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ABSTRACT
In Delay Tolerant Networks (DTNs) as an emerging con-
tent dissemination platform, mobile nodes opportunistically
exchange content as they meet, with the intent of dissem-
inating content among nodes that share common interests.
During a meeting, nodes can exchange both content of direct
interest to themselves as well as content that is of interest to
a larger set of nodes that may be encountered in the future.
The utility of DTN is governed by the content exchange
opportunity (the amount of content that can be exchanged
during a meeting) as well as the selection of content to be
exchanged in order to maximise the interest nodes will have
in information they are exposed to. Considering that there
is a cost associated with the content exchange (e.g. battery
usage, buffer occupancy or consumed transmission opportu-
nity) the aim for nodes participating in content dissemina-
tion should be to maximise their payoff. In this paper, we
contribute a generic framework for describing the charac-
teristics of content exchange among participating nodes in a
network. We incorporate a distributed information popular-
ity measurement and the pairwise interaction of nodes mod-
elled as a bargaining problem. The outcome of this process
is the fair split up of dwelling time as a network resource and
the selection of which content objects to exchange in order
to maximise the nodes’ payoff. The framework is generally
intended to be used as a capstone for investigation of con-
tent dissemination properties and various content exchange
strategies in a DTN, a topic addressed in this paper and
experiments conducted to validate the function and correct-
ness of the proposed framework.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; C.2.4
[Distributed Systems ]: Distributed applications
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1. INTRODUCTION
Delay Tolerant Networks (DTNs) consist of mobile devices

communicating with each other in a ”store-carry-forward”
fashion, without any assumption on the presence of infras-
tructure [14]. Sporadic connectivity and the lack of per-
manent end-to-end paths in these kind of networks hinder
their applicability in delay sensitive applications; yet their
potential utilization as a low cost network technology for
delay tolerant content dissemination has attracted a signif-
icant attention from the research community [14, 13, 20,
2, 11]. Content dissemination in DTN is interpreted as a
mechanism of carrying a content to any node with interest
in that content. Such a mechanism is typically realized by
advertisement of nodes’ interests/demands using the sub-
scribe/publish paradigm [6] and selection a group of nodes
acting as forwarding brokers.
In a content dissemination network, there are few major
players among others which determine the behaviour of con-
tent dissemination process; for one, the dynamic physical
network structure formed by meeting patterns of nodes gov-
erns the dissemination characteristics, albeit if the impacts
of other players are ignored. Such a situation can be ob-
served in existing works where the content dissemination by
a node is governed by its membership in different node com-
munities (e.g home community, exogenous or friend commu-
nities), where the membership of the node to a community
is determined by relative meeting frequencies of nodes. The
pairwise nodes interaction on meeting incidences is the sec-
ond major player influencing the behaviour of the content
dissemination process in terms of dissemination speed, dis-
semination preferences, etc. The nodes’ interaction is driven
by the current states of the participating nodes and the avail-
able network resource(s) to be used for content exchange.
Moreover, depending on the selfish or cooperative interac-
tion of nodes, various dissemination strategies emerge each
having a different outcome. The third driving factor intro-
duced in this work is the distribution of content popularity.
Various dissemination strategies can be realized based on
the popularity of different contents available/exposed in/to
a node. Nevertheless, the realization of such strategies re-
quires the information about content popularity to be acces-
sible by the nodes either a priori or measured autonomously



by nodes while they meet peers. In this paper, we propose
a node model incorporating the fundamental characteristics
of the latter two driving factors (i.e node interaction and
content popularity). A game theoretic problem is proposed
to describe nodes’ interaction with the aim of fair splitting
of the dwelling time (as the available content exchange op-
portunity) while taking into account the current state of the
interacting nodes. Moreover, a distributed content popu-
larity measurement mechanism is implemented in the nodes
enabling them with a fresh perception of the popularity of
the various contents in the network. This model is aimed at
enabling a generic yet thorough investigation of content dis-
semination process and the potential content dissemination
strategies.

2. RELATED WORK
Content dissemination has been the subject of much re-

search in recent years. These efforts are classified into two
main directions: Routing in DTN and the application of var-
ious settings of the subscribe/publish paradigm.
Routing as a message forwarding mechanism is addressed
in [17, 10, 9, 11] to mention but a few. These works at-
tempt to deliver content opportunistically, selecting next-
hop nodes as carriers mainly based on their mobility and
collocation information. In [10], a probabilistic routing algo-
rithm is proposed based on the period of collocation between
nodes. [9], investigates methods for different target groups
to disseminate content in an urban setting. [17] proposes a
class of multi-copy protocols termed Spray routing to reach
a trade-off between delay and transmission attempts. Other
routing schemes propose different forms of flooding-control
[21]. Routing based on knowledge oracles is proposed in
[7]. The various knowledge oracles considered provide in-
formation about future contacts of nodes, available band-
width, future traffic-demand of the nodes, and the queue
sizes at each node. Other routing schemes propose different
forms of flooding-control [21]. As a representative work, [18]
proposed a controlled replication scheme termed Spray and
Wait to reduce the number of copies of a given message, and
hence the number of transmissions per message to L with
the flexibility in tuning L in response to delay requirement.
The Publish and Subscribe paradigm was originally applied
to Internet-based scenarios. The authors in [5] introduced
this paradigm to the context of mobile networks by estab-
lishing mobile publishers and subscribers and a set of back-
bone nodes responsible for content dissemination. In [15], a
tree-based subscriber/publisher was proposed for relatively
stable wireless environments. [20] proposed a broker based
content dissemination scheme targeted for dynamic wireless
environments. Brokers are elected from mobile nodes based
on an election mechanism which relies on knowledge about
the community structure of the underlying network. Thus,
the structure of the network in terms of the existing commu-
nities is identified and a broker(s) is selected from each com-
munity to disseminate content. The Haggle project released
implementations of data/content centric networks [13]. In
Haggle, node descriptions form an individual interest vector
of attributes and assigned weights that is matched to data
attributes [1]. Content dissemination in Haggle is done on
two layers: i) ranked searches, that is matching of nodes’ in-
dividual interest vectors with the data in the cache. Ranked
searches identify and prioritize data to be transmitted dur-
ing a node contact, ii) traditional forwarding among nodes

