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ABSTRACT .

This report describes the implementation of a toolbox for colored Petri nets
in G2. Special attention is paid to the evolution procedures the discolored
version of the colored Petri nets that is built automatically and on which the
evolution is based. Some modeling examples are shown. Petri nets and G2
are briefly presented.

RESUME .

Ce rapport présente la boite & outils pour réseaux de Petri colorés qui a été
implementée dans G2. La construction du réseau se fait a I’aide des objets im-
plementés et de leurs attributs. L’ évolution du réseaux est basées sur une ver-
sion décolorée du réseau qui est construite automatiquement. Les procédures
et les régles permettant I’évolution sont décrites dans ce rapport. Finalement
des examples d’applications sont présentés.
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1. Introduction.

Knowledge based systems for monitoring and control of complex industrial
processes are becoming increasingly common. The systems are built upon
heuristics and/or models. The models are usually of a more qualitative nature
than what is usual in systems based on conventional techniques. Most models,
e.g., signed digraph model, constraint equation models, and qualitative physics
models, only capture the continuous part of the process. However, processes
also always contains discrete, sequential parts, e.g., start-up sequences, batch
operation, etc.

Petri nets is a powerful modeling technique for representing sequential, discrete
processes. Several different classes of Petri net exists. One of them is the
colored Petri nets. Petri nets are, however, normally not associated with
knowledge based systems.

The aim of this thesis is to implement a toolbox for colored Petri nets in the
knowledge based environment G2 from Gensym Corp (Moore et al ,1990). G2
is one of the most commonly used systems for the industrial real time ap-
plication of knowledge based systems. G2 is quite unique in that it allows
knowledge based programming techniques to be combine with traditional pro-
cedural techniques in a uniform object oriented environment. The toolbox is
based upon a G2 toolbox for Grafcet, called Grafchart (Arzén ,1991), that
previously has been implemented at the Lund Institute of Technology. The
colored Petri net toolbox maintains the intersting properties of Grafcet: tran-
sitions can be conditioned, temporal expression can be used, and places can
be associated with actions. The work has been done as a master thesis project
in a collaboration between Lund and Grenoble. The work has been carried
out at the Department of Automatic Control in Lund.

The report is divided in two parts. In the first chapter, the implementation
of colored Petri nets in G2 is explained. The objects and their attributes are
described, and rules and procedures used for the evolution of colored Petri
nets are presented. In the last chapter, examples are presented.

In the appendix A, a brief overview of Petri nets is persented with special em-
phasis on colored Petri nets. A general description of G2 is given in appendix
B. Finally in appendix C a listing of the G2-procedure used in the toolbox is
given.



2. The G2 implementation.

In this chapter, the aim of the toolbox will be expressed, the way to implement
colored Petri nets (CPN) will be discussed, the objects of the tool box will be
described, and the evolution of CPN is presented.

2.1 The aim of the toolbox.

The toolbox has been designed with two aims in mind:

o Firstly, building a colored Petri net must be easy. In the tool box, the
user must find all the facilities that he has when he builds a colored Petri
net on paper. He must find all the predefined functions that are usually
used in CPNs. The way to enter data must be very easy. The data of a
CPN consists of functions, firing colors, initial marking, events or conditions
linked to transitions, and delays or actions linked to places.

e Secondly, the evolution of a CPN must respect the real time requirements
and must respect the rules of PN evolution, specially the way to fire tran-
sitions on the occurrence of an event.

2.2 Overview.

2.2.1 To build a CPN in G2.

First, the user creates an object called petri-net. Then he buildss the net on
the subworkspace of this object. The user creates places and transitions and
links places and transitions with arrows. After the drawing, the user has to
enter data:

o When the user clicks on the table of a place, he finds the attributes to
enter the delay of the place and the initial marking of the place. There is a
predefined syntax to enter the initial marking.

e When the user clicks on the table of a transition, he finds an attribute called
color-set-def where he must enter the set of firing colors of the transition.
The user must respect a predefined syntax.

e When the user clicks on the table of an arrow, he finds an attribute called
inpul-function-def or output-function-def . The name depends on if the
arrow is at the input or at the output of a transition. A syntax has been
defined for defining new functions or for using predefined functions.

o If an action is linked to the presence of some marks in a place, then the user
has to define an action-procedure and create a rule in the subworkspace of
the place that starts the action-procedure. The form of the rule indicates if
the action is a pulse action or a continuous action. The action can depend
on the color of the mark.



o If conditions or events condition the firing of a transition with a firing color,
then a predefined rule must be put in the subworkspace of the transition.

When all these things have been created, the Petri net is ready to be ‘acti-
vated’. When the user wants to ‘start’ a petri-net he clicks on the Petri-net
object and clicks on initialization. When the Petri-net object becomes green,
he clicks on this object and selects run. Then the evolution starts.

2.2.2 Initialization and evolution.

Initialization.

The initialization consists of creating the discolored version of the Colored
Petri Net . This version is obtained automatically from the elements of the
CPN. Each place of the CPN generates subplaces (one per mark color that this
place can contain). Each transition generates a subtransitions (one per firing
color of the transition). Finally, each arrow of the CPN generates sublinks
that link subplaces and subtransitions. The creation of sublinks depends on
the function of the arrow of the CPN.

After obtaining the discolored version, the initial marking of the CPN is set.
Then the evolution can start.

Evolution.
The evolution is based on the discolored version of the CPN. G2 calculates

the evolution in the discolored version of the CPN and the CPN shows the
evolution of its discolored version:

e The firing of a subtransition in the discolored PN leads to the firing of a
transition of the CPN with a firing color.

o Creating or deleting a mark in a subplace leads to the creation or the deletion
of a colored mark in a place of the CPN.

The evolution of the PN are carried out by G2 procedures that perform the
different tasks of the evolution. The procedures are started from rules or
from other procedures. The procedures respect the rules of evolution of a
non-autonomous PN.

2.3 Definition of classes of objects.

In this section the different objects will be described.

2.3.1 A petri-net,

An application can contain more than one CPN. For each CPN, the user must
create a petri-net object. The CPN is built on the subworkspace of the petri-
net object. The CPN is initialized or stopped through the appropriate menu
choices of the petri-net object. A petri-net is shown in Fig 2.1.
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Figure 2.1 A petri-net object with is subworkspace.

2.3.2 A place.

A place is represented by a place object shown in Fig 2.2. A place has two
attributes: delay and initial-marking. Delay is a quantity with initial value is
0 that gives the delay of the temporized place. Initial-marking is a text. In
this text, the user can enter the initial marking using a predefined syntax.

The syntaz of initial marking.

o If the initial marking of a place is 1 mark with the color blue and 3 marks
with the color red then the user has to enter: "3<red>1<blue>".

o If the initial marking of a place is : Y [, convoyer; then the user has
to enter: "SUM(convoyer,n)”. In that case a succession of convoyer.i is
created. It is the shortest way to enter: ”1<convoyer.l>1<convoyer.2>
...1<convoyer.n>" O

Place actions.

If an action is linked to the presence of a mark in an place, then the action is
expressed as G2 items on the subworkspace of the place. The most common
way is to represent actions by a G2 rule that is combined with a G2 procedure
as shown in Fig 2.2.

THE PROCEDURE THE SUBWORKSPACE
HEAT-BOILER
'y
5 =
o)
e, o am ]
Place3 'M.-""‘*-. = -
ace e, heat boilor
.,
FOR ANY MARK M THAT IS CONTAIREDLBY PLACE2
UNCONDITIONALLY START HEAT-BOILER{ THE COLOR OF M)
-
‘\-\‘l\..‘

Figure 2.2 A place with its subworkspace.

Continuous actions can be expressed by scanned rules and pulse actions by
whenever rules. The condition part of the rule always begins with the same
phrase. Some examples are given below:

o coniinuous actions

for any mark M that is contained-by Placel unconditionally



start left-motion-car(the color of M)

(scanned rule)

for any mark M that is contained-by Place2

if level-of-tank(the color of M) > 10
then start tank-full-procedure(the color of m)

(scanned rule)

o pulse actions

whenever a mark M becomes contained-by place3 then
start open-valve-tank(the color of M)

whenever a mark M becomes contained-by place4 and
when the status of the process is OK then
start start-of-production-of-piece(the color of M)

When a mark is created in a place, then the mark is related to the place with
the relation contained-by.

Every action can depend on the mark color. For instance, in the action open-
valve-tank(the color of mark), the action to performed is ‘open the valve
of a tank’ and the color of mark indicates which tank to open.

2.3.3 A transition.

A transition object and its connections is shown in Fig 2.3.
e PLACE-TRANSITION-LINK

f TRANSITION-PLACE-LINK

Figure 2.3 A transition object with its connections.

Transition objects have two attributes: color-set and color-set-def . Color-
set-def is a text where the user has to enter the set of firing colors using a
predefined syntax. The example below explains the syntax. Color-set is given
by a text-list. After the initialization of the petri net this list contains all
the firing colors of the transition. It is obtained by translating the text of
color-set-def . It is necessary to define color-set-def for each transition.

The syntaz of color-set-def .

o If the set of firing colors is {blue,red,black,green,yellow}, then the user has
to enter: ”<blue><red><black><green><yellow>".

o If the set of firing colors is : ) 7., boiler;, then the user has to enter :
"SUM(boiler,n)”. In this case a succession of n boiler.i is created. It is the
shortest way to enter: ”<boiler.1><boiler.2> ... <boiler.n>?”. O

Transition condition rules.



If a transition is linked to a condition or an event, then the user expresses
the condition or event with a rule that he puts in the subworkspace of the
transition. The action part of the rule is always: start fire-event(transition,
firing color) or start fire-eventl(subtransition). The action of these two pro-
cedures are identical. Which to use depends on the argument that is used in
the condition part of the rule as shown in the following example.

Whenever-rules are used for representing the occurrence of an event (an event
is considered as a pulse condition). For the other conditions when-rules are
used.

ExAMPLE 2.1—The syntax of transition condition rules.

For any subtransition st that is waiting-an-event to T'1
When sensor-temperature-boiler(the color of st) > 100 then

Start fire-event1(st).
(scanned rule)

For any boiler boiler
whenever the status val of boiler receives a value and when val=0XK then
Start fire-event(T'2,the color of boiler). O

THE SUBWORKSPACE

YOR XKt BOILER B "“‘w-.\‘
WHENEVER THE STATUS val OF B Rl‘.El{qf\A VALUE
AND WHEW valw=OK TIEN .
START FIRR-EVENT(T1,THE COLOR OF B) "~

1
Figure 2.4 A transition with its subworkspace.

Events and conditions are always linked with a firing color of the transition.
The occurrence of an event permits the firing of the transition with a defined
firing color (one event«one firing color<one subtransition). As it is shown
in the first example, G2-functions can be useful in the condition part of the
rule. The expression for any subtransition st that is waiting-an-event to T1
indicates the subtransitions that correspond to T'1 and that are enabled. In
other words, this is the way to have the set of firing colors with which the
transition is enabled.

In the second example, there is a rule that translates the occurrence of an
event. The enableness of the transition is not a part of the rule. Each time
the event occurs the procedure Fire-event is started; but in this procedure, the
enableness of the transition is calculated and if the transition is not enabled,
then nothing happens.

2.3.4 A mark.

In colored Petri nets, the state is given by the marking of places with colored
marks. A mark object is a small object that is placed on places. This object
has two attributes: color and time-of-creation . Time-of-creation is given by
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a quantitative-parameter. Its value is the time instant when the mark was
created. Color is given by a text-parameter. The color of a mark can be
complex or with an index. The predefined syntax of these two kinds of marks
is shown in the following example. It is necessary to respect this syntax in
order to use the predefined functions.

ExAMPLE 2.2—The predefined syntax for mark color.

Index : a mark ‘car;’ is transformed to ‘car.1’.
Complex : a mark ‘red/roboty/work,’ becomes ‘red-robot.2-work.4’.

Mark relations.

Contained-by is a relation that links mark objects with places. A mark is
contained-by a place as soon as it is created in the place.

Available-in is a relation that links mark objects with places. A mark is
available-in a place after having waited during the delay of the place.

2.3.5 Functions.

The functions on the arrows of a CPN are implemented in G2 using attributes
of the connections objects representing the arrows which link place objects to
transition objects. These connections are instances of the place-transition-link
or the transition-place-link objects according to the direction of the arrows.
The two links have one attribute : input-function-text (output-function-text)
that is a text. In this text, the user enters the function.

