
Sum rules and physical bounds in electromagnetic
theory

Mats Gustafsson #1, Daniel Sjöberg #2, Anders Bernland #3, Gerhard Kristensson ∗4, Christian Sohl #5

# Department of Electrical and Information Technology, Lund University
Box 118, SE-221 00 Lund, Sweden
1 mats.gustafsson@eit.lth.se
2 daniel.sjoberg@eit.lth.se

3 anders.bernland@eit.lth.se
4 gerhard.kristensson@eit.lth.se

5 christian.sohl@eit.lth.se

Abstract—Sum rules are useful in many branches of physics
and engineering as they relate all spectrum parameter values with
their asymptotic expansions. Properties of the dynamic response
can hence be inferred by the, in many cases much simpler, static
response. This has e.g., been used for lossless matching networks,
radar absorbers, extinction cross section, partial realized gain of
antennas, high-impedance surfaces, transmission cross section,
transmission coefficients, and temporal dispersion of metamateri-
als. Here, several sum rules and their associated physical bounds
are reviewed and it is shown that integral identities for Herglotz
functions offer a unified approach in deriving them.

I. INTRODUCTION

Sum rules are e.g., useful in deriving physical bounds as
they relate dynamic properties of a parameter with static and
high-frequency values. These type of identities and physical
bounds are of great interest in many areas of electromagnetic
theory. They provide physical insight of the relation between
design parameters. They are also useful in optimization of e.g.,
antennas, metamaterials, and radar absorbers as they provide
upper bounds on the design. In this paper, sum rules for various
scattering, antenna, and material problems are reviewed. It is
shown that integral identities for Herglotz functions offer a
unified approach for them.

II. HERGLOTZ FUNCTIONS AND INTEGRAL IDENTITIES

The sum rules presented here are based on integral identities
for Herglotz functions [1, 2]. Herglotz functions (also known
as Nevanlinna or Pick functions and closely related to positive
real functions [3]), h(z), are analytic and Im{h(z)} ≥ 0 for
Im z > 0. They are often found in linear, passive, and causal
systems [2, 3]. The identities

2
π

∫ ∞
0

Imh(x)
x2p

dx = a2p−1 − b2p−1 (1)

for p = 1 − M, 2 − M, ..., N are valid for all symmetric
Herglotz functions h(z) = −h∗(−z∗) having the asymptotic
expansions

h(z) =
2N−1∑
n=−1

anz
n + o(z2N−1) as z→̂0 (2)

and

h(z) =
1∑

m=1−2M

bmz
m + o(z1−2M ) as z→̂∞, (3)

where →̂ means limits in some sector 0 < α < arg z < π−α,
see [2] for a proof and details of the integral in (1).

The identities (1) are instrumental for sum rules in elec-
tromagnetics [4–8], antennas [9, 10], optics [11], circuit the-
ory [12], and many other branches of physics [13]. Here,
several sum rules and their associated physical bounds are
reviewed. They are used to illustrate the unified approach that
follow from the identities (1).

III. SCATTERING BY FINITE OBJECTS
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Fig. 1. Illustration of forward scattering of a plane wave in the direction
k̂ and linear polarization ê, partial wave (mode) scattering, and transmission
line scattering for finite objects and antennas.

There are several scattering setups for finite scatterers
and antennas, e.g., forward scattering, partial wave (mode)
scattering, transmission line scattering, see Fig. 1.

A. Extinction cross section

Forward scattering and the associated sum rule for the
extinction cross section are analyzed in [5] and we refer to
this paper for details. Causality is ensured in the forward
scattering case, i.e., a plane wave impinging on the object
and the scattered co-polarized component is determined in the



forward direction. This forward scattered field defines a causal
function if the wavefront velocity is lower in the object than in
the surrounding medium. This is obviously the case for object
in free space as the wave front velocity cannot exceed the
speed of light. It is however in general not true in acoustic
scattering [13]. The derivation in [5] is based on the optical
theorem that defines a Herglotz function, hext(k), such that
Imhext(k) = σext(k), where σext denotes the extinction cross
section and k is the wavenumber.

