LUND UNIVERSITY

Lund C++ Seminars, June 13-14, 1991

Bruck, Dag M.

1991

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Briick, D. M. (Ed.) (1991). Lund C++ Seminars, June 13-14, 1991. (Technical Reports TFRT-7479). Department
of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/17e2d3a6-7a2c-47e0-a787-cc8687488e8f

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

August 1991

Document Number

CODEN: LUTFD2/(TFRT-7479)/1-150/(1991)

Author(s)
Dag M. Briick (Editor)

Supervisor

Sponsoring organisation

Title and subtitle
Lund C++ Seminars — June 13-14, 1991

Abstract

Seminars, June 13-14 1991.

The Lund C++ Seminars were given in connection with the ISO and ANSI C++ standardization meetings
in Lund, Sweden. This report contains written documentation of most talks presented at the Lund C++

Some papers may have been published elsewhere. Copyrights remain with the authors. All rights reserved.

Key words
Programming languages, C++

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 150

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

CODEN: LUTFD2/(TFRT-7479)/1-150/(1991)

Lund C++ Seminars
June 13-14, 1991

Dag M. Briick (Ed.)

Department of Automatic Control
Lund Institute of Technology
August 1991

Contents

Michael J. Vilot Building Reuseable Components in C++ 1
Andrew R. Koenig Templates as Interfaces 35
Philippe Gautron Experiences in Using the C++ Task System 45
Dmitry Lenkov C++ Symbolic Debugging 53
Shankar Unni

Dmitry Lenkov Type Identification in C++ 65
Michey Mehta

Shankar Unni

Steven L. Carter C++ Standardization 81
Michael S. Ball Implementing Multiple Inheritance in C++ 91
Martin J. O'Riordan Implementing the Dark Corners of C++ 101
Bjarne Stroustrup Sixteen Ways to Stack a Cat 125

William M. Miller Memory Management Techniques in C++ 145

Jerry S. Schwarz C++ is Not an Object-Oriented Language
see The C++ Journal, Fall 1990.

LUND C++

Mandag-iordag 05.30-23.45
Sondag 06.30-23.45

Lund C++ Sign

Building Reusable Components in C++

Michael J. Vilot
ObjectWare, Inc
16 Warton Road, Nashua NH 03062-2537
mjveobjects.mv.com
(603)888-4729

The Lund C++ Seminars
Lund, Sweden
13 Jun 91

Building Reusable Components in C++ s —— |

NOTES

This 60 minute presentation is necessarily limited.
Further details are available:

Booch, G., Software Components with Ada, Benjamin/Cummings, Menlo Park
CA, 1987.

Booch, G., and M. Vilot, “The Design of the C++ Booch Components,”
OOPSLA/ECOOP ‘90 Conference, SIGPLAN Notices, vol 25(10), October 1990,
p. 1.

Booch, G., “Using the OOD Notation,” Object Magazine, vol 1(2), July/August
1991.

Booch, G., and M. Vilot, Software Components in C++, Addison Wesley, Reading
MA, in preparation.

1

© 1991 ObjectWare, Inc. All rights reserved.

Reusable Components

O Context

> Programming Systems Products
example: UNIX

> Program Generators
example: RCS/SCCS, CASE tools

> Programs
example: AWK, program editors

> Libraries
example: C-ISAM

Building Reusable Componernits 111 C - s — 3 m

NOTES

The term “programming systems product” is from:
Brooks, F., The Mythical Man Month: Essays on Software Engineering,
Addison-Wesley, Reading MA, 1975, p. 4.

Programming Systems Products tend to be very large and complex. Because of the
investment involved, they are usually exclusive — it is rare to find two or more
operating systems running on the same machine.

Program Generators are not quite as large, but do represent an investment. The
adoption of a CASE tool's “methodology” inhibits changing to another product.

Individual programs can be designed to be customizable and/or extensible. An
example of this kind of program is the emacs editor.

Libraries tend to be specialized, and thus more easily replaced. The typical
“subroutine library” does not export much in the way of data structures. The usual
approach is to make them “opaque,” using pointers as arguments to the functions.

3

© 1991 ObjectWare, Inc. All rights reserved.

Reusable Components

Design Issues

Q Focus & Content
> Application (problem domain)
> General-purpose (mechanism)

Structure

> Single “tree”

> Individual classes
> “Forest”

Performance
> Compile, Link, Run time
> Library, Executable space

Bullding Reusable Components in C-+- s O

NOTES

Application-oriented component libraries often take the form of “application
frameworks” and try to encourage a consistent approach by applications written for
that problem space.

General-purpose component libraries try to be usable in many different problem
contexts.

The choice of structure depends on the degree to which the library designer wants to
enforce the use of certain mechanisms and policies:
— The NIH class library uses a single “tree” structure.
— The AT&T SLE library provides separate classes.
— The GNU libg++ library uses a “forest” approach.

Meiler Page-Jones uses the term “encumbrance” to refer to the various performance
overhead aspects of using a particular library component.

5

© 1991 ObjectWare, Inc. All rights reserved.

Pesign sies Concrete Data Types
(CDTs)

[Characteristics
> Self-contained
> Not intended as a base class

Design Goals

> close match to a particular concept and
implementation strategy

> run-time and space efficiency
comparable to “hand-crafted” code

minimal dependency on other classes
understandable and usable in isolation

>
>

Building Reusable COmPOnents 111 - | s =

NOTES

[Stroustrup 91] § 13.2

The term “concrete data type” is meant to contrast with abstract data type.

Examples of CDTs are: date, string, and complex.

9,

© 1991 ObjectWare, Inc. All rights reserved.

Design Issues

Node Classes

0 Characteristics
> Provides a foundation (as a base class)

> Often part of a larger framework

O Design Goals
relies on bases classes for implementation
and supplying services
uses virtual functions for most (all)
operations
adds to services of base classes
can be a base class for further derivation

understandable only in context of base
classes

Building Reusable Components in C++ ms—— O

NOTES

[Stroustrup 91] § 13.4

Node classes are strongly coupled to the base classes they derive from.
Often, the protected interface is a key design aspect.

Examples of node classes include: ios and streambuf from the iostreams library, and
process and task from the task library.

Node classes are essential elements of application frameworks, including user interface
frameworks such as MacApp or ET++.

7

© 1991 ObjectWare, Inc. All rights reserved.

Design Issues

Templates

O Narne Spaces

> Class templates are in a separate name
space

> Template model is macro-expansion

O Template Handling

> Implementation should detect the need to
expand declarations

> Extra work needed to expand definitions
> Transitive dependencies
> Shared implementations

Building Reusable Components 111 C - | — 11

NOTES

Classes are instances of templates, similar to the way objects are instances of classes.

g N
§ Template :
L
"\
Instantiation
\' -_—- _I Fl\-‘
/ -
,)
L Class '
- i
I\ - -~ . -'$\
Construction "~

~

//

© 1991 ObjectWare, Inc. All rights reserved.

Other Issues

Technical
> Library maintenance
> Cataloging & Retrieval

Managerial
> Reuse incentives
> Library builders vs. library users

Social
> Trust (correctness & performance)
> Perceptions

Legal
> Ownership & intellectual rights
> Liability

Building Reusable Components in C++ 13

NOTES

Technical issues: :
Keeping a large collection of components organized and usable is a significant
challenge. We need better tools for cataloging and retrieving components.

Managerial issues:
Current software management practice does not encourage/incentivize reuse.

Social issues:

Current approaches to documenting components do not provide enough
information to establish whether a given component will perform to
expectations.

Perception of the effort to find and use a component is usually over estimated,
while the perception of the effort to build from scratch is usually under
estimated.

Legal issues:
The legal system is moving to adapt to the needs of software. National and
international laws are clarifying some aspects. It is a slow process.

/9

© 1991 ObjectWare, Inc. All rights reserved.

overvlew Gtructures and Tools

Bags

Lists
Software Polylithic Trees
Components Graphs

Utilities
Filters

Tools Pipes
Sorting
Searching
Pattern Matching

Subsystems

Stacks
Strings
Queues
Deques

Monolithic Rings

Maps

Sets

Structures
Reusable

Building Reusable Components 1r G-+ s 15

NOTES

Grady described this taxonomy in his '87 text. It represents the core set of abstractions
embodied in the library.

As you can see, there are not a lot of them. What surprised me was the fact that it took
over 100,000 lines of Ada code to implement them! Of course, the number of lines
was a direct result of providing the various time/space forms of each component.

The distinction between monolithic and polylithic involves the notion of structural
sharing. Basically, you can manipulate sub-lists, sub-trees, and sub-graphs
recursively. All other components are handled as an indivisible unit.

/0

© 1991 ObjectWare, Inc. All rights reserved.

C++ Library Design
Key Abstractions

QO Design Decisions
> Inheritance

> Type parameterization
> Exceptions

Core Data Structures
> Jterators
Utilities & Tools

Support
> Factor out storage &
concurrency

Building Reusable Components in C++ e — 17

NOTES

/?

© 1991 ObjectWare, Inc. All rights reserved.

Key Abstractions

Core Data Structure Classes

Ehne T "“- d'_\.._~ TN
’ ~
¢ Guarded (Concurrent P ¢ Multiple [’
“« Form | ~‘Form 1 ""-.‘ Form

i

L]
L"K j
¢ ~em

)

-

I

t Semaphore ¢

*\\ (]
]

-~—
.=

- -

1
_ﬁi
P Ty

el

Building Reusable Cormnponernts 11 C - | —— 19

NOTES

This slide, another OOD class diagram, illustrates the heart of the design.

The hierarchy on the left represents the storage forms, and the hierarchy on the right
represents the concurrency forms.

There is no inherent superior/subordinate relationship between the two hierarchies.
Deriving the concurrent forms from the “concrete” classes had two benefits:

e their implementation was trivial

e they can be packaged as an optional layer

Our use of the term “monitor” involves a critical region with more than one entry — in
this case, one for reading and one for writing. This use of the term should not be
surprising, see:

Holt, R., G. Graham, E. Lazowska, and M. Scott, Structured Concurrent
Programming with Operating Systems Applications, Addison-Wesley, Reading
MA, 1978.

Hoare, C.A.R., “ Monitors: an operating system structuring concept,”
Communications of the ACM, vol 17(10), October 1974, pp. 549-557.

/7

© 1991 ObjectWare, Inc. All rights reserved.

Internal Design

Mechanisms in C++

O Inheritance
> Abstract Base Classes
> Public & private derivation
> Use of mixin classes

Support
> Iterators
> Exceptions

O Templates
> Template classes
> Template expansion filter

Building Reusable Components in C++ e —— 21

NOTES

© 1991 ObjectWaré. Inc. All rights reserved.

Mechanisms Al otract Base Class

O Establishes interface
> Pure virtual functions

Kinds of public members:
> Constructive/destructive
> Modifiers

> Selectors

> Private

Cache state

> Changes some O(n)
computations to O(1)

O Express relationships among
abstract types

Building Reusable Components in ot P —— 23

NOTES

template<class Item>
class Queue {
public:
Queue() : rep_length(0) {}
Queue (const Queue<Item>& S) rep_length(s.rep_length) {}
Queue<Item>& operator=(const Queue<Item>&);
virtual ~Queue() {}

// Modifiers
virtual Queue<Item>& clear();
virtual Queue<Item>& add(Item);

virtual Queue<Item>& pop():

// Selectors

int operator ==(const Queue<Item>&) const;
int operator l=(const Queue<Item>&) const;
virtual unsigned length() const;

virtual int empty() const;
virtual Item front() const =0;
protected:
unsigned rep length;
}i

© 1991 ObjectWare, Inc. All rights reserved.

Mechanisms

Managed and Controlled

Q Derived from Unmanaged class

O Allocate different types of Nodes
> Managed, Controlled mixins

> Managed_Node, Controlled_Node
classes

O Provides storage managers for
operators new and delete

> (Class Storage Manager
> One per template instance (static)

Building Reusable Components in C++ E———_—_—SS--=S 25

NOTES

#include "unmanaged_gqueue.h"

template<class Item>
class Managed_ Queue : public Unmanaged_Queue<Item>

il
public:
Managed_Queue() {}
Managed_ Queue(const Unmanaged_Queue<Item>& q)
: Unmanaged_Queue<Item>(q) {}
// Generated constructors and assignment
// inherit Modifiers
// inherit Selectors
protected:
Node<Item>* allocate(Item);

}i

// managed_gueue.Cp
#include "managed_queue.h"
#include "managed_storage.h" // static Storage_Manager

template<class Item>
Node<Item>* Managed_Queue<Item>::allocate(Item item)

return new Managed_Node<Item>(item);

}

© 1991 ObjectWare, Inc. All rights reserved.

Mechanlsms [Jtility & Tool Mixins

O Interconnection mechanism
> Declare, use pure virtual

O Requires derivation to use
> Derived class provides virtual's definition
> Usually multiple inheritance

Q Alternative:
> Template argument(s)

Building Reusable Components in C++ E———————_——————————————_—) 27

NOTES

// sort.h

template<class Item>
class Quick_Sort {
protected:
virtual Item& elem(unsigned i) const =0;
public:
sort(unsigned size);

private:
void exchange (unsigned left, unsigned right);
sort_recursive(unsigned left, unsigned right);

// client.h

template<class Item>
class Sort_Vec : public Vector<Item>, public Quick_Sort<Item> {
public:

Sort Vec(unsigned size) : Vector<Item>(size) {}

Sort _Vec(const Vector<IlItem>& v) : Vector<Item>(v) {}
protected:

Item& elem(unsigned i) const { return Vector<Item>::elem(i); }
}i

© 1991 ObjectWare, Inc. All rights reserved.

R ————————

Mechanf .
senmmEme Exceptions

O Anticipated language support
> Delay over resumption
> November X3J16 decision

O Hierarchy of exception classes
> Natural classification
> Adds to global name space

0 Simple function call _catch()

> Alsoterminate() and
set terminate()

Butilding Reusable Components in C++ e s e 29

NOTES

We do not provide an exception handling mechanism.

The source code uses throw-expression syntax, and we compile with a simple
preprocessing trick:
-Dthrow=_catch

to turn them all into calls to our library function:
extern void _catch(const Exception&);

The base Exception class provides some simple information:
class Exception {
friend ostream& operator<<(ostream&, const Exception&);
public:
Exception(const char* name, const char* who, const char* what);
virtual ~Exception() {}

virtual void display(ostream&) const;
virtual const char* name() const;
virtual const char* who() const;
virtual const char* what() const;

}i
It uses a fixed-length representation for the strings, so it won't run out of heap trying
to throw an exception.

© 1991 ObjectWaré, Inc. All rights reserved.

Bullding Reusable Components in C++

Conclusions

Project Results

O Code sharing effects
> Ada: 150,000+ NCSL
> Co++: < 20,000
> Unusual, due to repetitive structure

Element count:

> Ada: 501 packages

> C++: 380 classes

> No Discrete types in C++

> No fixed/float distinction in C++

31

NOTES

Some causes for the code reduction:

Eliminating half the data structures components, due to iterators.

Factoring out the support classes.

Eliminating duplication by factoring common functions into base classes and
inheriting them.

Eliminating duplication in the Managed and Controlled forms with the
allocate() “virtual constructor” function.*

Eliminating duplication and manual exception handling in the concurrent
forms with the Lock class.

No tasking.
No discrete components.
No fixed-point math types.

* Jordan, D., “Class Derivation and Emulation of Virtual Constructors,” C++ Report,

vol 1(8), September 1989, p. 1.

3/

© 1991 ObjectWare, Inc. All rights reserved.

Conclusions

Observations on C++

Public derivation describes interface (protocol)

Private derivation & data members describe
representation

> Might explore géneralizing template arguments

Reference semantics & template arguments

Inline function definitions & nested classes reduce
template encumbrance

Template environment deliberately underspecified

> Implementations will have to be creative at
handling instantiations

> Context-dependent expansion
> Static objects & static members

Building Reusable COmpPOonents 1 C+ -+ s —

NOTES

We did this:
template < class T >
class Unmanaged X : public X<T>, private List<T> { .. };

Using private derivation makes adding new representation classes awkward.

We would have liked to have done this:
template < class T, class List<T> = our_List<T> >
class Unmanaged X : public X<T> {
List<T> rep list;
public:
}i
This can't quite be simulated at the instance level without introducing globals:
template < class T >
class Unmanaged X : public X<T> {
List<T>& rep_list;
public:
Unmanaged X(List<T>& list =)

}i
Not having a default obligates clients to create a List object for every instance.

© 1991 ObjectWare, Inc. All rights reserved.

Templates as interfaces
Andrew Koenig

AT&T Bell Laboratories
184 Liberty Corner Road; Warren NJ 07059; ark@europa.att.com

Introduction

Consider an on-line student registration system. Part of such a system will have to deal with the
fact that its purpose is to register students; another part will be there because it is an online
system,; still other code will talk to the underlying database, and so on.

It would be nice if the parts of the system that deal with conceptually different characteristics are
themselves kept carefully separate. That, for example, would make it possible to use the online
and database parts of the system in building, say, an online library circulation system.

To understand how the parts of such a system might be kept separate, we will write a tiny
program and separate it into pieces. When studing those pieces, think about how the techniques
used there might apply to larger programs as well.

The first example
Here is a simple function that adds the elements of an array of integers:

int sum(int* p, int n)
{
int result = 0;
for (int i = 0; i < n; i++)
result += pl[i];
return result;

}
Here is an example of how to use this function:

#include <stream.h>

main ()
{
int x[10];
for (int i 0; 1 < 10; i++)
x[1] = i;
cout << sum(x, 10) << "\n";
return 0;

1
This example prints 45, which is the sum of the non-negative integers less than 10.
The sum function “knows about”” three things:
» it is adding a bunch of things together;
» the things it is adding are integers; and
o the integers it is adding are stored in a particular way.

Let’s see how we can divide up the program so that each one of these characteristics is contained
in a different part.

Separating the iteration

The first thing we will remove is the knowledge that elements being added are contained in an
array. To do this, we follow the standard G+ technique: make it into a class.

35

What kind of class might encapsulate the notion of iterating over a collection of integers? An
object of that class would evidently have to represent the state of the iteration, so the relevant
operations are:

¢ a constructor, which establishes the data to be handled;
 a way of asking for the next element in sequence;
« a way of telling when the iteration is complete; and

* an assignment operator, copy constructor, and destructor to enable one of these objects to be
used as a value.

Such objects are often used in C++ class libraries; they are ususally called iferators. There are
many kinds of iterators possible; what we have just seen is a fairly fundamental outline of how
they work.

Let’s write down what we know so far about our iterator:

class Int_iterator ({

public:
Int_iterator(int*, int);
int valid() const;
int next () ;
Int_iterator(const Int_ iteratoré&):
Int_iterator& operator=(const Int_iterator&):
“Int_iterator();

}i

This class is called Int_iterator rather than Iterator because indeed it expresses an
iteration through a sequence of int values. We will generalize it later to values of arbitrary type.

The constructor takes two arguments: the address of the initial element of the sequence and the
number of elements. The valid member returns a nonzero value if there are still elements left in
the sequence; the next member fetches the next element in the sequence if there is one. We will
assume that next is not called unless there is known to be a value remaining in the sequence.

Before we fill in the definition of our iterator, let’s rewrite the sum function:

int sum(Int_iterator ir)
{
int result = 0;
while (ir.valid())
result += ir.next();
return result;

}

Notice that this function does indeed use the Int_iterator copy constructor and destructor
because its formal parameter is an Int_iterator rather than a const Int_iterators.
Because an iterator contains a state, iteration necessarily changes the iterator’s value. Thus
making the parameter a const is out of the question. Moreover, if the parameter were just an
Int_iteratoré, that would restrict the arguments to being lvalues, because only an lvalue
argument can be passed to a non-constant reference parameter. The sum function does not use
the iterator assignment operator.

A main program that uses this sum function might look like this:

3

#include <stream.h>

main ()
{
int x[10];
for (int 1 = 0; i < 10; i++)
x[i] = 1i;
cout << sum(Int_iterator(x, 10)) << "\n";
return 0;

}

The only difference is that instead of calling sum(x, 10) it is now necessary to call
sum(Int_iterator(x, 10)). Of course, it is possible to write an overloaded sum function
that preserves the original interface:

inline int sum(int* p, int n)
{
return sum(Int iterator(p, n));

}

It is time to return to the definition of the Int_iterator class. What information is actually
necessary in an object of that class? We need to be able to locate the next element in the sequence,
presumably through an int*, and we need to know when the sequence is finished. This latter
information could be obtained by remembering either how many elements are left or the address
that is one past the last element.* If we arbitrarily choose to remember the count, the private
members of the Int_iterator class then look like this:

private:
int* data;
int len;

The constructor is straightforward. All it has to do is to initialize the data and 1len members
from its corresponding parameters:

Int_iterator(int* p, int c):
data(p), len(c) { }

The destructor, assignment operator, and copy constructor are even easier. Because their actions
are equivalent to the corresponding actions on the data members, these three member functions
can be omitted altogether. The compiler will automatically insert appropriate definitions for
them.

