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1. Introduction

We shall develop a new index reduction technique for differential-algebraic
equations
F(t,z,2) = 0. (1.1)

We assume that the problem is solvable, Brenan et al. (1989), with a unique,
smooth solution when supplied with an appropriate number of consistent ini-
tial conditions. The tndez of the problem equals the minimum number of times
that all or part of (1.1) must be differentiated with respect to ¢ in order to
determine £ as a continuous function of # and t, op. cit., and is assumed to
be constant along the solution. In addition, F is assumed to be sufficiently
differentiable to allow the proposed index reduction technique. For alternative
definitions of the index, see Hairer et al. (1989) and Gear (1990).

It is well-known that it is numerically difficult to solve a high-index DAE.
Index reduction methods provided in the literature, see e.g. Brenan et al.
(1989, p. 33), can be used as a remedy. However, it is often less satisfac-
tory to solve the underlying ODE, or UODE, that has been derived from
the DAE through index reduction. The reason is that the set of solutions to
the UODE is larger than the corresponding set of solutions to the original
DAE; the algebraic relations of the DAE are only implicit in the UODE as
solution invariants. Unless linear, these invariants are generally not preserved
under discretization. As a result, the numerical solution drifts off the alge-
braic constraints, often leading to instabilities, Fiihrer and Leimkuhler (1991).
Consequently, so-called constraint stabilization techniques have been devised,
Baumgarte (1972), Gear et al. (1985), Alishenas (1991).

To avoid such difficulties, one may try to obtain a low-index formula-
tion, with a solution set identical to that of the original problem. This can
be achieved by augmenting the system as the index reduction proceeds: all
original equations, and their successive derivatives are retained in the process.
The result is an overdetermined but consistent index 1 DAE. Like invariants,
however, consistency is generally lost when the system is discretized. There-
fore special projection techniques are required for the numerical solution, see
e.g. Fiihrer and Leimkuhler (1990) or Eich et al. (1990).

The index reduction technique proposed in this paper, which was out-
lined in Mattsson and Séderlind (1990), overcomes the latter complication by
introducing a new dependent variable for each new equation generated in the
reduction process. This generates an augmented, determined index 1 DAE
from the original problem. The technique is applicable to large classes of
problems and can be practically implemented, using symbolic manipulation
or automatic differentiation, Rall (1981).

We shall outline our method in a simple example. A general nonlinear
DAE can be locally transformed to an index 1 or index 0 problem by means
of differentiation of equations and nonlinear coordinate changes. The linear
problem below, however, is much simpler. Consider the DAE problem

t=y (1.2a)
y==z (1.2b)
z = f(t). (1.2¢)

This is an index three “derivative chain” with solution z = f(t), y = f(t)
and z = f(t). It may be thought of as prototypical for prescribed-trajectory
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problems in mechanics, where one wants to calculate the (usually generalized)
forces required for the system to accomplish the desired action. In such an
application z, y and z would represent position, velocity and force per unit
mass, respectively, and f(t) is the prescribed trajectory for the system.

A sufficient condition for the index to be at most 1, is that we are able
to solve for the highest order derivatives in the system, i.e. ¢, § and z. This
is obviously impossible in (1.2). Differentiating (1.2a) once and (1.2c) twice
yields, after reordering equations and variables,

i = f(t) ' (1.2¢)
y=42 (1.2a')
2=y, (1.2b)

which is index 1. Here (1.2a') denotes the derivative with respect to ¢ of (1.2a).
Now, consider the overdetermined but consistent system obtained by aug-
menting the original system by the successive derivatives of (1.2a) and (1.2c):

z = f(t) (1.3¢c)
& = f(t) (1.3¢")
i = f(t) (1.3¢")
y==2 (1.3a)
y=£ (1.3a")
z=17. (1.3b)

For each differentiated equation appended to the original system, we need one
“new” dependent variable to make the augmented system determined rather
than overdetermined. This is achieved by replacing one derivative from each
differentiated equation by a new algebraic variable. Thus we eliminate & by
substituting a dummy derivative " for & wherever it occurs in the system
(1.3). Although z” = &, the dummy derivative is a purely algebraic variable
and is not subject to discretization. Similarly we replace £ by z’ and g by y'.
This yields the augmented but determined system

z= f(t) (1.4a)
g’ = f(t) (1.4b)
2" = f(t) (1.4c)
y=2' (1.4d)
y =2" (1.4e)
z=y. (1.4f)

This purely algebraic (hence index 1) system is mathematically equivalent to
(1.2). No initial conditions can be imposed, and no discretization is required
for the numerical solution. The system is nonsingular since it is possible to
solve algebraically for the six unknowns z, z', ", y, ¥’ and 2. Although
this example is rather special, it demonstrates the important aspect of the
new reduction technique, that the system can be solved numerically without
discretizing all derivatives.

