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Optimal Transportation on Directed Tree Graphs
Martin Heyden, Richard Pates, and Anders Rantzer, Fellow, IEEE

Abstract—We consider the problem of optimal transportation
and production of a quantity throughout a network, where the
transportation is subject to delay. It is shown that for a simple
network model the optimal policy is sparse and highly structured.
The results hold for a broad class of convex cost functions, and in
the quadratic case we give closed form expressions for the optimal
flows and for the optimal production. The optimal controller
can be both synthesized and implemented using distributed
communication, making it suitable for large scale applications.
The performance of the optimal controller is studied for networks
of different sizes and topologies, and compared to a local
controller designed using off-the-shelf methods. The optimal
controller gives a significant increase in performance for non-
zero initial conditions.

I. INTRODUCTION

Whether it be to maximize throughput in a traffic network,
minimize losses in an electrical power system, or improve
fairness when managing Internet congestion, large-scale sys-
tems are typically operated with some notion of performance
in mind. Many such networks are also constructed out of
dynamical components, and a fundamental challenge is to
operate them in a manner that maximizes performance. In
many cases, including those listed above, this balance is struck
by designing control schemes to stabilize the system about
an equilibrium point that is chosen to optimize the network’s
given measure of performance (e.g. [1]–[3]).

However in most cases it could be argued that these large-
scale systems are in fact never in equilibrium for long, instead
shifting from operating point to operating point to balance the
current demands of the users. There is of course still a value
to shifting toward equilibria which optimize performance, but
it is also clear that the notion of dynamic performance is an an
important one. Take for example electrical power systems; the
objective is really to minimize losses throughout operation,
rather than the losses associated with particular operating
points.

In this work we address this aspect by studying a simple
model for production and transportation of some quantity, as
illustrated in Fig. 1. We will consider just one commodity,
however the results presented could be extended to the case
of multiple commodities. The objective is to design an optimal
controller to solve a natural dynamic extension of the classical
welfare maximization problem in economics.
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Fig. 1: An illustration of the type of problems studied in
this paper. At the top of the network is a production plant
that produces some commodity. The commodity should be
optimally distributed to all the users in the system.

A. Problem Formulation

In welfare maximization, the goal is to optimally distribute
a number of commodities among a set of agents so that the
total social welfare is maximized. There are many ways of
defining the social welfare (see [4] for an introduction). In
this work we will consider the classical utilitarian welfare
functions, where the total welfare is the sum of the utility
for all agents. Furthermore the individual welfare functions
are individualistic, meaning that the utility of the agents only
depends on the agents own consumption (the amount of the
quantity it has at each point in time). To capture dynamic
aspects, we introduce constraints that model the effect of
transportation delays between the agents, as structured by a
graph.

Assume that each agent i starts with an initial amount wi of
the commodity, and the utility for node i in having an amount
zi of the commodity is given by Ui(zi). Then the welfare
maximization problem can be formulated as

maximize
zi

∑
i

U(zi)

subject to
∑
i

zi =
∑
i

wi.
(1)

As we can see, the objective is to maximize the collective
utility, subject to the constraint that the new levels respects
the initial endowments.

We will now present a natural dynamic extension of this
standard welfare maximization problem by only allowing for
the commodity to be transported with a delay between agents
that are connected. To describe the topology of the network
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we introduce a directed graph G = (V, E) consisting of a
set of vertices V = {1, . . . , N} and directed edges E , where
(i, j) ∈ E if there exists a path from node j to node i. We also
introduce the standard notation of parent set P(j) and children
set C(j) for every node j. That is k ∈ P(j) if (j, k) ∈ E and
i ∈ C(j) if (i, j) ∈ E .

Let zi[t] be the amount of the quantity held by agent i
at time t. We will consider the following dynamical system,
which captures the essence of transportation subject to delay
throughout a network. At its heart this model is a conservation
equation, and the idea is that this simple system can describe
the basic features of transportation in a wide range of settings
(it can for example be used as a simple model for supply
chains [5] and water irrigation networks [6]):

zi[t+ 1] = α

zi[t] +
∑
j∈P(i)

uij [t− 1]

− ∑
h∈C(i)

uhi[t] (2)

This equation describes how zi[t] evolves over time. Each
input uij [t] ∈ R denotes the amount of the quantity being
transported from node j to node i (associated with the edge
(i, j) ∈ E). All variables are relative to an equilibrium. The
constant α, 0 < α ≤ 1, is the decay rate of the stored quantity.
The first summation therefore gives the amount of the quantity
arriving at the i-th node, and the second summation gives the
amount leaving the i-th node. The one step delay in the terms
in the first summation captures the delay in transportation.

We will also allow for production at some nodes in the
network. We denote the set of all such nodes as I and denote
the production as ui0, i ∈ I . The zero node is not part of the
network, 0 /∈ V . However, in a slight abuse of notation, we
let 0 ∈ P(i) if i ∈ I . This allows external production to be
described in a manner consistent with the dynamics in (2). We
will assume that only nodes that are in the top of the network
can be producers. This will be made precise in Section II. Note
that (2) is not a state-space model, however a realization with
states {zi[t], uij [t− 1], j ∈ P(i)}, ∀i, can be introduced.

We study the following dynamic extension of the welfare
maximization problem in (1):

minimize
u,z

∞∑
t=0

(∑
i∈V

fi(zi[t]) +
∑
i∈I

gi(ui0[t])

)
Subject to Dynamics in (2).

(3)

In the above fi(zi[t]) is the cost (or negative utility) for node
i to have access to zi[t] goods. The problem corresponds
to minimizing the total cost1 for the entire system, which
is a welfare maximization problem for one commodity. The
function gi(ui0) is the cost for node i to produce ui0. Note
the major difference between the problems in (1) and (3) is
the static constraint in (1) has been replaced by its dynamic
analogue from (2).

To ensure that we obtain a unique solution, we make the
following assumptions.

1Note that we choose to minimize the total cost instead of maximizing the
total utility.

Assumption 1. The functions fi and gi are strictly convex
and satisfy fi(0) = 0 and gi(0) = 0.

Assumption 2. The graph is a directed tree (also known as
a poly-tree). This means that it is a directed graph with no
undirected cycles (the undirected version of the graph is a
tree).

We will show that the problem in (3) can be simplified for
general strictly convex cost functions. However, for quadratic
cost functions the solution simplifies greatly. Our main con-
tribution is to show that the solution to the optimal control
problem

minimize
u,z

∞∑
t=0

(∑
i∈V

qizi[t]
2 +

∑
i∈I

riui0[t]2

)
Subject to Dynamics in (2),

(4)

where qi > 0 and ri > 0, admits a highly structured solution
(contrary to the standard linear quadratic regulator problem),
and explain how these results can be generalized to the case
of general convex functions. Note that the cost function in (4)
satisfies Assumption 1.