to identify delegate forwarders (nodes that are not inter-
ested in the data but are likely to deliver it). Bloom fil-
ters are used to avoid duplicate transmission of data that
the other node already has; nodes exchange the Bloom fil-
ter instead of a long list with data in the caches. In [2],
authors suggest each mobile node acts as a broker, argu-
ing that building and maintaining of broker overlay is cost
inefficient. In both [13] and [2], an autonomous commu-
nity detection mechanism is used to identify communities
and a weight is assigned to each cached object at the time
of exchange to decide whether or not to fetch and forward
that object, taking into account the current community of
the node. In an attempt to minimise the computation and
communication load imposed on intermediaries taking the
burden of content relaying and in the meantime achieving a
high delivery ratio, [11] proposes a mechanism termed Habit
for content dissemination in MANETs.
Our work differs from the existing proposal in the following
ways. First, most of previous work consider a content as a
black box without considering the subjects of the content
and they also assume that there is a demand or a known
popularity per content item, whereas in this work we con-
sider the subject(s) of a content and develop a distributed
popularity measurement based on nodes’ interests. Second,
in contrast with some previous work oblivious to network
resources when addressing node behaviour, we introduce
nodes’ contact time as an important resource of the com-
munication network and propose a cooperative bargaining
solution to determine and assign a share of the resource to
each node. Furthermore, instead of forcing a certain set
of nodes, like brokers or central nodes as in the existing
proposals, to take the burden of content dissemination, we
let each node participate in content distribution where the
degree of participation is governed by node’s state and con-
straints. Third, in addition to the structural element of
the content network, we take into account the impact of an
important behavioural element realized in form of shift in
individuals’ information interests. Moreover, unlike the tra-
ditional interpretation of structural element as physical com-
munities emerging based on the meeting patterns of nodes,
the approach followed in this work is to employ the logical
structure(s) in the network to devise realistic content dis-
semination strategies. A logical structure realized as a node
community is a set of nodes with a certain meeting pattern
and similar information interests. The last difference of this
work with previous proposals arises from the point of view
of privacy. Unlike approaches using identities or positions
of nodes to detect node community, our approach does not
use such attributes.

3. MODEL COMPONENT AND FUNCTION
OVERVIEW

We model social node behaviour in a DTN as they meet
and exchange information with their peers. A user model,
as a component of the node model, captures the informa-
tion interests of individual nodes and assign a weight to
each information type the node is interested in. A second
component termed social popularity model is responsible for
collecting peers’ interest vectors on meeting incidences and
construct a pair of interest types and interest weights vec-
tors representing the collective information interest of the
network. We incorporate two fundamental features into the



measurement mechanism; shift in individuals’ information
interests and the formation of local communities, the for-
mer is a behavioural element while the latter is a structural
element. We apply the measured information popularity to
assign forwarding priorities to the data objects currently in
a node’s cache. When it comes to data objects’ exchange,
the measured information popularity is coupled with the in-
teraction model of meeting nodes, taking into account the
state and constraints of nodes participating in information
exchange sessions. Figure 1 illustrates the minimal com-
ponents needed to define the social node behaviour. The
internal functionalities associated with the components of
the framework are described in the following sections.

Figure 1: Node model in a delay tolerant network

3.1 User Model
We denote a consumer of information a ’user’ regardless if

the consumer is a person or a machine. The user model de-
scribes a social node’s preferences or valuation of existing in-
formation attributes. It encompasses two major tasks; first,
it uses a predefined internal process to identify the types of
information the user is currently interested in. This may in
practice be implemented using direct feedback from a user
or by implementing a background process which monitors
the user’s activities and usage patterns. The second com-
ponent is a representation of the measured valuation that is
presented to the peers in the DTN for estimation of some
information’s social popularity.
In this work, we assume a background user model is present
and generates a ranked list of information attributes, sorted
in descending order of attribute ranks. In Figure 1 this im-
plies that attributes a1 and am have the highest and lowest
ranks respectively. Such a ranked list determines the rela-
tive importance of information attributes and not a quan-
tified absolute importance of a given attribute in the list.
To quantify the absolute importance, a weight is assigned to
each attribute representing, e.g. the fraction of time a user
spends on consuming information with the given attribute.
The exact meaning of importance can be defined for each
application of the DTN.
We do not consider the implementation details of the actual
user model and without loss of generality, we assign to each

attribute a weight value generated from a distribution func-
tion. Among the candidate distribution functions, Zipf has
proved to be a good representative of many real life complex
systems. The application of Zipf has also been introduced
to the context of Internet and social networks [4]. We apply
the Zipf distribution to obtain attribute weights as follows:

f(k, α,m) =

1

kα

∑m

i=1

(

1

iα

) (1)

where m is the total number of attributes in the individual
interest vector (IIV) of a node, k is the attribute rank, and
α is an exponent value characterizing the distribution.
To this end, the proposed user model is represented by a
ranked attribute list (i.e. IIV) and an individual weight
vector (IWV). Given a list of ranked attributes in a node’s
IIV, the Zipf distribution determines the usage frequency
for each attribute. The frequency values generated by Zipf
distribution are then used as the weight elements in the IWV
shown in the user model component in Figure 1.

