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Abstract—This paper presents a structured optimization
framework for reducing the computational complexity of LDPC
decoders. Subject to specified performance constraints and
adaptive to environment conditions, the proposed framework
leverages the adjustable performance-complexity tradeoffs of
the decoder to deliver satisfying performance with minimum
computational complexity. More specifically, two constraint sce-
narios are studied: the “good-enough” performance and “as-
good-as-possible performance”. Moreover, we also investigate the
effects of different degrees of freedom in performance-complexity
tradeoff adjustments. The effectiveness of the proposed method
has been verified by simulating a set of LDPC codes used in IEEE
802.11 and IEEE 802.16 standards. Computational complexity
reductions of up to 35% have been observed.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes have established
themselves as a channel coding technique of choice for
a number of contemporary communication standards, like
WiMAX (IEEE 802.16e), IEEE 802.11n and other [1], [2].
The strength of LDPC codes primarily lies in their ability to
approach the information transmission capacity of the com-
munication channel, which proves to be of great importance
in communication systems with tight bandwidth efficiency and
performance constraints.

The high error-correcting capability comes with the price of
high computational complexity, which is a critical issue in real-
life implementations of LDPC decoders, especially in mobile
handsets where the high performance has to be handled with
limited battery power and silicon area. This has driven constant
research efforts aiming at reducing the complexity of the
decoding algorithms. Basic complexity reduction techniques
for the decoding algorithm focus on substituting the mathemat-
ical functions in the original iterative belief-propagation/sum-
product (BP/SP) algorithm [3] with their approximations [4].
The properties of the original decoding algorithm (and its
modifications) itself offer an array of possibilities for com-
plexity reduction. It has been observed [5] that the iterative
decoding process can be stopped after a certain predefined
number of iterations Imax, as further iterations do not bring
any performance improvement. In addition to this, a wide
spectrum of techniques (jointly referred to as early termination
techniques) can be employed that will, at each iteration,
perform a check which will indicate whether further iterations
are necessary and use this information to stop the decoding
process at I < Imax iterations [5], [6], [7], [8]. Finally, in

an early termination variant referred to as forced convergence
[9], [10] the iterative updating of individual codeword bits
is stopped if they are determined to be converged. If the
convergence criterion is properly set, the forced convergence
can yield complexity reduction with minimum performance
loss.

Although the schemes listed are elaborate and are shown to
yield good results, there is still room for further complexity
reduction. To achieve this target, we propose to fully exploit
the potential provided by the adjustable decoding parameters
with a structured optimization framework. The basic idea is
that the parameter adjustment is adaptive to channel condi-
tions, but in such a way so that the decoder always delivers
satisfactory performance at minimum possible computational
cost.

In this paper, the described optimization-oriented approach
is applied in two study cases:

1) LDPC decoding algorithm that employs the forced con-
vergence technique in a system with relaxed performance
constraints (more specifically, FER = 10−2) and uses
optimum design parameters at each SNR point. The result
is a channel-adaptive decoding algorithm that uses the
performance margin to produce complexity reduction;

2) In order to meet tighter performance requirements, the
described decoder is paired up with an auxiliary decoder
that corrects the errors produced by forced convergence.
Optimization is utilized here to find the point where the
joint complexity of the two decoders is minimum and
it is shown that the obtained complexity reduction is
approximately the same as in case 1.

II. BACKGROUND

A. General considerations

LDPC codes [3] are linear block codes with codeword
length N described fully by a sparse parity check matrix H
with dimensions M ×N . Their structure can be conveniently
represented in the form of a bipartite graph [11] where code-
word bits are represented by bit (variable) nodes and parity
checks by parity (check) nodes, with their interconnections
mapped directly from the parity check matrix. The process of
decoding of LDPC codes can be viewed as iterative message
passing between adjacent variable and check nodes which
perform processing of the incoming messages. In this work,
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a low-complexity approximation of the BP/SP algorithm, the
offset min-sum (OMS) algorithm [4] is chosen for the analysis.

The order in which messages are passed from variable nodes
to check nodes and vice versa (message passing scheduling)
directly affects the performance. In the simplest scheduling
scheme (referred to as flooding scheduling) all v-nodes simul-
taneously pass the messages to their adjacent c-nodes, and
the same goes for c-nodes. In the layered scheduling scheme
[6], [12], c-nodes and their adjacent v-nodes are grouped in
layers, and the exchange of messages between v-nodes and c-
nodes is done for each layer separately, in a sequential fashion.
This strategy is shown to have multiple advantages over the
flooding scheduling, the main ones being reducing the number
of iterations needed for the algorithm to converge, and reduced
memory access [12].