A lot of predefined functions have been defined. In the case of predefined
functions, the user has to type the name of the function with, possibly, some
arguments. The function is applied to each firing color of the transition that
is connected to the arrow. The syntax is important but simple to understand
and very close to the habitual syntax. The user has to learn the syntax of
these predefined functions and the syntax for building his own functions.

Predefined functions

Name Definition Note

ID ID(c)=c Identity

DEC DEC(c)=dec Discoloration(dec represents a
mark without color)

ADD(C2) ADD(C2)(c)=c-C2 Addition(ADD adds the color
C2 at the end of the color c)

INV(C2) INV(C2)(c)=C2 Invariant function (for all

firing color the result is C2)

SUCCi  SUCCi(cl-...-ci.j-...-cn)=ci.j+ 1 Successor of(gives the successor of
the i*h color of a complex color)

PRECi  PRECi(cl-...-ci.j-...-cn)=ci.j-1 Precessor of (gives the precessor of
the i** color of a complex color)

COLOi  COLOi(cl-c2-...-ci-...-cn)=ci  Color (gives the i** color of a
complex color)

10



SUCC, PREC and COLO can be combined to give very complex functions.
In this case the user use the function COMB. Comb stand for combine The
syntax is:

COMBi(n1,n2,...,ni) where :

i is the number of arguments
ni is the name of the it* function to combine.

Each function is applied to the firing color and all the results are combined to
give a complex color.

ExXAMPLE 2.3—Some results of predefined functions.

ID(red-car)=red-car

DEC(red-car)=dec

ADD(blue)(red-car)=red-car-blue

INV(blue)(red-car)=blue

SUCC1(car.1-pro.3)=car.2 ; SUCC2(car.1-pro.3)=pro.4

PREC]1(car.2-pro.3)=car.1 ; PREC2(car.2-pro.3)=pro.2

COLO1(car.1-blue-volvo-clean)=car.1

COLO2(car.1-blue-volvo-clean)=blue

COLO3(car.1-blue-volvo-clean)=volvo

COMB3(COLO03,SUCC2,PREC1)(car.2-fiat.3-red)=red-fiat.4-car.1

the last results is the combination of:
COLO3(car.2-fiat.3-red)=red
SUCC2(car.2-fiat.3-red)=fiat.4
PREC1(car.2-fiat.3-red)=car.1

Other functions.

If the function is not a predefined function, the user must define the function
with the syntax :

"ferinl<el>ni<ed>. nb<cE>; feini<ed > fen:”

where fe; are firing colors of transition

c; are mark colors and n;- the number of marks.

ExAMPLE 2.4—A function.

The user has to enter the following text to define the function f that is shown
inFig25:"ml:1<ml>2<m2>;m2:3<ml>".

f(em15) = T<m1> + 2<m2>
f(<m2>) = 3<mi>

{<m1>,<m2>}

f Id

P2 P3

Figure 2.5 An example of a function.
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Functions at the input of a transition indicate the number and the color of
marks that imply the enableness of the transition for each firing colors. These
marks will be removed during the firing of the transition with this firing color.

For each firing color, functions at the output indicate the number and the
color of marks that will be created during the firing of a transition with the
firing color.

2.3.6 Subobjects.

The subobject are placed on a special workspace named discolored-version.
This workspace is not intended to been seen by the user. The user must not
delete this workspace.

Subplace.

A subplace is created for each type of mark that a place can contain. Every
subplace is linked with this place with the relation: in-relation-with with
the inverse relation related-with. A subplace has two attributes: color and
nb-element-available. Color is given by a text-parameter; nb-element-available
is given by a quantitative-parameter. Color indicates the color of the type of
mark; nb-element-available is the number of those marks that are available in
the place.

Subtransition.

A subtransition is created for each firing color linked to a transition. Every
subtransition is linked with a transition with the relation: in-relation-with
with the inverse relation related-with. A subtransition has two attributes:
color and enable. Color is given by a text-parameter that indicates the firing
color. Enable is a logical-parameter that indicates if the transition is enabled
with the firing color or not.

Sublink.

There are two sorts of sublinks: output-sublink and input-sublink. An
output-sublink (input-sublink) connects a subplace at an output (input) of
a subtransition. Both have an attribute: weight. Weight is given by a
quantitative-parameter. Weight gives the number of marks to remove or to
create during the firing.

2.3.7 Other objects.

Color-petri objects.

A color-petri object is used for giving a special icon-color to a mark. The object
has only one attribute: color. Color is a symbolic-parameter that contains the
desired icon-color. The name of the color-petri object is the color of the mark
that the user wants to animate.

Example : If the user wants the mark <red-car-s.1> to have the icon-color
RED then he creates a color-petri object with the name red-car-s.1 and sets
the color attribute to RED.

Property objects.

Each property object represents a property of a petri object. A relation is
created between the property object and the objects that have this property.

12



In the implementation four properties related with subtransitions have been
defined: event, non-event, is-fireable and must-be-recalculated. Those proper-
ties are used in the evolution of the PN to gather subtransitions that can be
fired or that may becomes enabled when a new mark has been created in a
place at the input of the subtransition.

Place-zoom objects.

Place-zoom object is used when the user wants to zoom in a place. The relation
place-zoom-of links a place-zoom object with the place.

2.4 Discoloration.

2.4.1 Why used a discolored version of the CPN.

CPNs are very good for describing very complex system with a small number
of places and transitions. The graphical representation is more simple than the
graphical representation of the same system with an ordinary PN. However,
the calculations to determine if a transition is enabled are not very simple.

Each time that a mark is created in a place, the transitions that follow can
become enabled. Hence a calculation of the enableness of the transition must
be carried out for each firing color. This implies a lot of unnecessary calcu-
lations because there are only some firing colors that are sensible to the new
mark. A way to link firing colors of transitions with color of marks that are in
the input places of the transitions must be found. The solution adopted is to
create a discolored version of the CPN where each place is decomposed into
subplaces and each transition is decomposed into subtransitions.

In the first version of the tool box, this approach was not taken. The calcula-
tion of enableness took so long time that the real time requirements were not
met and G2 was saturated. In the discolored version of the CPN, all these
problems are resolved.

2.4.2 How the discolored version of the CPN is obtained.

Creation of subplaces.

It is easy to find the list of types of marks that a place can contain from the
functions that are linked to the place. These functions give the mark to remove
or the mark to create in the place. By analyzing the functions, G2 defines the
set of colored marks that can be contained in the place. A subplace is created
for each mark color. This subplace is related with the place and the color of
the subplace is equal to the mark color.

Creation of subtransitions.

The creation of a subtransition is easier than the creation of a subplace. A
set of firing colors is defined by the user for each transition. A subtransition
is created for each firing color in this set. The subtransition is in relation with
the transition and the color of the subtransition is equal to the firing color.

13



Creation of sublinks.

If an arrow exists between a place P and a transition T in the CPN, several
sublinks are created between the subplaces related to P and the subtransitions
related to T. The best way to explain how sublinks are created is to follow the
explanation of the discoloration of the CPN of Fig 2.6.

f(<m1>) = 1<m1> + 2<m2>
f(<m2>) = 3<mi1>

{<m1>,<m2>}

P2/m1 P2/m2 P3/m1 P3/m2

the CPN The discolored version of the CPN
Figure 2.6 An example of discoloration.

1. Creation of subplaces: In the function f, there is 1<ml1>+2<m2> and
3<ml>. So the P1 and P2 can only contain 2 types of marks:<ml> and
<m2>. With the function Id, that is on the arrow between T1 and P3, G2
can deduct that P3 can only contain 2 types of marks:<m1> and <m2>. For
this 2 types subplaces are created: Pi/mi is the subplace related with Pi and
which has the color mi.

2. Creation of subtransition : T1 has two firing colors <ml1> and <m2>.
Hence two subtransitions are created: Ti/mi is the subtransition related with
Ti with the color mi.

3. Creation of the sublinks : On the arrow between P1 and T1, there is the
function f. f(<m1>)=1<m1>+2<m2> implies the creation of two sublinks:
the first one links T1/m1 with P1/m1 with a weight 1; the second links T1/m1
with P1/m2 with the weight 2. f(<m2>)=3<m1l> implies the creation of a
sublink that links T1/m2 with P1/m1 with the weight 3. The same things are
performed for each arrow.

second sublink

first sublink

the subtransition with the subplace with the subplace with
the color M1 the color M1 the color M2
wmght / welght
F(<M1>) = 1 <Mi> + 2 <M2>

Figure 2.7 explanation of the creation of sublink according to a function.

2.4.3 Procedures used to discolor the CPN.

The discoloration is made automatically in G2 by the procedure initialisa-
tion. This procedure calls numerous other procedures. All these procedures
are used as a formula analyzer. They transform the text of all the data into
more convenient objects or translate the text into the action that it represents.

14



Main procedures.

[¢]

trans-tra(T:class transition) : This procedure works with the color-set-def
of the transition T. It extracts each firing color from the text set-color-def
of T and puts these firing colors in the list color-set.

create-subtransition(T:class transition,C:text): This procedure creates
the subtransition that is related with the transition T. The color of the
subtransition is C. If T has a rule on its subworkspace then the subtransition
is related with the property event else with the property non-event .

trans-out( T-P-L : class transition-place-link) : Trans-out analyses the
output-function-tezt of T-P-L. The link T-P-L connects a transition T to a
place P. This procedure creates output-sublinks between the subtransitions
related to T and the subplaces related to P based on the function. If the
outpul-function-tezt is not a predefined function then the text is analyzed as
in Fig 2.7. If the output-function-text corresponds to a predefined function
then the function is applied to each firing color (fc) of T in order to have
the mark color(mc). An output-sublink is created between the subtransition
related with T and that has the color fc and the subplace related with P
and that has the color me. If this subplace does not exists then it is created.
Hence, this procedure creates subplaces.

trans-inp(P-T-L:class place-transition-link): This procedure analyses the
input-function-tezt of P-T-L. The actions of this procedure are similar to the
actions of trans-out but instead it creates input-sublinks. This procedure
also creates subplaces.

trans-pla(P:class place): This procedure analyses the text initial-marking
of P in order to create the initial marking of the place and initialize the
nb-element-available of the subplaces related with P. (This procedure calls
the procedure create-a-mark)

Other procedures.

The main procedures call other procedures.

o]

find-subplace ( P: class place, C: text ) = class subplace : Find-subplace
searches for the subplace that is related with P and that has the color C. If
this subplace does not exists it is created. The subplace is returned by the
procedure.

create-outlink(ST:class subtransition,SP:class subplace,W:number): This
procedure creates a output-sublink between SP and ST . The weight of this
sublink is equal to W.

create-inputlink(ST:class subtransition, SP:class subplace, W:number):
This procedure creates a input-sublink between SP and ST . The weight of
this sublink is equal to W.

value-function(FU:text,COL:text)=text: This procedure gives the value
of the function that is in the text FU for the color COL.
(e.g.:Value-function(”succl”,” convoyer.2” ) returns ”convoyer.2” )

trans-sum(T:class transition, TEX:text): This procedure gives the list of
firing colors color-set in the case that the color-set-def of T contains )7 ;.

trans-sum2(P:class place, TEX:text): This procedure creates marks in the
case that the initial-marking of P contains } 7. .
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The listing of all these procedures can be found in Appendix C at the end of
the report.

2.5 Evolution.

In this section the G2-procedures that are used in the evolution of the Petri
net are presented and the way to link these procedures together is discussed.

2.5.1 Evolution procedures.

State evaluation procedures.

o calcul-subtransi(ST:class subtransition): This procedure calculates the

enableness of ST. The enableness is calculated by comparing the nb-element-
available in the input subplaces of ST and the weight of the sublinks that
connect those subplaces to ST. If for each input subplace, the first number
is superior to the second one then the enable of ST= true else it is false.

change-implied(ST:class subtransition): This procedure ‘lists’ the sub-
transitions that follows the output subplaces of ST. These subtransitions
are related with the property must-be-calculated.

new-list-subtransi(ST:class subtransition): This procedure helps to cal-
culate the properties of ST. At first, it calculates the enableness of ST. If ST
is enabled and is not linked to an event or a condition, then ST is related
with the property fireable. If ST is enabled and is linked to an event or a
condition then ST is related with the property wait-event.

enable-mark(M:class mark): This procedure is used to carry out all the
tasks when the mark M becomes available in a place. The nb-element-
available of the subplace that is related with the place and has the color
of the mark, is incremented. The procedure new-list-subtransi is called
for each subtransition that follows this subplace. After this, a stabilization
sequence is carried out.