3.2 Measurement of Information Social Pop-
ularity

A Social Interest Vector (SIV), captures the social popu-
larity of information attributes currently advertised by nodes.
The SIV comprises a subset {ai|ai ∈ Ω} of attributes where
Ω is the set of all possible attributes in the network and has
cardinality N . SIV is built and maintained continuously
and incrementally by a node as it meets peers. More specifi-
cally, during a meeting incidence, nodes exchange IIV’s and
IWV’s. New attributes from the collected IIV are added to
the SIV and the attribute weights are adjusted accordingly
and maintained in a vector denoted by SWV.

In the envisioned information popularity measurement model
we incorporate two major social concepts, a behavioural
shift component and a social structural component. The
behavioural element reflects the transient nature of individ-
ual interests, i.e. the shift in user’s information interest over
time. This implies that the model should not rely on one-
time collected interest vectors corresponding to peers en-
countered in the past. Instead, whenever a node is encoun-
tered, the SIV and SWV in a node are updated to reflect
the possible changes in the interests of encountered nodes.
This process guarantees that the model adapts to emerging
events at all times during its life cycle. The social struc-
tural element involves the formation of local communities,
among other structural entities representing the real world
interactions of nodes. A local community from the stand-
point of a given node is a set of nodes encountered frequently
and recently compared to other peers in the network. It is
not necessary for a node to have similar interests (i.e. IIV)
to its local community. The notion of a local community
implies that the SIV measured in a node will have a signifi-
cant component induced by the local community compared
to the component(s) induced by occasionally encountered
peers. From a content exchange perspective, if the content
in a node’s cache is ordered with respect to the social in-
terests measured in the node and represented by pair (SIV
SWV), this leads to a state where a node with tight connec-
tion to its local community will prefer dissemination of the
content that is of interest to its own community to the con-



tent of interest to the rest of the network. Moreover, nodes
with balanced membership to several communities will act
as bridges, muling data objects between those communities.
To this end, we propose an adaptive information popular-
ity measurement model, taking into account the properties
described above. The popularity measurement process is
illustrated by algorithm 1. When a node -termed ’target’
for clarification- meets a peer node, it collects the peer’s
(IIV IWV) pair. For each newly detected attribute a from
the peer’s IIV, an entry is created in the target node’s SIV
and the corresponding weight value in peer’s IWV denoted
by wa is considered as the current social weight as seen by
the target node. Accordingly, a new entry in the target
node’s SWV is created which maintains the collected weight
value. Obviously, the weight value reported by the peer is
not guaranteed to be the only component of the social weight
of attribute a measured in the target node since in future
meetings other nodes will report possibly different weight
values for the same attribute. This implies that a weight
aggregation mechanism should be designed that produces a
single value as the current designated social weight of the
attribute. Such an aggregation mechanism requires the re-
ported weight values to be maintained in the target node
which in turn necessitates the allocation of buffer space to
the weight values of the attribute. If not handled properly,
the size of the buffer will therefore grow proportional to the
number of encountered peers which in turn raises scalabil-
ity issues. To tackle this, a limited buffer space is assigned
to the weight values of the attribute and a weight cluster-
ing scheme is designed for aggregation purposes. Denote by
bpa the buffer with a fixed size P assigned to attribute a to
maintain the weight clusters corresponding to this attribute.
We denote this buffer production buffer. As shown in Fig-
ure 1, three information entities are maintained in the bpa for
each weight cluster: i) cai represents the weight value of the
cluster i in bpa , ii) t is the last time cai was updated, and iii)
ηa
i represents the frequency at which the cluster i was se-

lected as the nearest neighbour of the new coming attribute
weights. ηa

i is normalized over a time duration T to be inde-
pendent from values far in the past. The nearest neighbour
is determined based on value |wa − cai | and a parameter δ.
If |wa − cai | ≤ δ and |wa − cai | = min(|wa − caj |) ∀j ∈ [1, P ]
then wa is classified to cai and the new aggregated weight is
obtained and assigned to cai . If no cluster exists that satis-
fies |wa − cai | ≤ δ and there exists an unused cluster entry
among the P available clusters , wa is assigned as the initial
weight of a new cluster, otherwise a forced classification and
aggregation is applied. Finally, the update frequency ηa

i of
the aggregated cluster cai is modified to reflect this new ag-
gregation.
The aggregation procedure of a chosen weight cluster de-
noted by caold (to highlight the fact that the weight of this
cluster is old and subject to change) and a recently collected
attribute weight wa is defined as follows (for simplicity, the
index i is eliminated from the cluster name):

canew = (1− α(∆t))caold + α(∆t)wa (2)

where canew is the weight cluster after aggregation. ∆t indi-
cates the time difference between the collection time of wa

and the last time the chosen weight cluster was updated.
α(.) ∈ [0, 1] is a monotonically increasing function of time
difference ∆t. We apply α(.) to assign a larger weight to the
new attribute weight (i.e. wa) in the aggregation scheme.

This ensures that a recently collected attribute weight will
have a larger component in the resultant weight cluster and
thus alleviates the impact of stale attribute weights.
In the aftermath of an aggregation event, the new weight
cluster may become the neighbour of an existing cluster.
Thus, in step (19) of the algorithm, the entire production
buffer is evaluated to find and apply potential aggregations.
The aggregation of two weight clusters is slightly differ-
ent from the aggregation of a weight cluster and a single
attribute weight as described in (2). In the former case
the update rates of the two weight clusters should also be
aggregated to obtain a single rate. Denote by η1 and η2
the aggregation rates of weight clusters c1 and c2. We de-
fine the aggregation rate η12 of the two cluster weights as
η12 = min(η1 + η2, 1). This implies that the update rate
of the resulting weight cluster is the accumulated update
rates of the two neighbour weight clusters. The aggregation
scheme is expressed as:

cag =

{

(1− α(∆t))ca1 + α(∆t)ca2 s.t.∆t = t2 − t1 ∧ t2 ≥ t1
(1− α(∆t))ca2 + α(∆t)ca1 s.t.∆t = t1 − t2 ∧ t1 > t2

(3)
where cg is the aggregate weight. t1 and t2 are the last up-
date (or aggregation) times of ca1 and ca2 , respectively.
The aggregation approaches described by (2) and (3) en-
sures that a weight cluster with a large η will have a large
contribution in the ultimate social weight of the attribute
from the standpoint of a network encountered by a node.

