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Abstract—Reducing the complexity of decoding algorithms
for LDPC codes is an important prerequisite for their prac-
tical implementation. In this work we propose a reduction of
computational complexity targeting the highly reliable codeword
bits and show that this approach can be seamlessly merged
with the forced convergence scheme. We also show how the
minimum achievable complexity of the resulting scheme for given
performance constraints can be found by solving a constrained
optimization problem, and successfully apply a gradient-descent
based stochastic approximation (SA) method for solving this
problem. The proposed methods are tested on LDPC codes from
the IEEE 802.11n standard. Computational complexity reduction
of 55% and a 75% reduction of memory access have been
observed.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes, introduced in

[1] have recently become a part of a number of communica-

tion standards, like WiMAX (IEEE 802.16e), IEEE 802.11n,

802.11ad and other [2]. The primary benefit of LDPC codes

lies in their excellent error correcting properties that allow the

systems using them to approach the information transmission

capacity of the communication channel.

High complexity of the original decoding algorithm for

LDPC codes, the iterative belief-propagation/sum-product

(BP/SP) algorithm [1] has driven continuous research efforts

targeting the reduction of its complexity while keeping the

ensuing performance degradation at a tolerable level. Basic

complexity reduction schemes [3] use mathematical approxi-

mations of the functions of the original algorithm. In a number

of early termination schemes (e.g. [4]), the iterations stop

as soon as some stopping criterion is met. Finally, a per-bit

early termination scheme, referred to as forced convergence

[5], employs a per-bit stopping criterion for the individual

codeword bits.

In [6] it has been shown how the tunability of certain

parameters of reduced-complexity decoding can be exploited

to find the values of the parameters that minimize the decoding

complexity while maintaining satisfactory performance, for

given channel conditions. This paper is the continuation of

work presented in [6] with:

1) A modification of the original forced convergence (FC)

algorithm that yields a larger complexity reduction with

the same performance degradation as the original FC;

2) The use of an iterative gradient descent-like algorithm

that tries to find the optimum values of the decoder

parameters for given channel conditions.

II. BACKGROUND

A. General considerations

LDPC codes [1] are linear block codes with codeword

length N described by a sparse parity check matrix H with

dimensions M × N . Their structure can be represented in

the form of a bipartite graph [7] where codeword bits are

represented by bit (variable) nodes and parity checks by parity

(check) nodes, with the interconnections between variable and

check nodes mapped from the parity check matrix.

The decoding process for LDPC codes can be viewed as an

iterative exchange of messages between adjacent variable and

check nodes. In this work, a low-complexity approximation of

the BP/SP algorithm, the offset min-sum (OMS) algorithm [3]

is used in the analysis.

The order in which messages are exchanged between vari-

able nodes and check nodes (message passing scheduling)

has a direct impact on both the performance of the decoding

algorithm and on the complexity of its implementation. In the

so-called layered scheduling scheme [4], [8], which is used in

the decoding algorithm in this work, c-nodes and their adjacent

v-nodes are grouped in layers, and the exchange of messages

between v-nodes and c-nodes is done for each layer separately,

in a sequential fashion.

B. Forced convergence: theoretic background

Each v-node has an associated aposteriori LLR value,

commonly denoted as Qv . The sign of Qv maps to bit values

0 and 1. The magnitude of Qv corresponds to the amount of

“confidence” that the v-node has in its sign. As the iterations of

the decoding algorithm progress it can be observed how (for

SNRs after the “turbo cliff”) the magnitudes of Qv evolve

towards +∞ or −∞. This indicates that the nodes become

increasingly confident that they are a 0 or a 1 as iterations

progress.

It can then be reasonable to stop the updating of Qv

for the very confident nodes, i.e. the nodes for which the

magnitude of Qv crosses some predefined threshold θ. Value

of Qv is therefore held at some fixed Qv,frozen for the

remainder of the decoding process. This is referred to as forced

convergence. Depending on the value of θ, forced convergence

will result in certain performance degradation, but will also

introduce a complexity reduction. By tuning the value of θ,

the performance can therefore be finely traded for complexity.



