
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Exploring grounded theory perspectives of cognitive load in software engineering

Helgesson, Daniel

2021

Link to publication

Citation for published version (APA):
Helgesson, D. (2021). Exploring grounded theory perspectives of cognitive load in software engineering. Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 19. Sep. 2024

https://portal.research.lu.se/en/publications/aeda387a-0392-45f7-be59-c95128a90c2c

Exploring
 Grounded Theory Perspectives
 of Cognitive Load

in Software Engineering

Daniel Helgesson

Licentiate Thesis, 2021
Department of Computer Science

Lund University

2

ISBN 978-91-7895-817-7 (printed version)
ISBN 978-91-7895-818-4 (electronic version)
Licentiate Thesis 2, 2021
ISSN: 1652-4691

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: daniel.helgesson@cs.lth.se
WWW: http://cs.lth.se/

Printed in Sweden by Tryckeriet i E-huset, Lund, 2021

c© Daniel Helgesson 2021

http://cs.lth.se/

ABSTRACT

The sociotechnical characteristic of software engineering is acknowledged by many,
while the technical side is still dominating the research. As software engineering is
a human-intensive activity, the cognitive side of software engineering needs more
exploration when trying to improve its efficiency and sustainability.

Aim: The aim of these studies is to increase the understanding of the impact
of cognitive load in software engineering. Our ultimate goal is to thereby to reveal
opportunities to make software engineering tools more efficient for companies and
compelling to developers.

Method: We construct and synthesise knowledge, using grounded theory ethnog-
raphy and abduction, from our empirical observations and literature on cognitive
load in software engineering, with cognitive load theory and distributed cognition
as stepping stones.

Result: We present models of cognitive load in software engineering, emerg-
ing from the analysis, which classifies cognitive load drivers into eight perspectives
– task, environment, information, tool, communication, interruption, structure and
temporal – each of which is further detailed. In addition, the second model pro-
vides an explanation on cognitive load associated to merge operations and version
control in agile software development.

Conclusion: We intend to use this conceptual model as a starting point for
the design of software engineering tools, methods and organisational structures to
improve efficiency and developer satisfaction by reducing the cognitive load.

SPIRITUAL ROLE MODELS &
PHILOSOPHICAL

INSPIRATION

Two historical figures play an important role in the research reported on in this the-
sis, Martin Heidegger and Robert Oppenheimer. Oppenheimer was my role model
as pre-teen, and I designed my first nuclear reactor at age fourteen. While un-
related, during the Nietzsche-fueled Sturm & Drang-period of my life (age sev-
enteen) I contemplated a vulgarised Heidegger maxim in along the lines of con-
frontation with death is essential for an essential life while in parallel pondering
over reality as a four dimensional time/space nexus. When I stumbled on concept
of Ba early on in this research project its’ association to Heidegger prompted me
to reacquaint myself with him, and my yoga practices brought me back to Oppen-
heimer by way of Bahavad Gita.

– ’Time is not a thing, thus nothing which is, and yet it remains constant in its
passing away without being something temporal like the beings in time.’

– ’True time is four-dimensional.’

– ’If I take death into my life, acknowledge it, and face it squarely, I will free
myself from the anxiety of death and the pettiness of life – and only then
will I be free to become myself.’

M. Heidegger

– ’Both the man of science and the man of action live always at the edge of
mystery, surrounded by it.’

– ’It worked!’

– ’Now I am become Death, the destroyer of worlds.’

R. Oppenheimer

6

It made all the difference.
Namaste.
Lund March 2021

ACKNOWLEDGEMENTS

The guardian angels and muses, without whom I would probably not be alive –
Aske, C.J., Y.S., A.H., F.A. (I owe you guys forever).

Fellow researcher – D.A. (it was truly a blast).

The supervisors, without whom this work would not have been carried out – P.R.,
E.E., E.B. (my guess is, that it was, on occasion, somewhat of a challenge).

Librarians – A.K. & O.H. (while I have acquired some basic notion on how to
execute research, those pesky databases remain tricky...).

Fellow ph.d.-students – H.M., S.R., Q.S. (for numerous interesting discussions
and oft needed LaTeX-help).

The SERG group, and the department of Computer Science.

The work in this thesis is dedicated to bullied children, and children battling
chronic disease world wide. As the odds always will be stacked against you, the

only way forward is to walk tall, kick ass, resist and bite – hard. Besides, nobody
likes a quitter...

Résiste et Mords!1

Daniel Helgesson, Lund, March 2021
1In May 1940 as the Belgian border was breeched, communications broke down. A rifle company

(roughly 40 rifles strong) failed to capture the message of general retreat and as a consequence adhered
to the previously received general order (i.e. to hold the border at any cost). The company held the
line for 18 days against the Ghost division under the command of Erwin Rommel, until they eventually
ran out of ammunition. Rommel later lamented that: ’...these were not men, they were green wolves...’
(or possibly, ’wolves in green clothes’ – sources vary in translation). Said company belonged to the
2ème Regiment de Chasseurs Ardennais, whose motto remain Resist and Bite! to this day. While their
insignia is a wild boar, they are commonly referred to as The Green Wolves. Of Wallon lineage (and
equipped with a corresponding complexion that cost me dearly during my school years) and having
battled chronic autoinflammatory issues since age 18, I hold the resilience displayed by these riflemen,
and their motto, not so much a suggestion as an imperative. Gloria fortis miles.

LIST OF PUBLICATIONS

This thesis consists of an introduction and a compilation of three papers. The
introduction gives an overview of the research topic, and it describes the papers
and contributions briefly. Paper I has been formatted in this thesis template without
additional changes from the original publications.

Publications included in the thesis
I Cognitive Load Drivers in Large Scale Software Development

Daniel Helgesson, Emelie Engström, Per Runeson, Elizabeth Bjarnason
CHASE, 2019.
DOI: 10.1109/CHASE.2019.00030

II A Grounded Theory of Cognitive Load Drivers in Agile Software De-
velopment
Daniel Helgesson, Daniel Appelquist, Per Runeson
DOI: Working manuscript

III Grounded Theory Perspectives of Cognitive Load in Software Engi-
neering
Daniel Helgesson, Per Runeson
DOI: Working manuscript

10

Contribution statement
All papers included in this thesis have been co-authored with other researchers.
The authors’ individual contributions to Papers I-III are as follows:

Paper I
First author, Daniel Helgesson (DH), and fourth author, Dr. Elizabeth Bjarnason
(EB), designed the the initial interview guides and conducted the first three in-
terviews. The first round of analysis was conducted by DH, Dr. Emilie Engström
(EE) and Prof. Per Runeson (PR). Following two additional interviews by DH, a
second round of analysis was conducted by DH and EE. The resulting taxonomy
was developed by DH, EE and PR. All interviews were transcribed by DH. The
major part of the paper was written by DH, section Method was written by EE,
section Introduction was written by PR. All authors contributed to reviewing and
editing the final submission of the paper. The published version, included in this
thesis, was cut from 8 to 4 pages by DH.

Paper II
First author, Daniel Helgesson (DH), designed the study. DH and second author
Daniel Appelquist (DA) created the data set from observations and other sources.
Interviews were conducted by DH. Focus group sessions were conducted by DH,
DA and third author Prof. Per Runeson (PR). Open coding was executed by DH
and DA. In depth analysis, consisting of focused coding and theoretical coding,
was executed by DH, using memos. Literature review was conducted by DH. The
main part of the paper was written by DH (based on memos), with the exception of
section Introduction, written by PR. Illustrations were made by DH in ink on paper
and later transferred to electronic form by PR. DH and PR collectively reviewed
and edited the version of the manuscript presented in this thesis.

Paper III
First author Daniel Helgesson conducted the abductive analysis and theoretical
coding, largely using memos. Literature review on Cognitive Load Theory was
conducted by DH with the help from librarian Andreas Karman in formulating
queries and trouble shooting results. The main part of the paper was written by
DH (based on memos), with the exception of section Introduction, written by PR.
Illustrations were a joint effort between DH and PR. DH and PR collectively re-
viewed and edited the version of the manuscript presented in this thesis.

CONTENTS

Introduction 1
1 Software Engineering and software engineering 1
2 Overall research goals . 3
3 Contribution . 4
4 Concepts . 4
5 Related work . 10
6 Epistemological stance . 12
7 Methodology . 13
8 Findings . 14
9 Limitations . 19
10 Conclusion . 19
11 Future research . 20
References . 22

Included papers 29

I Cognitive Load Drivers in Large Scale Software Development 31
1 Introduction . 31
2 Research questions . 32
3 Method . 33
4 Literature overview and analysis 34
5 Results . 35
6 Limitations . 38
References . 39

II A Grounded Theory of Cognitive Load Drivers in Agile Software De-
velopment 41
1 Introduction . 42
2 Method . 43
3 Analysis . 48

12 CONTENTS

4 Literature review . 57
5 Ethical considerations . 59
6 Threats to validity . 59
7 Sensitizing concepts . 60
8 Future research . 61
References . 62

III Grounded Theory Perspectives of Cognitive Load in Software Engi-
neering 67
1 Introduction . 68
2 Background . 69
3 Method . 71
4 Literature review on Cognitive Load Theory in a general Software

Engineering context . 76
5 Perspectives – Result . 77
6 Conclusion . 85
References . 86

INTRODUCTION

1 Software Engineering and software engineer-
ing

The meaning of Software Engineering is dual. One meaning is literal, software
engineering is the activity of engineering software – while the other, Software En-
gineering (SE) is the scientific study of software engineering activities, method-
ologies, development tools etc. The term Sofware Engineering was coined during
the first NATO conference on the matter [43] in 1968. The main raison d’etre and
mission of the Software Engineering research community is to provide practition-
ers with knowledge regarding software engineering methodologies, tools and other
relevant dimensions. But despite its name, SE is different in regards to most other
disciplines [6] in so motto that it is largely unbound by physical laws and exists in
an artificial environment.

The human centric aspects of SE was acknolwedged at an early stage – per-
sonel factors was one dimension discussed at the initial NATO conference [43].
Further, Bertelsen [6] described one major difference between software engineer-
ing and traditional engineering activities as ’the sociocultural constitution of soft-
ware’, another the (extremely) rapid progress in technology2. This reasoning was a
few years later further extended by Shaw [62]. Yet, despite a scientific understand-
ing that software engineering is a people centric, sociocultural and sociotechnical
phenomenon technical aspects of software engineering are considerably more ex-
tensively studied, and published, than softer [38] [67], more human centric, dimen-
sions of software engineering. Further, modern software development is not only
people centric, it is also high paced, iterative, information dense and dependent
on a large number of integrated and stand alone software tools and information
systems (e.g. IDE, version control, defect. handling, email etc).

2https://en.wikipedia.org/wiki/Moore%27s_law

2 INTRODUCTION

1.1 Cognitive dimensions of software engineering

Software engineering, as a phenomenon, is cognitively instensive [53], and the
cognitive capacity of humans has since the 1950s generally been accepted as finite
(and quite limited) [41] . Further, all human task resolution, problem solving and
information processing inherently induce cognitive load, mental effort, on the hu-
man mind. So, in essence, software engineering is a people centric sociotechnical
endeavour of humans operating tools iteratively under information dense condi-
tions and commonly under sharp time constraints, where it is not farfetched to
view the human mind as a cognitive bottleneck.

1.2 Cognitive load, cognitive load theory and distributed
cognition

Cognitive load can be loosely translated into mental effort or mental strain. It has
since Millers seminal paper [41] been generally accepted that the human work-
ing memory (or bandwidth for information processing) is finite and rather limited.
This is expanded on in cognitive load theory [68] which states that extraneous (un-
necessary) cognitive load should be removed from instruction materials in order
to free up more cognitive resources for the actual task at hand. In the first study
presented in this thesis we coined the term cognitive load driver to describe the
root causes of unnecessary cognitive load in a software development context. The
consequences of cognitive overload is well known (it is actually the reason human
factors engineering was created - to figure out why perfectly functioning pilots
insisted on crashing perfectly functioning airplanes, the US Air Force called in
experimental psychologists [71]).

Many software engineering task are inherently cognitively loaded (i.e. with a
high intrinsic cognitive task load) so freeing up, or minimising, extraneous cog-
nitive load, unrelated to the actual task, will ultimately allow to direct more effort
on the actual task at hand, rather than waste it on matters unrelated to the task at
hand. In all likelihood it will also make developers less stressed and error prone.

It is also easily observable that software engineering is a distributed, or col-
lective, endeavour where several people work together solving cognitively loaded
tasks, essentially a form of distributed cognition. distributed cognition is a sub-
discipline of studies of cognition that rejects one of the traditional cornerstones
of cognition, ’that cognitive processes such as memory, decision making and rea-
soning, are limited to the internal mental states of an individual’ [28]. Instead it
argues that the social context of individuals and artefacts form a cognitive sys-
tem transcending the cognition of each individual involved [21], i.e. ’a cognitive
system [that] extends beyond an individual’s mind’ [39].

2 Overall research goals 3

1.3 Content
This thesis explores cognitive load in a software engineering context, using cog-
nitive load theory and distributed cognition as scientific lenses. It includes three
papers and is organised as follows:

2. Overall research goals – this section outlines the overall research goals and
states the research tasks presented in this thesis.

3. Contribution – this section describes the scientific contribution of this thesis.

4. Concepts – this section describes, and clarifies, the concepts and constructs
used and explored in this thesis.

5. Related work – this section gives a brief overview of related work on cogni-
tive load in a software engineering context.

6. Epistemological stance – this section provide an epistemological discussion
of the contents of the thesis.

7. Methodology – this section describes the research methods used in this the-
sis.

8. Findings – this section provides an overview of the findings from the papers
included in this thesis.

9. Conclusions – this section contains a conclusion of the thesis.

10. Future research – this section outlines an overview of future research direc-
tions.

11. Papers – the chapters Paper I, Paper II and Paper III contain the papers
included in this thesis.

2 Overall research goals
The research described in this thesis has been explorative with an over-arching
research goal of exploring cognitive load in a software engineering context and
exploring methodology and scientific lenses suitable for investigating said phe-
nomena in said context. As we noted early on that research efforts on ’softer’
issues in the SE community were marginal compared to more technical aspects,
we decided to pursue an open ended explorative research goal, rather than a pre-
formulated research goal.

The explorative research goal has since been broken down in different research
tasks):

1. To explore cognitive load in a software engineering context.

4 INTRODUCTION

2. To empirically describe cognitive load in a software engineering context.

3. To explore methodologies suitable for investigating cognitive load in a soft-
ware engineering context.

4. To explore the use of distributed cognition in SE.

5. To explore the use of cognitive load theory in SE.

6. To propose models for reasoning on cognitive load in a software engineering
context.

3 Contribution

The scientific contributions of this thesis consist of:

1. An initial exploration and taxonomy of cognitive load drivers in SE, dervied
from an exploratory case study (Paper I).

2. An intial literature survey of cognition in software engineering (Paper I).

3. A model3 describing cognitive load drivers in agile software development
derived from field observations (paper II).

4. A literature survey of the use of distributed cognition in SE (Paper II).

5. A model for reasoning on how different forms, or perspectives, of cognitive
load affects productivity and cognitive sustainability in software engineer-
ing, derived from from the aggregated result of Papers I & II and the results
reported by Sedano et al. [53](Paper III).

6. A literature survey of the use of cognitive load and cognitive load theory in
SE (paper III).

4 Concepts

This section describes, and clarifies, the concepts, constructs and terminology used
in this thesis. It is divided into two subsections – Research concepts describes
concepts and constructs in the research area described in this thesis, while Emp-
istemological and methodological concepts describe overall epistemological and
methodological concepts used in this thesis.

3In order to avoid epistemological confusion we use the construct model – the corresponding
grounded theory construct is substansive theory [11]

4 Concepts 5

4.1 Research concepts

Cognition

Oxford English disctionary defines cognition as: ’The mental action or process
of acquiring knowledge and understanding through thought, experience, and the
senses.’4

In addition cognitive science (commonly referred to as cognition) is an in-
tradisciplinary scientific field where the ambition is to explore, describe and ex-
plain the function of the human mind.

Cognitive load

Cognitive load as a phenomenon, can be loosely translated into mental effort. It is
inherent in all forms av cognitive work.

Cognitive work

The meaning of cognitive work is dual. The first meaning is literal (i.e. doing work
that is cognitively loaded such as software engineering tasks), while the other is
more philosophical and/or physical. Just as load/power in the physical sense is the
time derivative of work/energy (or vice cersa work is the time integral of load).
While this reasoning is an analogy, it none the less provides a credible explanation
of why prolonged exposure to cognitive overload is unhealthy and as a consquence
should be avoided. Sedano et al. [53] highlight that most tasks in software devel-
opment are cognitively intense.

Cognitive bandwidth

As mentioned previously it has since the mid fifties, in the wake of Millers seminal
paper The magical number seven, plus or minus two: some limits on our capacity
for processing information [41], been generally accepted that the human work-
ing memory and bandwidth for information processing, or cognitive bandwidth, is
finite and distinctly limited.

Cognitive load drivers

In Paper I we coinded the term cognitive load driver to describe causes, or sources,
of unnecessary cognitive load. This largely corresponds to extraneous cognitive
load in cognitive load theory, but is used to identify the actual cause.

4https://www.lexico.com/definition/cognition

6 INTRODUCTION

Cognitive productivity & waste

In cognitive load theory extraneous (i.e. irrelevant) can be considered waste. It is
cognitive resources wasted outside of the cognitive task at hand. Reducing cog-
nitive waste will, in all likelihood, yield a decrease in cognive load and a corre-
sponding increase in terms of cognitive productivity.

Sedano et al. discuss extraneous cognitive load in relation to productivity (or
actually, waste) in software development [53]. Increase in cognitive productivity
would be one of the obvious consequenses of reducing extraneous cognitive load
(or, cognitive waste) in software engineering.

Cognitive overload

The concept of cognitive overload is the cognitive equivalent of electrical over-
load, i.e. a higher cognitive load than what is sustainable. If we see cognitive
overload as momentary the longitudinal consequence would be cognitive drain.
The phenomenon itself, and its consequences in a workplace setting are throughly
described by Kirsh [35].

Cognitive sustainability

When exploring cognitive load and thoughts on cognitive productivity, the term
cognitive sustainability was constructed. We know that longitudinal exposure to
cognitive overload not only affects productivity and learning abilities, but also
results in psychological and physical health issues5. As a consequence the concept
of cognitive sustainability could be used when attempting to formulate guidelines
for a healthier software engineering environment from an ergonomic as well as
from a cognitive ergonomic perspective.

Cognitive amplification

In the initial phases of the research described in this thesis the concept of cognitive
amplification was explored, when trying to describe the positive function of soft-
ware engineering tools. It was used to allow for a reasoning on the ratio (i.e. actual
gain) between positive aspects (i.e. cognitive amplification) and negative aspects
(i.e. cognitive load) of a software tool. The earliest mentioning of the concept en-
countered in this research is provided by Card et al. [10], and is exemplified by the
use of pen and paper when adding or subtracting large numbers. Kirsch describes
the same phenomenon when using gridded paper when adding/subtracting large
numbers [35].

5I hold the concept of burnout as self evident, and will not back it with a reference.

4 Concepts 7

Perspectives

When synthesising the results from Papers I & II with the findings presented by
Sedano et al. [53] we coined the term perspectives (of/on cognitive load). The con-
cept was the result of abductive reasoning on cognitive load theory and critique on
cognitive load theory. We realised that cognitive load, despite the actual cognitive
load driver, can be described in several different ways and that it is hard to define
in an orthogonal fashion. As a consequence we used the construct Perspectives to
signify that there is often an overlap between the different aspects of cognitive load
in a software engineering context.

The temporal domain

The temporal domain is a construct that we have used in an attempt to describe
that there is a temporal dimension of cognitive load in software engineering. The
temporal domain was encountered early on in the research process. We initially
noted temporal dimensions of cognitive load drivers in Paper I (i.e. absence of
version control/version history and strategies for finding information about events
that took place in the past. We encountered reasoning on the temporal nature of
cognition in the Heideggerian time/space nexus concept of Ba provided by Nonaka
et al. [44] and further in distributed cognition [32].

In Paper II we noted another temporal dimension of cognitive load, temporal
synthesis, exemplified by merge operations that can be described just as a cogni-
tive fusion or synthesis of two (commonly) chunks of code, commonly written by
different persons at different times. We described this as a sensitizing concept in
Paper III.

Information & instructions

In parallel with the temporal dimensions of cognitive load in software engineering
we also noted that the nature of information in software is dual. It can be viewed
as information or instructions. Regardless if we choose to view it as information
or instructions, it can be divided into two categories, namely essential informa-
tion/instructions (i.e. source code or executable code) and a meta-perspective of
essential information/instructions – i.e. information about source code (e.g. com-
ments, commit messages, design documentation etc.) or information about exe-
cutable code (e.g. issues and error reports).

4.2 Epistemological and methodological concepts

Theory & model

In this thesis I rely on grounded theory as a methodogical approach. In Paper II
a substansive theory [11] was generated, while in Paper III a set of constructs

8 INTRODUCTION

were generated. As the construct theory conveys different meanings in different
scientific disciplines and epistemological traditions we have tried to systematically
use the construct model [65] in order to avoid epistemological confusion. In the
context of this thesis model should be interpreted as a set of constructs and relations
that can be used to analyse the present and/or to predict future outcomes.

Postpositivism

In the research described in this thesis we state our epistemological position as
pragmatic postpositivism, i.e. we assume that there is a reality that can be objec-
tively (albeit imperfectly) described using qualitative OR quantitative research in-
struments and methodologies. As with theory the concept of postpositivism seems
to convey different meanings in different scientific traditions – a reflective paper
on the study described in Paper II was submitted in a course on qualitative method-
ology and was ultimately failed on epistemological grounds (i.e. it was not consid-
ered postpositivist). In this thesis I draw on the definition provided by Robson [48],
and note that there are phenomena in sociotechincal contexts that are hard to in-
vestigate and describe in a quantitative positivistic manner. None the less, I hold
it as self evident that the phenomena do actually exist and their existance have
consequences.

In order to avoid further epistemological confusion it should also be noted
that I use the word pragmatic in the literal sense, not the epistemological [3] or
philosopical sense (albeit they are all quite similar in this context). Our research in-
terest lies in producing relevant knowledge for the Software Engineering research
community and for software engineering practitioners, not epistemological blood-
sports. I think that the nature of the phenomena/-on under study should determine
the epistemological and methodological approach to inquiry, not the other way
around.

