 China Beijing Climate Center, China Meteorological 
Administration 

21 INMCM4 Russia Institute for Numerical Mathematics 
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5. Methods 

5.1. Statistical analysis 
Mann-Kendall Trend Test 

The Mann Kendall Trend Test (M-K test) is a non-parametric test to analyse data 
for monotonic trends. The Kendall statistic was originally devised as a non-
parametric test for trend by Mann (1945). Later Kendall (1975) derived the exact 
distribution of the test statistic. The method is a robust method for trend 
identification and has been widely used in hydrometeorological analysis. In this test, 
the null hypothesis (H0) is that there is no trend in the data series over time; the 
alternate hypothesis (H1) is that there is a trend (increasing or decreasing) over time. 
Statistical significance of the trend is evaluated at the 0.05 level of significance. A 
detailed procedure for this statistical test can be found in Burn and Hag Elnur (2002). 
Time series of different climatic variables in the SRYR were examined using the 
Mann-Kendall test (Paper I, II, and III). 

Pearson Correlation 

Pearson correlation coefficient was used to measure correlation between climate 
variables (Paper I and Paper II), and also to verify the performance of models 
against observations (Paper III and Paper IV). Pearson correlation (COR) is a 
statistic that measures linear correlation between two variables, which ranges 
between +1 and -1. A value of +1 is total positive linear correlation, 0 is no linear 
correlation, and −1 is total negative linear correlation. It was developed by Pearson 
(1895), and for which the mathematical formula is, 𝐶𝑂𝑅 = ∑ (௫೔ି௫̅)(௬೔ି௬ത)೙೔సభට∑ (௫೔ି௫̅)మ೙೔సభ ට∑ (௬೔ି௬ത)మ೙೔సభ , (Eqn. 1) 

where 𝑥, 𝑦 are the two variables, 𝑛 is the number of attributes. 

Spearman Correlation Analysis  

Spearman's rank correlation (rho) (Myers and Well, 2003) is defined as the Pearson 
correlation coefficient between the rank variables. It is used to identify the 
relationships between precipitation and climate indices as it assumes no normality 
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or other specific distribution function for the variables. In this thesis, Spearman's 
rank correlation was used for correlation between precipitation anomalies and large 
scale circulation patterns to investigate the influencing indices for the studied basin 
(Paper II and III).  

Principal Component Analysis  

Principal component analysis (PCA) was used to find relationships between 
precipitation in the SRYR and teleconnection patterns using climate indices (Paper 
II and III).  

Principal Component Analysis (PCA) presents complex data in a simplified way to 
identify relations between main governing variables (Uvo, 2003, Rana et al., 2012). 
The R mode PCA (Gocic and Trajkovic, 2014, Fazel et al., 2017), based on the 
covariance matrix of precipitation data, was used to produce new dataset with less 
variables by its eigenvectors. The loadings of PCA modes reveal the spatial patterns 
of its associated scores, also referred to as principal components (PCs), which 
provide information of their temporal variability. Mathematically, the 
transformation is defined by a set of loadings in U that map each row of X to a new 
vector of PCs in Z, given by Z = XU. And z1 = XU1 is the linear combination of 
elements in X that retains the greatest variance; z2 = XU2 is the linear combination 
that retains the greatest variance and is orthogonal with z1. In such way, individual 
variables of Z inherit the maximum possible variance from X. The number of PCs 
in Z is selected to be less than variable numbers in X to reduce dimensionality, 
which was decided based on a scree plot in this study. 

5.2. Water balance and uncertainty 
In hydrology, the water balance equation is used to describe the flow of water in and 
out of a system. A system can be one of several hydrological domains, such as a 
column of soil or a drainage basin. 

Monthly water balances in the SRYR were calculated according to:  𝑃௠– 𝐸𝑇𝑎௠ – 𝑅௠  =  𝛥𝑊௠, (Eqn. 2) 

where 𝑃௠ = monthly precipitation, 𝐸𝑇𝑎௠= monthly actual evapotranspiration, 𝑅௠ = 
monthly runoff depth, and 𝛥𝑊௠  = monthly change in total water storage. Annual 
water storage change 𝛥𝑊 was calculated by summarizing monthly water storage 
change (Paper I). 

As 𝐸𝑇𝑎௠  is an important but non-observed variable in Eqn.2, temperature and 
precipitation data were used to calculate 𝐸𝑇𝑎௠ by use of the Takahashi equation 
(Takahashi and Wang, 1979):  
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𝐸𝑇𝑎௠ = f(𝑃௠, 𝑇௠) = ଷଵ଴଴௉೘஺ା஻∗௉೘మୣ୶୮ (ି యర.ర೅೘మయఱశ೅೘),  (Eqn. 3) 

 𝐸𝑇𝑎 = ∑ 𝐸𝑇𝑎௠ଵଶ௠ୀଵ , (Eqn. 4) 

where 𝐸𝑇𝑎 = annual actual evapotranspiration (mm), 𝑇௠  = mean monthly 
temperature (°C), 𝐸𝑇𝑎௠ and 𝑃௠  are the same as Eqn.2. A, B = parameters that 
depend on local meteorological and hydrological conditions. Eqns. (3)-(4) have 
previously been tested in the SRYR (Zhang et al., 2006, Qian et al., 2014)and A and 
B were determined to 3100 and 0.55 by wavelet and water balance analysis. 

To estimate errors caused by the calculation, we quantified uncertainties for each 
component in the long-term water balance. Standard deviation (SD, Eqn.5) and 
average were both calculated using a 10-year moving average window (Karlsson et 
al., 2012). The upper (lower) range of the examined component was analysed by 
adding (subtracting) the moving standard deviation to (from) the moving average 
values respectively.  

Standard deviation (SD) of monthly temperature (𝑆𝐷்௠), precipitation (𝑆𝐷௉௠), and 
runoff (𝑆𝐷ோ௠) are calculated as, 

𝑆𝐷 = ට∑ (௫೔ି௫̅)మ೙೔సభ ௡ ,  (Eqn. 5) 

where 𝑥 is the variable, 𝑛 is the number of attributes.  

Since water storage change is dependent on temperature, precipitation and runoff, 
the standard deviations of annual water storage change (𝑆𝐷∆ௐ) were propagated 
from the independent variables as below, 

𝑆𝐷ா௧௔೘ = ට( డ௙డ்௠)ଶ𝑆𝐷்௠ଶ + ( డ௙డ௉௠)ଶ𝑆𝐷௉௠ଶ,  (Eqn. 6) 

𝑆𝐷∆ௐ௠ = ට𝑆𝐷ா௧௔೘ ଶ + 𝑆𝐷௉௠ଶ + 𝑆𝐷ோ௠ଶ,  (Eqn. 7) 

𝑆𝐷∆ௐ = ට∑ 𝑆𝐷∆ௐ௠ଶଵଶ௠ୀଵ ,  (Eqn. 8) 

where 𝑆𝐷ா௧௔೘  is the standard deviation of 𝐸𝑇𝑎௠, 𝑆𝐷∆ௐ௠ is the standard deviation 
of 𝛥𝑊௠, and m is the mth month. 
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5.3. Water moisture convergence 
Moisture advection is the horizontal transport of water vapor by wind. Measurement 
and knowledge of atmospheric water vapor, or ‘moisture’, is crucial to the prediction 
of weather elements, especially precipitation. Regions of moisture advection are 
often co-located with regions of warm advection. 

