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Abstract. Objective: Although respiratory problems are common among patients

with end-stage renal disease, respiration is not continuously monitored during dialysis.

The purpose of the present study is to investigate the feasibility of monitoring

respiration using the pressure sensors of the dialysis machine. Approach: Respiration

induces variations in the blood pressure that propagates to the extracorporeal circuit

of the dialysis machine. However, the magnitude of these variations are very small

compared to pressure variations induced by the dialysis machine. We propose a new

method, which involves adaptive template subtraction and peak conditioned spectral

averaging, to estimate respiration rate from the pressure sensor signals. Using this

method, an estimate of the respiration rate is obtained every 5th second provided that

the signal quality is sufficient. The method is evaluated for continuous monitoring of

respiration rate in nine dialysis treatment sessions. Main results: The median absolute

deviation between the estimated respiration rate from the pressure sensor signals and a

reference capnography recording was 0.02 Hz (1.3 breaths per min). Significance: Our

results suggest that continuous monitoring of respiration using the pressure sensors of

the dialysis machine is feasible. The main advantage with such monitoring is that no

additional sensors are required which may cause patient discomfort.

1. Introduction

3.3 million patients worldwide suffer from end-stage renal disease (ESRD) and rely on

hemodialysis for their survival (Liyanage, Ninomiya, Jha, Neal, Patrice, Okpechi, Zhao,

Lv, Garg, Knight, Rodgers, Gallagher, Kotwal, Cass & Perkovic 2015). Most of these

patients spend three to four hours, three times a week, in dialysis treatment. Continuous

monitoring during the treatment sessions can improve patient management and help to

reduce the risk of adverse events. Recently proposed methods for improved patient

monitoring during dialysis treatment includes those aiming at optimizing the dialysis

dose (Fridolin, Karai, Kostin & Ubar 2013), predicting and preventing complications

such as intradialytic hypotension (Sandberg, Bailón, Hernando, Laguna, Mart́ınez,

Solem & Sörnmo 2014), (Sörnmo, Sandberg, Gil & Solem 2012) and early detection

of adverse events such as venous needle dislogement (Holmer 2017).
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It is common that patients with chronic kidney disease also suffer from respiratory

problems. Several complex mechanisms are involved in the cardio-pulmonary-renal

interactions linking respiratory problems and ESRD; a recent review on this topic is

given in (Husain-Syed, McCullough, Birk, Renker, Brocca, Seeger & Ronco 2015). Fluid

overload can cause pulmonary edema, pleural effusions, and upper airway obstruction.

Additionally, kidney disease is associated with chronic obstructive pulmonary disease

and central sleep apnea. Sleep disturbances are extremely common in patients with

ESRD, with sleep apnea occurring in 60% or more of such patients (Pierson 2006).

Monitoring of respiratory activity during hemodialysis can help to reduce the risk of

hypoxia due to decreased alveolar ventilation. Respiration is regulated primarily by the

respiratory center in the brain stem, that integrates neural, hormonal and chemical

signaling and controls the respiratory movements. Dialysis treatment may cause

alterations in pH and/or carbon dioxide levels in the blood that affects the signaling

from the chemo receptors to the respiratory center and can induce hypoventilation

and hypoxia. Hypoxia was a very common complication when hemodialysis was first

introduced in the treatment of renal failure (Pierson 2006). Although hemodialysis

treatment has improved significantly, and hypoxia is not as frequent, it still a

complication that occurs during dialysis. In a retrospective cohort study conducted

between 2012 and 2015, 10% of the 983 dialysis patients had prolonged intradialytic

hypoxia. Prolonged intradialytic hypoxia was found to be associated with higher all-

cause hospitalization and mortality (Meyring-Wösten, Zhang, Ye, Fuertinger, Chan,

Kappel, Artemyev, Ginsberg, Wang, Thijssen & Kotanko 2016).

