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Abstract—The min-sum (MS) and approximate-min∗ (a-min∗)
algorithms are alternatives of the belief propagation (BP) al-
gorithm for decoding low-density parity-check (LDPC) codes.
To lower the BP decoding complexity, both algorithms compute
two magnitudes at each check node (CN) and pass them to
the neighboring variable nodes (VNs). In this work we propose
a new algorithm, ga-min∗, that generalizes the MS and a-
min∗ in terms of number of incoming messages to a CN. We
analyze and demonstrate a condition to improve the performance
when applying self-correction to the ga-min∗. Simulations on
5G LDPC codes show that the proposed decoding algorithm
yields comparable performance to the a-min∗ with a significant
reduction in complexity, and it is robust against LLR mismatch.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have become a chan-
nel coding solution in 5G New Radio (NR). There are a
multitude of services in 5G NR. Enhanced mobile broadband
(eMBB), being one of the services, demands high data rate
with moderate reliability.
The standardization process of LDPC codes in the 3rd
generation partnership project (3GPP) has focused on the
trade-off between decoding performance and complexity. The
sum-product (SP) algorithm [1], also referred to as belief
propagation (BP) algorithm, provides near-optimal decoding
performance. However, the check node (CN) processor in the
SP algorithm computes a large number of non-linear functions,
which results in high hardware complexity.
The min-sum (MS) [3] and approximate-min∗ (a-min∗) al-
gorithms [4] are alternatives to the SP decoding with lower
complexity. Unlike the SP algorithm, where the CN processor
generates a unique magnitude for each neighboring variable
node (VN), the CN processor of the MS and a-min∗ decoder
computes only two magnitudes in the outgoing messages.
The a-min∗ algorithm, in which one of the messages in CN
processor is identically computed to that in the SP algorithm,
has negligible performance loss compared to the SP algo-
rithm. While the MS algorithm, the CN processor of which
approximates both magnitudes, can achieve more complexity
reduction.
The approximated messages that CNs deliver in the MS
algorithm degrade the performance [3]. To overcome this
loss, the self-corrected MS (SCMS) algorithm is proposed
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[5], where unreliable messages are erased at VNs in the MS
algorithm. It is a powerful yet simple technique. In [6] the
SCMS algorithm has a good performance in the error floor
region, and it is robust on noisy hardware [7].
In the wireless communication scenario, due to the noise
estimation mismatch in the detector, automatic gain control
(AGC) and other front-end components, the log-likelihood
ratios (LLRs) fed into the LDPC decoder can be modeled as
a scaled version of the true received ones [13]. This situation,
which we call LLR mismatch, can cause severe performance
degradation.
Despite being a powerful technique, to our best knowledge
self-correction (SC) has been only applied in the VNs of
the MS algorithm to improve the performance. In this work,
we identify a condition in the CN processing under which
applying the SC can potentially benefit the performance. That
is, if the critical messages of CNs in an iterative algorithm
is over-estimated, applying the SC at the VNs can lead to a
performance boost. As an example fitting this condition, we
propose a new decoding algorithm, referred to as ga-min∗,
which generalizes the MS and a-min∗ algorithms in terms of
the number of incoming messages to CNs. The performance of
the proposed ga-min∗ and SC ga-min∗ (scga-min∗) is close to
the SP algorithm and comparable to the a-min∗ with reduced
complexity. We also evaluate the robustness of various iterative
algorithms. It turns out that the scga-min∗ with two incoming
messages per CN shows superiority in performance in the
presence of LLR mismatch.
The paper is organized as follows: Section II introduces LDPC
codes and the finalized design in the 5G NR eMBB scenario.
Section III gives an overview of the box-plus operator and
different LDPC decoders. We propose the new algorithm, ga-
min∗, in Section IV. The performance of the (sc)ga-min∗, in
the absence and presence of LLR mismatch, is simulated and
compared with other decoding algorithms in Section V. A
complexity comparison between the ga-min∗ and a-min∗ is
also presented there. Section VI concludes the paper.

II. LDPC CODES

An LDPC code C can be described by a sparse parity-check
matrix (PCM) H. The codewords v of C is a set of vectors,
the null space of which is H, i.e., vHT = 0.
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Fig. 1. A sketched PCM for finalized NR eMBB LDPC codes

LDPC codes can also be represented by Tanner graphs. A
Tanner graph is a bipartite graph which consists of VNs and
CNs. The VNs and CNs correspond to columns and rows of
H, respectively. Label the VNs with index n and the CNs with
index m where n,m = 1, 2, . . ..The design of an LDPC code
can start from the protograph, or base graph (BG), which is
a small Tanner graph allowing multiple edges between VNs
and CNs.