B. Preview of Results

The key feature of our results is that they show how the
structure in the underlying graph can be expoloited when
solving the dynamic welfare problem described in the previous
subsection. In particular, we will show that the optimal control
on each edge (i, j) will be dependent on two sets U(i, j)
and D(i, j), which we will call the upstream set and the
downstream set. These sets are subsets of the nodes of the
graph. They are different for each edge, and reflect the local
structural properties of the graph. The optimal controller can
then be calculated according to the formula

uij [t] =
γU(i,j)

γU(i,j) + γD(i,j)
αmU(i,j)[t]

−
γD(i,j)

γU(i,j) + γD(i,j)
αmD(i,j)[t]. (5)

The constants γU(i,j) and γD(i,j) only depend the problem data
within their respective set, and can be computed ahead of time.
The variable mU(i,j) is the total quantity stored in the nodes in
the upstream set, and mD(i,j) is the total quantity stored in the
nodes in the downstream set. The definition of the upstream
and downstream sets will be made precise in the next section.
However to get the intuition, consider Fig. 2. Taking u84 as
an example, the the upstream set is indicated by blue and
the downstream set by pink. Observe in particular that some
nodes are neither in the upstream nor the downstream set.
This implies the optimal control law is sparse (with sparsity
defined by the elements in the up and downstream sets). The
structure of the resulting controller for the graph in Fig. 2 is
illustrated in Fig. 3. Furthermore, both the γ parameters and
the aggregate levels m can be calculated via a sweep through
the graph, relying on only local communication. This allows
for efficient synthesis and implementation of the control law
in (4).
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Fig. 2: An example of a directed tree. Node Four has one
parent node in node one, and three children nodes in node
five seven and eight. For the highlighted edge (8, 4) we have
illustrated the upstream set U in light blue and downstream
set D in pink. The incoming arrow into node one indicates
that there is production in that node.



u10[t]
u21[t]
u32[t]
u41[t]
u54[t]
u65[t]
u74[t]
u84[t]
u98[t]


=



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
? � � ? ? ? ? ? ?
0 ? � 0 0 0 0 0 0
? ? ? � � � � � �
0 0 0 ? � � ? ? ?
0 0 0 0 ? � 0 0 0
0 0 0 ? ? ? � ? ?
0 0 0 ? ? ? ? � �
0 0 0 0 0 0 0 ? �





u10[t− 1] + z1[t]
u21[t− 1] + z2[t]
u32[t− 1] + z3[t]
u41[t− 1] + z4[t]
u54[t− 1] + z5[t]
u65[t− 1] + z6[t]
u74[t− 1] + z7[t]
u84[t− 1] + z8[t]
u98[t− 1] + z9[t]


Fig. 3: Structure of optimal feedback law for the polytree
in Fig. 2. ? corresponds to the upstream set and � to the
downstream set.

Similarly, the optimal production for (4) is given on the
simple form

ui0[t] = cmV [t]. (6)

In the above c is a constant depending on the problem data
for the entire graph and mV [t] is the total level in the graph
at time t.

C. Literature Review

While we give economic motivations for the problem stud-
ied, the main contribution lies in showing that the optimal
controller is structured. It is these structural features that
allows for an efficient implementation, even for large-scale
systems. This is in contrast with standard methods for control
synthesis, such as the linear quadratic controller, which in
general scales poorly with size, both in terms of synthesis
and implementation.

The lack of scalability of standard control methods has
prompted a great deal of research within control community
on optimal control under constraints on the controller structure
(e.g. sparsity). Early work includes team decision problems,
where multiple decisions that have access to different informa-
tion needs to be made. See for example [7]. One approach to
finding structured control is to enforce the structure on the

controller. An important contribution to this approach was
given in [8], where the notation of Quadratic Invariance is
used to give a condition under which the structured controller
synthesis problem can be recasted as a convex optimization
problem. The role of convexity has been a recurring theme,
consider for example the work on system level synthesis [9],
[10] and network realizability [11], where the problem of
finding the optimal control can again be recast as a convex
optimization problem.

In [12] it is shown that for spatially interconnected systems,
the optimal distributed controller can be found by solving
linear matrix inequalities. In [13] an optimal controller for
partially ordered sets is found by solving a set of independent
Riccati equations. The structure of the controller is similar to
ours, however the information flow is in the opposite direction.
In [14] a method for distributed synthesis of a distributed
LQ controller is derived by constructing local estimates for
the gradients of the global cost function. A slightly different
approach is taken in [15], where structured controllers are
synthesized by posing an optimization problem with a sparsity
promoting term.

Another approach to finding structured controllers is to
look for systems were the unconstrained optimal controller
is structured in such a way that it is suitable for large-scale
implementation. In [16] it is shown that for spatially invariant
systems, the optimal controller will be spatially localized and
decentralized. Other examples of distributed optimal controller
includes [17] where it is shown that for systems with symmet-
ric and Hurwitz state matrix, an optimal H∞ controller can be
found using a simple calculation involving the matrices of the
systems state-space representation. Furthermore, if the plant
has a sparsity pattern, the optimal controller will be distributed.
This result is similar to ours in that it is the plant that gives the
sparsity, without adding additional constraints to the controller.
Another interesting structured controller is presented in [18],
where the controller consists of a decentralized part, and a
rank-one coordination term.

II. THE OPTIMAL CONTROLLER

In this section we will demonstrate that the solution to the
optimal control problem in (4) does indeed have the structure
as hinted at in (5) and (6). This will be presented as Theorem 1
and Theorem 2. We will also show how the internal flows for
the more general problem (3) can be found by solving a static
convex optimization problem in Theorem 3.

However, we start by introducing the required graph theo-
retic notions to define the upstream U(i, j) and downstream
D(i, j) sets of a given edge (i, j) in a graph. We will
begin with the definition for a rooted-tree. For that case the
definitions simplify greatly, which will hopefully make the
presentation easier to follow. We also believe that rooted-
trees, corresponding to a single producer, will occur naturally
in applications. After stating the theorems, we will discuss
how the optimal controller can be implemented using local
communication. Finally, we will give the necessary definitions
to apply the theorems to arbitrary directed trees.
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A. Graph Structuring

We begin with the definition of a directed rooted-tree.

Definition 1. A directed graph is a directed rooted tree if
it contains a single vertex such that there exists a unique
directed path from this vertex to every other vertex in the
graph. Equivalently a directed tree is rooted if it contains a
single node with no parents.

The upstream and downstream sets are easy to define for a
rooted-tree.

Definition 2. For a rooted-tree we define for every edge (i, j)
the upstream and the downstream sets as follows:

1) The upstream set U(i, j) is the source node j and all its
decendents when the edge (i, j) is removed.

2) The downstream set D(i, j) is the destination node i and
all its decendents.

The definition is illustrated in Fig. 2. When it is clear
from context we sometimes drop the arguments (i, j) from
the upstream and downstream sets.

In addition to the upstream and downstream sets, we also
need to define the depth of every node to calculate the
constants γU and γD.

Definition 3. For a rooted-tree we define the depth d(i) of a
node i as follows
• The root has depth 0.
• For any other node i with parent j it holds that d(i) =
d(j) + 1.

We assume that only the root can be a producer.

Assumption 3. All nodes in the producer set I has depth zero,
i.e

i ∈ I ⇒ d(i) = 0.

The appropriate definition of the depth of a node for the
non-rooted case will be given in Definition 4. This will also
generalize Assumption 3 for non-rooted trees.

B. Theorem Statements

With the necessary definitions in place for the rooted trees,
we can now present our results. Note that these results hold
for general directed trees by replacing Definition 2 with
Definition 8 (see subsection II-D). We will first consider the
case that the cost functions are quadratic, corresponding to the
problem in (4). As already alluded to in the introduction, the
optimal controller is highly structured in that it only needs
the aggregate levels in the upstream and downstream sets to
be implemented. This is demonstrated through Theorems 1
and 2 We then show in Theorem 3 how the optimal internal
flows can be found for general convex cost functions. Here
the controller retains the structure, in that it needs information
from the same nodes as in the quadratic case. However, finding
the optimal flow on a link will require solving a static convex
optimization problem. The proofs will be given in Section III.