Distributed cognition

As described earlier, distributed cognition is a sub-discipline of studies of cog-
nition in which one of the traditional cornerstones of cognition, ’that cognitive
processes such as memory, decision making and reasoning, are limited to the in-
ternal mental states of an individual’ [28] is questioned and rejected. Instead it
argues that the social context of individuals and artefacts forms a cognitive system
transcending the cognition of each individual involved [21] – that is: ’a cognitive
system [that] extends beyond an individual’s mind’ [39]. The concept was pio-
neered by Hutchins who studied the cognitive activities on the navigation bridge
of US naval vessels [34].

Hollan, Hutchins and Kirsh extended distributed cognition into the realm of
human computer interaction as well as to some extent into Software Engineering,
stating that a distributed cognitive process (or system) is ’delimited by the func-
tional relations among the elements that are part of it, rather than by the spatial

4 Concepts 9

colocation of the elements’, and that as a consequence several interesting aspects
can be observed, namely that: ’[a] cognitive processes may be distributed across
members of a social group[;] [b] cognitive processes may involve coordination
between internal and external (material or environmental) structure [and] [c:] pro-
cesses may be distributed through time in such a way that the products of earlier
events can transform the nature of later events.’ (reformatted but verbatim). [32]

Cognitive load theory

As previously stated, in cognitive load theory Sweller (and others) states that the
human working memory is finite and limited, and that exposure to cognitive over-
load will impair or inhibit learning as well as problem solving [68]. Stemming
from educational research cognitive load theory divides cognitive load into three
principal components, namely intrinsic, extraneous and germane cognitive load.
Intrinsic cognitive load refers to the inherent cognitive load of processing/solving
the task at hand and extraneous cognitive load to cognitive load induced on the
mind by the environment or by how the information, or task, is presented. Ger-
mane cognitive load refers to the mental effort used when forming, constructing
and automating problem solving schemas and processing of information. cogni-
tive load theory states that reduction of the extraneous (or irrelevant) cognitive
load will reduce the burden of the working memory and therefore is associated
with more efficient learning and problem solving.

Grounded theory

Grounded theory [11] (GT) is an inductive approach to generating descriptive and
predictive theory from (mainly) qualitative data, that was originally described by
Glaser & Strauss in The Discovery of Grounded Theory [25]. With grounded the-
ory, Glaser & Strauss provided a powerful methodological framework for inductive
reasoning based on qualitative data that opposed to the quantitative and hypotetico-
deductive methodologies and/or paradigms that at the time (mid sixties) were dom-
inant in social sciences. According to Charmaz, Glaser and Strauss ’aimed to move
qualitative inquiry beyond descriptive studies into the realm of explanatory theo-
retical frameworks, thereby providing abstract, conceptual understandings of the
studied phenomena’[[11].

While there are multiple versions, or currents, of grounded theory existing in
parallel, there is a set of core principles that unify them. Charmaz & Mitchell
[12] provide the following set of core principles (or features) for all variants of
grounded theory:

1. Simultaneous data-collection and analysis.

2. Pursuit of emergent themes through early data analysis.

3. Discovery of basic social processes within the data.

10 INTRODUCTION

4. Inductive construction of abstract categories that explain and synthesize
these processes.

5. Integration of categories into a theoretical framework that specifies causes,
conditions and consequences of the process(es).

One important methodological information processing tool in the grounded
theory framework is memoing - the researcher uses memoing to write memos de-
scribing and processing information and concepts central to the research. The writ-
ing style is fast, free and loose in the spirit of the purpose, i.e. to process observa-
tions and information – not to produce paper grade prose.

Ethnography

Just as with grounded theory, ethnography stems from social sciences. Meaning
recording the life of a particular group [55] it is rooted in ethnology and anthro-
pology, with modern ethnography stemming from Malinowski’s research of in-
digenous populations during WW I. The central tenet of modern ethnography is to
describe another culture[or group] from a member’s point of view [55].

Sharp et al. [55] highlight two fundamental perspectives that make ethnogra-
phy differ from other means of qualitative inquiry used in Software Engineering,
the empathic perspective i.e. the researcher gaining insight from the group being
studied as seen through the eyes of those studied forcing the researcher to bracket
his or her presuppositions, and further the analytical focus/stance allowing the re-
searcher not only to capture what is done but also, more fundamentally, why it is
done. In addition two other prominent features of ethnography is described, the
ordinary detail of life as it happens and thick descriptions.

5 Related work

5.1 General cognition in SE

As mentioned earlier the first report on Software Engineering mentioned personel
factors as one relevant aspect of SE [43]. Since then various dimensions of cogni-
tion related to sofware engineering have been explored.

Siegmund [64] provide an overview of past, present and future aspects of pro-
gram comprehension efforts. Blackwell et al. [7] provide an historical overview of
50 years of psychology in Programming. Relevant examples of early approaches
to describe cognition in software engineering include Lagherty & Lagherty [37]
and Koubeck et al. [36].

An updated mapping study on measurements on cognitive load in software
engineering is provided by Gonçales et al. [26]. One example of a study focused
on cognitive measurements is provided by Fritz & Müller [22].

5 Related work 11

Version control from a user perspective has been studied by Church et al. [14],
de Rosso & Jackson [18] and Perez & de Rosso et al. [45].

5.2 Grounded theory in SE

Stol & Fitzgerald [65] provide a discussion on the need of theory generation in SE,
in general, as well as suggestions for a way forward.

Specific guidelines regarding to grounded theory in SE and a critical review of
the state of GT research in SE is provided by Stol et al. [66], while Hoda et al. [29]
provide additional guidelines on GT in SE.

Adolph et al. [1] and Sedano et al. [52] provide relevant reflections on the
experience of GT research in SE context.

Further, I will let work by Adolph et al. [2], Baltes & Diel [5], Sedano et al.
[53] [51] [54] and Hoda et al. [30] [31] serve as notable examples of GT research
in SE.

5.3 Ethnography in SE

Guidelines on conducting ethnographic research in SE context is provided by
Sharp et al. [55] and by Robinson et al. [47].

An updated example of ethnography in SE is provided by Zaina et al., who
used ethnography with distributed cognition as theoretical underpinning when in-
vestigating UX (user experience) information and artefacts in agile software de-
velopment teams [73].

Seminal examples of ethnograpical inquiries include Sharp & Robinson [57]
[?] and Sharp et al. [60].

5.4 Cognitive ergonomics

In Paper I we compared our findings against a taxonomy on general cognitive work
environment issues provided by Gulliksen et al. [27]. In addition Sykes [69] pro-
vides an inquiry on the cause and effect of interruptions in a software engineering
context. Kirsh [35] provides a reasoning on the cause and effect of cognitive over-
load in a general workplace setting. In addition, several chapters in ’Rethinking
Productivity in Software Engineering’ [50] border on cognitive ergonomics.

5.5 Distributed Cognition in SE

In Paper II we used distributed cognition as a scientific lens for our observa-
tions, and further charted the impact and legacy of distributed cognition in SE.
Despite the fact that the theory of distributed cognition6 was suggested as a fruit-

6The use of distributed cognition in lower case is intentional – the meaning should be interpreted
as cognitive processes that are distributed.

12 INTRODUCTION

ful approach for investigating and explicating phenomena related to software en-
gineering several decades ago [32] (Flor and Hutchins specifically studied pair-
programming [21] from a distributed cognition perspective as early as 1991), few
examples of actual software engineering studies using distributed cognition as a
scientific lens exist.

In 2014 Mangalaraj et al. [39] highlighted Sharp and Robinson [58], Hansen
and Lyytinen [28] and Ramasubbu et al. [46] as the few notable exceptions of
extant software engineering research utilising Distributed Cognition. To this list
we would like to add Walenstein [70], a recent study by Buchan et al [9] and other
works by Sharp et al. [57] [60] [61] [56] [59].

5.6 Cognitive load in SE

In Paper III we synthesised our findings from papers I & II, with the findings of
Sedano et al. [53], and further used cognitive load theory as a base for our syn-
thesis. We also charted the use of cognitive load in extant SE literature. While not
specifically using cognitive load theory as scientific lens, Sedano et al. [53] used
the construct of extraneous cognitive load in a grounded theory study classifying
software development waste. Measuring cognitive load is quite popular, e.g. Fritz
& Müller [22], and a recent systematic mapping study specifically on measuring
the cognitive load of software developers is presented by Gonçales et al. [26].

6 Epistemological stance

At the time of writing it seems prudent to highlight that all knowledge produced
qualitative research is inherently constructed7, and that I take a pragmatic postpos-
itivist [48] stance in terms of epistemology.

The aim of the research reported on in this thesis is to provide knowledge
around phenomena that do occur (i.e. exist) in the software engineering realm. De-
spite the knowledge being constructed, the phenomena do, objectively, exist, albeit
in an artificially created environment. My ambition is to investigate these phenom-
ena and their consequences as neutrally and objectively as possible, in order to
firstly provide means of understanding the cause and effect of these phenomena
and secondly to provide advice on how to lessen the impact of these phenomena.

My take is that the epistemological position of a study should reflect the nature
of the phenomenon/-a under study. When describing (cognitive load drivers), their
impact and their consequences an objectivist/postpositivist stance appears suitable
(to me). When descibing how people experience phenomenon/-a a constructivist/-
postpositivist stance is in all likelihood more suitable.

In regard to the generalisability of qualitative knowledge and single case stud-
ies, I humbly point to Anzai & Simon [4] – ’It may be objected that a general

7I hold this as so self evident that I do not see the need for a reference backing this statement

7 Methodology 13

Literature	(DC)
Observations	

Paper	II	

Literature	(CLT)	
Observations	(PI,	PII)	
Sedano et	al.	

Paper	III	

Literature	
Observations Paper	I	
Gullliksen et	al.	

Figure 1: The relation between the different studies used, and papers included, in
this thesis.

psychological theory cannot be supported by a single case. One swallow does not
make a summer, but one swallow does prove the existence of swallows. And careful
dissection of even one swallow may provide a great deal of reliable information
about swallow anatomy.’

7 Methodology

This section describes the research methods used in this thesis. Thus far the re-
search has largely been explorative, qualitative and has relied on case study method-
ology and grounded theory. The relation between the papers, and the correspond-
ing studies, included in this thesis are shown in Figure 1.

7.1 Paper I

The first study was primarily aimed at establishing the relevance of cognition as a
scientific lens in software engineering, and further to provide empirical evidence of
cognitive load drivers in SE. As a consequence the study was designed as an explo-
rative case study [49], using a flexible design, including an open ended literature
immersion to find, and explore, scientific lenses relevant for sofware engineering
from cognition.

The field study consisted of a dataset of semi structured interviews and the-
matic analysis [8] was used to analyse the data set. The design of this study was
not formulated as grounded theory per se, as previously mentioned it was designed
as an explorative case study. While not positioned as grounded theory it did con-
tain a considerable degree of grounded theory practices: it was explorative, it used
initial research goals rather than preformulated research questions, it featured it-

14 INTRODUCTION

erative data collection and analysis, as well as open coding and we returned to the
field for additional data after the first round of analysis for theoretical saturation.

The result of the first study was an initial classification of the cognitive load
drivers we encountered during the analysis. From a grounded theory perspective
this initial classification would, largely, correspond to sensitizing concepts [11].
The literature immersion provided the insight that softer/humane aspects are not a
well researched area in software engineering, and suggested distributed cognition
and cognitive load theory as scientific lenses and stepping stones for reasoning
and analysis of cognitive load. The taxonomy was compared to that presented by
Gulliksen et al. [27] for validation purposes.

7.2 Paper II

The second study, a grounded theory ethnographic study was aimed at under-
standing cognitive load drivers from the novice point of view using Distributed
Cognition as a scientific lens. The dataset was crystallised from a multitude of
data sources (field notes, focus groups, semi structured interviews, questionnaires
as well as written reflections). Further the study also involved three field exper-
iments. After the first round of coding we returned to the field for further inter-
views in order to achieve theoretical saturation. Flexibility was highlighted in the
study design, and is of high importance in the ethnographic approach [55] [20].
Charmaz [11] was used as the main grounded theory research guidelines, while
additional works of Glaser [23] [24] and Stol et al. [66] were consulted as comple-
menting perspectives.

In the study analysis was executed in three stages; open initial coding, followed
by focused coding and theoretical coding. The analysis relied heavily on memoing
[11] [23] [66].

7.3 Paper III

The third study, an abductive synthesis of the first study, the second study and the
findings of a third grounded theory case study on productivity waste [53] used
cognitive load theory as scientific lens. The findings of the studies were used as
’sensitizing concepts’ [11]. This study relied on grounded theory, specifically ab-
ductive reasoning as proposed by Martin [40]. In order to chart the use of cognitive
load theory in SE it featured a small literature study. In addition to Martin, we also
relied on reasoning on qualitative synthesis provided by Cruzes & Dybå [15] [16].

8 Findings

All three papers are aimed at the overall research goal and the first and second
research tasks, to explore and empirically describe cognitive load in a software

8 Findings 15

engineering context. The reserach tasks adressed by the individual papers are listed
in section 2.

8.1 Paper I

Paper I investigates how cognitive load affect the productivity of software engi-
neers. The interviews allowed us to create an initial taxonomy of cognitive load
drivers, causes of cognitive load, in software engineering, while at the same time
revealing that when a much disliked software system at the case company was
replaced, it was on account of license costs – not user dissatisfaction. We further
noted in the saturating interviews that a considerable amount of the missing func-
tionality lamented on by users (e.g. version control and search functionality) in the
two systems under study was actually supported by the respective platform, but
switched of in the proprietary configuration used by the case company.

The cognitive load drivers found gravitated around three clusters, namely tools,
information and work, process & structure. Ultimately the taxonomy was com-
pared to that of cognitive work environmental issues from a more general digital
work environment perspective by Gulliksen et al [27]. The clusters are shown in
Figure 2.

Two of the interviews suggested that there is a temporal dimension of cognitive
load in software engineering. The initial taxonomy created, and the literature find-
ings (e.g. distributed cognition, cognitive load theory and expertize as described
by Chi et al. [13], largely correspond to sensitizing concepts in grounded theory.

All in all, the findings of the paper suggest that:

1. Cognitive dimensions8 of software engineering were not thoroughly inves-
tigated by the SE research community.

2. Cognitive dimensions of software engineering, and end user satisfatcion of
software development tools, were not really considered as important at the
case company.

3. Further investigation of cognitive load drivers in a software engineering con-
text would benefit the software engineering community of practitioners as
well as the SE research community.

4. The suitability of distributed cognition and cognitive load theory as scientific
lenses for further research on cognitive load drivers in a software engineer-
ing context.

8Since the conjunction of the words cognitive and dimensions appears to be considered proprietary
by some reviewers it seems prudent to highlight that the use in this context is literal.

16 INTRODUCTION

Adaptation/Suitability
Lack	of	functionality
Stability/Reliability

Work/Process Tool Information

Overlap

Lack	of	automation	
Wasted	effort	
Ad	hoc
Lack	of	understanding

Lack	of	integration
Comprehension

Response	(micro)
Downtime	(macro)

Unintuitive
Inconsistent
Cumbersome

Location
Distribution
Retrieval
Overview/Zoom
Structure

Incompleteness
Reliability
Temporal	traceability

Figure 2: Visualisation of the different clusters of cognitive load drivers found in
Paper I.

8.2 Paper II

Paper II investigates how cognitive load drivers in general and temporal cognitive
load drivers affect the productivity in agile software development teams from the
novice point of view, using grounded theory ethnography, and multimethod data
collection, as main methdodology and distributed cognition as a scientific lens.
The study design was extremely flexible and open ended as we had no idea of
what we would encounter in the field study. We observed four ten person teams
consisting of sophomore computer engineering students working as a team one
day per week for seven weeks.

Using iterative open, focused and theoretical coding of the dataset we created
a (substansive) grounded theory that describes how version control, branching and
mere operations make up considerable cognitive load drivers as a consequence of
the intrinsics of Agile software development and lacking tool support/tool integra-
tion. The constructs and their causal relation are shown in Figure 3.

We further noted that grounded theory and grounded theory ethnography are
indeed suitable methodological apporaches for observing and describing human
centered phenomena in software engineering, and that distributed cognition serves
as a suitable scintific lens for investigating these phenomena, especially in a team
(i.e. distributed) context.

Literature reviews revealed that despite its’ promises, the impact of distributed

8 Findings 17

A.
Phenomenon

B.
Context

C.
Agile intrinsics

D.
Cause

E.
Confounding

factors

F.
Consequences

G.
Noted

interventions

Figure 3: Conceptual model of the causal and consequential dimensions in
regards to version control, branching and merge operations encountered in the
projects. From Paper II.

cognition in SE research has thus far been marginal. Further, in the limited litera-
ture review on version control, branching and merge operations the result was very
meagre.

All in all, the findings of the paper suggest that:

1. When not supported properly by tooling and processes, version control and
merge operations cause considerable problems in agile software develop-
ment.

2. There seems to be a considerable research gap in regards to version control
and merge operations in extant SE literature.

3. Distributed cognition is indeed a suitable scientific lens for analysing team
oriented software development.

4. Grounded theory ethnography is indeed a suitable methodology for investi-
gating some phenomena in a software engineering context.

5. Further investigation of cognitive load drivers in a software engineering con-
text would benefit the software engineering community of practitioners as
well as the SE research community.

18 INTRODUCTION

Table 1: Cognitive load perspectives grouped by cognitive load theory compo-
nents and association to the data sets. From Paper III.

CLT component Perspective PI PII [53]
Intrinsic cognitive load Task x x x
Germane cognitive load Environmental x x x
Extraneous cognitive load Information x x x

Tool x x x
Communication x x x
Structural x x x
Interruption x x x
Temporal x x

8.3 Paper III

Paper III contains a qualitative synthesis of three studies – Paper I (PI), Paper II
(PII) and the findings from a GT study on software development waste by Sedano
et al. [53]. The paper relies on qualitative synthesis as suggested by Cruzes &
Dybå [15] [16] using grounded theory abduction [40] as main methodology using
cognitive load theory as a scientific lens.

When studying critique on cognitive load theory [33] [17] [42] [19] it became
apparent that the different components of cognitive load, as described by cognitive
load theory [68], are very hard to describe in a orthogonal taxonomical fashion as
they are to some extent overlapping.

Using grounded theory abduction with a qualitative data set consisting of the
conjuction of PI, PII and [53] combined with literature we constructed a model
for reasoning on cognitive load, perspectives on cognitive load, in a software en-
gineering context.

The different perspectives consist of task, environmental, information, tool,
communication, structural, interruption and temporal. During the analysis we ad-
ditionally noted several sensitizing concepts, that will feed into the future research
proposed by Paper III and this thesis. The perspectives, their relation to the com-
ponents of cognitive load theory and their relation to the different data sets/papers
are shown in Table 1.

In the literature review we noted that while cognitive load is a phenomenon
that is known in the SE research community, it is not throughly researched. The
research that has been conducted is largely quantitative [26] using various means
of sensors for data collection and statistical inference as mean of analysis (e.g. Fritz
& Müller [22]). We noted that outside of program comprehension, the reasoning
on cognitive load is small in the SE research community. We further noted that the
impact of cognitive load theory, as such, in SE appears as small.

9 Limitations 19

9 Limitations

This section aims at adressing limitations of the research described in this thesis.
As each paper has a section on Threats to validity or Limitations this section taims
to adress the limitations of the general thesis rather than the individual papers. It
adresses limitations and validity from a GT perpsective using evaluation criterion
provided by Charmaz (and Stol et al.) [11] [66].

Credibility: Is there enough data to merit claims of the study? – The synthesis
of this thesis is based on the data set of two original field studies (Paper I and
Paper II) and the observations of a third field study [53]. The data set is rich and
constructed using a considerable degree of rigor. So, yes. There is enough data
merit to our claims.

Originality: Do the findings offer new insight? – While the observation that
softer issues in Software Engineering, in general, are not exhaustively reserached
is general, we have observed a considerable research gap in regards to cognitive
load in a software engineering context. The synthesis of Paper III offer novel per-
spectives on cognitive load in software engineering.

Usefulness: Are the theories/models generated relevant for practitioners? –
While the use of relevance to practitioners as an evaluation criteria for models
in Software Engineering is debated [65] [49], the findings of this thesis are gen-
eral and describe problems and consequences of problems existing in the software
engineering context. As such it is fair to say that the findings are relvant for prac-
titioners.

Resonance: While writing the papers we omitted the concept of resonance as
an evaluation criteria in PII/PIII – in hindsight this might have been a mistake, but
at the time of writing it did not fully make sense. While we have not had the chance
to evaluate the resonance of our findings in the populations studied, we note that
we concluded the field work of PII with focus groups, thus adding to the rigor of
the study.

10 Conclusion

While the research described this theseis has been explorative, from a phenomeno-
logical as well as from a methodological point of view, it has none the less provided
relevant knowledge. In the papers we have started charting and and describing cog-
nitive load in a software engineering context, and have proposed areas that, in all
likelihood, would benefit from additional user support in terms of tooling.

We have further successfully deployed distributed cognition and cognitive load
theory as scientific lenses for investigating and analysing cognitive load. Further
we have (quite successfully) used grounded theory ethnography and grounded the-
ory as methodology for qualitative inquiry in regard to cognitive load, using multi-
method data collection and qualitative synthesis. We have also started to describe

20 INTRODUCTION

how a temporal dimension impacts software engineering, and we have found that a
temporal synthesis is a considerable cause of cognitive load for people developing
software in an agile and distributed fashion. The field studies have been equally
challenging and rewarding, as has the methodological approach.

In conclusion, we have successfully used qualitative inquiry as a mean to shed
light over cognitive load in software engineering. Despite the fact that softer issues
has been recognized as important in software engineering for more than 50 years
there is still an overwhelming emphasis on more technical aspects within the Soft-
ware Engineering research community. Hence we see that there is a considerable
amount of relevant future research in line with this thesis that can contribute to the
body of knowledge within the research area.

11 Future research

Future research endeavours will in all likelihood include:
Further industrial case study/-ies to further explore the perspectives of cogni-

tive load. One such study has been designed but postponed due to the limited avail-
ability of case companies during Covid-19. This will be redesigned and aligned
with the findings of paper II & III, thus focusing more on version control, merge
and branching. One aim would be to further establish a concrete understanding of
what mechanisms cause cognitive load issues in a software engineering work con-
text, and to see to what extent these differ from those identified when we studied
novices. Such studies will be based on grounded theory and would include mixed
method data set construction using interviews and observations. The observations
would in all likelihood, on account of time constraints, be more focused on ’show
& tell’ (i.e. asking practitioners to demonstrate what they percieve as problematic).
Such a case study will rely on the perspectives provided in Paper III as a lens for
analysis.