In the following sections we shall describe how to proceed in the gen-
eral case. We first show how to obtain the appropriate differentiated system
and then how to select dummy derivatives to make the augmented system
determined. We shall also deal with pivoting of the selected set of dummy
derivatives, before presenting numerical results.



2. Differentiation and Permutation of Equations

For notational convenience, we shall rewrite (1.1) as an operator equation
Fz=0. (2.1)

The dependent variables may appear algebraically or differentiated up to ¢
times. We assume that for some p > ¢ the IR™-valued function z € CP.
Similarly, Fz € CP~1 is an IR"-valued function.

Let D = d/dt denote the differentiation operator, and let » € IN® denote
a multi-index v = (v1,v3,...,¥,)T. Then we define D¥ = diag(D",..., D"*).
We let u(F) € IN" denote a multi-index such that D*)z are the highest order
derivatives appearing in the DAE, i.e. z.(i"" ) is the highest order derivative of
z; that appears in Fz = 0.

Structural properties and permutations

Following Brenan et al. (1989, p. 21), we call a property of a matrix a generic
or structural property if it holds a.e. in a neighborhood of the particular values
of the nonzero entries of the matrix. A matrix A is structurally nonsingu-
lar if and only if there exists a permutation P; such that P, A has a nonzero
diagonal, often referred to as a mazimum transversal or an output set. A struc-
turally singular matrix is also singular, but the converse is not true. Similar
definitions for a nonlinear system g(v) = 0 are obtained by requiring that the
system’s structural Jacobian can be permuted to obtain a nonzero diagonal.
Likewise, we call the DAE problem (1.1) structurally nonsingular if there is an
output set when we consider z to be unknown and make no difference between
algebraic and differentiated appearances of z, i.e. differentiation is regarded
as an algebraic operation.

We shall make use of Block Lower Triangular (BLT) partitioning in order
to decompose a problem into subproblems. By means of a simultaneous row
and column permutation of P; A the matrix is transformed into QT P, AQ =
PAQ, a BLT matrix with the same nonzero diagonal elements as P; A. Output
assignment and BLT partitioning are standard techniques in sparse matrix
analysis, cf. Duff et al. (1986).

Differentiations

For a structurally nonsingular DAE, Fz = 0, it is always possible to find a
differentiated problem Gz = DYFz = 0 with v finite, such that the differ-
entiated problem is structurally nonsingular with respect to its highest order
derivatives D*(9)z. Pantelides’s algorithm, cf. Pantelides (1988), intended for
finding consistent initial values for a DAE, establishes the minimum number
of times each equation has to be differentiated, i.e. it finds the minimal v(F).
His algorithm also constructs the output set of interest automatically, and in
the structural analysis step we need only construct the desired BLT partition.
By definition the problem Fz = 0 is index 0, if it uniquely determines the
highest order derivatives D#(F)z, with all pj(F) > 0, as continuous functions
of t and lower derivatives. If the same condition holds with some p;(F) = 0,
it is index 1. The fact that it is not possible to solve uniquely for the highest
order derivatives does not imply that the index is greater than one: consider
the simple index 1 problem
z+y=1
z—y=0.



Thus, Pantelides’s algorithm may call for an unnecessary differentiation step
(here it would suggest differentiating the second equation once, resulting in an
index 0 system) but it is simple to remove such superfluous differentiations.
Whether this should be done or not depends on if one prefers to be able to
solve for the highest order derivatives or to reduce the index to one while
introducing as few new variables as possible.

In our algorithm below, we must be able to solve for the highest or-
der derivatives. Should a singularity be detected (in which case the original
problem could actually be singular), we use the differentiated equations to ma-
nipulate some of the original equations and restart the reduction procedure
for the modified problem.

The index reduction procedure for F = 0 consists of the following steps:

Differentiation, Permutation and Index Reduction Algorithm

1. If the problem is structurally singular then return an error message.

2. Differentiation. Use Pantelides’s algorithm to obtain
a. a vector ¥(F) € IN",
b. a differentiated problem G& = F¥z = 0 with F¥ = DYF)F
c. an output set for ¥z = 0 with respect to its highest order derivatives
D#(9)z as unknowns.

3. Permutation. Since PF¥Q = PD*F)PTPFQ = DPYF)PF(Q, BLT par-
titioning with respect to unknowns D9z yields the permuted

a. undifferentiated problem Hy = 0 with = PFQ and y = QTz.

b. differentiated problem HF¥y = 0 with H¥¥ = PFQ, i.e. v(H) =
Pv(F), and this problem is BLT with respect to its highest order
derivatives DQT“(g)y.