III. MODIFIED OFFSET MIN-SUM ALGORITHM WITH

LAYERED SCHEDULING AND FORCED CONVERGENCE

In this work, a modification of the original layered OMS

algorithm with FC is introduced. To explain the nature of

the modification, a concise overview of the message passing

activities in the original algorithm will be given first.

One layer is assumed to be the group of v-nodes connected

to one c-node. The set of v-nodes connected to c-node c is

denoted by N(c). Then, at iteration i, for each layer c and each

v-node v belonging to this layer, the following three operations

are performed:

1) Qtemp calculation: Q
(i)
temp,vc = Q

(i)
v −R

(i−1)
cv

2) Rcv calculation:

R(i)
cv =


 ∏

v′∈N(c)\v

sign(Q
(i)
temp,v′c)


×

max

{
min

v′∈N(c)\v
|Q

(i)
temp,v′c| − ω, 0

}

3) Qv update: Q
(i)
v = Q

(i)
temp,vc +R

(i)
cv

The Qtemp,vc can be seen as the message in which v informs

c about its own sign and how confident it is that this is

the actual value of its sign. On the other hand, Rcv is the

total knowledge that other v-nodes in the layer have about

the sign of v. It can be seen from the above expressions that

the value of Rcv is influenced by Qtemp values in the layer

that have the smallest magnitudes. V-nodes that are strongly

convinced about their sign will send “strong” Qtemp messages

of large magnitude that will not influence the value of Rcv .

Therefore, the Qtemp messages for these “confident” nodes

can be approximated by some constant value which is large

enough.

Since the forced convergence approach also targets the “con-

fident” v-nodes, it is natural to combine it together with the

Qtemp approximation that was just described. The modified

Qtemp calculation rule can then be formulated as follows:

Q
(i)
temp,vc =

{
Qv,frozen if v is frozen

Q
(i)
v −R

(i−1)
cv otherwise

(1)

The complete pseudocode formulation of the modified al-

gorithm is given in Algorithm I. The completed notation

is as follows: Pv are the apriori v-node LLRs (obtained

from symbols received from the channel), ω is the offset

value, a standard part of the offset min-sum algorithm. X(·)
is a hard bit decision operator (converting Qv to 0 or 1),

Q = [Q1 Q2 . . . QN ] is the codeword LLR vector and

GF2{·} denotes operations in Galois field over {0, 1}.

IV. OPTIMIZING THE LDPC DECODER PARAMETERS

A. Problem formulation

It has been shown in [6] that, for a general vector ρ of

environment settings (such as SNR or fading properties) and

minimum performance requirement FERc (expressed in terms

of the frame error rate FER), the value of the threshold θ that

Algorithm I: Layered OMS with FC and extrinsic message simplification

1: for all v-nodes v and c-nodes c do ⊲ Initialization
2: Rcv ← 0
3: Qv ← Pv

4: end for

5: Inact = ∅
6: for iterations i to Imax do
7: for all c do

8: for all v ∈ N(c) do ⊲ Qtemp calculation
9: if v ∈ Inact then

10: Qtemp ← Qv

11: else
12: Qtemp ← Qv −Rcv

13: end if

14: end for
15: Qmin1 ← min

v∈N(c)
{|Qtemp,vc|} ⊲ Rcv calculation

16: Qmin2 ← min
v∈N(c),
v 6=vmin1

{|Qtemp,vc|}

17: Qmin1 ← max{Qmin1 − ω, 0}
18: Qmin2 ← max{Qmin2 − ω, 0}

19: S =
∏

v∈N(c)

sign(Qtemp,vc)

20: for all v ∈ N(c) AND v /∈ Inact do
21: if v = vmin1 then
22: Rcv ← sign(Qvc) · S ·Qmin2

23: else
24: Rcv ← sign(Qvc) · S ·Qmin1

25: end if
26: Qv ← Qtemp,vc +Rcv ⊲ Qv update and thresholding
27: if |Qv | > θ then
28: |Qv | ← θ
29: v :∈ Inact
30: end if
31: end for
32: end for
33: if GF2{H ·X

(
QT

)
} = 0 then

34: stop iterations
35: end if
36: end for

minimizes the computational complexity C(θ,ρ) of the de-

coding algorithm is found by solving the general optimization

problem

minimize
θ

C(θ,ρ)

subject to FER(θ,ρ) ≤ FERc

(2)

In order to achieve optimum complexity reduction, the

optimum value of θ should be found and applied for any value

of the current environment settings. Put in simple terms, it

should be adapted to the channel.