While we did a rather limited literature survey on version control, branching
and merging in Paper II, a more formal systematic mapping study of extant litera-
ture on version control and merge tools in software engineering seems warranted.
In light of the findings of the limited literature review in Paper II, a more exhaus-
tive mapping study will be conducted. This could possibly be extended outside of
published papers, using grey literature.

Based on findings from Paper II a comparative benchmark of different IDEs
and corresponding GIT integration, focusing on version control and merge opera-
tions and suggested design improvements is warranted. This could possibly be ex-
ecuted as one (or ideally several) Masters’ thesis. It would of course be prudent to
prototype and evaluate suggested design improvements. Such work would initially
rely on Shneidermans golden rules [63] of user interface design and the Perspec-
tives provided in Paper III as initial lenses of this type of research. Based on the
findings of Paper III it makes sense to further investigate the temporal domain in

11 Future research 21

software engineering. Ultimately this work could focus on bridging temporal cog-
nitive gaps and develop suggestions for relevant mechanisms/designs for temporal
tool support in SE context.

From a potential long term perspective (beyond the scope this research project),
it would be interesting with a qualitative meta study on the less good aspects of ag-
ile software development and/or cognitive load as a consequence of agile method-
ologies, using grounded theory and meta-ethnograpy [15] [16]. This could possibly
be followed up with a field study using grounded theory and would include mixed
method data set construction using interviews and observations. Distributed cog-
nition would, again, serve as a scientific lens – possibly in conjunction with cogni-
tive load theory. In addition, from the findings of Paper III it would be interesting
to further explore the concept of cognitive sustainability, or the long term con-
sequenses of cognitive load and overload, in software engineering. Such a study
would use grounded theory ethnography, but be focused more on interviews, rather
than observation (observations as data collection method would in all likelihood
be difficult in temporal terms). It would be interesting to deploy a constructivist
approach in such as study, and it could also attept to capture additional aspects of
aging in software engineering, as the ability to harbor cognitive load changes with
age [72].

22 INTRODUCTION

References

[1] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory
to study the experience of software development. Empirical Software Engi-
neering, 16(4):487–513, August 2011.

[2] Steve Adolph, Philippe Kruchten, and Wendy Hall. Reconciling perspec-
tives: A grounded theory of how people manage the process of software de-
velopment. Journal of Systems and Software, 85(6):1269–1286, June 2012.

[3] Mats Alvesson and Kaj Sköldberg. Reflexive Methodology - New Vistas for
Qualitative Research. SAGE Publications, London, UK, 3rd edition, 2018.

[4] Yuichiro Anzai and Herbert A. Simon. The Theory of Learning by Doing.
Psychological Review, 86(2):124–140, 1979.

[5] Sebastian Baltes and Stephan Diehl. Towards a theory of software devel-
opment expertise. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering - ESEC/FSE 2018, pages 187–200, Lake
Buena Vista, FL, USA, 2018. ACM Press.

[6] Olav W. Bertelsen. Toward A Unified Field Of SE Research And Practice.
IEEE Software, 14(6):87–88, November 1997.

[7] Alan F. Blackwell, Marian Petre, and Luke Church. Fifty years of the psy-
chology of programming. Int. J. Hum. Comput. Stud., 131:52–63, 2019.

[8] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.
Qualitative Research in Psychology, 3(2):77–101, January 2006.

[9] Jim Buchan, Didar Zowghi, and Muneera Bano. Applying Distributed Cogni-
tion Theory to Agile Requirements Engineering. In Nazim Madhavji, Liliana
Pasquale, Alessio Ferrari, and Stefania Gnesi, editors, Requirements Engi-
neering: Foundation for Software Quality, Lecture Notes in Computer Sci-
ence, pages 186–202, Cham, 2020. Springer International Publishing.

[10] Stuart Card, Jock Mackinlay, and Ben Shneiderman. Readings in Information
Visualization: Using Vision To Think. January 1999.

[11] Kathy Charmaz. Constructing Grounded Theory. SAGE Publications, Lon-
don, UK, 2nd edition, 2014.

[12] Kathy Charmaz and Ricard Mitchell. Grounded Theory in Ethnography. In
Handbook of Ethnography. SAGE Publications, London, UK, 2001.

REFERENCES 23

[13] Michelene T. H. Chi, Robert Glaser, and Ernest Rees. Expertise in Problem
Solving. Technical Report TR-5, Pittsburg Univ PA Learning Research and
Development Center, May 1981.

[14] Luke Church, Emma Soderberg, and Elayabharath Elango. A case of com-
putational thinking: The subtle effect of hidden dependencies on the user ex-
perience of version control. In Benedict du Boulay and Judith Good, editors,
Proceedings of Psychology of Programming Interest Group Annual Confer-
ence, pages 123–128, Brighton, United Kingdom, June 2014.

[15] Daniela S. Cruzes and Tore Dybå. Recommended Steps for Thematic Synthe-
sis in Software Engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages 275–284, September 2011.
ISSN: 1949-3789.

[16] Daniela S. Cruzes and Tore Dybå. Research synthesis in software engineer-
ing: A tertiary study. Information and Software Technology, 53(5):440–455,
May 2011.

[17] Ton de Jong. Cognitive load theory, educational research, and instructional
design: some food for thought. Instructional Science, 38(2):105–134, March
2010.

[18] Santiago Perez De Rosso and Daniel Jackson. Purposes, Concepts, Mis-
fits, and a Redesign of Git. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2016, pages 292–310, New York, NY,
USA, 2016. ACM.

[19] Nicolas Debue and Cécile van de Leemput. What does germane load mean?
An empirical contribution to the cognitive load theory. Frontiers in Psychol-
ogy, 5, 2014.

[20] David Fetterman. Ethnography: step-by-step. SAGE Publications, Thousand
Oaks, California, USA, 2010.

[21] Nick V. Flor and Edwin L. Hutchins. Analyzing distributed cognition in
software teams: a case study of team programming during perfective mainte-
nance. In Jürgen Koenemann-Belliveau, Thomas Glenn Moher, and Scott P.
Robertson, editors, Proceedings of Empirical Studies of Programmers, pages
36–64, Norwood, NJ, USA, 1991. Ablex Publishing Corporation.

[22] Thomas Fritz and Sebastian C. Müller. Leveraging Biometric Data to Boost
Software Developer Productivity. In 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER), vol-
ume 5, pages 66–77, March 2016.

24 INTRODUCTION

[23] Barney G. Glaser. Theoretical Sensitivity. Sociology Press, CA, USA, 1978.

[24] Barney G. Glaser. Emergence vs Forcing - Basics of Grounded Theory Anal-
ysis. Sociology Press, CA, USA, 1992.

[25] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded The-
ory. AldineTransaction, New Jersey, USA, 1967.

[26] Lucian Gonçales, Kleinner Farias, Bruno da Silva, and Jonathan Fessler.
Measuring the Cognitive Load of Software Developers: A Systematic Map-
ping Study. In 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), pages 42–52, May 2019. ISSN: 2643-7171.

[27] Jan Gulliksen, Ann Lantz, Åke Walldius, Bengt Sandblad, and Carl Åborg.
Digital arbetsmiljö, en kartläggning (RAP 2015:17). Technical report, 2015.

[28] Sean Hansen and Kalle Lyytinen. Distributed Cognition in the Management
of Design Requirementsdistributed cognition in the management of design
requirements. In Robert C. Nickerson and Ramesh Sharda, editors, Proceed-
ings of the 15th Americas Conference on Information Systems, page 266, San
Francisco, California, USA, August 2009. Association for Information Sys-
tems.

[29] Rashina Hoda, James Noble, and Stuart Marshall. Grounded theory for
geeks. In Proceedings of the 18th Conference on Pattern Languages of Pro-
grams, PLoP ’11, pages 1–17, Portland, Oregon, USA, October 2011. Asso-
ciation for Computing Machinery.

[30] Rashina Hoda, James Noble, and Stuart Marshall. The impact of inadequate
customer collaboration on self-organizing Agile teams. Information and Soft-
ware Technology, 53(5):521–534, May 2011.

[31] Rashina Hoda, James Noble, and Stuart Marshall. Self-Organizing Roles on
Agile Software Development Teams. IEEE Transactions on Software Engi-
neering, 39(3):422–444, March 2013. Conference Name: IEEE Transactions
on Software Engineering.

[32] James Hollan, Edwin Hutchins, and David Kirsh. Distributed Cognition:
Toward a New Foundation for Human-computer Interaction Research. ACM
Trans. Comput.-Hum. Interact., 7(2):174–196, June 2000.

[33] Nina Hollender, Cristian Hofmann, Michael Deneke, and Bernhard Schmitz.
Integrating cognitive load theory and concepts of human–computer interac-
tion. Computers in Human Behavior, 26(6):1278–1288, November 2010.

[34] Edwin Hutchins. Cognition in the Wild. MIT Press, 1995.

REFERENCES 25

[35] David Kirsh. A Few Thoughts on Cognitive Overload. Intellectia, (30):19–
51, 2000.

[36] Richard J. Koubek, Gavriel Salvendy, Hubert E. Dunsmore, and William K.
LeBold. Cognitive issues in the process of software development: review and
reappraisal. International Journal of Man-Machine Studies, 30(2):171–191,
February 1989.

[37] K.Ronald Laughery and Kenneth R. Laughery. Human factors in software
engineering: A review of the literature. Journal of Systems and Software,
5(1):3 – 14, 1985.

[38] Per Lenberg, Robert Feldt, and Lars Göran Wallgren. Behavioral software
engineering: A definition and systematic literature review. Journal of Systems
and Software, 107:15–37, September 2015.

[39] George Mangalaraj, Sridhar Nerur, RadhaKanta Mahapatra, and Kenneth H.
Price. Distributed Cognition in Software Design: An Experimental Inves-
tigation of the Role of Design Patterns and Collaboration. MIS Quarterly,
38(1):249–A5, March 2014.

[40] Vivian Martin. Using Populat and Academic Literature as Data for For-
mal Grounded Theory. In The SAGE Handbook of Current Developments
in Grounded Theory. SAGE Publications, London, UK, 2019.

[41] George Abram Miller. The magical number seven plus or minus two: some
limits on our capacity for processing information. Psychological review,
63(2):81–97, 1956.

[42] Roxana Moreno. Cognitive load theory: more food for thought. Instructional
Science, 38(2):135–141, March 2010.

[43] Peter Naur and Brian Randell. Software engineering: Report on a conference
sponsored by the nato science committee. Technical report, Scientific Affairs
Division, NATO, January 1969.

[44] Ikujiro Nonaka, Ryoko Toyama, and Noboru Konno. SECI, Ba and Leader-
ship: a Unified Model of Dynamic Knowledge Creation. Long Range Plan-
ning, 33(1):5–34, February 2000.

[45] Santiago Perez De Rosso and Daniel Jackson. What’s Wrong with Git?: A
Conceptual Design Analysis. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Onward! 2013, pages 37–52, New York, NY, USA, 2013. ACM.

[46] Narayan Ramasubbu, Chris F. Kemerer, and Jeff Hong. Structural Complex-
ity and Programmer Team Strategy: An Experimental Test. IEEE Transac-
tions on Software Engineering, 38(5):1054–1068, September 2012.

26 INTRODUCTION

[47] Hugh Robinson, Judith Segal, and Helen Sharp. Ethnographically-informed
empirical studies of software practice. Information and Software Technology,
49(6):540–551, June 2007.

[48] Colin Robson. Real World Research. Malden: Blackwell, 2nd edition, 2002.

[49] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering: Guidelines and Examples. John Wiley &
Sons, March 2012.

[50] Caitlin Sadowski and Thomas Zimmermann, editors. Rethinking Productivity
in Software Engineering. Apress, Berkeley, CA, 2019.

[51] Todd Sedano, Paul Ralph, and Cecile Péraire. Sustainable Software De-
velopment through Overlapping Pair Rotation. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement - ESEM ’16, pages 1–10, Ciudad Real, Spain, 2016. ACM
Press.

[52] Todd Sedano, Paul Ralph, and Cecile Péraire. Lessons Learned from an Ex-
tended Participant Observation Grounded Theory Study. In 2017 IEEE/ACM
5th International Workshop on Conducting Empirical Studies in Industry
(CESI), pages 9–15, May 2017.

[53] Todd Sedano, Paul Ralph, and Cecile Péraire. Software Development Waste.
In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pages 130–140, May 2017.

[54] Todd Sedano, Paul Ralph, and Cecile Péraire. The Product Backlog. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pages 200–211, May 2019. ISSN: 1558-1225.

[55] Helen Sharp, Yvonne Dittrich, and Cleidson R. B. de Souza. The Role of
Ethnographic Studies in Empirical Software Engineering. IEEE Transactions
on Software Engineering, 42(8):786–804, August 2016.

[56] Helen Sharp, Rosalba Giuffrida, and Grigori Melnik. Information Flow
within a Dispersed Agile Team: A Distributed Cognition Perspective. In Ag-
ile Processes in Software Engineering and Extreme Programming, Lecture
Notes in Business Information Processing, pages 62–76. Springer, Berlin,
Heidelberg, May 2012.

[57] Helen Sharp and Hugh Robinson. An Ethnographic Study of XP Practice.
Empirical Software Engineering, 9(4):353–375, December 2004.

[58] Helen Sharp and Hugh Robinson. A Distributed Cognition Account of Ma-
ture XP Teams. In Extreme Programming and Agile Processes in Software

REFERENCES 27

Engineering, Lecture Notes in Computer Science, pages 1–10. Springer,
Berlin, Heidelberg, June 2006.

[59] Helen Sharp and Hugh Robinson. Collaboration and co-ordination in mature
eXtreme programming teams. International Journal of Human-Computer
Studies, 66(7):506–518, July 2008.

[60] Helen Sharp, Hugh Robinson, and Marian Petre. The role of physical arte-
facts in agile software development: Two complementary perspectives. In-
teracting with Computers, 21(1-2):108–116, January 2009.

[61] Helen Sharp, Hugh Robinson, Judith. Segal, and Dominic Furniss. The role
of story cards and the wall in XP teams: a distributed cognition perspective.
In AGILE 2006 (AGILE’06), pages 11 pp.–75, July 2006.

[62] Mary Shaw. Prospects for an engineering discipline of software. IEEE Soft-
ware, 7(6):15–24, November 1990.

[63] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas
Elmqvist, and Nicholas Diakopoulos. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. Pearson, 6th edition, 2016.

[64] Janet Siegmund. Program Comprehension: Past, Present, and Future. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 5, pages 13–20, March 2016.

[65] Klaas-Jan Stol and Brian Fitzgerald. Theory-oriented software engineering.
Science of Computer Programming, 101:79–98, April 2015.

[66] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded Theory in Soft-
ware Engineering Research: A Critical Review and Guidelines. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE),
pages 120–131, May 2016.

[67] Margaret-Anne Storey, Neil A. Ernst, Courtney Williams, and Eirini
Kalliamvakou. The who, what, how of software engineering research: a
socio-technical framework. Empirical Software Engineering, 25(5):4097–
4129, September 2020.

[68] John Sweller and Paul Chandler. Why Some Material Is Difficult to Learn.
Cognition and Instruction, 12(3):185–233, September 1994.

[69] Edward R Sykes. Interruptions in the workplace: A case study to reduce their
effects. International Journal of Information Management, page 10, 2011.

[70] Andrew Walenstein. Cognitive Support in Software Engineering Tools: A
Distributed Cognition Framework. PhD thesis, School of Computing Sci-
ecne, Simon Fraser University, 2002.

28 INTRODUCTION

[71] Christopher D. Wickens, Justin G. Hollands, Simon Banbury, and Raja Para-
suraman. Engineering Psychology & Human Performance. Psychology
Press, August 2015.

[72] Arthur Wingfield, Elizabeth A. L. Stine, Cindy J. Lahar, and John S. Ab-
erdeen. Does the capacity of working memory change with age? Experimen-
tal Aging Research, 14(2):103–107, June 1988.

[73] Luciana A. M. Zaina, Helen Sharp, and Leonor Barroca. UX information in
the daily work of an agile team: A distributed cognition analysis. Interna-
tional Journal of Human-Computer Studies, 147, March 2021.

INCLUDED PAPERS

CHAPTER I

COGNITIVE LOAD DRIVERS
IN LARGE SCALE SOFTWARE

DEVELOPMENT

Citation:
Daniel Helgesson, Emelie Engström, Per Runeson, and Elizabeth Bjarnason. Cog-
nitive Load Drivers in Large Scale Software Development. In Proceedings of the
12th International Workshop on Cooperative and Human Aspects of Software En-
gineering, CHASE ’19, pages 91-94, Piscataway, NJ, USA, 2019. IEEE Press.

Abstract
Software engineers handle a lot of information in their daily work. We explore
how software engineers interact with information management systems/tools, and
to what extent these systems expose users to increased cognitive load. We re-
viewed the literature of cognitive aspects, relevant for software engineering, and
performed an exploratory case study on how software engineers perceive infor-
mation systems. Data was collected through five semistructured interviews. We
present empirical evidence of the presence of cognitive load drivers, as a conse-
quence of tool use in large scale software engineering.

1 Introduction
Software engineering is a socio-technical endeavour where the technical side of
the phenomena seems to be more studied than the social side [5], and as a conse-
quence knowledge of a cognitive/ergonomic perspective of software development,
and the tools associated with these activities, appears rather small. Further, we
see no clear indications of a significant impression on the software engineering
community in terms of understanding the cognitive work environment of software
engineers [13] [12].

32 COGNITIVE LOAD DRIVERS

Objectives/
Research Questions

Knowledge/Theory

Methodology

- unit of analysis

- data collection

- data analysis

Validation

Cognitive dimensions

Review literature

Cognitive load drivers

SW Testers

Interview 1-3

Transcribing data

Initial codes

Literature review Exploratory interview study Extended interview study Knowledge synthesis

Tool architect

Interview 4

Analysing data

Review literature TheoryThemes

Interview 5

Transcribing data Analysing data

Triangulation

Refined themes

SW developer

Cognitive dimensions in SE

Figure 1: A description of how the case study evolved in terms of objectives,
knowledge and research activities

In a 2002 dissertation, Walenstein observed that there is a need for cognitive
reasoning in the design process of software development tools, and further that
there has been little research done in the area [13], a claim largely substantiated by
Lenberg et al. [5].

More recently, in a 2015 report ’Digital Work Environment’, Gulliksen et al.
made an effort to analyse the societal consequences of large-scale digitalisation of
human labour, in general [3]. In the report the authors present a literature survey,
providing updated insight into the research area. The survey found only 36 rele-
vant articles. In addition, the authors also present a taxonomy of ’Cognitive work
environment problems’.

In this study we aim to explore, and establish, a broader understanding of the
cognitive work environment of software engineers and the cognitive dimensions
of the tools used. Specifically, we aim to explore cognitive load, induced on users
by information systems or tools. We present results from an exploratory indus-
trial case study based on thematic analysis of interviews, as well as a literature
overview. Our contribution lies in presenting in vivo observation of cognitive prob-
lems associated with tool use in large-scale software engineering.

2 Research questions

The purpose of this study is to gain insight into the problem domain of cognitive
load, primarily as a consequence of tool use, in large scale software development.
Hence it is exploratory in nature, and focuses on two tools central for communica-
tion and knowledge management at the case company.

The overall exploratory purpose is refined into two research questions:

RQ1 Which types of cognitive load drivers can be observed in large-scale soft-
ware engineering, primarily as a consequence of tool use?

RQ2 How do software engineers perceive the identified cognitive load drivers in
their digital work environment?

3 Method 33

The research questions are anchored in software engineering and cognitive science
literature, and addressed by interviewing practitioners. The first question uses the
cognitive literature as a lens, while presenting empirical observations from the
interview material. The second question reports the interviewees’ perception of
problems found in RQ1.

3 Method

We conducted a four stage case study, using a flexible design [10]; consisting of lit-
erature review, interview study, extended interview study, and knowledge synthesis.
To mature the knowledge, we iterated reviewing literature, conducting interviews,
transcribing and analysing data.

The case company is an international corporation, the studied division develops
consumer products in the Android ecosystem. The software is embedded in hand-
held devices. The studied development site of the company has 1000 employees
and developers work in cross-functional teams using an agile development pro-
cess. The development environment is primarily based on the toolchain associated
with the Android ecosystem.

The case study is informed by five interviews. We started with three interviews
of people from a test team – a test manager (i1), and two testers (i2, i3). After an
initial analysis of the of interviews, one additional interview (a tool architect, i4)
was conducted to to provide background. A final interview (a software developer,
i5) was added to validate the findings. All interviews were recorded, transcribed
by the first author, then iteratively coded and analysed by the authors collectively.

The first three interviews were semistructured, following an interview guide.
These three interviews were conducted by the first and fourth authors collectively.
The fourth interview was specifically centered around the two most discussed tools
of interviews 1-3. The main architect of these tools was selected for this interview,
due to being able to provide background on the development history, as well as
rationales on certain design decisions. This interview was conducted by the first
author. The fifth person interviewed was selected as he had worked with the defect
management system since its introduction ten years ago. This interview followed
the protocol of the first three. The interview was conducted by the first author.

The data was analysed as outlined in A set of initial codes were identified
during the transcription of the first three interviews by the first author. These codes
were then used to create a set of themes in two iterations. The fourth and fifth
interviews were used to validate and extend the initial set of interviews. The themes
were then refined, and reapplied to all five interviews to extract information on
cognitive load drivers. The main iterations of the thematic analysis were executed
by three authors collectively.

The classification of cognitive load drivers was then validated against the clas-
sification presented by Gulliksen et al.

34 COGNITIVE LOAD DRIVERS

4 Literature overview and analysis

4.1 Purpose and strategy

The purpose of our literature overview is twofold as we aim to: i) provide an
overview of cognitive research, relevant and related to software engineering; and
ii) present qualitative observations from relevant cognitive literature, not specif-
ically targeting software engineering, that can serve as a step stone for further
research. It should be noted that we, by no means, claim that this is a formal, nor
systematic, literature study [6]. What we present are, essentially, qualitative find-
ings from an exploratory literature study, executed as a part of an exploratory case
study.