A. 5G NR eMBB LDPC codes
The 3GPP has finalized the design of 5G NR LDPC codes
for eMBB service [10] [11]. To support a broad range of code
lengths and rates, two BGs, BG1 and BG2 are considered.
BG1 is used for codes of lengths N = 512 to 8448 and of
rates R = 8/9 to 1/3, while BG2 is used for codes of lengths
N = 40 to 2560 and of rates R = 2/3 to 1/5. Both BG1 and
BG2 consist of two parts, a core graph representing the high
rate codes, as well as an extension graph which includes more
parity bits for lower rate codes. Fig. 1 shows a sketched PCM
for the BG. The first two information bits are punctured to
enhance the block error rate. The core graph adopts a dual
diagonal structure for parity bits to simplify the encoding
process. The extension graph has an equal amount of VNs and
CNs. The VNs are degree one, forming an identity matrix.

B. Notations
Throughout the paper, we use the following notations regard-
ing the LDPC code with a Tanner graph T and message
passing algorithms.
• N : number of VNs,
• M : number of CNs,
• K: number of information bits,
• R: code rate,
• n ∈ {1, 2, . . . , N}: an index of a VN in T ,
• m ∈ {1, 2, . . . ,M}: an index of a CN in T ,
• dc: CN degree,
• M(n): the index set of CNs in the neighborhood of VN n,
• N (m): the index set of VNs in the neighborhood of CN m,
• Tm→n: the LLR from CN m to VN n.
• Ln→m: the LLR from VN n to CN m.
• Fn: the LLR from channel for VN n.

III. ITERATIVE DECODING ALGORITHMS AND BOX-PLUS
OPERATOR

In this section we give an overview of different decoding
algorithms for LDPC codes. For the sake of clarity, all the
CN processors in these algorithms are formulated with the
box-plus operator [8]. We end this section by reviewing and
proving some properties of box-plus operator, which do not
commonly appear in coding textbooks or research papers.
These properties can be used to analyze the approximated CN
messages in the MS and a-min∗ algorithms.

A. Sum-Product Algorithm

Define a two-input operator � taking L1 and L2 as

L1 � L2 = log

(
1 + eL1+L2

eL1 + eL2

)
,

here we call � the box-plus operator. The CN processing in
the SP algorithm is

Tm→n = �
n′∈N (m)−n

Ln′→m, (1)

where � is the summation operator of box-plus �.

B. Min-Sum Algorithm and Normalized Min-Sum Algorithm

The CN processing of the min-sum (MS) algorithm is given
as follows:

Tm→n =

( ∏
n′∈N (m)−n

sign(Ln′→m)

)
· min
n′∈N (m)−n

|Ln′→m|.

(2)
The advantage of the MS algorithm lies in its simple operation.
Unlike CN processing of the SP algorithm, which computes a
unique value for every neighboring VN, in the MS algorithm
only two different magnitudes are passed to VNs per CN. By
introducing a normalizing factor α, the normalized min-sum
(NMS) [3] can improve the performance of the MS algorithm.

C. The Approximate Min∗ Algorithm

The approximate min∗ (a-min∗) decoder [4] has a negligible
performance loss to the SP algorithm, and it generates two
messages per CN as in the MS algorithm. The two messages,
called critical and non-critical message, are defined and gen-
erated in Algorithm 1.

D. Self-Corrected Min-Sum

Self-corrected min-sum (SCMS) [5] performs the same CN
processing as that of the MS algorithm and differs in the
VN processing. Specifically, VN messages get erased, i.e.,
L
(i)
n→m = 0, if there is a sign change between current iteration

i and the previous one i− 1, as formalized below.

L̃(i)
n→m = Fn +

∑
m′∈M(n)−m

T
(i)
m′→n.

L(i)
n→m =

{
0 : sign(L̃(i)

n→m)sign(L(i−1)
n→m) < 0 and L(i−1)

n→m 6= 0,

L̃
(i)
n→m : otherwise.