Finally, we must define valid and next. After doing so, we arrive at this:

* Istrongly prefer storing a pointer to one past the last element rather than storing a pointer to the last element itself,

because if the sequence has no elements at all, there is no last element to point to. For more detail about this style of
counting, see my book C Traps and Pitfalls.

27

class Int_iterator {
public:
Int_iterator(int* p, int c): data(p), len{(c) { }
int valid() const {
return len > 0;
}
int next () {
—1len;
return *data++;
}

private:
int* data;
int len;

bi
Iterating over arbitrary types

The name Int iterator is a dead giveaway that we have missed an opportunity for
abstraction. We can readily turn the Int_iterator class into a general Iterator template:

template<class T> class Iterator ({
public:
Iterator(T* p, int c):
data(p), len(c) { }
int valid() const ({
return len > 0;
}
T next () {
——len;
return *data++;
}

private:
T* data;
int len;

}:

The only thing the least bit difficult about this is figuring out which of instances of int in the
Int_iterator class should become T and which should remain int.

The rest of our program can remain completely unchanged if we say that the type
Int_iteratoris now equivalent to Iterator<int>:

typedef Iterator<int> Int_iterator;

Alternatively, we can change the rest of the program by simply substituting Iterator<int>
everywhere Int_iterator formerly appeared:

int
sum(Iterator<int> ir)
{
int result = 0;
while (ir.valid())
result += ir.next();
return result;

main ()

int x[10];
for (int i 0; i < 10; i++)
x[i] = i;
cout << sum(Iterator<int>(x, 10)) << "\n";
return 0;

}
Adding other types

If we can iterate over collections of arbitrary type, it would be nice to be able to find the sum of
values of arbitrary type as well. This is easily done by making the sum function into a template:

template<class T>
T sum(Iterator<T> ir)
{
T result = 0;
while (ir.valid())
result += ir.next();
return result;

}

This now makes it possible to calculate the sum of arrays of objects of other classes. What
classes? Any class for which

« it is possible to convert 0 to an object of that class;
 The += operator is defined on objects of that class; and
« The objects have value-like semantics to that the sum function can return them as its value.

All the numeric types meet this requirement, of course, and it is easy to define other classes that
do as well.

Abstracting the storage technique

We have separated out two of the three kinds of knowledge from our little program. What about
the third?

We are looking for different kinds of iterators to reflect different data structures. So far we have
only one iterator, which lets us get at things stored in arrays. But what if our values are in a
linked list? What if they are on a file? Is it possible to abstract those as well?

The “standard”” way of solving this problem is to turn the Iterator class into an abstract base
class that can represent any one of a number of different iterator classes:

39

template<class T> class Iterator {
public:
virtual int valid() const = 0;
virtual T next() = 0;
virtual ~“Iterator() { }
}:

Next we say thatan Array iterator<T>isakind of Iterator<T>:

template<class T> class Array iterator: public Iterator<T> {
public:
Array iterator(T* p, int c): data(p), len(c) { }
int valid() const ({
return len > 0;
}
T next () {
——1len;
return *data++;
}

private:
T* data;
int 1len;

};

Finally, we define the sum function to take a reference to an Iterator as its argument, to allow
dynamic binding;:

template<class T> T sum(Iterator<T>& ir)
{
T result = 0;
while (ir.valid())
result += ir.next();
return result;

}

Then, to add the elements of an array, we merely create an appropriate Array iterator to
describe it and pass that to sum:

#include <stream.h>

main ()

{
int x[10];
for (int i = 0; i < 10; i++)

x[1i] = i;

Array_iterator<int> it (x, 10);
cout << sum(it) << "\n";
return 0;

}

The difference here is that we have explicitly created an Array_iterator<int> object named
it to express the iteration over the elements of x. As mentioned before, we cannot simply say

cout << sum(Array iterator<int>(x, 10)) << "\n";

because the subexpression Array iterator<int>(x, 10) is not an lvalue and therefore
cannot have a non-constant reference attached to it.

That is a minor inconvenience. Another, somewhat less minor, inconvenience is that because
dynamic binding is used, every iteration of the inner loop in the sum function requires a virtual

4O

function call. This could be expensive compared to the inline expansion of our previous
examples, especially if the objects being added are simple things like integers.

We will deal with both of those objections by dispensing with dynamic binding. That means that
when we want to add the elements of some collection we will have to know at compile time what
kind of collection it is, but this is probably not a major hardship.

Evidently the way to do this is to make the sum function take fwo type parameters: the type of the
iterator and the type of the objects being added. Unfortunately, this runs into a problem. If we
try to define the sum function in the obvious way:

template<class Iter, class Obj> Obj sum(Iter it)
i i aam &7 |

we find that we have defined a function whose return type is unrelated to its argument type.
That is, the type of sum(x) is independent of the type of x. This is illegal in Ci+, because
otherwise there would be no way to determine the type of an expression without examining a
potentially unbounded amount of context.

The way out of this corner is again to follow the standard technique: make it a class! In other
words, instead of defining a sum function, define a Sum class whose purpose is to add values
expressed to it as iterators. Itis easier to show the class itself than to describe it:

template<class S, class It> class Sum {
public:
Sum (It iter): ir(iter) { }
operator S():;
private:
It ir;
}:

We create a Sum object by telling it we will use it to add objects of type s and handing it an
iterator of an appropriate, but otherwise unknown, type. We cause the Sum object to perform its
calculation by converting it to type S. That calculation will involve using the iterator to step
through the collection. To ensure that it can be done more than once, we will copy the iterator to
preserve the original:

template<class S, class It> Sum<S, It>::operator S() ({
It i = ir;
S result = 0;
while (i.valid())
result += i.next();
return result;

}

You can see that this operator S() is not much different from the sum function in the previous
examples. Using it is not much different either:

#include <stream.h>

main ()
{
int x[10];
for (int 1 = 0; 1 < 10; i++)
x[i] = i;

cout << Sum<int,iterator<int> >(iterator<int>(x, 10)) << "\n";
return 0;

4/

The complicated expression in the middle is easiest to understand if we read it from the inside
out. First we construct iterator<int>(x, 10) to create an iterator<int> object that
represents the ten elements of the array x. Next we construct a Sum<int, iterator<int> >
object that on command will sum the elements of that array. Finally, by trying to print the
Sum<int, iterator<int> > object, we implicitly do the actual addition.

It is true that this style requires a little extra coding. However, in exchange for that we obtain a
lot of extra flexibility. For example, if we had said Sum<double, iterator<int> > that would
have been enough to evoke double precision floating point addition instead of integer addition.
Of course, it is still possible to abbreviate common cases:

template<class T> T sum (T* p, int n)

{
return Sum<T,iterator<T> > (iterator<T>(p,n));

}

which makes this whole setup as easy to use as our first example:

main ()

{
int x[10];
for (int i = 0; 1 < 10; i++)

x[i] = 1i;

cout << sum(x, 10) << "\n";
return 0;

}

The proof of the pudding

To illustrate the flexibility of this approach, let’s use the Sum class to add a potentially
unbounded collection of numbers read from an istream.

First we need a class we can use as an iterator. Because it behaves so much differently from our
previous Iterator class, we'll call it a Reader. In other words, a Reade r<T> object will read a
sequence of T objects from some istream in such a way that the Sum class can use it as an
iterator.

This presents a small problem. The way we defined iterators, it is necessary to be able to test
whether there are data left before reading it. That’s not how istreams work, however; the way
to tell if data is left in an ist reamis to read from it and see if it worked.

We will solve this problem by reading ahead one element in the Reader class and remembering
whether it was successful. Because that must be done both in the constructor and in the valid
member function, we’ll make it a separate, private member function called advance:

Y

template<class T> class Reader {

public:
Reader (istream& is): i(is) { advance(); }
int valid () const { return status; }
T next () {
T result = data;
advance () ;
return result;
}
private:

istream& 1i;
int status;

T data;

void advance() {
i >> data;
status = i != 0;

}i
Each Reader object binds a reference to an istream that is given to its constructor. Thus

Reader<double> (cin) is a Reader object that will fetch a sequence of double values from
cin.

With this class and the Sum class from the previous example, we can now add numbers read from
the input:

main ()

{
cout << Sum<double, Reader<double> > (Reader<double> (cin)) << "\n";

return 0;

}

The remarkable thing about this example is that the Sum class is precisely the same as was used to
add the elements of an array.

Summary

The key to successfully building a system of any significant size is to be able to break it up into
pieces on which people can work independently. The key to that, in turn, is to define clear
interfaces between those pieces.

This has been an illustration of how to use C++ class definitions as interfaces, in order to reduce
the amount of information that one part of a system has to know about another. Specifically, we
took a simple sum function and split each of its three parts off into an independent piece of code.

As templates come into wider use, techniques of this kind will give us ways of improving our
system designs.

v,

L)L

Experiences in Using the C++ Task System

Philippe Gautron

Rank Xerox France & LITP, Institut Blaise Pascal
Université Paris VI

4 place Jussieu, 75262 PARIS CEDEX 05, France
gautron@rxf.ibp.fr

Short Paper
C++ Workshop — Lund, June 1991

The purpose of this paper is to describe the use of the C++ Task System through different

applications.

A didactic example, the fibonnacci series, is first presented as introductory approach. The second
example is the simulation of a multithread kernel as basic system architecture for a distributed ob ject-
oriented system prototype. The third example is the communication layer support for the development
of musical software.

1 What the C++ Task System Is

The C++ Task System is a library designed to support concurrent programming. The library is part
of the standard AT&T distribution [AT&T 89] and is available on different architectures, such as 3B,
VAX, 680x0 and SPARC.

The library was designed in 1980 [Stroustrup 80] and is a typical example of object-oriented
development: the current interface is (almost) similar to its first design, whilst the implementation
has been revised at several occasions [Stroustrup and Shopiro 87, Shopiro 87].

The task system is an appropriate support for simulation in a pure coroutine style. The notion
of task force can be introduced to define a collection of cooperative activities computing towards a
common goal. The different tasks of a task force share a single address space, typically a UNIX
process. The task system scheduling is based on a single strategy: no preemption, no priority, FIFO
mode.

2 A Didactic Example

The fibonnacci series will be our introductory example [Gautron 89]. Its definition is:
Un+2 = Un+l + Uy
with:
UOZO, U1:1

Recursive programming is a simple (and inefficient) way to write this function:

unsigned int fib (unsigned int n){
return n < 2 ? n : fib (n-1) + fidb (n-2);

(1)
45"

}

A more efficient alternative is to consider each component of the series as a separate task. Three
tasks, U;, hold the series values at times n, n+1 and n+2. In order to allow the calculus to proceed,
Upq2 and U, 41’s values become respectively U,4+1 and U,’s, and the new value of Uy is then calculated.
A fourth task, the main task, implicitly created by the task system when the application is started,
controls the process on its whole. The task force can be shown as follows (the communication links
are explained later):

qgh2.1 £ l 121

ghl.2

U 12 |
t1-0 4iff-2
qii- hM_2

U, ¢ i
i 2 | hopr|BRIN

U q10.2 qt2M

0 qhﬂ_f

A new task is a user-defined class derived from class task. For example:

class UO : public task {
public:
U0 (qtail *qt0_2, ghead *ghi_0);
void behavior();

};

U0::U0 (qtail *qt0_2, ghead *qhl_0) : task ("U0") {

}

class Ul : public task { ... };
class U2 : public task { ... };
main () { ... } // task main

A new executing environment (stack, registers) is allocated when the task constructor is called.
A new coroutine is created when the derived class constructor is executed.

Communication among tasks can be implemented through global variables (global to the process
containing the task force) or by message passing. The non-preemptive nature of the task system
favours the message passing style: the library does not provide any support for monitoring shared
data.!

The library supplies three classes —object, qtail and qhead- for the management of inter-task
communications. In our example:

¢ instances of class Message carry out integer values:

// define a user message
class Message : public object {
public:
Message (unsigned int value = 0);
void setValue (unsigned int value);
unsigned int getValue();

};

! Access synchronization can be easily added to the library {Shopiro 87].
(2)

¢ communication channels are pairs of ghead/qtail pointers:

// create a one-way channel, by allocating its head and associating it a tail:
ghead *gh = new ghead;
qtail *qt = qh->tail();

e series values are messages sent through a ring network:

// instantiate a Message initialized to handle value
Message send = new Message (value);

// insert it in the queue
gh->put (send);

// retrieve it from the queue
Message *receive = (Message*) qt->get();

The main function, executed as activity of the main task:
1. allocates the different channels for the task force execution,
2. creates the three tasks with the appropriate channel links as arguments,

3. waits for Uy’s result.

U, computes the sum of Ug and Uy’s values while Up and U; behave like buffers, initialized respectively
to 0 and 1. Uy returns its result to main which, in turn, sends a dummy message to Us. The values
held by U; and U, are then shifted and a new calculus can proceed. This loop is performed as long as
main re-starts the computation: the number of loops is the series argument minus two.

3 More About the Interface

Task scheduling can occur either explicitly, when specific member functions of class task are invoked,
or implicitly, on queue overflow and queue underflow.
task member functions include:

o task::resultis: terminates the invoked task and causes the task force scheduling.

o task::delay: suspends the invoked task for the time argument. A class timer provides a
similar behavior.

¢ task::cancel: destroys the invoked task.

e task::wait: wait on an arbitrary instance of class object. The waiting condition is the value
returned by a call to the virtual function object: :pending. Classes qtail and ghead publicly
derive from object.

Actions performed when queue overflow or queue underflow occurs depend on the mode of the
queue. The default and common use is to suspend the task which invoked the queue and to cause the
task force scheduling.

(3)
«r

4 About the Implementation

The implementation uses assembly code for the basic operations of task management. Different imple-
mentations have been proposed to take advantage of specific architectures [Doeppner and Gebele 87),
or of lightweight processes [Birrell 89, Gautron 91].

The use of inheritance for creating a new task is not without constraints. Indeed, in C++, a base
class constructor is called within the body of a derived class constructor. The executing environment
for a new coroutine is thus allocated after the start of its execution. Prohibiting inheritance for task
creation should not be enough. In any case, flexibility —task creation with an arbitrary number of
arguments of arbitrary type— must be paid with non-portable code.

The task system has been implemented with UNIX as privileged target system. Asynchronous
events handling [Shopiro 87} is supported. The task force is contained within a single UNIX process:
a task blocked on I/O events causes the whole process to sleep and does not involve the scheduling
of the task force.

The current implementation suffers from:
o compiler-dependent and machine-dependent codes: porting is not easy
o painful debugging
e non-protected resources (stacks are heap-allocated)
e no check for stack overflow
Positive points are:
e performances suitable for efficient simulation
¢ high-level interface

e convenient facilities for inter-task communications

5 Prototyping a Distributed Object-Oriented System

SOS is a prototype distributed object-oriented operating system built on top of UNIX [SOR 89,
Shapiro 89]. SOS was designed to support distributed or fragmented objects: the data of an object
can be localized on different sites and ob ject fragments can remotely invoke each other.

5.1 System Resources

System resources supplied by the SOS kernel include:
e contexts: separate address spaces implemented as UNIX processes
o lightweight threads: implemented within a context as tasks of the task system
e (local and remote) inter-context communications through UNIX sockets

Each site runs the kernel (a specific context —sos-), an arbitrary number of pre-defined contexts (a
naming service for example), and user-created contexts:

(4]
‘¥

Ci1 == Cin Cr1|* " Cnn

sitey site,

The kernel is in charge of context management (creation, deletion) and of initialization of point-
to-point connections between contexts.

Within a context, tasks can be created:
e by the system, to process incoming remote invocations

¢ by the application, to split its own execution.

5.2 Inter-context Communications

The basic communication protocol managed by the system distinguishes between reply messages (re-
ply to remote invocations on the application’s initiative) and request messages (for local execution
result of remote invocation).

When a new context is allocated, at least three tasks are created: the main task for executing
the application, a frontal task for the management of inter-context communications, and a request
task for processing the first incoming message.

Two communication channels are associated to each task: a particular channel for input messages,
a channel shared between all the tasks for output messages. The communication links can be sum-
marized as follows:

N e (—e—+ shared queue
% {‘\k <« separate queue
= i F A -
7 i & sockets

O frontal task

main requesi request main

@ C;

The frontal task performs a UNIX system call, select, to poll the sockets for incoming remote
invocations. Output messages are automatically arranged on the shared queue: no poll is required
for these messages.

To optimize task creation, a pool of 8 pre-defined request tasks is allocated when the context is
started. A new task is created when this pool is insufficient.

5.3 Support for Building Applications

To create a new task, the application must define a class derived from SosTask. This latter derives
from task and its constructor allocates the communication channels, as required by the system, for
the newly created task. System and application tasks are not distinguished by the task scheduler.

UNIX I/O management was of a particular concern during the design of the system: a realistic

prototype requires a blocking I/O to invoke the task scheduler and not to cause the whole task force
to sleep. SOS supplies a specific class, UnixChannel, allowing applications to manage I/O requests

(5)
1

in conjunction with the task system. A UnixChannel instance is initialized with a file descriptor
(including 0, 1 or 2) and the class interface provides read/write member functions behaving like
the similar UNIX system calls. I/O requests are sent to the frontal task through channels of the
task system and the file descriptors are introduced as needed into the mask of the call to select.
read/write operations are thus changed into get/put operations. The read/write system calls are
performed by the frontal task and the application can be advisedly scheduled by the task scheduler.

5.4 Conclusion

This approach simulates a multithread kernel, with threads managed by the operating system. This
simulator was an appropriate support for studying distributed communication protocols
[Makpangou and Shapiro 88], experimenting with fragmented ob jects [Gourhant and Shapiro 90], and
building distributed applications [Marques and al. 88]. The major drawbacks of the use of the task
system were the lack of preemptive scheduling (the prototype requires some collaboration between
the application and the system to time-multiplex the UNIX process), and the lack of priorities for
the scheduling (to favour the application for example).

As related work, the task system was also used to support the simulation of a multiprocessor
operating system modeled on the Choices family [Johnston and Campbell 88].

6 A Musical Application

UNIX processes and C++ tasks were the system support we used to implement a simulation of jazz
improvisation [Gautron 85]. Scores were performed in two stages: score generation in batch mode on
a VAX, score playing in real-time on a dedicated machine (4X).

Parallelism is of particular interest for musical development. In our application, parallelism occurs
at two levels: loose coupling between voices (solo(s), accompaniment(s)) and strong coupling between
chords of a same voice. Each voice is implemented as a UNIX process and each chord as a task of the
task system. An arbitrary number of voices can be created, limited by the availability of the UNIX
resources. The overall organization reflects theses requirements:

process
synchro
V0iCEQ V0ICEy,
process solo process accompaniment
___ two-ways
task task channel
synchro synchro
task task task task task task
chordg| | chordy[| chord; chordg| | chordy| | ehordy
L J L —

Inter-process communications are achieved through UNIX pipes, and inter-task communications
through queues of messages. Communication protocols allow both transfer of data and synchroniza-
tion. Chord synchronisation is under control of the synchro task, and voice synchronisation under

(6)
50

control of the synchro process. Data can be directly transferred between any task within a same
process. Data exchanged between tasks of different processes are sent via the synchro tasks and the
synchro process, which behave like the master tasks and the master process.

Three different softwares (blues and ballad) were successively developped on top of this architec-
ture. Each voice is first initialized with a large set of pre-defined musical phrases, shared by the chords
of a same voice. Score generation, written in C++, amounts to articulating the musical phrases, a
mix of heuristic rules and random. A new score results from a new seed for the random number
generator.

Splitting the application into processes helps debugging: in our application, inter-process commu-
nications could be easily faked in order to individually test each voice. The task system has proved to
be an appropriate and efficient support for our developments. chord tasks within a same process are
cloned: they run exactly the same code and their executions differentiate by the arguments passed to
the constructor.

A cknowledgments

SOS was the contribution of many people. Marc Shapiro inspired the design. Dima Abrossimov wrote
the kernel. Yvon Gourhant refreshed my memory about the system.

The musical softwares were developped at IRCAM, on David Wessel’s responsability. Indelible thanks
are addressed to Andre Hodeir without whom this work could not have been possible.

References
[AT&T 89] ATET C++ Language System Release 2.0: Product Reference Manual.
1989. Select Code 307-146.
[Marques and al. 88] José Alves Marques, Luis Pinto Simoes, Nuno M. Guimaraes, and Luis Carrico.

Interface Manager and Generator for SOMIW,
SOMIW (Esprit 367) Report 10/R4, INESC, Rue Alves Redol 9-2, 1000 - Lisboa,
(Portugal), January 1988.

[Birrell 89] Andrew D. Birrell. An Introduction to Programming with Threads.
Technical Report 35, Digital Systems Research Center, Palo Alto, CA (USA),
January 1989.

[Doeppner and Gebele 87] Thomas W. Doeppner and Alan J. Gebele. C++ on a Parallel Machine.
In Proceedings and Additional Papers, USENIX C++ Workshop, pages 95-107,
Santa-Fe, NM (USA), November 1987.