To simplify the description of the aggregate levels we make
the following definition for a set of nodes S. The variable
mS [t] describes the total amount of the quantity in the set S,

including the quantity currently in transit towards a node in
the set.

mS [t] =
∑
i∈S

zi[t] +
∑
j∈P(i)

uij [t− 1]

 (7)

Now we can give a formal statement of the optimal internal
flows.

Theorem 1. Consider the problem in (4) under Assumption
2-3. For every edge (i, j) ∈ E with upstream set U(i, j) and
downstream set D(i, j) as defined in Definition 2, let

γU(i,j) =

(∑
k∈U

1

α2(d(k)−d(j))qk

)−1

γD(i,j) =

(∑
k∈D

1

α2(d(k)−d(j))qk

)−1

,

where d(k) is the depth of node k as defined in Definition 3.
Then the optimal value of uij [t] is given by

uij [t] =
γU(i,j)

γU(i,j) + γD(i,j)
αmU(i,j)[t]

−
γD(i,j)

γU(i,j) + γD(i,j)
αmD(i,j)[t]. (8)

where mU(i,j)[t] and mD(i,j)[t] are the aggregate quantities
of the upstream and downstream sets as defined in (7).

Note that the optimal flow on link (i, j) only depends on
the aggregate levels in the upstream and downstream set. This
gives a sparse and highly structured controller. Similarly, the
optimal gains also only depends on the local cost function
in the upstream and downstream set, allowing for efficient
synthesis.

In Fig. 3 the structure of the feedback law is illustrated for
the graph in Fig. 2. Also note that (8) can be implemented as
a state feedback law, by letting {zi[t], uij [t− 1]} be the state
of the system.

Remark 1. The result is of course compatible with the results
presented for a string graph in [19]. Then the upstream set
is just the source node, and the the downstream set is all the
descendants of the source node, as follows from Definition 2.

We will show in the next subsection how the aggregate
levels and the γ parameters can be calculated recursively
through the graph, allowing for an efficient implementation.

The optimal production is also structured and only needs to
know the aggregate level for the entire graph.

Theorem 2. Consider the problem in (4) under Assumption
2-3. Let

R =

(∑
i∈I

1

ri

)−1

,

and

γV =

(∑
i∈V

1

α2d(i)qi

)−1

,
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where d(i) is the depth of node i as defined in Definition 3.
Furthermore, let

X = −1

2

[
(1− α2)R− α2γV

]
+

√
α2γVR+

1

4
[(1− α2)R− α2γV ]

2
.

Then the optimal total production U [t] =
∑
i∈I ui0[t] is given

by

U [t] = − X

X +R
αmV [t],

where mV is defined as in (7). The optimal production for the
individual producers i ∈ I is given by

ui0[t] =
R

ri
U [t].

The constant X is the solution to a scalar Riccati equation
defined by the aggregate costs γV and R.

Remark 2. Note that for rooted trees there can only be one
node with production, and thus U [t] = ui0 where i is the
unique producing node. We state the theorem in this general
way so that it holds for non-rooted trees as well.

We will now state the results for general convex cost
functions. The main difference is that more computations are
required to find the optimal flows.

Theorem 3. Consider the problem in (3) under Assumption 1-
3. Then for every edge (i, j) ∈ E with upstream set U(i, j) and
downstream set D(i, j) as defined in Definition 2, the optimal
value of uij [t] is given by the optimal u for the optimization
problem

minimize
u,xk

∑
k∈U(i,j)

fk(xk) +
∑

k∈D(i,j)

fk(xk)

subject to
∑

k∈U(i,j)

αd(j)−d(k)xk = αmU(i,j)[t]− u∑
k∈D(i,j)

αd(j)−d(k)xk = αmD(i,j)[t] + u.

In the above mU(i,j)[t] and mD(i,j)[t] are defined by (7) and
d(k) is the depth of node k as defined in Definition 3.

Again the optimal flow only requires the aggregate levels in
the upstream and downstream sets. However, each link must
now solve a convex optimization problem with the aggregate
levels of the upstream set and downstream set as input. These
optimization problems gain more and more decision variables
as we move up the graph. However, these type of problems
are well studied and there exists plenty of software that can
solve such problem even for a quite large number of decision
variables, for example CVX [20].

We also give the general case of Theorem 2 in Proposition
1 in Section III. However, to our knowledge, the resulting
problem would be very hard to solve even for small graphs,
and we state it as a mechanism for proving Theorem 2.

C. Controller Implementation

Theorems 1 and 3 limit the information each node needs
to the upstream set and the downstream set of each of its
outgoing links. We will now show that by exploiting that the
aggregate levels can be calculated by iterating through the
graph, the controller can be implemented using only local
communication. We only cover rooted trees in this subsection.
Non rooted trees can be handled similarly, as covered in the
next subsection.

For all nodes with no children nodes we define mi[t] =
zi[t] + uij [t − 1], where j is the unique parent for node i.
Then for all other nodes we define the node aggregate level
mi[t] to be

mi[t] = zi[t] + uij [t− 1] +
∑
k∈C(i)

mk[t].

Where j again is the unique parent of node i, except for the
root, where uij = ui0. Note that the calculation of mi[t] only
requires information from the neighboring nodes.

For link (i, j) the upstream and downstream levels can then
by computed from the node aggregate levels,

mU(i,j)[t] = mj [t]−mi[t], mD(i,j)[t] = mi[t]. (9)

This allows for a localized scheme for calculating the quanti-
ties needed to calculate the optimal flows. This is illustrated in
Fig. 4, where we consider how the upstream and downstream
level for the input considered in Fig. 2 can be calculated.

The aggregate costs γU and γD can be calculated in a
similar way. Let

γi =

 1

qi
+
∑
j∈C(i)

1

α2γj

−1

.

Then γU and γD are given by

γU(i,j) =

(
1

γj
− 1

α2γi

)−1

, γD(i,j) = α2γi.

Where again each node only needs to communicate with its
neighbors.

The formulas proposed here gives an efficient way to
implement the controller that greatly reduces the communica-
tion requirements for each node. This allows for a scalable
implementation as the number of communication channels
for each node remains low, even as the graph grows large.
As the communication is in series, the time required for
communication will grow as the depth of the graph increases.
However, the depth is typically sub-linear in the number of
nodes.

The distributed iteration of the γ parameter also allows
for the controller to be efficiently updated when the graph
changes. If a node i is added to or removed from the network,
then only those nodes that has i as an ancestor needs to update
their feedback law. How many nodes this is will depend on
depth of node i and on the graph topology.
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u84

Fig. 4: The example in Fig. 2 revisited. The upstream and
downstream sets for (8, 4) are highlighted in blue and pink.
However, by utilizing the aggregation of inventory level in (9)
node 4 can find all the information it needs from its neighbors.
Node fours aggregate level is given by m4 = m5 +m7 +m8.
Then mU(8,4) = m4−m8 and mD(8,4) = m8. Thus no direct
communication with node 6 and 9 is needed for node 4.

D. Non-Rooted Trees

We will now give the necessary definitions for defining the
upstream and the downstream sets for non-rooted trees. We
will also show how the implementation in this case can still
be implemented using local communication, as in the previous
subsection.