Firing procedures.

[o]

create-a-mark(P:class place,C:color): This procedure creates a mark. The
color of the mark is equal to C. If C represents the name of a color-petri
object then the mark is colored else it stays black. This mark is placed
on P. If the delay of P=0 then the nb-element-available of the subplace
corresponding to P and C is incremented. Otherwise the procedure enable-
mark it started after the delay of the place.

delete-a-mark(P:class place,C:text): This procedure deletes a mark that
is available in P and that has the color C.

fire-subtransition(ST:class subtransition): This procedure is used to fire
the subtransition ST and the transition that is related to ST with the right
firing color. At first, the enableness of the subtransition is calculated. If
the subtransition is still enabled, it is fired. The nb-element-available in the
input subplaces are decreased according to the weight of the input-sublinks.
Some marks corresponding to the subplaces are deleted. Some marks are
created in the places related to the output subplaces. The number of marks
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to create or to delete is given by the weight of sublinks. The color of the
marks is given by the color of the subplaces.
At the end, the procedure change-implied is called.

o sequence-of-stabilization(): This procedure is used to create a series of
firing sequences consisting of all the subtransitions without any events or
conditions. Hence, a firing sequence is made with all those transitions that
can be fired. Then, the enableness of all the subtransitions that are sensitive
to the new marking are calculated. Finally if a subtransition without event
or condition is enabled, the procedure is recursively restarted.

o flre-event(ST:class subtransition): This procedure is used to fire ST. After
this, a stabilization sequence is carried out.

o flre-event1(T:class transition,C:text): This procedure fires the subtransi-
tion that is related to T and that has the color C. After this, a stabilization
sequence is carried out.

The listing of all these procedures can be found in Appendix C at the end of
the report.

2.5.2 Some comments about evolution procedures.

The important procedures are sequence-of-stabilization, fire-events, and
enable-mark. These three procedures take care of the three means to start
the evolution of the petri net:

e When a event occurs the procedure fire-event is started from a rule. This
leads to the firing of the subtransition that is linked with the event. If
several subtransitions are linked to this event, they are fired one by one. The
subtransitions without event are only fired afterwards. The firing sequence
on the occurrence of the event is created automatically by G2. The firing
order of the subtransitions is deterministic but unknown to the user. It
depends on the implementation of rules and of the order with which G2
checks rules. After the firing sequence on the occurrence of the event, G2
takes care of the subtransitions without events in the procedure sequence-
of-stabilization that is started in fire-event.

e The procedure sequence-of-stabilization deals with the firing of subtran-
sitions without event. This procedure carries out a firing sequence with the
subtransitions that are enabled and restarts if there is a subtransition with-
out event that is enabled after this first firing sequence. The recursive calling
is made with a START. So this procedure can be interrupted by other pro-
cedures. Those interruptions are necessary to start the action procedures
that can be linked to the subplace.

When there is no more subtransitions without event that can be fired, the
PN has reached a stable state. If an event occurs before the PN has reached
a stable state, the event is taken into account and a firing sequence on the
occurrence of the events is carried out. In this case, the rules of evolution
of the PN are not very well respected. But this case can happen only if the
sequence of stabilization is very long and it has never occurred in practice.

o The procedure enable-mark is the procedure that makes a mark available
in a subplace and calculates the enableness of all the subtransitions that
follow this subplace. It is the third case which can lead to an evolution
since the new available mark may involve the enableness of a subtransition.
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The enableness of a subtransition is only calculated if one of the subplaces at
the input of this subtransition has received an available mark. This calculation
takes place after the firing sequence. Hence the number of calculations is very
low. The enableness is recalculated before the firing of the subtransition to be
sure that the subtransition is still enabled. (In order to solve the problem of
conflict)

The figures that follow show several cases of the state of the scheduler.
scheduler

result
E1

—t fire—event(st1) + st1 is fired
fire—event(std) * st4 is fired
sequence-of-stabilisation() «| st5is fired
sequence-of-stabilisation() +| st2is fired
sequence-of-stabilisation() *| 3 is fired
sequence-of—stabilisation() nothing is done

time

|

* sequence-of stabilisation is started at the and of this procedure

scheduler result

enable-mark(mark1) «
sequence-of-stabilisation() + | st1 is fired
sequence-of-stabilisation() * | st2 and st3 are fired

sequence-of-stabilisation() | st4 and st5 are fired

10 seconds
enable-mark(mark1) «
sequence-of-stabilisation() * | st1 is fired

sequence—-of-stabilisation() + |st2 and st3 are fired

sequence-of-stabilisation() « st4 and st5 are fired

marki
Figure 2.8 State of the scheduler during the evolution.

In fig 2.8, it is the discolored version of the PN that is presented. As seen,
working in the discolored version is the same as working with a ordinary PN.
The scheme represents the initial marking. Read the column result of the
table to follow the evolution. The order of principal tasks are given in the
column scheduler. This column is a summary of the scheduler of G2 with all
the important tasks of the evolution.
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2.6 Graphical interface.

It is possible to zoom a place. When the place is zoomed, a large place-zoom
object is created. This place-zoom is the picture of the place but the marks
are shown in their colors. It is a easy way to know what are the color of the
marks in a place. The user has just to click on the place to zoom and select
the menu choice ZOOM. A zoom is shown in fig 2.9.

<red-convoyer.1>

<blue-convoyer.2>

<red-convoyer.5>

convoyer-busy

Figure 2.9 A zoom.

2.7 Size of the toolbox.

The colored Petri nets toolbox contains 15 object classes , 28 procedures, 10
rules, 10 relations, and 5 connection classes.
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3. Examples

In this chapter three examples are presented: a model of a car race, a model
of a queuing system, and a model of a manufacturing system. Only the first
model is described. The other models are quite large and only the main parts
are described in detail. In all the cases the evolution of the CPN is difficult
to describe on paper. Hence, the animation of the CPNs is not presented.

3.1 Model of a car race.

3.1.1 Description.

The system is very simple. Three cars, one red, one blue, and one black,
participate in a race. Each car starts the race when the button start is
pushed. In the first part of the race, the cars drive to the right. After one
kilometer they turn and go back. The race ends when the cars cross the start
line again. The car speed can be changed during the race.

3.1.2 The model.

The system has been modeled with a colored Petri net in G2. The model is
presented in Fig 3.1.

EXAMPLE-CAR-RACE ready for the race
red car 1y 20 /
1
blue car ' : 20 =
3 1 20
CAR-RACE black car - L
go to right
T Te
|
ST go to left
L TURNING-POINT
START-LINE
= —— —

Figure 3.1 The system in G2 with its CPN.

Each car is represented by a colored mark. A mark with the color red repre-
sents the red car, etc.

Each transition has three ways to be fired (one way per car). Hence, three
firing colors have been defined: red, blue, and black.
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a place-transition-ink ready for the race

T3, a transition

Notes | OK Notes | OK

User restrictions | none .
User restrictions | none

T

Names | none Names | T3

Connection style | diagonal T3 Color set | & text-list

go to right

Inp fonction text | 'id"

Color set def | "<creds<blues<blacks*

T2
a transilion-place-link | READY-FOR-THE-RACE, a place |

Notes | OK go td Notes | OK

User restrictions | none User restrictions | none

Names | none Names | READY-FOR-THE-RACE
Connection style | diagonel

Delay | 0.0

Qutput function text | "id"

Initial marking | "1<red»1<blue>1<blacks>"
—»
Figure 3.2 Tables of petri objects.

In this simple system, all the functions on the arrows are the identity function.
The tables of some of the Petri objects are shown in Fig 3.2.

The firing of transitions is linked with the occurrence of events. The event
linked to the transition T1 is: the button START is pushed. The event is
the same for all the firing colors of T1. When the user clicks on the button
START, the parameter ordre gets the value true. Hence, the rule implemented
in the subworkspace of T1 tests this parameter.

Each car has an attribute called sensor. When the car reaches the TURNING-
POINT, the sensor of the car gets the value turn. When the car reaches
START-LINE, the sensor of the car takes the value end. The attribute sensor
is used in the rules implemented in the subworkspace of T2 and T3. These
rules model the occurrence of the events required to fire T2 and T3 for different
firing colors. The syntax of rules is:

T1:
for any subtransition st that is waiting-event-to T1
whenever ordre receives a value then
start fire-eventi(st)
T2:
for any car c
vhenever the sensor val of c receives a value
and
when val="turn" then
start fire-event(t2,"[the icon color of cl")
T3:

for any car c
whenever the sensor val of c¢ receives a value
and
when val="end" then
start fire-event(t3,"[the icon color of c]")
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Actions are linked to the places called go to left and go to right. The actions
move the car icons on the workspace. The rules that start those actions are:

GO-TO-LEFT:
for any mark that is contained-by go-to-left
unconditionally
start move-car-left(the color of the mark)
GO-TO-RIGHT:
for any mark that is contained-by go-to-right

unconditionally
start move-car-right(the color of the mark)

The listing of the procedure move-car-left is:

move-car-left(color:text)
vehicule:class car;
begin
case (color) of
"red" : vehicule=cari;
"blue" : vehicule=car2;
otherwise:vehicule=car3;
end;
move vehicule by (- the speed of the vehicule,0);
if the item-x-position of vehicule <= the item-x-position
of start-line then
begin
conclude that the sensor of vehicule="fin";
rotate vehicule by 180 degrees;
end;
end
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3.2 Model of a queuing system.

3.2.1 Description of the system.

The queuing system models a conveyor with 10 compartments. The conveyor
is linear and has a FIFO structure.(FIFO: First Input, First Output). The
conveyor can carry two types of pieces: red omes and blue ones. The user
controls the arrival of pieces in the conveyor with two buttons.

3.2.2 The model.

The conveyor has been modeled in G2 with the CPN that is shown in Fig 3.3.

G
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Figure 3.3 Model of a conveyor.

The CPN controls the different actions necessary for the motion of pieces on
the conveyor. Hence, the CPN creates or deletes the appropriate colored piece
in the appropriate compartment of the conveyor.

Places.
There is three places in the CPN.

o Compartment free represents the free compartments of the conveyor. The
colored marks in this place indicate which compartments are free. The mark
colors are indexed s; (i=1 to 10). The place is linked to an action. When
a mark appears in the place, i.e., the corresponding compartment becomes
free, the action deletes the piece in the conveyor compartment given by the
mark color.

o Load compartment represents the loading of a piece in a compartment.
The mark colors in this place are complex: red-s.i and blue-s.i (i=1 to 10).
The first part of the color indicates the piece color. The second part indicates
the compartment. An action is linked with the place. When a mark appears
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in this place, a piece must appear in the corresponding compartment. (The
piece color and the compartment are given by the mark color). At the end
of the action, the sensor of the compartment receives a value. This value is
the mark color.

o Compartment busy represents the pieces which are on an compartment
of the conveyor. The mark colors are identical to those in the place load
compartment. The delay of the place models the speed of the conveyor. In
our simulation this delay is equal to two seconds.

Transitions.
In the CPN, there are four transitions:

o T1 models the arrival of one piece in the left-most compartment of the
conveyor. T1 has two firing colors: red-s.1 and blue-s.1. The firing of T1
is linked to an event for each firing color. The event occurs when the user
pushes a command button.

o T2 represents the motion of one piece from one compartment to the follow-
ing one. The firing colors of this transition are complex: red-s.s and blue-s.i
(i=1 to 9). The first part of the color indicates the piece color. The second
part indicates the compartment from where the piece comes.

o T3 models the output of the conveyor. T3 has two firing colors: red-s.10
and blue-s.10.

o T4 models the end of the loading of a piece. T4 is linked to an event that
is the end of the loading of one piece. This event is represented by the fact
that the sensor of an compartment receives a value. This value is the firing
color with which the transition can be fired. The firing colors of T4 are
complex: red-s.i and blue-s.i (i=1 to 10).

Functions.

In this model, a lot of predefined functions have been used. In Fig 3.3, the
names of the different functions are shown together with the arrows.
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3.3 A manufacturing system.