Algorithm 1 -Attribute Popularity Measurement

Input: (SIV, SWV ) , (IIV, IWV ) , δ, T
1: i← 1
2: while i ≤ size(IIV ) do
3: j ← indexOf (SIV, IIV (i))
4: if j ≤ 0 then

5: j ← createAttEntry(SIV )
6: createWeightEntry(SWV )
7: bpi ← assignBuffer(SWV (j))
8: appendAtt(SIV (j), IIV (i))
9: k ← appendWeight(bpi , IWV (i))
10: else

11: k ← findNearestNeighbour(bpi , IWV (i)
12: if distance(bpi (k), IWV (i)) ≤ δ OR isFull(bpi )

then

13: bpi (k)← aggregate(bpi (k), IWV (i))
14: else

15: k ← appendWeight(bpi , IWV (i))
16: end if

17: end if

18: ηi(k)← updateFrequncy(bpi (k), ηi(k), T )
19: (bpi , ηi)← aggregateClusters(bpi , ηi)
20: SWV (j)← updateSocialWeight(bpi , ηi)
21: end while

22: SWV ← normalize(SWV )
23: (SIV, SWV )← sortDescend(SIV,SWV )

Two complementary steps are performed in a node prior to
content exchange with a peer. First, a weight value is ob-
tained for each attribute. Second, the social weight vector
is normalized to indicate the relative popularity of different
attributes. These steps are required to determine the order-
ing of several contents to be forwarded and to calculate the



similarity between a node’s view of information social pop-
ularity and the individual interest of an encountered peer
(see section 3.3). The former step is indicated in line (20) of
the algorithm and the attribute weight is calculated as the
normalized weighted sum of the cluster weights associated
with that attribute. i.e.:

ws
a =

∑|ca|
j=1

caj η
a
j

∑|ca|
j=1

ηa
j

(4)

where |ca| ≤ P is the effective size of cluster weight vector.
The latter step is indicated in step (22) and the attribute
weights are normalized with respect to the attribute with
the largest weight updates. A ranked list of attributes is
then created in step (23).
The information popularity measured in a node and repre-
sented by the pair (SIV,SWV ) is used to evaluate the rele-
vance of data objects received in a node with respect to the
collective information interests of all peers in the network en-
countered so far. The evaluation process involves two steps:
i) weights are assigned to attributes contained in the object.
We assume weights are generated using Zipf distribution as
discussed in section 3.1) a disjoint vector comparison (as de-
scribed in section 3.4) is applied to evaluate the similarity
of object attributes and social attributes.
On a meeting incidence with a limited dwelling time, the
evaluated relevance of data objects, in addition to other fac-
tors, is used to choose a subset of available data objects in a
node to exchange with a peer. The object exchange decision
is also influenced by the interaction features of the meeting
nodes, which we detail next.

3.3 Interaction during a node meeting
When two nodes carrying a number of data objects meet,

each node tend to pursue a data exchange strategy produc-
ing the highest possible payoff, where payoff is the difference
between the profit and the cost emerging from enforcement
of an strategy. Considering the data exchange as the main
subject of interaction, each node, as its strategy, aim at es-
tablishing a balance between the number of data objects
it receives and transmits from/to the encountered party so
that the data exchange will maximize the node’s payoff . In
a more general form, given a limited dwelling time d during
which nodes are able to exchange data objects, nodes seek
a balance between the fractions of time d consumed for re-
ception and transmission. The time fractions identified by
a node as its strategy of choice can be different from those
identified by the other party and in some cases the mutual
strategies may conflict due to the selfish behaviour nodes. In
this sense, the behaviour of the meeting nodes can be cap-
tured using a two-player bargaining problem. The main step
towards solving this problem is to design the utility functions
describing the node’s payoff. A generic utility function of a
node i can be expressed as:

ui(qi, qj , s
i) = f i(qj , s

i) + hi(qi, s
i) s.t. qi + qj ≤ d (5)

where f i is the payoff accrued by node i if node j plays
strategy qj . h

i is the payoff accrued by player i if it chooses
strategy qi. si represents the current state of node i. hi

may be negative, hence become a net cost, since there may
be a cost involved in data transmission e.g. fast depletion of
energy resources. Conversely, a buffer discharge in a node
with limited buffer space is a representative example where
hi is positive. qi and qj are the individual strategies chosen