As there is no unique root in non rooted trees we have to
generalize the definition of the depth of a node.

Definition 4. For a non-rooted tree we define the depth d(i)
of a node i as follows: Pick any node in the graph and define
the depth for that node to be d0. Then define the depth of all
other nodes by the following rules.
• For a node i with parent j it holds that d(i) = d(j) + 1.
• For a node i with child k it holds that d(i) = d(k)− 1.

d0 is then chosen so that mini∈Vd(i) = 0.

Note that now multiple nodes can satisfy d(i) = 0 and
thus there can be multiple producers while Assumption 3 is
satisfied.

We define the existence of an undirected path in the follow-
ing way.

Definition 5. There exists an undirected path between node n1

and node nk if there exists a sequence of nodes (n1, n2, . . . nk)
such that (ni, ni+1) ∈ E or (ni+1, ni) ∈ E for all 1 ≤ i ≤
k − 1.

To describe the upstream and downstream sets we split
the nodes on the same depth into blocks. The definition is
illustrated in Fig 5.

Definition 6. Two nodes i and j are in the same block if they
satisfy the following:

1) Node i and Node j has the same depth, i.e. d(i) = d(j).
2) There exists a undirected path between node i and node

j when the incoming links to node i and node j are
removed.

Let the block of node i be denoted B(i). For rooted trees
each block contains only one node. Each block P can be

1

2 3

6

4

7

8

5

Depth 0

Depth 1

Depth 2

Depth 3

P

Fig. 5: Illustration of the graph structuring. Each row of nodes
in the picture of the graph corresponds to nodes that have
the same depth. All blocks in the graph has been marked by
dashed squares. For the block P containing node three and
four the set F(P ) are all the colored nodes. For the link (6, 4)
the upstream set has been marked in pink and the downstream
set in blue.

associated with a set of nodes F(P ), which we call its family,
in the following way.

Definition 7. For a block P , i ∈ F(P ) if
• i ∈ P

or if
• There exists an undirected path from i to a node in
P when all incoming links to the block P , that is
∀(k, l), k ∈ P , are removed.

For a node i ∈ P we also let F(i) = F(P ). This definition
is illustrated in Fig. 5.

We are now ready to define the upstream and downstream
sets for general directed trees. The definition is illustrated in
Fig. 5 and Fig. 6.

Definition 8. For a non-rooted directed tree we define the
upstream and the downstream set as follows

A node k is in the upstream set U(i, j) if the following holds
1) k ∈ F(j)
2) k = j or there exists an undirected path between k and

the source j when (i, j) is removed from G.
A node k is in the downstream set D(i, j) if the following

holds
1) k ∈ F(j)
2) k = i or there exists an undirected path from node k to

the destination i when (i, j) is removed from G.

Remark 3. Definition 8 is a generalization of Definition 2.
The proofs of Theorem 1 and Theorem 3 use this generalized
definition and thus those theorems holds also for non rooted
trees.

We will now consider how the optimal controller for non
rooted trees can be implemented. To do this we introduce the
following notation.

Definition 9. Consider an edge (i, j) where j ∈ P and with
upstream set U(i, j) and downstream set D(i, j). We let the
nodes in U(i, j) that are in P be denoted UP (i, j) and the set
of children blocks of P who’s nodes are in U(i, j) as UC(i, j).
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Similarly define DP (i, j) as the set of nodes in P that are in
D(i, j) and the set of children blocks of P who’s nodes are
in D(i, j) as DC(i, j).

The definition is illustrated in Fig. 6. Note that the nodes
in each children block is either all in U(i, j) or all in D(i, j).
Also note that both UC(i, j) and DP (i, j) might be empty. For
a rooted tree Up(i, j) is just the source node j and Cp(i, j) is
the empty set.

Starting with the blocks B without children, which thus
contains only one node i ∈ B, we define

mB [t] = zi[t] +
∑
j∈P(i)

uij [t− 1].

Note that for non rooted trees each node might have multiple
parents. By iterating through the graph, we define for block
B with children blocks C(B)

mB [t] =
∑
i∈B

zi[t] +
∑
j∈P(i)

uij [t− 1]

+
∑

ci∈C(B)

mci [t].

(10)
We can now, for every edge (i, j), calculate the aggregate
upstream and downstream level as

mD(i,j)[t] =
∑

k∈DP (i,j)

zk[t] +
∑
l∈P(i)

ukl[t− 1]

+
∑

ck∈DC(i,j)

mck [t]

mU(i,j)[t] = mB(j)[t]−mD(i,j)[t].

We can also similarly define the aggregate cost for blocks
B with no children nodes as γB = qi and for all other blocks
as

γB = qi

γB =

∑
i∈b

1

qi
+

∑
ci∈C(b)

1

α2γci

−1

.

This allows for the upstream and downstream aggregate cost
to be calculated in the following way

γD(i,j) =

 ∑
k∈DP (i,j)

1

qk
+

∑
ck∈DC(i,j)

1

α2γck

−1

γU(i,j) =

(
1

γB(j)
− 1

γD(i,j)

)−1

.

In the rooted tree case, each node only needed to com-
municate with its direct neighbors. Now each node need to
communicate with all the nodes in its block, and all its children
blocks. This is illustrated in Fig. 6, where all the quantities
needed to calculate the flow on the highlighted link are shown.
This will in general require more communication channels,
and also some abstraction in handling the block to node
communication. Still, the communication requirement will for
most graphs grow sub-linearly in the number of nodes in the
graph.

q1
z1

q2
z2

u2,·

γc1 ,mc1

γc2 ,mc2

Fig. 6: Illustration of the calculation for the flow on the
highlighted link. The upstream set is highlighted in blue and
the downstream set in pink. Furthermore UP and DP are
highlighted as the two nodes with a thick border. The two
children blocks have also been highlighted as dashed squares.
Finally all the quantities needed to calculate the flow has been
written out. That is the children block aggregate levels mci and
aggregate cost γci . And for the nodes in the parent block, node
level zi, node inflow u2,·, and node costs qi.

III. DERIVATION OF OPTIMAL CONTROLLER

The goal of this section is to prove the results presented in
the previous section. We will begin by discussing the proof
idea, before giving the proof. Throughout this section we
will use the layer of a node instead of its depth, as that is
notationally more convenient. We define the layer of a node
by first finding the maximum layer,

lmax = max
i∈V

d(i).

The layer of a node is then defined as l(i) = lmax−d(i). As can
be seen from the definition, the layers starts from the bottom
of the graph, while the depth starts from the top. We also let
l(B) denote the layer of the nodes in block B, and T as the
block in the maximum layer. Then it holds that l(T ) = lmax.
There can only be one such block as the graph is assumed to
be connected.

A. Proof Idea

The proof relies on decomposing the problem into indepen-
dent subproblems. To do so a shifted level vector, defined for
a block P as {

zi[t− l(i)], i ∈ F(P )
}
,

will be studied. See Fig. 7 for a graphical illustration. In Fig. 7
it can be noted that the highlighted flow u34[t− 3] will only
directly affect the levels z3[t−1] and z4[t−2] which are both
in the same shifted level. More generally every flow, uij [t] will
only directly affect the nodes within one shifted level vector.