In order to describe the layered OMS algorithm, let us
denote aposteriori v-node LLRs by Qv , apriori v-node LLRs
(obtained from the channel) by Pv , extrinsic messages passed
from v to c by Qtemp,vc and extrinsic messages passed from
c to v by Rcv . Additionally, let N(c) denote the set of v-
nodes adjacent to a c-node c, X(·) a hard bit decision operator
(converting Qv to 0 or 1) and ω an offset value. Finally,
Q = [Q1 Q2 . . . QN ] is the codeword LLR vector.

B. Forced convergence: theoretic background

If the behaviour of individual Qv is observed over iterations
i through Imax, it can be seen how, for SNRs after the
“turbo cliff”, most of the Qv evolve towards +∞ or −∞,
corresponding to the decoder being more and more “confident”
about them being 0 or 1. It can then be reasonable to assume
that the updating of Qv can be stopped after their magnitude
crosses some predefined threshold θ. Depending on the value
of θ, this will introduce a certain performance degradation,
but will also introduce savings in complexity because all
operations leading to the update of Qv can be stopped. The
described principle is referred to as forced convergence.

The OMS algorithm with layered scheduling that applies
forced convergence is presented in Fig. 1. The offset ω is
introduced with the goal of improving the performance, and
the hard syndrome check performed after each iteration is an
early termination technique aiming at reducing the average
number of iterations.

III. OPTIMIZATION-ORIENTED APPROACH TO DECODING
ALGORITHM COMPLEXITY REDUCTION

A. General problem formulation

We start by a simple formulation of the communication
receiver system design problem (which can be easily applied
to any system design problem in engineering). The values
of variable system design parameters are given in the vector
δ, values of fixed design parameters by vector σ and the
effects of the environment (reliability indicators) by vector ρ.
Values in σ and ρ are outside of the influence of the designer.

1: for all v-nodes v and c-nodes c do . The initialization section
2: Rcv ← 0
3: Qv ← Pv

4: end for
5: Inact = ∅
6: for iterations i to Imax do . The iteration section
7: for all layers k do
8: for all c in layer k do
9: for all v ∈ N(c) do

10: Qtemp,vc ← Qv −Rcv

11: end for
12: Qmin1 ← min

v∈N(c)
|Qtemp,vc|

13: Qmin2 ← min
v∈N(c),
v 6=vmin1

|Qtemp,vc|

14: S =
∏

v∈N(c)

sign(Qtemp,vc)

15: for all v ∈ N(c) AND v /∈ Inact do
16: if v = vmin1 then
17: Rcv ← sign(Qvc) · S ·max{Qmin2 − ω, 0}
18: else
19: Rcv ← sign(Qvc) · S ·max{Qmin2 − ω, 0}
20: end if
21: Qv ← Qtemp,vc +Rcv

22: if |Qv | > θ then
23: |Qv | ← θ
24: v :∈ Inact
25: end if
26: end for
27: end for
28: end for
29: if H ·X

(
QT

)
= 0 then

30: stop iterations
31: end if
32: end for

Fig. 1: OMS with layered scheduling, parity checking and
forced convergence

Receiver design problem can then be formulated as

minimize
δ

Γ(δ,σ,ρ) (1a)

subject to Π(δ,σ,ρ) ≥ Πcon (1b)

where Γ(·) and Π(·) are functions modeling system complexity
and performance respectively, and Πcon is the target perfor-
mance. Receiver design then boils down to finding the solution
δopt for the optimization problem (1). In this work, two forms
of Πcon are analyzed:
(a) Πcon = Πmax(σ,ρ)− ε,
(b) Πcon = Πrelax, Πrelax << Πmax(σ,ρ).

The constraint case (a) allows only a very small deviation ε
from the maximum performance Πmax achievable with given
σ and ρ (from now on, this constraint will be referred to as
“tight”). Constraint case (b), on the other hand, allows for a
(usually generous) performance margin (and will henceforth
be referred to as “relaxed”).

To put this structured problem formulation to the test,
we analyze two case studies of reduced-complexity decoder
design, both based on forced convergence.