4. Indez Reduction. Select derivatives to be replaced by dummy derivatives,
blockwise as indicated by the BLT partition. If unable to select one

dummy for each differentiated equation, manipulate original equations
using information from differentiated equations and restart at step 1.

We may without loss of generality view our original problem Fz = 0 as cor-
rectly permuted initially. In the following section we can therefore concentrate
on the central index reduction step, i.e. how to select dummy derivatives.

3. Selection of Dummy Derivatives

Consider the differentiated problem Gz = F¥z = 0, in BLT form. For nota-
tional simplicity, let g; = 0 represent the i:th block of Gz = 0, let z; denote
the vector of highest order derivatives of the unknowns associated with that
block, and note that dimz; = dimg;. Let f; = 0 be the corresponding block
of the original problem Fz = 0. We make the following assumptions:

Al. Gz = F¥z = 0 is in BLT form.
A2. The equations in each block have been sorted in descending order with
respect to number of differentiations, i.e. v1(g;) > v2(g:) > ...

A3. The Jacobian 0g;/0z evaluated at the actual point has full rank (the
singular case will be treated later).



To obtain an equivalent index 1 problem, the reduction algorithm constructs
a sequence of ¥,(g;) + 1 problems indexed by a superscript [j]:

Index Reduction Algorithm

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Initialize:
o
[1](2[1]) — gi(z),
G = 0gM/8211  8g;/62
je< L

— 2,

If g[j] = 0 has no differentiated equations, go to Step 6.

¥ y["'1 0 has m differentiated equations, let hE-ﬂ = 0 denote its
m first equations. The Jacobian H .-[ﬂ = Bthﬂ / 3z£‘ﬂ then equals the

first m rows of Gy], due to the sorting with respect to number of
differentiations.

Next, select m columns Iy, ...,l,, of H '-[j] to make a square nonsingular
matrix M; 1 Selected columns indicate derivatives to be replaced:

s

from the m equations h[J] = 0 we select the m components of Z;

( z 11 - '[-;”]m )T to be replaced (in Step 6) by dummy derivatives.
Now determine how to use the predecessor of h?] = 0, denoted by
D‘lhg’] = 0, thus omitting the last differentiation. New candidates

z.[j 1 for possible replacement are D'lii[j ], i.e. derivatives of one order
less than those selected in Step 4. The components of illj] are all
highest order derivatives in h[j] = 0 and differentiated at least once.
Hence they represent derlvatlves of the original unknowns z lmplymg
that D137 is well defined. The Jacobian ag,[’“]/a 1) M[J]

will be sht;wn later.

Thus, set
g‘[.‘i+1] — D—lhEJ']’
z.[j'l'l] — D—lﬁ.-[j],
)
j — j + 1’

and repeat from Step 2.

Let k; = j. We now obtain an index one formulation of f; = 0 by
collecting all original as well as all differentiated equations:

g,[k‘]

In all equations, introduce a unique dummy derivative for each deriva-
tive selected in Step 4 (i.e. the variables given by z[k] ¥ '[1]) to

"2 s
replace that derivative wherever it occurs. The system now consists
of the original equations f; = 0 and the sequence of differentiated
equations leading to g; = 0. The unknowns are the original ones and

the newly introduced all-algebraic dummy derivatives. (]

7



Before proving that the algorithm converts f; = 0 to an equivalent index 1
formulation, let us first consider its application to a simple linear problem.

EXAMPLE 1
Let our problem Fz = 0 be defined as
1+ 22+ us(t) =0 (3.1a)
z1+zatzs+uxt)=0 (3.1b)
3 +z4+ug(t)=0 (3.1c)
28, + E3+ 3+ 24+ ug(t) =0 (3.1d)

where the u,(t) are known forcing functions. The differentiated problem
Gz=0is

&1+ 2+ 1(t)=0 (3.1a")

&1+ &2+ &3 + 1a(t) =0 (3.1p")

1+ 24+ us(t)=0 (3.1c")

281+ Z; +E3+ 24+ us(t)=0 (3.1d)

which was obtained by differentiating (3.1a) and (3.1b) twice and (3.1c) once.
The vector of highest order derivativesin Gz = 0is 2y = (1 23 23 24 )T.
Block triangularization results in one block, g;(z) = Gz, and the differen-
tiated problem is index 1 since the Jacobian with respect to the highest order
derivatives o
1 T2 T3z T4
@) /1 1 0 0
o1 ol — 11 1 1 0
8z ' ()Y|lo o0 o0 1
(d) 2 1 1 1
is nonsingular. This matrix is set up in Step 1. Throughout the steps of the
index reduction, we indicate at the Jacobians which equations and variables
are presently being considered.
We have three differentiated equations, and Step 3 gives