We define the cost associated with a shifted level for a
block P

FP (z, t) :=
∑

i∈F(P )

fi(zi[t− l(i)]).
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4 z4[t− 2]

3 z3[t− 1]

1 z2[t] 2 z1[t]

u34[t− 3]

Fig. 7: Illustration of a shifted level vector. The shift of each
node is proportional to the layer of the node. The highlighted
link flow u34[t−3] only directly affect the source z4[t−2] and
the destination z3[t − 1], which are both in the same shifted
level.

This allows for the first term in the cost function in (4) to be
written in terms of the shifted levels in the following way,
∞∑
t=0

∑
i∈V

fi(zi[t]) =
∑
i∈V

fi(zi[0])

+

lmax∑
t=1

∑
P :l(P )=t−1

FP (z, t) +

∞∑
t=lmax+1

FT (z, t). (11)

This formula is illustrated for a three node string graph in
Fig. 8. Recall that T is the block consisting of the top layer,
and FT (z, t) is then the cost for a shifted level for the entire
graph.

In Fig. 8 we see that all but one of the levels within a
shifted level can be chosen freely by choosing the outflow
from each node appropriately. The last level will then be
decided by the total level of the previous shifted level. Thus
the possible shifted levels are only constrained by the sum
of the previous shifted level. Furthermore, from the figure it
is clear that sum of the shifted levels are independent of the
internal flows uij . This implies that each shifted level can be
optimized independently, as each flow decision only affects
one shifted level. We will show that this holds for general
directed trees by introducing a weighted sum of the shifted
levels

SP [t] =
∑

i∈F(P )

αl(i)−l(P )zi[t− l(i)],

and showing that it satisfies a simple conservation law. The
weighting reflects the fact that if we move some quantity c
from a node to one of its children, then only αc will arrive.

B. Decomposition
The time shift in the shifted level is not suitable for

controller implementation. However there is a relationship
between the shifted level and aggregate level.

Definition 10. Define the aggregate level mP [t] for block P
as

mP [t] =
∑

i∈F(P )

zi[t] +
∑
j∈P(i)

uij [t− 1]

 .

This definition is different from (7) as it is defined on
a block, and not on a set of nodes. However, it holds that
mP [t] = mF(P )[t].

z1[0]

z2[0]

z3[0]

z1[1]

z2[1]

z3[1]

z1[2]

z2[2]

z3[2]

z1[3]

z1[4]z2[3]

FB1
(z, 1) :

FB2(z, 2) :

FT (z, 3) :

FT (z, 4) :

123

Fig. 8: Illustration of the dynamics for the three node graph at
the top of the picture. The graph has three blocks. The block
B1 contains node one, the block B2 contains node two, and the
top block T contains node three. Each node has been shifted
proportional to its layer, making each horizontal slice a shifted
level. The arrows indicates were the quantities in a node can
go, i.e either stay in the node or be transported, with a delay,
to a child. Each term included in (11) has been highlighted by
dashed rectangles. It can be seen that the total level in every
row is independent of the internal flows. It can also be seen
that z3[t + 1] and z2[t + 1] can be chosen freely by picking
u2[t] = z3[t]−z3[t+1] and u1[t] = z2[t]+u2[t−1]−z2[t+1].

We will now show some important properties of the shifted
level vectors and its relationship to the weighted sum. These
properties are related to the dynamics, and are independent of
the optimization problems.

Lemma 1. For any block P , define for t ≥ l(P ) + 1

SP [t] =
∑

i∈F(P )

αl(i)−l(P )zi[t− l(i)].

Assume that z[t] satisfies the dynamics in (2). Then
(a) SP [t] satisfies the conservation law

SP [t] = α

(
SP [t− 1] +

∑
i∈P
j∈P(i)

uij [t− l(i)− 2]

)
. (12)

(b) Given a shifted level for P and the inflow to P ,

zi[t− l(i)− 1], i ∈ F(P )

uij [t− l(i)− 2], i ∈ P,
(13)

then the only constraint on the next shifted level

zi[t− l(i)], i ∈ F(P ) (14)

is that (12) is satisfied. In addition the flows

uij [t− l(j)− 1], j ∈ F(P )

are unique for every pair of values for (13) and (14).
(c) Neither SP [τ ] for τ = l(P ) + 1, nor ST [τ ] for τ > lmax,

depend of the internal flows uij [t], for t ≥ 0.
(d) It holds that

αmP [t− l(P )− 1] = SP [t].



9

Proof. Part a), c) and d) are proved in the appendix. We prove
b) here. Recall that the dynamics are given by

zi[t− l(i)] =

α
(
zi[t−l(i)−1]+

∑
h∈P(i)

uih[t−l(i)−2]
)
−
∑
j∈C(i)

uji[t−l(i)−1].

(15)

A node level zi[t − l(i)], i ∈ P is determined when all of
the node’s inflows and outflows directly affecting the level,
and the previous level zi[t − l(i) − 1], are determined . By
assumption, the inflows to nodes in P ,

uij [t− l(j)− 2], j ∈ P,

are given as well as the previous level

zi[t− l(i)− 1], i ∈ F(P ).

Thus all that remains is the flows going between any pair of
nodes in F(P ). Consider the graph containing the nodes that
have not yet fixed their level zi[t−l(i)], that is i ∈ F(P ). And
the edges that have not yet fixed their flow uij [t− l(j)− 1],
that is (i, j) j ∈ F(P ). This graph is a directed tree and thus
contains a node that is incident to only one edge (as otherwise
the graph would contain a cycle). The flow on this edge is the
only term that is unspecified in (15) for the node and must be
chosen according to the unique value so that the target node
level in (14) is achieved.

Now the graph of edges with undecided flows and nodes
with non fixed levels contain one edge and one node less.
However, it is still a directed tree as all the remaining nodes
stay connected and no cycles have been introduced. We can
once again find a node with only a single edge with unspecified
flow. The flow on this edge must again be uniquely chosen so
that the wanted node level in (14) is achieved.

This can be continued until the graph of edges with unde-
cided flows and nodes with non fixed levels only contains two
nodes and one edge. Then the flow on the last edge can be
chosen so that at least one of the nodes get the correct value.
By (a), both nodes will have the correct level if and only if
(12) is satisfied. This flow will be unique, as there is only one
flow for each node that gives the correct level.

Before we continue we will show that the problems in (3)
and (4) have a unique solution. First we show that the problems
have a bounded minimizer. This is easily done by constructing
a set of inputs that takes all the node levels to zero in finite
time with finite control effort, as fi(0) = gi(0) = 0. Let the
production at time t = 0 be such that,∑

i∈I
ui0[0] = −

∑
i∈V

(
zi[0] +

∑
j∈P(u)

uij [−1]
)

and ui0[t] = 0, t ≥ 1. Then mV [t] = 0, ∀t ≥ 1. Now it
only remains to find internal flows so that all levels are zero
in finite time. That this is possible follows from (b) and (d)
in Lemma 1. The problems in (3) and (4) both have a strictly
convex cost function, with a cost bounded from above by the
previous argument, and a cost bounded from below by zero.
Thus the optimal value for zi[t] and ui0[t] are unique. The

internal flows are not part of the cost function. However, it
follows from (b) in Lemma 1, that they will also be unique.

We now use Lemma 1 to decompose the problem by
showing that each shifted level, corresponding to a row in
Fig. 8, can be optimized independently.