by nodes i and j respectively. The constraint in (5) ensures
that the nodes’ total transmission time do not exceed the
dwelling time (d). We assume the meeting nodes have an
identical estimate of the dwelling time. The utility function
of node j denoted by uj is symmetric to ui.
To characterize the generic utility function (5), it is neces-
sary to identify the utility parameters associated with nodes’
interaction. The utility parameters impact the strategy played
by a node and are classified into two categories. The first
category includes parameters describing the state of a node
at the time of a meeting. In order to keep the model parsi-
monious, we restrict these parameters to a minimal set in-
cluding the fraction of buffer space occupied (b), the fraction
of energy consumed(ξ), and the current satisfaction level of
the node (ν), where ν ∈ [0, 1] and is determined by the
meeting history of a node and increases accumulatively as
a node receives data objects matching its interest vector.
The model can readily be extended with further parame-
ters for special cases. The second parameter category is not
directly related to a node’s state; these parameters rather
provide complementary information about the encountered
party, hence impacting the strategy selection of a node. The
parameter r defined as the similarity between a social weigh
vector (i.e. SIV) measured in a node and the individual
weight vector (i.e. IIV) of the other node is an example of
parameters belonging to this category. In our bargaining
problem formulation we apply parameters r and ν to de-
scribe the willingness of a node to receive data objects from
the other party.
To illustrate the effect of the above mentioned parameters on
the players’ strategies, without loss of generality, we instan-
tiate the generic utility function (5) with a concrete function
defined as:

ui(qi, qj , s
i) = rji(1− νi)qj + bi(qi − qj)− ξiqi

s.t. qi + qj ≤ d (6)

Rearranging with respect to qi and qj leads to a more straight-
forward expression:

ui(qi, qj , s
i) = (rji(1− νi)− bi) qj + (bi − ξi) qi

s.t. qi + qj ≤ d (7)

where by analogy between (5) and (7), f i = (rji(1− νi)− bi) qj
and hi = (bi − ξi) qi.
The definitions of f i and hi in (7) are intuitive; a node
i tends to choose a long fraction of time for transmission
(i.e. qi) if there are a significant number of packets cur-
rently occupying its buffer space (represented by bi) and/or
its consumed energy reserve is low enough to transmit more
objects. In line with this argumentation, node i is willing
to accept data objects from node j if node i: 1)has enough
buffer space, 2)it realizes that the the other party has inter-
esting data objects, and/or 3)node i is starving due to not
being satisfied during the previous interactions with other
nodes. We emphasize that the utility function in (7) is rep-
resentative, hence can be redefined with respect to the ap-
plication under investigation.
The generic game theoretic framework described above can
be further customized based on the target technology in use
and also the user preferences. In a 3G network with memory
rich user devices, bi is presumably large and thus the energy
parameter (ξ) will act as the major driving factor influencing
the strategy of a node. On the other hand, with technologies



lacking an energy constraint, e.g. Vehicular Ad hoc Net-
works (VANETs), the available energy reserve is large most
of the time and a node’s transmission is only restricted to
the available amount of data objects and the dwelling time
d. To incorporate these flexibility into the model, we define
threshold parameters bth and ξth and redefine bi and ξi as
follows:

b̂i =

{

bi
bth

bi < bth
1 o.w

(8)

ξ̂i =

{

ξi
ξth

ξi < ξth
1 o.w

(9)

In devices with strict buffer or energy constraints, smaller
values of bth and ξth will be preferred by the user. This
settings will also enable nodes to become generous or con-
servative in data dissemination process depending on their
current state and the values of threshold parameters.
A further step towards full characterization of the proposed
game theoretic framework described by (7) is to investigate
scenarios emerging with respect to selfish and cooperative
behaviour of nodes.

3.3.1 Non-Cooperative Game Scenario
To identify the Nash equilibria of the game defined by (7),

we find the mutual best response strategies of the nodes.
Fixing the strategy of node j at any qj , the best response
strategy qi of node i is only dependent on hi. Thus the
best response strategy can be found by maximizing hi while
taking into account the constraint qi + qj ≤ d. This yields:

qi =

{

0 βi < αi

d o.w
(10)

where αi = rji(1 − νi) − b̂i and βi = b̂i − ξ̂i. Applying the
same argument to node j, the best response qj is obtained
as:

qj =

{

0 βj < αj

d o.w
(11)

where αj = rij(1 − νj) − b̂j and βj = b̂j − ξ̂j . Combining
(10) and (11), the set of equilibria existing in the game are
obtained: (q∗

i ,q
∗
j ) = {(0, 0), (0, d), (d, 0), (d, d)} Obviously,

the last equilibrium (d, d) is not feasible since it violates
the game constraint. This is in fact the sole case when an
actual competition between nodes takes place. However, due
to the infeasibility of the equilibrium, no node benefits from
the competition. We tackle this situation in the context of
a bargaining problem in next section.

3.3.2 Cooperative Bargaining Scenario
In cooperative games, players (in our case, meeting nodes)

try reaching an agreement on the splitting of a resource
that yields mutual advantage. In this case, the resource is
the amount of time available for transmission, i.e. dwelling
time d. A player i has its own utility function ui(qi, qj , s

i)
that can be derived from the allocated resource and it also
has a minimum desired utility

(

ui
0(qi, qj , s

i)
)

, termed the
disagreement point. The disagreement point is the mini-
mum utility that each user expects to accrue by participat-
ing in the game without cooperation. Thus, it is safe to
assume that the initial desired resource is at least guar-
anteed for each user in the cooperative game. Assume,

U =
{(

ui, uj
)}

⊂ R2 is a feasible utility set which is con-
vex, non-empty, closed and bounded. Also, assume U0 =
{(

ui
0, u

j
0

)}

⊂ R2 be the disagreement point. The pair (U,U0)
together describes the bargaining problem. We denote by B
the subset of all rational and Pareto optimal pairs in region
U . Pareto optimal points among players are points such that
it is impossible to discover other points resulting in strictly
larger advantage for the two players simultaneously.
Definition 1 (Pareto Optimality): In a two-player game with
players i and j, a utility pair

(

ui, uj
)

⊂ R2 corresponding

to a resource allocation pair (qi, qj) if for each
(

ûi, ûj

)

∈ U ,
(

ûi, ûj

)

≥
(

ui, uj
)

implies
(

ûi, ûj

)

=
(

ui, uj
)

.