By &y &3 &4
@) /1 1 0 0

A= )1 1 1 o
(@\o 0o o0 1

At Step 4 we have two possibilities to select a nonsingular submatrix of H P];
columns 1, 3 and 4 or columns 2, 3 and 4. Let us take the first alternative:

By #3 &4
@) /1 0 o

M=) [1 1 o0
@y \o o 1

Thus we use (3.1a"), (3.1b") and (3.1c’) to replace the derivatives #;, #3 and
#4. Then, at Step 5 we prepare for the next cycle and consider the predecessor
of the present subproblem, omitting one differentiation:

1 B3 24

/1 0 o0
Gﬁz(m(l 1 0)
(c) \0O 0 1



Now j = 2 and we repeat from Step 2. Since we still have differentiated
equations, Step 3 yields

Ty &3 x4

w1 e Y)

At Step 4 we have to select the two first columns, and we obtain

T 3

Thus, we have to use (3.1a') and (3.1b’) to replace ;, and &3. Step 5 therefore

results in
1 I3

- )

Since there are no differentiated equations, we go to Step 6 and collect the
pieces. To get a simple and clear notation, we let zi denote the dummy
derivative that is substituted for £,, and similarly for other derivatives.

z1+z2+ui(t)=0 (3.2a)

1+ 22+ 23+ ult)=0 (3.2b)

i+ 22+ w(t)=0 (3.2a")

i +Eat+zy+u(t)=0 (3.2v")

1+ z4+us(t)=0 (3.2¢)

i+ &, +1ia(t)=0 (3.2a")

i+ iy +25 +ix(t)=0 (3.2b")

gy +zy +ua(t)=0 (3.2¢")

2]+ &2+ 25+ 2, +ua(t) =0 (3.2d)

The nine unknown variables are z,, z3, 2}, 23, ¢4, 27, 23, 24, and z, which
all are algebraic except for z; which appears differentiated twice.

The problem is now index 1, with the equations ordered as in Step 6. It
is BLT with respect to its highest order derivatives. The first block consists of
the equations from the last loop of the selection procedure which gave (3.2a)
and (3.2b) from which we can solve for z; and z3. The second block consists of
the equations from the second last loop which gave (3.2a’), (3.2b’) and (3.2¢)
from which we can solve 2, z§ and z4. The third and last block consists of
the equations from the first loop which gave (3.2a"), (3.2b"), (3.2¢’) and (3.2d)
from which we can solve z7, &;, z and zj. O

Proof of index reduction

We shall prove the crucial parts of Steps 4, 5 and 6.
Step 4: First we will prove by induction that one can select a nonsingular

matrix M.-[j] at Step 4. By assumption A3, GE}] has full rank. If G’Ej] has full
rank and there are differentiated equations, then H l_[ﬂ has full rank. Hence it is
possible to select a square nonsingular submatrix Mi[’]. Defining G‘[-J - M'-[J]
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then implies that GE-"" 1 has full rank. By induction it follows that it is possible
to select a full rank matrix M; 3] each time we arrive at Step 4.
Step 5: Next, we show the formula G[‘H'l] M; [ ot Step 5. It implies that
GEJ] = 89.['1]/ az,[’]. Consider the element p, ¢ of GEJH]. We have

tl’

i+1] _ g, li+1] [.1+1] —14l4] -1,[4]
Gl',pq = 39,-'? /a =4D~ /3D
and for the same element of M,-['ﬂ, we have
M{J] — Bh[’]/a”[ﬂ [J]/a [J]

The formula G?H] = Mi-[j] now follows directly from the fact that for any
differentiable function e(t, v) it holds fe(t,v)/dv = 0¢é(t,v,v)/d%.

Step 6: We shall now show that the problem generated by the algorithm
is index 1. We first consider the reduction of a block. The equations are

g¥(2F) = 0 with
[k-] [k )
[ [1] l [ [1] ]

Considered as an algebraic problem g7 (z¥) = 0is BLT, where we can take the
jth block to consist of the equations g'rJ = 0 with the unknowns z[J] Since the

Jacobian ag[’] / az[’] G[J] is nonsingular, we can solve for all the unknowns
(4]

z*. The variables of Z-[ 7| are of two categories. First, ;" contains the variables

2,[’] selected for replacement in Step 5 of the jth loop. The remaining variables
clearly represent highest order derivatives of the old variables  in the problem
generated by the algorithm. Thus z* contains all the highest order derivatives
of the problem generated by the algorithm, and since we can solve for them
the problem is at most index 1. .