Lemma 2. Assume that z is the minimizer for (4). Then for
1 ≤ t ≤ lmax and all blocks P s.t. l(P ) = t, z is also the
minimizer for

minimize
zi[t−(i)],i∈F(P )

FP (z, t)

subject to SP [t] = αmP [0]

And for t > lmax, z is the minimizer for

minimize
zi[t−l(i)],i∈V

FT (z, t)

subject to ST [t] = αmT [t− lmax − 1]

Proof. Recall that

FP (z, t) =
∑

i∈F(P )

fi(zi[t− l(i)])

and thus corresponds to a shifted level. By (b) in Lemma
1, the only constraint on a shifted level is that is satisfies
(12). By (c) in Lemma 1 the shifted level corresponding to
the constraint for each term in (11) is unaffected by the
internal flows. Thus each term in (11) can be optimized
independently, without affecting the optimal value of the other
terms. Applying Lemma 1d to (12) completes the proof.

C. Proof of the Theorems

Lemma 2 can be used to find the optimal levels in a central-
ized way, relying on the method in the proof of lemma 1b to
then find the optimal flows. However, to achieve the distributed
implementation of the controller described in the previous
section, one needs a more direct approach to finding the
optimal link flow. To do this we need to understand how the
flow uij [t] affects the upstream and downstream sets of the
corresponding link.

Lemma 3. Assume that z[t] satisfies the dynamics in (2). Then
for every edge (i, j) where the source node j is in block P ,
and with upstream set U(i, j) and downstream set D(i, j), it
holds that:∑
k∈U(i,j)

αl(k)−l(P )zk[t− l(k)] =

αmU(i,j)[t− l(P )− 1]− uij [t− l(j)− 1]∑
k∈D(i,j)

αl(k)−l(P )zk[t− l(k)] =

αmD(i,j)[t− l(P )− 1] + uij [t− l(j)− 1]
(16)

For the proof, see the appendix. We are now ready to prove
Theorem 3.
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Proof of Theorem 3. We will first show that a necessary con-
dition for zi to be a minimizer for (3) is to also be a minimizer
for

minimize
zk[t−(l(k)−1)],k∈F(B)

∑
k∈F(B)

fk(zk[t− l(k)])

subject to SB [t] = αmB [t− l(B)− 1],

(17)

for all blocks B and all t ≥ l(B) + 1.
For any block B and time t ≥ l(B) + 1 we pick a block P

in the following way: For t ≤ lmax there exists a block P s.t.
F(B) ∈ F(P ) and t = l(P ) + 1. For t > lmax take P = T ,
then F(B) ∈ F(P ). By Lemma 2 it then holds for that block
P that the optimal z must be a minimizer for

minimize
zk[t−l(k)],k∈F(P )

∑
k∈F(P )

fk(zk[t− l(k)])

subject to SP [t] = αmP [t− l(P )− 1].

(18)

We have from the definition of SP [t] that

SP [t] =
∑

k∈F(P )\F(B)

αl(k)−l(P )zk[t− l(k)] + αl(B)−l(P )SB [t],

and from Lemma 1d that SB [t] = αmB [t − l(B) − 1]. Thus
zi must be the minimizer of (17) to be the minimizer of (18).
If not, the value of the objective function in (18) could be
improved by using the minimizer for (17) for all i ∈ F(B)
and using the same zi for i ∈ F(P ) \ F(B). And it follows
that for every block B that the optimal zi[t] for (3) must satisfy
(17).

Adding the two equalities in (16) gives the constraint in
(17). Thus if (16) holds, then the constraint in (17) must also
hold. Also if the constraint in (17) holds, then so must (16) for
any uij [t−l(j)−1]. This can be seen by adding and subtracting
uij to (17) and then splitting the equality into two. Thus any
outgoing link from B, that is (i, j), j ∈ B, z is a minimizer
for (17) if and only if z and u are a minimizer for for

minimize
u,zk∑
k∈U

fk(zk[t− l(i)]) +
∑
k∈D

fk(zk[t− l(k)])

subject to∑
k∈U

αl(k)−l(B)zk[t− l(k)] = αmU [t− l(B)− 1]− u∑
k∈D

αl(k)−l(B)zk[t− l(k)] = αmD[t− l(B)− 1] + u.

Let xi = zi[t − l(i)], shift the time by l(B) − 1 and
use that l(k) − l(B) = l(k) − l(j) = d(j) − d(k) and
the theorem statement is achieved. Which then must be a
necessary condition for optimality.

We previously showed that the optimal flows exists and are
unique. Thus the necessary condition is also sufficient.

We can use Lemma 2, i.e. the fact that the shifted level
vectors are optimally distributed to simplify the problem of
finding the optimal production.

Proposition 1. Let Q(mT [t − lmax − 1]) denote the optimal
value for the optimization problem

minimize
zi[t−l(i)],i∈V

∑
i∈V

fi(zi[t− l(i)])

subject to
∑
i∈V

αl(i)−lmaxzi[t− l(i)] = αmT [t− lmax − 1]

for t ≥ lmax+1. Then the optimal production ui0[t] for problem
(3) is given by the minimizer for

minimize
ui0

∞∑
t=0

[
Q(mT [t]) +

∑
i∈I

gi(ui0[t])

]
subject to mT [t+ 1] = αmT [t] +

∑
i∈I

ui0[t].

Proof. Recall that the cost can be written as (11). From (d)
in Lemma 1 we have that for P : l(p) = t− 1

SP [t] = αmP [0],

and thus the production only affect the terms
∞∑

t=lmax+1

FT (z, t),

in (11). If the internal flows are chosen optimally, then by
Lemma 2, the total cost that the inflows affect are then given
by

∞∑
t=0

[
Q(mT [t]) +

∑
i∈I

gi(ui0[t])

]
.

The fact that

mT [t+ 1] = αmT [t] +
∑
i∈I

ui0[t]

follows from (a) and (d) in Lemma 1, since

αmT [t− lmax − 1] = ST [t]

= α

(
ST [t− 1] +

∑
i∈I

ui0[t− lmax − 2]

)

= α

(
αmT [(t− 1)− lmax − 1] +

∑
i∈I

ui0[t− lmax − 2]

)
.

We are almost ready to prove Theorem 1 and 2. However,
first we need the following lemma, which can be used to
solve the problem in Theorem 3 and find the function Q in
Proposition 1 when the cost functions are quadratic.

Lemma 4. Consider the problem

minimize
∑
i∈P

qim
2
i

subject to
∑
i∈P

αl(i)−l(P )mi = m.

Let

γ =

(∑
i∈P

α2(l(i)−l(P ))

qi

)−1

.
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Then the optimal mi is given by

mi =
αl(i)−l(P )

qi
γm

and the optimal value of the objective function is given by

γm2.

For the proof, see the Appendix.

Proof of Theorem 1 and 2. Using Lemma 4 and that the cost
functions are quadratic, we can rewrite the optimal uij from
Theorem 3 as

uij [t] = arg min
u

γU(i,j)(αmU(i,j)[t]− u)2

+ γD(i,j)(αmD(i,j)[t] + u)2.

Differentiating with respect to u gives the optimal link flow
as in Theorem 1.

By Lemma 4 we have than for quadratic cost functions, the
function Q(mT [t]) in Proposition 1 is given by

Q(mT [t]) = γTα
2m2

T [t].

Let the total production at time t be denoted U =
∑
i∈I ui0[t].