This system is the largest colored Petri net that has been implemented in
G2. The size of the CPN is determined by the number of subtransitions and
subplaces that there are in the discolored version of the CPN. In this case
there are 242 subplaces and 182 subtransitions. The following example comes
from the A.I.P.(Atelier Inter-universitaire de Productique) in Grenoble.

3.3.1 The description of the system.

The manufacturing system is shown in Fig 3.4.

| =)
il
CENTRAL ﬁ

= | [

L
0
(o]
P
2
PR
LOOP 3 | \ LJ—
“ intersection
@ machine

= magnetic reader
Figure 3.4 Scheme of the manufacturing system.

~O0QOOr

Loop 4 is the input-output loop of the system. Hence, pieces go in and go
out through loop 4. Three types of pieces are produced in this manufacturing
system:

. Red pieces first use machine 1, then machine 2 and after this they are ready
and leave the system through Loop4.

. Blue pieces first use machine 2, then machine 3 and after this they are ready
and leave the system through Loop4.

. Black pieces first use machine 1, then machine 3 and after this they are
ready and leave the system through Loop4.

The arrival of pieces on the manufacturing system is controlled by the user
through buttons. The conveyor capacity is limited to five pieces in each section.
A section is limited by readers. In the external loops the section just ahead of
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Figure 8.5 Manufacturing system model.

the machine is called input section; the section behind the machine is called
output section. The time of work on a machine is ten seconds.

3.3.2 The model.

The model of this system is quite large and only the main part will be de-
scribed. The G2 model of the manufacturing system and the corresponding
CPN are shown in Fig 3.5and 3.6.

Conveyor sections.

As it is shown in Fig 3.5, the conveyor names depend on their positions in the
system. I stands for input section, O for output section, and S for section of
the central conveyor. The number that follows the name helps to differ the
different sections in a same category.

Color marks.
¢ The machines are represented by three mark colors: ml, m2, and ma3.
o The pieces are represented by three mark colors: red, blue, and black.

o The conveyor compartments are represented by index colors. E.g. , the
conveyor compartment I1 are represented by I1.i (i=1 to 5).

The fact that one colored piece is on a machine (or on an compartment) is
modeled by a complex color that combines the mark color of the piece and the
mark color of the machine (or the mark color of the compartment).

Places without actions.

The states of the machines are modeled with two places: machine free and
machine busy . If the machine is free, a mark that represents this machine
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Figure 3.6 The colored Petri net.

is in the place machine free. Otherwise a mark with a complex color that
represents the piece and the machine is in the place machine busy.

The state of the conveyors I1, 12, I3, I4 is given by the places input busy and
input free. The state of the conveyors 01, 02, 03, 04 is given by the places
output busy and output free. The state of the conveyors S1, S2, S3, 54 is given
by the places conveyor busy and conveyor free.

Places with actions.

The actions in the simulation implement the motion of pieces in the manufac-
turing system model. The actions must be carried out when a piece moves to
an other section of a conveyor, when it is loaded on a machine, when it enters
the manufacturing system or when it exits the manufacturing system.

To model the actions, places with actions have been created. These places
follow the transitions that model the different changes.

For example, in Fig 3.6, Entry is associated with an action that creates
a piece and puts this pieces on the conveyor 04. The place chargebc is
associated with an action that moves a piece from an output conveyor to a
central conveyor, etc.

A rule and a procedure are implemented to carry out the actions. The actions
depend on mark colors. The mark color indicates from where the piece comes,
or what is the color of piece to created, etc.

Transitions.

T-entry is the only transition that is linked with an event. This event is
linked to the command button used by the operator to order the production
of one colored piece. Like the previous example, pushing a button makes the
variable ordre have a value. The value of ordre gives the firing color with which
the transition can be fired. This event is tested with a rule implemented in
the subworkspace of the transition. This rule is :

whenever ordre receives a value then
start fire event(t-entry,ordre)
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Figure 3.7 Example of firing colors and functions.

The firing colors of the transitions are sometime very complex. The use of
these complex colors simplifies functions and permits the use of predefined
functions. An example is given in Fig 3.7.

In Fig 3.7, the transition that models the move from an output convoyer to a
central conveyor is shown. The firing colors of this transition are composed of
three simple colors. The first one indicates the color of the piece, the second
one indicates the compartment where the piece is, and the third color indi-
cates the compartment where the piece will go after the firing. The functions
associated with those firing colors are shown in Fig 3.7. Those functions are
very simple and are rapidly implemented.

3.3.3 Evolution.

With this example, the toolbox has been tested with a large system. The aim
of the tool box was reached. The evolution of the colored Petri net follows the
real time requirements and the rules of evolution are respected.
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4. Conclusions

A toolbox for colored Petri nets has been implemented in G2. The user can
build Petri net quite easily. The way of entering the initial marking, firing
colors, and functions is simple. The syntax used to enter all the data is close
to the usual syntax used in the representation of colored Petri nets on paper.
All the facilities for building a Petri nets are in the toolbox: several predefined
functions are contained in the toolbox. A short way to enter a series of indexed
colors is available.

The discolored version of colored Petri nets makes an evolution in real time
possible. This evolution is implemented using procedures. The evolution of
colored Petri nets has been tested through some applications. Those applica-
tions have permitted a validation of the toolbox.

Multiple extensions to this tool box can be added:

o Procedures can be built in order to detect the incorrectly designed of colored
Petri nets.

o The discolored version of the colored Petri nets can be used to find the
properties of colored Petri nets automatically.

This last extension makes it possible to verify and validate the model of a real
system. Hence, research on properties of colored Petri nets can be useful for
the designer.

G2 is really well adapt to this kind of toolbox. Firstly, its ways to treat simul-
taneous event is powerful. Secondly, G2 has a very nice graphical interface
that is in the case of a tool like colored Petri nets. The drawback of G2 in
this application is that the objects created dynamicly can not have name. So
its quite difficult to refer to those objects and the speed of execution is shrink
because of this drawback. The second drawback is that it is not easy to re-
fer to an element of a list. Sometime the using of lists could facilitate the
representation of data.
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5. Résumé en francais.

Dans ce chapitre, les éléments essentiels de la boite & outils pour réseaux de
Petri colorés sont rappelés. Ainsi on trouve une bréve description des objets
permettant la construction d’un réseau de Petri coloré. La construction de la
version dépliée du réseau coloré est brievement évoquée. Enfin les procédures
principales servant a 1’évolution sont commentées.

5.1 Construction du réseau.

Chaque élément d’un réseau de Petri coloré a donné lieu a la création d’une
classe d’objets.

On peut distinguer quatres objets principaux:

¢ la place,

e la transition,

o les connections place-transition-link et transition-place-link, et
e la marque.

Ces objets possédent des attributs qui sont présentés dans le tableau de la
figure Fig 5.1.

OBJET ATTRIBUT SIGNIFICATION
DELAY valeur de la temporisation
PLACE
INITIAL-MARKING marquage initial de la place
defintion de I'ensemble des couleurs
TRANSITION COLOR-SET-DEF de franchissement
COLOR-SET liste des couleurs de franchissement
COLOR couleur de la marque
MARK
TIME-OF-CREATION instant de creation de la marque
TRANSITION-PLACE-LINK OUTPUT-FUNCTION-DEF definition de la fonction reliee a cet arc
PLACE-TRANSITION-LINK INPUT-FUNCTION-DEF definition de la fonction reliee a cet arc

Figure 5.1 Attributs des objets principaux.

Le marquage initial des places, ’ensemble des couleurs de franchissements des
transitions, les fonctions reliées aux arcs sont donnés par un texte qui doit
étre entré dans les attributs correspondants. Ce texte doit étre écrit avec
une syntaxe prédéfinie qui est trés proche de celle couramment utilisée par
les utilisateurs de réseaux de Petri. Le texte est ensuite analysé pour créer
d’autres objets plus commode & manipuler. Ce moyen d’entrer les données a
de nombreux avantages. Il permet & ’utilisateur une grande liberté d’actions
et rend treés facile et trés rapide ’entrée des données.

30



La boite a outils étant surtout destinée aux controles de systémes a événements
discrets, il faut pouvoir relier les places & des actions et les transitions 3 des
conditions ou des événements. Cela est fait grace a I'implantation de régles
dans les subwokspaces des transitions et des places.

Pour les régles liées aux transitions, la partie condition de la régle traduit
les conditions ou l'occurence des événements liés & la transition et cela pour
chaque couleur de franchissement. La partie action lance la procédure fire-
event. Cette procédure aide a franchir la transition avec une certaine couleur
de franchissement. Pour les régles liées aux places, la partie condition traduit
le fait qu’une marque est contenue dans la place ou vient d’ étre créée dans
cette place; La partie action lance la procédure qui modélise ’action liée a la
place. Cette action peut évidement dépendre de la couleur de la marque.

Dans G2 chaque objet a une représentation graphique appelé icéne. Ces icones
peuvent étre reliées entre elles par des connections. Il est ensuite trés facile de
se référer a des objets géographiquement. Dans le cas de la boite a outils pour
réseaux de Petri colorés cela est particulierement utile et permet de dessiner
son réseau comme sur le papier. Chaque fois qu’un objet est créé, son icdne
apparait. Il suffit alors de la placer oii 'on veut, de la relier avec d’autres
icones grace aux connections disponibles. Ainsi, il est trés aisé de décrire la
géometrie du réseau puisqu’il suffit de le dessiner.

5.2 Construction de la version dépliée du réseau.

Le réseau de Petri coloré est un outil puissant pour modéliser des systémes
complexes avec peu de places et de transitions. La taille de ce réseau est
réduite grace & ’emploi de couleurs pour les marques et les transitions. Par
la coloration, on enrichit donc les transitions et les places. Si cela réduit le
nombre de places et le nombre de transitions, cela ne facilite pas le calcule de la
validité des transitions. En fait & chaque fois qu'une marque apparait dans une
place, elle peut permettre aux transitions qui la suivent d’étre franchissables
avec I'une de leurs couleurs de franchissement. Cela oblige & calculer la validité
des transitions pour toutes les couleurs de franchissement et entraine beaucoup
de calculs inutiles. En effet la couleur de la marque, en général, ne valide la
transition que pour certaines couleurs de franchissement. Les calculs inutiles
peuvent étre évités en travaillant avec la version dépliée du réseau de Petri
coloré. C’est le point de vue adopté dans ce projet.

Une version dépliée du RAPC est automatiquement construite grace a des
procédures. Elle est composée de trois types d’objets:

o les subplaces,
¢ les subtransitions, et
e les sublinks output-sublink et input-sublink.

Ces objets possédent des attributs dont le role est précisé dans le tableau de

la Fig 5.2. La construction de ce réseau déplié se fait automatiquement en
analysant les objets du RAPC:

e Chaque couleur de franchissement d’une transition entraine la création d’une
subtransition qui est alors relié & la transition grace a une relation et dont
Pattribut color est égale 3 la couleur de franchissement.
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OBJET ATTRIBUT SIGNIFICATION
COLOR couleur de la marque
SUBPLACE
NB-ELEMENT-AVAILABLE nombre de marques disponible
SUBTRANSITION COLOR couleur de franchissement
ENABLE validite
OUTPUT-SUBLINK WEIGHT poids de I'arc
INPUT-SUBLINK WEIGHT poids de l'arc

Figure 5.2 Attributs des objets de la version dépliée.

o Chaque couleur de marques pouvant étre contenues dans une place engendre
une subplace qui est reliée a la place et dont I’attribut color est égale 3 la
couleur de la marque.

e Chaque link entraine la création de plusieurs sublinks qui relient les sub-
places et les subtransitions. La création de ses sublinks est guidée par la

fonction contenu par le link. Cette fonction détermine aussi le poids du
sublink.

Cela est illustré par la figure Fig 5.3.

@ P1 flemi») = 1<m1> + 2<m2>
L f(<m2>) = 3<mi>

{<m1>,<m2>}

f Id
P2/m1 P2/m2 P3/m1 P3/m2
the CPN The discolored version of the CPN

Figure 5.3 Example de dépliage.

5.3 Evolution.

L’évolution est calculée pour la version dépliée. On calcule la validité des sub-
transitions,... L’évolution du réseaun coloré suit alors 1’évolution de sa version
dépliée. A chaque fois qu'une subtransition est franchie, la transition qui est
en relation avec cette subtransition est franchie avec la couleur de franchisse-
ment correspondant & la subtransition. Ainsi des marques apparaissent dans
les places en aval de la transition, et des marques sont détruites dans les places
en amont de la transition. L’utilisateur voit donc une animation en temps réel
de son réseau de Petri coloré.