4.2 Exploratory survey of cognitive research related to
Software Engineering

In her keynote at ASE 2018 [8], Murphy presented an updated example of cross
industrial/academic software engineering research bordering on cognition, which
emphasizes the relevance of context in software engineering. Arguably, the most
researched cognitive aspect of software engineering, historically, is program com-
prehension – a comprehensive overview of past, current and future research direc-
tions of program comprehension is presented by Siegmund [12], while Sharafi et
al. systematically reviewed software engineering research, that use eye-tracking [11].
Human aspects of software engineering was studied by Lenberg et al. [5], claiming
that less than 5% of the articles studied "a ’soft’ or human-related topic".

While there is a lot of research on Human Computer Interaction in general,
very little is specifically looking at software development and tools. However, there
are examples of articles on usability of software tools, e.g., Myers et al. [9], Dillon
and Thomas [2]; as well as on design of software tools, e.g., Holzinger [4].

In conclusion, the problem with cognitive research in Software Engineering
appear as being twofold i) not very much research has been done beyond code
comprehension, and ii) the research has rarely been executed in the real world, ’in
vivo’, context.

4.3 Practical implications of human cognitive limitations

It has, since Miller’s ’The Magical Number Seven, Plus or Minus Two’ [7] from
the 1950’s, been generally accepted that the human working memory is finite. Ac-
cepting that ’the capacity of the human working memory’ and cognitive bandwidth
(i.e. the amount of cognitive load a human mind can process) are closely related,
it can be deduced that unnecessary cognitive, or mental, load is likely to decrease
the cognitive bandwidth, which over time translates into ’throughput’ or ’work’.
Miller’s findings are generally accepted, although later research shows the actual

5 Results 35

bandwidth being lower than Miller proposed [1]. Herein lies the main rationale for
studying cognitive load drivers - if all tools (or tasks) induce cognitive load on the
subject, keeping the undesired cognitive load to a minimum will allow for more of
the cognitive bandwidth being used for relevant chores and not practical waste.

5 Results
We analysed the interview data, partially in the light of the general cognition liter-
ature summarised above, and identified different types of load drivers (RQ1), and
perceived problems in the digital work environment (RQ2).

5.1 Identified cognitive load drivers (RQ1)
During the analysis of the interview material, we identified factors mentioned by
interviewees, which were interpreted as having an impact on the cognitive load of
the developers, i.e. being cognitive load drivers. Then, in the coding, these factors
were grouped into items, which characterise the cognitive load, e.g. lack of adap-
tation of a tool to the work task. The items were then grouped into themes and
finally clustered into the object of the cognitive load drivers.

The two main clusters of load drivers in the thematic analysis are: Tool – cog-
nitive load directly associated to use of tools; and Information – cognitive load
associated to information management, information flow and information load re-
spectively. In addition we found a third cluster: Work process – cognitive load
derived from processes and organisational aspects of the workplace.

Tool

The aspects of cognitive load associated to tools, are of three kinds, namely intrin-
sic, delay related, and interaction.

Intrinsic aspects include lack of functionality, manifesting itself as use of tools
with poor adaptability/suitability to the purpose for which they were intended,
including lack of functionality. For example, the search functionality is not up to
date, which makes it hard to find old defect reports. Further, lack of stability or
reliability prevent users from trusting the tools. ’...if it crashes all data is lost’
(i2). Overlap and lack of integration prevent users from working efficiently, as it
causes redundant work (e.g. copying information from one tool/system to another).
Finally, comprehension, i.e. understanding what is going on when using the tool,
is a cognitive load factor – ’It is not obvious how it should be used.’ (i3).

Delay is an absence of response in a tool or system. It can be observed in our
interviews as a state of forced concentration when the user is forcing information
to remain in working memory while waiting for the tool to respond; and it can be
observed in terms of system downtime. We observed cognitive load from response
delays at the micro level, as noted by interviewee i3: ’But when it is non responsive

36 COGNITIVE LOAD DRIVERS

you loose focus. You can’t just stay focused.’ Further, downtime on the macro
level scale beyond a few seconds effectively prevents all work with the system.
’It has happened that [the tool] has been down for longer periods, especially after
upgrades’ (i2).

Three different aspects of cognitive loads were identified which considered
consequences of interaction issues with tools. Unintuitive implies that the users
find the tools hard to use, causing frustration and unnecessary cognitive load to
the user as he/she must repeatedly find out how to complete a task. ’I felt that
I had to transform my [mental] model to some kind of database model, in order
to understand how the tool worked’ (i5). Inconsistent systems or different parts
of a system work rather differently in terms of interaction, causing frustration to
the user as he/she repeatedly must determine how to solve a task, in the current
context, specifically. Cumbersome interaction is when functionality is missing or
implemented in such a way that the user is forced to waste energy doing what is
considered unnecessary work.

Information

The quality of the information in itself is the second cluster of cognitive load
drivers. The different aspects of cognitive load associated to the integrity of in-
formation are related to incompleteness of information, which causes the user to
spend effort in asserting that information is complete. The lack of reliability of the
information is causing the user to spend effort in asserting that information is cor-
rect and up-to-date (e.g. caused by lack of version control). Interviewee i2 stated:
’The main issue is that there is no revision handling/version control’. Finally, the
temporal traceability of information over time is needed to help a user to bridge a
temporal gap in order to assess the current situation, e.g. see if an issue has been
reported before, or if an error has been fixed in an earlier release.

The different aspects of cognitive load associated with the organisation of in-
formation is related to location, i.e. having a hard time finding information, re-
trieval, i.e. having a hard time retrieving information, distribution, i.e. not know-
ing where to store information or whom to distribute it to, overview/zoom, i.e.
absence of overview or zoom views cause cognitive load when browsing infor-
mation. ’There is no overview’ (i2). Finally, structure is when the information is
structured or organised in a cumbersome fashion, e.g. as mentioned by i3, when
test results are not saved per test run, something that later cause problems with
information accessibility and affects the users’ ability to find correct information.
The same was indicated by i1, who stated that: ’If I rerun this test project I only
see the last result’, indicating that the visualisation delta between the current run
and the previous run would be beneficial.

5 Results 37

Work process

The aspects of cognitive load associated to work process mainly gravitate around
lack of support, manifesting itself in wasted effort; either by doing unnecessary
work, or by having to spend effort in finding out how to solve a task in a specific
tool or in a certain team. Cognitive load drivers in this cluster are related to lack
of automation, wasted effort (be it unnecessary or redundant), illustrated by one
interviewee (i2), stating on mandatory information fields to be filled out even when
not needed. Further, ad hoc implementation of tools or processes, lead to wasted
or inconsistent work process, since they are implemented differently in different
parts of the organisation. Finally, lack of understanding of the intrinsics of a large
organisation can be a load driver itself.

Validation of empirical findings

We validated our collection of cognitive load drivers against the set of ’Cognitive
work environment problems, identified by Gulliksen et al. [3]. In light of that they
studied digitalization of work in general, it is quite natural that the cognitive issues
identified differ somewhat compared to our findings. That being said, there does
not appear to be any contradictions between the two sets, and while not identical,
they are largely similar.

5.2 Perceived problems (RQ2)

The main issue with the test management tool, was missing revision control and
absence of revision history. Furthermore, all interviewees had noted that there was
no strict ownership, meaning that any user could change test cases and test scripts
as they saw fit. The main issue with the defect management tool, apart from cum-
bersome interaction, was that omission of search functionality - which makes it
very hard to find error reports (e.g. duplicated, closed or obsolete error reports). To
exemplify, one user used the notification e-mails supplied by the defect manage-
ment tool to create his own temporal model/history of the error reports handled by
his team (i5). Furthermore, as a consequence of the interaction issues with the tool,
the quality of the data extracted from the system was perceived to be quite unre-
liable (i4). The same interview revealed an interesting observation regarding the
selection/acquisition of systems. Despite the discontent among the users, and the
apparent flaws of the tool, these aspects were not considered part of the business
case when the defect management system was replaced. Instead, the sole rationale
for the change was, according to the interviewee, that the licensing cost of the new
tool/system was significantly lower than that of the old tool.

38 COGNITIVE LOAD DRIVERS

5.3 Summary
We conclude that cognitive load drivers are indeed present and have considerable
impact in large-scale software engineering, in this specific case, and that the load
drivers identified gravitate around three clusters; ’Tools’, ’Information’ and ’Work
process’.

6 Limitations
The literature review is not complete, in terms of covering all cognitive science
literature relevant for software engineering, nor all software engineering literature
related to cognition. The goal of the literature review and analysis is to create a
foundation for the exploratory case study. Thus it is sufficient to have relevant cog-
nitive science literature as a basis, which we ensure by having some core scholars
represented, such as Miller, [7] and Siegmund [12]. In regards of software engi-
neering literature, we observe that there are some aspects of cognition studied,
which confirms it being a relevant perspective.

The case study is conducted at one company, with a limited sample size of
interviews, limiting its external validity. However, the aim of the study is to ex-
plore the field. We have, in all likelihood, missed some cognitive load drivers, that
are not present in the case study context. Our validation against Gulliksen et al’s
taxonomy [3] shows a sound mapping of the cognitive load drivers in a general
working context to those found in this study. The authors have long working and
collaboration history with the case company, which helps improving the construct
validity although it may introduce bias. However, as we only provide evidence of
the presence of cognitive load drivers, that does not limit the validity of the find-
ings. We conclude, that with the exception of research on program comprehension,
little is published on cognitive aspects of tool use in software engineering. We also
observe that there is indeed work in the cognitive science area relevant for software
engineering, which could be used to lay out the theoretical basis for studying and
improving software engineering from a cognition point of view. Grounded in the
literature in the field, we conclude that we in this exploratory study have found, and
presented, empirical evidence of the presence of cognitive load can be observed in
large-scale software engineering, RQ1. We further conclude that it is indeed is a
problem for practitioners, RQ2. Our classification of the load drivers found gravi-
tates, or clusters, around ’Information’, ’Tools’ and ’Work/Process’. This research
was financed by projects EASE and ELLIT respectively.

REFERENCES 39

References
[1] Nelson Cowan. The Magical Mystery Four: How Is Working Memory Ca-

pacity Limited, and Why? Current Directions in Psychological Science,
19(1):51–57, February 2010.

[2] Brian Dillon and Richard Thompson. Software development and tool usabil-
ity. In 2016 IEEE 24th International Conference on Program Comprehension
(ICPC), pages 1–4, May 2016.

[3] Jan Gulliksen, Ann Lantz, Åke Walldius, Bengt Sandblad, and Carl Åborg.
Digital arbetsmiljö, en kartläggning (RAP 2015:17). Technical report, 2015.

[4] Andreas Holzinger. Usability Engineering Methods for Software Developers.
Commun. ACM, 48(1):71–74, January 2005.

[5] Per Lenberg, Robert Feldt, and Lars Göran Wallgren. Behavioral software
engineering: A definition and systematic literature review. Journal of Systems
and Software, 107:15–37, September 2015.

[6] Yair Levy and Timothy J. Ellis. A Systems Approach to Conduct an Effective
Literature Review in Support of Information Systems Research. Informing
Science: The International Journal of an Emerging Transdiscipline, 9:181–
212, 2006.

[7] George A. Miller. The magical number seven, plus or minus two: some limits
on our capacity for processing information. Psychological Review, 63(2):81–
97, 1956.

[8] Gail C. Murphy. The Need for Context in Software Engineering (IEEE CS
Harlan Mills Award Keynote). In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, ASE 2018, pages
5–5, New York, NY, USA, 2018. ACM.

[9] Brad A. Myers, Aandrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon.
Programmers Are Users Too: Human-Centered Methods for Improving Pro-
gramming Tools. Computer, 49(7):44–52, July 2016.

[10] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case study
research in software engineering: guidelines and examples. Wiley, 2012.

[11] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. A systematic lit-
erature review on the usage of eye-tracking in software engineering. Infor-
mation and Software Technology, 67:79–107, November 2015.

[12] Janet Siegmund. Program Comprehension: Past, Present, and Future. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 5, pages 13–20, March 2016.

40 COGNITIVE LOAD DRIVERS

[13] Andrew Walenstein. Cognitive Support in Software Engineering Tools: A
Distributed Cognition Framework. 2002.

CHAPTER II

A GROUNDED THEORY OF
COGNITIVE LOAD DRIVERS

IN AGILE SOFTWARE
DEVELOPMENT

Citation:
– working manuscript

Abstract

Context: Agile software development in teams is a socio-technical iterative ac-
tivity involving a network of people, software and hardware. The capacity of the
human working memory is limited, and cognitive load is induced on developers
by tasks, software systems and tools.

Objective: The purpose of this paper is to identify the largest cognitive chal-
lenges faced by novices developing software in teams.

Method: Using Grounded Theory, we conducted an ethnographic study for
two months following four ten person novice teams, consisting of computer engi-
neering students, developing software systems.

Result: This paper identifies version control and merge operations as the largest
challenge faced by the novices. The literature studies reveal that little research ap-
pears to have been carried out in the area of version control from a user perspective.

Limitations: A qualitative study on students is not applicable in all contexts,
but the result is credible and grounded in data and substantiated by extant literature.

Conclusion: We conclude that our findings motivate further research on cog-
nitive perspectives to guide improvement of software engineering and its tools.

42 A GROUNDED THEORY

1 Introduction
With the advent of agile methodologies, the socio-technical character of software
engineering has been further promoted. With its emphasis on ’individuals and in-
teractions over processes and tools’1, the Agile manifesto makes a strong promo-
tion of the social side. The technical side of the phenomena seems to be more
studied than the social side [22] [39], although human factors were part of soft-
ware engineering already from its inception. For example, personell factors were
discussed at the NATO conference 1968 [25]. In their summary of 50 years of the
psychology of programming, Blackwell et al. synthesize research in the intersec-
tion between several research communities [3]. Referring to Bødker [4], they see
three major waves of research, namely ’in the first wave, cognitive psychology and
human factors; in the second wave, social interaction within work settings; and in
the third wave, a focus on everyday life and culture.’.

As a contrast to the third wave scaling down towards the craft or hobby pro-
gramming, we would like to bring the up-scaling of software engineering into
attention. The complexity added by composing systems of systems, the increas-
ing and constant change enabled by agile methodologies and DevOps, the more
and more powerful tools for software engineering – all add to the cognitive load
of developers and managers of software engineering projects. Blackwell et al.
claim in their proposal for a future research agenda, that ’’Design thinking’, solv-
ing ’wicked’ problems, and reasoning more broadly about software systems and
systems-of-systems has not received the sort of attention that has been devoted to,
say, program comprehension.’ [3].

In an attempt to more broadly adress the cognitive load induced from these
trends, we studied cognitive load drivers in large scale software development [16]
and found three clusters of drivers, namely tools, information, and work & process.
We also noticed that the temporal perspective of software development, particu-
larly revision control created specific problems.

To further advance the understanding of cognitive load in software engineer-
ing, we set out to ethnographically study agile software engineering project, using
grounded theory. As we hypothesise that some of the cognitive leads are compen-
sated and mitigated through increased experience and work-arounds learned over
the years, we choose to study novice software engineers [20]. Our study context is
quite advanced for novices, an agile software engineering course, running for 14
weeks, in which students work in 10 person teams in a simulated work environ-
ment, adhering to XP principles. We observe four teams out of a total of twelve
teams participating in the course.

Our research goals are to identify the most dominant cognitive load drivers and
to observe differences and similarities between groups with different characteris-
tics. We combine the teacher role of on-site customer with the ethnographer role,
taking field notes of the observations. Further, we collect weekly questionnaires,

1https://agilemanifesto.org

https://agilemanifesto.org

2 Method 43

short reflection notes from the students, and arrange a focus group discussion with
each team. We use grounded theory practices in coding all the material, from which
our theory emerges.

We conclude that version control, branching and merge operations is the dom-
inant load factor in the projects, and thus we explore this phenomenon in detail.

2 Method

2.1 Grounded theory
Grounded theory (GT) is a systematic and rigorous methodological approach for
inductively generating theory from data [14] [6] [37]. Stemming from social si-
cences, GT was developed by sociologists Glaser and Strauss, as a qualitative in-
ductive reaction to the quantitative hypotetico-deductive reserach paradigms dom-
inant in the 1960’s. The main difference, apart from being qualititative rather than
quantitative, is that the purpose of GT aims at generating theory, rather than to be
used as an instrument for validation, or testing, of theory [37]. It is iterative and
explorative [6] in nature, and thus suitable for answering open ended questions
such as what’s going on here? [37] [1]. Specific guidelines and suggestions for GT
research in Software Engineering are provided by Stol et al. [37].

We primarily opted for Charmaz GT handbook [6] as guidelines (in addition
we also consulted earlier works by Glaser [12] [13]), specifically using grounded
theory ethnography [7] – an approach that gives ’priority to the studied phe-
nomenon or process – rather than the setting itself ’ [6]. The ethnographic ap-
proach allows for exploring not only what practitioners do, but also why they do
it [30]. Core elements in the ethnographic approach is the empathic approach em-
phto describe another culture from the members point of view and the intrinsic
analytical stance [30]. As with grounded theory, modern ethnography also stems
from social sciences [30]. Not extensively used in Software Engineering [30], it
has however been used to study agile teams [33] [32].

2.2 Research goals
Central to ‘original’ Glaserian GT and Charmaz Constructivist GT is that the ac-
tual/final research questions are not defined up front. In the case of Glaser the
researcher should start with an area of interest [13] [37], in the case of Charmaz
the researcher should start with initial research questions that evolve through the
study [6] [37]. We decided to pursue two open ended research goals:

A) To identify the most dominant cognitive load drivers from the novice point
of view, and

B) To chart what differences or similarities that can be observed between the
different group compositions.

44 A GROUNDED THEORY

2.3 Case description

The course that we used as study object is a mandatory course for sophomore com-
puter science students aiming at teaching practical software development in teams
using agile methodology. The course runs for two terms (14 weeks) and consists
of one study block (seven weeks) consisting of lectures and practical lab work, and
one study block (seven weeks) in which the students work together as 10 person
teams, largely adhering to XP principles [32] developing a software product. All
teams develop a software system based on the same basic stories, but the stories are
somewhat open ended leaving room for differentiation. The teams are coached by
two senior students undertaking a course in practical software coaching, that runs
in parallel for the same duration. PhD students serve as customer for 3-4 teams
each.

The teams develop their system for a term (seven weeks) in 6 full day sprints,
each preceded by a two hour planning session in which the cost/effort for the user
stories are estimated by the students and prioritised by the customer. The students
make 3–4 incremental releases during the project, roughly with a cadence of one
release every two sprints.

2.4 Design considerations

We opted for a flexible case study design [29], to allow for improvisation based on
observations and forces outside of our control (which once you take research into
the wild are plentiful). Once in the field, flexibility becomes utterly important [30]
as the researcher must be ready to adapt to changing situations quickly.

We had a strict time box for our field study, since the course executed over
the duration seven weeks with one day sprints on Mondays, following a two hour
planning session on the Wednesday before. Apart from the fixed schedule for ob-
servations we also had to take into account the work load of the students when
injecting experiments and eliciting interviews. We had the ambition to cause as
little disturbance as possible. In order to achieve triangulation we opted to collect
as many data sources as possible.

We also decided to use Distributed Cognition [18] as initial lens for our ob-
servations. While the use of an initial lens could be thought of by some readers
as contradictory to the central tenet in grounded theory, we hold this (potential)
critique as moot. We were targeting observations of a cognitive load drivers in in-
terconnected network of people and digital tools, so we needed some starting point
for our observations.

2.5 Student selection

Firstly we anonymously picked 14 student candidates, based on a high grade
(grade average in excess of 4.5 on five grade scale, where pass is denoted as

2 Method 45

3) in the first two programming courses, and a lower grade (i.e. pass or incom-
plete/fail) grade in multidimensional calculus. Secondly we anonymously picked
14 student candidates based on a high grade (grade higher than pass on five grade
scale, where pass is denoted as 3) in multidimensional calculus, regardless of their
grade in programming courses.

The two anonymous candidate lists were then sent to the course responsible
who then created one experimental group each out of the two candidate lists and
two randomly selected groups. After this process we had four groups in total. It
should be noted that the authors at no point in time were informed of what group
consisted of what selection.

2.6 Consent

Together the course responsible and the first author ultimately reached the conclu-
sion that the optimal solution (in regards to time constraints and complexity) was
to inform the students in the four groups at the start of the course that we would be
carrying out research throughout the course, describe the overall purpose/general
research goal of the study, that we were looking at the groups and not the indi-
vidual members and offer any student not willing to participate to change groups
prior to the first sprint. No student asked to exchange groups.

In every interaction that was recorded or photographed, we actively asked ev-
ery student participating for permission, while pointing out that everything ex-
pressed in the exchange would be anonymous and confidential, and that no record-
ings would be distributed outside of the three researchers participating in the study.

2.7 Data collection

The first and the second author followed all planning sessions in parallel. As we
had to monitor sessions in parallel we opted to alternate between observing in pairs
and by ourselves. All in all we covered 24 planning sessions where the first author
actively participated in the meetings acting as customer on site providing students
with clarifications of stories, priorities etc, while the second author passively ob-
served. After each session we spent, roughly, 15 minutes discussing what we had
observed. Field notes were written by hand, and after the termination of the field
work compressed in memo form. The first author actively participated in all full
day sprints while acting as customer on site. The four teams were situated in two
computer labs, allowing for observation of two teams simultaneously. Field notes
were written by hand, and after the termination of the field work compressed in
memo form.

In addition, we added a weekly questionnaire to be filled out by each student
after every sprint (all in all 4*10*6 questionnaires) in order to follow up on what
we had observed so far throughout the project. The first two weeks the question-
naire targeted sources of information and information tools used by the students. In

46 A GROUNDED THEORY

the third and fourth questionnaire we introduced check boxes and free text space,
allowing the students to express what they perceives as the major problems they
had been challenged by throughout the project. In the fifth questionnaires ques-
tions were added to capture the outcome of experiment 1. The final questionnaire
was extended with questions regarding team spirit and over all satisfaction. The
aggregated response rate for all 24 sets of questionnaires (6 for each team) were
93% (out of the 240 questionnaires we handed out we got 223 in return, and no
single set had a lower response rate than 8/10).

Further, as a requirement of the course all students wrote short individual re-
flections after each sprint, as a retrospect exercise. After the course we aggregated
these pages, anonymised all content and created one .csv file per team with the
content broken down in line-by-line format for open coding.

After the final sprint we held one hour long focus group discussion with each
team. The discussions took place in two by two parallel sessions, Two instances
were held by the first author, one by the second and third author collectively and
one by the second author. In order to keep the different sessions coherent and com-
parable we followed a semistructured manuscript containing four themes we had
selected as emerging concepts from our observations. We used pair-wise post-it
discussions, followed by group discussions where each pair reflected on what they
had come up with. The post-it stickers were collected, numbered and digitized.
Each session was also recorded using video and sound.