This work uses an analytical model of the computational

complexity that is drawn from the algorithm structure. In the

derivation of the model, tilde ( ˜ ) will be used to denote

random terms. Layers will be indexed by l, decoding algorithm

iterations by i and individual decoded blocks (different runs of

the decoding algorithm) by b. The number of active v-nodes

(nodes that have not yet been frozen) in layer l (and at iteration

i and block b) is denoted by ñ
(b,i,l)
a . The total number of v-

nodes adjacent to the c-node in layer l and the total number

of c-nodes in the code (both deterministic and following from

the code construction) are denoted by n(l) and |c|, respectively.



Number of iterations performed in the decoding of block b is

denoted by Ĩ(b).

It should be pointed out that the number of active nodes

ñ
(b,i,l)
a and the number of iterations Ĩ(b) are discrete random

variables; the randomness of ñ
(b,i,l)
a is the consequence of

applying FC, and Ĩ(b) is random due to the early termination

(parity check at the end of each iteration). Probability mass

functions fN (ñ
(b,i,l)
a ; θ,ρ) and fI(Ĩ

(b); θ,ρ) are parameterized

by θ and ρ. Owing to the inherent complexity of the LDPC

code structure and the nonlinearity of the decoding algorithm,

these pmfs are in general case extremely hard (if not impos-

sible) to obtain in closed form.

As in [6], the complexity is given in the number of additions

(assumed equivalent in complexity as comparisons) performed

per decoded block. Complexity analysis of the decoding

algorithm is based on the complexity analysis for a single

layer l:

• Complexity of the Qtemp calculation section in one layer

is

C̃
(b,i,l)
Qtemp

= ñ(b,i,l)
a (3)

• Complexity of the Rcv calculation section depends on

the number of different |Qtemp,vc| values among which

the two minimum elements are chosen. This number is

denoted by ñ
(b,i,l)
x . The set of values of |Qtemp,vc| from

which the two minimum elements are picked is formed

by |Qtemp,vc| from active nodes, and a single θ value

representing all the frozen nodes. Therefore

ñ(b,i,l)
x = min{ñ(b,i,l)

a + 1, n(l)} (4)

and the complexity of this section is

C̃
(b,i,l)
Rcv

= ñ(b,i,l)
x + ⌈log2 ñ

(b,i,l)
x ⌉+ 2, (5)

derived from the optimum complexity of finding two

minimum elements in an unsorted array [9] and the four

additions in lines 17 and 18.

• Finally, the complexity of the Qv update and thresholding

section is

C̃
(b,i,l)
Qv

= 2ñ(b,i,l)
a (6)

Total complexity of decoding one layer is

C̃(b,i,l) = 3ñ(b,i,l)
a + ñ(b,i,l)

x + ⌈log2 ñ
(b,i,l)
x ⌉+ 2, (7)

and the complexity of decoding one block is then

C̃(b) =
Ĩ(b)∑

i=1

|c|∑

l=1

C̃(b,i,l) (8)

Finally, a sample mean of C̃(b) over a window of W blocks

is taken as an estimate of the complexity C(θ,ρ):

Ĉ(θ,ρ) = C̃ =
1

W

W∑

b=1

C̃(b) =
1

W

W∑

b=1

Ĩ(b)∑

i=1

|c|∑

l=1

C̃(b,i,l) (9)

If environment conditions ρ are assumed constant over W

blocks and if additionally there is no dependence between

noise or decoded data between different blocks, C̃(b) can

be assumed to be an i.i.d. random variable coming from an

unknown discrete pmf. Then, from the central limit theorem

it follows that the distribution of Ĉ(θ,ρ) is approximately

N
(
C(θ,ρ), σ2

C(θ,ρ)
)
, (10)

with C(θ,ρ) = E[Ĉ(θ,ρ)]. Note that C(θ,ρ) is not available

in closed form; it is only possible to obtain its (noisy) estimate

Ĉ(θ,ρ).
In order to solve the optimization problem (2), FER(θ,ρ)