Finally consider the complete problem. Sort the block subsystems g,[’] =0
with respect to descending order of the index j, and with respect to descending
order of the index i. The unknowns z‘["’] = 0 are sorted similarly. The resulting
problem is then BLT with nonsingular blocks. Consequently, the complete
problem is at most index 1. O

The original problem and the problem resulting from the algorithm are
mathematically equivalent in the sense that they have identical solution sets
in the original (undifferentiated) dependent variables z. Original algebraic
equations are still explicitly present. The advantage of the index reduction
technique proposed here is that it excludes some derivatives from discretiza-
tion; by treating the dummy derivatives as algebraic variables the problem of
inconsistency due to discretization is eliminated.

Removing superfluous differentiations

As was mentioned in Section 2, Pantelides’s algorithm differentiates some prob-
lems to index 0 and others to index 1. If the differentiated problem is index 0,
the number of dummy derivatives introduced can be decreased by reintroduc-
ing some of them as ordinary derivatives. This also reduces the total number
of equations accordingly. The procedure is to modify Step 6 in the following
way:

10



1. Do not include the equations of y[I] = 0 which are differentiated.

i
2. Do not replace the corresponding selected components z".'.ll] with dummy

derivatives, but replace them with the first order derivative of the repre-
sentatives for their predecessors, D“12|[1], some of which may be dummy
derivatives.

ExAMPLE 2

Let us again consider the problem discussed in Example 1. The differentiated
problem (3.1) is index 0, since it contains no algebraic variables. This implies
that we can obtain a smaller index 1 formulation by disregarding the most
differentiated equations, i.e. (3.2a"), (3.2b") and (3.2¢’). The corresponding
highest order derivatives #,, £3 and 4 are not replaced by dummy derivatives,
but with dz}/dt, dz}/dt and &4, respectively. The problem then becomes

1+ z2+u(t)=0 (3.3a)

21+ 22+ 23+ u(t)=0 (3.3b)

zy +23+u(t)=0 (3.3a")

ey + &2+ 23+ u(t)=0 (3.3v")

Ty +z4+ug(t)=0 (3.3c)

221 + &3 + 25 + &4 + ua(t) = 0. (3.3d)

The six unknowns are z,, =3, ], 23, z4 and z, which all are dynamic except
for the two algebraic variables z; and z3. The problem is index 1, since by
differentiating all but the last equation once, we obtain an index 0 problem.
a
This technique may also be applied to some problems that Pantelides’s
algorithm differentiates to index 1, viz. if the differentiated problem contains
index 0 subproblems. Such blocks may then be treated as in Example 2.

4. Pivoting of Dummy Derivatives

The algorithm described above assumes that the Jacobian with respect to the
highest order derivatives of the differentiated problem F*z = 0 is nonsingular.
If the Jacobian is singular, a more detailed analysis is required. It should be
noted that the index reduction algorithm given above transforms the original
system locally to index 1. Clearly, it could happen that the Jacobian becomes
singular along the solution trajectory. Such events may imply that the solu-
tion has a turning point, in which case the DAE model may be inappropriate
to account for the future evolution of the system. But turning points are not
the only possibility. The singularity may be due to a (locally) inappropriate
selection of dummy derivatives. Therefore, this selection must in general be
dynamic, i.e. we must be prepared to “pivot” the selection of dummy deriva-
tives.

EXAMPLE 3—The inevitable pendulum
Consider a planar pendulum of length L and mass m. In Cartesian coordinates
the equations of motion are

2?4+ -L=0 (4.1a)
mz +(A/L)z=0 (4.1b)
mj + (A/L)y+mg =0, (4.1c)

11



where g is the gravitational constant and ) is the force in the string; the
problem is index 3.

Applying Pantelides’s algorithm, the length constraint is differentiated
twice:

g2 +y?-L2=0 (4.1a)
22+ 2yy =0 (4.1a")
2zi + 222 + 295+ 292 = 0. (4.1a")

Thus, the differentiated problem is

223 + 2% 4+ 29§+ 252 = 0 (4.1a")
mi + (A/L)z =0 (4.1b)
mij + (A/L)y + mg = 0. (4.1¢)

The Jacobian J of the differentiated problem with respect to the highest order
derivatives (2 § A)Tis

2z 2y O
J=|m 0 =z/L

0 m y/L

Since det(J) = —2m(z? + y2)/L = ~2mL, the differentiated problem is index
1 if and only if m # 0 and L # 0. Assume that this is the case. The index
reduction algorithm gives

B g A
M =(a" (22 29 0).