2.8 Field experiments

Inspired the reasoning on ethnographically natural experiments by Hollan et al. [18],
we decided to extend our data set with empirics from three minor field experi-
ments. These were dressed as improvised exercises, which is a part of the overall
course concepts, where unplanned customer changes could take place.

Field experiment – group constellation

Our first experiment consisted of creating four teams with different member com-
positions, with the purpose to see what differences, if any, we could observe during
the observation study (and through the other data sources). See subsection 2.5.

Field experiment – exploratory testing

The second experiment consisted of assigning the students with a surprise story in
preparation for the fifth sprint. The story consisted of little more than the instruc-
tions to: execute roughly 1 hour of exploratory user tests of the system under realis-
tic race conditions using four team members documenting the issues encountered,
and further to reflect on the experience in their weekly reflections (that all students
fill out after each sprint). The story was handed out during the planning session

2 Method 47

the week before the full day sprint during which it was planned. We collected in-
formation of the activity from questionnaires (Q5/Q6) and from discussions with
students and coaches during the following sprint and planning session.

Field experiment – merge-back

The third experiment consisted of the request to implement two sets of changes,
in two separate files, and upon completion of the first task request a merge-back
and recreation of the first release. Each team was handed a story card describing
the two code blocks to be implemented first thing in the morning during the final
planning session leading up to the final sprint. Each team was asked to notify their
customer upon completion of the task. In order not to compromise that functional-
ity/integrity of their respective systems the two code blocks were dummy snippets
that were commented out. The experiment was documented using video and sound
recording.

2.9 Analysis
Given that we had a limited time window for our observation, we did not have a
lot of time for analysis during the field work. We exchanged notes and discussed
our observations over lunch breaks. After the field work was completed the first
and second author started a more formal analysis stage.

Initial coding [6] – the first and second author each did open line-by-line cod-
ing of the student reflections and the post-it stickers. We then exchanged our re-
flections in short memo form. In parallel, the first author did an initial overview of
the contents of the questionnaires.

Focused coding [6] – the first and the second author had a two day session
in which the questionnaires, focus groups post-it stickers and student reflections
were analysed from multiple perspectives and the parts that we found relevant
was extracted and documented digitally. We also extracted relevant ’soundbites’
from free text answers, and digitised them. The findings were condensed in a short
memo.

Theoretical coding [6] – the theoretical coding was executed by the first author,
using Glaser’s ’6C’-coding family [12] as a starting point. The work was done
in memo form and visualized on an A1 sheet using postit stickers. After a few
iterations of coding, sketching and memoing a theory was emerging. The first and
third author had a one hour session in which the theory was discussed from various
angles and a few of the constructs were redefined. After this the first author did a
minor rewrite of the theoretical coding memo.

2.10 Theoretical saturation
Having iterated through open coding and focused coding of the data set, we saw the
need of further saturation in order to provide some more insight from the members

48 A GROUNDED THEORY

point of view. In order to do so, we went through the recordings of the focus groups
in order to provide some additional insight. Finally we reached out to a handful
of students whom previously agreed to do minor follow up interviews. We held
three short (15–20 minutes) open interviews specifically aimed at understanding
what the students perceived as tool interaction related issues. The interviews were
conducted by the first author and were documented by additional field-notes. All
quotes and findings were reread to the subjects at the end of these interviews.

2.11 Literature review
In its original form, research questions in GT studies should emerge from the re-
search, not be defined apriori [37] and extensive literature should be avoided prior
to the emerging of theory. That being said, Charmaz takes a more pragmatic stance
on literature and research questions and emphasises the iterative nature GT, thus
allowing for initial research questions that evolve through the research project as
well as abductive reasoning on extant literature, recommending a preliminary lit-
erature review ’without letting it stifle your creativity or strangle your theory’ [6].

As a consequence we did an initial, rather limited, literature study of Dis-
tributed Cognition from a Software Engineering perspective. Following the coding
cycles we did an additional, or final, literature review on the central phenomenon
of the theory we generated, i.e. GIT, version control and merge operations from a
user perspective. See Section 4 for findings.

3 Analysis
This section present the theory generated from the dataset. Based on the findings
from open and focused coding of our data set, the emerging concept we focused
on was issues regarding version control, branching and merge operations.

For the first attempt at formulating the theory, a theoretical conceptual ex-
planation of what we observed, we based our theoretical coding on Glasers 6 C-
coding familly [12] [37], while observing Thornberg and Charmaz reflection that
the researcher should avoid being hypnotized by Glaser’s coding families [41] –
analogous to Glasers argument that all codes should earn [12] their way into the
theory. Thus, we used the 6 C’s as a starting point, and allowed for modifications
throughout the theoretical coding phase.

A rendering of our conceptual model based on our analysis of the issues re-
garding version control, branching and merge operations encountered is illus-
trated in Figure 1. The center bottom rectangle describes the core phenomenon,
version control, branch & merge issues, while the other codes are represented by
surrounding rectangles. Cause, correlation and effect are represented by arrows.
Context is represented using dotted arrows. For each code a corresponding sub-
section is found below. Along with the analysis, the conceptual model is detailed
in Figure 2.

3 Analysis 49

A.
Phenomenon

B.
Context

C.
Agile intrinsics

D.
Cause

E.
Confounding

factors

F.
Consequences

G.
Noted

interventions

Figure 1: Conceptual model of the causal and consequential dimensions in
regards to version control, branching and merge operations encountered in the
projects.

Throughout the analysis section we provide examples of ’quotes’ from the data
set. ’S’/’I’ denotes interview subject and researcher respectively. We have added
emphasis for clarity and occasional further clarifications within [hard brackets].

3.1 Phenomenon

Throughout our observations (field notes) and our questionnaires we noted that
version control, branching and merge operations caused a disproportionate amount
of loss in productivity and time. The questionnaires for all teams systematically
indicated version control, branching and merge conflicts as the most disruptive
challenges encountered throughout the project, and as a consequence this is the
phenomenon we chose to explore.

E.g.: ’Git/Merge – We are unsure of how to use git properly’ (from student
questionnaires – in response to what has been the biggest hurdle faced during the
project).

3.2 Context

We define the context from which our observations are extracted, and in which
they are valid as that of agile software development teams, consisting of novices,

50 A GROUNDED THEORY

A. Phenomenon
Version control, merge and branching

B. Context
Agile software development with novice

software engineers

C. Agile intrinsics
1. Work in parallel
2. Work iteratively

3. Dynamic design and vague requirements

D. Cause
1. Tool support and functionality

2. Tool integration
3. Tool complexity

4. Lack of mental/conceptual model

E. Confounding factors
1. Lack of documentation
2. Lack of communication

F. Consequences
1. Lack of understanding merge conflicts

2. Absence of branch strategy and structure
3. Lack of project situation awareness

G. Noted interventions
1. Creation of 'git cheat sheet'

2. Improved documentation
3. Creation of basic branch process

4. Improved communication
5. Experimentation with different IDEs

Figure 2: Conceptual model from Figure 1, further extended with the detailed
codes from the analysis.

using GIT. Admittedly, this could result in a rather narrow validity window in
terms of generalization. However, in our experience (both the first and second au-
thor has 15+ years experience of professional tool driven software development in
large/distributed software projects) this observation, practitioners struggling with
GIT, is commonplace in industry. Further, using novices as study objects would
rather reveal cognitive challenges, as these challenges are not mitigated by trained
behavior, learning effect or status quo bias.

We created our data set from observing and interacting with four different
teams of novice software developers in parallel. All teams were using XP, and de-
veloped their system using the same basic stories/requirements (see Subsection 2.3
for details). While tool chain set up and development environment (IDE) differed
somewhat between the teams, all teams used GIT hosted by Bitbucket for version
control (albeit with different branch strategies).

In light of the observed lacunae in extant software engineering literature we
note that version control from a user perspective is an area not thoroughly studied
in the research community. Those few studies we found systematically indicate
that our observations are valid in a wider context.

3.3 Agile intrinsics – root cause & driver

The iterative and parallel aspects of the nature of agile software development, Agile
intrinsics, are from our observations, the identified underlying Root Cause of the
observed merge conflicts. In order to achieve some granularity we further break
this construct up into three different subcodes: (Work) in parallel, (Work) itera-
tively and Dynamic design and vague requirements, since they are related in terms
of root cause but have quite different consequences. As indicated by the intrin-

3 Analysis 51

sics in the main category, these traits are inherent (largely by design) in the nature
of agile software development. While these root causes could be compressed into
one code, we feel that they are not interchangeable and each deserve a closer de-
scription. For further clarity we added an additional subcode, Observed driver, as
means to further clarifying the underlying nature of these codes.

(Work) in parallel – observed root cause

When starting up the project, the code base is very small, and different program-
ming pairs are developing, and modifying the same code/classes/files s, creating
dependencies and diverging implementations ultimately leading to merge conflicts.
While this to some extent was mitigated by adopting rudimentary branch strate-
gies, the problem persisted throughout the projects.

We note that it appeared hard for the developers to find out who did what, when
and why?, ultimately leading to a lack of understanding of implementation details,
or a micro perspective, thus making subsequent merge conflicts harder to resolve.
We also noted that this caused the developers to implement their own variations of
similar methods (e.g. utility methods). E.g.:

– ’Trying to merge code that someone else has written.’

(from student questionnaires and focus groups in response to what they found
being difficult during their projects).

Observed driver: Diverging implementations leads to conflicting implemen-
tation details, further resulting in merge conflicts.

(Work) iteratively – observed root cause

The iterative nature of the development results in constantly shifting implementa-
tion details and this subsequently drives merge work. The constant change in code
leads to a lack of understanding from a micro perspective, reimplementation and
duplication of code as different development pairs reimplement existing function-
ality. E.g.:

– ’Parts of code unknown, having to interact with code that someone else has
written, better after refactoring.’

(from student questionnaires and focus groups in response to what they found
being difficult during their projects).

Observed driver: Refactoring implementation leads to changing implementa-
tion details, further resulting in merge conflicts.

Dynamic design and vague requirements – observed root cause

Since there is no set architectural design/framework, nor a complete set of re-
quirement or user stories, in the beginning of the projects, there was no cohesive

52 A GROUNDED THEORY

collective goal for the developers. Further, architectural changes drives extensive
refactoring and results in subsequent merge conflicts. Despite the fact that this
is an inherent feature of XP – ’XP is a lightweight methodology for small-to-
medium-sized teams developing software in the face of vague or rapidly changing
requirements’ [2] – it is none the less something we noted as a systematic cause of
refactoring and merge conflicts. E.g.:

– ’Hard to change data structures. This causes merge conflicts and bugs. Im-
prove communication [within the team]?’

(from student questionnaires and focus groups in response to what they found
being difficult during their projects).

Observed driver: No set design at the beginning of projects leads to refactor-
ing of structure and changing of architecture, resulting in merge conflicts

3.4 Observed cause

This part of the analysis provides a reasoning on our observations on the observed
causes of merge incidents.

The impact of tool support and tool functionality

Throughout the study we noted that the students were quite opinionated about
functionality and support of the different tools and how well they were integrated.
All teams started their respective projects using Eclipse and GIT hosted on Bit-
bucket. Out of the four teams, two ultimately migrated from Eclipse to another
IDE; intelliJ in one case and VSCode in one case.

When discussing tools during focus groups the importance of the user support
the developers experienced became obvious. We noted that ease of use, intuitive
interaction and visual support and offloading was something the students noted
as very important in terms of reducing cognitive load. This is illustrated below in
an excerpt from a focus group dialogue between three students (SI–SIII) and the
interviewee (I):

SI: – ’Many had problems seeing what changes that were being made, that is
when you fetch; it might be related to Eclipse [integration with git], it be-
came better with VSCode, with the colours [indicating visual offloading],
the visual, to be able to understand what has happened.’

I: – ’But what experience have you had in regards to the tool support you have
had in order to solve merge conflicts?’

SI: – ’Eclipse was really messy.’

3 Analysis 53

SII: – ’...it was really hard to see what changes were coming from where – [ex-
tended pause, thinking] - and I think the colours in VSCode are really good
[indicating visual support]. You really see, visually, what is what.’

SIII: – ’...when we were using Eclipse we switched to using the terminal [use
of GIT through command line interface (CLI) instead of IDE integration]
instead, it just feels a lot easier.’

(Focus Group, excerpt from video recording T@12.43).
The importance of visual support became even more obvious during saturation:

S: – ’The merge support in VSCode is graphical and easy to understand – it is
intuitive.’

S: – ’The merge support in VSCode is very clear, it provides help on resolving
the conflict, it shows <source code 1> and <source code 2>in the GUI and it
is simple to choose by clicking a button.’

S: – ’intelliJ is actually, in my opinion, better than VSCode. It gives even better
and more visual merge support.’

(Field notes – saturation)

Tool integration

We decided to further break down the analysis of the tool support further, in order
to be able differentiate different angles of the experience of the students. We noted
that the actual integration of GIT in the IDEs was considered quite important, and
a contributing factor when it came to changing IDE.

S: – ’The graphical integration of GIT in Eclipse is difficult to understand.’

S: – ’Eclipse is complicated in terms of GIT integration, and it is easier to use
git through a terminal than through Eclipse.’

S: – ’The integration between git and VSCode is superior to that of Eclipse.’

(Field notes – saturation).

Tool complexity

The actual importance of tool complexity came to some surprise to the first author.
We observed several reflections on the intricacies and complexities of GIT in the
dataset. We found compelling evidence that the complexity of GIT was indeed a
main cause of concern and cognitive load for novices, but the intricacies of GIT
was not the only cause of concern – the complexity of the IDE was also a definite
issue and cause of confusion.

54 A GROUNDED THEORY

S: – ’Version Control - GIT is very difficult.’

S: – ’What would make Eclipse better? Better merge support and better overview,
making it empheasier to find functionality.’

S: – ’VSCode feels simpler, with less functionality but it is a lot less over-
whelming. It has a lot better learning curve.’

S: – ’Eclipse is complicated and it is difficult to understand the structure.’

(Field notes – saturation).
Somewhat counter intuitively we also observed the following reflections on

GIT the command line interface:

S: – ’GIT/CLI [in terminal] is good because it looks the same in every environ-
ment.’

S: – ’GIT/CLI [terminal] is good because all git online resources describe git
through CLI, so it is a lot easier to copy a line of commands and paste it into
the terminal than to try do do the same thing through a GUI.’

(Field notes – saturation).

Lack of mental/conceptual model of version control and branch struc-
ture

Based on the outcome of Experiment II, which we considered a trivial git/branch
operation, we noted that the students’ understanding of reasonably straight forward
branch operations in GIT was somewhat limited. Out of the three groups that did
the experiment (one team dropped out because of time constraints in their project),
no one came up with a viable solution (albeit they came up with interesting and
manually labour intensive ways to approach the task). At the end of the time-slot
given for coming up with a solution, the first author provided a hint of the form
’Well, maybe you should google git squash and git cherry pick?’. Subsequently all
three teams adequately solved the exercise in a matter of minutes.

3.5 Confounding factors
Lack of documentation

We noted that a systematic lack of documentation (i.e. code comments, commit
messages, design documentation) plagued the groups throughout their respective
projects. This added to the lack of understanding the merge conflicts. We also noted
that the students became aware of these aspects and, to a varying degree of success,
tried to adress these issues at the later stages of their projects, see Subsection 3.7.
Because of space limitations and the secondary nature of this code we have omitted
any actual quotes, but the issues were systematic and affected all teams.

3 Analysis 55

Lack of communication

We noted that a systematic lack of communication within the team (e.g. standup
meetings and use of story boards) plagued the groups throughout their respective
projects. This added to the lack of understanding the merge conflicts as well as
a lack of understanding the current project status. Further it added to waste and
loss of team productivity when different pairs were working on the same task in
parallel without knowing this. We also noted that the students became aware of
these aspects and, to a varying degree of success, tried to address these issues at the
later stages of their projects, see Subsection 3.7. Similar to the above, we omitted
actual quotes, but the issues were systematic and affected all teams. One group
started using Trello instead of a physical story wall, while the others continued
using story walls.

3.6 Consequence

This part of the analysis provides a reasoning on our observations of consequences
of the phenomenon under study.

Lack of understanding merge conflicts

The systematic lack of understanding of merge conflicts surprised us, and it be-
came the focus of the analysis. These merge conflicts obviously lead to a loss of
productivity, but it is not only limited to that. When going through the focus group
material and the student reflections we saw multiple examples of negatively loaded
wording, indicating fear, insecurity and stress. We find this to be clear indicators
that issues with merge conflicts not only cause a loss of productivity in terms of
linear time, but also that the absence of the needed tool support causes consider-
able cognitive load and stress on the developers.

S: – ’It is frightening with a Wall of Text – merge conflict/difference [indicating
a very complicated merge] when in reality there is only a minor difference in
a character or so [e.g. trailing space etc.]. In VS code you see both versions
and you can simply choose what code [snippet] you want.’

S: – ”You don’t know how to revert changes in GIT you don’t know if you
will accidentally [loss of control] replace/delete something [important]...
you need to dare to use GIT...”

S: – ’uncertainty results in many [of us] finding it stressful with merge con-
flicts... when there is a "merge message" that just appears you don’t really
know what it means - will it result in overwrite - this makes it feel difficult,
perhaps more so than it actually is...’

(from Field notes – saturation, questionnaires and focus group interaction).

56 A GROUNDED THEORY

Absence of branch strategy and structure

In addition to the systematic lack of understanding merge conflicts we also noted
that branching itself was quite difficult for the teams. They had a hard time coming
to grips with when to use separate branches (e.g. for bug fixes, tasks, stories and
releases), when to close superfluous branches and branch naming conventions.

S: – ’It would have been better if we had used story specific branches.’

S: – ’We did not have a strategy for branching from the beginning [of the
project].’

S: – ’We should have closed branches that were no longer in use.’

(from Field notes – saturation, questionnaires and focus group interaction).

Lack of project situation awareness

Further we noted that there were issues in regards to understanding the current
project situation/status. This included multiple pair working on the same tasks,
different pair implementing similar utility functions, a lack of understanding of
components in the projects, and ultimately not knowing whom to ask about imple-
mentation details.

S: – ’Lack of communication - many of the problems we are facing would be
solved if we would communicate better.’

S: – ’People working on the same issue – sometimes people work with solving
the same problems without knowing it/each other.’

S: – ’Lack of communication – this lead to several interesting issues during
sprint III where we went in different directions regarding architecture.’

(from Field notes – saturation, questionnaires and focus group interaction).

3.7 Noted interventions
We here describe the interventions implemented by the different teams as means
to circumvent the issues they encountered in their projects. On account of space
limitations we omit the qualitative excerpts and keep the description short.

Creation of ’git cheat sheet’

We noted that the teams, after the first few sprints, realized that they needed a
common manual for (and understanding of) basic GIT operations. This was in
most cases implemented as a spike by a pair of team members in between sprints.
Further, we saw an interesting example of knowledge transfer within the team.

4 Literature review 57

Improved documentation

We noted that the all teams throughout the project started realising the importance
of documentation. The observed interventions included a systematic way of de-
scribing commits (i.e. pointing out what story or what task had been worked on,
rather than the initial, rather void, messages like ’bugfix’, ’gui implementation’
etc.). We also noted that the teams started documenting the design of their archi-
tectures (using UML) and user interfaces (sketching on A3 paper). In addition we
also noted that, while struggling with it in practice, all teams realised the impor-
tance of code documentation and made considerable attempts at documenting their
code properly.

Creation of basic process for branch/cm/releases

We noted that all teams, after a few sprints started to develop a basic branch and
configuration management process. This consisted of a more rigorous – less ad
hoc – naming convention of branches, systematisation of main branch integration,
and use of separate branches for stories, amongst other things. We do not con-
sider the actual details as important as the observation that the teams, themselves,
organically came to the conclusion that they needed a more systematic approach
in regards to branching and configuration management. In addition we also noted
that all teams, having experienced the value of explorative testing in Experiment I,
started doing so well in advance of their releases.

Improved communication

We noted that all groups became aware of the need of improved communication.
One team started using Trello as means of establishing a sound project overview.
All teams further noticed the importance of standup meetings, and systematically
started running more frequently.

Experimentation with different IDEs

As previously described we noted that two of the teams started exploring other
IDEs in order to circumvent their perceived issues with Eclipse.

4 Literature review

We will here briefly discuss our findings from extant literature in regards to Dis-
tributed Cognition, Git and Tool complexity.

58 A GROUNDED THEORY

4.1 Distributed cognition

Distributed cognition (DC) is a sub-discipline of studies of cognition in which the
one of the traditional cornerstones of cognition – ’that cognitive processes such as
memory, decision making and reasoning, are limited to the internal mental states
of an individual’ [15] – is questioned and rejected. Instead it argues that the social
context of individuals as well as artifacts forms a cognitive system transcending
the cognition of each individual involved [11], i.e., a cognitive system extending
beyond the mind of one single individual [23]. The concept was pioneered by
Hutchins who studied the cognitive activities on the navigation bridge of US naval
vessels [21].

Hollan, Hutchins and Kirsh extended DC into the realm of Human-Computer
Interaction (HCI) as well as to some extent into Software Engineering, stating that
a distributed cognitive process (or system) is ’delimited by the functional relations
among the elements that are part of it, rather by the spatial colocation of the ele-
ments’, and that as a consequence ’at least three interesting kinds of distribution of
cognitive processes become apparent: [a)] cognitive processes may be distributed
across members of a social group[;] [b)] cognitive processes may involve coordi-
nation between internal and external (material or environmental) structure [and, c)]
processes may be distributed through time in such a way that the products of earlier
events can transform the nature of later events.’ (reformatted but verbatim). [18]

Despite the fact that the theory of distributed cognition was suggested as a
fruitful approach for investigating and explicating phenomenon related to soft-
ware engineering several decades ago – Flor and Hutchins empirically studied
pair-programming from a distributed cognition perspective as early as 1991 [11]
– few examples exist of actual software engineering studies using distributed cog-
nition as scientific lens. In 2014, Mangalaraj et al. [23] highlighted Sharp and
Robinson [33], Hansen and Lyytinen [15] and Ramasubbu et al. [27] as ’the few
notable exceptions’ of extant software engineering research utilising Distributed
Cognition. To this list we would like to add Walenstein [43], a recent study by
Buchan et al [5] and other works by Sharp et al. [32] [35] [36] [31] [34].