Continuous monitoring of respiratory rate can improve patient management and

may help the nurses to prevent hypoxia by nasal oxygen administration. However, such

monitoring is currently not part of the clinical routine, one reason being the discomfort

caused by wearing respiratory sensors. Another reason is the additional work required

by the clinical staff to attach the sensors. Hence, it is of vital clinical importance to

develop a method for intradialytic monitoring of respiratory activity that does not cause

discomfort or add to the workload of the staff. We have previously proposed a method for

monitoring cardiac activity using the pressure sensors of the dialysis machine (Holmer,

Sandberg, Solem, Grigonytė, Olde & Sörnmo 2015, Holmer, Sandberg, Solem, Olde &

Sörnmo 2016). The objective of the present study is to investigate the feasibility of using

a similar approach for continuous monitoring of respiratory activity during dialysis.

It is well known that respiratory activity causes modulation of the blood pressure

(BP). Three different types of respiratory induced variations are commonly seen in

photoplethysmographic (PPG) signals: 1) baseline variation caused by thoracic pressure

changes during the respiratory cycle; increased thoracic pressure during the inhalation

phase causes a slight elevation of BP, and correspondingly the exhalation phase is

associated with a slight reduction of BP, 2) cardiac pulse amplitude variation caused

by variations in cardiac output due to the thoracic pressure variations and 3) heart

rate variations caused by respiratory induced autonomic modulation (Charlton, Bonnici,

Tarassenko, Alastruey, Clifton, Beale & Watkinson 2017). Our preliminary results shows
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that respiration rate estimation based on variations in heart rate variations is unfeasible

for dialysis patients due to impaired autonomic response (Sandberg, Holmer, Olde &

Solem 2014). Hence, the focus of this study is on respiratory induced variations in BP

magnitude.

This paper is organized as follows. The dataset obtained from patients with

ESRD undergoing hemodialysis is described in Sec. 2.1. The method for extraction

of respiratory information from the pressure sensors of the dialysis machine is described

in Sec. 2.2, and a robust method for estimation of respiration rate from the extracted

information is described in Sec. 2.3. The results comparing the estimated respiration

rate to the respiration rate obtained from a reference capnographic signal are presented

in Sec. 3, and discussed in Sec. 4.

2. Methods

2.1. Dataset

A clinical study was conducted at the Kidney and Transplantation Clinic at Sk̊ane

University Hospital in Malmö, Sweden 2012. Seven patients with ESRD (5 male and 2

female, age 72± 12 (mean± std) years, dry-weight 88± 20 kg) on regular hemodialysis

were included in the study. The study was approved by the local research ethics

committee and all patients signed an informed consent. The patients were treated with

Artis TM dialysis machines (Gambro). Pressure signals from the arterial and venous

pressure sensor of the dialysis machine, sampled at 200 Hz were recorded throughout nine

dialysis sessions, see Fig. 1. The pressure varies considerably over time, and respiratory

induced pressure variations are concealed by much larger pressure pulses induced by the

peristaltic blood pump of the dialysis machine, see Fig. 1 (c-d). The peristaltic pump

is equipped with a Hall effect sensor which provides information about the angular

position of the blood pump rotors; the resulting Hall sensor signal is sampled at 200

Hz. Reference respiratory capnography signals (Lifesense), sampled at 4 Hz, were also

recorded throughout the dialysis sessions.

2.2. Extraction of Respiratory Information

Respiratory information is extracted from the arterial and venous pressure signals

separately using a similar methodology for the respective signals, see Fig 2. First,

as preprocessing, the DC level is removed from the pressure signals by subtracting the

5-min median value of the signal. The 5-min segments length is chosen to avoid removal

of respiratory induced baseline variations and yet allow tracking of changes in the static

pressure level. Outlier rejection is performed to remove samples in the original signals

that are unreliable, and linear interpolation is performed to fill the gap; a sample is

classified as an outlier if the difference between two consecutive samples is larger than

5mmHg. The preprocessed pressure signals from the venous and arterial pressure sensors

are denoted yv(n) and ya(n), respectively.
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Figure 1. (left) The extracorporeal blood circuit of a hemodialysis machine with

venous and arterial pressure sensors and a peristaltic blood pump. (right) Pressure

signals from (a,c) the venous and (b,d) the arterial pressure sensor, respectively.