needs to be obtained as well. Similar to C(θ,ρ), FER(θ,ρ)
is not known in closed form and has to be estimated. This

can be done in the usual way of counting block errors over a

window of W blocks and then dividing by W. Formally,

F̂ER(θ,ρ) =
1

W

W∑

b=1

✶

(b)
err, (11)

where ✶

(b)
err is an indicator function equal to 1 when block b

is in error, and 0 otherwise. Values of the indicator function

are Bernoulli distributed, and it is well known [10] that for a

large enough W , F̂ER(θ,ρ) is approximately distributed as

N

(
FER(θ,ρ),

FER(θ,ρ)(1− FER(θ,ρ))

W

)
(12)

We can therefore conclude that, instead of the cost and

constraint functions from (2), in practice we can only obtain

their noisy estimates:

Ĉ(θ,ρ) = C(θ,ρ) + η, (13)

F̂ER(θ,ρ) = FER(θ,ρ) + ǫ, (14)

where, following from (10) and (12), η and ǫ are approxi-

mately zero-mean Gaussian with pdf parameterized by ρ and

θ.

Optimization of θ is then performed using the noisy function

estimates and is formulated as

minimize
θ

Ĉ(θ,ρ)

subject to F̂ER(θ,ρ) ≤ φc,
(15)

with φc being the new value of the constraint that accounts for

the random nature of F̂ER and introduces a “safety margin”.

B. Problem solution

A family of optimization methods, known collectively as

stochastic approximation methods is known to be applicable

to optimization problems in which the cost function is not

known and can only be observed through its noisy estimates

(measurements), like in (15). The first stochastic approxima-

tion (SA) method was proposed by Kiefer and Wolfowitz in

[11] and has been followed by a host of similar methods (e.g.

simultaneous perturbation SA by Spall, [12]).

SA methods are based on the classic gradient descent

algorithm, in which a starting point is chosen and the optimum

is approached iteratively by following the direction of the

negative gradient. The difference between the deterministic



Algorithm II: Stochastic approximation with feasible set projection

1: Initialize θ0
2: for k from 0 to Imax − 1 do
3: ak = a

(k+1)α
, ck = c

(k+1)γ

4: if (θk − ck) < 0 OR F̂ER(θk − ck,ρ) > φc then
5: stop iterations
6: end if

7: ∂̂
∂θ

C(θk,ρ) =
Ĉ(θk+ck,ρ)−Ĉ(θk−ck,ρ)

2ck

8: θk+1 = θk − ak
∂̂
∂θ

C(θk,ρ)
9: end for

10: if F̂ER(θk,ρ) ≤ φc AND θk ≥ 0 then

11: θ̂∗ = θk
12: else
13: θ̂∗ = θk−1

14: end if

gradient descent and SA is that SA uses a noisy estimate of

the gradient instead of its actual value.

For the constrained problem (15), the iterates have to be

confined to the set of feasible points; this is modeled by a

projection operator ΠΘ that projects the iterates back onto the

feasible set Θ. The recursive expression for SA with feasible

set projection, applied to the optimization problem (15) is

given by

θk+1 = ΠΘ

{
θk − ak

∂̂

∂θ
C(θk,ρ)

}
, (16)

with the “gradient estimate” ∂̂
∂θ
C(θk,ρ) calculated as

∂̂

∂θ
C(θk,ρ) =

Ĉ(θk + ck,ρ)− Ĉ(θk − ck,ρ)

2ck
(17)

The SA-based iterative algorithm with feasible set projec-

tion for estimating θ∗ that solves (15) at a given environment

setting ρ is given by Algorithm II.

Some practical information regarding the optimization al-

gorithm:

• Feasible set Θ is defined as

Θ =
{
θ ≥ 0 | F̂ER(θ) ≤ φc

}
(18)

Negative values of θ produce undefined behaviour of

the OMS-FC algorithm, hence the nonnegative constraint

imposed on θ.

• Projection Πθ is implemented in lines 4-6 and 10-14 of

the algorithm.

• Initial point θ0 and the finite difference step θ0 − c0 are

considered to be in Θ.