4.2 Git & Merge

Our literature findings in regards to user experience of GIT were surprisingly lim-
ited. What we could find was three relevant papers: Church et al. [9], Perez & de
Rosso [26] and de Rosso & Jackson [10].

We note that these papers, to some extent, validate our findings that GIT is a
very complex tool to use, and our conclusion is that there is considerable lacunae in
literature in this regard. Future research should include a more thorough literature
study in regards to GIT and merge tools.

5 Ethical considerations 59

4.3 Eclipse and tool complexity

The issues related to tool complexity among novices are largely substantiated by
extant literature – Moody [24] discussed the different levels of support needed
by novices and experts when it comes to visual languages based on Cognitive Fit
Theory [42]. We can also see the same patterns in research on expertise by Chi et
al. [8]. Further, Storey et al. [38] have specifically described issues of novices in
regards to Eclipse.

5 Ethical considerations

With the study focus on groups rather than individual students, there was no legal
need for formal ethical hearing. We did submit and register a description of the
study to ethics board. The course is graded Pass and Fail only, and the only way
students to fail is by considerable abscence, we felt that there was no issue with
conflicting roles of researcher/teacher for the first author. In addition, our presence
during sprints and planning sessions allowed the student groups more teacher time
than what they would have experienced otherwise.

The experiments we exposed the students to had been used as improvised
project disturbances and as improvised exercises aimed at exploratory testing by
the first author in previous years, and it appeared to make a sound addition to the
learning outcome of the students. Based on the fact that the learning outcome of
the students was not compromised, that all data was collected with consent and
anonymously, and that the findings will benefit the students of the next instantia-
tion of the course, we do not feel that we have any ethical qualms in regards to the
study.

6 Threats to validity

The use of students as basis for research can be controversial [19] [40] [17] from a
generalisation perspective as well as from student integrity and learning perspec-
tives. In terms of generalisation, Höst et al. highlight that students working under
life-like circumstances serve can function as a reasonable proxy for real life set-
tings/practitioners [20]. In this study we selected students to capture a novice point
of view, thus providing us with a different perspective of causes of cognitive load
drivers.

We further argue that the observed similarities between the groups and that the
rigor with which the case study was designed and executed further strengthens the
findings.

GT studies are commonly evaluated based on the following criteria [6] [37]:

60 A GROUNDED THEORY

Credibility: Is there enough data to merit claims of the study? – This study
relies on the data set from one case study. The data set includes interviews, focus
groups, observations and wirtten reflections. The data set is quite extensive.

Originality: Do the perspectives offer new insight? – While cognitive load is
not an unknown phenomenon in software engineering, we note that merge opera-
tions seem disproportianetly troublesome/difficult. We note a reserach gap when
it comes research on version control and merge operations.

Usefulness: Is the theory generated relevant for practitioners? – This study
generates a theory that offers one explanation of how merge operations and branch
work becomes difficult in projects. This can be used for reasoning on cognitive
load in software engineering. The main contribution, in our opinion, is the ob-
servation of merge phenomenon and version control issues and the corresponding
research gap.

We take a pragmatic postpositivist [28] epistemological position in this pa-
per. Our aim is to provide a grounded theory for reasoning on cognitive load in
software engineering, using abductive reasoning on literature and data, and our
ambition is to provide knowledge for software engineering research community
and practitioners. We use grounded theory as a method, not an epistemological
position. We acknowledge that all qualitative knowledge is inherently constructed.
That being said, the phenomena we study do arguably exist, albeit in an artificial
context largely unbound by natural laws. If the phenomena did not exist, there
would be little point in studying them, nor their consequences on the human mind.

7 Sensitizing concepts

The findings in relation to the first research goal, to identify the most common cog-
nitive load driver from the novice point of view, was somewhat surprising. While
we build our work on our previous identification of the temporal perspective [16],
the who, did what, when & why, we were quite surprised to see how large the im-
pact of version control and merge operations were on the students. We also find
it interesting to see the importance of tool support and functionality, tool integra-
tion and tool complexity in agile software development. To us the most interesting
observation is the importance of visual merge support. We also noted that absence
of communication and documentation was a contributing and confounding factor.
We also note the absence of research on version control as an indicator for further
research.

In addition to the codes described in our theory, we also noted other indications
of cognitive load drivers in the material. The environment, in terms of ventilation
on loud ambience were lamented on, describing the work situation as draining.
Further we also noted disruptions and task switching as a cause of concern – de-
scribed as a disruption of flow.

8 Future research 61

We noted that distributed cognition, from our perspective, is indeed a sound
lens for observing and analysing software development in agile teams and it is
further interesting to note the reflections of history enriched objects and temporal
cognitive dimensions made by Hollan et al. [18].

8 Future research
Further research in relation to this specific study will include a more focused study
using direct observation of merge conflict resolution, and a benchmarking of a few
popular IDEs in terms of version control integration and merge support, focus-
ing on usability aspects. For a more long term perspective, mental models and the
temporal dimension of cognitive load in relation to software development tools
could be used as a stepping stone for further research in terms of cognitive support
for software development. The observed lacunae in extant literature in regards to
version control, to us, is an indication that there is indeed relevant research to be
done in this area, and the need of a systematic mapping study. It would further be
interesting to do a critical analysis of research on literature on agile software de-
velopment, possibly using meta-ethnography in conjunction with grounded theory.

Acknowledgement
The authors wish to thank all the participating students for their invaluable con-
tributions, course responsible for providing the opportunity to conduct the study.
We further thank Softhouse2 for providing time for the second author. The work
described in this paper was conducted in the ELLIIT3 strategic research environ-
ment.

2https://www.softhouse.se
3https://liu.se/elliit

62 A GROUNDED THEORY

References
[1] Steve Adolph, Philippe Kruchten, and Wendy Hall. Reconciling perspec-

tives: A grounded theory of how people manage the process of software de-
velopment. Journal of Systems and Software, 85(6):1269–1286, June 2012.

[2] Kent Beck. Extreme programming explained: embrace change. Addison-
Wesley Longman Publishing Co., Inc., USA, 1999.

[3] Alan F. Blackwell, Marian Petre, and Luke Church. Fifty years of the psy-
chology of programming. Int. J. Hum. Comput. Stud., 131:52–63, 2019.

[4] Susanne Bødker. Third-wave hci, 10 years later - participation and sharing.
Interactions, 22(5):24–31, 2015.

[5] Jim Buchan, Didar Zowghi, and Muneera Bano. Applying Distributed Cogni-
tion Theory to Agile Requirements Engineering. In Nazim Madhavji, Liliana
Pasquale, Alessio Ferrari, and Stefania Gnesi, editors, Requirements Engi-
neering: Foundation for Software Quality, Lecture Notes in Computer Sci-
ence, pages 186–202, Cham, 2020. Springer International Publishing.

[6] Kathy Charmaz. Constructing Grounded Theory. SAGE Publications, Lon-
don, UK, 2nd edition, 2014.

[7] Kathy Charmaz and Ricard Mitchell. Grounded Theory in Ethnography. In
Handbook of Ethnography. SAGE Publications, London, UK, 2001.

[8] Michelene T. H. Chi, Robert Glaser, and Marshall J. Farr. The Nature of
Expertise. Psychology Press, January 2014.

[9] Luke Church, Emma Soderberg, and Elayabharath Elango. A case of com-
putational thinking: The subtle effect of hidden dependencies on the user ex-
perience of version control. In Benedict du Boulay and Judith Good, editors,
Proceedings of Psychology of Programming Interest Group Annual Confer-
ence, pages 123–128, Brighton, United Kingdom, June 2014.

[10] Santiago Perez De Rosso and Daniel Jackson. Purposes, Concepts, Mis-
fits, and a Redesign of Git. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2016, pages 292–310, New York, NY,
USA, 2016. ACM.

[11] Nick V. Flor and Edwin L. Hutchins. Analyzing distributed cognition in
software teams: a case study of team programming during perfective mainte-
nance. In Jürgen Koenemann-Belliveau, Thomas Glenn Moher, and Scott P.
Robertson, editors, Proceedings of Empirical Studies of Programmers, pages
36–64, Norwood, NJ, USA, 1991. Ablex Publishing Corporation.

REFERENCES 63

[12] Barney G. Glaser. Theoretical Sensitivity. Sociology Press, CA, USA, 1978.

[13] Barney G. Glaser. Emergence vs Forcing - Basics of Grounded Theory Anal-
ysis. Sociology Press, CA, USA, 1992.

[14] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded The-
ory. AldineTransaction, New Jersey, USA, 1967.

[15] Sean Hansen and Kalle Lyytinen. Distributed Cognition in the Management
of Design Requirementsdistributed cognition in the management of design
requirements. In Robert C. Nickerson and Ramesh Sharda, editors, Proceed-
ings of the 15th Americas Conference on Information Systems, page 266, San
Francisco, California, USA, August 2009. Association for Information Sys-
tems.

[16] Daniel Helgesson, Emelie Engström, Per Runeson, and Elizabeth Bjarnason.
Cognitive Load Drivers in Large Scale Software Development. In Proceed-
ings of the 12th International Workshop on Cooperative and Human Aspects
of Software Engineering, CHASE ’19, pages 91–94, Piscataway, NJ, USA,
2019. IEEE Press.

[17] Joseph Henrich, Steven J. Heine, and Ara Norenzayan. The weirdest people
in the world? Behavioral and Brain Sciences, 33(2-3):61–83, June 2010.

[18] James Hollan, Edwin Hutchins, and David Kirsh. Distributed Cognition:
Toward a New Foundation for Human-computer Interaction Research. ACM
Trans. Comput.-Hum. Interact., 7(2):174–196, June 2000.

[19] Martin Höst, Björn Regnell, and Claes Wohlin. Using Students as Subjects—
A Comparative Study of Students and Professionals in Lead-Time Impact
Assessment. Empirical Software Engineering, 5(3):201–214, November
2000.

[20] Martin Höst, Claes Wohlin, and Thomas Thelin. Experimental context clas-
sification: incentives and experience of subjects. In Proceedings of the 27th
international conference on Software engineering, ICSE ’05, pages 470–478,
St. Louis, MO, USA, May 2005. Association for Computing Machinery.

[21] Edwin Hutchins. Cognition in the Wild. MIT Press, 1995.

[22] Per Lenberg, Robert Feldt, and Lars Göran Wallgren. Behavioral software
engineering: A definition and systematic literature review. Journal of Systems
and Software, 107:15–37, September 2015.

[23] George Mangalaraj, Sridhar Nerur, RadhaKanta Mahapatra, and Kenneth H.
Price. Distributed Cognition in Software Design: An Experimental Inves-
tigation of the Role of Design Patterns and Collaboration. MIS Quarterly,
38(1):249–A5, March 2014.

64 A GROUNDED THEORY

[24] Daniel Moody. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions
on Software Engineering, 35(6):756–779, November 2009.

[25] Peter Naur and Brian Randell. Software engineering: Report on a conference
sponsored by the nato science committee. Technical report, Scientific Affairs
Division, NATO, January 1969.

[26] Santiago Perez De Rosso and Daniel Jackson. What’s Wrong with Git?: A
Conceptual Design Analysis. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Onward! 2013, pages 37–52, New York, NY, USA, 2013. ACM.

[27] Narayan Ramasubbu, Chris F. Kemerer, and Jeff Hong. Structural Complex-
ity and Programmer Team Strategy: An Experimental Test. IEEE Transac-
tions on Software Engineering, 38(5):1054–1068, September 2012.

[28] Colin Robson. Real World Research. Malden: Blackwell, 2nd edition, 2002.

[29] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering: Guidelines and Examples. John Wiley &
Sons, March 2012.

[30] Helen Sharp, Yvonne Dittrich, and Cleidson R. B. de Souza. The Role of
Ethnographic Studies in Empirical Software Engineering. IEEE Transactions
on Software Engineering, 42(8):786–804, August 2016.

[31] Helen Sharp, Rosalba Giuffrida, and Grigori Melnik. Information Flow
within a Dispersed Agile Team: A Distributed Cognition Perspective. In Ag-
ile Processes in Software Engineering and Extreme Programming, Lecture
Notes in Business Information Processing, pages 62–76. Springer, Berlin,
Heidelberg, May 2012.

[32] Helen Sharp and Hugh Robinson. An Ethnographic Study of XP Practice.
Empirical Software Engineering, 9(4):353–375, December 2004.

[33] Helen Sharp and Hugh Robinson. A Distributed Cognition Account of Ma-
ture XP Teams. In Extreme Programming and Agile Processes in Software
Engineering, Lecture Notes in Computer Science, pages 1–10. Springer,
Berlin, Heidelberg, June 2006.

[34] Helen Sharp and Hugh Robinson. Collaboration and co-ordination in mature
eXtreme programming teams. International Journal of Human-Computer
Studies, 66(7):506–518, July 2008.

[35] Helen Sharp, Hugh Robinson, and Marian Petre. The role of physical arte-
facts in agile software development: Two complementary perspectives. In-
teracting with Computers, 21(1-2):108–116, January 2009.

REFERENCES 65

[36] Helen Sharp, Hugh Robinson, Judith. Segal, and Dominic Furniss. The role
of story cards and the wall in XP teams: a distributed cognition perspective.
In AGILE 2006 (AGILE’06), pages 11 pp.–75, July 2006.

[37] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded Theory in Soft-
ware Engineering Research: A Critical Review and Guidelines. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE),
pages 120–131, May 2016.

[38] Margaret-Anne Storey, Daniela Damian, Jeff Michaud, Del Myers, Marcel-
lus Mindel, Daniel German, Mary Sanseverino, and Elizabeth Hargreaves.
Improving the usability of Eclipse for novice programmers. In Proceedings
of the 2003 OOPSLA workshop on eclipse technology eXchange, eclipse ’03,
pages 35–39, Anaheim, California, October 2003. Association for Comput-
ing Machinery.

[39] Margaret-Anne Storey, Neil A. Ernst, Courtney Williams, and Eirini
Kalliamvakou. The who, what, how of software engineering research: a
socio-technical framework. Empirical Software Engineering, 25(5):4097–
4129, September 2020.

[40] Mikael Svahnberg, Aybüke Aurum, and Claes Wohlin. Using Students As
Subjects - an Empirical Evaluation. In Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and Measure-
ment, ESEM ’08, pages 288–290, New York, NY, USA, 2008. ACM.

[41] Robert Thornberg and Kathy Charmaz. Grounded theory and theoretical cod-
ing. In The SAGE Handbook of Qualitative Data Analysis. SAGE Publica-
tions, London, UK, 2014.

[42] Iris Vessey. Cognitive Fit: A Theory-Based Analysis of the Graphs Versus
Tables Literature*. Decision Sciences, 22(2):219–240, 1991.

[43] Andrew Walenstein. Cognitive Support in Software Engineering Tools: A
Distributed Cognition Framework. PhD thesis, School of Computing Sci-
ecne, Simon Fraser University, 2002.

CHAPTER III

GROUNDED THEORY
PERSPECTIVES OF

COGNITIVE LOAD IN
SOFTWARE ENGINEERING

Citation:
– working manuscript

Abstract

Background: The socio-technical characteristic of software engineering is ac-
knowledged by many, while the technical side is still dominating the research. As
software engineering is a human-intensive activity, the cognitive side of software
engineering needs more exploration when trying to improve its efficiency.

Aim: The aim of this study is to increase the understanding of the impact
of cognitive load in software engineering. Our ultimate goal is to thereby reveal
opportunities to make software engineering more efficient for companies and com-
pelling for the developers to engage in.

Method: We synthesize knowledge, using a grounded theory approach, from
our empirical observations and literature on cognitive load in software engineering,
using cognitive load theory as a step stone.

Results: We present a model of cognitive load in software engineering, emerg-
ing from the analysis, which classifies cognitive load drivers into eight perspectives
– task, environment, information, tool, communication, interruption, structure and
temporal – each of which is further detailed.

Conclusion: We intend to use this conceptual model as a starting point for
the design of software engineering tools, methods and organizational structures to
improve efficiency and developer satisfaction by reducing the cognitive load.

68 PERSPECTIVES

1 Introduction

Software engineering is a socio-technical endeavour [4], where the technical side
of the phenomena seems to be more studied than the social side [37]. There has
been a thread of research with a social focus [56], and software engineering is
acknowledged as an interdisciplinary field [39] although the mainstream research
still seems to be technology focused, with the social and human aspects considered
as the context, at best. Program comprehension research is an exception, integrat-
ing cognitive and technical aspects on equal terms [52]. However, the scope of the
program comprehension research is mostly limited to the programmer and and the
program, while software engineering has a much broader scope.

While software engineering always has been [45], and still is [17] [49], con-
cerned with efficiency and productivity, the constantly growing size and complex-
ity of software systems and development projects, puts increasing pressure on
organizations to be efficient in their development and maintenance of software
products and services. Research on productivity is typically devoted to specific SE
activities, as observed by Duarte’s recent literature review [17]. However, the hu-
man and cognitive aspects begin to appear more broadly, for example, in Sadowski
and Zimmermann’s collection on ’Rethinking Productivity in Software Engineer-
ing’ [49], where both hard and soft productivity factors are considered. Cogni-
tive aspects discussed are primarily related to interruptions in the work environ-
ment [49, Ch.9], although cognitive load and psychological distress are presented
as types of waste by Sedano et al. [49, Ch.19] [50]. In addition to negatively im-
pacting productivity, these aspects also influence the working conditions for soft-
ware engineers, impacting on their cognitive sustainability.

We studied cognitive load drivers in an industrial case study [27], rendering an
initial taxonomy consisting of tools, information, and work & process type of fac-
tors, inducing cognitive load in software engineering. Secondly, we studied cogni-
tive load drivers from novices’ point of view, using grounded theory ethnography,
pointing us to version control, branching and merge operations adding to the cog-
nitive load of developers. To advance this line of research, we here survey software
engineering literature and use a grounded theory approach to synthesize existing
knowledge into a model for cognitive load in software engineering. We use cogni-
tive load theory (CLT) by Sweller et al. [57] [58] as a step stone into the analysis,
and also survey its impact in software engineering research.

The remainder of this paper is structured as follows: Section 2 presents CLT,
critique on CLT and use of cognitive load in software engineering research. Sec-
tion 3 covers grounded theory, research goals, data collection, analysis, literature
review and a reflection on validity/generalisation issues. Section 4 presents the
findings from literature review. Section 5 presents a discussion of the constructs
of CLT and synthesis of our findings. Section 6 presents emerging concepts and
future research.

2 Background 69

2 Background

It has since Millers seminal paper ’The magic number seven plus/minus two’ [40]
been generally accepted that the human working memory is finite and limited. As
the human bandwidth for information processing is limited, it is a trivial argu-
ment that reducing unnecessary cognitive load in knowledge based activities (in
all likelihood) will free up cognitive resources.

Being a knowledge (and cognitively) intensive activity, cognitive load is a phe-
nomenon that is present in most, if not all, software engineering dimensions [50].
In an initial explorative case study [27] we set out to explore cognitive load from a
practitioner point of view, while charting relevant theory from the scientific field of
cognition usable for further exploration and description of cognitive load and chart
what dimensions of cognition have been have historically been used in the context
of software engineering. The study provided us with a first classification of the
cognitive load drivers, i.e. causes of cognitive load, experienced by the practition-
ers we interviewed. This initial classification of cognitive load drivers gravitated
around three main clusters, namely Tools, Information and Organisation.

We noted that the program comprehension [52] is one dimension of software
engineering where cognition has been thoroughly used. Further we noted that cog-
nitive load is a phenomenon that, to some extent, have been explored in other
software engineering contexts, but commonly from the perspective of attempting
to measure cognitive load [23]. Further, the exploration of cognition pointed us
towards two cognitive directions to further investigate and describe cognitive load,
Distributed Cognition [31] [29] and Cognitive Load Theory [57] [58].

Following our first explorative case study, we conducted a larger compara-
tive [48] case study [26] studying cognitive load drivers from the novice point of
view by means of grounded theory ethnography [7] [8], using distributed cogni-
tion [31] [29] as scientific lens. The observed phenomenon we chose to pursue and
explain was version control and merge operations which, to our surprise, was the
largest cause of problems for all of the four ten–person teams we observed.

2.1 Cognitive load theory

In cognitive load theory (CLT), Sweller et al. have explored cognitive load from a
learning perspective [57] [58], when learning complex tasks. Paas et al. state that:
’It is generally accepted that performance degrades at the cognitive load extremes
of either excessively low load (under-load) or excessively high load (overload)’
and that ’learning situations with an extremely high load will benefit from practice
conditions that reduce load to more manageable levels’ [46].

In CLT cognitive load components are classified as intrinsic (i.e. related to the
cognitive task), extraneous (i.e. the way information is presented to the subject)
or germane (i.e. the cognitive cost of learning from the observation/problem solv-
ing) [57] [30] [50]. CLT is based on the model of working memory provided by

70 PERSPECTIVES

Baddeley [3] [2], assuming that information processing and storing are two sep-
arate, yet interdependent processes [2]. A central tenet in CLT is the assumption,
analogously to Miller [40], that the capacity of the human working memory is not
only finite but also limited and further, that information processing, storage and
retrieval will use parts of these finite resource [15].

While using CLT [57] [58] serves as a step stone for understanding the funda-
mental traits of cognitive load, it should be noted that it developed in a learning
context rather than problem solving-, or task solving perspectives in general. A
SLR [54] (n=65) describing the similarities and differences between CLT and Hu-
man Computer Interaction (HCI) was executed by Hollender et al. [30] in 2010,
and it provides a thorough description and explanation of the fundamental phe-
nomena associated to CLT (e.g. germane load, intrinsic load, extraneous load,
worked example effect, split-attention effect, modality effect and redundancy ef-
fect) as well as a comparison between CLT and HCI.

2.2 Critique on CLT

Hollender et al. further highlight relevant criticism of CLT [30], namely that the
principal components of cognitive load intrinsic, extraneous and germane cogni-
tive load to some extent belong to different ontologies (intrinsic load refers to the
complexity of the task and germane load to the process of creating knowledge per
se) as pointed out by De Jong [14]. The critique has elaborated by Moreno [42].
Debue & Van der Leemput [15] provide a further discussion on the critique of
cognitive load theory.