Definition 1 implies that there may exist an infinite num-
ber of Pareto optimal points in the game. Hence, selection
criteria are needed for the bargaining solution in order to
identify a Pareto optimal point which is in the best interest
of both players. Different bargaining solutions provides dif-
ferent criteria in terms of optimality and fairness for different
bargaining problems. Nash Bargaining Solution (NBS)[12]
and Kalai-Smorodinsky Bargaining Solution (KSBS)[8] are
the most popular bargaining solutions used in the literature
for different application domains. These solutions differ in
several ways; KSBS preserves all the axioms of the NBS
except the independence of irrelevant alternatives that is re-
placed by the axiom of individual monotonicity. This axiom
can be used to solve application specific problems. For in-
stance, it might be necessary to improve the quality of some
selected players (e.g., players transmitting more important
content) by allocating them additional resources. The KSBS
does not impose restriction on convexity of feasible utility
set, while the convexity is mandatory for a Nash bargaining
solution to be applicable. Moreover, the KSBS provides dif-
ferent types of fairness as opposed to the Nash bargaining
solution. As we avoid to be bounded to a specific utility
function and utility set and also due to the possible fairness
requirements, we opt for KSBS as our choice of bargaining
solution throughout this paper.
As the first step towards developing the KSBS for the game
problem defined by (7), we identify the Pareto frontier points
forming the bargaining set B. A Pareto frontier point in this
game is the pair

(

ui, uj
)

of utilities corresponding to a fea-
sible resource allocation (qi, qj) such that qi + qj = d. We
solve (7) for qi and qj as functions of ui and uj and obtain
the bargaining set B:

B =
{(

ui, uj
)

| qi
(

ui, uj
)

+ qj
(

ui, uj
)

= d

s.t ui and uj > 0
}

(12)

Assuming that each node is aware of its desired utility, the
KSBS solution must satisfy the following equation [16]:

u
∗ = u0 + k∗ (umax − u0) (13)

where u∗ =
(

(ui)∗, (uj)∗
)

is the Kalai-Smorodinsky solu-
tion, k∗ is the maximum value of k such that u∗ ∈ U , and
umax =

(

ui
max, u

j
max

)

≥ u0 specifies the best alternative
(or the desired utility pairs) in U for each player. From
(13) and recalling that u0 = (0, 0) it can easily be verified
that ui

ui
max

=
uj

u
j
max

. Thus, the KSBS is the intersection of

bargaining set B described by (12) and the line S defined



as:

S =

{

(

ui, uj
)∣

∣

∣

ui

ui
max

=
uj

uj
max

s.t ui and uj > 0

}

(14)
Setting ui = kui

max, u
j = kuj

max, and substituting in (12)
determines k, and hence u∗ =

(

(ui)∗, (uj)∗
)

. Correspond-

ingly, qi and qj are obtained by applying (ui)∗ and (uj)∗ to
(7).
The fairness criterion for the meeting nodes should also be
fulfilled during a data object exchange. Considering the
stochastic nature of the communication channel which may
cause disruption during data exchange, a scheduling mecha-
nism similar to Weighted Fair Queuing (WFQ) is employed
to maintain fairness at all time during data exchange.

3.4 Similarity of Individual and Social Infor-
mation Interests

Parameter rij (and similarly rji) in (7) plays an important
role in the proposed game theoretic model of node interac-
tion, since it determines the degree of a node’s willingness for
cooperation. Recall that we defined rji (rij) as the amount
of similarity between node j’s (i’s) SIV and node i’s (j’s)
IIV. Also recall that data objects in a node are weighted
and ranked for forwarding according to SIV and the corre-
sponding SWV measured by the node. It follows that a high
rji can be interpreted as a high probability that node j is
carrying a number of objects in top positions of its buffer
that are likely to be of interest to node i, thus giving node
i enough motivation to receive those objects.
To calculate rji, we assume that node i shares its pair (IIV
, IWV) with node j during the meeting incidence before
the game starts. Then node j measures the similarity be-
tween node i’s IIV ranked with respect to IWV and its own
SIV ranked using SWV. Thus, the entire process can be re-
duced to the similarity measure of two ranked vectors. As
per measure techniques [3, 19], the vectors subject to com-
parison here are generally disjoint and of non-uniform size.
Furthermore, the similarity of the two vectors in positions
with higher ranks is deemed to make a larger contribution
to the overall measure. Such unique measurement require-
ments prevent direct application of the existing similarity
measure techniques. Most relevant to our case is [19], where
an indicator termed Ranked-Biased Overlapping (RBO) is
calculated as the similarity measure of two infinite vectors.
RBO of two vectors S and T is defined as:

RBO(S, T, p) = (1− p)

∞
∑

d=1

pd−1Ad (15)

where Ad is the degree of overlapping at depth d of the
vectors and 0 < p < 1 is a constant devised to assign an
overlapping contribution proportional to the position in the
vectors where overlapping occurs. In this sense, RBO is
classified as a top-weighted technique. On the other hand,
RBO is classified as an equal-size similarity measure, since
the size of both vectors are assumed to be infinite. The
latter characteristic of RBO hinders its direct applicability
to our case. The main reason is that the overlap weights in
(15) (i.e. (1−p)pd−1) form a geometric series with their sum
converging to 1 as the depth d approaches ∞. However, in
our case, we deal with finite size vectors, thus the weighting
scheme in (15) cannot be applied. Furthermore, in our case
the vector sizes are not equal which implies a different simi-