• Following the practical advice given in [13], the parame-

ters α, γ, a and c of the sequences ak and ck are chosen

as follows:

– α = 0.602, γ = 0.101
– At the first iteration, a is set to ∆θ0

∣

∣

∣

∂̂
∂θ

C(θ0,ρ)
∣

∣

∣

where ∆θ0

is the desired step in the first iteration.

– Value of c is set to the estimated value of the standard

deviation of Ĉ(θ,ρ).

Fig. 1: System diagram and output timeline

• The new value of the constraint φc is determined from

confidence intervals for F̂ER(θ,ρ) from property (12). It

is the value that, when chosen as the constraint, guaran-

tees with a certain probability that the actual FER(θ,ρ)
will be smaller or equal than the original constraint FERc.

Fig. 1 shows the block diagram of the complete system

for the optimization of LDPC decoder parameters, together

with the timeline of the decoder outputs (naturally, averaged

over the entire duration of one slot). From this diagram it

is evident that this is a “black box” optimization method in

which a controller unit, implementing Algorithm II, chooses

the inputs to the system, estimates the gradient of the cost

function from the observed system outputs and decides on the

new input values based on the gradient estimate.

V. SIMULATION AND RESULTS

The described reduced complexity decoding algorithm and

the optimization algorithm were tested in three different se-

tups, based on three different LDPC codes from the IEEE

802.11n standard [2], with code rates and blocklengths given

in Table I.

TABLE I: LDPC codes used in the simulations

Code 1 R = 1/2, N = 1944

Code 2 R = 1/2, N = 648

Code 3 R = 3/4, N = 648

The selected channel is AWGN and the modulation for

all three setups is QPSK. The rates of the codes determine

their operational SNR ranges. Codes 1 and 2 are suitable for

use at low SNRs, whereas code 3 is better suited for use in

the mid-SNR range. Different values of SNR are chosen as

different states of the environment setting ρ. Three decoders

are compared in terms of complexity:

1) The plain OMS decoder, without FC

2) A “lazy” (that is, non-adaptive) OMS FC decoder with

extrinsic message simplification that uses one value of θ

over the entire tested range of SNR values. This value of

θ is selected as minimum θ that satisfies the performance
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Fig. 2: Estimate of optimum θ and FER at θ̂∗

requirement for all SNRs, while yielding a complexity

reduction compared to plain OMS.

3) An “optimized” OMS FC decoder with extrinsic message

simplification using the estimated optimum value of the

threshold, θ̂∗ (provided by the SA algorithm) at each SNR

point.

Averaging window length W in the optimization is set to

1000. At each SNR point, optimization is run for 10 different

random seeds, and the final value is the sample mean of

the results obtained from these different runs. Performance

constraint FERc is set to 10−2, and for W = 1000 and

Pr(F̂ER ≤ FERc) = 0.95 this translates to φc = 5.4 · 10−3.

In Fig. 2 the values of θ̂∗ at each SNR are given together

with FER(θ̂∗) (averaged over 50 000 blocks and therefore

considered the “true” value). The obtained values of FER

confirm that the performance constraint FER ≤ 10−2 is

satisfied at every θ̂∗. It was observed that, at high SNRs, θ̂∗ for

code 3 do not follow the same trend of decrease with SNR as

in the two other codes due to a limited number of optimization

iterations (set to 100). With a larger number of iterations it is

possible to attain smaller values of θ̂∗ at these SNRs.

The complexity, normalized by the maximum number of

iterations and the number of information bits in the block,

and the savings of lazy and adaptive schemes compared with

the plain OMS scheme are shown in Fig. 3. Complexity

C(θ) for all three decoders is averaged over 50 000 blocks

and is therefore considered the “true” value. The results lend

themselves to a comparison with the results in [6], since the

same code (IEEE 802.11n, R=1/2, N=648) is analyzed in both

works. In [6], optimum θ (found by a grid search) yielded

maximum complexity savings of 35% compared to plain OMS

for this particular code and the original OMS FC algorithm. In

this work, the modified OMS FC algorithm achieves a 53%

complexity reduction at the same SNR point, thereby con-

firming that the simple extrinsic message modification in (1)
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codes with adaptive decoding

can result in significant savings of computational complexity.