B. Reduced-complexity decoding, case study 1: Forced con-
vergence with relaxed performance constraint (RPC)

For the first case study, we take the design of a decoding
algorithm that uses forced convergence and “relaxed” perfor-



mance constraint and model it in the form of the optimization
problem (1). It can be quickly seen that δ = θ, all the fixed
design parameters (decoding algorithm OMS, modulation,
code rate, etc.) are incorporated in σ and we take ρ = SNR.
We adopt the average computational complexity (average
number of computations needed for decoding a codeword) C̄
as Γ(·), and average frame error rate FER as Πcon(·). If
we denote the computational complexity of case study 1 with
C̄t(θ, SNR) and the corresponding FER as FER1(θ, SNR),
the design problem for a particular system configuration σ can
be formulated as

minimize
θ

C̄t(θ, SNR) (2a)

subject to FER1(θ, SNR) ≤ FERrelax (2b)

The resulting θopt = f(SNR). In order to solve problem
(2), C̄t(θ, SNR) needs to be obtained by means of analytical
complexity analysis of the algorithm in Fig. 1. We start by
emphasizing that in the forthcoming analysis “operations”
denotes additions and comparisons; the impact of XORs on the
total complexity is neglected. The additions and comparisons
are further considered to have the same complexity, so in
the end the number of additions is taken as the complexity
measure. We would like to point out that a complete and
precise complexity model would have to take into account
all the details of the actual implementation (such as bit
wordlength) and especially memory access activity. The model
presented here is approximate and it mostly serves the general
purpose of demonstrating how optimization-oriented approach
can be used in algorithm design.

The number of v-nodes that perform operations in one
iteration (i.e. that are “visited” in the decoding process) is
random due to applying forced convergence. We therefore
define the average number of nodes “visited” by the algorithm
in iteration i as Ā(i, θ, SNR); we additionally denote the
maximum possible number of visited nodes in an iteration
(property of matrix H) as Amax. By analyzing the flow of
the algorithm, it can be observed that the operations in one
iteration can be split into two sets: the ones whose number is
independent of θ (in lines 9-14) and the ones affected by θ
(corresponding to lines 15-26). The total number of operations
in one iteration can then be expressed as

α+ #op · Ā(i, θ, SNR), (3)

where α = Amax + |c| ·Ψ. |c| here denotes the number of c-
nodes, and Ψ =

∑
m pm(m+ dlog2me− 2), where pm is the

fraction of c-nodes c having order equal to m. m+dlog2me−2
is the complexity of finding two minimum elements in an array
of length m [13]. #op is the number of operations (additions)
in the algorithm section affected by θ and is in this case equal
to 4.

Since the algorithm employs syndrome checking after each
iteration, the number of iterations performed is random.
If we denote the probability of iteration i happening as
pt(i, θ, SNR), the average computational complexity for all

iterations is calculated as

C̄t(θ, SNR)

=

Imax∑
i=1

pt(i, θ, SNR)[α+ 4Ā(i, θ, SNR)]

= α

Imax∑
i=1

pt(i, θ, SNR) + 4

Imax∑
i=1

pt(i, θ, SNR)Ā(i, θ, SNR)

= αN̄t,it(θ, SNR) + 4N̄t,nodes(θ, SNR)
(4)

Function N̄t,it(θ, SNR) represents the average number of
iterations, and N̄t,nodes(θ, SNR) is the average number of
visited nodes for all iterations. These functions, together with
FER1(θ, SNR), need to be determined by means of Monte-
Carlo simulations.

In this work, complexity reduction is always measured with
respect to the OMS algorithm that employs hard syndrome
checking but does not employ forced convergence (henceforth
referred to as “reference case”). For this case, the operations
corresponding to the comparison with the threshold are saved,
but on the other hand there is no reduction of the number
of visited v-nodes and Amax nodes are always visited at
each iteration. The total number of operations performed at
each iteration is equal to 4 · Amax + |c| · Ψ. Since hard
syndrome checking is performed, the number of iterations
is still random but now only depends on the SNR. If the
probability of iteration i is denoted as pn(i, SNR), the average
computational complexity for all iterations can be found as

C̄n(SNR) = [4 ·Amax + |c| ·Ψ]

Imax∑
i=1

pn(i, SNR)

= γ N̄n,it(SNR).