The Herglotz function hext(k) has the low-frequency ex-
pansion

hext(k) = k
(
ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê)

)
+ o(k) (4)

as k → 0, where γe and γm denote the electric and magnetic
polarizability dyadics, respectively. The low-frequency expan-
sion (4) shows that N = 1 in (2), implying that there is a
p = 1 identity in (1), i.e.,

2
π

∫ ∞
0

σext(k)
k2

dk = ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê). (5)

This identity was first derived for spheroidal dielectrics [14]
and generalized to arbitrary objects in [5, 15]. Note that the
b1 ≥ 0 coefficient in (3) vanishes in forward scattering [5, 15].

The polarizability dyadics in the right-hand side of (5) are
determined from the solution of the Laplace equation. There
are also several geometries with closed form expressions, e.g.,
a dielectric sphere with static relative permittivity εs and radius
a has

γe = 4πa3 εs − 1
εs + 2

I ≤ γ∞ = 4πa3I and γm = 0, (6)

where γ∞ is the high-contrast polarizability.
As an example consider spherical scatterers composed by

either aluminum (Al), silver (Ag), gold (Au), or copper (Cu),
using the permittivity models in [16]. The extinction cross
sections for spheres with radius a = 0.1µm are depicted in
Fig. 2 as functions of the wavelength λ = 2π/k. It is observed
that σext is large compared to the cross section area πa2 at
some resonance wavelengths and that σext is small for λ >
1µm. The spheres are metallic and have the polarizabilities
γe = γ∞ = 4πa3I and γm = 0. Note that the identity (5)
gives the bound

(λ2 − λ1)
π2

min
λ∈[λ1,λ2]

σext(λ) ≤ 4πa3 (7)

and with λ1 = 0 it simplifies to the bound

λ2 min
λ<λ2

σext(λ)
πa2

≤ 4π2a (8)

that e.g., shows that minλ<λ2
σext(λ)
πa2 ≤ 4 for λ2 = 1µm and

a = 0.1µm.

IV. PLANAR SURFACES

Planar periodic structures are important in electromagnetic
applications such as absorbers, frequency selective surfaces,
and high impedance surfaces. The electromagnetic properties
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Fig. 2. Extinction cross sections for aluminum (Al), silver (Ag), gold
(Au), and copper (Cu) spheres with radius a = 0.1µm as function of the
wavelength λ = 2π/k.

are often represented by the reflection and transmission coef-
ficients. For simplicity, the cases with normal incident plane
waves are considered here.
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Fig. 3. Scattering by a planar periodic structure with reflected co-polarized
field Er = ΓEi and transmitted co-polarized field Et = TEi.

A. Transmission blockages

Consider a dielectric structure with a periodic pattern of
metallic inclusions such as the split ring resonators in Fig. 3.
This is a low-pass frequency selective surface, i.e., low fre-
quency waves do not interact with the structure. This case is
analyzed in [7], and we refer to this paper for details. It is first
observed that the transmitted field cannot precede the incident
field. This implies that the transmission coefficient is analytic
in the upper complex half plane. The transmission coefficient
is also bounded by unity for passive structures. A conformal
mapping of the unit circle to the upper complex half plane
finally defines a Herglotz function.

The logarithm − ln |T | is often considered as the amplitude
of the transmission coefficient is important. Here, it is first
necessary to remove the zeros kn of T with Im kn > 0, see [2,
7, 12] for details. This defines the Herglotz function

h(k) = −i ln

(
T (k)

N∏
n=1

k∗n − k
kn − k

)
, (9)

where an asterisk denotes the complex conjugate, see [2] for
the case with N = ∞. The low-frequency expansion of T is



T ∼ 1 + ikê · γe · ê/(2A), where A denotes the area of the
unit cell, see [7, 17], that gives

−i lnT (k) ∼ k ê · γe · ê
2A

(10)

and the low-frequency expansion of h as

h(k) = k
ê · γe · ê

2A
+ k

N∑
n=1

1
kn

+ o(k) as k→̂0. (11)

It is noted that (1) offer a p = 1 sum rule, i.e.,

2
π

∫ ∞
0

1
k2

ln
1

|T (k)|
dk ≤ ê · γe · ê

2A
, (12)

where Im kn > 0 is used to rewrite the identity (1) into an
inequality.