To investigate the circulation mechanisms behind the variation in rainy season 
precipitation over the SRYR, several circulation terms were analyzed (Paper II). 
Moisture flux q ∙ 𝑉ത  at surface layer was used to explore the circulation pattern (q is 
specific humidity; 𝑉ത  is horizontal wind vector).  

Horizontal moisture flux convergence (MFC), also referred as negative moisture 
flux divergence (Banacos and Schultz, 2005), was selected to explore the possible 
vertical movement of moisture. MFC can be written as, 𝑀𝐹𝐶 = −∇ ∙ (q ∙ 𝑉ത) = −𝑉ത ∙ ∇q − q∇ ∙ 𝑉ത ,   (Eqn. 9) 

The elevation of SRYR is between 3530 to 6575 m, and most parts of the basin are 
lower than 5500 m except the mountain peak area. Therefore, 500 mb (5500 m) was 
selected as the surface layer. Moisture flux and MFC at 500 mb were calculated and 
compared for different circulation scenarios. To avoid biases of the composites 
results from the long‐term trend, the wind vector and specific humidity series were 
first detrended before calculation for composite analysis. 
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5.4. Simulation model using large-scale circulation 
patterns 

 

Figure 4. Flow chart of the PCA-ANN model. 
 

To simulate precipitation pattern using large-scale circulation indices, a PCA-ANN 
model was established in Paper III. PCA-ANN model is a combination of Principal 
Component Analysis (PCA) and Artificial Neural Network (ANN), by which 
principal components (PCs) of the original precipitation dataset are used as 
simulating targets for the ANN model instead of using the original dataset. The step-
by-step design of PCA-ANN model is shown in Figure 4. 

ANN was used to map the qualified predictors (input) and predictable components 
(output). ANN customary architecture is composed of three layers of neurons: input, 
hidden, and output layer (Haykin, 1994). Development of an ANN model consists 
of the following procedure: (1) setting up a typical feed-forward neural network as 
this has been shown to be computationally superior in comparison to other 
alternatives (Hornik et al., 1989); (2) rescaling all input and output variables to (-1, 
1) using, 𝑥 = ଶ(௫ି௫೘೔೙)(௫೘ೌೣି௫ౣ౟౤ ) − 1,                      (Eqn. 10) 
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where x is the variable, xmin is the variable minimum, and xmax is the variable 
maximum; 

(3) dividing the dataset into training, validation, and test sets (training set = fit ANN
model weights, validation = select model type that provides the best level of
generalization, and test set = evaluate the chosen model against the remaining data);
(4) selecting the activation function to hidden and output layer and training
algorithm that provide best fit to data; (5) identifying optimal number of neurons in
the hidden layer by using a trial and error procedure by varying the number of
hidden neurons from 2 to 10; (6) evaluating the ANN model with statistics for multi-
criteria assessment, using mean absolute error (MAE, Eqn. 11), root mean squared
error (RMSE, Eqn. 12), and Pearson correlation between observations and
simulation results (COR, Eqn. 1). ANN analyses were performed using MATLAB
Neural Network Toolbox,𝑀𝐴𝐸 = ∑ |(௫೔ି௬೔)|೙೔సభ ௡ , (Eqn. 11) 

where 𝑥, 𝑦 are the two variables, 𝑛 is the number of attributes. 

𝑅𝑀𝑆𝐸 = ට∑ (௫೔ି௬೔)మ೙೔సభ ௡ ,  (Eqn. 12) 

where 𝑥, 𝑦 are the two variables, 𝑛 is the number of attributes. 

The output from the ANN model can be transferred to precipitation anomalies 
through the inverse transform of rescaled and reconstructed PCs. The results yield 
a simulated precipitation dataset over the SRYR corresponding to 64 grid points.  

When comparing performance between ANN and traditional multiple linear 
regression (MLR) models, a three-fold cross-validation technique was used (Paper 
III). All samples were randomly divided into three complementary subsets: k1=18, 
k2=18, k3=19. For each unique subset: this subset was taken as a test set while the 
remaining two subsets were taken as training set; a model was trained on the training 
set and evaluated for the test set; the evaluation scores (MAE, RMSE, and COR) 
were retained, and the model discarded. To reduce variability, the evaluation results 
were averaged over the three rounds to give an estimate of the model's predictive 
performance. By comparing the performance, the best model was selected between 
ANN and MLR models, which was ANN in this study. Then, the ANN model was 
trained over the entire dataset to tune to a prediction model. Prediction results were 
compared to the target dataset using MAE, RMSE, and COR. 
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5.5. Future precipitation pattern using NEX-GDDP 
dataset 

5.5.1. Performance evaluation of NEX-GDDP dataset 

5.5.1.1 Taylor Diagram 
To investigate the performance of NEX-GDDP dataset in the SRYR, the 
performance of each NEX-GDDP model was compared against observations by 
examining statistical metrics using the Taylor diagram (Taylor, 2001) in Paper IV. 
The diagram provides a summary of the model’s performance in simulating the 
spatial pattern of different variables in terms of their Pearson correlation (COR, Eqn. 
1), the standard deviation (SD, Eqn. 5), and root-mean-square difference (RMSD, 
same as RMSE, Eqn. 12).  

The correlation is shown along a circular axis, which improves as a model is located 
closer to observation on the x-axis. The COR is the quantity that measures the 
degree of phase agreement of two fields. The SD of observation is taken as the center 
point, while the SD of each model is shown in terms of its distance from the 
observation. Similarly, the RMSD of each model is shown as the distance from the 
observations on the x-axis. The RMSD is the quantity that measures the degree of 
agreement in amplitude. The Taylor diagram was computed for the four grids by 
evaluating all 21 models of NEX-GDDP data for monthly precipitation against the 
observed in situ data.  

5.5.1.2 Comprehensive rating index (RI) 
On the basis of their statistical metrics, ranking among the models can be conducted 
(Paper IV). An overall ranking considering all evaluating indices can be obtained 
with a comprehensive rating index RI (Jiang et al., 2015), which is defined as, 𝑅𝐼 = 1 − ଵ௡௠ ∑ 𝑟𝑎𝑛𝑘௜௡௜ୀଵ ,      (Eqn. 13) 

where m is the number of models (21 in this study), and n is the number of 
evaluating indices (3 in this study). Ranki represents the rank number of each model, 
where the best-performing model is 1, and the worst model is 21. Therefore, the 
closer to 1 the value of RI is, the better the simulation is. 