Neither z nor y is necessarily non-zero for all times. Due to the length con-
straint, however, they are not simultaneously zero. We may therefore attempt
to obtain a “well-conditioned” MI[I] by choosing Mlm = (2z) when |z| > |y|
and M1[1] = (2y) otherwise.

Consider first the case |z| > |y|. Selecting F1[1] = (2z) implies that the

differentiated length constraint will be used to replace & and . The problem
is then transformed to

2?4y’ —L2=0 (4.2a)

2zz' +2yy =0 (4.2a")

222" + 222 + 2y + 25 =0 (4.2a")
mz" + (A/L)z =0 (4.2b)

my + (A/L)y+ mg = 0. (4.2¢)

When |z| < |y|, we select FI[I] = (2y), implying that the differentiated length
constraint will be used to replace § and y. Then we obtain the index 1 problem

g2 +y* - L =0 (4.3a)

222 + 2yy' =0 (4.3a")

2z 4 222 + 2yy" + 297 =0 (4.3a")
mz + (A/L)z=0 (4.3b)

my" + (A/L)y + mg = 0. (4.3¢)
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Changing the decision whether the equations (4.1a”) and (4.1a’) should be
used to replace £ and Z or 4 and y, can be interpreted as a pivoting operation,
and we refer to it at as dummy pivoling. From this example, it can be seen that
dummy pivoting corresponds to a (locally necessary) change of mathematical
models, cf. Leimkuhler (1989). Switching from one model to the other is a
simple operation, since in the augmented index 1 problem we solve also for
the dummy derivatives. Therefore, the initial values necessary to continue the
numerical integration with the new model are readily available. o

A very simple first approach to handle dummy pivoting is to make a
selection at the start and use the resulting equations as long as the numerical
DAE solver is able to function properly, and pivot only when necessary. In
general, however, it is preferable to pivot so that the matrices M;'[J] remain
well-conditioned. It is therefore desirable to have a rather close integration of
the index reduction method and the numerical DAE solver. This suggests that
index reduction computations should be incorporated into the solver, rather
than being considered as a separate preprocessing tool.

ExAMPLE 4—Lagrangian equations of motion
The Lagrangian equations of the first kind for a constrained mechanical system
are, written as a second order equation,

M(p)p = F(p,p) — GT(p)A (4.4a)
0= g(p), (4.4b)

where p is an n-vector representing the system’s position, M is the nonsingular
mass matrix, F' applied forces, and A is the m-vector of Lagrange multipliers
associated with the m constraints (4.4b), assumed to have a full-rank con-
straint matrix G(p) = 0g/3p. Thus the system has n — m degrees of freedom,
and the system of equations (4.4) is index 3. Two differentiations of the con-
straint equation results in

M(p)p = F(p,p) — G*(p)A (4.4a)
0 = g(p) (4.4b)
0=Gp (4.4b")
0 = Gp + Gp. (4.4b")

Here G = G'p. We can solve for the highest order derivatives $ and ), since
the regularity assumptions imply that GM ~1G7 is regular. Selecting dummy
derivatives implies choosing m dummies among the n variables p, and m among
P, using equations (4.4b’) and (4.4b”). Then we have a total of n + 3m equa-
tions, n + m original variables p and A, and 2m dummy derivatives (selected
elements of p and p).

It is also instructive to apply the index reduction algorithm to the corre-
sponding first order system

p=v (4.5a)
M(p)s = F(p,v) - G*(p)A (4.5b)
0= g(p)) (45C)

where the n-vector v represents velocity. Applying Pantelides’s algorithm now
requires also that (4.5a) is differentiated once, and as before, the resulting
differentiated problem is second order. Apart from the same dummies as
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those selected in (4.4), one will have to select n dummy derivatives v' = .
However, this variable merely accounts for a trivial action of substitution and
can immediately be eliminated. If a first order system is required, it can easily
be obtained after a few more similar operations; it is identical to the first order
system that can be obtained from (4.4). a

Let us finally comment the singular case. Then, if the index of the dif-
ferentiated problem is greater than one, it is possible to derive an equation in
which none of the unknown highest order derivatives appears. However, since
we need the whole sequence of differentiated equations, we shall manipulate
the original undifferentiated system so that the corresponding differentiated
problem has the desired structure with a nonsingular Jacobian.

EXAMPLE 5—A singular system
We consider the following problem, Brenan et al. (1989, p. 23):

z + ty = f1 (46a)
z+ty = fo (4.6b)

The problem is solvable and the unique solution is ¢ = f3 — #( fz - f),y=
fo — fi. Pantelides’s algorithm differentiates the second equation once and
yields

i+ty=f (4.6a)
z+ty+y=fo (4.6b")

It is not index 1, since it is singular in £ and y.