Then if the total production is split optimally along the
producers, the cost is∑

i∈I
gi(ui0[t]) = RU2,

and each individual production is given by ui = RU/ri (by
application of Lemma 4 with α = 1). This allows us to
formulate the problem in Proposition 1 as a standard linear
quadratic control problem:

minimize
U

∞∑
t=0

γTα
2mT [t]2 +RU [t]2

subject to mT [t+ 1] = αmT [t] + U [t]

This problem can be solved using the Riccati equation, see for
example [21]. Let

A = α, B = 1, Q = α2γT .

Then the solution to the scalar Riccati equation

ATXA− (ATXB)(BTXB +R)−1(ATXB)T +Q = X,

is as given in the theorem statement. The optimal total
production then follows from

U [t] = −(BTXB +R)−1BTXAmT [t].

IV. SIMULATION EXAMPLES

In this section we will study the performance of the optimal
controller in networks of different sizes and topologies. We
aim to illustrate the closed loop behavior, and study how the
control performance scales with the size of the graph. We
restrict ourselves to quadratic cost functions and study two
cases designed to illustrate dynamic performance in the face
of changes in equilibrium point, and random disturbances. For
both cases the simulations were run on two different types of

graphs; a directed string graph (every node except the last
has one child), and a binary tree graph (every node has two
children, except for those at the maximum depth).

First we consider performance when the network is subject
to non-zero initial conditions. This could for instance be
of interest if the underlying equilibrium is changing (the
initial conditions correspond to the difference between the old
equilibrium point, and the new one). From the derivation of
the optimal controller we saw that this case can be split into
two parts. The optimal distribution of the available goods,
and the optimal production. The optimal production essentially
corresponds to solving a first order system, and we will focus
on the optimal distribution here. Thus we will normalize the
initial conditions to sum to zero. To ensure a wide range of
initial conditions were considered, the initial node levels zi[0]
and the initial transport levels uij [−1] were drawn from a
multivariable Gaussian distribution

N
(

0,
M

M − 1
·
[
I − 11T

M

])
,

where M is the total number of nodes and links. This choice
guarantees that the initial values sum to zero, i.e.

∑
i∈V

zi[0] +
∑
j∈P(i)

uij [−1]

 = 0,

and keeps the diagonal elements of the covariance matrix the
same for all graph sizes. For simplicity, the cost function for
each node was set to qi = 1, the decay factor to α = 0.99.
The simulations were run 1000 times for each graph size.

Secondly we consider the case of persistent Gaussian dis-
turbances acting on the node levels zi[t]. This case could be
motivated for example by having an unknown demand on the
nodes of the underlying system. We again set qi = 1 for all
nodes, and α = 0.99. The state disturbances were set to be
normally distributed with zero mean and a standard deviation
of 0.01. We considered the optimal controller both with and
without production. For the case of production, we set the
production cost to be r = 10. 1000 simulations were run for
each graph size, and each simulation was run for 100 time
steps.

To provide some sort of comparison, a local controller was
also designed with off-the-shelf computational tools and tested
on the same simulation cases. By local, we mean that the local
controller was forced to satisfy certain structural constraints
restricting which variables were available for feedback. In
particular, the transportation on each link was decided based
only on the levels in the source node, the children of the
source node, and the goods in transit towards those nodes.
For simplicity, the control law was further restricted to be
static, and the Matlab function fmincon was used to conduct
the non-convex optimization corresponding to optimizing over
such controllers gains. Of course there are no guarantees that
this process will yield even a optimal controller subject to the
constraints (indeed, for larger graphs not even a local minima
was found). However, since the controllers designed using
the tools from this paper are globally optimal (they give a
structured solution to a standard unconstrained LQ problem),
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the performance of any local controller will necessarily be
worse, and it’s purpose is more to provide perspective than
represent a ’good way’ to design decentralized controllers.

The simulation results for the first case (random initial
conditions) are presented in Figs. 9–10. The cost per node for
different graph sizes can be seen in Fig. 9. We can see in (a)
that the optimal controller get slightly better performance as
the number of nodes increases. This is to be expected, since
otherwise it would suggest that different parts of the string
could be controlled independently. For the local controller the
performance first decreases, and then increases. This might
be due to two competing effects. On the one hand, it should
be easier to control a longer string for the same reasons as
for the optimal controller. However, as the graph gets shorter
each local controller has access to a larger subset of the total
information, which should increase performance, For the tree
case in Fig. 9b we again see that the performance of the local
controller decreases as the depth of the graph increases. We
could expect similar behavior as for the string case, however
it is not feasible to synthesize the local controller for deeper
graphs due to the exponential increase in the number of nodes.
We can also note that the string structure seems more efficient
than the tree structure for this problem, in that it yields lower
cost per node. The state trajectories for a few nodes in a
string graph of length 20 has been plotted in Fig. 10. Note
that the optimal controller brings the system to the optimal
configuration at time 20, which can be compared to the depth
of the network which is 19.

The simulation results for the second case (persistent Gaus-
sian disturbances) for different graph-sizes can be seen in
Figs. 11–12. Fig. 11 shows that the performance for the
optimal controller without production and the local controller
both improve as the graph grows. However this feature all but
disappears when production is allowed. This is likely due to
the fact that the larger the graph is, the more likely it is that the
total level is zero, meaning the need for production declines
as the graphs become larger. Secondly, while the optimal
controller still outperforms the local one, the difference is
much smaller now. We can also note that the difference
in performance between the string case and the tree case
is negligible now. State trajectories for the different control
strategies can be seen in Fig. 12.

V. CONCLUSION

We have studied a class of optimal transportation problems
over a network, where the transportation is subject to delay.
It was shown that under simple modeling assumptions the
optimal control policy has a sparse and structured solution,
suitable for large scale systems. In the case of quadratic cost
functions, closed form expressions for the optimal control were
derived. The controller was compared to a local controller
designed with off-the-shelf methods. The optimal controller
showed a significant improvement in performance for the case
of non-zero initial conditions, corresponding to the dynamical
adjustment from one equilibrium point to another.
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(a) Comparison of the performance of the local and the optimal
controller for a string graph, with an initial disturbance.
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(b) Comparison of the performance of the local and the optimal
controller for a rooted-tree, with an initial disturbance. Every node
except the ones as max depth has two children.

Fig. 9: Performance comparison for the local and the optimal
controller for a string graph and a rooted-tree graph with non-
zero initial conditions. In both cases the initial values has been
chosen so that they sum to zero.
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Fig. 10: State trajectories of the optimal and the local con-
troller for a string graph with 20 nodes and non-zero initial
conditions. The legend indicate the depth of the plotted node.
We can see that the optimal controller reaches the optimal
level (z = 0) at time 20, compared to the network depth of
19.
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(a) Comparison of the performance of the local and the optimal
controller for a string graph subject to persistent disturbance from
Gaussian noise.
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(b) Comparison of the performance of the local and the optimal
controller for a rooted-tree subject to persistent disturbances from
Gaussian noise. Every node except those at max depth has two
children.