(5)

Percent savings for the optimum threshold can then be
expressed as

Sopt(SNR) =
C̄n(SNR)− C̄t,opt(SNR)

C̄n(SNR)
· 100%. (6)

C. Reduced-complexity decoding, case study 2: Forced con-
vergence with tight performance constraint (TPC)

We now consider a system that uses forced convergence as
the design parameter but with a tight performance constraint.
In order to meet stricter performance requirements, an auxil-
iary decoder can be employed that will redo the decoding of
blocks that are erroneous due to forced convergence. What is
initially unclear in this setup is how much can the complexity
of the primary decoder be reduced and how does this reflect
to the overall complexity of the decoder pair. However, it can
be observed that, as the complexity of the primary decoder
is reduced, the number of errors that need to be corrected is
increased and thus the complexity of the auxiliary decoder
increases. The optimization approach can then be used to find
the point at which the joint complexity of the two decoders is
minimized.

The complexity of the primary decoder using forced conver-
gence is C̄t(θ, SNR), the same as in (4), the complexity of the
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Fig. 2: Operation principle of decoder algorithms in case
studies 1 (left) and 2 (right)

auxiliary decoder is denoted as C̄a(θ, SNR) and additionally
there is a “bad block” detector with complexity C̄det(θ, SNR).
The design of the minimum complexity decoder can now be
formulated as

minimize
θ

C̄t(θ, SNR) + C̄a(θ, SNR) + C̄det(θ, SNR)

(7a)

subject to FER2(θ, SNR) ≤ FERmin,σ(SNR) + ε
(7b)

The diagrams representing the operational principles of
decoding algorithms analyzed in case studies 1 and 2 are
shown in Fig. 2.

The optimization problem (7) can be reformulated following
the observation that a large majority of erroneous blocks
generated by forced convergence decoding doesn’t converge to
a valid codeword and still have active v-nodes at Imax. Using
the fact that at the SNRs of interest, FER1(θ, SNR) >>
FERmin,σ(SNR), it can be concluded that a large majority of
erroneous blocks are erroneous because of forced convergence
and the process of their decoding will last until Imax; in
other words, with high probability we can claim that block
with active v-nodes at Imax ⇔ block in error due to forced
convergence ⇔ block in error. The detection of an erroneous
block is trivial in this case: it’s enough to check the value of
the iteration counter, and turn the auxilliary decoder on when
i = Imax. With this decoder design, the complexity of the
primary decoder stays the same as in (7), and the complexity
of the auxiliary decoder is multiplied with the probability of it
being engaged, equal to FER1(θ, SNR). Given this model,
the performance constraint is satisfied and becomes a part of
the cost function, transforming the optimization problem into
an unconstrained one. With the complexity of the “bad block”
detector neglected, the reformulated design problem is now
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2

given as

minimize
θ

C̄t(θ, SNR)+FER1(θ, SNR)·C̄a(θ, SNR), (8)

where the auxiliary decoder performs the basic OMS al-
gorithm with no forced convergence and C̄a(θ, SNR) =
γ
∑Imax

i=1 pa(i, θ, SNR). The average number of iterations for
the auxiliary decoder is in general not equal to pn(i, SNR)
and is dependent on θ because the fraction of blocks that will
not converge to a valid codeword in any case (with or without
forced convergence) is higher for the auxiliary decoder, yield-
ing

∑Imax

i=1 pa(i, θ, SNR) >
∑Imax

i=1 pn(i, SNR) for a given
(θ, SNR) point.

IV. SIMULATIONS AND RESULTS

The concepts presented were tried out with a set of LDPC
codes, given in Table I. Codes are taken from IEEE 802.16e
and IEEE 802.11n standards [1], [2]. The modulation used
is QPSK and the channel is AWGN. Due to large simulation
times, the simulations were performed on a coarse (SNR, θ)
grid with steps 0.5 dB for SNR and 1 for θ; in order
to obtain more detailed results, the obtained data was then
interpolated over a finer grid using cubic interpolation, and



TABLE I: LDPC codes used in the simulations

Code 1 IEEE 802.11n, R = 1/2, N = 648
Code 2 IEEE 802.16e, R = 2/3 (B), N = 672
Code 3 IEEE 802.16e, R = 1/2, N = 672
Code 4 IEEE 802.16e, R = 2/3 (B), N = 2304

the optimizations were performed on this interpolated data.
For the sake of brevity, only the results for codes 1 and 2 are
given here; however, the trends that were observed apply to
the other two codes as well.