The approach is now to consider the most differentiated equations and
use them and their predecessors to eliminate variables in the other original
equations. Equation (4.6b’) depends on Z and g. Try to solve (4.6b) for z or
y. Solving for z, we obtain 2 = f, — ty and ¢ = fo — y — ty. Substitution into
(4.6a) yields y = fa— f1, in which neither £ nor § appears. Let this equation
replace (4.6a) and consider

y=Ff-f (4.7a)
z+ty= f2 (47b)

as the new original problem. The modified problem is then simpler than the
original problem. In this particular case, it is algebraic, hence index 1, and
can be solved immediately. a

The example above demonstrates a more difficult type of index reduction.
In contrast to the operations performed by the index reduction algorithm of
Section 3, problems having a rank-deficient Jacobian with respect to the high-
est order derivatives will also require that equations are solved symbolically
or semi-numerically.

5. Numerical Results

We shall now present numerical results for the pendulum problem of Exam-
ple 3 using the well-known solver DASSL. Brenan et al. (1989, pp. 150-157)
discusses the numerical solution for various formulations. The evolution of
the pendulum equations is computed for a short time interval covering less
than a full period. Here we are concerned with the stability and numerical
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drift of constraints and invariants, thus requiring simulations long enough to
reveal secular effects; in all cases the problem was run for well over a hundred
periods. In all the numerical results weuse g =1, m=1and L = 1.

In the discussion below, we follow the convention in Brenan et al. (1989)
that the positive direction of the gravitational force is opposite to the direction
of the y-axis in the Cartesian coordinate system. Note, however, that for their
numerical results to be correct, op. cit. pp. 165-157, we must assume that they
have accidentally switched the direction of the y-axis, cf. the obvious misprint
in the state-space equation (6.2.5) on p. 151.

The state-space form of the planar pendulum equations is

$+%sin¢=0 (5.1)

where 2 = Lsin¢ and y = —L cos ¢. This model will be used as a reference
model for comparing the numerical results.

Besides studying how well the length constraint is preserved in the numer-
ical solutions, it is also of a great interest to study the invariant total energy,
E, which is the sum of the kinetic energy and the potential energy. The “rest”
state (¢ = 0 and ¢ = 0) is taken as the reference level with E = 0. This gives

E = —T;qu'ﬁz + mgL(1 — cos ¢).

A numerical solution should preserve the energy and keep E constant within
numerical accuracy. The expression for the energy can also be used to calculate
the amplitude ¢ps of the oscillations.

We shall study two cases:

1. Small oscillations with $(0) = 0.1 and ¢(0) = 0.0 which gives the amplitude
¢ = 0.1, period time T' =~ 6.29 and energy E =1 — cos0.1.

2. Large oscillations with ¢(0) = 7/2 and ¢(0) = —1.0 (Brenan et al. (1989)
use these initial values) which gives the amplitude ¢pr = 27 /3, period time
T ~ 8.63 and energy E = 1.5.

The first case is almost linear, whereas the second, with its large amplitude,
is strongly nonlinear and will require four dummy pivotings per full period.
Whenever DAEs are solved below, the initial conditions are taken to be con-
sistent.

The two problems will be solved for the following formulations:

a. State-space reference model (5.1).

b. Differentiated index 1 model (4.1a", b, c).

¢. Dummy derivative index 1 model (4.3), case 1, and (4.2-3) for case 2.
d. Stabilized constraint index 2 model (Brenan et al., 1989, pp. 154-155).

In all cases the problems were run for 1000 units of time corresponding
to approximately 159 periods in case 1, and 116 periods in case 2. Tolerance
levels were kept sharp: the parameters ATOL and RTOL in DASSL were taken
to be 10~® for all components of the solution except for the model d, which
cannot be solved with such requirements unless a looser tolerance is used for
the two Lagrange multipliers A and p. These tolerances were set to 102,
which effectively corresponds to excluding these algebraic variables from the
error tests, cp. Brenan et al. (1989, p. 156). Numerical Jacobians were used.

The results for case 1 are displayed in Table 1. Apart from run statistics,
we show the deviation AE in total energy at the end of the integration interval,

15



Table 1: Numerical results for small oscillations (case 1) with models a—d.

Model steps f-evals Jac. AE E-drift AL L-drift
a 19323 38654 19 -2.9-10"7 linear — —
b 26451 56157 85 3.3-107% quad. -3.5-10% quad.
c 27338 62167 1291 —1.1-10"7 linear ~ 10711 none
d 26697 54774 337 —1.5-10"7 linear ~ 1071 none

Table 2: Numerical results for large oscillations (case 2) with models a—d.