[Johnston and Campbell 88] Gary M. Johnston and Roy H. Campbell. A Multiprocessor Operating System

Simulator.
In Proc. USENIX C++ Conference, pages 169-181, Denver, CO (USA), October
1988.

[Gautron 85] Philippe Gautron. Unix et multiprocessus, C++ et multitache : Une approche

logicielle de la simulation de I'improvisation dans le jazz.
PhD thesis, Université Paris XI-Orsay, IEF, Paris (France), October 1985. Also
available as Technical Report LITP 86-16, LITP, Université Paris VI - PARIS.

[Gautron 89] Philippe Gautron. An Introduction to the C++ Task System.
In The C++ Report, 1(10), November 1989.

(7)
o]

[Gautron 91]

[Gourhant and Shapiro 90]

Philippe Gautron. Porting and Extending the C++ Task System with the Support
of Lightweight Processes.

In Proc. USENIX C++ Conference, pages 135-146, Washington, D.C. (USA),
April 1991.

Yvon Gourhant and Marc Shapiro. FOG/C++: a Fragmented-Object Generator.
In USENIX C++ Conference, pages 63-74, San Francisco, CA (USA), April 1990.

[Makpangou and Shapiro 88] Mesaac Makpangou and Marc Shapiro. The SOS Object-Oriented Communica-

[SOR 89)]

[Shapiro 89]

[Shopiro 87]

[Stroustrup and Shopiro 87]

[Stroustrup 80]

tion Service.
In Proc. 9th Int. Conf. on Computer Communication, Tel Aviv (Israel), October-
November 1988.

SOR. SOS reference manual for prototype V4.
Technical Report 108, INRIA, June 1989.

Marc Shapiro. Prototyping a Distributed Object-Oriented Operating System on
UNIX.

Workshop on Ezperiences with Building Distributed and Multiprocessor Systems
(WEBDMS), Ft. Lauderdale, FL (USA), October 1989.

Jonathan E. Shopiro. Extending the C++ Task System for Real-time Control.
In Proceedings and additional papers, USENIX C++ Workshop, pages 7T7-94,
Santa-Fe, NM (USA), November 1987.

Bjarne Stroustrup and Jonathan E. Shopiro. A Set of C++ Classes for Co-routine
Style Programming.

In Proceedings and Additional Papers, USENIX C++ Workshop, pages 417-439,
Santa-Fe, NM (USA), November 1987.

Bjarne Stroustrup. A Set of C Classes for Co-routine Style Programming.
Technical Report CSRT 90, AT&T, Murray Hill NJ (USA), November 1980. Re-
vised (1) July 1982, (2) November 1984.

C++ SYMBOLIC DEBUGGING

Dmitry Lenkov
Shankar Unni

Hewlett-Packard Company
California Language Laboratory
19447 Pruneridge Avenue, MS: 47LE
Cupertino, CA 95014
E-mail: {dmitry|shankar}%hpda@hplabs.hp.com

ABSTRACT

Many software developers using C++ have had painful experiences in symbolically
debugging C+ + programs. Absence of C+ +-specific debuggers is onc of major reasons
for this. Building a C+ + debugger is a non-trivial task that requires one to define func-
tionality appropriate for debugging C+ + programs and design an implementation to sup-
port this functionality.

This paper discuses debugger functionality necessary for symbolically debugging C+ +
programs. It then introduces a practical approach for an implementation supporting this
functionality.

1. Introduction

The introduction of C++ into the market has placed new requirements on symbolic debuggers.
C++ [1] is a C-based object-oriented language with a number of advanced features. Three parts of
the C++ definition in the previous statement emphasize three groups of challenges which a C+ +
symbolic debugger is supposed to address. Since C++ is a C-based language, a C++ debugger
should support functionality offered by C debuggers in common use. C+ + is an object-oriented
language [2]. This means a C++ debugger should support new syntactic conventions, for example,
specific to class scope or to member pointers. It also should be able to display C+ + objects as the
user declared them and allow their modification. This is complicated by the fact that a pointer to a
class in C+ + can actually point at runtime to an object belonging to any of the derived classes of the
said class, in addition to objects belonging to that class. This poses a challenge to the debugger: to
try to distinguish which class the object really belongs to, and display the object using the appropriate
type template. In addition C+ + has a number of advanced features [1] such as overloaded functions
and operators, inline functions, etc.

Until recently there were no C+ +-specific symbolic debuggers. And even now many hardware plat-
forms have either no such debuggers or C++ debuggers with rudimentary functionality. Without a
good symbolic debugger, C++ can be very difficult to debug [4]. Besides the complexity of the
language, there are other factors such as the fact that C+ + compilers mangle variable and function
names in order to support overloading and type-safe linkage, and that in many debuggers, the user is
effectively debugging some intermediate C code that is very hard to read and extrapolate back to the
original C+ + source.

In choosing the right approach to the definition of functionality and to the implementation of a C+ +
debugger, it is appropriate to consider two groups of debuggers currently in wide use. Debuggers in
the first group have been primarily aimed at traditionally structured programming languages like

(‘Page 1)
53

C+ + debugging June 1990 C+ + debugging

Overloaded functions

When a function or operator is overloaded, the debugger should be able to recognize this fact, and
provide a convenient interface to refer to a set of overloaded functions, either individually or collec-
tively. The same specification format as above can be used to specify a set of overloaded functions.
However the debugger should provide a special interface to allow the user to select a particular func-
tion, or a subset of functions, out of a set of overloaded functions (for breakpoints on individual
functions). This interface can either display full declarations (prototypes) for all functions in the set
and ask for a selection or prompt for function parameter types and make selection internally.

For example, one can ask the debugger to set a breakpoint at:
e All the constructors for class Foo,
e All functions called print () for the class Foo and its descendants.

and so on.

Member function of an object

Given an object, or a pointer to one, the user can select a member function of the class to which it
belongs to set a breakpoint. This is subtly different from the previous cases: if this member function
is a virtual member function, then the debugger sets a breakpoint at the actual function that the
above expression refers to (based on the real type of the object at runtime). For example:

class a {
public:
a();

virtual void print ();

}i

class b : public a {
public:
b();
void print ();

Yi

s s s s

a* p a = new b();

After the last statement is executed, p_a points to an object of the class b. So if p_a->print is
specified to the debugger to set a breakpoint, the breakpoint will be set on b: :print.

2.1.2. Data breakpoints

Data breakpoints are those that are triggered on access or modification of an object. For the case of
C+ +, there are two specific types of data breakpoints that are quite useful:

Class breakpoints

In order to easily debug the entire interface of a class, it is desirable to be able to set breakpoints at
all member functions of a given class. This sort of breakpoint allows the programmer to watch
accesses to a whole group of objects. We support two variations of class breakpoints:

(1) breakpoints that are set on member functions actually declared in a given class, and
(if) breakpoints that are set on all member functions, including those inherited from base classes.

The class name serves as a specification in both cases. To distinguish between these cases, two dif-
ferent command names are used.

(Page 3)
55

C+ + debugging June 1990 C+ + debugging

2.2.1. Symbolic display of the type of a class instance

Most symbolic debuggers maintain symbol tables that contain type information sufficient to display
the type of a variable or a function parameter. However, this becomes more complex in the case of
a pointer (or reference) variable (or parameter) referencing objects of a class which has subclasses.
When the user wants the type of an object referenced by such a variable to be displayed, p_b in the
example above, there are two alternatives in regard to what he actually wants to be displayed:

(a) The statically declared type of p_b. Since every cis a b, this does make sense.

(b) The actual type of the object that p b points to at run time (in this case, class c¢). This
requires run-time access to the object type information.

Both alternatives should be supported by a C++ symbolic debugger. Certain restrictions on the
second alternative are considered in details in a separate section below.

2.2.2, Symbolic display of a class instance

The two alternatives considered in the previous section apply to the symbolic display of a class

instance. In the case of the first alternative, the display of an object referenced by p_b may look
like:

class b : public a {

For the second alternative it may look like:

class c :
public b {
3= 3;
¥ A
k=1;
}

In addition the user should be able to display an entire object, including members of all base classes.
In this case the display may look like:

class c :
public b :
public a {
i = 10;
¥
J

N~

3;
A
k =1;

Besides these variations, there are others based on displaying instance variables based on scoping
and access levels.

2.2.3. Modification of class instance members

The user should be able to modify instance variables of an object. This can be done by following the
syntax of C+ + assignment statements. For example

(Page 5)

5+

C+ + debugging June 1990 C+ + debugging

3.3. Us_er modification of flow of control

The user should be able to change the program counter at any time when the program is stopped.
For instance, he/she may want the debugger to execute some sequence of statements that it had (or
is about to) skip over because of some incorrect program condition.

4. Implementation issues

We established in the previous section that accessing type information at run-time is necessary to
support functionality described there. This is probably most non-trivial challenge that we discovered
during implementation of our C+ + debugger.

Another problem results from the fact that many C++ products are based on the AT&T C+ +
translator which produces C code that is difficult to read and process. This is a problem because
much of the symbolic information about the C++ program is lost in the translation. For instance, a
lot of the information about access restrictions, inline functions, enumeration constants, and the like
is lost in the translation. Also, the exact inheritance tree is difficult to reconstruct from the inter-
mediate C structures that are generated.

Since our implementation is based on AT&T’s translator, we had to find a way around and generate
correct information about C++ symbols, their types, and their location in C+ + code. This section
outlines our solution to these two problems.

4.1. Generating debug information

In a true integrated C++ compiler, generating debug information is a relatively straightforward
exercise: the only problem to be solved is the actual representation of the debug information which
the debugger can use when debugging the program. However, in a classic translator-based environ-
ment, this is a much harder problem. As mentioned above, the basic difficulty is that by the time the
C++ source is translated to C, we have lost much of the original structure of the original C+ +
source.

There are several C++ environments today that attempt to present the user with a crudely recon-
structed "C+ + debug environment" [4], but these are demonstrably difficult to use.

Thus, we have to rely on the translator to generate enough information on the side to supplement
the debug information emitted by the C compiler so as to be able to re-create (in the debug infor-
mation) the original C+ + source. This is what we have done in our implementation (hpe+ +).

In this environment, when the user requests debug information to be generated, both the translator
(cfront) and the C compiler generate some debug information. The translator generates information
about types, variables and functions (in other words, everything that it can determine in the absence
of code-generation-time information like stack layout and code offsets).

There is a "merger" program that runs after the C compiler, which gathers the debug information
from the C compiler and cfront, and merges it to produce complete debug information for the origi-
nal C+ + compilation unit, as shown in figure 1.

(Pa_g'e 7)

5 7

C+ + debugging June 1990 C++ debugging

public:
void print (); // prints a i and b_i

ax p_aj;

if (expression)
p_a = new a();
else p a = new b();

p_a —> print();

Regardless of whether p_a points to an instance of the class a or class b, at the execution of the last
statement a:print is always called. Since a reasonable symbolic debugger would have the type infor-
mation for p_a, it would also find information about the class a. Thus we can get to the right func-
tion print and display the value of a_i. On the other hand, there is no way to access the field b_i by
using pointers or references to the class a without using casts. This eliminates a possibility of mka-
ing an error involving b_i if casts are not used. Suppose now that a cast is used:

((b*) p_a) -> print(); // prints a i and b_1i

In this case we can specify the same cast to a debugger (our debugger understands this). The situa-
tion changes significantly if the function print is virtual. In this case p_a->print() becomes a
generic call and may invoke either a::print() or b::print() depending on which instance
p_a points to. However , as mentioned above, if print is a virtual member function then instances of
the class a and instances of the class b contain pointers to different virtual tables. Thus they can
be used to find correct information about the class of an instance pointed to by p_a. There are at
least two approaches to provide access to class information through virtual pointers.

(a) The first one [8] requires us to associate an additional virtual function that would return a
pointer or reference to the class information generated by a compiler or a special tool before
execution. These functions can be generated automatically, either by the compiler or transla-
tor, or by a separate tool.

This approach definitely provides a powerful general mechanism. However, we have to be
careful that this mechanism is always in place, even when not compiling the code specifically
for debugging. Otherwise, there arises the possibility that the execution of the program will
differ based on whether it was compiled with or without debugging information.

(b) We have developed a different mechanism. We are not aware of a previous use of this
approach for accessing C++ class information at run-time. The basic idea is to use virtual
table addresses as run-time class identifiers and search for class descriptions generated before
the execution through a hash table mapping virtual table addresses into references to class
descriptions. Below we discuss details of this approach. We assume that virtual tables are
implemented as described in [1] and [9].

4.2.1. Virtual table implementation by AT&T C+ + translator

Given a class that has at least one virtual member function, the objects belonging to this class, or any
of its derived classes, have one or more "virtual table pointers” embedded in them, which can serve
as identifying handles for the objects. However, this scheme has several drawbacks:

(Page 9)

e/

C+ + debugging June 1990 C+ + debugging

an amount equal to the size of an object of class A. Later, when attempting to determine the type of
the object using the latter handle (i.c. a pointer to class B), we will have to determine (a) that it
belongs to class C, and (b) that we have to subtract the size of class A from the value of the handle
in order to get to the base of the object. Thus, the table for this program fragment may look like
figure 2:

A 0
C 0
C -8

Virtual table for A
First virtual table for C

/
Second virtual table for C
Objects of class A A \

Objects of class C

Figure 2. Lookup table used by debugger.

The debugger has enough information to know, given a declared type, where to look for the virtual
table pointer inside the object. Armed with this information, the debugger extracts the value from
the object and looks it up in this table, and can thus determine the real type of the object.

(_:Page 11)

63

Type Identification in C+ +

Dmitry Lenkov
Michey Mehta
Shankar Unni

California Language Laboratory,
Hewlett-Packard Company,
19447 Pruneridge Avenue,
Cupertino, CA 95014.

E-Mail: {dmitry| mnm | shankar}@cup.hp.com

ABSTRACT

Many applications and class libraries require a mechanism for run-time type
identification and access to type information. This paper describes a general type
identification mechanism consisting of language extensions and library support. We
introduce the following language extensions to support type identification uniformly
for all types: a new built-in type called typeid, and three operators stype (static
type), dtype (dynamic type), and subtype (subtype inquiry). We also describe a
library class called TypeInfo, which is used to access compiler generated type infor-
mation. Special member functions of the Typelnfo class are used to extend the
compiler generated type information. An implementation strategy is presented to
demonstrate that the proposed extensions can be implemented efficiently. We com-
pare our proposal with previous work on runtime type identification mechanisms.

1. Introduction

There have been various attempts made in C++ to implement a method of type identification for
objects and a mechanism to access additional type information[3][4][5]. There are several reasons
why such identification is needed.

® Support for accessing derived class functionality

Many of the commonly available C++ class libraries (such as NIH[4], InterViews[6], and
ET+ +[5]) consist of an inheritance hierarchy with a root class (such as the Object class in
NIH). When dealing with pointers to this root class, a common operation in these toolkits is to
determine if a pointer points to an object of a derived class. If so, the pointer is castdown to
the derived class so that a derived class member function may be invoked. Since C+ + per-
forms its type checking at compile time, type information is not available at runtime, and each
toolkit uses different mechanisms for determining the actual type of the object being derefer-
enced. When the root class is a virtual base class (as in NIH), since the castdown is not permit-
ted by C+ +, the library must invent mechanisms to circumvent this restriction. We show that
our type identification scheme supports subtype queries and castdowns.

@ Support for Exception Handling.
The exception handling mechanism[1][2] requires type identification at run time, in order to
match the thrown object with the correct catch clause. The exception handling mechanism is

65

Here are some examples of how the subtype operator can be used.

Example 1:
List* L_p = // initialize

l_p = // point to some other list

if(subtype(SortedList, l_p)) {
Key k = (SortedList*) L_p -> least_key();

>

if(subtype(LenSortedList, L_p))
cout << ((LenSortedlList*) L_p -> length());

Another example is calling a function that requires an actual parameter which is a derived class.

Example 2:
void func(LenSortedList *);
if(subtype(LenSortedList, l_p))
func((LenSortedList*) l_p);

In the previous two examples the castdown operation was used to allow functionality defined on
subtypes to be used. However, the subtype operator also has applications that do not require a cast-
down operation. Consider:

Example 3:
void sort(List¥*);

List *l_p = // initialize
if(Isubtype(SortedlList, l_p))
sort(L_p);
Consider another example:

Example 4:
void other_func(OtherType *);

OtherType p = // initialize

if(subtype(SortedList, L_p))
other_func(p);

In this example, the functionality associated with the SortedList subtype is invoked as in example 2.
However actual actions take parameters of types other than SortedList. Thus the castdown opera-
tion is not needed.

C++ types fall under three different categories with regard to the subtype operator: polymorphic
classes (those that have virtual functions), simple types, and non-polymorphic classes. For
polymorphic classes the behavior of the subtype operator is illustrated above. A simple type (int, int
("0, etc.) has no subtype (other than itself). Thus the subtype operator establishes equality for them
with the result defined statically at compile time. For example,

ot

an object of a class which is not a subtype of LenSortedList? Currently if one attempts:

B* b p = //initialize
C* c_p = (C*) b_p;

where B and C are unrelated but have a common parent, an unchanged value of b_p is assigned to
c_p. It is reasonable to do the same in the case of dynamic casting.

23. The Type Identification Scheme

Some of the applications described in the introduction would require a unique identifier to be associ-
ated with a type. The primary component of this type identification scheme is the predefined type
called typeid.

23.1. The typeid Type

The typeid type is a simple predefined type, similar to int or void*, with a few operations defined on
it. Expressions evaluating to the typeid type can be compared for equality and inequality. Variables
of the typeid type can be assigned or initialized with an expression of the typeid type. No other
operations are allowed. Each unique type in an application has a unique value of the typeid type
associated with it. We define two operators which return values of type typeid.

stype returns the type identifier (typeid value) for the static type of an expression. It can also be
applied to a type name and returns the type’s typeid value. The dtype operator can be applied to
any expression that evaluates to a pointer to a type. If the pointer points to a polymorphic class,
dtype returns the type identifier (typeid value) of the actual type of an object pointed to by this
pointer. Note that this type must be determined dynamically. If the pointer does not point to a
polymorphic class, dtype returns the typeid value of the static type pointed to by the pointer defini-
tion.

Example 6:
List* L_p = new SortedList;
int num_Sorted Lists = 0;

typeid t = dtype(l_p);
if (t == stype(SortedList)) num_Sorted Lists++;

The reason that stype and dtype are not predefined member functions is the same reason that sizeof
is not a member function: both identify a fundamental property of types, as opposed to an operation
on objects of those types. On the other hand, both can be applied to any types including types such

as (int* (*)).

An alternative to the stype operator is to allow an explicit conversion of any type to fypeid. How-
ever this would also require the conversion of type names to typeid. The above example would look
like:

List* L_p = new SortedList;

int num_Sorted_Lists;

typeid t = dtype(_p);

if (t == typeid(SortedList)) num_Sorted_Lists++;

6

may extend the type information associated with a class. We believe that it is best to allow the class
library creators and users to specify what information needs to be associated with each type.

The following mechanism is used to extend the type information associated with a type.

® We provide a member function called "add_aux_typeinfo” in the Typelnfo class. This member
function is used to attach additional type information to the minimal type information gen-
erated for a type.

® We provide a member function called "get_aux_typeinfo” in the Typelnfo class. This member
function is used to retrieve any additional type information that a user may have attached to a
type.

® It is reasonable to expect that multiple users may wish to attach auxiliary type information to
the same type. Therefore, the notion of a "key" is required. A "key" is used to distinguish
between multiple auxiliary type information objects attached to the same type.

Consider an example:

// User wants to add a "name" field to the Typelnfo for class Widget

//See section 3.3 for an explanation of the AuxTypelnfo class
class Namelnfo : AuxTypelnfo {
char *name;
public:
Namelnfo(char* n): name(n){};
b H

NameInfo NamelnfoObject = "“Widget";
// Attach additional type information for "Widget"
get_typeinfo(stype(Widget)) -> add_aux_typeinfo(&NemelnfoObject, stype(Namelnfo));

// Assuming the user has installed name information in Widget, and

// all classes derived from it, here is how a user could dynamically

// find out the name of a class.

Widget* w = // initialized to something;

char* name = (NameInfo*) (get_typeinfo(dtype(w)) ->
get_aux_typeinfo(stype(Namelnfo))) -> name;

The extensibility scheme we have proposed is essentially a convenient method of adding a static
member (in fact, a virtual static member) to an existing type, without having to modify the type in
any way. Individual users can certainly come up with various methods of accomplishing the same
result, but the goal here is to propose a uniform method for extending type information.

33. The AuxTypelnfo Class

Any additional type information should be defined as a class derived from AuxTypelnfo. Instances
of this are used to link the auxiliary type information objects. See section 4.5 on additional informa-
tion about the implementation of extensibility. The AuxTypelnfo class is defined as follows:

Reasonable space and execution performance should be expected when using type inquiry
operators.