We start by presenting in Fig. 3 the FER curves for
different values of θ and the reference case. FER curves
show the effect θ has on the performance: the evolution of
the magnitude of Qv is stopped and the magnitude fixed
at a certain value, possibly also fixing the erroneous sign
of Qv and causing a reduction of flow of information to
other v-nodes in subsequent iterations. This results in a
performance degradation and increase of the error floor; the
performance degradation increases with progressively smaller
values of θ. The FER results can be practically used in
solving (2): if FER1(θ, SNR) = FERrelax is solved for
θ, a new function θcon(SNR) is obtained, and the constraint
(2b) can then be rewritten as θ ≥ θcon(SNR). In the
performed analysis, FERrelax = 10−2, which is a common
performance constraint in contemporary wireless applications.
This constraint also serves for determining a range of SNRs
(SNRmin, SNRmax) in which the optimization is performed,
with SNRmin being approximately equal to the point where
FER for the reference case is equal to 10−2.

The level plots of C̄t(θ, SNR) and C̄t(θ, SNR) +
FER1(θ, SNR) · C̄a(θ, SNR) are shown in Fig. 4, over-
laid with θcon(SNR) and θopt(SNR) for case study 1 and
θopt(SNR) for case study 2. The data shown is for code 1;
the observed patterns apply to other codes as well. In line
with the preceding discussion, for case study 1, C̄t(θ, SNR)
is minimized in the half-plane above θcon(SNR).

It can be observed that both cost functions have large values
for large and small values of θ, and the minima lie in between.
With large θ, N̄t,nodes(θ, SNR) → Amax · N̄n,it(SNR),
or simply, the node activity tends to the maximum one,
corresponding to the reference case. On the other hand,
N̄t,it(θ, SNR) increases with decreasing θ, causing the in-
crease of the cost function. It can be further noted how
the behaviour of θopt(SNR) in case 1 is “shaped” by the
constraint, whereas it remains approximately constant over the
operating SNR range for case study 2 (this behaviour is also
observed for other tested codes).

The analysis continues with comparing the complexity of
decoding algorithms shown in Fig. 2 using θopt = f(SNR)
with the variants of the same algorithms that would use a θopt
that is constant over the SNR region of interest. For study case
1, this constant θopt value can again be obtained by solving (2),
now with an added constraint SNRmin ≤ SNR ≤ SNRmax.
In study case 2, a constant θ that best approximates θopt can be
chosen after solving (8). These suboptimum threshold values

are denoted as θsubopt,RPC and θsubopt,TPC for case studies 1
and 2, respectively. The values of θsubopt,RPC and θsubopt,TPC
for code 1 (corresponding to optimum values shown in Figure
4) are 12.2 and 10, respectively.

Fig. 5 shows the decoding complexities, expressed as the
total number of additions normalized by Imax and number
of information bits, and savings in complexity compared to
the reference case, as defined by (6), for codes 1 and 2. The
first thing that can be observed is that the complexity for all
cases reduces with increased SNR which is a consequence
of the syndrome checking mechanism which can be viewed
as an implicit SNR adaptation scheme. The complexity can
be further reduced by employing forced convergence with a
suboptimum θ that is constant over the operating SNR range.
The maximum complexity reduction, however, is achieved
by constantly adapting θ to the SNR, that is, by employing
explicit adaptation of θ to channel conditions in addition to the
implicit one. Furthermore, it can be observed that the decoder
algorithm in case study 2 almost reaches the complexity of
the decoder in case study 1, in spite of a more demanding
performance constraint; this is of course made possible by
introducing another degree of freedom, namely the auxiliary
decoder. From all the analyzed cases, it follows that applying
θsubopt,TPC is the same as applying θopt,TPC , that is, channel
adaptation in this case doesn’t introduce additional complexity
reduction.

V. CONCLUSION

In this work, a structured, optimization-oriented approach
to the design of LDPC decoding algorithms has been demon-
strated. It has been shown how the analytical model for the
algorithm complexity can serve as the cost function, and
various design constraints as constraints in an optimization
problem. By comparing various solutions of the design prob-
lem, corresponding to different design constraints, system
designers can gain a deeper insight in the tradeoffs involved
in system design. Applying the optimization-oriented approach
on the design of an LDPC decoder algorithm employing forced
convergence, it was demonstrated that, given a relaxed perfor-
mance constraint, the largest complexity reduction is achieved
by constant adaptation of the threshold to the SNR, and that
a non-adaptive threshold provides a suboptimal complexity
reduction. It was also demonstrated how introducing another
design parameter - cleanup of block errors, a tight performance
constraint can be met although forced convergence is still
used, and the optimization approach here provides the value
of the thresholds that optimally balances the complexity of the
primary and auxiliary decoders.
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