From our vantage point the critique by de Jong and Moreno, respectively, ap-
pears quite valid. Germane load differs considerably from task intrinsic and ex-
traneous load (it does however present an important perspective on cognitive load
in software engineering). Further, the different principal components of cognitive
load are possibly (or probably) not additive – but we argue that they are aggrega-
tive, in the sense that cognitive load drivers each increase the aggregated cognitive
load situation experienced by the subject. This is the very reason why we propose
our model of cognitive load in software engineering. We argue that our current
direction is valid, since it is possible to identify cognitive load drivers regardless
of their nature in terms of being additive or aggregative, they are for all points and
purposes communicating vessels drawing from the same finite and limited resource
(the human working mind/memory).

2.3 Use of Cognitive Load in Software Engineering Re-
search

Cognitive load has to some extent been studied in software engineering contexts.
Goncalez et al. [23] list 33 studies in a systematic mapping study from 2019 and
conclude that the phenomenon appears mostly to be studied from a measurement

3 Method 71

perspective, i.e., measuring cognitive load using eye-tracking and other biomet-
ric/psychophysiological sensors (e.g. Fritz & Muller [19]). Program comprehen-
sion is one dimension of software engieering where cognitive load has been stud-
ied [52].

In their paper on software development waste, Sedano et al. describe a con-
structivist grounded theory study at a case company over two years, resulting in
a taxonomy of software waste [50]. While not specifically looking at cognitive
load, one of the entities in the resulting taxonomy is derived from CLT, namely
extraneous cognitive load, consisting of overcomplicated stories, ineffective tool-
ing, technical debt and multitasking. Further they added psychological distress,
waiting/multitasking and ineffective communication as entities in their taxonomy
of waste.

3 Method

3.1 Grounded theory

In this study we conduct a qualitative synthesis of three grounded theory stud-
ies and extant literature. While the use of qualitative synthesis is not mainstream
in the Software Engineering research community, the use of qualitative synthei-
sis in SE has been studied by Cruzes & Dybå [12] on research synthesis, and the
same authors have since published guidelines, or recommendations, for synthet-
ical activities [11]. The authors list 13 different methods [12] ’for the synthesis
of qualitative and mixed method evidence’ including meta-ethnography [18] and
grounded theory [7] [55].

The authors describe grounded theory as: ’...a primary research approach that
describes methods for qualitative sampling, data collection, and data analysis. It in-
cludes simultaneous phases of data collection and analysis, the use of the constant
comparison method, the use of theoretical sampling, and the generation of new
theory. It treats study reports as a form of data on which analysis can be conducted
to generate higher-order themes and interpretations’.

Grounded theory (GT) [22] originated in the mid sixties as a qualitative reac-
tion to the positivistic and quantitative research paradigms at the time dominant
in the social sciences [7] [61]. It has since gained considerable traction in many
fields outside of social science, and diverged into three main currents [7] [55]
– i.e. Glaserian (original/agnostic), Strauss & Corbin (interpretist) and Charmaz
(constructivist).

Inherently inductive [7] (or abductive [38]) and iterative [7], the main purpose
of GT is to allow for generation of theory1 based on qualitative data, and it fosters

1From a more positivist perspective theory in grounded theory context equates model. Being active
in Software Engineering we use the construct model to avoid misunderstanding. Since we are using
grounded theory and wish to avoid method slurring [55] and conceptual confusion we want to be
transparent on the matter.

72 PERSPECTIVES

the researcher to systematically iterate between data collection, analysis and theory
generation [7].

One aspect of grounded theory that has been thoroughly discussed is that of
the role of literature. It its original form the the GT manifesto [22] has been inter-
preted as no literature should be consulted prior to the analysis [7] [38]. Yet Glaser
himself states that: ’...reading and use of literature is not forsaken in the beginning
of a grounded theory project. It is vital to be reading and studying from the outset
of the research, but in unrelated fields’ [21] (p35). The position of Charmaz is that
the researcher should start with a preliminary literature review [61] that should be
used ’without letting it stifle your creativity or strangle your theory’ [7, p308].

’The SAGE Handbook of Current Developments in Grounded Theory’ con-
tains several chapters on the use of literature and abductive reasoning in the grounded
theory studies (e.g. [61] [38] [6] [60] [24]) indicating that while there is a will
within the grounded theory research community to further extend the role of liter-
ature in grounded theory research, there is as of yet no consensus on how. Reflect-
ing on the original GT dictum, or maxim [38], ’all is data’ [55] – that ’the word
data seems to mean whatever Glaser or Strauss arbitrarily choose it to mean’ [1]
we do not really see an issue with fusing empirical data with literature.

Martin provides a sound analysis of abductive reasoning in GT arguing that it
is inherent in grounded theory, and further states that: ’Theoretical sensitivity in
grounded theory is stalled in part by unresolved debates about the role of extant
literature in grounded theory. Further, the tension makes the abductive reasoning
processes in grounded theory less explicit.’ [38]. Stol et al. [55] present guidelines
on GT in software engineering, as well as a critical review of the use of GT in SE
research context. While we attempt, largely, to adhere to their guidelines – we are
certain will take some form of objection.

A recurring quote in GT on the matter, and use, of preexisting knowledge is
that of Dey: ’In short, there is a difference between an open mind and an empty
head. To analyse data we need to use accumulated data, not dispense with it. The
issue is not whether to use existing knowledge, but how.’ [16]

We take a pragmatic postpositivist [47] epistemological position in this paper.
Our aim is to provide a grounded theory for reasoning on cognitive load in software
engineering, using abductive reasoning on literature and data, and our ambition is
to provide knowledge for software engineering research community and practi-
tioners. We use grounded theory as a method, not an epistemological position –
the epistemological position should reflect the nature of phenomenon under study.
We acknowledge that all qualitative knowledge is inherently constructed. That be-
ing said, the phenomena we study do arguably exist, albeit in an artificial context
largely unbound by natural laws. If the phenomena did not exist, there would be
little point in studying them, nor their consequences on the human mind.

3 Method 73

3.2 Research goals

Central to Glasers original GT as well as to Charmaz constructivist GT is that
the final research questions are not defined up front at the beginning of the re-
search project. In the case of Glaser the researcher should start with area of inter-
est [21] [55], in the case Charmaz the researcher should start with initial research
questions that evolve through the study [7] [55].

In this study our research goal is to fuse the observations made in two previous
case studies by means of abductive reasoning on data and extant literature. Our
research goal is twofold:

A) To present a grounded theory for reasoning on cognitive load in a software
engineering context; and

B) To survey the impact of cognitive load theory in the software engineering
research community.

3.3 Data collection

Study I (SI) – In the first case study [27], we set out to document the experience
and consequence of cognitive load of professional software developers at a large
(1000+ developers), international software development organisation in the tele-
com and mobile device sector. The study consisted of 5 semistructured interviews,
that was analysed using thematic analysis [5].

The design of this study was not formulated as GT, but as an explorative case
study [48]. While not positioned as GT it did contain a considerable degree of GT
practices: it was explorative, it used initial research goals rather than preformu-
lated research questions, it featured iterative data collection and analysis, as well
as open coding and we returned to the field for additional data after the first round
of analysis in order to achieve saturation.

The result of the first study was an initial classification of the cognitive load
drivers we encountered during the analysis. From a grounded theory perspective
this initial classification would, largely, correspond to sensitizing concepts [7].

Study II (SII) – In the second case study [26], we set out to chart cognitive load
drivers from a novice point of view using grounded theory ethnography [8] [7]. The
case we investigated by observation, was four different ten–person teams of sopho-
more computer engineering students, working together for a semester (one full
day each week) as an agile development team developing a software system. The
data we collected consisted of weekly individual reports written by the students, a
weekly questionnaire to each student, field notes, focus groups, field experiments
and three short follow up interviews for saturation following the fist round of open
coding.

This study was specifically designed as grounded theory ethnography, and
largely adhered to the guidelines provided by Charmaz [7], in terms of data col-

74 PERSPECTIVES

lection and analysis. The study used Distributed Cognition as scientific lens, com-
pared four different teams and we went through stages of open, focused and theo-
retical coding [7], using memos/memoing [20] as main means of analysis.

The result of the second study was a theoretical explanation of the largest cog-
nitive load driver, or phenomenon, that we observed; namely that version control
and merge operations was the largest cause of concern for all the teams studied.
However, the rich data we collected contained more observations and findings than
what we could use in the theory generation.

3.4 Analysis

This paper originated as a memo describing sensitizing concepts [7] in regards
to cognitive load in software engineering and CLT. Open, focused and theoreti-
cal [7] coding of the result of the previous two studies (SI, SII) and the findings of
Sedano et al. [50] was done by the first author alternating between post-it stickers
on whiteboards and memos [7].

Following the thoughts on abductive reasoning, presented by Martin [38] the
findings were processed in memo form. It could be described as memoiterative and
memoexploratory, firstly using open and later focused and theoretical coding.

3.5 Literature review

In order to chart the impact of cognitive load theory in software engineering re-
search community we performed a limited literature study.

We based our literature search strategy on that of Hollender et al. used to chart
CLT in HCI [30]. Hollender et al. limited their search to querying (spelling) ACM
only and let result serve as a proxy, rather than completing an exhaustive search.
We queried ACM Fulltext library and IEEE with the queries:

ACM "Cognitive Load Theory" AND Sweller AND (Software AND (Develop-
ment OR Engineering))

IEEE "Full Text & Metadata":"cognitive load theory" AND ("Full Text & Meta-
data":"Software Development" OR "Full Text & Metadata":"Software En-
gineering")

We had to omit ’Sweller’ from the search string for IEEE on account of issues
with indexing of reference section (e.g. Sedano et al. [50] does not show up when
’Sweller’ is included as part of the query, as it only references Sweller, the name
is not mentioned in the actual article), and later filter out and remove papers that
contain no reference of Sweller.

We decided to use the past five years (i.e. 2015–2020) as timeframe. From a
grounded theory perspective we find the concept of using two proxies (i.e. ACM
& IEEE and a limited timeframe) the equivalent of theoretical sampling [38].

3 Method 75

Book sections excluded, we found 22 papers in ACM and another 65 papers
in IEEE matching the queries. We further manually excluded papers regarding
teaching or education, short papers, posters and papers related to general HCI, and
ended up with an aggregated result of 11 relevant papers.

The first author made a first rough exclusion, and the unclear papers were
reexamined by the first and second author collectively.

3.6 Validity & Generalisation issues

Publishing odd qualitative findings in the software engineering research commu-
nity can be a challenge [51]. Further Siegmund et al. note that there is far from
consensus within the field on how to weigh internal and external validity [53].

In this paper we present qualitative perspectives of cognitive load drivers in
software engineering. These perspectives are grounded in observations and liter-
ature. There are in all likelihood other factors affecting the cognitive ergonomic
situation of software engineers, but we focus on those we have observed.

GT studies are commonly evaluated based on the following criteria [50] [7] [55]:
Credibility: Is there enough data to merit claims of perspectives? This study

relies on the data set from two case studies and meta analysis of a third case study.
The data set includes interviews, focus groups, observations and wirtten reflec-
tions.

Originality: Do the perspectives offer new insight? While cognitive load is not
an unknown phenomenon in software engineering. This is one of the first studies
that utilise cognitive load theory for analysis of cognitive load in software engi-
neering. We offer novel observations in regards to how to reason on cognitive load
in software engineering.

Usefulness: Are the perspectives relevant for practitioners? This study iden-
tifies novel perspectives on cognitive load in software engineering. If viewed as
waste [50] reduction of cognitive load in software engineering can be seen as
means to increase efficiency and productivity. If viewed as cognitive work environ-
ment issues [25] their reduction would equal improving the cognitive sustainability
in software engineering.

In regards to external validity – grounded theory is a largely qualitative method-
ology, the findings are not statistical, and can not be statitically generalised. That
being said, in study I we compared our findings to a general taxonomy of cogni-
tive ergonomics [25]; in this study we compare our findings to those of Sedano et
al. [50]. We do not see our findings as very particular to the context in which we
have observed them.

In regards to internal validity – researcher bias [50] or prior knowledge bias [50]
is likely are known to influence observations. We attempt to use bracketing, rigor
and bias awareness in order to reduce these influences.

76 PERSPECTIVES

4 Literature review on Cognitive Load Theory
in a general Software Engineering context

We only found one relevant study of cognitive load in a general software engineer-
ing context using cognitive load theory, namely Sedano et al. who conducted a
long term grounded theory study at a case company [50], resulting in a taxonomy
of software waste. One of the clusters found was extraneous cognitive load. Their
findings are in line with what we have found in previous studies (SI), (SII).

Further, Krancher & Dibbern present a multiple case study investigating the
importance of knowledge in software maintenance outsourcing [36].

4.1 Measuring cognitive load

The largest cluster of papers we found gravitated around measurements of cogni-
tive load.

Goncalez et al. conducted a systematic mapping study specifically addressing
measuring cognitive load of software developers (2019) [23]. The authors found 33
papers, and provide a classification of the articles found. We note a certain overlap
with our findings in this search, e.g. Muller & Fritz [44] and Crk et al. [10].

Fritz & Muller present two papers; on the use of sensor driven ’biometrics’ to
boost software developer productivity [19] and a case study aimed at predicting
code quality online using various sensors [44].

Karras et al. used eye-tracking to study the impact of different linking variants
of use cases and associated requirements on reading behaviour [32].

Crk et al present an empirical study in which programming expertise is ex-
plored using brain wave changes (EEG) [10].

4.2 Improving software development

We found two papers related to improvement of software engineering activities.
Henley & Flemming present at tool for improving code change support in visual
dataflow programming environments [28] while Moseler et al. present a prototype
tool for visualising debugging scenarios [43].

4.3 Bordering on software engineering

Bordering on software engineering, Kelleher & Hnin describe an approach to pre-
dict the cognitive load of code puzzles [33]. In addition we found a proposed model
for API learning by Kelleher & Ichinco [34], and an explorative analysis of the no-
tational characteristics of decision models by Dangharska et al. [13].

5 Perspectives – Result 77

Table 1: Cognitive load perspectives grouped by cognitive load theory compo-
nents and association to data set

CLT component Perspective SI SII SIII
Intrinsic cognitive load Task x x x
Germane cognitive load Environmental x x x
Extraneous cognitive load Information x x x

Tool x x x
Communication x x x
Structural x x x
Interruption x x x
Temporal x x

4.4 Summary of literature review

In summary we find the cognitive load, as such, is a known phenomenon in soft-
ware engineering and that it has been found to be explored and evaluated using
metrics and sensors. We further find that CLT has not had a thorough impact on
the software engineering community, but that Sedano et al. specifically use CLT
and extraneous cognitive load in their classification of software waste.

5 Perspectives – Result
In this section we discuss the constructs of CLT and synthesise our findings from
our previous work (SI, SII) and that of Sedano et al. (SIII) in order to establish a
model for reasoning on cognitive load in the work environment of software engi-
neers.

We present eight (8) different Perspectives (i.e. Task, Environmental, Struc-
tural, Information, Tool, Communication, Interruption and Temporal) on cognitive
load in software engineering. See Table 1 for an overview of the perspectives and
how they are derived from field studies and their relation to CLT components.
From the analysis, five implications for design of software engineering tools and
practice, emerge as sensitizing concepts, which we present in footnotes, marked
[SCn] and leave for future work.

5.1 Reflection on cognitive load and cognitive load the-
ory

Analogously to electrical load, cognitive load is momentary, and conceptually
load analogously translates into power. Over time this integrates into power or
energy. As a consequence an increase in (unnecessary) cognitive load corresponds

78 PERSPECTIVES

to a loss in cognitive productivity. Long term exposure to cognitive load leads to
cognitive drain, something that is well known to equate (or imply) unhealthy. We
wish however not only explore cognitive productivity and cognitive amplification,
we also want to bring up cognitive sustainability.

As stated in Section 2, in CLT three different components of cognitive load are
suggested – Intrinsic, Extraneous and Germane. The intrinsic load is defined as
the load of the the cognitive task to be solved, the extraneous load as the cognitive
load resulting from task presentation or environment, and the germane load refers
to the cognitive resources used for learning or internalising schemas for problem
solving [15] [30]. In critique on CLT by de Jong [14] and Moreno [42], respec-
tively point out the principal components of CLT belong to different ontologies.
We would like to point out that in our observations the nature of cognitive load is
often overlapping, depending on what perspective the observer choses as a lens.2

5.2 Intrinsic cognitive load
Sedano et al. aptly highlight that many (if not most) software development ac-
tivities are cognitively intensive [50], i.e. that these activities consist of tasks that
have a relatively high intrinsic cognitive task load. They suggest overcomplicated
stories as one of their identified sources, or drivers, of extraneous cognitive load
(SIII). We suggest this serves as one example of a task that should be reduced in
complexity in order to reduce the cognitive load of the individual developer.

In our empirical data we have observed that the cognitive task it self can be
a cognitive load driver, for instance in absence of automation we see engineers
performing tedious manual tasks that, ideally, should be automated (SI). We also
noted that users had to fill out very intricate and detailed sheets of information
when reporting issues, supplying information that was no longer used by anyone
(SI).

Further we observe that if a task is closely associated to the use of a tool, the
distinction between the task intrinsic cognitive load and the extraneous, external,
cognitive load induced on the user by the tool becomes difficult, if not impossible,
to pinpoint (SII). From a software engineering perspective, which refers more to
solving problems and completing tasks rather than learning per se, it seems that
the design of the task it self is an essential perspective of cognitive load.

The rationale for allowing task as a cognitive load driver, or perspective is
that tasks themselves can induce cognitive load if they are designed wrong, overly
complex or if they depend on engineers spending mental effort on tedious chores
that could/should be automated.3

We thus continue our reflection on CLT by suggesting a:
2SC1 – We observe that the concept of cognitive productivity represents the software development

organization’s strive for productivity, while cognitive sustainability addresses the developers’ wellbe-
ing, which indirectly, of course, also affects the development organization.

3SC2 – We note that higher the intrinsic task load of a tool supported task, the more investment in
user support and training on the tool can be motivated.

5 Perspectives – Result 79

Task perspective

A task centric perspective of cognitive load in software engineering is warranted
by the cognitively intensive [50] nature of software engineering. We conlude that
task/-s too complex as observed by Sedano et al. [50] present one important aspect
of cognitive load in software engineering. Further we note that some tool related
tasks need additional user support (SI, SII), and claim that the higher the cognitive
load in the task the higher the reward in easening of the cognitive load situation
of the engineer. We conclude by observing that task needing automatization (SI)
and unnecessary tasks – waste (SI), e.g. filling out unnecessary forms or manually
moving data from one tool to another, present one dimension of cognitive load that
we consider a distinct waste in software engineering.

5.3 Germane cognitive load
As described in Section 2 the germane cognitive load in CLT refers to the cog-
nitive resources and processes devoted to acquisition and automation of schemata
for the task at hand [15] – i.e. the cognitive cost of learning, and the distinction
between intrinsic and germane load is debated. While not drilling too far into the
ontological issues of Cognitive Load Theory, we note that the discussions on the
matters presents an additional possible perspective of cognitive load drivers in soft-
ware engineering – namely a general cognitive perspective. We know from seminal
schemata theory that novices and experts often display vastly different strategies
while solving identical problems [9]. Similarly novices and expert have different
needs in terms of cognitive support in digital tools [41] [62], and we have anal-
ogously observed that novices have different needs in terms of support from the
software development environment compared to experienced developers (SII).

Further, we can observe that learning something does have a cognitive cost.
While this can be trivially observed, it has an interesting consequence. If the inter-
nalisation of a problem (or task) solving schema comes at a cognitive cost, what
happens when something have to be relearned (e.g. when a new tool, IDE, op-
erating system or programming language is introduced). Consider a schemata for
solving a specific task or problem that has been internalised to the point of automa-
tion. What happens when a new similar, yet different, schemata must internalised?
This activity in all likelihood comes with a cognitive cost. Further, in the situation
where several competing schemata have been internalised this will in all likelihood
be even worse.

In our first case study (SI), we noted that one of the interview subjects de-
scribed the migration from one issue management system to another as trouble-
some, on account of the new system not matching his mental model of how the
system operated. In our second case study (SII) we found that a large portion of
the subject described the complexity and intricacies of GIT as a cause of negative
stress. Analogously Sedano et al. (SIII) noted noted psychological distress [50] as
a specific type of software waste.

80 PERSPECTIVES

Further, in (SII) we noted that several students described their experience of
working for an entire day in a computer lab as draining on account of various rea-
sons. We noted students stating themselves as being introvert and found being in
close proximity of other people (e.g. through pair programming) as very draining,
and we further noted students stating that they did not understand how it would
be possible to work under these conditions for a normal 40 hour work week, on
account of noise, light, interruptions and lack of oxygen.

These sources of cognitive load in a work setting are in line with the findings
of a case study by Sykes on interruptions in the work place. The author high-
lights the importance of the physical workplace environment and sound levels in
the working areas. Further Sykes note that the while the use of headphones aug-
ments blocking out office noises, it is essentially a ’band-aid solution to the root
problem’ [59]. Kirsh has described the consequences of Cognitive Overload in a
general workplace setting [35].4

We do not really see that these dimensions of cognitive load are not possible
to map to either of the two main constructs of CLT, intrinsic and extraneous. None
the less, we find them too important not to mention in this context. As a result
we propose an environmental perspective of Cognitive Load Drivers in Software
Engineering.

Environmental perspective

An environmental centric perspective of cognitive load in software engnieering
consists of cognitive ergonomic factors, ergonomic factors and psychological fac-
tors. While these constructs, to some extent are overlapping, we still note them as
highly relevant when analysing the cognitive work environment and the cognitive
load situation of software engineers.

5.4 Extraneous cognitive load

In CLT the component of extraneous load refers to the cognitive load resulting
from task presentation or environment [50]. Given that the human bandwidth for
cognitive load is limited [40], an increase in extraneous cognitive load will reduce
the amount of cognitive bandwidth available for task solving (intrinsic task load)
and for the cognitive processes of learning (or problem solving).

In their report on a grounded theory case study on software development waste
Sedano et al. state that: a) since many software development activities have a high
intrinsic cognitive load, and b) the mental capacity of the individual developer is
a limited resource, and as a consequence they see extraneous cognitive load as
waste [50]. They further use Extraneous Cognitive Load as a catch all element in

4SC3 – Our observations of cognitive load induced by relearning leads to 1) considering design of
configurable tools to enable personal adaptation, and 2) questioning too frequent upgrading pace of
tools to reduce relearning load.

5 Perspectives – Result 81

their waste taxonomy, containing technical debt, inefficient tooling, waiting/multi-
tasking, inefficient development flow and poorly organised code. Further, Sedano
et al. also identify inefficient communication and psychological distress as two dif-
ferent types of waste in software development outside of Extraneous Cognitive
Load.