Recordings from a whole dialysis session are displayed in (a,b), whereas (c,d) zoomed

in on 20 seconds of the recording following preprocessing.

xa(n)

Venous 
pressure

Arterial 
pressure

Preprocessing Average pulse 
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Figure 2. Overview of the method for estimating respiration rate from the arterial

and venous pressure sensors in the dialysis machine.

Following preprocessing, a template pressure pulse is constructed. The preprocessed

pressure signal y(n) ∈ [yv(n), ya(n)] is resampled to obtain M synchronously sampled

signal segments ys(m) of length N = 200 containing pressure pulses corresponding to

one revolution each.

ys(m) =
[
y(ts(mN)) y(ts(mN + 1)) . . . y(ts(mN + k))

]
(1)

The sample times of the m:th pressure pulse are given by

ts(mN + k) = tp(m) + k
tp(m+ 1)− tp(m)

N
, k = 0 . . . N − 1 (2)

where tp(m) denotes the onset time of the m:th pump revolution; the onset times are

detected from a tachometer signal obtained using the Hall sensor on the peristaltic pump

of the dialysis machine.
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Figure 3. Template pressure pulses p̄s obtained from (a) the venous pressure sensor

signals and (b) the arterial pressure sensor signals in each of the 9 dialysis sessions.

Signal segments containing excessive noise or sudden changes are excluded from

further analysis. Such segments are detected based on lack of similarity to a template

pump pressure pulse. The template pressure pulse p̄s is obtained using the global median

of the synchronously sampled signal segments ys(m), see Fig. 3 If ys(m) deviates to much

from the template pressure pulse p̄s, quantified by a correlation coefficient r < 0.95, the

signal segment is removed from further analysis.

To extract the cardio-resipratory component of the pressure signal, an adaptively

updated template pump pressure pulse ps(m) is subtracted from each of the remaining

synchronously sampled signal segment ys(m).

xs(m) = ys(m)− ps(m), m = 0 . . .M − 1. (3)

where

ps(m) = γps(m− 1) + (1− γ)ys(m− 1), m = 0 . . .M − 1. (4)

and the forgetting factor γ = 0.95. The initial template pump pressure pulse ps(0) is

set to p̄s.

The signal segments xs(1),xs(2), . . . ,xs(M) are concatenated to construct the

length MN signal xs(l). The synchronously sampled signal xs(l) is then uniformly

resampled at the original sampling rate Fs = 200 Hz to obtain the signal x(n) ∈
[xv(n), xa(n)]. The process of obtaining x(n) from y(n) is summarized in Fig. 4, and a

signal example is given in Fig. 5.

2.3. Estimation of Respiratory Rate

A robust estimate of the respiration rate is obtained by combining information from

the venous and arterial pressure signals, xv(n) and xa(n), respectively, using a method

inspired by the work of (Lázaro, Alcaine, Romero, Gil, Laguna, Pueyo & Bailón 2014).

In this method, referred to as peak conditioned spectral averaging, the frequency spectra

of sufficient quality are averaged to produce a spectrum from which the respiration rate
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Figure 4. Overview of the process of average pulse subtraction for obtaining x(n)

from y(n).

Figure 5. (a) Pressure signal from the venous pressure sensor yv(n) and (c)

corresponding xv(n) and (b) pressure signal from the arterial pressure sensor ya(n)

and (d) corresponding xa(n). Red dotted lines denotes the pump pressure pules onset

times tm detected using the Hall sensor signal.
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is estimated; the peakedness of the spectrum of each signal segment is used to decide if

the signal quality is sufficient.

First, xv(n) and xa(n) are lowpass filtered, using a 6:th order Butterworth filter with

cutoff frequency of 2 Hz, and resampled to 4 Hz to obtain the signals x̃v(n) and x̃a(n)

containing respiratory induced pressure variations. Sequential Welsh periodograms are

estimated from sliding 40-s segments of x̃v(n) and x̃a(n), respectively. New periodograms

Sv
k(f) and Sa

k(f) are obtained every 5:th second by averaging power spectra of 50%

overlapping 12-s subintervals after power normalization in the 0− 1 Hz interval; k is a

running index.