Model steps f-evals Jac. AE E-drift AL L-drift

a 44267 88524 27 —2.9-.107% linear — —

b 68933 222313 28997 2.2-1072 quad. 1.6-10"3% quad.
c 108731 240161 4800 7.9-10-7 linear ~ 10~1'  none
d 84087 203850 6545 1.9-107% linear ~ 1071° none

and similarly the deviation AL in the length constraint. E-drift and L-drift
refer to the drifts in E and L, respectively. Note that the length constraint
is explicitly present in models ¢ and d, but it is only an implicit invariant in
model b. Thus, the latter model shows a drift, and the deviation in the table
refers to the error at the end of the integration interval. For models c and d
there is no drift and the error corresponds to typical deviations throughout the
integration. The energy, on the other hand, is an implicit invariant in all four
models, resulting in a quite regular drift. For model b the drift is quadratic in
t, whereas the other models exhibit a linear drift. It is to be noted that the
drift is less pronounced for models ¢ and d than for the state-space model a.

Results for case 2 are shown in Table 2. Here model ¢ yields the most
accurate results, with an energy drift approximately four times smaller than
for a, and 25 times smaller than for model d. From the efficiency point of view,
the state-space model a is clearly preferable. However, given the rather signif-
icant difference in accuracy between models ¢ and d, the modest performance
disadvantage of model ¢ seems to be of minor importance.

The results reported here are typical for the pendulum problem. A few
other problems from applications in mechanics and electrical engineering have
also been tried with good results using the dummy derivative technique.

6. Implementation Aspects and Conclusions

When the proposed index reduction technique is to be implemented there are
two main possibilities. One could either perform all operations completely
using symbolic computations in a preprocessing step, or one could employ au-
tomatic differentiation, Rall (1981), to obtain a closer integration of the index
reduction process and the subsequent numerical treatment. The latter ap-
proach seems particularly attractive, since in the augmented system, function
evaluations corresponding to differentiated equations must be performed using
analytical derivatives that must be continually reevaluated. In addition, the
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subsequent numerical solution could take advantage of analytical Jacobians.
The choice of differentiation technique is probably the most important decision
in an implementation of the reduction method.

A second important issue is the choice of the matrices M‘-[J] by selecting m

linearly independent columns from H '-[’]. We should aim for well-conditioned
matrices, and hence the columns should be selected carefully. An obvious
approach is to use a Gram-Schmidt procedure to successively find a set of
“maximally” linearly independent columns. However, this approach will de-
pend on the choice of the initial column selected, and it will in general not be
possible to find the optimal set.

As far as the practical issues of dummy pivoting is concerned, it is re-

quired that one monitors the condition of the matrices M‘-[j]. Dummy pivoting
corresponds to replacing one or more columns of M‘.[J] by new columns from

H'-[J]. It is as yet unclear how this can be carried out inexpensively in large
systems. Most likely, it is more demanding to continually monitor the condi-
tion than to actually perform the pivoting operation. It should be noted that
well-conditioned matrices M‘-[’] are needed to ensure that the selected dummy
derivatives cancel the exact amount of dynamics in the augmented DAE sys-
tem, leaving only what corresponds to the dynamics of a state-space form. If
the selection is rank-deficient, there is a risk that the numerical integration
method gets stuck in a singular point. Such effects can readily be seen e.g. in
the pendulum problem,; if one inappropriately uses (4.2) for small amplitudes
(i.e. when |z| < |y|) it may very well happen that the integration method
cannot get past z = 0.

In many cases of practical interest, one will not need a complete automatic
reduction procedure, but only the handling of dummy derivatives. Thus, the
structure (4.4) is common to all systems described by the Lagrangian equations
of the first kind. Therefore, it is sufficient in such applications to select dummy
derivatives properly.

The merits of the index reduction technique proposed in this paper
lie in the fact that the dummy derivatives are identified and excluded
from discretization. As a result, one avoids “over-discretization” of the
DAE, and the differentiations inherent in a high-index DAE are carried out
analytically rather than numerically. Since the algebraic equations are still
present in their original form, there will be no numerical drift away from
the solution manifold of the DAE, thus eliminating the need for constraint
stabilization. As for invariants that are implicit in both the DAE and the
state-space ODE (e.g. energy), the drift is very similar in both formulations.
To sum up, the numerical experiments show that, by using the dummy
derivative formulation, an accuracy comparable to that of solving a state-
space formulation of the problem is obtained. Thus, the technique can be
considered a viable alternative not only to constraint stabilization but even to
state-space formulations whenever the latter are difficult to obtain.
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