Based on this rating index, top five better performing models for each station were 
selected. 
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5.5.2 Multi-model ensemble 
Multi-model ensemble is a widely used technique in climate studies and its 
advantage has been demonstrated in many studies (Wang et al., 2018, Weigel et al., 
2008). Two multi-model ensembles were established in Paper IV. The first 
ensemble is the multi-model ensemble for all models (MME) in the NEX-GDDP 
dataset, by taking the average precipitation of all models at corresponding time 
interval. The second ensemble is, instead of taking the average of all models, only 
the top five best performing models are used (MMEt5). Equal weights are given to 
each model in both ensemble methods.  

5.5.3 Bias correction 
The linear scaling (LS) method aims to perfectly match the long-term monthly mean 
of corrected values with observed values (Lenderink, Buishand and van Deursen, 
2007; Mendez et al., 2020). Precipitation is typically adjusted with a multiplier 
factor. The LS method operates with monthly correction values based on the 
differences between observations and model data in the historical period, which is 
1961-2005 in this study (Paper IV), 𝑃௠௢ௗ௘௟௕௖ (j) = P௠௢ௗ௘௟(j) ⋅ ∑ ௉೚್ೞ(௝)೙೔సభ∑ ௉೘೚೏೐೗(௝)೙೔సభ ,   (Eqn. 14) 

where 𝑃௢௕௦, 𝑃௠௢ௗ௘௟ are the monthly precipitation of observed and model data, 𝑛 is 
the number of attributes, 𝑗 represents the jth month. 

Future precipitation of ensembled models is bias corrected on monthly scale. 

5.5.4 Future precipitation change 
Projected rainfall is compared with observed rainfall and the spatial and temporal 
change is computed for the near-future (2041-2060) and far-future (2081–2100) 
periods for RCP 4.5 and 8.5 separately, taking 1986 to 2005 as the historical base 
line. The Delta method was applied to project future precipitation changes (Paper 
IV). The changes were calculated as,  𝑐 = ௉೑௉೓ − 1, (Eqn. 15) 

where Pf and Ph are the mean precipitation of the future and historical NEX-GDDP 
outputs.  
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6. Results and discussion 

6.1. Historical climate change 

6.1.1. Trend analysis on basin scale 
The annual trends of hydroclimatic variables were analysed in Paper I. Table 4 
shows the changing gradients and results of the Mann-Kendall test for all 
investigated variables. Long-term trends for temperature and precipitation are 
statistically significant with an increase of 0.34°C and 11.4 mm per decade. The 
runoff shows a small decadal increase by 3.3 mm, which is not statistically 
significant. Similar warming trend in SRYR has been revealed by several 
researchers (Zhang et al., 2008, Yao et al., 2014), which together confirms a 
significant warming in this area as it doubles the average increase rate of global 
temperature (0.18°C per decade, NOAA (2020)). A statistically insignificant trend 
for annual runoff during 1960-2009 has also been previously confirmed (Xie et al., 
2003, Liang et al., 2011, Li et al., 2013).  

Table 4. Trend analysis for hydro-climatic variables in the SRYR. 
 Temperature Precipitation Runoff Evapotranspiration Change in water storage 

 °C/decade mm/decade mm/decade mm/decade mm/decade 

Gradient 0.34 11.4 3.3 7.6 -1.1 

MK Sig. 0.000* 0.004* 0.077 0.000* 0.156 

 * denotes statistically significant at 0.05, 0.000 refers to significant level <0.001. 

6.1.2. Water balance and uncertainty analysis 
Annual actual evapotranspiration and corresponding annual water storage change 
were calculated and analysed in Paper I. For the actual evapotranspiration there is 
a clear positive and statistically significant trend of 7.6 mm per decade during 1957-
2015 (Table 4). The basin scale water storage change, on the other hand, shows an 
insignificant negative trend (MK sig. 0.156> 0.05, Table 4). The 10-year moving 
average for water storage change (ΔW) is generally below zero, which indicates 
potential loss of water storage in the study area (Figure 5). However, considering 



24 

the uncertainty boundaries, the water storage ranges approximately around zero and 
is occasionally positive. To summarize, the basin as a whole does not display a 
significant loss of water storage even if the ten-year average basin-scale water 
balance indicates a continuous small negative value since about 1980. In this case, 
the increase of calculated evapotranspiration derived from significantly increasing 
temperature, together with an increase in precipitation, leads to a relatively stable 
water storage during the study period. Meanwhile, the increasing of precipitation 
and evapotranspiration also suggest an accelerating water cycle in the SRYR.  

Figure 5. Annual time series for water storage change (ΔW, 1957-2013) in the SRYR; solid line denotes the 
annual time serie,long dash line denotes 10-year moving average, and short dash lines denote the upper and 

lower boundaries propogated from temperature, precipitation and runoff time series. 

6.1.3. Spatial pattern 
Located on the Tibet Plateau, the SRYR precipitation shows high topographical 
dependence (Paper III). The mean annual precipitation varies markedly over the 
basin, with in general larger precipitation in the southeastern areas that decreases 
towards the northwestern high elevation areas (from 632.6 to 234.6 mm). This 
distribution stems from the southeasterly water vapor transfer that weakens as it 
approaches the inland. There is a significantly (p<0.05) increasing trend in annual 
precipitation (warming) across the western part (Figure 6b). This trend equals about 
2.3 mm/year for the significant area of the basin. 

Figure 6. (a) Mean annual precipitation of the source region of the Yangtze River, (b) Trend in mm per year 
during 1961-2015,  significant area (p<0.05) represented by bold cross. 
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Figure 7. Spatial pattern for mean seasonal precipitation and its trend in the SRYR during 1961-2015. 

(a,e) spring (MAM), (b,f) summer (JJA), (c,g) autumn (SON), and (d,h) winter (DJF), significant area (p<0.05) 
represented by bold cross. 

 

Spatial pattern and temporal trend for seasonal precipitation were investigated in 
Paper III. Mean seasonal precipitation has an average range of 26.4 to 95.1 mm for 
spring (Figure 7a), 166.4 to 405.7 mm for summer (Figure 7b), 37.0 to 136.6 mm 
for autumn (Figure 7c), and 3.7 to 23.8 mm for winter (Figure 7d). In general, the 
largest precipitation for all seasons is observed over the south and southeast part of 
SRYR, while the driest areas are located in the northwestern parts. The seasonal 
precipitation for SRYR shows a remarkably high variability during the study period 
(1961-2015). 
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Trend analysis of seasonal mean precipitation shows both increasing and decreasing 
tendencies, but only the increasing trend is statistically significant (p<0.05). The 
significantly (p<0.05) increasing trend in spring (Figure 7e) ranges from 0.3 to 0.7 
mm per year and occurs over the western parts and in the eastern periphery. During 
summer (Figure 7f), a statistically significant increasing trend (p<0.05) only occurs 
over the western part, in the range of 0.8 to 1.9 mm per year. Autumn (Figure 7g) 
mean precipitation also shows a significant increase over the western part but with 
a smaller area than in summer. The general range of significantly increasing trend 
in autumn precipitation is between 0.3 and 0.7 mm per year. For winter (Figure 7h), 
mean precipitation displays significantly increasing trend (range 0.1 to 0.8 mm per 
year) over the central area and a small area in the southeast.  