Sequential periodograms Sv
k(f) and Sa

k(f) of sufficient quality are averaged to

produce power spectra from which the respiration rate can be estimated more robustly.

A periodogram is considered of sufficient quality if 1) it has a sufficiently large spectral

peak in an interval around a reference respiration rate fR and 2) the energy in the

spectral peak interval is sufficiently large. The interval around the reference respiration

rate is set to [fR − 0.125Hz, fR + 0.25Hz], where the lower bound is constrained to

be above 0.15 Hz and the upper bound is constrained to be below 0.5 Hz. The

spectral peak is considered sufficiently large if its magnitude is more than 85% of the

magnitude of the largest peak in the spectra; the frequency of the spectral peak closest

to fR that fullfils these criteria is denoted fp(k). The spectral peak interval is set to

[fp(k)− 0.048Hz, fp(k) + 0.048Hz] and the energy in this interval is considered sufficient

if it contains > 30% of the total energy in the spectra. If the energy in the peak interval

differs more than 5% between Sv
k(f) and Sa

k(f), only the spectrum with the most energy

in the peak interval is used for averaging.

Averaged spectra Sl(f) are produced by averaging consecutive spectra Sv
k(f) and

Sa
k(f) of sufficient quality for k = l − 4 . . . l. The respiration rate is estimated by

tracking fp(l) in the averaged spectra, i.e., the position of the spectral peak that is

closest to the reference respiration rate fR. The respiration rate fr(l) of the l:th

segment is given by fr(l) = 0.7fp(l) + 0.3fr(l − 1). The reference respiration rate

is initially set to fR(0) = 0.275 Hz, and is adaptively updated using fp(l) so that

fR(l) = 0.8fR(l−1)+0.2fp(l). If the averaged spectra Sl(f) has insufficient quality or is

lacking due to insufficient quality of Sv
k(f) and Sa

k(f), no estimate of the respiration rate

fr(l) is produced and the reference respiration rate is not updated, i.e., fR(l+1) = fR(l).

2.4. Evaluation

The accuracy of the respiration rate estimates obtained from the pressure sensors of

the dialysis machine is evaluated by comparing to respiration rates obtained from

simultaneously recorded capnography signals xcapno(n). The respiration rate is estimated

from xcapno(n) using peak conditioned spectral averaging as described in Sec 2.3;

sequential Welsh periodograms of sufficient quality obtained from xcapno(n) are used

to produce the averaged spectra Sc
l (f) from which the reference respiration rate f c

r (l) is

estimated.
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Figure 6. Extracted respiratory signal from (solid blue line) the venous pressure

sensor x̃v(n) and (solid red line) the arterial pressure sensor x̃a(n) and (dashed green

line) corresponding reference corresponding reference capnography signal xcapno(n).

.

3. Results

An example of extracted respiratory signals x̃v(n) and x̃a(n) and corresponding reference

capnograhpy signal xcapno(n) are displayed in Fig. 6. On average x̃v(n) can be extracted

from 70% of the venous pressure sensor signals (range 57% to 79%) and x̃a(n) can be

extracted from 51% arterial pressure sensor signals (range 5% to 81%).

Sequential periodograms Sv
k(f) and Sa

k(f) and corresponding averaged spectra Sl(f)

and estimated respiration rate fr(l) from one treatment session are displayed in Fig 7.

In this recording fr(l) could be obtained in 47% of the analyzed segments. On average

fr(l) was obtained in 43% of the segments in a recording (range 5% to 74%).

The estimated respiratory rate from the pressure sensors fr(l) and the

corresponding f c
r (l) from one treatment session are displayed in Fig. 8. The respiration

rate changes considerably during the treatment session, f c
r (l) ranges from 0.21 Hz to

0.48 Hz (12.7 to 29.1 breaths per min) and fr(l) varies correspondingly. In this session,

the median absolute difference between fr(l) and f c
r (l) was 0.02 Hz (1.2 breaths per

min), and fr(l) was obtained in 63% of the recording. The median absolute difference

between fr(l) and f c
r (l) in the treatments sessions ranged from 0.017 Hz to 0.21 Hz

(median 0.022 Hz, IQR 0.008 Hz); the difference was below 0.03 Hz (1.8 breaths per

min) in all recordings except one.