Algorithm 1 The CN processing of the a-min∗

1. At CN m, find the incoming message of minimum magni-
tude and label VN n1 where minimum message is from.
2. The message sent to VN n1, called critical message, is the
same as the one computed by the SP algorithm rule in (1),

Tm→n1
= �

n′∈N (m)−n1

Ln′→m. (3)

3. For the rest of neighboring VNs of CN m, i.e., n ∈ N (m)−
n1, the magnitude of non-critical messages is computed by
applying the box-plus operator to all incoming messages, i.e.,
Ln′→m, n

′ ∈ N (m), with an extrinsic sign that is the product
of signs of Ln′→m, n

′ ∈ N (m)− n.

Tm→n =

( ∏
n′∈N (m)−n

sign(Ln′→m)

)
·
∣∣∣∣ �n′∈N (m)

Ln′→m

∣∣∣∣.
(4)

In this way, unreliable messages are detected by sign fluctua-
tion. By simply erasing these unreliable messages, SCMS can
achieve close-to-optimal decoding performance [5].

E. Some Properties of the Box-Plus Operator

Property 1. The box-plus operator L1�L2 is symmetric about
point (0, 0), i.e., L1 � L2 = −L1 �−L2.

Property 2. The box-plus operator L1�L2 is odd with respect
to one of its input, L1 or L2, i.e., L1 � −L2 = −(L1 � L2)
= −L1 � L2.

Proof of Property 1 and 2: From [2] the box-plus can be
written as

L1�L2 = sign(L1)sign(L2)min(|L1|, |L2|)+s(L1, L2), (5)

where s(L1, L2) = log(1 + e−|L1+L2|)− log(1 + e−|L1−L2|).
Since s(L1, L2) = s(−L1,−L2) and s(−L1, L2) =
−s(L1, L2) = s(L1,−L2), Property 1 and 2 can immediately
follow.

Property 3. The following three equities hold for the box-plus
operator L1 � L2.

L1 � L2 = sign(L1)sign(L2)[min(|L1|, |L2|) + s(|L1|, |L2)|]
= sign(L1)sign(L2)(|L1|� |L2|)
= sign(L1)sign(L2)|L1 � L2|.

Proof: The first equality follows from (5) and by the fact
that s(L1, L2) = sign(L1)sign(L2)s(|L1|, |L2|). The second
equality follows by substituting |L1| and |L2| as the inputs of
(5). The third equality follows from the fact that the box-plus
operator with two non-negative inputs always gives a non-
negative value.

Property 4.

|L1 � L2| ≤ min(|L1|, |L2|). (6)

Proof:

|L1 � L2| = |L1|� |L2| = min(|L1|, |L2|) + s(|L1|, |L2)|
≤ min(|L1|, |L2|),

where the first two equalities follow from Property 3 and last
equality follows from s(|L1|, |L2)| ≤ 0.
It follows from (6) we have the two propositions.

Proposition 1. The CN message of the MS algorithm over-
estimates, i.e., has a larger value in magnitude than, the one
in the SP algorithm .

Proof: Following (1), the magnitude of CN message |Tm→n|
in the SP algorithm, is

|Tm→n| =
∣∣∣∣ �
n′∈N (m)−n

Ln′→m

∣∣∣∣ ≤ min
n′∈N (m)−n

|Ln′→m|,

which is the magnitude of CN message of the MS algorithm
(2), the inequality follows by repeated use of (6).

Proposition 2. [4] The CN message to VN n, n 6= n1, in the
a-min∗ under-estimates the one in the SP algorithm.

Proof: By (4), the magnitude of CN message |Tm→n| of a-
min∗, is

|Tm→n| =
∣∣∣∣ �n′∈N (m)

Ln′→m

∣∣∣∣
=

∣∣∣∣( �
n′∈N (m)−n

Ln′→m

)
� Ln→m

∣∣∣∣
≤ min

(∣∣∣∣ �
n′∈N (m)−n

Ln′→m

∣∣∣∣, |Ln→m|
)

≤
∣∣∣∣ �
n′∈N (m)−n

Ln′→m

∣∣∣∣,
which is the magnitude of CN message of the SP algorithm,
the first inequality follows from (6).