larity measure than RBO. Following this, we propose a new
similarity measure which copes with the drawbacks of RBO
while keeping its top-weighted feature intact.
Assume that the lengths of node j’s SIV (and SWV) and
node i’s IIV (and IWV) are denoted by m and n, respec-
tively. It follows that m ≥ n. This is supported by the
fact that the nodes exchange their IIVs on a meeting inci-
dence and update their previous SIVs with respect to the
received IIV from the other party. Thus, the updated SIV
in a node is at least as long as the other party’s IIV. We
are also aware of the facts that IWV in a node i determines
the relative importance of attributes contained in the node’s
IIV and the sum of weight elements in IWV is 1. Likewise,
the relative importance of attributes in SIV are determined
by weight elements in SWV and the sum of weight elements
of SWV is 1. These features imply that the attribute weight
elements maintained in node i’s IWV and node j’s SWV are
good candidates for position-based weighting of the similar-
ity measure. In other words, using the weight elements in
IWV and SWV enables incorporation of the notion of top-
weightedness in the similarity measure technique. Taking all
these into consideration, we propose the following expression
to calculate rji:

rji =

argmax
k

(

pk
n
∑

d=1

(

IWVd + SWVk+d

2

)

A (IIV1:d, SIVk:k+d)

)

s.t. 0 ≤ k ≤ m− n (16)

where k is the number of shifts applied to the smaller vec-
tor, IWVd and SWVk+d are the weight elements of IIV
and SWV at attribute indexes d and k + d, respectively.
IIV0:d and SIVk:k+d are the subset of attributes located
at indexes 1 to d of IIV, and k to k + d of SIV, respec-
tively. We apply the arithmetic average of IWV and SWV
as the overlapping weight. It is straightforward to show

that 0 ≤
∑n

d=1

(

IWVd+SWVk+d

2

)

≤ 1, thus the similarity

measure is normalized. Generally, any normalized combina-
tion of IWV and SWV which also preserves the top-weighted
property can be applied to (16). Figure 2 depicts a phys-
ical interpretation of the proposed similarity measure with
p = 0.7. In this figure the maximum similarity is achieved
after one shift and rji = 0.1204.
We also apply (16) as a generic similarity measure of disjoint
vectors to calculate the relevance between the data objects
in a node’s cache and the social information view of the node
represented by (SIV SWV) pair.

Figure 2: Similarity measure of individual and social

interests. With p = 0.7 and A = [0, 1/3, 2/4, 3/5], rji =
0.1204 is obtained at k = 1.

4. EXPERIMENTAL RESULTS



Table 1: Simulation Parameters
Ω d(sconds) p T (hours) δ bth ξth
6 1.2 0.8 5 10−2 0.7 0.2

The model introduced in this paper represents a generic
capstone architecture, allowing specific dissemination strate-
gies to be realised by extending the generic model. There-
fore, we carried out numerical studies to validate that the
model behaves correctly according to basic elements of a con-
tent dissemination network, allowing such extensions to be
realised. We focus on structural and behavioural elements
to validate the proposed model. To validate the structural
element, the impacts of the size of communities and the
meeting pattern of nodes on the outcome of the content dis-
semination process were addressed. To perform validation
with respect to the behavioural element, we addressed the
impacts of strategies chosen by nodes as well as the shift in
nodes’ interests on the dissemination process. Performance
aspects are left for the evaluation of such specific strategy
extensions. For this reason, our studies are independent of
performance considerations such as mobility rates and pat-
terns, probabilities of successful transmissions etc.
We implemented a discrete event simulator in MATLAB to
simulate meetings. Nodes were divided into separate groups
where nodes in a group were assigned a subset of similar
information attributes at the top of their interest vectors
and the rest of a node’s information attributes were chosen
randomly and assigned to random positions in the inter-
est vector. Different groups had different sets of attributes
at the top of their nodes’ interest vectors. The grouping
scheme further allowed us to achieve high level of flexibil-
ity in representing various network conditions by defining
custom meeting patterns inside and between nodes’ groups.
Similar to the node grouping, we also grouped the informa-
tion objects with respect to the contained information types
(i.e. attributes). The objects’ attributes were assigned in
a similar way to nodes’ attributes. Each object group was
targeted to a node group. Depending on the objectives of a
simulation scenario, different number of groups were used.
Throughout the simulations we assumed the total number
of unique attributes (Ω) in the network to be 6. The object
buffer in each node was set to a size of 1000 objects, and the
attribute weight clusters used for popularity measurement
in a node had a size of 4. Packet time and energy usage
per packet were fixed to 0.3 second and 10−3, respectively.
Table 1 shows the remaining simulation parameters.
Figure 3 demonstrates the behaviour of the model in re-

sponse to differences in node group sizes. The meeting rates
of all nodes are identical. The x-axis represents the num-
ber of iterations and can be interpreted as the number of
hours, days, or other unit used. The y-axis represents the
penetration rate of objects of different types targeted to dif-
ferent nodes’ groups. Figure 3(a) addresses a scenario where
a weak majority exists in the network. Two groups of nodes
are defined with sizes 51 and 49 nodes. The nodes in the for-
mer group are mainly interested in attributes 1 and 2 while
the nodes in the latter group are mostly interested in at-
tributes 3 and 4. Two groups of objects of equal size 50 are
shared among two source nodes, each chosen from a group of
nodes. A group of objects are of interest to a group of nodes;
i.e. at the top of the nodes’ attribute vectors, group 1 have