L’évolution est effectuée grace & des procédures. Ces procédures sont lancées
grace a des régles qui déclanchent le début de 1’évolution, ou par d’autres
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procédures. Ces procédures servent a créer des marques, & détruire des mar-
ques, a lister les subtransitions susceptibles de devenir franchissables, & calculer
la validité d’une subtransition, 4 franchir une subtransition, e.t.c. ...

Un algorithme trés succinct des procédure principales est données dans la
figure Fig 5.4.

5.3.1 Quelques précisions sur 1’évolution.

L’évolution d’un réseau de Petri est dii aux franchissements des transitions.
Dans le cas de réseaux de Petri interprétés, cet évolution a pour but de mener
le réseau vers un état stable. A partir d’ un état stable, le début de I’évolution
correspond & 'un des trois cas suivants:

e La condition liée & une transition devient vrai.
o Un événement devient occurrent.

e Une marque devient disponible dans une place.

Dans les deux premiers cas, la régle traduisant 1’ événenement ou la con-
dition lance la procédure fire-event . Cette procédure aide & franchir la
subtransition associées & la condition, puis lance la procédure sequence-of-
stabilization qui s’occupe du franchissements des subtransitions qui ne sont
pas conditionnées. Cette procédure construit une séquence de franchissement
avec toutes les subtransitions non-conditionnées. En fait, G2 essaie tour a
tour de franchir les subtransitions qui été validées au début de ’appel de la
procédure. La séquence se construit donc automatiquement en resolvant les
conflits éventuels. Aprés cette premiére séquence, la validité des subtransitions
qui suivent des subplaces ayant requ des marques, est calculée. Puis si une
subtransition non-conditionnée est franchisable alors on relance la procedure
sequence-of-stabilizatvion.

Dans le troisiéme cas, une procédure enable-mark est lancée au moment ol la
marque devient disponible. Cette procédure est lancée a partir de la procédure
create-a-mark. Quand une marque est créée dans une place temporisée, la
procédure enable-mark est lancée aprés un intervalle de temps égal a la tem-
porisation de la place. La procédure enable-mark calcule la validité des sub-
transitions qui suivent la subplace ou la marque est devenue disponible et lance
la procedure sequence-of-stabilization.

s

Si un méme événement est relié i plusieurs subtransitions, la séquence de
franchissement de ces subtransitions sur occurrence de 1’événement s’effectue
automatiquement par G2. En effet, G2 test I'occurrence de ’événement dans
la partie condition de la régle, puis inscrit dans sous séquenceur 1’action a
effectuer. Dans notre cas, il inscrira: fire-event(st1),fire-event(st2),... ot stl,
st2,... sont les subtransitions franchissables sur occurrence de 1’événement.

La validité d’une subtransition n’est calculée que si cette subtransition peut
devenir validée; c’est 4 dire quand une des subplaces en amont de la subtran-
sition regoit une marque disponible. La validité est recalculée juste avant le
franchissement d’ une subtransition, pour confirmer la validité de la subtran-
sition & franchir.

33



e construire la version depliee

® Jister les subtransitions qui sont franchissables
qui attendent un evenement

® lancer la procedure sequence-of-stabilisation

Initlalisation

Sequence-~of-stabllisation

recevoir des marques.

® si une subtransition non-conditionnee est franchissable alors
recommencer sequence-of-stabilisation.

fin si

Enable-a-mark (m: class mark)

® declarer que m est disponible

@ calculer la validite des subtransition en aval de la subplace qui vient de recevoir
cette marque.

® lancer la procedure sequence of stabilisation
Fire—event (st: class subtransition)

® gssayer de franchir st
® declarer que st n'attend plus d'evenement.

. ° Iﬂnﬁﬂ[ |a Dmﬁﬁdl i[e sequence Qf stabilisation

® essayer de franchir toutes les subtransitions franchissables non relies a un evenement

¢ calculer la validite des subtransitions qui sont en aval des subplaces qui viennent de

Figure 5.4 Algorithmes des procedures principales.

5.4 Applications.

Les applications ont permis de vérifier si les régles d’évolution des réseaux de
Petri colorés étaient respectées. Elles ont permis de mettre au point la forme
des régles qui modélisent les conditions et 1’occurrence d’événements associées

aux transitions.

Elles ont permis aussi de tester si I’évolution se faisait bien en temps réel et

de valider la boite & outils.
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A. Appendix A : Petri nets

This part contains a very brief description of Petri net. It is largely inspired
by the book written by David and Alla (1989).

A.1 Ordinary Petri nets (PN).

Carl Adam Petri is a German mathematician who in the beginning, of the
sixties defined Petri nets, a tool for describing relations between conditions
and events. Since then, a lot of research on Petri nets have been performed
mainly within Europe. An international conference -the European Workshop
on Application and Theory of Petri Nets - has taken place each year since 1980.
Petri nets are especially used in data-processing and in automatic control.

A.1.1 Brief description.

A Petri net (PN) is a graphical net that is used to describe relations between
conditions and events. A Petri net is composed of places and transitions which
are linked together with arrows. A PN is shown in Fig A.1.

The state of a PN is given by the marking of the PN. Each place contains an
integer number of marks (greater or equal to 0). The changes of the marking
are due to the firing of transitions.

Figure A.1 A Petri net with some marks.

In the PN of Fig A.1, the place P1 is at an input of the transition T1 because
there is an arrow from P1 to T1. The place P5 is at the output of T3 because
there is an arrow from T3 to P5. Similarily we say that a transition is at an
input or at an output of a place.
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A.1.2 Firing of a transition.

The firing of a transition can be carried out only if every place at the input of
the transition contains at least one mark. In this case the transition is said to
be enabled. In the PN of the Fig A.1, T1 and T4 are enabled but T5 is not
enabled because there is no mark in P6.

The firing of a transition consists of removing one mark in every place that is
at the input of the transition and in creating one mark in every place at the
output of the transition. This is illustrated in Fig A.2. Transitions are fired
one by one.

Before firing After firing
P1 P2 P1 P2
T1 =5 T4
P3 P4 P3 P4
P1 P2 P1 P2
1 > 11
P3 P4 P3 i

Figure A.2 Firing of a transition.

A.1.3 Autonomous and Non-autonomous Petri nets.

There are two types of PNs : autonomous and non-autonomous Petri nets.
Autonomous Petri nets describe systems that are autonomous: the firing
instants are unknown or not indicated. All the PNs presented before are
autonomous PNs.

Non-autonomous Petri nets describe systems in which the evolution depends
on external events or time. Three kinds of non-autonomous Petri net have
been used in the tool box.

o Synchronized Petri nets. In synchronized Petri nets, the firing of
transitions depends on the occurrence of external events. If a transition is
enabled and if the event linked to this transition occurs, then the transition
can be fired. An event can be considered as a pulse and the transition is
fired when the pulse appears. Hence, the firing is synchronized by the pulse.

e P-temporized Petri nets. In P-temporized Petri nets, each place has a
delay. When a mark is created in the place, it is not available. It becomes
available after waiting an amount of time equal to the delay of the place.
When a mark is not available, it is as if it is not present in the place.
Only available marks are taken into consideration in determining whether
a transition is enabled or not.

o Interpreted Petri nets: An interpreted PN is P-temporized and
synchronized. In addition, it has an operative part composed of internal
variables, conditions linked with transitions and actions linked to places.
The actions modify the values of the internal variables. Those variables can
be parts of conditions. It is possible to implement actions that affect the
external world. Those actions can be continuous actions or pulse actions.
A continuous action is an action that is carried out as long as the place
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contains at least one mark. A pulse action is carried out only when a mark
is created in a place. The conditions can be linked with external variables.
An example of an interpreted Petri net is given in Fig A.3.

N is a internal variable.
Ei are external events.
d, is the delay of the place Pl_

Actions are associate with P1 and P4
When a mark is created in P1 or in
P4, N is incremented.

Ep (N=2) P2 and P4 have a delay of 2 seconds.

T1 is linked with the occurence of E 1

d4=2 and N=N+1 T2 is conditioned by the occurence of E ,

and have the condition N=2
T3

>

Figure A.3 Example of Interpreted PN.

In Non-autonomous PN, the order of firing is important. The transitions are
fired one by one. This can cause many problems, e.g., suppose that several
transitions are enabled and are linked to the same event. What is the evolution
when the event occurs? All the transitions cannot be fired simultaneously. In
this case a firing sequence is defined consisting of all the transitions that are
enabled and linked to the event. This firing sequence resolves the possible
conflict between several transitions. This is explained in the following section.

A.1.4 Firing sequence and evolution of interpreted PNs.

Firing sequence. When several transitions can be fired in the same time
a firing sequence is defined. This sequence indicates in which order the
transitions will be fired and resolves the problem of conflicts. This sequence
has some properties:

o It is only composed of transitions that can be fired at the time ¢.

e A transition can appear only once in the sequence.

CYSNO

T3
Figure A.4 The marking of a CPN at time t.

In Fig A.4, the marking of the PN permits the firing of T1,T2,T4 and T6. A
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firing sequence is defined with these transitions. For example T1-T6-T2. This
means that first T1 is fired, then T6 is fired and finally T2 is fired. T4 does
not belong to the firing sequence because there is a conflict between T4 and
T2; only one of these two transitions can be fired.

Transition T5 becomes enabled after the firing of T1. However, T5 must not be
fired before the end of the firing sequence. The transitions T1,T2,T4,T6 that
can be fired at time ¢ will be considered before the transitions that become
fireable after time t.

Hence, at first list the transitions that can be fired at time t.

Secondly, try to fire all these transitions one by one (if there is no conflict all
these transitions are fired).

Since the firing of a transition is instantaneous, a firing sequence theoretically
lasts 0 second

Evolution in time. When there is no transition that can be fired the PN
is said to be stable. An evolution corresponds to the firing of transitions that
leads to a stable state of a PN. There are only three reasons that can start an
evolution of the PN:

e an event occurs,
o a mark becomes available in a place, or

e a condition linked to a transition becomes true.

e When an event occurs, a firing sequence is created with all the transitions
that are enabled and that are linked with this event. After this first sequence,
the state of the Petri net is checked. If the state is not stable a new firing
sequence is carried out. If after this second firing sequence the state of the
PN is not stable another sequence is carried out. In fact a series of firing
sequences is carried out until a stable state is reached. This series of firing
sequences is called stabilization sequence. Theoretically this operation takes
no time. Hence no events can occurs during the stabilization sequence. Hence
there is only transitions without events in the stabilization sequence.

e When a mark becomes available in a place, it may enable the transitions
that are at the output of the place. So a firing sequence is carried out with
the transition that can be fired after the mark has become available. If the
state of the PN is not stable, this first firing sequence is followed by a series
of firing sequences until a stable state is reached.

o If a condition of a transition becomes true and if the transition is enabled,
then it can participate in firing sequences in order to reach a stable state.
The difference between the condition and an event is that the event is a
pulse. It is only true instantanously.

If an action is linked to a place that receives a mark the action must be carried
out. Some examples of evolution are shown in Fig A.5.
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P1
occurrence of E1 >
T £ time
state of PN
P2 1 .
one occurrence of E 'only allows one firing of T1.
P1
T : occurrence of E1 >
E time
P2
T2 E'
P3
occurrence of E1
T E1 >
time
state of the
T3 T2 E1 PN

In this case there are 2 possible firing sequences:
T1-T2 or T2-T1

The sequence T1-T3 is not possible.

Figure A.5 Evolution of non-autonomous PN .
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A.2 Generalized Petri nets (GPN).

In Generalized Petri Nets, the arrows have a weight. The weight of the arrow
is an integer number that is greater or equal to 1.

In GPN, the number of marks in a place required to enable a transition can be
different from 1. In the same way, the number of marks created or deleted in
the place during the firing of a transition can be different from 1. The number
is given by the weight of the arrow that links the transition to the place. An
example of a GPN is given in Fig A.6.

Before firing After firing

T1 is enabled because :

There are 5 marks in P1 (5>2)
and

There are 4 marks in P2 (4>3)
Figure A.6 A firing in a generalized Petri net.
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A.3 Colored Petri Nets (CPN).