Focusing on rainy season precipitation (June, July, and August), PCA was applied 
to extract main spatial and temporal patterns for the gridded precipitation dataset 
(Paper II). Time series of the 64 grids covering the basin for rainy season 
precipitation anomalies were subjected to PCA. The first two principal components 
(PCs) were retained for further analysis, explaining 64.2% and 20.1% (cumulative 
variance 86.3%) of total variance, respectively. Loadings of the first two leading 
PCs were generated to identify the rainy season precipitation patterns (Figure 8). As 
shown in Figure 8, all PC1 loadings are positive, indicating a common variation in 
rainy season precipitation throughout the entire basin. The loading has a maximum 
in the central basin and decreases from this point. PC2 loadings include both positive 
and negative values. The zero isoline, aligned along the center, divides the basin 
into a west-east anti-phase pattern in response to rainy season precipitation 
variability. This is an influence of the westerlies and Indian monsoon from different 
directions (Yao et al., 2013, Zhang et al., 2016). 

 
Figure 8. Loadings of first two principal components for rainy season precipitation in SRYR; (a) first PC; (b) 

second PC; white line denotes the zero isoline between positive and negative loadings. 
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6.2. Precipitation variability using teleconnections 

6.2.1. Correlation with large-scale circulation pattern 
To identify the SST areas that relate to rainy season precipitation variation in the 
SRYR, Spearman correlation between scores of the PCs and annual average SST 
was computed (Paper II). According to Figure 9, PC1 correlates with SST 
anomalies over the northern Atlantic Ocean, northern and eastern Pacific Ocean, 
and subtropical eastern Pacific Ocean. PC2 correlates mainly with Indian Ocean and 
eastern subtropical Pacific Ocean. Correlation with climate indices further verifies 
these associations. PC1 shows significant anti-phase correlation with PDO index 
(rho= −0.325) and in-phase correlation with SOI index (rho = 0.261), which are 
consistent with the correlated area of SST. This confirms the results by Su and Wang 
(2007), Tian et al. (2016), and Yuan et al. (2015) over the neighboring areas of Tibet 
Plateau regarding the influence of ENSO and PDO on precipitation.  

Associations are further visualized in Figure 10, as PC1 shows consistency with 
inversed PDO index and SOI index. The SST anomaly correlation map and the 
significant correlation between the corresponding PC and climate indices imply that 
the first leading mode of the rainy season precipitation is associated with PDO and 
SOI. PC2 does not display significant correlation with the corresponding climate 
indices. Consequently, the conclusion is that the association between the second 
leading mode of the rainy season precipitation and large-scale circulation is not 
significant. 



28 

Figure 9. Spearman correlation between PCs of the rainy season precipitation in the SRYR and annual 
average SST: (a) PC1; (b) PC2. 

In view of the above, the results support the hypothesis that rainy season 
precipitation over the SRYR is strongly influenced by an integrated effect of ENSO 
and PDO teleconnections. During PDO cold/warm phase (expressed as 
negative/positive PDO index), the SRYR experiences an increase/decrease of rainy 
season precipitation. For SOI, the conditions are the opposite: during SOI 
cold/warm phase (expressed as negative/positive SOI index), the SRYR experiences 
a decrease/increase of rainy season precipitation.  
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Figure 10. Time series of PC1 with inversed PDO index (solid line) and SOI index (broken line). 

6.2.2. Integrated impact of large-scale circulation for rainy season 
To evaluate the integrated effects of ENSO and PDO, four periods were identified 
by considering all possible combinations of PDO and SOI phases (Paper II). The 
PDO phases were identified using a three-month average (June-August; JJA) PDO 
index series with 11-year moving average to filter the long-term evolution, which is 
in accordance with Mantua and Hare (2002) and Easterbrook (2016). The SOI 
phases are identified by average JJA SOI index series, which is consistent with 
ENSO years (https://ggweather.com/enso/oni.htm). Four scenarios were generated 
based on the combination of PDO/SOI phases (Table 5). 

Table 5. Positive (+) and negative (-) phases of PDO and SOI and combinations. 

Phase Period 

PDO- 1961-1976，1999-2016 

PDO+ 1977-1998 

SOI- 1963, 1965, 1966, 1969, 1972, 1977, 1978, 1979, 1980, 1982, 1983, 1986, 1987, 1990-1994, 
1997, 2002-2004, 2006, 2009, 2014-2015 

SOI+ 1961, 1962, 1964, 1967, 1968, 1970, 1971, 1973-1976, 1981, 1984, 1985, 1988, 1989, 
1995,1996, 1998, 1999-2001, 2005, 2007, 2008, 2010-2013, 2016 

Combination* Period 

PDO-/SOI- 1963, 1965, 1966, 1969,1972, 2002-2004, 2006, 2009, 2014, 2015 

PDO-/SOI+ 1961, 1962, 1964, 1967, 1968, 1970, 1971, 1973-1976, 1999-2001, 2005, 2007, 2008, 2010-
2013, 2016 

PDO+/SOI- 1977, 1978-1980, 1982, 1983, 1986, 1987, 1990-1994, 1997 

PDO+/SOI+ 1981, 1984, 1985, 1988, 1989, 1995, 1996, 1998 

* PDO-/SOI- and PDO+/SOI+ are referred to as in-phase scenarios, and PDO-/SOI+ and
PDO+/SOI- are referred to as out-of-phase scenarios in the text.
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Figure 11 (a-d) shows the composites of rainy season precipitation anomalies for 
negative PDO with different SOI phases. Negative PDO results in more 
precipitation for the entire basin with a mean anomaly of +11.0 mm (Figure 11.a). 
Composites reveal that the precipitation variation induced by negative PDO is 
altered with respect to the SOI phase. For negative SOI years (Figure 11.b), the 
precipitation anomaly shows a pattern (mean anomaly +10.2 mm) with even more 
precipitation in the western part of SRYR but less precipitation in the east compared 
to that depicted in Figure 11.a. In contrast, negative PDO years occurring with a 
positive SOI phase (Figure 11.c) show a pattern with an increased mean anomaly of 
+12.8 mm especially in the eastern part. Comparing with the anomaly between in- 
and out-of-phase scenarios (Figure 11.d), precipitation under out-of-phase scenario
(PDO-/SOI+) tends to be less than precipitation under in-phase scenario (PDO-
/SOI-) in western areas of SRYR (mean anomaly -7.7 mm), and the opposite result
occurs in the eastern and the far southwestern part (mean anomaly 11.6 mm). To
conclude, negative PDO induces more precipitation in SRYR, and the influence is
enhanced with a positive SOI phase (La Niña) and compensated with a negative SOI
phase (El Niño) in the eastern parts of SRYR, while in the western parts, the
opposite case is true.