When a program uses type inquiry operators the execution cost should be paid only when (and
if) these are actually used at runtime. Any startup cost should be minimized.

We wanted a scheme that would work with both "munch" and “patch" (see next section).

4.1. Terminology

The implementation section of this paper uses terminology that may not be familiar to everyone.

Munch and Patch : Munch and Patch are schemes used by AT&T C++ front end based
implementations to ensure that all static objects are appropriately initialized before the main
program begins. After a program is linked, a "munch” implementation scans the resulting exe-
cutable for special symbols and constructs additional data structures which are then relinked
into the program. In a "patch” implementation, the executable resulting from a link is also
scanned for these special symbols. But instead of constructing additional data structures,
"patch" fixes existing data structures, for example, linking some of them together.

vtables: "vtables" are tables, or data structures, which support virtual function calls. A
polymorphic object will contain one or more pointers to one or more such tables.

42. Implementation Details

We now provide some details of a possible implementation scheme. In section 2 we described the
built-in typeid type and in section 3 we described a library routine get_typeinfo which will convert a
typeid into a Typelnfo*. A typeid is really equivalent to a Typelnfo*, and in the rest of this section
we will always use the Typelnfo class name.

Our overall implementation strategy is:

One Typelnfo object per type:

The type inquiry operators return a pointer to a unigue Typelnfo object associated with the
type. The reason we need to guarantee one unique object is so that pointer comparisons can be
used to determine whether two types are the same.

Typelnfo objects are only allocated if necessary:

Our implementation scheme attempts to minimize the number of Typelnfo objects which are
allocated, since we do not need to allocate one for every single type. Allocating a Typelnfo
object for every single type we encounter in a program is not necessary, since a compiler can
determine whether or not the Typelnfo object for a type is accessible at runtime.

42.1. Allocation of TypeInfo objects
Typelnfo objects can be referenced at runtime for any of the following reasons:

L

We must have Typelnfo objects for the static types of any types used in type inquiry operators.
For types which are classes we must also allocate Typelnfo objects for each ancestor in the
class hierarchy. This is needed to allow traversal of the ancestor hierarchy of a class in order to
support subtype inquirics and the Typelnfo class functionality. This also supports the excep-
tion handling mechanism.

We must have Typelnfo objects for all derived classes of polymorphic base classes on which
the user performs a dynamic type inquiry operation (i.e dtype or subtype). Since a derived
class can be defined in a compilation unit which is not visible to the compilation unit contain-
ing a type inquiry operator, TypeInfo objects have to be emitted for all polymorphic classes.

‘N

Consider a class X for which we cannot find a unique place to initialize the Typelnfo informa-
tion. Assume we allocate and initialize Typelnfo objects in filel and file2 called
Typelnfo_X_filel and Typelnfo_X_file2, respectively.

For the expression stype(X), the equivalent C code we generate is:

C++ code C code
stype(X) Typelnfo_X_filel.RealTypelnfo (if in filel)
stype(X) Typelnfo_X_file2.RealTypelnfo (if in file2)

The "patch” tool will notice that there are two Typelnfo objects for X, arbitrarily pick one of
them, and make the "RealTypelnfo" fields of both objects point to the chosen version. Note
that since we have allocated initialized objects, patch is allowed to modify them in the object
file itself.

File 1 BEFORE PATCH File 2
0 0
RealTypelnfo RealTypelnfo
Typelnfo_X_filel Typelnfo_X_file2
File 1 AFTER PATCH File 2
RealTypelnfo RealTypelnfo
Typelnfo_X_filel Typelnfo_X_file2

Figure 1: Patch Implementation

The primary advantage of this scheme is that there is no startup cost. Note that this same scheme
cannot be used by munch without incurring some runtime cost, since there is no way for munch to
initialize the "RealTypelnfo" ficlds without generating some code to execute at runtime. The next
section describes a scheme for munch which involves no runtime initializations.

75

4.4. Shared Library Considerations

Shared libraries are a mechanism for multiple programs to share the same copy of routines linked
into a shared library; linking with shared libraries will generally result in much smaller executables
files than linking with archive libraries. Shared libraries add complexity to the implementation of type
identification. Although we do not go into any details of how shared libraries work (since vendors
differ in their implementations), we make the following assumptions about shared libraries:

O At link time, a tool like "munch" or "patch” will not get a complete picture of all object files
which belong in this executable, since shared libraries can be explicitly loaded at runtime (for
example you may may load a set of graphics routines which depend on the output device you
are using).

O When a shared library is created, we assume that there will be some mechanism which will
allow us to run "munch” or "patch” on the shared library.

O We assume that the shared library mechanism allows us to specify a routine that will be exe-
cuted when the library is first loaded.

The "patch” and "munch” schemes previously described rely on being able to process a "complete”
executable; since a link involving shared libraries results in an "incomplete” executable we need to
make modifications to our schemes.

The previous section describes two conditions under which we cannot initialize a unique Typelnfo
object at compile time:

1. Polymorphic classes which do not have unique vtables
2. Non-polymorphic classes

We now describe how this would be handled in a shared library implementation. Both implementa-
tions suggested below will have some runtime initializations being performed.

4.4.1. Patch Implementation for Shared Libraries

The scheme of having a "RealTypelnfo” field does not work for shared libraries, because when a
shared library is loaded it would be difficult (and expensive) to make each such field point to the
appropriate TypeInfo object. The shared library patch algorithm looks like this:

1. At compile time we emit a tentative definition for a Typelnfo object which cannot be initialized
in a unique file. We also emit an initialized definition for this TypelInfo object.

2. At "patch" time, we create a chain of initializations which should be performed; each entry in
this chain will contain a pointer to each Typelnfo object which needs to be initialized, and a
pointer to the corresponding initialized object. If there are be multiple initialized objects avail-
able, one is chosen arbitrarily. This algorithm applies when patching executables as well as
shared libraries.

3. When "_main" is executed and when a shared library is loaded, all the Typelnfo initializations
are performed before any other initialization code is executed. An initialization of a Typelnfo
object is quick because we simply need to store a pointer to the initialized object within the
Typelnfo object.

Patch cannot initialize Typelnfo objects during the patch phase itself, because of the method used by
most linkers to implement tentative definitions. If a linker needs to allocate space for an uninitial-
ized tentative definition, it will usually simply update the size of the uninitialized area, and the loader
will be responsible for initializing this area to 0. Since there is no real image in the object file which
contains the initialization data for uninitialized tentative definitions, there would be no way to "patch”
it to a different value.

The scheme we have described does have some runtime cost, and this cost is the initialization of one
word for each Typelnfo object allocated for non-polymorphic classes, and polymorphic classes

77

use different syntaxes for accessing this member. The Dossier scheme uses the ::, ., and ->
operators, whereas we propose introducing two new operators stype and dtype. The main rea-
son for our choice is to provide a consistent syntax for accessing type information for all types,
not just classes.

Extensibility
Regardless of how much information is made available for a type automatically (for example, a
list of ancestor classes), there will always be some applications which need additional type
information. Our paper discusses a method for extending the standard type information gen-
erated by the compiler (the developer will have to take steps to ensure that this additional type
information gets associated with the type).

Implementation
The Dossier mechanism relies on a tool to process the sources for an application and generate
Dossiers. Although the sources may be partitioned into multiple sets (to handle libraries), care
must be taken to ensure that the same Dossier is not generated twice. Our paper describes
some implementation schemes in which the compiler automatically generates the necessary
information, and no additional processing is necessary.

6. Open Issues

The type identification mechanism presented in this paper provides a reasonably complete set of
functionality for type related operations and handling type information. In developing this mechan-
ism we discovered some issues that require further discussion.

® Non-Polymorphic Classes

Non-polymorphic classes inherently possess a certain inconsistency with regard to type identifi-
cation. Although they form a subtype hierarchy in the same way as polymorphic classes, given
a pointer to a non-polymorphic base class it is difficult to determine the true type identity of
the actual object being dereferenced at runtime. There are various alternatives available:

- make all non-polymorphic classes polymorphic;

- make all non-polymorphic classes, except for "extern C" classes, polymorphic;

- introduce a pragma to control this;

- introduce a compiler option;
Each of these options has serious disadvantages.

® ptr_cast operator
The use of casts is usually unsafe. The idea of an alternate cast operator[7] that is supposed to
be applied only when a legal conversion is possible, is attractive. This operator would raise an
exception if applied incorrectly.

7. Conclusion

We have described a general type identification mechanism consisting of language extensions and
library support. The language extensions introduced support a reasonably full set of type inquiries.
The library class called Typelnfo has been introduced to allow access to compiler generated type
information. While providing access to basic information about types, it also contains member func-
tions which can be used to extend the compiler-generated type information. An implementation
strategy has been presented to demonstrate that the proposed extensions can be implemented effi-
ciently.

The proposed type identification mechanism should satisfy the requirements of application and class
library developers for type identification, access to a subtype query mechanism, and run-time access
to type information. '

29

C+ + Standardization

Steve Carter Chair, Int’l Concerns Working Group
X3J16, C+ + Committee

Interim Convener,
WG21, C+ + Working Group

Postal Address Bellcore
444 Hoes Lane, RRC 4A-737

Piscataway, NJ 08854
United States of America

Telephone + 1 908 699-6732
Facsimile + 1 908 463-1965
SLC - 5/31/91
Electronic Mail uellattunix!bellcorelberlsic2
slc2%ber.cc.bellcore.com@ bellcore.com

p—

C+ + Standardization

Overview

e Why Standardize C+ + ?

Who Is Standardizing C+ + ?

e What Are X3J16 and WG21 Doing?

e How will X3J16 and WG21 Work Together?
e When Will Standardization Complete?

SLG- 5/31/91

Why Standardize C+ + ?
Credibility, Reduced Cost and Increased Availability

e User Benefits
— Easier to write vender independent source code
— Wider product availability
- Commodity pricing
— Improved chances for support tools
e Benefits to Venders
— Even playing field
— Expanded market
e Vender and User Benefits o5
- C+ + and associated products gain credibility

| —

Who Is Standardizing C+?
X3J16 and WG21

National Accrediting Umbrella Organizations International Standards Organizations
A AL
"o Ty ' ™
Britain USA France ISO IEC
BSI ANSI AFNOR e o

X3 IEEE e JTC1

T (0S1) eee SC22 (Languages) §C21 (Information
Retrleved, OSI)

H & J (Languages)
J16 (C*) J11(C) WG2‘1 (c*) WG1‘4 (C) soe

I I _ N |

! o r

Selected Technical Experts

* Countries indicating they will participate in WG21: Canada, France, Japan, Netherlands, Sweden, USA, and USSR.

K

~—

What Are X3J16 and WG21 Doing?

o X3J16

— To Date: 1.5+ years, 5 meetings, 70 members

— Participants: amaani, Apple, AT&T, Borland, DEC, Glockenspiel,
HP, IBM, Kubota, Microsoft, NCR, SCO Canada, Sun, Unisys, Zortec

— Committee Goals: What they want to achieve
— Committee Priorities: Their value system

e WG21

— To Date: 0 years/meetings

- Participants: Canada, France, Japan, USA
Netherlands, Sweden

— New Work Item Proposal: The Charter
— First Meeting Agenda: June 18-19 Business

~— A

What Is X3J16 Doing?

X3J16 Committee Goals

Base documents:

C+ + Reference Manual (Ellis & Stroustrup),
ANSI X3J11 C Std,

ISO C Std addendum (when final)

Specify C+ + program syntax and semantics without
preprocessor references

Specify a minimum set of C+ + libraries

Consider major extensions,
€.g. parameterized types and exception handling

Suitable for international community

SLC - 5/31/91

)

What Is X3J16 Doing?

X3J16 Committee Goals

e Standardize C+ + environment elements
— preprocessing, lexical analysis, startup,
— termination, compatible implementations,
— target & host environment differences, linkage,
— freestanding & hosted implementation differences

e A high level of compatibility with ANSI X3J11 C
e Two deliverables: Draft proposed std & Rationale

SLC- 5/31/91

p—4 pN—

What Is X3J16 Doing?

X3J16 Committee Priorities

e Clear and unambiguous specification

e Compatibility with the C+ + Reference Manual

e Compatibility with the other base documents

e Consistency

e Favorable user and implementor experience

e Portability, efficiency, expressiveness

e Ease of implementation including translatability into C

SLC - 5/31/91

T4

What Is WG21 Doing?

C+ + New Work Item Proposal: The Charter

Solicits input: formal specification,
international character handling

Goal: ISO and ANSI C+ + standards are the same
June 1991: first WG21 meeting
Early 1995: Register Committee Draft

Ballots synchronized through X3J16 type |
development

C and C+ + differences documented according to
ISO Technical Reference 10176

USA provides C+ + WG convener e
X3J16 documents circulated in WG21

h—

What Is WG21 Doing?

WG21 Business, June 18 - 19

e Resolve ballot comments

— C+ + should be an amendment to the C standard
in the sense that C+ + is a superset of C

— Synchronization of X3J16 and WG21 documents
must be improved/resolved

e Synchronization of technical expert efforts
e Establish meeting schedule

SLC - 5/31/91

N ~— —

How Will X3J16 and WG21 Work Together?

Synchronized Efforts of Technical Experts

Several Possibilities
e WG21 contracts technical development to X3J16
— one or two nearly identical documents

e WG21 absorbs all members of X3J16 and does own
technical development

— one document

e WG21 does own technical development with input
from X3J16 representatives

— probably two separate slightly different documents

SLC - 5/31/91

Ne— L

When Will C+ + Standardization Complete?
Milestones: 1989 and 1990

9/89 WG21 USA requested to submit C+ + proposal
12/89 X3J16 first meeting
3/90 X8J16 base documents: X3J11 C Std and ARM

7/90 X3J16 - Templates model adopted
— One non-USA meeting/year endorsed

11/90 X3J16 - Exception handling model adopted
— Overriding/Renaming rejected
— Consensus favors iostream and
string classes as a minimum

9%

N’ N

When Will C+ + Standardization Complete?
Milestones: 1991

3/91 X3J16 Adopts second draft of document
4/91 JTCH Approves C+ + Proposal

6/91 WG21 first meeting

6/91 X3J16 first meeting outside USA - Lund

SLC-5/31/91

A —

When Will C+ + Standardization Complete?

Milestones: 1992 and beyond

3/92 X3J16 second meeting outside USA - London
93 X3J16 submits document for public review
93 WG21 registers and circulates document (CD)
94 WG21 document elevates to Draft Int’l Std

95 WG21 document elevates to Int’l Std

SLC - 5/31/91

5

N’ S~/

C+ + Standardization
Acronyms

AFNOR Association Frangaise de Normalisation
ANSI American National Standards Institute

ARM The Annotated C+ + Reference Manual

BSI British Standards Institute

CD Committee Draft (CD --> DIS --> 1)
DIS Draft International Standard (DIS --> |S)
IEC International Electrotechnical Committee

A ~

C+ + Standardization
Acronyms

IEEE Institute for Electrical and Electronics Engineers

IS International Standard

ISO International Standards Organization

JTC1 Joint Technical Committee on Information Technology
oSl Open Systems Interconnection reference model

SC Study Committee

WG Working Group SLG- o1/

N

How Will X3J16 and WG21 Work Together?
USA Proposal: X3J16-WG21 Cooperation Plan

The USA (X3J16) proposes that WG21

e adopt the latest draft document accepted by X3J16
as the base document

¢ designate Jonathan Shopiro as WG21 technical editor
e assign technical development responsibility to X3J16
refer all technical development proposals to X3J16
hold joint meetings with X3J16

SLC- 5/31/91

v

How Will x3J16 and WG21 Work Together?
USA Proposal: X3J16-WG21 Cooperation Plan

The USA (X3J16) agrees to

e accept and give serious consideration to technical
recommendations from the WG21

e report on the disposition of all WG21
recommendations and requests

e report on the progress of technical development
reflected in the document

e distribute USA (X3J16) working papers to WG21
heads of delegation for redistribution within their

country as desired

SLC - 5/31/81

59

_,

How Will x3J16 and WG21 Work Together?
USA Proposal: X3J16-WG21 Cooperation Plan

The USA (X3J16) agrees to

e distribute early versions of the document to WG21
heads of delegation. Distribute later versions of the
document to the entire WG21 membership. Prior to
CD registration, distribute the latest version of the
document to the entire SC22 membership.

e attempt to hold USA (X3J16) meetings outside the
USA annually.

SLC - 5/31/91

CD - Committee Document, ISO progression: CD ---> DIS --> IS

90

{
:guq 3ut
‘7uq Ut WOD * 1°UMe1HON T
} q 1onI3s
VSN ‘¢¥616 VD ‘BsoN e
cuq TOE 91Nns ‘Aemyied J1ayodis|4 5928
Twq =
uoles0diod duUIBNNE L O
‘g lleg °S 19eUdIN
‘guq jut
:fuq 3jur
B - ++D ut @ouejuayul aidiynN Burzuswadwi

"JONJ3IS D B Se dwes ayl Si ssep adwis v

-gugq Jurt
-Jwgq 3ut
‘xoqutodTq xq

} 24 3omias

cwzq |

Twcq

SPToTJ q uUOmmWo> o] - Jajulod-q

=

-gugq aur
‘Tmgq aut
}4q4 TenqItA :gq SsSeld

‘sSsejd @yl ul 1doy Jajulod e pue ssed ayl
JO 9pISINO paledojle e sasse|d aseq |enMIA

{
-ZuWiq 3ut
‘Twiq 3ut
-SPTeTI q q
} 19 3onI3s

cWiq

TWIq

cuiq::q

Twiqg:: g

{
‘zurq jut
‘Twrq 3uT
} 9 :19q sserd

‘sse|d
POALIBP ©Y3 JO MeIS 8y} 1k 0b spialy ssed aseqg

7L

Zwd

Twd

SPTIoTJ q UOWmIOD OF, Jaiulod—q

zwza:iieq

Tweq--cq

Jo1ulod—q::¢zq

ZWTQ:ITq

TWIg::1q

zwqg:qii1qg

TWqg::q::1q

~

$gudo qut
{fwo qut

} q Tenaxta ‘zZq ‘Iq O SSBID

IIe 11 smoys ajdwexa |euty v

*10719N41SUO0D 3Yj ul dn 189S 9q ||IMm I93utodq

cug::q
Twag::q
cuicq
Twezqg
Jojulod—q

‘{
‘enTea™q q
-gugq Jut
cJugq 3ut
¢xoqutod—q xq

} zq 2onigs

:9MI| SYOO| 1INSaJ4 3y | "24N31ONJ1S 3yl JO pud
ay3 1e pooe|d SI g e JO aoueIsul 9yl 4o adeds
d9Ul ‘poledojle SI gd B JO 2duUelsul Ue UdYAA

{
¢ Xepur TeniIta // {()gF Teniita
T Xoputr Ten3ita // ¢()ZI Tenaita
O Xopur Ten3iiTta // (()TF Teniita
:otTqnd
Toquom Teotdfy e // ‘T qurt
} q ssero

"(xopul jenun)
Jdquinu e paubisse sI uolduNy |eNIA yoeg

"J0129A 1eyl 0] Jo1ulod B Sey SSepD e 4o adue]s
-Ul Yoe® pue J01D9A |BNUIA B Sey Ssed yoeqg
"109[q0 ue JO 9dA] |enjoe Byl YlIM paleInosse
10109A B Y6NOJYL pajied ale suolduny [eNIA

d> (x19) :
(SPT®TF ga<-do)z ; do spwodaq do(*1q)

:0S “TINN e ulewsaJ Isnw TIAN e ‘Allen1oy

Toqurod-q<-do sawodaq do(xq)

:SSe|d> 9seq |enUIA B 10

(SPT®T¥ ga<-do)® sawodoq do(xzq)

:19SJ40 93 1snlpe oam ‘sse|d uo1e| e 1o

do (x1q) Ssowodaq do(x19)

91dwis []13S S,11 SSejd 9seq 1S41) oyl 404

"uol1e49do X81dWod B MOU SI SSB|D aseq
01 PaALIBP WoJy Jalulod e Bullsed 230U apIS

74

o1

$F::0 IO0F 8pod | $):D
€F::D IO0F 9pO0d ~— €1iD

¢¥::q 103 9pod | zZj:q [
TF::D I0T @p0d> | TJi1D | — 13dA
1009AD I

{¥F::0 ‘gF::o ‘ZFi:q ‘17::0}
= []3o9aD>™ quaaa

10109A [eniiA Byl @AeYy 2 2dAl 10O S109lqO

{
€ Xopur TeniIta // {(OFF Ten1ITA
¢ Xepur Tenijita // ‘Oer
0 Xeputr Tenixta // ‘O17F
:oTTqnd
‘[qur

} q otTqnd :5 sseyo

SSB|D PIAIIDP € Ul

6
m”HuuQr IO0J °9Ppod m.._.D
o¥:q JI0T 2poo N.._,D
T3¥::q I0J °pod T4::Q | —— J3dA
108Aq” |