A.3.1 Description.
In a colored Petri net
o each mark has a color,

e each transition has several firing colors which are linked to different ways of
firing the transition, and

e a function which links each firing color of the transition with a set of marks
is attached to each arrow.

The differences will be explained in the following. A colored petri net is
presented in Fig A.7.

[ f:c1 =1<'>.
| €2=1< O>.

fe1:c2) g:c1=1<(Os.

L 02=1<. >.

{c1;c2}

There are colored marks in P1: 1 black and 1 white.
T1 and T2 have two firing colors: ¢l and c2.
f and g are functions which link firing colors with colored marks.

Figure A.7 Example of a colored PN,

Color of a mark. The color of a mark is an attribute that distinguishes
each mark in a place. The color of mark can be simple, complex or with an
index.

e A complex color is a color composed of several simple colors. For example a
mark can have the color red-task;-robot,, and the color indicates that there
is a red piece that must go to roboty to carry out task;.

e A color with an index makes it possible to describe a system in which
elements are numbered. Index colors can be useful for modeling sequences
of the same object. For example when modeling a conveyor with ten
compartments, it is natural to represent each compartment with a number
and hence the color of the mark can be compartment; (i=1 to 10).

Firing color. In a CPN, a transition can be fired in several ways. Each way
of firing corresponds to a different color. In Fig A.7, there are two ways to fire
T1: with the color C1 or with the color C2.

Firing a transition always consists of removing some marks in each input
place of the transition and in creating some marks in each output place of the
transition. For each firing color of the transition the number and the color of
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marks that are removed or created are different and are given by functions
attached to the arrows.

A.3.2 Functions.

In a CPN, each arrow contains a function which links each firing color of the
transition that is at a end of the arrow to a set of marks. An example is given
in Fig A.8. In this example, f(<m1>) = 1<m1>42<m2> indicates that the
set of marks linked to the firing color m1 according to the function f consists
of with 1 mark with the color m1 and 2 marks with the color m2.

The functions at the input of a transition are used to calculate the enableness
of the transition, and to know which marks to remove during the firing.

The functions at the output of a transition are used to determine the marks
to be created during the firing.

A lot of predefined functions are used:
e Id is the identity. Ex: Id(<red>)=<red>.

e Dec is the discoloration. It takes off the color.
Ex: V color Dec(color)=<.> (<.> represents a mark without any color).

e Succ is the function successor of. It is applied to colosr with an index. The
function returns the successor of the color.
Ex: Succ(< car; >)=< cariyr >.

® Prec is the function precede. It is applied to a color with an index.
Ex: Prec(< ¢; >)=< ¢;—1 >.

e For complex colors it is possible to suppress the it" components with the
function Proj;. Ex: proja(< e1,¢62 >)=< ¢1 >.

e For complex colors it is possible to apply the function Succ (Prec) only for
the i** component with the function Succ; (Prec;).

e Numerous functions can be obtained by combining these predefined
functions.

f(<m1>) = 1<mi> + 2<m2>
f(<m2>) = 3<m1>

{<m1>,<m2>}

P3

Figure A.8 Example of function.
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A.3.3 The enableness of a transition with a firing color.

In a CPN, the same transition can be enabled with different firing colors.
The enableness of a transition with a firing color depends on the marking
of the places at the input of the transition. Each place must contain at
least the marks that are given by the function on the arrow for the firing
color. In Fig A.8, the transition T1 is only enabled with the firing color m1.
f(<m1>)=1<ml>+2<m2> indicates that the set of marks linked to the firing
color m1 according to the function f is composed of 1 mark with the color m1
and 2 marks with the color m2. This set of marks is included in the set of the
marks that are in P1, so T1 is enabled with the color ml.

A.3.4 Firing a transition.

In a CPN, a transition is fired with a firing color. A transition can be fired
with a firing color only if the transition is enabled with this firing color.

The firing of a transition T with the firing color C consists of removing some
marks in each place P; that is at the input of T and in creating some marks
in each place P, that is at the output of T'.

The marks that must be removed in P; are given by the function that is on
the arrow which links P; to T. This function is applied to C and gives the
number and the color of marks that should be removed in P;.

The marks that must be created in P, are given by the function that is on the
arrow which links T" to P,. This function is applied to C' and gives the number
and the color of marks that should be created in P,. An example of firing is
shown in Fig A.9.

BEFORE
P1 @ P2 P2
f g
FIRING OF T1
{<m1>,«m2>}
WITH m1
f Id

fl<m1s) = 1<m1> + 2<m2>

fl«m2>) = 3<m1> T1 is not enabled with the firing color m2 because
g(<m1>) = 1<m2> there is not 3 marks <m1> in the place P1
g(<m25) = 1<m1> + 2<m2>

Figure A.9 Example of firing in a CPN.

A.3.5 Events, conditions, delays and actions in a CPN.

In a CPN, conditions and events can be linked to transitions in order to obtain
an non-autonomous Colored Petri net. These events or conditions are linked to
the different firing colors of the transition. Events (conditions) can be different
for each firing colors of the transition. Hence, each event (resp:condition) is
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indexed with a firing color.

Delays can be implemented in each place of a CPN. The delay do not depend
on the color of marks. Each mark that is contained in the place waits during
the same time.

Actions can be linked to a place. The action to perform depends of the color
of the mark.

The following example shows events and delays in a CPN.

ExaMPLE A.1—Events and delays in a CPN .

Assume that a CPN models a machine that can work with two types of pieces:
piecel and piece2. The operator has two buttons : B1 to work with piecel
and B2 to work with piece2. Whenever the operator pushes a button, if the
machine is free and a piece that is asked by the operator is in the input store,
the machine becomes busy and a piece linked to the button is loaded in the
machine. After 10 minutes, the piece leaves of the machine and the machine
becomes free. This problem is modeled by the CPN of Fig A.10. The events
of the transition T1 are similar: it is the pulse when the operator pushes a
button; but for each firing color the event is different because it comes from a
different button.

mac free

Flet)=1< B>
Fc2)=1< (D>

G a l:G(c1)=1< [ N
ac2)=1<@>

{(c1/E1),(c2/E2)} T T2 {c1,c2}
F F
@ represents a piece of type 1
d=10 min

([H) represents a piece of type 2

machine busy

E1 is the event : the operator pushes the button B1
E2 is the event : the operator pushes the button B2
(ci/E ') indicates that the firing color ¢ i is linked with the event E i

EVOLUTION

E1 I [ | I ||

(2)

@
S

marking

time

Figure A.10 Example of firing in a CPN.
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A.3.6 Advantages of CPN.

Every CPN can be considered as a summary of a PN. If the number of colors
is finite, then you always can turn a CPN into a PN. In the same way, all PNs
can be turned into CPNs. A CPN makes it possible to model a system with
fewer places and transitions than in a PN. Hence, CPNs are well adapted to
modeling complex systems. For instance if you have to model several boilers
where each boiler can be described by the same PN, it is easy to model all
the boilers by only one CPN that graphically looks the same as the PN that
describes one boiler and where a mark color represents each boiler. An example
is given in Fig A.11.

a.

FILL FILL FILL
BOILER1 BOILER2 BOILER3
e
HEAT HEAT e HEAT
BOILER1 BOILER2 BOILER3
EMPTY EMPTY EMPTY
BOILER1 BOILER2 BOILER3
| the model of the system with PNs |
| the model of the same system with a CPN |
b.
il @ <b1> represents the boiler
<b2> represents the boiler2
Id Id
{<b1>;<b2>;<b3>} <b3> represents the boiler3
Id
HEAT I (<b1>;<b25;<b35}

Id
{<b1>;<b2>;<b3>}
Id

Id
EMPTY

Figure A.11 CPN model.
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B. Appendix B : G2

B.1 G2

G2 from Gensym Corporation in Cambridge, MA, is the most widely spread
and technically most advanced real-time expert system tool available on the
market. The number of licenses sold is over 700.

G2 is implemented in Common Lisp and runs on Sun 3 and 4, HP,
Apollo, Vaxstation, Decstation, VAX 8600, TI Explorer and MicroExplorer,
Symbolics, Compaq 386, and Mac II. For most machines, 16 MB RAM memory
and X-Windows is required. The price ranges from $ 18,000 to $ 36,000
depending on computer.

B.1.1 Technical Description

The main parts of G2 are: the knowledge-base, a real-time inference engine, a
procedure language, a simulator, the development environment, the operator
interface, and optional interfaces to external on-line data servers.

Classes and objects: In G2 everything is an item, i.e, rules, objects,
procedures, graphs, buttons, text boxes, etc., are all items. The items are
organized into a hierarchy. All items have a graphical representation through
which they are manipulated by mouse and menu operations. Operations exist
for moving an item, cloning it, changing its size and color, displaying its
attribute table, etc. One part of the item hierarchy is the G2 objects. The
object is the only part of the item hierarchy that the user has full control
over, i.e., can specialize into subclasses, can reference in expressions, etc.

Objects are used to represent the different concepts of an application. They
can represent arbitrary concepts, i.e., both physical concepts such as process
components and abstract ones. The objects are organized into a class hierarchy,
i.e., only single inheritance is allowed. The class definition, or using G2
terminology, the object definition defines the attributes that are specific to
the class and the look of the icon. Icons can be created with an interactive
icon editor. The attributes describe the properties of the object. The values of
an attributes may be

e constants,
e variables,
o lists, or

e other objects.

Constants can be numbers, symbolic values, i.e., the G2 correspondence to
the enumeration type, logical values, i.e., true or false, and text strings. Under
run-time, constants can only be changed explicitly by the user. Variables are
used to represent entities whose values change during run-time. Variables are
defined from four basic predefined classes:
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e quantitative variables, i.e., real-valued variables,
e symbolical variables,
o logical variables, and

e text variables.

The predefined variable classes can be specialized by the user. With the
predefined variable classes come a set of default attributes. These include
attributes that determine whether a history should be saved for the variable
or not; the current value for the variable; what should be the source of the
variable’s value, i.e., the inference engine, the simulator, or some external
data server; the validity interval of the variable, e.g., how long the current
value of the variable should remain valid; etc. The validity interval could be
specified to be indefinite, given by a fixed time interval, or dependent on the
validity intervals of the variables that were used to calculate the value of the
variable. Variables with indefinite validity interval are called parameters and
form separate classes. Parameters always have a current value and their initial
values can be specified.

Lists may contain arbitrary values. It is possible to have objects as the values
of attributes in other objects. In that case, the attribute objects have no iconic
representation.

Objects can be static, i.e., they are explicitly created by the developer, or
dynamic, i.e., they are created dynamically during run-time. Dynamic objects
can also be deleted during run-time. The G2 language contains actions to
move, rotate, and change the colour of an object. Using this, animations can
be created.

Composite objects, i.e., objects that have an internal structure composed of
other objects, can be created using objects as the value of attributes. It is,
however, not possible to at the same time have a iconic representation for
these objects. If such a representation is desired this has to be implemented
using the subworkspace concept. In G2 each object and most items may
have an associated subworkspace. On this (sub-)workspace arbitrary items
may be positioned. The internal structure of an object can be represented
on its subworkspace. It is also possible to connect together objects on the
subworkspace with objects connected to the subworkspace’s superior object.
It is, however, not possible to define that an object should have an internal
structure of this type in the class definition.

Connections and Relations: G2 has two ways of defining relations
between objects: connections and relations. Connections are primarily used to
represent physical connections, e.g., pipes or wires. It is, however, also possible
to let connections represent abstract relations among objects. Connections
have a graphical representation and may have attributes. They are defined
in terms of a connection hierarchy. Both unidirectional and bidirectional
connections are allowed. Type checking is performed to allow only connections
of the same class to be connected together. Connections can be used in G2
expressions for reasoning about interconnected objects in a variety of ways. A
connection is attached to an object either at a pre-specified location, a port,
or anywhere on the object.

Relations can only be created at run-time and have no graphical represen-
tation. They have no corresponding relation hierarchy and cannot have at-
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tributes. Relations can be specified as being one-to-one, one-to-many, many-
to-one, and many-to-many. The inverse relation of a relation can be specified,
as well as whether the relation should be symmetric or not. In the latter case
the inverse relation is the same as the relation. Relations can be used in G2
expressions in a similar way as connections.