Figure 11 (e-h) shows the precipitation anomaly in a similar manner as in Figure 11 
(a-d), but only for the positive PDO and SOI composite phase. Positive PDO results 
in less precipitation for the entire basin (maximum reduction in the central parts) 
with a mean anomaly of -17.0 mm (Figure 11.e). Composites with respect to the 
SOI phase reveal that precipitation reduction related to positive PDO is accentuated 
by a positive SOI phase (Figure 11.f). This gives a pattern with weaker anomaly 
(mean anomaly -4.0 mm) as compared to Figure 11.e: in the central area, negative 
precipitation anomalies are smaller; in the surrounding area, even opposite 
anomalies occur. In contrast, precipitation reduction triggered by a positive PDO is 
reinforced by the negative SOI phase (Figure 11.g). In such years, a similar but 
stronger precipitation decrease is produced (mean anomaly -24.4 mm) compared to 
that depicted in Figure 11.e. Comparing the anomaly between in- and out-of-phase 
scenarios, notable differences are exhibited (Figure 11.h). Precipitation under out-
of-phase scenario (PDO+/SOI-) tends to be much less than precipitation under in-
phase scenario (PDO+/SOI+) for almost the entire basin (mean anomaly -21.2 mm). 
Above all, positive SOI phase triggers more precipitation (La Niña), which impairs 
the influence of positive PDO, and negative SOI phase (El Niño) enhances the 
precipitation reduction induced by a positive PDO. 



31 

 

Figure 11. Precipitation anomalies under different scenarios: (a) PDO-; (b) PDO-/SOI-; (c) PDO-/SOI+; (d) 
difference between out-of-phase and in-phase, i.e., (c)–(b); (e) PDO+, (f) PDO+/SOI+, (g) PDO+/SOI-, and (h) 

difference between out-of-phase and in-phase, i.e., (g)–(f). 
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Figure 12. Composites of moisture flux (blue arrow) at 500 mb with MFC (color shading) under different 
scenarios: red rectangle represents the domain of the SRYR; red arrow represents reference vector of 2 

m/s·g/kg. 

A possible physical mechanism for the integrated influence can be summarized 
through occurrence of the moisture flux at 500 mb together with horizontal moisture 
flux convergence (MFC) under different scenarios (Figure 12). During PDO-/SOI- 
and PDO-/SOI+, a strong moisture flux transport from west into the study area can 
be observed (Figure 12, upper). This can be interpreted as a strengthening of the 
westerlies. This finds support from previous research. An intensified wave train via 
western central Asia propagates during negative PDO. Together with an enhanced 
and northward-shifted Western Pacific Subtropical High, this brings more 
precipitation to northern China (Zhang et al., 2018). The MFC patterns show both 
positive and negative values in the SRYR domain during PDO-/SOI- and PDO-
/SOI+ scenarios. This tends to lead to both convergence and divergence events in 
the SRYR, which explains the spatial variation of precipitation in the study area. 
During PDO+/SOI+ years (Figure 12, lower-left), a southern anomaly of moisture 
flux can be observed across the SRYR domain, which is likely to be blocked by the 
Himalayan mountains. Even with positive MFC, precipitation does not tend to form 
in the SRYR. As for PDO+/SOI- years (Figure 12, lower-right), moisture flux from 
the south divides as it reaches the SRYR. One part is moving eastwards to the Indian 
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subcontinent while the other moves westwards to southwestern China. Therefore, a 
subsidence zone is formed in the SRYR domain with a negative MFC, which does 
not promote formation of precipitation and therefore gives less precipitation in this 
area. These results confirm the interpretation of Fu et al. (2008) that precipitation 
decreases in northern China during a warm PDO phase. This situation leads to water 
vapor transport from Bay of Bengal to southern China and less to northern China. 
As well, Qian and Zhou (2014) showed that under a PDO+ phase, north China is 
dominated by an anomalous high pressure and thus deficient precipitation is seen 
here. 

6.2.3. Simulation of precipitation using large-scale circulation 
Simulation of precipitation using significantly correlated large-scale circulation 
indices was established in Paper III. Before setting up the simulation models, PCA 
analysis was conducted for the precipitation datasets of each season separately. PCs 
were used as simulating targets instead of the original data. In this way, the number 
of targets was reduced from 64 grids to 3 PCs, and over-fitting was avoided since 
noise is filtered out. The similarity between each model was minimized since PCs 
are uncorrelated. Thus, time series of 64 grids over the basin for seasonal 
precipitation anomalies were subjected to PCA. The leading three PCs for different 
seasons explain about 91, 92, 90, and 87% (Table 6) of the total variance, 
respectively. These were retained for further analysis.  

Table 6. Explained variance of leading PCs for seasonal precipitation. 
% PC1 PC2 PC3 Cumulative 

MAM 71.4 11.2 8.1 90.7 

JJA 64.3 19.6 8.5 92.4 

SON 65.6 15.4 9.2 90.2 

DJF 63.1 14.0 10.0 87.1 

Spearman rank correlation (rho) was calculated to reveal the association between 
climate indices and PCs of each season. To consider nonlinear relationships between 
regional climate indices and local precipitation, correlation analyses were conducted 
for both concurrent and lagged time periods (lag_0= current quarter, lag_i= i 
quarter(s) ahead). Changing climate indices were assumed to give changes for 
present or future precipitation patterns. 

Based on Spearman rank correlation results, the most significantly influencing lag 
of each significant climate index was selected as potential predictor (p<0.05). The 
results for these potential predictors are shown in Table 7. Since PC1 for each season 
represents the largest precipitation variance, potential predictors for PC1 are 
essential for the success of prediction. For spring (MAM), SOI_1, NAO_3, and 
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POL_4 were the significant indices for PC1. For summer PC1 (JJA), NAO_0, 
PDO_1, SOI_3 were the most significant indices. The only potential predictor for 
autumn (SON) PC1 was POL_1. For winter (DJF), SCA_0, NAO_0, PDO_3 can be 
used to predict PC1. Similarly, predictors for PC2 and PC3 can be selected, while 
Spring PC2 and winter PC3 have no available predictor among the studied climate 
indices. All potential predictors were used as initial inputs for simulation in ANN 
and MLR models. For the MLR model, a stepwise method performed further 
selection among the potential predictors. 