It can also be observed that the channel-adaptive decoder can

bring in additional 5 - 12% of complexity reduction compared

to the “lazy” decoder, emphasizing the general notion that

adapting the system to its environment is beneficial for system

performance. It should be noted that the controller in Fig. 1

is of negligible complexity compared to the decoder.

In actual hardware implementations of decoders, a large part

of total energy consumption is due to memory access activities

[14]. It is therefore beneficial to estimate the reduction in

memory access when analyzing decoding schemes with re-

duced complexity. Although this heavily depends on the actual
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algorithm at different SNRs

implementation and memory design, some conclusions can be

drawn from the structure of the algorithm. It can be identified

that most memory access activity (reading/writing) will occur

in “Qtemp calculation” and “Qv update” sections of the

decoding algorithm. Since both of these sections are performed

when the v-node is active, it can then be safely assumed that

the reduction in memory access will be proportional to the

reduction of the number of active nodes. The node activity of

the channel-adaptive OMS FC algorithm (at θ̂∗) is therefore

compared to the plain OMS and the corresponding reduction

is presented in Fig. 4. A very high (up to 75%) decrease of v-

node activity suggests that the presented complexity reduction

scheme can be expected to yield a highly energy efficient

hardware implementation, both in terms of computations as

well as memory access.

Finally, we shortly turn to practical implications of using

the SA algorithm to find the optimum θ. Fig. 5 shows the

rate of convergence of the optimization algorithm for two

single runs (i.e. without averaging over different seeds) at

different values of SNR. At the lower SNR value, the iterations

stop after approximately 50 000 decoded blocks because the

performance constraint is violated; at the higher SNR, they

continue until the maximum number of iterations is exhausted,

but the process can be seen to converge after around 100 000

decoded blocks. To put this into time perspective, we assume

information bitrate of 100 Mbps. Given that one block of code

2 has 324 information bits, the convergence times for the two

described cases are then ≈ 0.16s and ≈ 0.32s, respectively.

That indicates that SA can be used to tune the decoder to the

optimum value of θ in real-time, provided that the channel is

static or with very low mobility. The benefit of this approach

lies in the fact that the optimization algorithm is of negligible

complexity compared to the decoding algorithm and also in the

fact that it does not need any channel information (conversely,

θ̂∗ produced by the algorithm implicitly contains a channel

estimate).

VI. CONCLUSION

This work proposes a modified rule for calculating the ex-

trinsic messages in the LDPC decoding algorithm, in which the

extrinsic messages corresponding to highly reliable bits can be

simply approximated with the aposteriori LLRs, thereby reduc-

ing the computational complexity. It is additionally proposed

that this modification is merged with the forced convergence

scheme. It has been shown how the computational complexity

of the resulting decoding algorithm can be modeled analyti-

cally, and how a gradient-descent based optimization scheme

can be successfully applied to this model to find the maximum

complexity reduction that the algorithm can achieve under

some predefined performance constraints. The overall results

show significant reduction of computational as well as memory

access complexity, indicating high energy efficiency of a

possible hardware implementation of the algorithm. Finally,

it is shown that maximum complexity reduction is achieved if

the parameters of the decoder are adapted to the environment.

ACKNOWLEDGMENT

The work presented is a part of the Digitally Assisted Radio

Evolution (DARE) project, and the authors would like to

thank the Swedish Foundation for Strategic Research (SSF)

for providing the funds for the project.

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.

[2] IEEE 802.11n-2012, IEEE Standard for Information Technology-
Telecommunications and information exchange between systems,
Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications [Online]. Available:
http://standards.ieee.org/getieee802/download/802.11-2012.pdf

[3] J. Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier, and X.Y. Hu,
“Reduced-Complexity Decoding of LDPC Codes,” IEEE Tran. Comm.,
vol.53, no.8, pp.1288-1299, Aug. 2005.

[4] D.E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” IEEE Workshop on Signal Process. Syst.,

2004., pp.107-112, Oct. 2004.
[5] E. Zimmermann, P. Pattisapu, P. K. Bora, and G. Fettweis, “Reduced

Complexity LDPC Decoding Using Forced Convergence,” Proc. 7th Int.

Symp. on Wireless Personal Multimedia Commun., Padova, Italy, Sep.
2004, vol. 3, pp. 243246, WA2-2.
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