A Bland-Altman plot comparing fr(l) and f c
r (l) in all analyzed segments is

presented in Fig. 9 (a), and a histogram showing the distribution of the differences

between fr(l) and f c
r (l) is displayed in Fig 9 (b). The median absolute differences

between fr(l) and f c
r (l) is 0.022 Hz (1.3 breaths per min); in 79% of the analyzed

segments the difference between fr(l) and f c
r (l) was smaller than 0.05 Hz (3 breaths per

min).
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Figure 7. Concatenated sequential peroiodograms (a) Sv
k(f) and (b) Sa

k(f) and

(c) corresponding concatenated averaged spectra Sl(f) and (red solid line) estimated

respiration rate fr(l) from the pressure sensor signals during one dialysis session.
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Figure 8. Respiration rate estimated from (blue) the pressure sensor signals fr(l) and

(green) the corresponding reference capnograpy signal f c
r (l).

4. Discussion

Our results show that respiration rate can be accurately estimated using the pressure

sensors of the dialysis machine. The proposed method allows continuous monitoring and

detection of sudden changes in respiration rate. In a preliminary study, we used linear

filtering of the pressure sensor signals in the 0.15–0.4 Hz band to obtain respiratory

information in selected 20-min segments (Sandberg, Holmer, Olde & Solem 2014).

Although the results of that study were comparable to the results of the present study,
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Figure 9. (a) Bland-Altman plot comparing fr(l) and f c
r (l). (solid line) Mean

fr(l) − f c
r (l) and (dashed lines) mean±1.96 std. (b) Histogram of fr(l) − f c

r (l) in

all analyzed segments.

such approach is unfeasible for continuous monitoring of respiration, partly due to lack

of signal quality control. Quality control is crucial for the performance of the proposed

method and is done in two steps. The first step is to exclude signal segments with

sudden changes or excessive noise from analysis. The second step is to only include

frequency spectra of sufficient quality when estimating respiration rate.

Another reason to why the 0.15–0.4 Hz bandpass filtering approach is unfeasible for

continuous monitoring is that subtile changes in the pump induced pressure variations

may overshadow respiratory induced variations in this frequency band. Since pump

induced pressure variations are of much larger magnitude than the respiratory induced

pressure variations, meticulous removal of pump pressure pulses is crucial for the

performance of the method. Accurate determination of pump pressure pulse onset times

was achieved using information about the angular position of the blood pump rotor

obtained from a Hall sensor in the Artis dialysis machine. To account for variations in

pump rate and pump pressure pulse morphology, synchronous resampling and adaptive

updating of the template pressure pulse was employed. In our previous work (Holmer

et al. 2015, Holmer et al. 2016, Holmer, Mart́ınez, Gil, Sandberg, Olde & Sörnmo 2018)

a more computationally demanding method, where an iteratively refined pump model

signal was subtracted from the pressure signals, was used since the AK200 dialysis

machine used in those studies did not provide information on the angular position of

the blood pump rotor.

Other techniques for non-contact monitoring of cardiac and respiratory activity

during dialysis treatment includes camera-based PPG (Tarassenko, Villarroel, Guazzi,

Jorge, Clifton & Pugh 2014). Although this technique seems promising, it is still

sensitive to movements and variations in ambient light. Further, issues relating to

integrity using video monitoring remains to be solved. Continuous monitoring of arterial

oxygen saturation during dialysis can be achieved with the CritLine monitor which

measures light absorption at different wavelengths in the blood of the extracorporeal

circuit (Campos, Chan, Zhang, Deziel, Vaughn, Meyring-Wösten & Kotanko 2016).
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However, monitoring of oxygen saturation cannot replace monitoring of respiration rate

since these measurements provide complementary information. The correlation between

respiration rate and oxygen saturation is generally poor (Mower, Sachs, Nicklin, Safa &

Baraff 1996)

The estimated respiration rate was accurate in all treatment sessions except one.