"309AqQ” 01 j1uiod 03
pazijeiul aq pnom 1ada usjulod jenuin oy |

{
‘$11dax queaa
‘T gur

} a4 3onags

SI q 40} paledo|je abe.uols ay |
{€F::q ‘gF::q ‘13::q}

= []3o8Aq~ juaaa

xoqutod ouny // ¢ () (3usanx) qur Fepadfa

91| 0O} PINOM q JOJ J01D3A |BNTJIA DY |

¢l

-

€ Xopur TenjIta // COBT
¢ Xopurtr Tenjita // coer
0 XopuUTrT TeniliTa \\ mAvHH
:oTTqnd
‘0 qut

} 1q ot1qnd ‘q o11qnd :1o sseld

‘{
X9putr Tenj3Ita ou // tO9r
¢ Xeputl TeniIta // {()GF TeniIta
T Xoputr TeniIta // ({()¥I TeniIta
0 Xopur Ten3Ita // {()EF TenlITA
:oTTqnd
‘Y jutr
} TQ sseld

‘9duelByul 9dIFINW Y1IM MIOM 1,UOM SIY |

1T

‘eFIO0 S|Ieo 31 5> e 0} mpc:ua
1 1l pue €F::q s||ed siyl q e 03 syujod dq 41 oS

(da) ([z]13dac-dq)

01 pojejsuely sl J 01 |jed ay |

¢ Xopur Tenixta // (()eI<-dq

tdq *q

"uoilduny
Ien1JiA 1094400 9yl spuly dnxoo| ajqel ajdwis v

T

148

SI::1q
$I:io
€I::70
$I: 0
€I::10
zI::q
TI::TD

(ea1op- [TAa] 13dac-dq+dq)
(oung- [ta]xadag-dq)

(Allen1daou0d) sawodaq ||ed ayl pue

Io7
Iog
IOJ

I0J
IoF
I0J
Iog

9poD
2po2
2poo

2pod
apod
2pod
2poD

— 6114

— pJT0

Sum—P-TTES o

— LT

11dA

— €T

— &4 g

— 1 T30

11dA
A5

-~

zojutod uorgouny //¢() (oUNFx) qut

wSTU3, o3 -[pe //

fe1Tep UL

} 3usaa 3onI3s

SOW029q AJIUD JOIDDA |eNIA oY |

€I

"J0]D9A |enlIIA 91eledss e sposu
T4 'q ul paubisse asoyil 01 diysuoile|al
OuU 9ABY 149 Ul paubisse sodIpul [eNIIA DY | e ~
'SpJoIy S 4O 1eIS S
9yl 0] juiod 03 sTY1 S109dXa 19 JO Joquaw
uolouny e 1ng ‘1o JO SpIaly 3yl Se uol1edo|
swes ayjl je uiboq 3,uop 19 JO Splaly DU | e
Swia|qoud

o1 _ ST

sutrqnox dml sutrqnox dufl
(bx0)opds‘3esyFo TPPR (¥x0)ods‘1esyzog Tppe

: "D |ebaj J0u ‘BSIN0D 4O ‘SI YdIym
pepesu IT ‘qnig

ooe sl 7 fouTqnoI 01303

oe‘ (¥Tx0)00= TAOW

oe‘ (820)00® TAOW ote asf $19SJJ0 =+ STY2
Oe‘STU3 TAOW TR * (¥TX0)00R TAOW] _
-pds‘op TaAOUW -pds‘Te TaOm ‘3us Junyl
OP‘STU3 TPP® T2 ° (02X0)d0® TPPE

OP‘ (0TX0)D0' TAOW o®‘ (8X0)d0OR TAOW

oe‘ (8X0)d0R TAOUW TR‘OR TAOUW A Ol HOO] pjnom o2p02d VY

QR STy3 TAOW oe‘SIUl TAOUW i
1Teo Tenaxtp odoueartrsyqul oTdrainy

" unyl,, e poajes Sl 9p0d YodnNs "I01D9A 9y)
ooe asl
0" (0TX0)p0® TAOW o8 s ul ssaippe s}l @oe|d pue juswisnfpe ayjl op

0=’ (8X0)20® TaOW 0® (0TX0)d0® TAoW 01 9p0d 91esousb ‘Juswisnipe Spesu STUL 4]
OR‘STY3} TAomW 0'* (8X0)p0R TAOW
-pds‘op TAOW -pds‘oe TAOW
OP‘STYa TAOW Oe‘STIyl TAOW

“|jed aouelsyul 9|buls e
pue SI10109A |eNUIA ddouellsyul 9)6buls 91eJ2UdD)

TTe> TBN3ITp 9doueirIayu] oTJUIg

surqnox as(
-pds‘op TAOm autrqnox ias(

OP‘STY3 TAoW -ods“stya Taom "Dp0d D dleiouab 031 aAey 1,Uop am
:ITeo Lxeurpip
41 Aiessadauun S| Ajjeuad Siy | ‘pash 10U usym

PHZICR de=tiou BLZ(UREe UDAD S|IBD |BNLIA SMOIS ddueiluayul ajdiznin

SI9IIdWoD ¢ woul 2p0oD)

LT

o¢ | v2 | s2 | 81 | ou | (gmis) I
gc | vz | LT | 8T | SoA | (gnis) I
Ge | 8¢ | ¢ | v | ou | (e1dp) IN
Ge | g8 | 22 | vg | sek | (e119p) 1IN
¢z | ve¢ | 21| 81 | V/N IS

1T | #T | OT | ¢T | V/N s|dwis
SJod | 9ZIS | Sjod | 9ZIS | 04dZ 2dAl
EEQOnCO: E_HQO eliop 11548

uosuedwo) 9zIS pue poaads (|eD

99

Implementing the Dark Corners of C+ +
Martin J. O'Riordan
Microsoft Corporation

(uunet!microsoft!martino)

Lund - Sweden
(14 June 1991)

This paper briefly explores some of the more hidden parts of the C+ + language, which
are difficult to understand, recognise and implement. Much of what is presented here has
been brought to light through the implementation efforts of the Microsoft C+ + Compiler
Development team, and represents the work of many people.

Introduction

Since approximately April 1985, implementations of compilers for the C++
programming language have been available. Originally the AT&T translator 'cfront’
and subsequently implementations by other vendors. Since that time, the language has
been evolving, and although the primary goals and mechanisms of the language are
apparent, there are many nooks and crannies which have fallen into the shade. It is
these nooks and crannies I wish to explore, rather than the regular and obvious
functionality. And how these shady corners impact the design of object mapping, code
generation, and compilation strategies in the implementation of a compiler. I will
introduce each of these issues with a description of the problem, how the issue may be
addressed, and where applicable, how it is the Microsoft model tries to resolve them.

Implementing the Dark Corners of C+ +

1 The "One Definition Rule"

The "One Definition Rule" is a statement in the ARM, and the working draft document
for the X3J16 ANSI standards sub-committee. The essence of this statement is that
although a type or inline function may be defined in many translation units, they must
all agree to the same actual definition, as if the whole was translated as a single unit.
The concepts of “Type Safe Linkage", and "Inline Functions" rely on this axiom, but
for different reasons. Type safe linkage allows multiple translation units to see a
definition of a type, and where externally linked components involving such a type are
shared, the definitions must agree exactly. Inline functions on the other hand, must be
semantically indistinguishable from using a regular function.

These are very difficult goals to achieve, and at best, current implementations only
approximate the ideal.

1.1 Type Safe Linkage

Since C++ uses name equivalence for types, it is possible for the definitions of a type
of a given name to differ between translation units. Traditionally, such types are
defined in header files which are included by each translation unit, and such differences
occur rarely. But when they do occur, they are extremely difficult to detect.

Possible solutions could involve the exporting of some internal abstract representation
of named types, which could be analysed by traditional linking tools for identity.
However, in practice, such a mechanism is very expensive, and more typically, this
level of type identity is ignored for performance of translation reasons. Instead,
elaborate schemes of "Name Decoration (Mangling)" are required. These name
decoration mechanisms work well provided the underlying types do indeed agree, but
are incapable of enforcing such agreement.

Since these kinds of type mismatch are expected to be rare, the name decoration
schemes are adequate. At Microsoft, the name decoration scheme is extended to cover
all aspects of symbolic identity, except for verifying that the actual definitions of
named types do indeed agree. However, by decorating the names of all externally
linked names, including data variable names, it is possible to ensure that object names
are of the same type, functions accept the same arguments types and return the same
types, and that linkage specifications agree across translation units. Our particular
environment needs are further aggravated by the need to support different memory
models and function calling conventions.

/ 0 (‘;Z,J

Implementing the Dark Corners of C+ +

Consider the following fragment of code :-
// Translation Unit #1
extern double p;
void bar () { p = 9.5; }
// Translation Unit #2
#include <stdio.h>

extern void bar ();
char* p = "Hello World\n";

int main ()

{
printf (p);
bar ();
printf (p); // What will this do ?
return O;
}

The behaviour of the above example is unpredictable. Since the external data variable
'p' is considered to be of different types by the different translation units. Ideally,
such a program would be rejected by the translation system, but often the reality of
delivering a usable implementation results in some trade-offs. Indeed, current
implementations of the C++ programming language do contain such prudent trade-
offs.

There are two principal name decoration strategies that can be applied. Either decorate
the name 'p' or don't. If it is decorated, then in the absence of special linker support,
there will be two names, one called 'f(double,p)' and the other called 'f(char*,p)’,
where 'f(t,n)' is the decoration transformation function. Consequently, the data name
is essentially overloaded, despite the fact that such overloading would be forbidden
within the same translation unit. If the name is not decorated, then the fact that it is
considered to be of different types in each translation unit will not be detected, and a
different type of error can occur.

In the absence of linker support, it is probably better not to decorate the data names
(and function return types), since the errors that can occur are familiar to the 'C’
programmer. Decorating would produce a new class of error, with which the
traditional 'C' programmer would not be familiar.

However, when linker support is available, decorating data variables and return types,
is distinctly superior, since it is possible to detect the type mismatch, and produce an
appropriate diagnostic. The approach adopted by Microsoft is to decorate all symbols
with external linkage.

/OD

Implementing the Dark Corners of C+ +

Ultimately, name decoration schemes are too complex, since it gets ever more
expensive to encode information for such things as nested types, exception signatures,
and parameterised type information. Local names also present a significant problem,
especially when local static variables are involved in inline functions. Consider the
following code fragment :-

inline int Function ()

{
static int i = 9;
/] ---
if (condition)
static int i = 77;
/] .-
}
]/ .-
}

The principal problem is that the inline function may be expanded many times within a
translation unit, and indeed possibly in several translation units. However, to adhere to
the "as if a real function" semantics, the local name needs to have some form of
reproducable external name. This name must be decorated to allow the two local
names 'i', to be distinguished from each other. Furthermore, the function 'Function'
may be overloaded, and each overloaded form may have its own local static variable
'{*, which must be distinguished from all other 'i's. This problem is further
complicated when the initialisation of such local static variables is dynamic, requiring
the use of some externally linked flag (or similar mechanism) to ensure once only
initialisation. Similarly, if the local static has destruction semantics, further externally
linked helper functions may be required.

Again, a name decoration scheme can be described to encompass these names in a
reproducable fashion, but it is definitely stretching the practical limitations of achieving
type safe linkage using any encoded naming technique.

One the bright side, most 'C' compilers support a rich set of information produced for
the purposes of debugging. As C++ compilers become more common, they too will
be enriched with information necessary for describing the complexities of names,
overloading and the C++ types involved. This information is a valuable resource, not
only for debugging, but also for enabling the development of stronger linkers, capable
of interpreting this information, and producing comprehensive diagnostics of inter-
module type violations and inconsistancies. The use of such information could
eliminate the need for formal name decoration.

1.2 Inline Functions

These present a special problem to an implementation. Traditional implementations are
capable of expanding inline functions that can be represented by expressions. This

(4)
/O 4

Implementing the Dark Comers of C+ +

makes representing inlines functions which embody loops, switch selections and
resursion quite difficult. To get over these limitations, it is necessary to describe a
function in some more abstract form, that can be readily incorporated into the abstract
representation of a using function. That aside, even in the presence of extensive
inlining capability, inline functions must sometimes be instantiated. That is, for one
reason or another, the inline function must exist as a real function. This presents some
difficult semantic problems for C++.

Typically, such inline functions are defined in an included header file. The one
definition rule requires that all definitions of the inline function in separate translation
units be the same definition. This is very difficult to achieve in practice, since
traditional techniques involve the generation of an internally linked function, and
current linking techniques are not generally capable of making any correlation between
these inline function instantiations.

As described in section 1.1, local static variables in such inline functions can be
cicumvented using a complex name encoding scheme, or type extended linking
technology. However, the functions themselves can present problems. Firstly, there
are the "gray-edges" as to what the one definition rule actually means, for instance :-

// Header file "type.h"
class X {
int i;
int j;
public:
int bar () { return i; };
int foo () { return j; };
}i
extern int groan (int (X::*) (), X&);

// Translation Unit #1
#include "type.h"

int groan (int (X::*pmfX)(), X& rX) {
int temp;
if (pmfX == &X::foo) {

temp = (rX.*pmfX)();
pmfX = &X::bar;

}

else
temp = O;

return temp;

}

// Translation Unit #2
#include "type.h"

main () {
X localX;
while (groan (&X::foo, localX == 0)

I

}

Because the instantiations are local to each translation unit, the address of the two
functions 'X::foo' are different, even though the intent is probably that they be the

(s)
/05

Implementing the Dark Comers of C+ +

same. This presents two problems. The multiple instantiations of a function intended
to be the same function means that there is a semantic breach from the requirement that
an inline function behave semantically as if it were a real function. Secondly, the
multiple instantiations lead to a wasteful redundancy in the produced program. This
example is contrived, but it does illustrate a problem with the multiple instance model
for implementing inline function definitions.

By giving these types of functions ‘external linkage, multiple instances can be
examined for identity by the "One Defintion Rule", and also coalesced to remove
redundant copies. This leads to a greater match between programmer expectations and
the reality of the implementation. Further more, the one definition rule can be
enforced more easily. The ruling that inline functions get internal linkage is counter
intuitive and is defined to permit restricted implementation models to be defined.

For 'external' linkage on inlines functions to be supported, a small amount of linker
help is required, to recognise that a requested symbol has been resolved already, and
that another occurence of the inline function need only be checked for identity with the
one already found. However, when multiple instances are unavoidable, the problem is
not great, since only address identity is compromised, and that is not a frequent use of
such functions anyway.

C6)
/ 06

Implementing the Dark Corners of C++

2 Virtual Functions and Multiple Inheritance

Prior to multiple inheritance, virtual functions presented no real problem. All objects
of a given type had a single address point, which was typically that of the first byte of
the space allocated for the instance. The 'this' address passed to virtual functions
could only be the common address point, so the tables describing the set of virtual
functions comprised simply of an array of the addresses of the virtual functions.

However, multiple inheritance introduces the idea that an object may have more than
one address point. If a type has two or more base types, then it will have at least two
possible address points. That of each of its base classes, and perhaps a new address
point for itself (although not typically). If there is a difference between the address
point of the deriving class, and that of a base class which introduces a given virtual
function signature, and that function is over-ridden in the deriving class; then some
form of adjustment between the address supplied when that function is called in the
context of that base class, and the actual address expected by the over-riding function is
required. For instance :-

struct Basel {
int bl;
virtual int foo ();

}i

struct Base2 {
int b2 ();
virtual int foo ();

}i

struct Derived : Basel, Base2 ({

int 4;
virtual int foo (); // Over-rides both Basel::foo and Base2::foo
}i

Instances of the type 'Derived' have at least two address points. The 'Basel*' address
point and the 'Base2*' address point. It may also have an address point of its own, but
typically this is the same as one of the base address points. If a Derived instance is
used polymorphically in the context of 'Basel' and 'Base2', then at least one of the
contexts must differ in address point to that of the 'Derived’ type. Thus :-

void bar () {
Derived dd;
Basel* ©pBl
Base2* pB2

ⅆ
ⅆ

pBl->foo ()
pB2->foo ()

// Calls ‘'Derived::foo()'
// Calls ‘'Derived::foo()’

.
[
.
r

(1)
/) OF

Implementing the Dark Corners of C+ +

Both applications call 'Derived::foo', but since there is only one 'Derived::foo’, only
one address point must reach that function. On either the 'pB1' application, or the
'pB2' application (or indeed both), an adjustment to the 'Derived*' address point is
required.

Some implementations achieve this by encoding the adjustment in the table with the
virtual functions, and the caller performs a computation involving this adjustment
before providing the address point to the associated function. Other implementations
use a special intermediate function called a 'thunk' which performs the necessary
adjustment to the 'this' pointer before transfering control to the over-riding function.
The advantage of the adjustor-thunk form, is that the thunk need only be supplied when
the adjustment required is non-zero. It also reduces the complexity of the call site.

2.1 The Introducing Class

In an implementation which uses tables of functions (I will call them 'vftable's), it is
desirable to eliminate this computation when the adjustment is zero. It is also desirable
to increase the probability of these adjustments being zero. For this reason, I introduce
the idea of "The Introducing Class". The introducing class is the class which first
introduces a virtual function of a given signature to a deriving type. This is determined
as being the class indicated by a transitive, left-to-right, pre-traversal of the inheritance
DAG, as described by the declaration order of the base classes.

The introducing class defines the address point which will be anticipated by the over-
riding virtual function. If this is not the address point of the deriving class, then the
necessary adjustment from the anticipated address to the actual address point is known
to the over-riding function at compile-time, and is typically folded into local member
references made by that function. The advantage of this, is that for any given virtual
function signature, the introducing path has always got a zero displacement to perform
at the call.

The other non-introducing paths, have an adjustment made from the address supplied to
that of the introducing class address point. The Microsoft implementation uses the
thunk-adjustor approach, but due to the concept of the introducing class, the number of
these thunks is reduced to a minumum since most adjustments will be zero.
Furthermore, the degenerate single inheritance form always reduces to the simpler call
sequence, allowing for the multiple inheritance solution to be implemented without
losing anything in the single inheritance heirarchy.

(8)

Implementing the Dark Comers of C+ +

3 Virtual Functions and Virtual Inheritance

Virtual inheritance is a form of multiple inheritance used to permit sharing of
components of the inheritance DAG. The simplest configuration of classes which
illustrates this sharing consists of three classes. This is described as follows :-

struct VBase {
int v;

}i

struct Base : virtual VBase {
int b;

}i

struct Derived : Base, virtual VBase ({
int 4d;

}i

However, this example is not very illustrative of the virtual mechanism.

3.1 The Diamond

The most typical example of virtual inheritance is commonly known as the "Virtual
Diamond”. The diamond is an arrangement of four classes, whose DAG resembles a
diamond. The diamond embodies all of the facilities of virtual inheritance and all of its
problems, and is an excellent example for illustrating the mechanism (although not its
application). The following is an example of the diamond which I will use for future
reference and examples :-

struct VBase {
double dv;
virtual int £ ();
virtual int g ()7
VBase ();

}i

struct Basel : virtual VBase {
double dbl;
virtual int £ ();

, Basel ();

}i

struct Base2 : virtual VBase {
double db2;
virtual int £ ();
Base2 ();

}i;

struct Diamond : Basel, Base2 {
double dd;
virtual int £ ()7
Diamond ();

(9)
/0%

Implementing the Dark Corners of C+ +

A graphic illustration of the DAG could be :-

VBase
virtual /7 \\ virtual

\\

Basel Base2

\ /

Diamond

Virtual inheritance introduces a new complication to the DAG. Since there is only one
occurence of the virtual base class embodied in the derived classes, the problem of
"SHAPE" is introduced. SHAPE is the name I use to describe the way instances of a
type are mapped. In the absence of virtual inheritance, the relative SHAPE of a class
does not change. That is, the shape of an actual 'Basel’ is no different to the relative
shape of the 'Basel' occurrence in the derived class. Similarly, the shape of 'Base2’.
However, when the class 'VBase' is virtually inherited by the classes 'Basel' and
'Base2’, then the relative shape of the 'Basel' occurrence within the class 'Diamond' is
not necessarily the same as that of a true 'Basel’ object. Similarly, the shape of

"Base2'. Consider the following possible mapping for the diamond example :-

// A true 'VBase'

VBase* —=> t+=—=———=== + + > dm—mmmm—————— +
| vd | | &vBase:sf l
Fmm e ——— + o +
| vEptr | ———=+ | svBase::g |
o m—— + fomm +
// B true 'Basel’
Basel* ——> +——=—===< + fmm> Fmmmm—mmm +
- l bdl l l adjustor]
N ettt + Frmm e ———— +
dvBl | vBase* | ===+ | svBase::g l
ettt + o +
v
VvBase* =—-=> t—=———="" + <=—+ adjustor:
| va l this -= dVB1
etttk + goto Basel::f()
l viptr | ————— +
o +
// A true 'Base2’
Bage2* ——> +=—————"7 + F==> 4————mmm—— +
- | bd2 | I adjustor |
fmm—————— + fom e ————
dvB2 l VBase* | -+ l &VBase::g l
fmm—————— + fmmmmm—————— +
v
VBase* —--> +-——————-= + <-—+ adjustor:
| va | this -= dVB2
o —————— + goto Base2::f()
| viptr l ----- +
e +

Implementing the Dark Corners of C++

// A 'Diamond’

Diamond*, Basel* -=> T + o> pommmm e +
- | pai | | adjustor |
fmm e ——— + fmmm +
| VBase¥* | —-—— l g&VBase:: g l
fmmm———— + B +
Base2* —-—> e ——— +
l bd2 [adjustor:
o + this —-= 4DV
dpv l VBase* l -—> goto piamond::£()
e +
e +
| ad I
+ __________
v vBase* -—> e ———— + <———+
| va l
fmm +
\ viptr l ------- -

In this example, neither the shape of a "Basel’ as a base of 2 ‘Diamond' the same as a
true 'Basel’, nor is the shape of a "Base2' as a base of 2 'Diamond' the same as that of
a true 'Base2’.