The inference engine: G2 rules are used to encapsulate an expert’s
heuristic knowledge of what to conclude from conditions and how to respond
to them. Five different types of rules exist.

o If rules

e When rules

e Initially rules

e Unconditional rules

e Whenever rules

When rules are a variant of ordinary ‘If’ rules that may not be invoked through
forward chaining or cause backward chaining. Initially rules are run when G2
is initialized. Unconditional rules are equivalent to ‘If’ rules with the rule
conditions always being true. Whenever rules allow asynchronous rule firing
as soon as a variable receives a new value, fails to receive a value within a
specified time-out interval, when an object is moved, or when a relation is
established or deleted.

The rule conditions contain references to objects and their attributes in a
natural language style syntax. Objects can be referenced through connections
with other objects. G2 supports generic rules that apply to all instances of
a class. The G2 rule actions makes it possible to conclude new values for
variables, send alert messages, hide and show workspaces, move, rotate, and
change color of icons, create and delete objects, start procedures, explicitly
invoke other rules, etc. G2 rules can be grouped together and associated with
a specific object, a class of objects, or a user-defined category. This gives a
flexible way of partitioning the rule-base. The following is an example of a G2
rule,

for any water-tank

if the level of the water-tank < 5 feet and

the level-sensor connected to the water-tamnk is working
then conclude that the water-tank is empty

and inform the operator that

"[the name of the water-tank] is empty"

The real-time inference engine initiates activity based on the knowledge
contained in the knowledge base, simulated values, and values received from
sensors or other external sources. In addition to the usual backward and
forward chaining rule invocation, rules can be invoked explicitly in several
ways. First, a rule can be scanned regularly. Second, by a focus statement all
rules associated with a certain focal object or focal class can be invoked. Third,
by an invoke statement all rules belonging to a user defined category, like safety
or startup, can be invoked. The scanning of a few vital rules in combination
with focusing of attention is meant to reflect the way human operators monitor
a plant. It is also an important way to reduce the computational burden on
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the system.

Internally the G2 inference engine is based on an agenda of actions that should
be performed by the system. The agenda is divided into time slots of 1 second’s
length. After execution, scanned rules are inserted into the agenda queue at
the time slot of their next execution. Focus and invoke statements causes the
invoked rules to be inserted in the agenda at the current time slot. Rules being
invoked by forward chaining is treated in the same way.

A rule is invoked by backward chaining if the rule actions of the rule includes
a conclude statement that gives a variable a new value, and if a new value
for the variable is needed, i.e., the variable has a default update interval that
specifies that the value should be recalculated regularly, the value is needed
in a rule condition, or the value is needed in a display. Depth or breadth first
backward chaining may be specified as well as the precedence order of the
rules.

Simulation: G2 has abuilt-in simulator which can provide simulated values
for variables. The simulator is intended to be used both during development
for testing the knowledge base, and in parallel during on-line operation. In the
latter case, the simulator can be used, e.g., to implement filters for estimation
of signals that are not measured.

The simulator allows for differential, difference, and algebraic equations. The
equations can be specific to a certain variable of apply to all instances of a
variable class. Each first-order differential equation is integrated individually
with individual and user-defined step sizes. The numeric integration algorithms
available are a simple forward Euler algorithm with constant step size and a
fourth order Runge-Kutta algorithm, also with fixed step size. GSPAN, an
interface between G2’s simulator and external simulators is available as a
separate product.

Procedures: G2 contains a Pascal-style procedural programming language.
Procedures are started by rule actions. Procedures are reentrant and each
procedure invokation executes as a separate task. Procedures can have
attributes and return one or several values. Local variables are allowed within
a procedure.

The allowed procedure statements include all the rule actions, assignment
of values to local variables, If-then-else statements, case statements, repeat
statements, for loop statements that can either be numeric or generic for
a class, i.e., they execute a statement or set of statements once for each
instance of the class, exit if statements to exit loops, go to statements, and call
statements to call another procedure and await its result. Procedures can be
temporarily halted with a wait statement. A wait statement causes G2 to stop
executing the procedure until either a specified amount of time has passed
or a condition is met. It is possible to specify that two or more statements
should be executed in parallel and that all iterations of a loop should be done
in parallel.

Procedures are executed by G2’s procedure interpreter. The procedure
interpreter cannot be interrupted by other G2 processing, i.e., the inference
engine or the simulator. Other processing is only allowed when the procedure
is in a wait state. A wait state is entered when a wait statement is executed,
when the statement allow other processing is executed, and when G2 collects
data from outside the procedure for assigning to a local variable.
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Real-time issues: Unlike the majority of expert system tools, G2 is
designed for real-time operation. This shows in a number of different ways.
The inference engine automatically sends out requests for variables that have
become invalid and waits for new values without halting the system. Priorities
and scan intervals can be associated with rules.

Regular scanning of rules and thus updating of information in combination
with variables with time-limited validity gives a partial solution to the problem
of non-monotonic, time-dependent reasoning. The validity interval of a variable
specifies how long the current value of the variable should remain valid. By the
possibility to propagate validity intervals to dependent, concluded variables
their values will also eventually expire if for some reason sensor values cease
to arrive to G2.

Whenever rules can be used to catch asynchronous events such as the arrival of
un-requested sensor data from a passive sensor, e.g., representing some alarm
in the underlying control system, or that a requested sensor value has failed
to arrive to G2 within a specified time-out interval.

G2 has some facilities for temporal reasoning. It is possible to save histories
of old values for all variables. Functions for referencing old variable values are
available. G2 also has built-in statistical functions operating on quantitative
variable histories. These are functions for computing the integral, standard
deviation, rate of change, maximum, and minimum values over some time
interval.

G2 also has possibilities for reasoning about whether a variable has a current
value or not, and can refer to the time when a variable received its current
value.

To avoid garbage collection, G2 takes care of the dynamic memory allocation
and reallocation internally during run-time.

Development interface: G2 has a nice graphics-based development
environment with windows (called workspaces), popup menus, and mouse
interaction. Input of rules, procedures, and other textual information is
performed through a structured grammar editor. The editor prompts all valid
next input statements in a menu. Using this menu the majority of the text can
be entered by mouse-clicking. It is, however, also possible to use the keyboard
in an ordinary way. The editor has facilities for Macintosh style text selection,
cut, paste, undo, redo, etc.

The Inspect facility allows the user to search through the knowledge base for
some specified item. The user can go to the item, show all matching items on
a temporary workspace, write them out on a report file, highlight them, and
make global substitutions.

G2 has facilities for tracing, stepping, and adding breakpoints. The internal
execution of G2 can be monitored using meters.

End-user Interface: G2 has facilities for building end-user interfaces.
Colors and animation can be used. An object icon is defined as a set of
layers whose colors can be changed independently during run-time. The meta-
color transparent makes it possible to dynamically hide objects. Different user
categories can be defined and the behaviour with respect to which menu choices
that are allowed can be set for each category. It is also possible to define new
menu choices.

G2 contains a set of predefined displays such as readouts, graphs, meters,
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and dials that can be used to present dynamic data. G2 also has a set of
predefined interaction objects that can be used for operator controls. Radio
buttons and check boxes can be used to change the values of symbolical and
logical variables by mouse clicking. An action button can be associated with
an arbitrary rule action which is executed when the button is selected. Sliders
can be used to change quantitative variables and type-in boxes are used to
type in new variable values.

Ezternal interfaces: G2 can call external programs in four different ways:
using foreign function calls, and using GFILE, GSPAN, and GSI. On some
platforms, external C and Fortran functions may be called from within G2.
GFILE is an interface to external data files that allows G2 to read sensor data
from the files. GSPAN is the interface between G2 and external simulators.
GSI is Gensym’s standard interface. It consists of two parts; one part written
in Lisp that is connected to G2 and one part written in C to which the user
can attach his own functions for data access. On the same machine, the two
parts communicate using interprocess communication media such as pipes or
mailboxes. On different machines, TCP /IP — Ethernet is used.

GSI is the base for several off-the-shelf interfaces between G2 and conventional
control systems, PLC systems, relational databases, etc. The Travel Notes in
Appendix B contains reports from User Group Meetings where details about
the existing interfaces are presented.

Networking: Several G2s can be used in a network exchanging data over
Ethernet. Telewindows is a separate product that allows multiple users to
access the same G2 system, giving each user his own window into the
application. It is also possible for one Telewindows user to simultaneously
access several G2s in a network.

B.1.2 Drawbacks

The main problems with G2 stem from the fact that G2 is a closed system.
G2 can only be interfaced with other program modules through the predefined
interfaces. The G2 environment in itself is also a quite closed world. It is
impossible to modify the way that G2 operates internally. If what G2 provides
in terms of, e.g., graphics, class — object structures, etc., is insufficient nothing
can be done about it.

G2 can not be modularized. Hence, it requires quite powerful computers even
if only a small subset of the functionality is used within an application.

Although G2 is fast compared to many expert system tools, it can be too slow
for certain applications. The smallest time unit is one second. For applications
that require faster response, G2 is inadequate. Gensym claims that G2 is
capable of running between 300 and 500 medium-sized rules per second
depending on the machine that is used. These figures are difficult to verify. If
the simulator is used, the speed decreases substantially. Gensym are currently
developing a run-time version that uses compiled rules and procedures instead
of interpreting them, as is currently done.
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C. Appendix C : Procedure listing

FIN-INIT, a procedure

fin-init(p-n: class petri-net )

begin
conclude that the status of p-n is active;
change the icon-color of p-n to green;

end

ACTION, a procedure

action()
st:class subtransition;
begin
for st = each subtransition do
call new-list-subtransi (st);
end;
start sequence-stabilization();
end

RENIEW, a procedure

reniew(p:class place)
st:class subtransition;
sp:class subplace;
begin
for sp = each subplace that is in-relation-
with p do
for st=each subtransition connected at an
output of sp do
start new-list-subtransi (st);
end;
end;
start sequence-stabilization ();
end

CREATE-A-MARK, a procedure
create-a-mark (p: class place, c:text )
{ this procedure creates a mark m in the place p
with the color c;if there is a color-petri
linked with ¢ then the icon-color of m is this

color-petri,else the icon-color of m is black}

m: class mark;
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cp: class color-petri;

sp:class subplace;
begin

create a mark m ;

conclude that the color of m = c;

sp=call the-subplace (p,c);
if there exists a color-petri cp such that ("[the

name of cp]l" = ¢) then

change the icon-color of m to the color of cp
else

change the icon-color of m to black;

conclude that m is contained-by p;
transfer m to the workspace of p at (around-
x(p) ,around-y(p));
conclude that the time-of-creation of m = the
current time;
if +the delay of p =0 then
begin
conclude that the nb-element-available of sp
=the nb-element-available of sp +1;
conclude that m is available-in p;

end
else
begin
start enable-mark (m) after the delay of
p;
end;
end

DELETE-A-MARK, a procedure
delete-a-mark (p: class place, c: text)

{this procedure delete a mark m which has the
color c¢ in the place p}

m: class mark;
begin
if there exists a mark m that is available-
in p such that (the color of m =c) then
begin
delete m
end;
end

ZOOMER, a procedure
zoomer(pz: class place-zoom)

p: class place;
ele:text;
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m: class message;
ma:class mark;

begin
for m= each message that is a-message-in pz do
delete m;
ond;

p= the place that is zoomed-by pz;

for ma = each mark that is contained-by p do
create a message m;
change the text of m to the color of ma;
transfer m to the workspace of pz at
(around-x (pz), around-y (pz));
conclude that m is a-message-in pz;
end;
end

ENABLE-MARK, a procedure

enable-mark(m:class mark)
p:class place=the place that is place-
contening m;
sp:class subplace;
st:class subtransition;
begin
conclude that m is available-in p;
sp=call the-subplace (p,the color of m);
conclude that the nb-element-available of sp =
the nb-element-available of sp + 1;
for st =each subtransition connected at an
output of sp do
call new-list-subtransi (st);
end;
start sequence-stabilization ();
end

FIRE-SUBTRANSITION, a procedure

fire-subtransition(st:class subtransition)
i-l:class input-sublink;
o-l:class output-sublink;
sp:class subplace;
nb:quantity;
i:quantity;
t:class transition= the transition that is
related-with st;
begin
call calcul-subtransi (st);
if the enable of st then
begin
for i-1= each input-sublink connected at an input



of st do
sp=the subplace at the input end of i-1;
conclude that the nb-element-available of
sp=the nb-element-available of sp - the
weight of i-1;
for i=1 to the weight of i-1 do
call delete-a-mark (the place that is
related-with sp,the color of sp);
end;
end;
for o-l=each output-sublink connected at an
output of st do
sp= the subplace at the output end of o-1;
for i=1 to the weight of o-1 do
call create-a-mark (the place that is
related-with sp,the color of sp);

end;
end ;
call change-implied (st);
end;
end

FIRE-EVENT1, a procedure

fire-eventl(st:class subtransition)
t:class transition = the transition that is
related-with st;
begin
conclude that st is not waiting-event-to t;
call fire-subtransition (st);
start sequence-stabilization ();
end