The performance of ANN and MLR was compared by three-fold cross-validation. 
The average performance (MAE, RMSE, and COR) of three tests avoids uncertainty 
caused by sample selection. From the view of MAE and RMSE, each model has its 
advantages in different seasons. The average performance for all predicted variables 
gives ANN an edge over MLR as both MAE and RMSE for ANN were smaller 
(0.319 to 0.325, and 0.416 to 0.417, respectively). From the view of COR 
(correlation coefficient), ANN was clearly superior to MLR as COR for each 
predicted variable was higher for ANN (0.455 to 0.301). As a result, ANN was 
selected to be the better predictive model for precipitation in the SRYR. 

The ANN model was trained using the entire dataset, and the structure for the 
optimal model was: Levenberg-Marquardt as the training algorithm; 2 to 4 as the 
neuron number (Table 7); tansig as the activation function for the hidden layer; and 
linear activation function for the output layer. The performance of the ANN models 
is shown in Table 7. Based on COR between target and simulated records, all 
predictands simulated by ANN showed good performance with significant COR 
(p<0.05) for all PCs. For PC1 in each season, results of COR were between 0.729 
and 0.995, indicating high prediction capacity. 

Table 7. Performance and structure of the predictive ANN model. 

Predictand Predictor 
ANN Prediction 

Structure 
(input/hidden/output) MAE RMSE COR 

MAM PC1 SOI_1,NAO_3,POL_4 3/4/1 0.062 0.106 0.969 

PC3 SCA_0,PNA_1,SOI_2,PDO_2 4/4/1 0.024 0.044 0.993 

JJA PC1 NAO_0,PDO_1,SOI_3 3/4/1 0.070 0.127 0.962 

PC2 SCA_1,PNA_4 2/3/1 0.018 0.033 0.996 

PC3 POL_0 1/2/1 0.183 0.288 0.764 

SON PC1 POL_1 1/2/1 0.201 0.300 0.729 

PC2 SOI_2,PDO_2 2/3/1 0.043 0.085 0.977 

PC3 SOI_4,POL_4 2/3/1 0.110 0.168 0.918 

DJF PC1 SCA_0,NAO_0,PDO_3 3/4/1 0.037 0.051 0.995 

PC2 POL_1 1/2/1 0.146 0.246 0.652 
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Figure 13. Pearson correlation between original and PCA-ANN simulated precipitation anomalies; (a) spring, 
(b) summer, (c) autumn, and (d) winter. 

 

To validate the performance of the models with regard to spatial distribution, 
simulated precipitation was derived by reconstruction using simulated PCs. Pearson 
correlation coefficients between the original and simulated datasets are shown in 
Figure 13. Correlation coefficients for all seasons (Figure 13a-13d) showed 
significant results over the whole basin (p<0.05), with the mean coefficient as 0.872 
for spring, 0.922 for summer, 0.762 for autumn, and 0.881 for winter. This shows 
the overall capability of capturing the spatial distribution of precipitation using 
PCA-ANN models. With these results, the ranking of PCA-ANN model 
performance is summer> winter> spring> autumn. The results in summer provide 
powerful support that the PCA-ANN model is capable of application in SRYR as 
summer is the rainy season with over 70% of the annual precipitation. In winter and 
spring, as less precipitation occurs during this season, the precipitation pattern is 
less complicated compared to other seasons, by which the model is able to capture 
the variability efficiently. In autumn, the models show less good performance, and 
the reason could be the complex conditions of atmospheric circulation during this 
season. Autumn is characterized by a transformation of the atmospheric circulation 
between southeasterly winds (summer) to northwesterly winds (winter). In any case, 
we conclude that the PCA-ANN model is capable of predicting precipitation in the 
SRYR with good results. The ability to predict seasonal precipitation using climate 
indices makes the PCA-ANN model a significant tool that can contribute to water 
resources management in this area. 
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6.3 . Future precipitation pattern 

6.3.1. Performance evaluation 

Figure 14. Taylor diagram of 21 individual NEX-GDDP models. OBS denotes the statistics of observed data, 1 
to 21 denotes the 21 models listed in Table 3. 

Performance of NEX-GDDP dataset was evaluated and presented in Paper IV. 
Figure 14 shows the Taylor diagram which presents three statistics (the COR, 
RMSD, and SD) of individual models and observations. The figure shows the 21 
NEX-GDDP models used in our study compared with the observations on a monthly 
scale. Generally, the closer to the observation (OBS) point, the better the 
performance. For Station 1 (Wudaoliang), the models perform overall well as the 
CORs range from 0.672 to 0.793, the RMSDs range from 19.4 to 27.5 mm, and the 
differences to observed SD range from -1.73 to 5.55 mm. For station 2 (Tuotuohe), 
all 21 models show a CORs between 0.684 and 0.810, RMSDs between 19.2 and 
27.1 mm, and differences to observed SD between -1.83 and 3.74 mm. For station 
3 (Qumalai), the models also show good performance as CORs reach 0.716- 0.822, 
RMSDs range 22.5-30.0 mm, and the differences to observed SD reach -1.38-2.67 
mm. For station 4 (Yushu), the models overall perform well as CORs reach 0.731
to 0.827, RMSDs range from 25.4 to 33.4 mm, and the differences to observed SD
range between -1.58 and 3.30 mm.
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Figure 15. Rankings of 21 individual NEX-GDDP models for four stations with COR, RMSD (mm), ΔSD (mm), 
and RI. |ΔSD| denotes the absolute value of ΔSD. 

 

Figure 15 shows the ranking of the 21 NEX-GDDP models at each station. Green 
denotes higher ranking, and yellow denotes lower ranking. Comprehensive index 
RI is calculated for each model. For station 1 (Wudaoliang), the top five ranked 
models are No. 19, 15, 20, 8, and 9. For station 2 (Tuotuohe) they are No. 9, 20, 8, 
16, and 2. For station 3 (Qumalai) they are No. 12, 3, 10, 16, and 19. For station 4 
(Yushu) they are No. 9, 7, 1, 2, and 19. In this way, COR, RMSD, and SD are 
considered. Names of top performing models are shown in Table 8. 
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Figure 16. Comprehensive ranking index (RI) of 21 individual NEX-GDDP models for the basin. Orange 
denotes the top 5 models. 

For the basin model, a comprehensive ranking index (RI) considering rankings at 
each station is conducted (Figure 16). The top 5 models are No. 8, 19, 20, 21, and 
10. Names of these models are shown in Table 8. The results provide references for
the using of NEX-GDDP dataset in this area.