This difference in shape is accounted for when the virtual methods are called. The call
site knows to use the "WBase*' hidden member t0 find the location of the virtual base
part of the 'Diamond', and having found the 'VBase' part of the instance, it can locate
the 'viptr' hidden member and select the entry in the table corresponding to the desired
virtual function, in this case, element '0' for 'fQ' and element '1' for 'g()'. The
adjustor 'thunk’ relocates the address point as necessary for function 'f()’.

A refinement of the "Introducing Class' can be used here too. The address expected
may be that of the location a 'Diamond’ would expect the "VBase' part to be, SO the
adjustment in this case could be zero. Subsequently deriving classes which did not
over-ride 'f()', would have a modified 'vftable' which did contain an adjustor thunk to
compensate for any change in the Diamond's SHAPE. The effect is again to increase
the number of times the adjustment is z€ro, and hence reducing the number of
computations and the number of adjustor thunks. The Microsoft implementation does

extend the "Introducing Class" concept in this way.

3.2 Construction/Destruction and SHAPE

Normally the different shape of the base classes is not a concern, since the 'vftable's
and adjustor thunks are set up to compensate for the altered layout of the actual
instance. However, construction and destruction are a different story.

During construction, each base class is constructed before the derived class. While a

base class is being constructed, it is considered to be an instance of that base type, and
not the derived type. This is essential to prevent virtual functions over-ridden by the

(11)
/!

Implementing the Dark Corners of C+ +

derived class from performing operations involving as yet uninitialised bases or
members of the derived class. Typically, this is achieved by each constructor loading
the address of the 'vftable' it would use for actual instances of the base type. As a

consequence, virtual functions called indirectly by the constructor will be prevented
from accessing uninitialised information.

However, the tables for actual bases do not accomodate the SHAPE change caused by
subsequent derivations. For instance, an actual 'Basel' has an adjsutor which adjusts
'this' by 'dVB1' before calling 'Basel::f', but an adjustment of 'dVD' is needed, since
the position of the 'VBase' component is different. To illustrate, consider the
following function definitions for the Diamond member functions :-

int VBase::g () { return £f (); }

Basel::Basel () { (void)g (); }
Base2::Base2 () { (void)g ()7 }

Irrespective of what the over-riding function 'f()* does, there is an immediate problem.
The definition of 'Vbase::g()' is unaware of future derivations, and during the
construction of the 'Basel’ and 'Base2' parts of the ‘Diamond’, the polymorphic
context is correct, the constructor finds the 'VBase' through the '"VBase*' hidden
member. It then calls the method 'VBase::g()' using the 1th element of the virtual
function table pointed to by the 'viptr' hidden member of the 'VBase' componenent.

However, once into the method 'VBase::g()', the context is lost. It no is longer aware
of any deriving context, and knows only about '"VBase's. Thus when it calls 'O, it
passes it's own 'this’ address. The over-riding function (in this case, either 'Basel::f'
or 'Base2::f') is expecting a different address point. But since the call occurs before
the ultimately derived object is initialised, the 'vftable' that is on-line is that of the
intermediate base class, whose shape is different to that of the ultimate derived class.
Consequently, the adjustment 'dVB1' or 'dVB2' is used, when the displacement 'dVD’
is required.

Solving this transient construction problem (and its inverse during destruction), is not at
all simple. One possibility is for each derived class to generate 2a flavour of the
'vftable'(s) for the base classes, s0 as t0 compensate for the incorrect adjustment. This
is difficult but possible. The costs are that some means of communicating the need to
substitute a different 'vftable’ to the constructor is required. Ina complex DAG, this
involves the generation of some descriptor which associates the different phases of
construction with the appropriately shaped 'vftable's. It also involves an 'N2' set of
'vftable's, where 'N' is the number of classes derived from the class which first over-
rides a method introduced by 2 virtual base class. This is a very complicated and
expensive resolution. Other solutions involving writable copies of 'vitable's suffer
from difficulties with re-entrancy and also in the Intel mixed model environments.

(12)
/(L

Implementing the Dark Corners of C+ +

3.2.1 Construction Displacement

An alternative approach to resolving this problem is the use of a displacement
compensation value, which may be stored in the instance. This displacement isa
value which describes the displacement from where a virtual base is actually
mapped, to where the current context expects it to be. In the fully constructed
object, this displacement is always zero. A displacement is associated with each
virtual base class, and may be placed immediately preceding, or immediately
following the actual occurence of the virtual base class. In the case of the
Diamond, the ultimately derived constructor places the value 'dVD-dVB1' into
the displacement field prior to calling the ‘Basel’ constructor. It then places the
value 'dVD-dVB2' into the displacement field prior to calling the 'Base2’
constructor.

Intermediate constructors which are not the ultimately derived constructor can
perform an arithmetic adjustment of the value in the displacement field, by the
amount they have shifted the relative position of the virtual base, before calling
the constructors of classes which have that virtual base.

The virtual function tables for the classes which have a virtual base class place a
'thunk' on each over-ridden virtual method of that virtual base's class, which
retrieves the constructor displacement value, and adjusts the 'this’ value by that,
in addition to the static adjustment required. Thus, in the previous problem,
when the 'Base2' constructor indirectly calls 'fQ’ though 'g()', it performs the
displacement 'dVB2+(dVD-dVB2)', or simply 'dVD' which is the correct
compensation for the altered shape of the instance.

Optimisations can be made to reduce the number of times this mechanism needs
to be invoked. For instance, the displacement field is only required when a
virtual method in the virtual base is first over-ridden, since the indicated
possibility of the shape and the polymorphic context conflicting cannot exist.
Furthermore, generated constructors and destructors are immune from the
problem, since they do not call any methods.

Ideally, in an environment where complete program type knowledge is available,
the displacement can be dispensed with, since the compensation can be made
only when such a call tree can actually exist. However, for now and the
immediate future, the separate compilation environment is a reality, and the
constructor displacement solution provides a viable compromise. Further
performance optimisations can be achieved using 'vftable's tuned to the
ultimately-derived constructor and only having the displacement fetching form,
on the non-ultimately-derived constructor. This potentially doubles the number
of tables for the virtual base parts of an instance, but it is still 2 lot better than
the N-squared solution.

[Note: The same, but inverse problem, exists during destruction]

(13)
/15

Implementing the Dark Corners of C+ +

4 Pointer to Members

Pointers to members are relatively complicated objects. For single inheritance, a
pointer to data member need only know the displacement from the common address
point to the member. A pointer to function member needs to know the address of the
function to be called, or if itis a virtual function, the index into the 'vftable' to where
the function address can be found. Contravariant conversions involve no adjustment to
the representation, and are purely changes to the type system.

4.1 Pointers to Members and Multiple Inheritance

In multiple inheritance, the situation is a bit more difficult. Again, a data member
need remember only the displacement from the address point to the data member. If a
contravariant conversion takes place, then the value of the displacement can be adjusted
by a constant which represents the difference between the derived class' address point
and that of the base class from which the member pointer is converted. Functions are
more complex.

For non-virtual member functions, the displacement from the address point to that
expected by the method is required. This is first added(or subtracted) to the given
'this' address before calling the actual function. The address of the actual function is
needed as for the single inheritance case. Thus a couple is required to represent 2
pointer to a non-virtual function member. The displacement field is essentially a
pointer to a data member, as the address point is in effect a pointer to the first member
(whether user named, or hidden) of the class or base class.

A pointer to a virtual member function involves more work. The displacement to the
address point is required, just as for the pointer to the non-virtual function. The index
of the virtual method in the 'vftable' is also needed. Finally, a third field is required
to determine the displacement from the expected address point to the corresponding
'vfptr' hidden member. Contravariant conversions are as for the pointer to non-virtual
member function, involving a simple arithmetic adjustment of the address point
displacement field. Consider a possible 'C' mapping for such a pointer to member
function :-

// 1It's shape, for example "void (Tse*) ()"
struct PointerToVirtualMember

offset_t thisAdj;
offset_t vEptrDisp;
ptrdiff_t vIndex;

} PVMF;

(14)
/77

Implementing the Dark Corners of C++

// It's application, nexpr" is the expression supplied left of the
/] '.*' or 1—>*' operator, as in "((expr).*pVMF Y):"

char* tmp = (char*) (expr yi 1/ Prevent side effects
tmp += pVMF.thisAdj; // Compute the address to pass as 'this’

(*(tmp + pVMF.vfptrDisp) [pVMF.vIndex 1)(tmp)i // Bpply

Further difficulties need to be considered. For instance, 2 representation for a NULL
pointer to member pointer needs to be determined. Also, since a pointer to member
function can contain the address of both virtual and non-virtual function members, the
'PointerToMember' structure needs to discriminate in some way. The following
section deals with 2 reduction in the complexity of pointers to members, and a
consequent simplification in the representation of both NULL and the discrimination.

4.1.1 A Canonical Mapping for the "vfptr'

One of the fields needed to represent a pointer to a virtual member function, is
the 'viptrDisp' field, which describes the displacement from the expected address
point to the 'yfptr' member of the base class. One of the complexity reductions
Microsoft adopted, was the convention of always mapping the 'yfptr' as the first
member of a class, and making the address of the 'viptr' the address point for
that class. Thus, the displacement from the address point to the 'vfptr' member
is always zero, and the 'vfptrDisp' field may be eliminated. Thus, the composite
pointer to member function representation 18 reduced to a couple. The
displacement to the address point of the expected class, and either an index or a
function pointer address.

A further advantage in using a canonical location for the 'viptr', is that the
calling of the 'Nth' virtual method for any type can be expressed by a canonical
sequence, thus :-

char* tmp = (char*)(expr)i

(*(*tmp) [N-1])(tmp, args)i

For pointers to virtual methods, this means that a 'thunk' can be created for
calling a method at any particular index, and that 'thunk' can be used by all
types. Then, instead of storing the index in the pointer to member function
structure, just the address of the thunk is required. Thus, the discrimination
occurs automatically between virtual and non-virtual methods, and only a single
form of pointer {0 member function is required.

(15)

el

Implementing the Dark Corners of C+ +

4.2 Pointers to Members and Virtual Inheritance

This is a domain of considerable complexity and discussion by the X3J16 standards
sub-committee. The problem has to do with the difficulty in modelling such pointers to
members. Opinion is generally based on the implementation models in current use, and
the complexity in accomodating pointers to members, and contravariant conversions
when a given pointer to member could contain the address of a member in 2 virtual
base class. Before continuing, I will re-describe the mapping of the "Diamond" using
the canonical mapping for the 'vfptr', as described earlier. 1 will also accomodate the
»Introducing Class" changes to alter the adjustor values, and represent the " Constructor
Displacement” field for SHAPE correction during construction. Note that the position
of the hidden member 'dCtor' may be mapped cither immediately before, of
immediately after the mapping of the virtual base to which it is bound. There are no
advantages specific to either, so it is just a matter of convention. The revised mapping
for the "Diamond" example is as follows :-

VvBage* —-> t————-"77 B +
l viptr | ————t | &vBase::f \
e ——— e +
| vd ‘ | &VBase::g |
= + o

Basel* —--> t—-=——=777 + =D Fmm—m—mm—TT +
- | pa1 | | adjustor |
e ————— o e
dvBl l VvBase* l —-———t | &VBase::g
fomm———— + fommm——————— +
v
vBage* --> t——=—=""7 + <=+ adjustor:
l viptr | ----- + this -= dCtor
o + goto Basel::£()
| va |
fmmm————— +
| dCtor l // In the case ‘0!
fmm—————— +

Bage2* —--> +=———""777% + G =TT +
- bd2 l | adjustor |
o + o —————
dvVB2 l VBase¥* l -t | s&VBase::g ‘
fmm + o ————— +
v
vBase* —-=> +——-"""7~" + <-=+ adjustor:
| viptr | ————— + this —-= dCtor
Fmm—————— + goto Base2::£()
| va |
o ———— +
l dctor l // In the case ‘0’
fom—————— +

(16)
/ /6

Tmplementing the Dark Corners of C++

// A 'Diamond’

Diamond*, Bagel* —=> +=t=——77"7" + fmmD> FmmmmmmmTTTT +
- | pa1 | | aajustor |
o m——— fm e ————
l VvBase¥* ‘ ——=—t l s&vVBase: :d
S fommm———————
Bage2* —-—> Fmmmm——— +
| bd2 l adjustor:
Fmmmm———— + this -= dctor
dpv l VBase* | ——— goto piamond::£()
e +
‘ O +
| ad |
+ __________
v vBage* —-> +=——="""7T77 + L===t
| veptr | —-=-—- +
+ __________
| va l
Fommmm————= +
| actor |

Consider first, pointers 10 data members. A pointer to a data member of '"VBase' need
only consist of the displacement from the address point of a 'VBase' to the appropriate
member. However, consider now a pointer 0 2 member of a 'Basel’ object. If the
pointer is t0 the member '‘Basel::bdl', then 2 displacement from the 'Basel' address
point to the member is all that is needed. But, the member 'VBase::vd' is also a data
member of a 'Basel' object, and the member pointer could just as easily refer to that
member. Since the 'WBase' part of a ‘Basel' is movable (through subsequent
derivation), a displacement alone cannot be used. To represent this kind of pointer t0
member, a displacement from the address point of a '‘Basel' to the appropriate virtual
base class pointer (hidden member), 18 required. In addition, the displacement from the
VBase address point t0 the member yBase::vd' is needed. The contravariant
conversion from a 'VBase::*' toa "Basel::*' is just a matter of extending the pointer o
member type t0 include the displacement to the hidden member which contains the
pointer to the virtual base.

This can of course be optimised by recognising that the class has only one virtual base,
and requiring that the translator supplies the displacement upon application. However
there are greater problems. If the virtual base class has itself got a virtual base class,
then the representation must contain a displacement 10 the hidden pointer to the
immediate virtual base class. An offset to the hidden pointer in the immediate virtual
base class to the hidden pointer contained therein, to the indirect virtual base class.
And in addition, contain the actual displacement 10 the appropriate member.
Contravariance is achieved at each level by adding a new field for each level of virtual
base class. This is an unbounded solution for pointers to members.

Pointers to function members of virtual base classes are similar, since they are
essentially a composite of a function address, and a pointer to data member which
refers to the address point required by the associated function.

(17)
/7

Implementing the Dark Corners of C++

4.2.1 Bounding Virtual Base Classes

The "unboundedness” of the problem stems from the potential cascading of
virtual base pointers in the heirarchy. This can be eliminated by modifying the
model in two ways.

First, instead of incorporating a hidden member for each virtual base class, a
single pointer to 2 table containing displacements 10 the virtual bases can be
used. This is a lot like the virtual function table, except that instead of
containing pointers t0 functions, it contains virtual base displacements. This
table called the 'ybtable' is shared by all instances of the given type, just as the
ryitable' is shared for all instances of a given type. Similarly, as new virtual
base classes are introduced during subsequent inheritance, the displacements to
the new virtual bases are appended to oné of the 'vbtable's already present, just
as the addresses of new virtual functions are traditionally appended to one of the
'wftable's. This has the effect of improving sharing and reducing the per-
instance cost of supporting virtual base classes, as @ single pointer is all that is
required of an instance when more than one virtual bases class is introduced. It
also reduces the complexity of initialising and destructing instances which
contain virtual base classes, since no address arithmetic is involved, just the
loading of the 'vbptr' by the constructor for the ultimately derived class.

The second change to the model is to introduce redundancy into the nearest
rybtable'. This means that for the 'vbtable' most often used by the deriving
class (the one chosen for appending new virtual base displacements), has
extended information to allow for better performance when accessing indirect
virtual bases. Essentially it goes like this. For each virtual base, ensure that
there exists an entry which contains a direct displacement to that virtual base.
Now at a small static cost, the entire set of virtual base classes, whether direct or
indirect, may be accessed using a single table lookup. This results in a constant
performance cost for virtual inheritance, aS well as bounding the accessing of
members of virtual base classes.

4.2.2 How it Applies to Pointers to Members of Virtual Base Classes

But how is all of this pertinent to the bounding of pointers to members. Well
first of all, instead of a new field being added for each level of virtual-base of
virtual-base'ness, only 2 single displacement field is needed, and 2 single index
into the 'vbtable' to the associated displacement. The complexity of application
is also bounded. A further simplification arises from the fact that for any given
type, only one 'ybptr' is needed to acCesS all displacements t0 virtual bases, and
this has a location which is known statically at compile time. For this reason,
the displacement 10 the 'vbptr' field can be omitted. Thus, the representation of
a bounded pointer t0 data members involving virtual bases, is reduced to a
couple. A 'ybtable' index, and the displacement from that address point to the

(18)
//8

Implementing the Dark Comers of C++

appropriate member. Similarly, the bounded pointer t0 function member 18
reduced to its pointer 10 data member component, and the function address itself.

However, there are still some complications. Since the pointer to member may
contain the address of a member in the non-virtual part of the class, no
displacement is needed. For this reason, the index zero is reserved, and the

entry in the 'vbtable' at location zero 18 itself always Zz€ro. This results in
uniform application of 2 pointer to member.

Contravariant conversions now require the presence of a small lookup table to
perform the mapping between the representation in the base class, and its
possibly different representation in the derived class. Yet another revision of
how the 'Diamond’ might be mapped will reveal the purpoSe of these alterations
to the model.

// A true 'yBase'

VBase* —--> +=———"~7~ + I +
| veptr | - | avBase::f
fmmmm———— + e
\ vd l l &VBase::g
S + o

Basel* ——> +—=—"""7" + fmmD> Ammmmmmmm T +
- | vbptr l ----- + l 0 \
fmmmm——— + B +

B14QVBl | pa1 | | B1avBl |

fmmm + B +
v

yBase® =--> t———"~"77 + fomD Fmmmmmmm T +
l viptr l ----- + l adjustor |
o ———— + O
| vd l ‘ &VBase::g
e + fomm e
| dctor | adjustor:
Fmm————— + this —= dCtor

goto Basel::f()

| vbptr | -=—--- + | o |
| o ——— + fommm ¥
B2dVB2 | pa2 l | B24avB2 |
| A + fommm =
v
yBase* —=> +=—=="""7 + pomD> Fmmm—————— +
| veptr | -———-- + | adjustor |
fmm + fom e ———
l vd] | &VBases: |
fmmmm———— + pmmmmmmm————
l dctor | adjustor:
Fmm—————— + this -= dctor

goto Base2::£()

(1)
/19

4.2.3

Implementing the Dark Comers of C+ +

// A 'Diamond’

Diamond*, Basel* —=> +=t===————= + +==> H——mm——————— +
- | vbptr | -—+ | 0 |
o ——— + e +
| pai | | paBiv |
ettt + e +
Base2* --> o ——— +
I vbptr | ————— > d=—mmmmmm— +
pmmm + | o |
DADV | ba2 | o — +
—mm———— + | pasav |
Fmmmm—————— + Fmmmm————— +
| aa I
e + 4> fmmmmm—m———— +
| adjustor |
v VBage* ——> +=——=-————— + Fmmm e
| veptr | --+ | avBase::g |
d—————— e + e +
| va |
tommm + adjustor:
| dCtor | this -= dCtor
tomm - ———— + goto Diamond::f()

Note, the name 'DdB1V' describes the difference between where the '"VBase'
address point is in a 'Diamond" with respect to the 'Basel' address point, versus
where it would be in a true instance of a 'Basel’. Similarly, 'DdB2V' with
respect to 'Base2’.

Note also, that the constants 'B1dB1V' and 'B2dB2V' represent where the
'"VBase' part of a 'Basel’ or a 'Base2' respectively, are with where they would
be expected to be in a true 'Basel’ or 'Base2'. Since these are truelly ‘Basel's
and 'Base2's, these values are actually zero.