In that treatment session, the pressure recordings contained very prominent oscillations

in the 0-0.15 Hz band that precluded accurate detection of a respiratory peak in the

spectra. Such low-frequency (LF) blood pressure oscillations has been studied during

hemodialysis, suggesting that dialysis induced changes in LF blood pressure oscillations

may be a marker of peripheral vascular disease (Titapiccolo, Cerutti, Garzotto, Cruz,

Moissl, Tetta, Signorini, Ronco & Ferrario 2012). However, the feasibility of monitoring

such LF blood pressure oscillations using the pressure sensors of the dialysis machine

remains to be established and is outside the scope of the present study.

In the present study, capnography, which is based on measurements of carbon

dioxide levels in expired gas, was used as reference. It should be noted that the

respiratory information obtained from the pressure sensors of the dialysis machine has

more in common with the measurements of respiratory effort that can be obtained

using a chest belt. However, the evaluation is based on respiration rate which can be

accurately estimated from both measurements.

In the present study signal analysis was performed off-line, however, the method

can easily be modified for on-line analysis. The template pressure pulses obtained using

the global mean of each recording were very similar, cf. Fig. 3, and could be replaced

by a generic template pressure pulse. A generic template pressure pulse could serve

to initialize the adaptively updated pressure pulse to be subtracted from the pressure

signals and a slowly adapted generic template pressure pulse could replace the global

median pressure pulse for detection and exclusion of signal segments with excessive

noise.

The main limitation with the present study is the small dataset, the reason being the

discomfort for the patients caused by wearing a reference capnography sensor throughout

the dialysis session. A followup study including a larger study population and several

dialysis clinics is required to validate the findings of this study.

5. Conclusion

We have proposed a new approach to monitor respiration during hemodialysis using

information extracted from the pressure sensors of the dialysis machine. The proposed

method, which involves adaptive template subtraction and peak conditioned spectral

averaging, is robust to artefacts and does not require additional sensors. Our results

show that the estimated respiration rate is in agreement with respiration rate estimated

from reference capnography recordings. A followup study including a larger study

population at several dialysis clinics is required to validate the findings.
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Meyring-Wösten, A., Zhang, H., Ye, X., Fuertinger, D. H., Chan, L., Kappel, F., Artemyev, M.,

Ginsberg, N., Wang, Y., Thijssen, S. & Kotanko, P. (2016). Intradialytic hypoxemia and

clinical outcomes in patients on hemodialysis, Clin J Am Soc Nephrol. 11(4): 616–625.

Mower, W., Sachs, C., Nicklin, E., Safa, P. & Baraff, L. (1996). A comparison of pulse oximetry and

respiratory rate in patient screening, Respir Med 90: 593–9.

Pierson, D. (2006). Respiratory considerations in the patient with renal failure, Respir Care 51(4): 413–

22.

Sandberg, F., Bailón, R., Hernando, D., Laguna, P., Mart́ınez, J. P., Solem, K. & Sörnmo, L. (2014).

Prediction of hypotension in hemodialysis patients, Physiological Measurement 35(9): 1885.

Sandberg, F., Holmer, M., Olde, B. & Solem, K. (2014). Estimation of respiratory information from

the built-in pressure sensors of a dialysis machine, Comput. Cardiol., Vol. 41, pp. 853–856.

Sörnmo, L., Sandberg, F., Gil, E. & Solem, K. (2012). Noninvasive techniques for prevention of

intradialytic hypotension, IEEE Rev. Biomed. Eng. 5: 45–59.

Tarassenko, L., Villarroel, M., Guazzi, A., Jorge, J., Clifton, D. A. & Pugh, C. (2014). Non-contact

video-based vital sign monitoring using ambient light and auto-regressive models, Physiological

Measurement 35(5): 807.

Titapiccolo, J. I., Cerutti, S., Garzotto, F., Cruz, D., Moissl, U., Tetta, C., Signorini, M. G., Ronco, C.

& Ferrario, M. (2012). Blood pressure variability and cardiovascular autonomic control during

hemodialysis in peripheral vascular disease patients, Physiol. Meas. 33: 667–678.