Table 8. The top five models with best performance for each station and the SRYR. 
Station 1 Station 2 Station 3 Station 4 Basin 

1 NorESM1-M GFDL-ESM2G IPSL-CM5A-MR GFDL-ESM2G GFDL-CM3 

2 MIROC5 bcc-csm1-1 CCSM4 CanESM2 NorESM1-M 

3 bcc-csm1-1 GFDL-CM3 GFDL-ESM2M ACCESS1-0 bcc-csm1-1 

4 GFDL-CM3 MPI-ESM-LR MPI-ESM-LR BNU-ESM inmcm4 

5 GFDL-ESM2G BNU-ESM NorESM1-M NorESM1-M GFDL-ESM2M 
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6.3.2. Projections of the future 
 

 
Figure 17. Annual precipitation change in near- and far-future periods under RCP 4.5 (blue) and RCP 8.5 (red) 

scenarios from the multi-model ensemble (MME) mean (solid line) with one inter-model standard deviation 
(shading): (a) station 1, (b) station 2, (c) station 3, (d) station 4; (1) near-future period, (2) far-future period. 

 

  



40 

Taking 1986-2005 as the historical baseline, annual precipitation change for future 
periods at each station in the SRYR was derived based on the multi-model 
ensemble (MME) of all 21 models and the results are depicted by solid lines in 
Figure 17. It is seen that the annual precipitation continues to increase in the near- 
(2041-2060) and far-future (2081-2100) periods under RCP 4.5 and RCP 8.5 
scenarios, with the strongest and most continuous increase under RCP 8.5, and 
flattened increase under RCP 4.5. The difference of precipitation changing ratios 
between the two scenarios is small in the near-future period and expands in the 
far-future period. In the near-future period, the annual precipitation increases 
~20% under RCP 4.5 and ~30% under RCP 8.5, relative to the reference period. 
While in the far-future period, the increased annual precipitation rises to ~30% for 
RCP 4.5 and ~50% for RCP 8.5. 

Uncertainty boundaries are shown by one inter-model SD with the MME model-
ensemble precipitation (color shading in Figure 17). The results show a remarkable 
increase in uncertainty at four stations under both emission scenarios, with larger 
uncertainty under RCP 8.5 and smaller under RCP 4.5. For example, at Station 
Wudaoliang (Station 1, Figure 17.a1, a2): in the near-future, the average SD under 
RCP 8.5 (± 39%) are 1.1 times that under RCP 4.5 (± 34%), while in the far-future 
the average SD under RCP 8.5 (± 62%) are 1.7 times that under RCP 4.5 (± 36%). 

Figure 18.Change ratios (%) for annual precipitation (a,b) and summer precipitation (JJA) (c,d) at each station 
under two different scenarios. (a)(c) are under RCP 4.5, (b)(d) are under RCP 8.5.  Color blue denotes results 
for the near-future. Color orange denotes results for the far-future. Square denotes results of MME. Triangle 

denotes results of MMEt5. 
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To further compare the ensemble results for annual and summer precipitation, 
change ratios for future precipitation at each station in the SRYR was derived based 
on the multi-model ensemble of all 21 models (MME) and top-5 models (MMEt5), 
respectively. The results are in Figure 18. Based on MME results (squares in Figure 
18.a and b), the increase of annual precipitation at four stations during the near-
future (2041-2060) and the far-future (2081-2100) shows an average amplitude of 
+18.6% and +24.4% under RCP 4.5, and a larger increase under RCP 8.5 of +22.5% 
and +49.7%. The change percentage of summer precipitation (JJA, squares in Figure 
18. c and d) show similar results as the annual precipitation but with a slightly larger 
amplitude: the average increase under RCP 4.5 is +19.8% and +24.5% during the 
near- and far-future; the average increase under RCP 8.5 is +24.5% and +50.7% for 
the near- and far-future.   

The results of top-5 model ensembles (MMEt5) give different insights. For Station 
1 and 2, MMEt5 give higher increase than MME. Under RCP 4.5, MMEt5 give ~8% 
higher increase than MME during the near-future, and ~7% higher increase during 
the far-future (Figure 18.a).  While under RCP 8.5, this difference expands to ~17% 
and ~22% for near- and far-future, respectively (Figure 18.b). For Station 3 and 4, 
however, the MMEt5 give smaller increase than MME. Under RCP 4.5, MMEt5 
give ~5% lower increase than MME during the near-future, and ~7% lower increase 
during the far-future (Figure 18.a).  While under RCP 8.5, this difference expands 
to ~8% and ~18% for near- and far-future, respectively (Figure 18.b). The difference 
of change ratios in summer precipitation between MMEt5 and MME is similar to 
the difference in annual precipitation (Figure 18.c and d).  
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Figure 19. Spatial distribution of annual precipitation change under RCP 4.5 and RCP 8.5 for near- and far-
future period from MMEt5 ensemble. (a) 2041-2060 RCP 4.5; (b) 2041-2060 RCP 8.5; (c) 2081-2100 RCP 4.5; 

(d)2081-2100 RCP 8.5. 

Figure 19 shows the spatial distribution of the annual precipitation changes over the 
SRYR in the near-future (2041-2060) and far-future (2081-2100) periods, under the 
RCP 4.5 and RCP 8.5 scenarios, averaged from the top 5 models (MMEt5). Figure 
19. a, b and c show a general homogenous increasing pattern across the SRYR with
spatial distribution of increasing extent. Figure 19.d shows similar pattern across the
SRYR but with larger magnitude in the central basin, which suggests that the most
predominant increase in precipitation is expected to occur in the central part of the
study area under RCP 8.5 by the end of the 21st century.

Based on the information above, precipitation in the SRYR show a great increase in 
the future scenarios. The difference between RCP scenarios is smaller in the near-
future period, but this difference expands in the far-future period, indicating that the 
projected change in precipitation is sensitive to the emission scenarios in the far-
future. Moreover, the considerable increase results of MMEt5 in Station 1 and 2 
necessitate more attention to the central area of the SRYR.  
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7. Conclusions and outlook 

7.1. Conclusions 
This study improved the physical understanding of hydroclimatic change in the 
source region of the Yangtze River (SRYR) from the impacts of large-scale 
circulation patterns and visualized future projections of precipitation change. The 
assessment of precipitation variation in the SRYR was conducted in terms of change 
and variability.  

Firstly, the historical change of hydro-climatic components between 1957-2013 was 
analysed in the SRYR in Paper I. Results show that the annual temperature, 
precipitation and evapotranspiration increase significantly by 0.34°C, 11.4 mm and 
7.6 mm/decade, respectively. The runoff depth increases by 3.3 mm/decade. 
Considering water balances, annual water storage change was investigated and 
shows almost constant characteristics despite a continuous small negative trend. The 
increase of precipitation is mainly offset by the increase of evapotranspiration 
derived from significantly increasing temperature, leading to the relatively stable 
water storage during the study period. This knowledge is essential for the 
understanding of water resources conditions in the study area. 