In the example of the diamond, there is only one virtual base, so the illustration
shows the mechanism, but not the sharing. Also, in this case, since the range of
possible value for pointers to members of the base classes 'Basel' and 'Base?’,
the contravariant conversion to a 'Diamond::*' does not require a lookup table,
since the 'vbtable' index mapping is the same. However, if the virtual base
index part is zero, then a regular displacement must be done in the case of
converting a 'Base2::*' to a 'Diamond::*', just as for simple multiple
inheritance.

Why Not Combine the 'vbtable's and the 'vfiables' ?

One of the questions I am most often asked, is "Why not combine the two
tables?". It would be very desirable to combine these two tables, since they do
not change during the active life of an object, and the overhead of tables and
hidden pointers could be further reduced if they were combined.

Certainly, during the time after construction and before destruction, a single
unified table could be used, since the correct shape and virtual function sets are

()
/X O

4.2.4

Implementing the Dark Comers of C+ +

static for the object. However, during the construction and destruction phases of
an object, this is not true. While any given base class is being constructed or
destructed, it is polymorphically considered to be of the type statically indicated
by the constructor or destructor, and not of any type derived from it. Thus the
set of virtual functions must be that of the type of the base class. But the
SHAPE of the instance is that of the derived class, and not of the type indicated
by the static type of the constructor or destructor.

For this reason, the SHAPE is maintained by a separate table to that which
determines its polymorphic behaviour. Since the shape is established by the
ultimately derived constructor, prior to the construction of any bases or
members, the problem is immediately eliminated. The constructors for the base
classes will not change the shape, but will bind to the tables which correctly
describe their behaviour. In the earlier illustration of the indirect activation of
virtual methods during construction and destruction, this dichotomy between
shape and behaviour was examined, and the construction displacement hidden
member was added to address the problem. The use of separate a 'vftable' and
'vbtable' eliminates the same type of problem, but in the direct case rather than
the indirect case.

Pointers to Members and Signatures

Further optimisation for pointers to members may be achieved. The most
startling of these is using a "signature” based pointer to member representation.
Since pointers to members are not subject to type conversions (explicit or
implicit) other than regular contravariance, there is no way they can ever contain
the address of anything other than that of a member which matches their
signatures. For instance :-

struct X
{

}i
float X::*pmf;

int i;

In this case, the class 'X' has no members of type 'float’, so the declaration
cannot be initialised with the address of any member of 'X'. Thus, it can only
have two possible states. The NULL state, and an undefined state. Since the
undefined state could also be the NULL state, no representation is needed for
such a pointer to member. This represents a very special case of pointer to
member. However, consider the following example :-

struct X
{
int i;
}i
int X::*pmi;

(2)
/ L/

Implementing the Dark Corners of C+ +

This is a little less degenerate than the last example. In this case, there are only
three states that the pointer to member can contain. The two legal states are the
NULL state, and the address of 'X::i'. The undefined state can be arbitrarily
mapped to either of the two legal states, allowing the pointer to member to be
represented by a single boolean value.

The above examples are purely academic, and are unlikely to find such an
implementation in reality. However, the same idea of determining the most
suitable representation for a member pointer can be used to reduce the
representation of a pointer to member from the most general, to something more
specific, from a set of possible pointer to member representations. For instance,
consider the following class declarations :-
struct VBase {
int vi;
float vf;
}i
struct Basel : virtual VBase {
int bli;
long bll;
}i

struct Base2 : Basel {
long b21l;
}i

int Base2::*pmInt;
float Base2::*pmFloat;
long Base2::*pmLong;

The example illustrates three different pointers to members of the same class.
Each of these pointers to members is different in type signature. Each can
benefit from a different representation.

o The first pointer to member 'pmInt' could point to 'VBase::vi' or
'Basel::bli'. In this case, the pointer to member must presume
the worst case, and a representation involving the virtual base
lookup is required.

o The second pointer to member 'pmFloat' can only point to the
member 'VBase::vf', so although it is a member of the virtual
base, this knowledge can be inferred from the signature, and the
pointer to member representation need only store the displacement
to the member within the 'VBase' part.

o Finally, the pointer to member 'pmLong' can only point to
members within the non-virtual part of the class, and thus the
representation does not need to contain information pertinent to
accessing members in a virtual bases class.

(22)
/L,

Implementing the Dark Corners of C+ +

These are only examples of the kinds of reduction of representation that could be
performed, and many more exist. Of course these types of reduction in
representation are accompanied by an increase in the complexity of the
translator, since multiple representations of NULL may be required. Multiple
representations of pointers to members are required. And a significant amount
of inferred type specific knowledge is needed. But the performance gains of
such increases in translator complexity could be warranted by applications which
heavily utilise the pointer to member paradigm.

(2)
/A5

A

Sixteen Ways to Stack a Cat

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper presents a series of examples of how to represent stacks in a program.
In doing so it demonstrates some of the fundamental techniques and tradeoffs of data
hiding as seen in languages such as C, Modula2, and Ada. Since all the examples arc
written in C++ it also demonstrates the flexibility of C+’s mechanisms for expressing
data hiding and access.

1 Introduction

Consider representing a stack of objects of some type in a program. Several issues will affect our
design of the stack class: ease of use, run time efficiency, cost of recompilation after a change. We will
assume that messing around with the representation is unacceptable so that data hiding for the represen-
tation is a must. We will assume that many stacks are necessary. The type of the elements on the
stacks is of no interest here so we will simply call it cat. The implementations of the various versions
of stacks are left as an exercise for the reader.

Please note that the purpose is to illustrate the diversity of data hiding techniques, not o show how
best to represent stacks in Ci. The techniques shown here apply to a variety of types — most of which
are more interesting than stacks — and will be used in conjunction with other techniques. For example,
if you actually wanted to build a better stack for G+ you would probably start by making cat a param-
eter, that is, use templatest.

This paper is a fairly lighthearted play with G+ features and techniques. I think it has something to
delight and possibly horrify novices and seasoned Cr+ programmers alike. Most of the techniques
shown have serious uses, though.

9 Files as Modules
Consider the traditional C notion of a file as a module. First we define the interface as a header file:
// stack interface, stack .h:

typedef int stack_id;

stack_id create_stack (int);
void destroy_stack (stack_id);

void push_stack (stack_id,cat);
cat pop_stack (stack_id};

The integer argument to create_st ack is the maximum size of the desired stack. We can now usc
stacks like this:

S
+ See Chapter 14 of Ellis&Stroustrup: The Annotated Gi+ Reference Manual. Addison Wesiy., 1990.

e

$include wstack.h"

void f(int sz cat kitty)
{

stack_id s = create_stack(sz);
push_stack(s,kitty);
cat c2 = popﬂstack(s);
destroyﬂstack(s);
}

This is rather primitive, though. Stacks are numbered, rather {han named; the concept of the address
of a stack is ill defined; copying of stacks is undefined; the lifetimes of stacks are exclusively under
control of the users; the technique relies on the convention of .h files and on comments to express the
concept of a stack; the names of the stack functions arc clumsy.

From a G+ perspective, the problem is that there are no stack objects defined. These stacks do not
obey the general language rules for naming, creation, destruction, access, etC. Instead, litde ““cookies’’
(the stack_ids) are passed o functions that manipulate stack representations.

Note that in many contexts it would be reasonable not to impose 4 maximum size on a stack. Not
imposing a maximum would allow a noticeable simplification of the stack interface. However, this
would decrease the value of the stack example as a vehicle for discussion of gencral data hiding issues
because most types do require arguments to the operations that create objects.

3 Stack Identifiers
We can do a little better. First let us make stack_ida genuine type:

// stack interface, stack.h:
struct stack_id { int i; }s

stack_id create_stack(int);
void destroy_stack(stack_id);

void push_stack(stackﬂid,cat);
cat pop_stack(stack_id):

This at least will prevent us from accidentally mixing up stack identifiers and integers:

$include " stack.h"

void f (int 8Z. cat kitty)
{

stack_id s = create_stack(sz);

push_stack(s,kitty);
cat c2 = pop_stack(sz); // error: stack_id argument expected

destroy_stack(s);
}

This error would not have been caught by the compiler given the first definition of stack id. These
first two versions both have the nice property that the implementation is completely hidden s0 that it can
be changed without requiring recompilation of user code as long as the interface remains unchanged.

4 Modules

Now let us use a class to specify this stack module. Doing that will allow us to avoid polluting the
global name space and relying on convention and comments 10 specify what is and isn’t part of a stack’s
interface:

/L O

// stack interface, stack.h:

class stack {
public:
struct id { int i; }s

static id create(int);
static void destroy (id);

static void push(id,cat);
static cat pop(id);
}i

We can use this module like this:

ginclude wgtack.h"

void f(int sz, cat kitty)
{

stack::id s = stack::create(sz);
stack::push{s,kitty);
cat ¢c2 = stack::pop(s);
stack::destroy(s};

}

This looks very much like a Modula-2 module. We don’t have a ‘with’ or ‘use’ construct to avoid the
repetition of «wgrack::' . For example:

void f(int SZ. cat kitty)

{
use (stack) { // pseudo code

id s = create(sz);
push{s,kitty);
cat ¢2 = pop(s) i
destroy(s);
}
}

However, such a construct for merging name spaces is 2 syntactic detail and does not always lead t0
more readable code. Further, an even more radical simplification of the notation is achieved in section

10.
Note that static member functions Were used to indicate that the member f unctions do not operate

on specific objects of class stack; rather, class stack is only used to provide a name space for
stack operations. This will be made explicit below.

5 Modules with Sealed 1dentifiers

To make the correspondence t0 Modula-2 modules more exact, we need to stop people from messing
around with the stack identifiers and stop them from trying to create (Ct+ style) stack objects:

/7

// stack interface, stack.h:

class stack {
public:
class id {
friend stack;
private:
int 1i;

}i:

static id create(int};
static void destroy (id);

static void push(id,cat);

static cat pop(id);
private:

virtual dummy ()} = 0;

}:

The representation of an id is now accessible only to class stack, ‘‘the implementation module for
stacks,” and class stack is an abstract class so that no objects of class stack can be created:

stack x; // error: declaration of object of abstract class stack

The use of a pure virtual function to prevent the creation of objects is a bit obscure, but effective.
An alternative technique would have been to give stack a private constructor.
Naturally, the example of stack usage from section 4 works exactly as before.

6 Packages

In the style of Modula-2, we aré now passing around ““little cookies’’ (opaque types) used by the
implementation module to identify the objects. If we want we can pass around the objects themselves
(or pointers to them) in the style of Ada:

// stack interface, stack.h:

class stack {
public:
class rep {
friend stack;
private:
// actual representation of a stack object

}:
typedef rep* id;

static id create (int);
static void destroy (id};

static void push(id,cat);

static cat pop(id);
private:

virtual dummy () = 0;

}i

The typedef is redundant, but it allows our user code to remain unchanged:

/8

#include wgtack.h"

void f({int sz, cat kitty)
{

stack::id s = stack::create(sz);
stack::push(s,kitty);
cat c2 = stack: :pop (8);
stack::destroy(s);

}

That rep is very much like an Ada private type. Users can pass it around but not look into it.
One disadvantage is that by placing the representation of stacks in the declaration of class stack we
force recompilation of user code when that representation changes. This can lead to a major increase in
compilation time. Actually, this recompilation isn’t necessary, because the user code and that code’s use
of information about the implementation Was left unchanged. A reasonably smart dependency analyser
could deduce that no recompilation of user code is necessary after even a radical change to the represen-
tation. However, a dumb (that is, time stamp OR source-file based) dependency analyser will not deduce
that and will recompile user code just because the representation Was changed. A smart dependency
analyser will rely on smaller units of change, on understanding of the semantics of CHr, or on both to
minimize recompilation. Smart dependency analysers are rumored to exist, but they are not widely
available.

On the positive side, the representation information is now available to the compiler when compiling
user code so that genuin® local variables can be declared and used:

#include wstack.h"

void g(int sz, cat kitty)
{

stack::rep S;
stack::push(&s,kitty);
cat c2 = stack: :pop (&8)}

}

This is unlikely to work without additional code in the implementation, though, unless some mechanism
for initializing a stack representation exists. This could be done by adding suitable constructors and des-
tructors to class rep, but it would be more in the spirit of packages 10 provide an explicit initialization
function. It would also be natural to support use reference arguments o eliminate most explicit pointers.

// stack interface, stack.h:

class stack {
public:
class rep |
friend stack;
// actual representation of a stack object

}s

static rep* create (int);
static void destroy(rep&);

static void initialize(rep&,int);
static void cleanup (rep&) ;

static void push(rep&,cat);

static cat pop (rep&) ;
private:

virtual dummy (} = 0;

}:

The create () function is now redundant (a user can write one without special help from the class),
but 1 have left it in to cater for code and coding styles that relies on it. If needed, it could be made to

/37

return a reference instead of a pointer.

$include " stack.h"

void h(int 8z, cat kitty)

{
stack::rep 87
stack::initialize(s,sz);
stack::push{s,kitty);
cat ¢c2 = stack::pop(s);
stack::cleanup(s);

}

The cleanup () operation is needed because the jnitialize() operation and/or the push O
operation are likely to grab some free store to hold the clements. Unless we want t0 rely on a garbage
collector we must clean up or accept a memory leak.

Now enough information 18 available to the compiler 10 make inlining of operations such as
initialize(), push (), and pop {) feasible even in an implemcmal.ion with genuine separal® com-
pilation. The definitions of the functions we want inlined can simply be placed with the type definition:

// stack interface, stack.h:

class stack {
public:
class rep {
friend stack;
// actual representation of a stack object

}:

/7

static cat pop (rep& x)
{ // extract a cat from the

// return that cat

representation of stack X

}
/7

bi
Inlining and genuine local variables can be essential to make data hiding techniques affordable in

applications where run time efficiency 18 at a premium.
7 Packages with Controlled Representations
ectly we could control the creation and

Alternatively, if we did not want users 10 allocate reps dir
copying of reps by making these operations private:

/50

// stack interface, stack.h:

class stack {
public:
class rep {
friend stack;

// actual representation of a stack object

rep (int); // constructor

rep (const rep&); // copy constructor

void operator=(const rep&); // assignment operator
b;

static rep* create (int);
static void destroy (rep&) ;

static void initialize(rep&,int);
static void cleanup (rep&) ;

static void push(rep&,cat);

static cat pop (rep&) ;
private:

virtual dummy () = 0;

}:
This ensures that only the stack functions can create reps:

stack::rep* stack::create(int i)

{

rep* p = new rep (i) // fine: create is a member of stack

/] s

return p;

£0
{

stack::rep s8(10); // error: £() cannot access rep::rep(): private member

}
Naturally, the example of stack usage from section 6 works exactly as before.

8 Packages with Implicit Indirection

If we are not interested in inlining but prefer t0 minimize recompilation costs even when we don’t
have a smart dependency analyser, we can place the representation “elsewhere:’’

/3/

// stack interface, stack.h:
class stack_rep;

class stack {

public:
typedef stack_rep* id;
static id create (int);
static void destroy (id);
static void push(id,cat);
static cat pop(id):
private:

virtual dummy() = O;

}:

This scheme keeps implementation details not only inaccessible to users but also out of sight. With this
definition (alone) a user cannot allocate stack_reps. Unfortunately G+ does not allow you to define
a class “‘elsewhere’” and have its name local to another class. Consequently, the name stack_rep
must be global.

The indirection (implied by the use of id) is implicit to the users of stacks and explicit in the imple-
mentation of stacks.

9 Simple Minded Types

One simple improvement would be to put the operations that create and destroy stack_xreps into
class stack_rep. Actually, for a C+ programmer it would be natural to put all the operations into
the rep and rename it ““stack:”

// stack interface, stack.h:

class stack {

// actual representation of a stack object
public:

typedef stack* id;

static id create (int)
static void destroy (id);

static void initialize (id,int);
static void cleanup (id);

static void push (id,cat);
static cat pop(id);
}i

so that we can write:

#$include "stack.h”

void f(int sz, cat kitty)

{
stack s;
stack::initialize(&s,sz);
stack::push(&s,kitty);
cat c2 = stack: :pop (&s);
stack::cleanup(&s);

}
The redundant use of the typedef ensures that our original program still compiles:

oLy

#include wstack.h"

void g(int sz, cat kitty)
{

stack* p = stack::create(sz);
stack::push(p,kitty);

cat ¢2 = stack: :pop (P}’
stack::destroy(p);

}
The likely difference between £ () and g O is two memory management operations (a new in create
amladeleteindestroy)

10 Types
Now all we have 0 do is to make the functions non-static and give the constructor and destructor
their proper names:

// stack interface, stack.h:

class stack {
// actual representation of a stack object

public:
stack (int size);
~stack ()’

void push(cat);
cat pop ()7
}:

We can now use the C++ member access notation:
#include ngtack.h”

void f(int sz, cat kitty)
{

stack s(sz);

s.push(kitty);

cat c2 = s.pop(};
}

Here we rely on the implicit calls of the constructor and destructor © shorten the code.

11 Types with Implicit Indirection

If we want the ability t0 change the representation of a stack without forcing the recompilation of
users of a stack we must reintroduce a representation class rep and let stack objects hold only

pointers to reps:

/39

210 -

// stack interface, stack.h:
class stack {

struct rep {
// actual representation of a stack object

¥

rep* P;
public:
stack (int size);
~gtack ()’

void push(cat);
cat pop)7
};
The indirection is invisible to the user.
Naturally, to take advantage of this indirection t0 avoid re-compilation of user code after changes 10
the implememation we must avoid inline functions in stack. If our dependency analyser i8 dumb we
might have to pace representation class rep «olsewhere’” as was done in section 8 above.

12 Multiple Representations

In all of the examples above, the binding between the name used 10 specify the operation 10 be per-
formed (€.8. push) and the function invoked were fixed at compile time. This is not necessary. The
following examples show different ways 10 organize this binding. For example, we could have several

kinds of stacks with a common user interface:

// stack interface, stack.h:

class stack {

public:
virtual void push(cat) = 0;
virtual cat pop () = 07

}:

Only pure virtual functions are supplied as part of the interface. This allows stacks 0 be used, but not
created:

#include wstack.h"

void £ (stack& 8¢ cat kitty)
{

s.push(kitty);

cat ¢c2 = s.pop(};
}

Since no representation is specified in the stack interface, its users are totally insulated from implemen-

tation details.
We can now provide several distinct implememations of stacks. For example, we can provide 2

stack implemented using an array

S11 -

// array stack intexface, astack.ht
#$include " stack.h”
class astack : public stack {

// actual representation of a stack object
// in this case an array

//
public:
astack (int size);
~astack () 7/
void push(cat);
cat pop();
}7

and elsewhere 2 stack implemented using a linked list:

// 1inked list stack interface, 1stack.h:
#include vstack.h"

class lstack * public stack {
// actual representation of a stack object
// in this case & linked list

//
public:
lstack(int size);
-1stack ()7

void push(cat);
cat pop ()’
}:

We can now create and use stacks:

#include wagtack.h"
#include nlgtack.h"

void g()

{
istack s1(100);

astack s2(100);

cat ginger;
cat blackie;

f(sl,ginger);
f(s2,snowball);

13 Changing Operations

Occasionally, it is necessary Or simply convenient to replace a function binding while a program is
running. For example, one might want 10 replace 1stack: :push () and 1stack: :POP () with new
and improved versions without terminating and restarting the program. This is fairly easily achieved by
taking advantage of the fact that calls of virtual functions are indirect through some sort of table of vir-
tual functions (often called the vtbl).

The only portable way of doing this requires cooperation from {he 1stack class; it must have a
constructor that does no work except for setting up the vtbl that all constructors do implicitly:

/35

212 -

class noop {}s

lstack::lstack(noop) (y // make an uninitialized 1stack

Fortunately such 2 constructor can be added to the program source text without requiring recompilation
(hat might affect the running program {hat we are trying 10 update (enhance and repair).

Using this extra constructor we define a new class which is identical 10 1stack except for the rede-
fined operations:

// modified 1inked list stack interface, llstack.h:
$include wstack.h"

class 11stack ¢ public 1stack {

public:
llstack(int gsize) * lstack(size) {}
11stack (noop x) ¢ 1stack (%) {}

void push(cat);
cat pop ()}
};
Given an 1stack object we can now update its pointer 0 its table of virtual functions (its vebl) thus
ensuring that future operations on {he object will use the 11stack variants of push) and pop ¢

g$include “llstack.h“

void g(lstack& s)
{

noop XX;
new (&8) 11stack (xx) // turns S jnto an 11stack!

}

Naturally, we must rely on some form of dynamic linking to make it possible 10 add g() to a running
program. Most systems provide some such facility.
This use of operator new assumes that

// place an object at address ‘P':
void* operator new(size_;,void* p) | return p; |}

has been defined and relies on the 1lstack: .11stack (noop) constructor for suppressing
(re)initialization of the data of s and for updating s’s vebl.
This trick allows us to change the <t for particular objects without relying on specific properties
of an implcmcmation (that is, portably). There is no language protection against misuse of this trick.
Changing the vtbl for every object of class 1stack in one operation, {hat is, changing the con-
tents of the vtbl for class lstack rather than simply changing pointers to vtbls in the individual
objects, cannot be done portably. However, since that operation will be messy and non-portable 1 will

not give an example of it.