Fig. 11: Performance comparison for the local and the optimal
controller for a string graph and a rooted-tree graph. In both
cases the the system is subjected to Gaussian noise.
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APPENDIX

Proof of Lemma 1. (a) For any block without children, which
is just a node without children, the lemma follows form the
dynamics. Now assume that for a block P the Lemma holds
for all the children blocks {C ∈ C(P )}. Then we have that

SC [t] = α
(
SC [t− 1] +

∑
i∈C
j∈P(i)

uij [t− l(i)− 2]
)
. (19)

We can rewrite the shifted level for P as

SP [t] =
∑
j∈P

zj [t− l(j)] +
1

α

∑
C∈C(P )

SC [t]. (20)

Using the dynamics the sum over the nodes in the parent block
can be rewritten as∑

j∈P
zj [t− l(j)] =

∑
j∈P

[
α
(
zj [t− l(j)− 1]

+
∑

k∈P(j)

ujk[t− l(j)− 2]
)
−
∑
i∈C(j)

uij [t− l(j)− 1]

]
. (21)

0 5 10 15 20 25 30 35 40

Time (samples)

-1

-0.5

0

0.5

1
Optimal Controller With Production

0

5

10

15

19

0 5 10 15 20 25 30 35 40

Time (samples)

-1

-0.5

0

0.5

1
Optimal Controller Without Production

0

5

10

15

19

0 5 10 15 20 25 30 35 40

Time (samples)

-1

-0.5

0

0.5

1
Local Controller

0

5

10

15

19

Fig. 12: Illustration if the optimal controller with and without
production, and the local controller for a string graph with 20
nodes subject to Gaussian noise. The legend indicate the depth
of each plotted node.

As P(i) = P for i ∈ C(P ) and l(i) = l(j) − 1 for j ∈ P(i)
it holds that∑

i∈C
j∈P(i)

uij [t− l(i)− 2]
)

=
∑
j∈P

∑
i∈C(j)

uij [t− l(j)− 1].

Inserting (19) and (21) into (20) proves the statement.
(c) Let τ = 1. Then for all P s.t. l(P ) = τ − 1 the set
F(P ) is just a node, and for that node the lemma holds, as

SP [1] = zi[1] = α
(
zi[0] +

∑
j∈P(i)

uij [−1]
)
.

Now assume the lemma holds for for all blocks B s.t. l(B) =
τ − 2, for some fixed τ ≤ lmax + 1. Then for any P such that
l(P ) = τ − 1, using (20) and (12) gives

SP [τ ] =
∑
i∈P

zi[0] +
∑
i∈P
j∈P(i)

uij [−1] +
∑

C∈C(P )

SC [τ − 1].

Thus (c) holds for τ ≤ lmax + 1 as l(C) = τ − 2.
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Now we consider ST [τ ]. The case of τ = lmax + 1 follows
from above. Let τ = lmax +1+ τ̄ , τ̄ ≥ 1. Repeated application
of (12) to ST [lmax + 1 + τ̄ ] gives that

ST [lmax + 1 + τ̄ ] = ατ̄ST [lmax + 1]−
τ̄−1∑
t=0

(
ατ̄−t

∑
ui0[t]

)
.

(d) The lemma holds for blocks with no children blocks,
that is nodes with no children, as the dynamics gives

Si[t] = zi[t− l(i)]

= α

zi[t− l(i)− 1] +
∑
j∈P(i)

uij [t− l(i)− 2]


= αmi[t− l(i)− 1].

Now assume that the lemma holds for all children blocks of
some block P . SP [t] can be written as as

SP [t] =
∑
i∈P

z[t− l(i)] +
1

α

∑
C∈C(P )

SC [t].

Applying the dynamics for the first term gives (21). For the
second term (a) gives

1

α
SC [t] = SC [t− 1] +

∑
i∈C
j∈P(i)

uij [t− l(i)− 2].

Using the induction assumption we have that SC [t − 1] =
αmC [t− l(C)− 2] = αmC [t− l(P )− 1]. The internal flows
cancel and thus P also satisfies the lemma.

Proof of Lemma 3. The edge (i, j) splits the set F(P ) into
two parts, the upstream set U(i, j) and the downstream set
D(i, j). We will first consider the dynamics on these sets when
uij [t − l(j) − 1] = 0. This allows Lemma 1d to essentially
be applied to the upstream and the downstream sets. We will
then consider the effect caused by a non zero flow on uij .
This will be easy as it only affects two nodes.

Consider the nodes in the upstream set that are also in P ,
that is UP (recall Definition 9). When uij = 0 lemma 1d can
be applied to UP as if it were a block, since it would be a
block if the edge (i, j) was removed. This gives∑
k∈U(i,j)

αl(k)−l(P )zk[t− l(k)] = αmU [t− l(P )− 1], (22)

where we have used that U(i, j) = F(UP ) and mUP
= mU .

For the downstream set there are two cases. We will show
that for both cases it holds that∑
k∈D(i,j)

αl(k)−l(P )zk[t− l(k)] = αmD[t− l(P )− 1]. (23)

If the set of nodes DP is non empty, then Lemma 1d can be
applied to DP as long as uij = 0,∑
k∈F(DP )

αl(k)−l(P )zk[t− l(k)] = αmDP
[t− l(DP )− 1].

This is equivalent to (23) as l(DP ) = l(P ). If DP is empty
then the set of blocks DC contains only one block with (i, j) as

its only incoming link, as otherwise DP would not be empty.
With slight abuse of notation2 Lemma 1d gives that∑
k∈F(DC)

αl(k)−l(DC)zk[t− l(k)] = αmDC
[t− l(DC)− 1].

However, mDC
[t− l(DC)−1] = αmDC

[t− l(DC)−2] when
the flow on (i, j) is zero, as then there is no inflow to the
block mDC

. As l(DC) = l(P )− 1 it thus holds that

1

α

∑
k∈F(DC)

αl(k)−l(DC)zk[t− l(k)] = αmDC
[t− l(P )− 1].

Finally, using that 1/α · α−l(DC) = α−l(P ) gives∑
k∈F(DC)

αl(k)−l(P )zk[t− (l(k)− 1)] = αmDC
[t− l(P )− 1].

which is equivalent to (23).
Now consider the effect of changing to a non zero value for

uij [t− l(i)−1] while keeping all other flows constant on (22)
and (23). All levels other than the source j and the destination
i will be unaffected by this change. The source will decrease
its level by u and the destination will increase its level by
αu. However, the destination node is weighted by 1/α, which
gives the lemma.

Proof of Lemma 4. Decreasing mi by ε allows mj to be
increased by

ε
αl(i)−l(P )

αl(j)−l(P )
.

At optimality it must thus hold that

qimi = qjmj
αl(i)−l(P )

αl(j)−l(P )
.

Which can be rewritten as

mj =
qi
qj

αl(j)

αl(i)
mi.

The constraint can then be rewritten as

αl(i)−l(P )mi +
∑
j∈P
j 6=i

αl(j)−l(P ) qi
qj

αl(j)

αl(i)
mi = m,

which gives that

miqi
αl(i)−l(P )

∑
j∈P

α2(l(j)−l(P ))

qj

 = m.

From which the expression for the optimal mi follows. The
optimal value is achieved by inserting the optimal value for
each mi into the cost function:∑

i∈P
qim

2
i = γ2m2

∑
i∈P

qi

(
αl(i)−l(P )

qi

)2

= γm2

2Note that DC is defined to be a set of blocks. However, here the set only
contains one block, and we use it to describe that block.



15

REFERENCES

[1] P. Kundur, Power System Stability and Control. McGraw-Hill Profes-
sional, 1994.

[2] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness and stability,” Journal of
the Operational Research society, vol. 49, no. 3, pp. 237–252, 1998.

[3] S. V. Ukkusuri and K. M. A. Özbay, Advances in Dynamic Network
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