Secondly, analysis of precipitation variability in relation to SST anomalies as well 
as large-scale circulations including ENSO and PDO was conducted in Paper II. 
Results indicate that the leading modes of rainy season precipitation variability can 
be explained by the variability of SST together with an integrated effect of ENSO 
and PDO. Results show that the influence of ENSO and PDO will increase/decrease 
when they are in-/out-of-phase. Negative PDO induces more precipitation in La 
Niña years than in El Niño years for the SRYR, especially over central and eastern 
parts of the basin. Positive PDO induces precipitation decrease, and El Niño 
enhances the decrease. The mechanism behind this pattern is atmospheric 
circulation affecting the strength of westerlies that transports moisture to the inland 
areas and as well local convergence conditions. Our results have implications for 
predicting the rainy season precipitation for coming decades over the SRYR. If the 
current negative PDO phase continues together with more frequent extreme La Niña 
events, as suggested in previous research (Lapp et al., 2012, Cai et al., 2015, Lin et 
al., 2018), more precipitation during rainy season is expected over the SRYR. 
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To further quantify the precipitation variability, Paper III aimed to develop a multi-
space model for seasonal precipitation prediction applied to the SRYR with a 
minimum loss of information. Firstly, the study concluded that the most important 
climate indices for precipitation in the SRYR vary depending on the season and 
spatial location. The NAO, POL, SOI, and SCA events have an influence on 
precipitation in the SRYR during the cold season, while NAO, PDO, and SOI are 
more important for the warm season. Another important outcome of this study is the 
spatiotemporal model for predicting grid precipitation, the PCA-ANN model. Our 
results show that the PCA-ANN model is capable of predicting precipitation in the 
SRYR using climate indices for the gridded dataset. By reconstruction of PCs, the 
model provides a simulated dataset with the same size as the original dataset. 
According to model evaluation, the PCA-ANN model provides good performance 
in terms of both temporal variability and spatial distribution following the rank 
summer> winter> spring> autumn. Based on our results, a small basin with a large 
number of variables/grids is recommended for the PCA-ANN model. In addition, it 
should be noted that in our results, not all predictors are lagged climate indices. The 
concurrent climate indices demand additional variables when predicting 
precipitation. Although, the potential predictability of these climate indices is 
uncertain, recent studies show some confidence in short-term forecasting up to 8 
months (Collins et al., 2002, Visbeck et al., 2001, Miller et al., 2006, Lapp et al., 
2012). Based on these results, we are able to use synchronized climate indices to 
predict seasonal precipitation anomalies in the SRYR.  

Finally, to access the future precipitation pattern, Paper IV investigated future 
climate projections of precipitation in the SRYR after evaluating historical 
performance, using the NEX-GDDP dataset that provides statistically downscaled 
CMIP5 projections. Performance for the historical period 1961–2005 was compared 
against in situ observations. Future climate change was assessed over the future time 
slices, 2041-2060 and 2081–2100, under two RCP 4.5 and RCP 8.5 with respect to 
1986–2005. The results show that multi-model ensemble derived from NEX-GDDP 
data effectively produces observed precipitation magnitude in the study area. The 
future climate projections indicate a consistent rise in mean precipitation, especially 
in summer. The average annual precipitation during the near-future (2041-2060) and 
the far-future (2081-2100) shows an increase of 18.6% and 24.4% under RCP 4.5, 
and a larger increase under RCP 8.5 of 22.5% and 49.7%. The summer precipitation 
shows similar increase as the annual precipitation but with a slightly larger 
amplitude. 

The findings in this thesis provide insights to improve the understanding of water 
resources variations under the background of climate change, in order to establish a 
sustainable management of water resources. The precipitation variability in relation 
to large-scale circulations can help to improve weather forecasting at a low-cost 
level. Besides, identification of physical mechanisms of integrated impacts from 
two main circulation patterns can improve the understanding of the forcing behind 
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precipitation variability. The future projections provide guidance for future adaptive 
solutions, including both spatial and temporal change. With such information, water 
resources management plans can be set up with higher accuracy, lower budget, and 
localized suitability.  

7.2. Suggestions  
Based on the progresses and results of this thesis, three detailed suggestions are 
listed considering the local situation. 

 Aggregate data sharing platform 

As the hydrological boundary, geographical boundary, and administrative 
boundary on the Tibet-Plateau overlap and differentiate from each other, there are 
several major data platforms that relate to the source region of the Yangtze River. 
They are operated by different municipalities or research institutions. It would be 
beneficial for both municipalities and researchers if the datasets can be aggregated 
into one, however, the cost of resources would be considerable. One solution could 
be establishing a visualized data index related to different areas. Clicking the 
interested area, a list of available datasets would show up, with a link accessing to 
each dataset. Moreover, research results related to a specific area can be listed with 
references. This ensemble of information can constitute a bridge connecting 
research and policy makers and help different functional departments to integrate 
and cooperate.  

 Identify climate change indicators  

Before preparing for the climate change, identification of indicators should be 
conducted. The indicators can be a large-scale circulation pattern or a type of 
vegetation or species. The results of this study provide several possible indicators, 
for example, the ENSO and PDO. Other research results suggest that wetlands could 
be an indicator as they are sensitive to environmental change (Wang et al., 2020). 
The sensitivity and effectiveness of possible indicators should be investigated by 
continuous monitoring and evaluation. 

 Mitigation and adaptation 

Considering the complex and fragile ecosystem, we suggest taking advantage 
of nature-based ecological restoration. On the basis of national reservation park, 
more detailed risk area should be identified, and mitigation actions should be carried 
out based on levels of vulnerability. On the other hand, climate change also provides 
potential beneficial opportunities. As the results of this thesis reveal that both 
temperature and precipitation increase, the growing season of grassland could 
possibly extend. This provides the municipality new potential solutions of local 
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development, for example, changing from pasture to agriculture.  It should be noted 
that this work should be done in parallel with systematic evaluation of soil moisture 
as previous research also pointed out the potential risk of dryness under increasing 
precipitation (Qiang et al., 2018).  

7.3. Future studies  
Future studies could focus on two aspects. Firstly, regarding seasonal variation of 
precipitation, there are factors that should be considered besides the atmospheric 
circulation patterns, including land surface processes and anthropogenic effects 
(Sutton and Hodson, 2005, Peng et al., 2013, Yang et al., 2008). Further studies on 
the nonlinear interactions between atmospheric circulation patterns and 
anthropogenic activities are, in any case, necessary. 

Secondly, regarding future precipitation projections, high-resolution climate models 
provide the possibility of detailed spatial and temporal aspects. The uncertainty that 
arises from the inherent limitation of the GCM models is still not solved: as the 
resolution is too coarse, many important processes occur on small spatial scales that 
cannot be resolved on the model grid (Kendon et al., 2017). A new kind of 
experiment at very high resolution (< 5 km) could be used to include convection in 
the models. At this resolution, deep convective storms can be handled but 
convective plumes are still not resolved, which is called Convection-permitting 
regional climate model (CPRCM). Advantages of CPRCM have been most evident 
through improved representation of sub-daily high-intensity precipitation events 
(Lind et al., 2020). Further studies of CPRCM will provide new insights on 
assessing precipitation on a regional scale.  
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