We are in complete agreement on the importance of reducing extraneous cog-
nitive load on the individual developer, and that developers spending mental effort
on managing inefficient tools is definitely to be considered waste. In our first ex-
plorative study (SI) of cognitive load in software engineering we noted a structural
perspective of cognitive load drivers associated to work, process & organisation.
Further, we found cognitive load drivers clustered around information and tools.

Structural perspective

A structurally oriented perspective on Cognitive Load in software engineering,
as we see it, consists of organisational legacy, structure and processes. Sedano et
al. (SIII) present technical debt, poorly organised code and inefficient development
flow as examples of Extraneous Cognitive Load. We have observed similar findings
from a developer point of view in large software organisation (SI, SII): ad hoc
implementation of process, ad hoc implementation of information structure, ad
hoc implementation of tooling and lack of understanding of organisation.

Information perspective

An information centric perspective on Cognitive Load in software engineering re-
flects on the nature of Information and its consequences for the individual devel-
oper. Sedano et al. [50] present Ineffective Communication as one specific type
of software development waste, but we choose to distinguish between information
and communication in this model – in an information centric perspective the phe-
nomena under study are associated to the nature of the construct ’information’;
in a communication centric perspective the phenomena under study are associ-
ated to ’communication and distribution’ of information. In our first study (SI) we
noted two different aspects of information relevant, integrity of information (i.e.
the reliability and completeness of information) and the organisation of informa-
tion (where to find information and knowing where to distribute information to).
We have also noted that the way information is structured and presented can be
a cause of cognitive load (overview and details). The observations in (SI) were
largely validated by observation in SII.

We note that software engineering activities are information centric. The re-
volve around information that can be classified into two groups: essential infor-
mation and meta information. The former equates source code, the latter informa-
tion about source codes (e.g. bug reports, requirements, specifications, use cases

82 PERSPECTIVES

etc.). This can aslo be viewed as essential instructions (i.e. source code) and meta
instructions (i.e. instructions on how to create/transform/synthezise source code).5

Tool perspective

Since most, if not all, software development relies on tools and toolchains we
consider a tool centric perspective of Cognitive Load in software engineering as
being merited. Outside of IDEs, source code editors and compilers, developers
also use version control tools, merge tools, test tools etc.. As a consequence, we
find the tool centric perspective quite important.

Sedano et al. (SIII) simply state that ’Inefficient tools and problematic APIs,
libraries and frameworks’ are an observed cause of cognitive load. We have ob-
served (SI, SII) that cognitive load is induced on the developers by tools in several
different ways. Lack of needed functionality forces the developer to waste effort
when forced to manually do something that the tool does not support, or as we
noted in our first study where missing search functionality prevented users to find
older, closed, defect reports in an issue management system. In that specific case
our informant saved all notification emails from the issue management system,
and used that as his searchable system, using the email client. This overlap with
the temporal perspective and thus serves as an example on how different the driver
of cognitive load can appear depending on what perspective one takes.

We also noted that the stability, and reliability, of tools were important in terms
of cognitive load. Being able to revert user errors (e.g. GIT) is important and so
is understanding and trusting the result of an automatic merge operation (SII).
Further, we have noted that developers get frustrated when a tool crashes and all
work is lost (SI). Our main example draws on an issue management system in
which the developers were forced to fill out several forms that were quite complex,
required considerable amounts of irrelevant data and were somewhat unstable –
leading the developers to lose all the data that they had entered and forced them to
redo the entire operation. Stability and reliability also includes downtime, that is
a system that is unavailable; as well as lag where the tool freezes up momentarily
resulting in a loss of focus on the user.

We further have noted interaction issues in relation to tools as a significant
contributor to cognitive load for software development. In our first study (SI) we
noted that unintuitive and cumbersome interaction of a tool and lack of integration
of tools was a concern for developers. We further noted that inconsistencies be-
tween different aspects of a tool or between two different tools were considerable
load drivers. These findings were largely validated by our second study (SII).

In conclusion, a tool centric perspective on cognitive load in software engi-
neering gravitates around tools lacking functionality; the fitness to purpose of the

5SC4 – From the information centric perspective we note two kinds of information in software
engineering – essential information and meta information, while further observing a duality in the
nature of information – it can be described as either information or instructions.

5 Perspectives – Result 83

tool as well as unintuitive, cumbersome and inconsistent user interaction. It further
includes lack of integration between different tools and involves the reliability as
well as stability of the tools.

Communication perspective

A communication centric perspective of cognitive load in software engineering
is derived from equally from (SII) and (SIII). The phenomena under study are
associated to the process of distributing information rather than to the nature of
information itself. Sedano et al. propose inefficient communication as one specific
type of waste in software development, describing it as ’the cost of incomplete,
incorrect, misleading, inefficient or absent communication’ [50].

While we did not specifically explore communication as a cognitive load driver
in our first study (SI), there were appearances of phenomena related to communi-
cation. We noted these issues as aspects as realted to information distribution. Our
second study (SII) largely validated communication as a significant cause of cog-
nitive load of the developers.

We noted issues on the individual level, in knowing whom to communicate
with, from an information retrieval perspective (i.e. whom to ask/where to look)
as well as from an information distribution perspective (i.e. whom to inform/where
to store). We further observed issues on group level analogous to the observations,
e.g. absent communication leading to team members misunderstanding each other
or actual waste when multiple of developers are working on the same issue without
knowing about it because of absent stand/up meetings, or simply in inefficient
meetings.

Interruption (& multitasking) perspective

An interruption (and multitasking) centric perspective of cognitive load in soft-
ware engineering is merited on account of the social nature of the endavour. Inter-
ruptions and multitasking is an integral part of modern software engineering [49,
Ch.9]. Sedano et al. noted unnecessary context switching [50] as one aspect of
extraneous cognitive load’, while presenting waiting/multitasking as another type
of waste in software engineering, outside of extraneous cognitive load (SIII). We
noted indications of interruptions as a cognitive load driver in our first study (SI),
mostly attributed to tool stability. In our second study (SII) we noted interruptions
as a consequence of the developers shifting pairs, and describing effect of the task
switching as a loss of flow.

Sykes reports on interruptions in software engineering in a 2010 case study [59],
presenting findings that indicate interruptions to be a significant cognitive load
driver: ’Aggregated data extrapolated over a typical 8-h work day translates into
over 120 interruptions per day for Technical Lead/Senior Developers and accounts
for 5.7 h of time working on interruption tasks. This translates into over 71% of
their daily activity is spent on dealing with interruptions’.

84 PERSPECTIVES

Further, Sykes highlights that ’there is a strong correlation between cognitive
load and the cost of interruption’, i.e. the higher the intrinsic cognitive task load
will correspond to a longer resumption lag. The obvious consequence of this is
that people performing high cognitive activities, such as software engineering/de-
velopment tasks are likely to be significantly impacted by interruptions and the
overall productivity will decrease on account on the longer resumption lags. It
is also highlighted that interruptions drive stress, or ’negative emotions, such as,
irritation, or frustration’.

Temporal perspective

A time centric, or temporal, perspective of cognitive load in software engineer-
ing has, thus far, proven quite elusive. While becoming a somewhat more tangible
concept throughout the iterations of research cycles a precise definition of what
a temporal perspective of cognitive load still eludes us. However, revisiting the
material from our first two studies we note a specific temporal perspective of cog-
nitive load. In our initial field study we noted temporal traceability as one aspect
of cognitive load associated to the Information cluster. We noted developers hav-
ing issues with version control and trouble finding closed error reports (i.e. events
occurring in the past). Specifically, in one case the developer utilised a folder in
the email client to create a separate and searchable record of closed issues. Again
we note the overlap with previous perspectives.

In our second study we noted that version control and merge operations were
the main source of cognitive load in the four development teams we studied. Fur-
ther we noted that the fundamental temporal aspect of distributed cognition [29],
that cognitive processes can be distributed in time so that earlier events ’can trans-
form the nature of later events’ was clearly visible in the observations. We further
observed a number of cognitive load drivers associated to the temporal perspective,
primarily we observed the complexities presented by configuration management
tools and branching strategies. When looking at the reflection of Hollan et al. on
history enriched objects it is hard not to see parallells in version control and merge
operations.

We also note that while most tasks in software engineering requires bridging
of a cognitive gap (e.g. the tranformation of a requirement to a specification, or
the transformation of a specification to source code), the synthesis of a merge op-
eration specifically bridges a temporal gap in the production of software, in the
sense that the components fo the merge operations (metainformation and essential
information) was produced at an earlier stage, possibly by someone else.6

6SC5 – We noted that merge operations, a temporal synthesis of metainformation (e.g. commit
messages) and multiple sources of essential information (i.e. two different versions of source code),
seem to to be harder than actual coding (production of essential information). Essentially we note that
the a task consisting of synthesis of essential information and metainformation appears to have a higher
intrinsic cognitive task load than production of either metadata or essential information, provided that
the level of abstraction is comparable. To us this is an indication that, while the additional cognitive user

6 Conclusion 85

We further noted a temporal aspect of understanding project situations in our
observations. This is not only about a momentary snapshot, but about cognitive
processes distributed over time. The question of project overview in a distributed
agile project quickly becomes multidimensional – seeking to answer who did what,
when, where and why?

6 Conclusion
As a response to the need for exploration of the social side of software engineering,
we derived eight cognitive load perspectives, based on grounded theory analysis
of empirical observations of our own in industry (SI), in complex novice settings
(SII), and related literature (SIII) [50]. The perspectives are partially overlapping,
but constitute still unique view on the cognitive load created in software engineer-
ing. Further, we conclude that cognitive load is a known phenomenon in software
engineering literature, while theory does not have any major impact.

While working on memos for this manuscript we noted some sensitizing con-
cepts [7] from a design science perspective. Space limitations does not allow for an
in depth reasoning, so they are described in footnotes 2–6, left for further research,
which also extends into:

• an in depth study of literature on cognitive perspetive in regards to version
control and merge tools.

• a study focused on benchmarking existing git integrations in a few a the
existing IDEs

• a design recommendations based on the consequences of cognitive load in
software engineering

• in depth industrial case studies with the aim to further elicit cognitive load
drivers in the industry

Acknowledgement
The authors whish to thank E-building librarian, and general go-to-nice-guy, An-
dreas Karman for helping out with queries and general debugging of ACM and
IEEE search results and philosopher-gone-translator Ylva Stålmarck for proofing
the manuscript. The work described in this paper was conducted in the ELLIIT7

strategic research environment.

support should always be considered when designing software development tools, it should definitely
be further investigated specifically in relation to configuration management, branching and merging.

7https://liu.se/elliit

86 PERSPECTIVES

References
[1] Mats Alvesson and Kaj Sköldberg. Reflexive Methodology - New Vistas for

Qualitative Research. SAGE Publications, London, UK, 3rd edition, 2018.

[2] Alan Baddeley. Working Memory: The Interface between Memory and Cog-
nition. Journal of Cognitive Neuroscience, 4(3):281–288, July 1992. Pub-
lisher: MIT Press.

[3] Alan D. Baddeley. The Psychology of Memory. Basic Books, New York, NY,
USA, 1976.

[4] Olav W. Bertelsen. Toward A Unified Field Of SE Research And Practice.
IEEE Software, 14(6):87–88, November 1997.

[5] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.
Qualitative Research in Psychology, 3(2):77–101, January 2006.

[6] Antony Bryant and Kathy Charmaz. Abduction: The Logic of Discovery of
Grounded Theory - An Updated Review. In The SAGE Handbook of Current
Developments in Grounded Theory. SAGE Publications, London, UK, 2019.

[7] Kathy Charmaz. Constructing Grounded Theory. SAGE Publications, Lon-
don, UK, 2nd edition, 2014.

[8] Kathy Charmaz and Ricard Mitchell. Grounded Theory in Ethnography. In
Handbook of Ethnography. SAGE Publications, London, UK, 2001.

[9] Michelene T. H. Chi, Robert Glaser, Marshall J. Farr, Robert Glaser, and
Marshall J. Farr. The Nature of Expertise. Psychology Press, January 2014.

[10] Igor Crk, Timothy Kluthe, and Andreas Stefik. Understanding Programming
Expertise: An Empirical Study of Phasic Brain Wave Changes. ACM Trans-
actions on Computer-Human Interaction, 23(1):1–29, February 2016.

[11] Daniela S. Cruzes and Tore Dybå. Recommended Steps for Thematic Synthe-
sis in Software Engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages 275–284, September 2011.
ISSN: 1949-3789.

[12] Daniela S. Cruzes and Tore Dybå. Research synthesis in software engineer-
ing: A tertiary study. Information and Software Technology, 53(5):440–455,
May 2011.

[13] Zhivka Dangarska, Kathrin Figl, and Jan Mendling. An Explorative Analysis
of the Notational Characteristics of the Decision Model and Notation (DMN).
In 2016 IEEE 20th International Enterprise Distributed Object Computing
Workshop (EDOCW), pages 1–9, September 2016. ISSN: 2325-6605.

REFERENCES 87

[14] Ton de Jong. Cognitive load theory, educational research, and instructional
design: some food for thought. Instructional Science, 38(2):105–134, March
2010.

[15] Nicolas Debue and Cécile van de Leemput. What does germane load mean?
An empirical contribution to the cognitive load theory. Frontiers in Psychol-
ogy, 5, 2014.

[16] Ian Dey. Qualitative Data Analysis: A user-friendly guide for social scien-
tists. Routledge, London, UK, 1993.

[17] Carlos H. C. Duarte. The Quest for Productivity in Software Engineering:
A Practitioners Systematic Literature Review. In 2019 IEEE/ACM Interna-
tional Conference on Software and System Processes (ICSSP), pages 145–
154, May 2019.

[18] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software de-
velopment: A systematic review. Information and Software Technology,
50(9):833–859, August 2008.

[19] Thomas Fritz and Sebastian C. Müller. Leveraging Biometric Data to Boost
Software Developer Productivity. In 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER), vol-
ume 5, pages 66–77, March 2016.

[20] Barney G. Glaser. Theoretical Sensitivity. Sociology Press, CA, USA, 1978.

[21] Barney G. Glaser. Emergence vs Forcing - Basics of Grounded Theory Anal-
ysis. Sociology Press, CA, USA, 1992.

[22] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded The-
ory. AldineTransaction, New Jersey, USA, 1967.

[23] Lucian Gonçales, Kleinner Farias, Bruno da Silva, and Jonathan Fessler.
Measuring the Cognitive Load of Software Developers: A Systematic Map-
ping Study. In 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), pages 42–52, May 2019. ISSN: 2643-7171.

[24] Andrea Gorra. Keep your Data Moving: Operationalization of Abduction
with Technology. In The SAGE Handbook of Current Developments in
Grounded Theory. SAGE Publications, London, UK, 2019.

[25] Jan Gulliksen, Ann Lantz, Åke Walldius, Bengt Sandblad, and Carl Åborg.
Digital arbetsmiljö, en kartläggning (RAP 2015:17). Technical report, 2015.

[26] Daniel Helgesson, Daniel Appelquist, and Per Runeson. A grounded theory
of cognitive load drivers in agile software development. In manuscript in
progress, 2021.

88 PERSPECTIVES

[27] Daniel Helgesson, Emelie Engström, Per Runeson, and Elizabeth Bjarnason.
Cognitive Load Drivers in Large Scale Software Development. In Proceed-
ings of the 12th International Workshop on Cooperative and Human Aspects
of Software Engineering, CHASE ’19, pages 91–94, Piscataway, NJ, USA,
2019. IEEE Press.

[28] Austin Z. Henley and Scott D. Fleming. Yestercode: Improving code-change
support in visual dataflow programming environments. In 2016 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC), pages
106–114, September 2016. ISSN: 1943-6106.

[29] James Hollan, Edwin Hutchins, and David Kirsh. Distributed Cognition:
Toward a New Foundation for Human-computer Interaction Research. ACM
Trans. Comput.-Hum. Interact., 7(2):174–196, June 2000.

[30] Nina Hollender, Cristian Hofmann, Michael Deneke, and Bernhard Schmitz.
Integrating cognitive load theory and concepts of human–computer interac-
tion. Computers in Human Behavior, 26(6):1278–1288, November 2010.

[31] Edwin Hutchins. Cognition in the Wild. MIT Press, 1995.

[32] Oliver Karras, Alexandra Risch, and Kurt Schneider. Interrelating Use Cases
and Associated Requirements by Links: An Eye Tracking Study on the Im-
pact of Different Linking Variants on the Reading Behavior. In Proceedings
of the 22nd International Conference on Evaluation and Assessment in Soft-
ware Engineering 2018 - EASE’18, pages 2–12, Christchurch, New Zealand,
2018. ACM Press.

[33] Caitlin Kelleher and Wint Hnin. Predicting Cognitive Load in Future Code
Puzzles. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems - CHI ’19, pages 1–12, Glasgow, Scotland Uk, 2019.
ACM Press.

[34] Caitlin Kelleher and Michelle Ichinco. Towards a Model of API Learning. In
2019 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 163–168, October 2019. ISSN: 1943-6106.

[35] David Kirsh. A Few Thoughts on Cognitive Overload. Intellectia, (30):19–
51, 2000.

[36] Oliver Krancher and Jens Dibbern. Knowledge in Software-Maintenance
Outsourcing Projects: Beyond Integration of Business and Technical Knowl-
edge. In 2015 48th Hawaii International Conference on System Sciences,
pages 4406–4415, January 2015. ISSN: 1530-1605.

[37] Per Lenberg, Robert Feldt, and Lars Göran Wallgren. Behavioral software
engineering: A definition and systematic literature review. Journal of Systems
and Software, 107:15–37, September 2015.

REFERENCES 89

[38] Vivian Martin. Using Popular and Academic Literature as Data for For-
mal Grounded Theory. In The SAGE Handbook of Current Developments in
Grounded Theory. SAGE Publications, London, UK, 2019.

[39] Daniel Méndez Fernández and Jan-Hendrik Passoth. Empirical software en-
gineering: From discipline to interdiscipline. Journal of Systems and Soft-
ware, 148:170–179, February 2019.

[40] George Abram Miller. The magical number seven plus or minus two: some
limits on our capacity for processing information. Psychological review,
63(2):81–97, 1956.

[41] Daniel Moody. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions
on Software Engineering, 35(6):756–779, November 2009.

[42] Roxana Moreno. Cognitive load theory: more food for thought. Instructional
Science, 38(2):135–141, March 2010.

[43] Oliver Moseler, Michael Wolz, and Stephan Diehl. Visual Breakpoint De-
bugging for Sum and Product Formulae. In 2020 Working Conference on
Software Visualization (VISSOFT), pages 133–137, September 2020.

[44] Sebastian C. Müller and Thomas Fritz. Using (Bio)Metrics to Predict Code
Quality Online. In 2016 IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE), pages 452–463, May 2016. ISSN: 1558-1225.

[45] Peter Naur and Brian Randell. Software engineering: Report on a conference
sponsored by the nato science committee. Technical report, Scientific Affairs
Division, NATO, January 1969.

[46] Fred Paas, Alexander Renkl, and John Sweller. Cognitive Load Theory: In-
structional Implications of the Interaction between Information Structures
and Cognitive Architecture. Instructional Science, 32(1-2):1–8, January
2004.

[47] Colin Robson. Real World Research. Malden: Blackwel, 2nd edition, 2002.

[48] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering: Guidelines and Examples. John Wiley &
Sons, 2012.

[49] Caitlin Sadowski and Thomas Zimmermann, editors. Rethinking Productivity
in Software Engineering. Apress, Berkeley, CA, 2019.

[50] Todd Sedano, Paul Ralph, and Cecile Péraire. Software Development Waste.
In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pages 130–140, May 2017.

90 PERSPECTIVES

[51] Helen Sharp, Yvonne Dittrich, and Cleidson R. B. de Souza. The Role of
Ethnographic Studies in Empirical Software Engineering. IEEE Transactions
on Software Engineering, 42(8):786–804, August 2016.

[52] Janet Siegmund. Program Comprehension: Past, Present, and Future. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 5, pages 13–20, March 2016.

[53] Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on Internal and
External Validity in Empirical Software Engineering. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 1,
pages 9–19, May 2015.

[54] Hannah Snyder. Literature review as a research methodology: An overview
and guidelines. Journal of Business Research, 104:333–339, November
2019.

[55] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded Theory in Soft-
ware Engineering Research: A Critical Review and Guidelines. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE),
pages 120–131, May 2016.

[56] Margaret-Anne Storey, Neil A. Ernst, Courtney Williams, and Eirini
Kalliamvakou. The who, what, how of software engineering research: a
socio-technical framework. Empirical Software Engineering, 25(5):4097–
4129, September 2020.

[57] John Sweller and Paul Chandler. Why Some Material Is Difficult to Learn.
Cognition and Instruction, 12(3):185–233, September 1994.

[58] John Sweller, Jeroen J. G. van Merrienboer, and Fred G. W. C. Paas. Cogni-
tive Architecture and Instructional Design. Educational Psychology Review,
10(3):251–296, September 1998.

[59] Edward R Sykes. Interruptions in the workplace: A case study to reduce their
effects. International Journal of Information Management, page 10, 2011.

[60] Iddo Tavory and Stefan Timmermans. Abductive Analysis and Grounded
Theory. In The SAGE Handbook of Current Developments in Grounded The-
ory. SAGE Publications, London, UK, 2019.

[61] Robert Thornberg and Ciaran Dunne. Literature Review in Grounded The-
ory. In The SAGE Handbook of Current Developments in Grounded Theory.
SAGE Publications, London, UK, 2019.

[62] Iris Vessey. Cognitive Fit: A Theory-Based Analysis of the Graphs Versus
Tables Literature*. Decision Sciences, 22(2):219–240, 1991.

	Introduction
	Software Engineering and software engineering
	Overall research goals
	Contribution
	Concepts
	Related work
	Epistemological stance
	Methodology
	Findings
	Limitations
	Conclusion
	Future research
	References

	Included papers
	Cognitive Load Drivers in Large Scale Software Development
	Introduction
	Research questions
	Method
	Literature overview and analysis
	Results
	Limitations
	References

	A Grounded Theory of Cognitive Load Drivers in Agile Software Development
	Introduction
	Method
	Analysis
	Literature review
	Ethical considerations
	Threats to validity
	Sensitizing concepts
	Future research
	References

	Grounded Theory Perspectives of Cognitive Load in Software Engineering
	Introduction
	Background
	Method
	Literature review on Cognitive Load Theory in a general Software Engineering context
	Perspectives – Result
	Conclusion
	References