IV. GENERALIZED A-MIN∗ DECODER

In this section a generalized a-min∗ decoder (ga-min∗) in
terms of number of messages to CNs is proposed. The
intuition is based on the property of the box-plus operator
that, if |L1| � |L2|, then |L1 � L2| ≈ |L1|. For example,
|1 � −5| = 0.9843 ≈ 1. Therefore, the smaller magnitude
is dominating in the box-plus operator. By finding subsets of
incoming messages with smallest magnitudes before the CN
processing, we can approximate (3) and (4) in the a-min∗ to
process a smaller number of VN messages.
At a CN m of dc VN neighbors, let s and s′ be two integers
where s, s′ ≤ dc and smax = max(s, s′). Find smax smallest
incoming messages in magnitude and denote the index of the
VN with ith smallest message by ni for i = 1, 2, . . . , smax. In
the following, write Lni

instead of Lni→m for simplicity. Let
Sm = {Ln1

, Ln2
, · · ·Lns

} and S ′m = {Ln2
, Ln3

, · · · , Lns′}
be the resulting two sets of the VN messages with cardinalities
|Sm| = s, |S ′m| = s′ − 1. The CN processing for the ga-min∗

decoder is formalized in Algorithm 2.



Algorithm 2 The CN processing of the ga-min∗

1. The magnitude of the critical CN message to VN n1
is computed by applying the box-plus operator to messages
Lni
∈ S ′m, with an extrinsic sign that is the product of signs

of Ln′ , n′ ∈ N (m)− n1.

Tm→n1 =

( ∏
n′∈N (m)−n1

sign(Ln′)

)
·
∣∣∣∣ �Lni

∈S′
m

Lni

∣∣∣∣. (7)

2. For the rest of VNs in the neighborhood of CN m, the
magnitude of non-critical messages to VN n, n 6= n1 is
computed by applying the box-plus operator to messages
Lni
∈ Sm, with an extrinsic sign that is the product of signs

of Ln′ , n′ ∈ N (m)− n.

Tm→n =

( ∏
n′∈N (m)−n

sign(Ln′)

)
·
∣∣∣∣ �Lni

∈Sm
Lni

∣∣∣∣. (8)

Remark 1. When s = s′− 1 = 1, the ga-min∗ reduces to the
MS algorithm. When s = s′ = dc, the ga-min∗ becomes the
a-min∗.
Remark 2. For the a-min∗, the non-critical CN message is
non-extrinsic, i.e., the computation of message Tm→n, n =
n2, n3, . . . , ndc

, involves the corresponding incoming message
Ln. While for the ga-min∗, only CN messages to VNs
n2, n3, . . . , ns will be non-extrinsic.
Unlike the a-min∗ algorithm, which computes the same value
for the critical message as that in the SP algorithm, ga-min∗

computes an over-estimated critical message.
Proposition 3. If s < dc, then the CN message to VN n1 of the
ga-min∗ decoder over-estimates the one in the SP algorithm.
Proof: The proof is similar to the one given in Proposition
2 and by the fact that the index set of VNs with messages
Lni ∈ S ′m is a proper subset of N (m)− n1 if s′ < dc.

V. SIMULATIONS

A. Performance

We perform simulations in Fig. 2(a) and 2(b) on the AWGN
channel with BPSK modulated transmission. The block error
rate (BLER) is simulated down to around 10−2 since it is
the primary target rate in the NR eMBB scenario [12]. An
LDPC code in each BG is selected with the lowest rate. Note
that given information length K, the lowest rate, i.e., 1/3 in
BG1 and 1/5 in BG2, will lead to biggest performance gaps
between SP algorithm and other iterative decoding algorithms
discussed in the paper. For simplicity, we let s = s′−1 in the
(sc)ga-min∗ and choose s = 2 or 3 in the simulations.
With s = 2, the ga-min∗ has 0.3dB and 0.2dB loss to the SP
algorithm in these two codes, respectively. With s = 3, the
gap reduces to 0.1dB to the SP algorithm. The performance
gap is less than 0.05dB in the first code and almost overlapped
to the a-min∗ in the second. Meaning that with s = 3, the CN
processings of both critical and non-critical messages are good
approximations of those in the a-min∗.
The performance of the sca-min∗ and the a-min∗ is fairly close,
in which the CN processing is exact in (3) and under-estimated

(a)

(b)