INITIALISATION, a procedure

initialisation(petri:class petri-net)
t: class transition;
P: class place;
sp: class subplace;
st: class subtransition;
t-p-1: class transition-place-link;
p-t-1: class place-tramsition-link;
i:quantity;
w:class kb-workspace=the subworkspace of
petri;
begin
activate the subworkspace of petri;
for t= each tramsition upon w do
start trans-tra (t);
start create-subtransition (t);
for t-p-1= each tramsition-place-link



connected to t do
start trans-out (t-p-1);
end;
for p-t-1 = each place-transition-link
connected to t do
start trans-inp (p-t-1);
end;
end;
for p= each place upon w do
start trans-pla (p);
end;
start fin-init(petri);
end

FIRE-EVENT, a procedure

fire-event(t: class transition,c:text)
st:class subtransition;

begin
st= call the-subtransition (t,c);
conclude that st is not waiting-event-to t;
call fire-subtransition (st);
start sequence-stabilization ();
end

NEW-LIST-SUBTRANSI, a procedure

new-list-subtransi(st:class subtransition)
t:class transition;

begin
call calcul-subtransi (st);
if the enable of st then
begin
if st is with-the-propriety non-event
then conclude that st is
subtransition-that is-fireable

else
begin
t= the transition that is related-
with st;
conclude that st is waiting-event-to
t;
end;
end;

end
SEQUENCE-STABILIZATION, a procedure

sequence-stabilization()
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st:class subtransition;
val: truth-value;
begin
for st=each subtransition that is subtransition-that is-
fireable do
call fire-subtransition (st);
conclude that st is not subtransition-that is-
fireable ;
end;
for st=each subtransition that is subtransition-that
must-be-recalculate do
call new-list-subtransi (st);
conclude that st is not subtransition-that must-be-
recalculate ;
end;
if there exists a subtransition st that is
subtransition-that is-fireable then start sequence-
stabilization ();
conclude that feu is true;
end

THE-SUBPLACE, a procedure

the-subplace(p: class place, c:text) = (class
subplace)
sp:class subplace;
begin
if there exists a subplace sp that is in-

relation-with p such that (the color of
sp=c) then return sp;

end

THE-SUBTRANSITION, a procedure

the-subtransition(t: class transition, c:text) =
(class subtransition)
st:class subtransition;
begin
if there exists a subtransition st that is in-
relation-with t such that (the color of
st=c) then return st;
end

CHANGE-IMPLIED, a procedure

change-implied (st: class subtransition )
sp:class subplace;
st2: class subtransition;
begin
conclude that st is subtransition-that must-be-
recalculate ;
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for sp =each subplace connected at an output of st
do
for st2 = each subtransition connected at an
output of sp do
conclude that st2 is subtransition-that
must-be-recalculate ;
end;
end;
end

CALCUL-SUBTRANSI, a procedure

calcul-subtransi(st:class subtransition)
sp:class subplace;
i-l:class input-sublink;

begin

if there exists a input-sublink i-1 connected at

an input to st such that (the nb-element-
available of the subplace at the input end of
i-1 < the weight of i-1) then

begin
conclude that the enable of st is false;
end
else
begin
conclude that the enable of st is true;
end;

end
CREATE-SUBTRANSITION, a procedure

create-subtransition(t:class transition)
col:text;
st:class subtransition;
val:truth-value=false;
begin
if there exists a subworkspace sw of t such that
(there exists a rule nearest to sw) then val =
true;
for col=each text in the color-set of t do
create a subtransition st;
transfer st to espace-de-calcul;
conclude that the color of st = col;
conclude that st is in-relation-with t;
if val then conclude that st is with-the-
propriety event else conclude that st is
with-the-propriety non-event;
end;
end

FIND-SUBPLACE, a procedure
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find-subplace(p:class place,color:text) = (class
subplace )
sp:class subplace;
begin
if there exists a subplace sp that is in-
relation-with p such that (the color of
sp=color) then return sp

else

begin
create a subplace sp;
transfer sp to espace-de-calcul;
conclude that sp is in-relation-with

Pi
conclude that the color of sp =color;
return sp;
end;

end
CREATE-O0UTLINK, a procedure

create-outlink(sp:class subplace,st: class
subtransition,q:quantity)

o-1l: class output-sublink;
begin
create a connection o-1 of class output-
sublink connected between sp newly locating
it at bottom 25 and st newly locating it at
top 25 with style diagonal, with direction
input ;
conclude that the weight of o-1 =q;
end

CREATE-INPUTLINK, a procedure

create-inputlink(sp:class subplace,st:class
subtransition,q:quantity)

i-1: class input-sublink;

begin
create a connection i-1 of class input-sublink
connected between sp newly locating it at
bottom 25 and st newly locating it at top
25 with style diagonal,with direction
output;
conclude that the weight of i-1=q;
end

TRANS-PLA, a procedure
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trans-pla (p:class place)
formule: text=the initial-marking of p;

i: quantity;
part:text;
X: quantity;
y: quantity;
begin
repeat

exit if (formule="");
if is-contained-in-text("sum",formule)then
begin
x= position-of-text ("sum",formule);
part= get-from-text (formule,x +
4,length-of-text (formule));
y= position-of-text (")",part);
part= get-from-text (part, 1,y - 1);
call trans-sum (p,part);
formule= omit-from-text (formule,x,y + x
+ 3);
go to sortie;
end;
x= position-of-text ("<",formule);
part= get-from-text (formule, 1,x);
y= quantity (part); formule= omit-from-text
(formule,1,x);
position-of-text (">",formule);
part= get-from-text (formule, 1,x - 1);
for i=1 to y do
call create-a-mark (p,part);
end;
formule= omit-from-text (formule,1,x);
sortie: end;
end

M
n

TRANS-TRA, a procedure

trans-tra(t: class transition)
formule: text=the color-set-def of t;
i: quantity;
part:text;
Xx: quantity;
y: quantity;
begin
repeat
exit if (formule="");
if is-contained-in-
text ("sum",formule)then
begin
x= position-of-text ("sum",formule);
part= get-from-text (formule,x +

61



4,length-of-text (formule));
y= position-of-text (")",part);
part= get-from-text (part, 1,y - 1);
call trans-sum2(t,part);
formule= omit-from-text (formule,x,y + x
+ 3);
go to sortie;
end;
x= position-of-text (">",formule);
part= get-from-text (formule,2,x - 1);
formule= omit-from-text (formule,1,x);
insert part at the end of the text list
the color-set of t;
sortie: end;
end

TRANS-SUM2, a procedure

trans-sum2(t:class transition ,t1:text)
i: quantity;
part:text;
ele: text;
X: quantity;
y: quantity;
begin
x= position-of-text (",", t1);
part = get-from-text (ti,1,x - 1);
y= quantity (omit-from-text (ti1,1,x));
for i=1 to y do
ele= insert-in-text (part,".[i]",1);
insert ele at the end of the text list the
color-set of t;
end;
end

TRANS-SUM, a procedure

trans-sum(p:class place,tl:text)
i: quantity;
part:text;
ele: text;
X: quantity;
y: quantity;
begin
x= position-of-text (",", t1);
part = get-from-text (ti,1,x - 1);
y= quantity (omit-from-text (t1,1,x));
for i=1 to y do
ele= insert-in-text (part,".[il",1);
call create-a-mark (p,ele);
end;
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end
TRANS-0UT, a procedure

trans-out (t-p-1: class transition-place-link)
form-out: text = the output-function-text of
t-p-1;
p:class place=the place at an output end of t-
p-1;
t:class transition =the transition at the
input end of t-p-1;
sp:class subplace;
st: class subtransition;
formule,part,color:text;
X,y: quantity;
begin
if not(is-contained-in-text ("<",form-out)) then
begin
for st =each subtransition that is in-
relation-with the transition connected to
t-p-1 do
color=call value-function(form-out,the
color of st);
sp=call find-subplace (p,color);
call create-outlink(sp,st,1);
end;
end
else
begin
repeat
exit if (form-out="");
X = position-of-text (";",form-out);
formule= get-from-text (form-out, 1,x - 1);
form-out= omit-from-text (form-out,1,x);
X = position-of-text (":",formule) ;
part= get-from-text (formule, 1,x - 1);
st=call the-subtransition(t,part);
formule= omit-from-text (formule,1,x);
repeat
exit if (formule="");
x= position-of-text ("<",formule);
part= get-from-text (formule, 1,x);
y= quantity (part);
formule= omit-from-text (formule,1,x);
x= position-of-text ('">",formule);
color= get-from-text (formule, 1,x - 1);
sp=call find-subplace (p,color);
call create-outlink(sp,st,y);
formule= omit-from-text (formule,1,x);
end;
end;
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end;
end

TRANS-INP, a procedure

trans-inp (p-t-1: class place-transition-link)
t:class transition=the transition at the
output end of p-t-1;
p:class place=the place at the input end of p-
t-1;
st:class subtransition;
sp:class subplace;
formule,part,color: text;
form-inp: text = the inp-fonction-text of p-t-
1;
X,y: quantity;
begin
if not(is-contained-in-text ("<",form-inp)) then
begin
for st=each subtransition that is in-relation-
with the transition connected to p-t-1 do
color=call value-function(form-inp,the
coloxr of st);
sp=call find-subplace (p,color);
call create-inputlink(sp,st,1);
end;
end
else
begin
repeat
exit if (form-inp="");
X = position-of-text (";",form-inp);
formule= get-from-text (form-inp, 1,x - 1);
form-inp= omit-from-text (form-inp,1,x);
X = position-of-text (":",formule) ;
part= get-from-text (formule, 1,x - 1);
st=call the-subtransition(t,part);
formule= omit-from-text (formule,1,x);
repeat
exit if (formule="");
x= position-of-text ("<",formule);
part= get-from-text (formule, 1,x);
y= quantity (part);
formule= omit-from-text (formule,1,x);
x= position-of-text (">",formule);
color= get-from-text (formule, 1,x - 1);
sp=call find-subplace (p,color);
call create-inputlink(sp,st,y);
formule= omit-from-text (formule,1,x);
end;
end;

64



end;
end

VALUE-FUNCTION, a procedure

value-function(fu: text,ele: text) = (text)
def-fu: text;
nb-fu: quantity;
fu-inf:text;
fu-inf2:text;
posl:quantity;
pos2:quantity;
pos3:quantity;
result:text;
resulti:text;
result2:text;
begin
if is-contained-in-text ("add",fu) then
begin
result=get-from-text(fu,5, length-of-text
(fu) - 1);
return add(ele,result);
end;
if is-contained-in-text ("inv",fu) then
begin
result=get-from-text(fu,5, length-of-text
(fu) - 1);
return result;
end;
case(fu) of
"id": return ele;
"dec": return "dec";
otherwise :
begin
nb-fu= quantity (omit-from-text (fu,1,4) );
def-fu = get-from-text (fu,1,4);
case (def-fu) of
"succ": return succ(get-color (mb-fu,ele));
"prec": return prec(get-color (nb-fu, ele));
"colo": return get-color (mb-fu, ele);
"proj": return get-color (nb-fu, ele);
"comb":
begin
if nb-fu=1 then
begin
fu-inf= get-from-text (fu,7,
length-of-text (fu) - 1);
result= call value-function (fu-
inf,ele);
end
else



begin

posl= position-of-text ("(",fu);

pos2= position-of-text (",",fu);

pos3= length-of-text (fu);

fu-inf=concate("comb"," [nb-fu -
11(");

fu-inf=concate(fu-inf, get-from-
text (fu,pos2 + 1,pos3));

fu-inf2= get-from-text (fu,posi +
1,pos2 - 1);

resultl= call value-function (fu-
inf2,ele);

result2= call value-function (fu-
inf,ele);

result=concate(resulti,"-");

result= concate (result,result2);

end;
return result;
end;
end;
end;
end;
end
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