attributes 1 and 2 and group 2 have attributes 3 and 4. As
shown in Figure 3(a), the content of interest to the majority
group (with size 51) is disseminated faster than the content
targeted to the minority (with size 49). This scenario veri-
fies that the popularity measurement and object forwarding
model is capable of majority oriented dissemination even in
presence of a weak majority. Figure 3(b) demonstrates a
strong majority scenario. Three groups of nodes with sizes
30, 10, and 10 are defined and the interest vectors of the
nodes in these three groups consist of attribute pairs (1,2),
(3,4), and (5,6) respectively. 540 objects from three differ-
ent types are initially shared by three sources selected from
these groups. As expected, the group with a larger popu-
lation dominates the community and receives its objects of
interest faster. As the remaining two minority groups have
identical sizes, they receive their objects of interest at iden-
tical rate as expected. In Figure 3(c) the three groups have
equal sizes. Since the meeting rates of the three groups are
also identical, no single group has an advantage and thus the
content dissemination is performed uniformly. Figure 3(d) is
an extension of the scenario demonstrated by 3(b). In this
scenario, the group sizes are set to 30, 20, and 10 nodes.
The result of this scenario leads us to conclude that in case
of identical meeting rates, the dissemination priority of con-
tents targeted to different node groups is identified based
on the size of groups. It is worth mentioning that interpre-
tation of network structure with respect to its physical and
logical elements yield different number of communities in the
above scenarios. The similar visit patterns of nodes implies
for the presence of only a single community in all scenarios,
whereas the content popularity distribution in the network
implies for 2, 3, and 3 communities in scenarios (a), (b),
and (c) respectively. The conclusion to be derived here is
that given a uniform physical network structure, the dissem-
ination behaviour is driven by the logical structure formed
based on content popularity distribution and the network
tends to serve majority communities with high priority.
Following this, we study scenarios where the meeting pat-

terns of nodes play a key role in the outcome of content
dissemination. We selected two scenarios of this kind as
demonstrated in Figure 4. In these scenarios the groups were
of identical sizes and we assigned a larger intra-group meet-
ing rate to nodes in one of the groups whereas the meeting
rates for the remaining groups and the inter-group meet-
ings were identical. This setting only holds for a warm up
period where nodes build their view of information social
popularity. In the content dissemination phase we assigned
identical visit rates to all groups. This approach enabled us
to evaluate the function of the social popularity measure-
ment component of the model. It is observed in Figure 4(a)
that the content dissemination behaviour in this scenario is
comparable to the scenario depicted in 3(b). This leads us
to conclude that meeting patterns also contribute to the for-
mation of a majority, thus forcing others to dedicate more
resources to disseminate the content of interest to the major-
ity. In the second scenario in this experiment, we introduced
a degree of isolation in one of the two groups; i.e. a subset of
nodes in a group never visits the others in the same group.
As in the previous scenario, we defined this setting only for
a warm up period. As shown in Figure 4(b), the content of
interest to the isolated group is disseminated at a low rate.
The intuition behind this phenomena is that the nodes in an
isolated community will have a weaker belief in their social
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(a) group 1: high popularity, group 2: low popularity
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(b) group 1: high, group 2 & 3: medium popularity
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(c) groups with similar popularity
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(d) group 1: high, group 2: medium, group 3: low
popularity

Figure 3: Impacts of content popularity distribution

on the content dissemination

interests compared to the communities with strong bonds.
This motivates the isolated nodes to join the non-isolated
ones, forming a local community and contributing to the
dissemination of the content they favour.
We investigate the impacts of social and individual oriented
forwarding strategies on the outcome of content dissemina-
tion in Figure 5. The solid curves show the penetration of
object groups when the ordering of information objects are
determined based on the individual interests of the encoun-
tered party and the dotted curves demonstrate the social
oriented object forwarding. As in the scenario in Figure

3(d), three groups of nodes of sizes 30, 20, and 10 and iden-
tical meeting rates are configured. According to Figure 5,
an individual oriented strategy causes the dominance of ma-
jorities on the content ordering to be reduced in favour of
minorities and to be only proportional to the size of nodes
with similar interests.
Finally, we address the impact of nodes’ shifting interests
on the content dissemination process. Two groups of nodes
with sizes 12 and 10 and identical meeting rates were estab-
lished. 2000 objects are initially shared by two sources se-
lected from the two groups. After 10 iterations, 2 nodes from
the larger group change their interests and become members
of the smaller group. According to Figure 6, in the first 10
iterations, the first group becomes dominant and their tar-
geted object group gains higher penetration. After the shift
in interest, the second group becomes dominant and the dis-
semination priority changes as a result. The relatively higher
fluctuations of the curves in 6 (compared to previous scenar-
ios) are attributed to the elimination of the warm up period
which in turn introduce some degree of randomness in the
popularity measurement model.
As a general observation of all simulation scenarios, the pace
of content dissemination decreases when the content density
in the network increases. Such a finding is agreement with
caching and replication objectives in DTN.
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(a) group 1 and group 2 objects are interested by groups of
nodes with high and low visit rates, respectively.
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Figure 4: Impacts of non-uniform visit patterns on

the content dissemination

5. CONCLUSION
We proposed a generic framework intended as a capstone

architecture incorporating various content dissemination at-
tributes. This framework, while being independent from the
underlying network architecture and the mobility and meet-
ing patterns among nodes, enables a typical node to dy-
namically build its view of the information interests of other



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Iteration

O
b
je

ct
 P

en
et

ra
ti

o
n
 (

%
)

G1−Social

G1−Individual

G2−Social

G2−Individual

G3−Social

G3−Individual

Figure 5: Comparison of social and individual ori-

ented content dissemination strategies
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Figure 6: The impact of shift in nodes’ interests

participating nodes. Such capability coupled with the inter-
action model of meeting nodes facilitate the realization of
various content dissemination strategies while fulfilling the
individual nodes constraints in terms of buffer space, en-
ergy, etc. We numerically validated the model with respect
to structural and behavioural elements of content dissemina-
tion network, where we showed that the model well captures
the essential network properties such as dynamic composi-
tion of nodes’ communities and in the meantime reacts to
the shift in information interests of nodes.
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