Fig. 2. BLER performance of various decoders (a) K = 4224, R = 1/3;
(b) K = 960, R = 1/5

in (4) compared to that of the SP algorithm. Under this
condition, SC technique has no prominent effect in improving
the performance. A similar condition can account for the close
performance between the scga-min∗ and the ga-min∗ with
s = 3, where the CN message is close enough to that of
the a-min∗, as mentioned above.
However, with s = 2 the scga-min∗ outperforms the ga-min∗

by 0.2dB and also slightly better than the performance of the
a-min∗. This is showing that the SC technique can achieve a
performance boost when the critical message in the CN of the
ga-min∗ is over-estimated.
An even bigger performance gain, i.e., 0.4dB, can be observed
between the SCMS and the NMS, where the scaling factor α =
0.75 is optimized heuristically for this code. In this case, the
SC technique is also powerful in improving the performance.
Note that performance of the MS is further degraded from that
of the NMS by a few tenth of dB and is not shown in Fig.
2(a) and 2(b).



B. Robustness

Let LLRs from the channel fed into the decoder be scaled by
the constant η. If η > 1(< 1), we refer to it as LLR over
(under)-estimation. Fig. 3 shows the performance under LLR
mismatch. The (sc)ga-min∗ shows superiority in performance
compared to other iterative algorithms for both situations. Also
note that the SP and a-min∗ decoder are very sensitive to
both SNR under-estimation (η = 0.5) in Fig. 3(a) and over-
estimation (η = 2) in Fig. 3(b). There is at least 1dB loss
to the performance in the absence of LLR mismatch in Fig.
2(a). The SCMS and scga-min∗ with s = 2 are robust in
both LLR under-estimate and over-estimate. Specifically, the
performance of the SCMS is similar in both cases, whereas
only 0.2dB and 0.1dB degradation for LLR under-estimate and
over-estimate, respectively, is in the scga-min∗ with s = 2. For
LLR under-estimation, the ga-min∗ even outperforms the one
in the absence of LLR mismatch by 0.1dB, but it degrades
drastically for LLR over-estimation. We conclude that when
SC is applied to the ga-min∗ with s = 2, the robustness of the
performance can be enhanced greatly against LLR mismatch.

C. Complexity Comparison

In the ga-min∗, the box-plus operator is used only s times
per CN, compared to dc − 1 times in the a-min∗. The saving
in the box-plus operator is at the cost of finding out s + 1
smallest incoming messages in magnitude, which is relatively
inexpensive to implement in hardware for the case of s = 2 or
3. A hardware implementation of finding two smallest values
in a set is presented in [9]. Table I provides a complexity
comparison with respect to the box-plus operator savings for
various code rates of NR LDPC codes. In Table I, the highest
rate has the highest average row weight dc, due to the high CN
degree in the core graph, resulting in greatest savings, namely
86% for s = 2 and 80% for s = 3 in BG1, and 69% for s = 2
and 53% for s = 3 in BG2. As the rate goes lower more CNs
in the extension graph are included, which lowers dc, and the
complexity saving is 66% for s = 2 and 49% for s = 3 in
BG1, and 46% for s = 2 and 19% for s = 3 in BG2. We also
notice there is slight increase in iteration numbers when SC is
applied to the ga-min∗, but the extra numbers of iterations can
be well accommodated by the complexity savings in ga-min∗

itself.
TABLE I

Box-plus savings of the ga-min∗ for various code rates compared to the
a-min∗

R BG dc − 1 savings (s = 2) savings (s = 3)
8/9 1 14.80 86% 80%
11/15 1 11.20 82% 73%
1/2 1 7.75 74% 61%
1/3 1 5.87 66% 49%
2/3 2 6.43 69% 53%
1/2 2 5.42 63% 45%
1/3 2 4.50 55% 33%
1/5 2 3.69 46% 19%

(a)

(b)

Fig. 3. BLER performance of various decoders under LLR mismatch for the
code of K = 4224, R = 1/3 (a) η = 1/2; (b) η = 2

VI. CONCLUSION

In this work we propose a new iterative decoding algorithm,
ga-min∗. We identify conditions for which the SC technique
can be a good performance boost when is applied to the ga-
min∗. Simulations on 5G LDPC codes for various decoding
algorithms are conducted. While the SP has the best perfor-
mance, it is not robust and degrades drastically under LLR
mismatch. The NMS is robust with low complexity, but gives
sub-optimal performance for low rate codes. The performance
of the scga-min∗ with s = 2 is close to the SP algorithm and
comparable to the a-min∗ but with much complexity savings,
and it is robust against LLR mismatch.
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