14 Changing Representations

A more interesting — and probably more realistic — challenge is t0 replace both the representation
and the operations for an object at run time. For example, convert a stack from an array representation
{0 a linked list representation at run time without affecting its users. To ensure that the cutover from
one representation 0 another can be done by a single assignment W& reintroduce the rep tyPe and make
push () and pop () simple forwarding functions 1o operations on the rep:

/56

-13 -

// stack interface, stack.h:

class stack {
rep* P;

public:
stack (int size);
~-stack ()7

rep* get_rep() { return P’ }
void putﬂrep(rep* g {(p= q; }

void push(cat c) | p#>push(c); }
cat pop() { return p—>pop();

int size() | return p—>size(); }
}i
The idea is to have operations that convert between the different representations and then let them use
get_zep () and put_rep () to update the pointer 10 the representation. In a real system
get_rep () and put_xrep () would most likely not be publicly accessible functions.
First we define rep exactly as we did stack before

// stack intexrface, rep-h:

class rep {

public:
virtual void push(cat) = 0;
virtual cat pop() = 0;
virtual int sizel() = 0;

}i
and use it as a base for the different implemenlalions:

// array stack interface, astack.h:
$include vyrep.h"

class astack @ public rep {
// actual representation of a stack object
// in this case an array
/! .-
public:
astack (int size);
~astack ()7

void push(cat);
cat pop ()

int gize ()’

Y

Elsewhere we can define a stack implemented using a linked list:

/07

_14 -

// 1inked 1ist stack interface: 1stack.h:
ginclude wrep.b"

class 1stack : public rep {
// actual repreaentation of a stack object
// in this case & 1inked 1ist

]l e
public:
lstack(int size) s
‘lstack();

void push(cat);
cat pop();

int sizel()s

}i

Now we can convert the reprcsemalion of a stack from a astack* 102 1stack* by changing
stack::P using stack: .get_rep () and stack: :put_rep (y and (in gencral) also copying the
elements:

rep* convert_ﬁromﬂaﬂto_}{stack& s)

{
rep* IP < s.qet_;ep{);
astack* ap = new astack{s.size());
/] copy 8% elements tO *ap
s.put_;eplap):
return IP;

}
In other words, W€ solve the problem by introducing yet another indirectiont. This assumes that the

gize argument from the original constructor has been stored away somewhere SO that it can be used as
{he argument 0 the new astack. Ina real system W€ would also need to check that s really had an
appropriate rcpresemaﬁon and would most likely also have 0 provide some further consistency checking

and interlocking. However, the fundamental idea is illustrated.

15 Changing the Set of Operations

Finally, I will show a version of the stack example that is somewhat un-C-like 1n {hat it dispenses
with static type checking of the operations. The idea is 10 completely disconnect the users and the
implementers and simulate a dynamically typc—chccked language. Overreliance On such techniques can
make systems slow and messy. However, the flexibility offered can be jmportant in localized contexts
where the inevitable problems caused by fack of formal structure and of run-time checking can be con-
tained.

In this and the following examples 2 bit of scaffolding is needed to make the programming tech-
niques convenient. This makes the toy examples somewhat 10ngeT (o define but does not, in fact,
noticeably increase the size of & realistic system relying on them. The most primitive building block for

this example s lists of (operation__idcntiﬁer,function) pairs:

P S
{ The first 1aw of computer science: Every problem is solved by yet another indirection.

/38

-15 -

typedef cat (*PcatF)(void*,cat);

struct oper_link {
oper_link* next;
int oper;
PcatF fct;

oper_link(int oo, PcatF ££, oper_link* nn)
: oper(oo), fct (££) next (nn) {}
};
Using oper_links we can specify a class cat_object that allows us to invoke an unspecified set
of functions on an unspecified representation:

class cat_object {
void* pi // pointer to representation

oper_link* oper_table; // list of operations
public:
cat_pbject(oper_;ink* tbl = 0, void* rep = 0)
: oper_;able(tbl)p p(rep) {1}

cat operator()(int oper, cat arg = 0):

void add_pper(int, PcatF);
void remove_pper(int);
}:
Default arguments are user to spare the programmer the bother of specifying arguments where they are
not in fact necessary for a particular operation. This technique is claborated in section 16 below.
The application operator simply looks for an operation in its list and executes it (if found):

cat cat_pbject::operator()(int oper, cat arg)

{
for (oper_;ink* pp = oper_pable; pp: PP = pp—>next)
if (oper == pp—>oper) return pp—>fct(p,arg);
return bad_cat;

}

If the operation fails the distinguished object pad_cat is returned.
Given this feeble framework we can now build a stack:

// stack interface, stack.h:
enum stack_oper { stack_destroy = 99, stack_push, stack_popP };

cat_pbject* make_stack(cat_pbject* = 0);
As usual, the implementation of the stack is left as an exercise L0 the reader. However, here is a hint:
#include wstack.h"

struct rep {

void push(cat);
cat pop ()i

216 -

static cat stack_push_ﬁct(void* p, cat c)

{
((xep*) p}—>push(c);
return bad_cat;

}

static cat stack_pop_fct(void* [P cat)

{
return ((rep*) p)—>pop ()i

}

static cat stack_destroy_fct(void* joF cat) { AT */ }

cat_pbject* make_stack(cat_pbject* P)

{
if (p==0) P~ new cat_object(o,new rep) ; // get a clean object

pw>add_oper(stackﬂpush,&stack_puah_fct): // and make it
p*)add_oper(stack_pop,&stack_pop’fct); // behave
p->addﬂpper(stack_destzoy,&atack_ﬁestroy_ﬁct); // like a stack
return p;

}
We can now create and use stacks:

#include ngtack.h"

void g(cat kitty)

{
cat_object* s = make_stack();
s (stack_push, kitty):
cat c2 = s(stack_pop};
s(stack_dastroy];

}

We can add operations 10 a stack at run time. For example, W might want an operation for peeking
at the top cat without popping:

enum { stack_peek = stack_pop+1 }s
cat stack_peek fct (void*, cat);

void h(cat_pbject& s)

{
s.add_pper(stack_peek,&stack_peek_ﬁct);

cat top = s(stack_peek);
}

Note that the operations on these stacks do mot involve addresses; they can be transmitted between
address spaces without special effort. This technique for invoking operations is often called message
passing.

16 Tailoring

The dynamically typed stack above could be improved in many ways. For example, the operation
lookup could be made faster, an inheritance mechanism could be added, the naming of operations could
be made more general and safer, the method for passing arguments could be made more general and
safer, etc. Here I will just demonstrate two techniques of mor¢ general interest.

Firstly, the message passing mechanism can be hidden behind an interface that provides notational
convenience and type safety for the key stack operations. The point is that combinations of the tech-
niques described in this paper can be used to handle more delicate cases. In particular, any data abstrac-

tion technique can be used to hide ugliness in an implementation:

/70

-17-

// improved stack interface, Stack.h:

#include "stack.h"
class stack : public cat_object {
public:
stack () { make_stack(this); }
~stack () { (*this) (stack_destroy); }
void push (cat ¢) { (*this) (stack_push,c); }
cat pop() { return (*this) (stack pop); 1}
};

This allows us to write

#include "Stack.h"

void g(int sz, cat kitty)
{

stack s;
// compile time checked uses:

s.push(kitty);
cat ¢2 = s.pop();

// run time checked uses:

s.add_oper(stack_peek,&stack_peek_fct);
cat top = s(stack_peek);
}

This uses the unchecked ‘‘message passing’’ notation only where needed.

Secondly, in the dynamically typed stack example I dodged the issue of argument types and argu-
ment type checking by simply providing a fixed number of arguments of fixed type. Similarly, I simply
had all operations return a cat. That is surprisingly often a viable choice for the sort of interfaces for
which you actually need ‘‘message passing.”” A larger class of problems can be handled by allowing
arguments of a fixed number of types. For example:

class argument {

enum type_indicator { non_arg, int arg, ptr_arg, string arg, cat_arg };
type_indicator t;

union {

int i;

void* p;

char* s;

cat c;
b2

public:

argument (noop) :t(non_arg) { }
argument (int ii) : i(ii), t(int_arg) { }
argument (void* pp) : p(pp), t(ptr_arg) { }
argument (char* ss) : s(ss), t(string_arg) {1}
argument (cat cc) : c(cc), t(cat_arg) { }
operator int() { return t==int_arg ? iz -1; 1}
operator void* () { return t==ptr arg ? p : 0; }
operator char*() { return t==string arg ? s : 0; }

operator cat() { return t==cat_arg ? c : bad cat; }

| &

This assumes that cat is declared so that == and 2 : can be applied.
The error handling for the conversion operators could be improved, but even as it stands this would
allow the cat object class to be written:

/4

-18 -

typedef argument (*PargumentF)(void*,argument);

struct oper__link {
oper__link* next;
int oper;
Pargumentl? fct;

oper_link (int oo, pcatF ff, oper_link* nn)
H oper[oo), fet (Ff), next (nn) {1}

and can be used like this:
#include " stack.h"

void g(cat kitty)
{
argument.__object& s = *make_stack O;
s (stac}c__push,kitty) ; // converts ‘kitty’ to argument
cat ¢c2 = 8 {stack_pop) : 1/ converts argument to cat
s (stack__deatroy) :
}
The object no_arg is passed (by default) to indicate that no argument was specified by the
user.

You may have noticed that the size argument (0 the stack create operation disappeared when
we moved to the message passing style. The reason was to avoid the complication of dealing
with arguments of different types until we had the mechanism (O do so. Putting that argument
back in is now left as an exercise 10 the reader.

Adding ““list of arguments’ (0 the list of acceptable argument Lypes is left as yet
another exercise 10 the reader. Allowing such lists again increases the range of applications for

which the message passing technique is acceptable.

17 Dynamic Classes

Note that the concept of a class was almost lost in the message passing examples above.
Each object had its own list of acceptable operations that could be modified independently of
the lists of any other object. This could be seen as 100 flexible for many applications and also
not sufficiently amenable to space and time optimizations. These problems can be alleviated by
re-introducing the notion of a class as an object containing information common (0 2 set of
objects. Here we will only represent the set of acceptable operations on an object of one of
these ‘‘dynamic classes.”’

class a rgument__cl ass_rep {

public:
oper_link* oper_table; // list of operations
void addr_oper(int, pargumentF);
void remove__oper(int);
}i

The reader can easily extend this notion, though.
The objects looks much as they did before. The only change is that an indirection through
an object representing 2 class has been introduced on the path to the table of operations:

J44)

-19 -

class argumentﬂpbject {
v .

public:
argument_pbject(argument_plass rep* CCr void* rep = 0)

: crep (cC) s plrep} (Y

argument operator()(int oper argument arg = no_erg);

}i

Given this W can create an object representing stacks and provide an operation for gaining
access 10 it

static argument_elass_rep stack_plass; // the object representing stacks

argument_plass_rep* get stack_plass()

—

{
if (stackﬂplass—?oper_pable == 0) |
stackpplasa.addﬂpper{stackﬂpush,&stack_push_ﬁct);
stack_plass.addﬂpper{stackﬂpop.astackﬂpop_ﬁct};
stack_plass.add_pper(atack_ﬁestroy,&stackﬂdestroy_ﬁct);
return &stack_plass;
}

Finally, we cant provide 2 function for making stacks

argument_pbject* make_etack()

return new argument_pbject(get_stack_plass());

}
and use it exactly as {he previous yersions:

void glcabt kitty)

{
arqument_pbject& s = *make*stack();
s(stack_push,kitty): // converts seitey’ e argument
cat €2 = s(stack_pop}: ! converts argument to cat
s(stack_pestroy);
}

This version, nowever, docs not allow operations for an individual object 0 change. 1t does
however, 0pen the possibi\ity of trivially changing the operations on all objects of a dynamic
class.

18 Conclusions

Ci+ covers the spectrum of data hiding techniques from C (files @s modules) through
Modula-2 (modules) and Ada (packagcs) to G (classes), and peyond. Given a free choice 2
Crt programmcr would naturally choose one of the class-based suongly-typed techniques (sec-
tions 10, 11, or 12), but the other techniques can occasionally be useful.

19 Acknowledgements

Andrew Koenig, Brian Kernighan, and Doug Mcliroy lent cars and plackboard 10 some of
these litde puzzle programs. Jim Coplien suggested the extension of the rang® of examples 10
include funcuion binding examples- The nine-plus cat lives in this paper ar¢ dedicated 10 Dave
McQueen Who once in desperation pr0posed {he death penalty for presenting ceyet another stack

example.” Also thanks 10 Andy for giving M a pracucal dcmonsuation of the difficulty of

4

MEMORY
MANAGEMENT
TECHNIQUES
IN C++

Willlam M. Miller
Glockenspiel, Ltd.

Internet: wmm@world. std.com
CompuServe: 72105,1744
BIX: wmillar

Copyright © 1991, Willlam M. Miller. All rights reserved.

new C(args) allocates storage, invokes constructor
with resulting address as this:

C* p = malloc (sizeof (C));
C_ctor(p, args);

delete objactptr invokes destructorwith objectptr
as this, then frees storage:

C_dtor (cbjectptr);
freaa (cbjectptr);

Multi-dimensional arrays are supported:

C (*p) [J]1IKI];
P = new C[I][J][K];

delete [I] p;
The lefilmost dimenslon ([I]) can be any arbitrary

expression; the remaining dimensions must be constant
expressions.

e

new and delete operators:

int* pi = new int;
char* pc = new char[count];
dalete pi;

delete [count] pec;
Type secure:
@ returns type*, not void*
@ size calculation done automatically

@ no cast required
Integrated with constructor/destructor system

Well-defined error handling

naw C[count] allocates enough storage for count
copies of ¢, then invokes the default (i.e., no-argument)
constructor for each copy:

C* p = malloc (count*gizeof (C));
for (1 = 0; 1 < count; i++)
C ctoxr(p + 1);

delete {count] objectptr Invokes the destructor for
eachof count copies of the object, then frees the
storage:

for (i = eount-1; 1 >= 0; i--)
C_dtor (objectptr + 1);
free (objectptr);

Types of new C and new C[count] areidentical: cx

Order of destruction of array elements is inverse of order
of construction

Notes:

1) Can pass arguments to constructor in non-array case:
new C(argl, arg2)

2) Cannot pass arguments to constructor in array case;
must have default (no-argument) constructor

3) [count] is required for invoking destructors,
redundant for types without destructors

4) delete is only polymorphic (i.e., able to delete a
derived class object vla a pointer to a base class) if the
destructor is declared virtual

5) delete ofan array MUST be used with the correct type
pointer, not a pointer to a base type

New for 2.1:

1) Cannot delete via a polnter to constant, i.e.,
const C*

2) It Is permitted to allocate an array of a class whose
constructor has all default arguments:

class complaex {

public:
complex (float re = 0.0, float im = 0.0);
}:

new complex[100];

3) count should be omitted from array deletion, e.g.,
delete [] p instead of delete [100] p

Can replace allocation strategy globally:

void* opaerator new (size_t);

vold operator deleta (vold*);

Problems with assignment to this:

1) Error-prone. If this is not assigned on some
execution paths, base and member constructors will
not be called under some conditions.

2) Base class cannot provide allocation strategy for
derived class because this Is guaranteed to have a
non-zero value before the base class constructor Is
executed.

Error handling:

typadef void (*PF) ();
extern PF _new_handler;

extern PF set new handler(PF);

vold £() {
PF old = set_new_handler (mine);

//...
(vold) set_new handler(old);

}

When storage is exhausted, the function pointed to by
_new_handler Isinvoked. k can:

@ print a message and axit ()

@ free some storage and return, causing
allocation to be retried

Ifno _new handler isdefined, naw returns 0.

Per-class allocation control (OBSOLETE TECHNIQUE):

class foo {
foo() {
if (fthis)
this = my alloc();
{/. ..

~foo () {
//7-..
this = 0;

}
};

If constructor assighsto this:

® this will be 0 on entry if object was allocated via
new

@ Base and member constructors called only after
assignmentto this

Perclass oparator new() and operator delete():

class foo {
vold* operator new(sizae t);
void oparator delete (void¥);
// or, (void*, size t)

};

Invoked whenever an object of class foo or aclass
derived from foo Is allocated via new.

Is NOT invoked for arrays.

Deals only with storage, not object:

CONCLUSION: obsolete as of 2.0, support can be

removed at any time. ® void*, not foo*

@ no this pointer

/76

Overloaded operator new() (global or member):

vold* oparator new(sizae t, args);

First argument must be size_t; remaining arguments
are unconstralned.

If have multl-argument operator new() member
function, some Implementations require that default
version also be provided because of name hiding.

Additional arguments are supplied in a parenthesized list
between naw and the type name:

naw (args) type (init)

Cannot overload operator daeleta () ; corresponding
feature Is explicit Invocation of destructor:

p->foo::~foo();

Storage deallocation, if needed, is handled separately via
explicit code after the destructor has run.

Version issue: current and previous versions required full
qualification of destructor name. Full qualification
normally suppresses virtual overriding. A future version
will allow p->~foo() for virtual functions and the full
form will have its expected meaning.

Static data members:

@ Only one allocated for class, not one per object

® Canbe accessed a8 C::mamber as well as
objact .mambar OF objactptr->mambar

® Must be defined outside of class (has external
linkage); initializer is evaluated In class's scope

clasa foo {
static int maember;

int foo::mamber = -32767;

Useful for object counter, head/tall of linked list, etc.

/Y 7

Useful for:

Creating objects in existing storage, e.g., for batching file
writes by allocating in a buffer

inline void* operator new(size t, void* p) {
raturn p;

}

p = naw (buff ptr) foo;
buff ptr += sizeof (foo);

Communicating additlonal Information about the
allocatlon strategy:
vold* operator new(size_t, enum where);

P = new (NEAR HEAP) foo;

Smart pointers:

struct foo {
int bar;
};

class fooptr {

//--.
foo& operator*();
foo* oparator->();

};
fooptr p;
p->bar = 5;

Useful for virtual memory, remote access, etc.

Static member functions:

clags foo {

static void mbrfunc();

};
void foo::mbrfune() { ... }

Access with or without object (foo: :mbrfunc())

Has no this pointer, i.e., can access only static data
members and member functions without use of explicit
object qualification

const and/or volatile member functions:

class foo {
int 1i;
public:
int £() const { return 1; }

Y

Objects declared const allow access only to member
functions declared const. (Unqualified objects can use
const member functions.)

Member functions declared conat are not allowed to

modify data members or call non- const member
functions.

Can overload member functions based on const.

volatile is treated analogously.

Constructor performs needed initializatlon, destructor
handies cleanup:

foo_init::foo_init() (
1f (obj_count++ = 0) {
// initialization for class fco
}
}

foo_init::~foo_ init() {
if (--obj_count = 0) {
// cleanup for class foo
}

Temporaries can cause performance problems:

struct foo {
foo();
foo (foos) ;
~foo();
foo some_op (foo);

};

foo foo::some op(foo f£) {
foo ret val;
// compute rat_val
return ret_val;

}

void £() {
foo a, b, ¢;
// calculate values for b & ¢
a = b.some op(c);

}

/78

PROBLEM: need to insure certaln initiallzation code is run
before any static objects of type foo are constructed, but
order of construction across modules is arbitrary.

SOLUTION: in the header file which declares class foo,
definea foo_init class and a static object of that type:

clase foo { ... };
clasa foo init {

static int obj_count;
public:

foo_init();

~foo_init ();

};

statie foo_init xfoo;

The reason this works Is that static allocation is
guaranteed to be in order of appearance WITHIN a
module.

Puiting a static foo_init object into the header file
guarantees that it will be constructed before any
possible use of class foo.

This trick was invented by Jerry Schwarz, formerly of
AT&T, for the implementation of io_streams.

Execution for this example:
1) Copy value of < to argument temporary (constructor)
2) Construct ret_val in foo: :some_op

3) Copy ret_val to function return value temporary
(constructor)

4) Destroy rat_val
5) Copy functlon return value to a (assignment operator)
6) Destroy function return value

7) Destroy argument temporary

Reduced cost code:

struct foo {
foo();
foo (foos) ;
foo (conet foo&, const foos§);
};

foo: :foo (const foo&, conat foo&) {
// computa like ret_val
}

foo b, e;
foo a(b, e);

® Use const foos Instead of foo parameters to avold
argument copying

® Use Initlalization and a constructor Instead of a normal
function and assignment

Acknowledgement: Jonathan Shopiro

/77

Temporaries can cause bugs:

class Str {
char* data;
8tr (conat Strg, const Strs);
public:
//-..
operator char*() { return data; }
8tr operator+ (const Stré s) {
raturn Str (*thls, s);
}
}:

vold foo (conat char¥);

vold £() {
str a, b;
//...
foo(a + b); // generates temporary
// that may be delatad BEFORE f iz called
}