B. Absorbers

Absorbers are often supported by a perfectly conducting
ground plane. The performance of absorbers is quantified by
the magnitude of the reflection coefficient. For simplicity,
the case with a layer with a homogeneous permeability and
a periodic permittivity is considered. This gives the low-
frequency expansion [4, 17]

Γ (k) = 1 + i2µskd+ o(k), (13)

where d is the thickness of the layer and µs is the static relative
permeability of the layer. Remove the zeros of Γ (k) as in (9)
to define the Herglotz function

h(k) = −i ln

(
Γ (k)

N∏
n=1

k∗n − k
kn − k

)
(14)

that has the low-frequency expansion

h(k) = 2µskd+ o(k) as k→̂0. (15)

The identities (1) show that there is a p = 1 sum rule, i.e.,

2
π

∫ ∞
0

1
k2

ln
1

|Γ (k)|
dk ≤ 2µsd. (16)

This identity was derived by Rozanov [4] and is used to
determine physical bounds on radar absorbers.

C. High impedance surfaces

High-impedance surfaces are also based on periodic struc-
tures above a perfectly conducting ground plane. The struc-
tures have ideally Γ ≈ 1, i.e., the reflection does not change
the phase of the wave. Use the impedance, Z, of the surface to
characterize the surface. The reflection coefficient of a surface
is Γ = (Z − η0)/(Z + η0), where η0 denotes the free space
impedance. The low-frequency expansion of Γ is identical to
the absorber case (13) and gives the corresponding expansion
of the impedance

Z(k) = η0
1− Γ
1 + Γ

∼ −ikdµsη0 as k→̂0. (17)

It is possible to derive several identities for the impedance.
However, to derive a sum rule that is particularly suitable for
this case it is convenient to introduce the Herglotz function [8]

h∆(z) =
1
π

∫ ∆

−∆

1
ξ − z

dξ =
1
π

ln
z −∆
z +∆

. (18)

Note that Imh∆(z) ≈ 1 if |z| < ∆ and Re z ≈ 0. This means
that compositions with h∆ can be used to construct Herglotz
functions that are suitable to bound regions with low values
of |z|.

The admittance Y = 1/Z and its associated Herglotz
function hY(k) = iY (k)η0 are small for high-impedance
surfaces. The composition h∆(hY(k)) has the asymptotic
expansion

h∆(hY(k)) ∼ 2
π
µs∆kd as k→̂0. (19)

The identity (1) gives the p = 1 sum rule∫ ∞
0

Imh∆(hY(k))
k2

dk = µsd∆. (20)

As an example, consider the reflection in free space deter-
mined at the distance d from a ground plane, i.e., µs = 1
in the equations above. The admittance is infinite for d/λ =
kd/(2π) = n/2 and vanishes for d/λ = 1/4 + n/2, where
n = 0, 1, 2, ..., see Fig. 4. The structure is lossless so the
admittance is purely imaginary where it is defined. This means
that Im{hY(k)} = 0 except at the singular points. The
composition h∆(hY(k)) is determined for ∆ = 1, and it
is noted that h∆(hY(k)) = 1 for wavenumbers such that
|hY(k)| < ∆ = 1 or equivalently Y (k) < η0.
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Fig. 4. Admittance function hY(k) and composition h∆(hY(k)) with ∆ =
1 the reflection of ground plane at distance d.

V. CONSTITUTIVE RELATIONS

Causality and passivity are also common assumptions in the
constitutive relations used in electromagnetic theory. Consider
for simplicity isotropic models for the (relative) permittivity,
εr(ω), where ω denotes the angular frequency. Define the



Herglotz function hε(k) = ωε(ω)/ω0. It has the asymptotic
expansions

hε(ω) ∼

{
εsω/ω0, as ω→̂0
ε∞ω/ω0, as ω→̂∞,

(21)

where εs is the static (relative) permittivity, ε∞ is the optical
response, and ω0 > 0 a frequency parameter. Note that the
low-frequency expansion changes to iσ/ω0 in the case with a
static conductivity. The identity (1) gives a p = 1 sum rule for
ε that is identical to the sum rule derived from the Kramers-
Kronig relations [18].

To construct an identity that is suitable for ε-near zero
materials, it is observed that this case is similar to the high-
impedance surface considered in Sec. IV-C, i.e., it is desired
to find constraints on low amplitudes of a Herglotz functions.
The composition h∆(hε(ω)) has the asymptotic expansions [8]

h∆(hε(ω)) ∼

{
i, as ω→̂0
−2ω0∆
ωπε∞

, as ω→̂∞,
(22)

and the p = 0 identity (1) gives∫ ∞
0

Imh∆(hε(ω)) dω

=
∫ ∞

0

1
π

arg
(ωε(ω)− ω0∆

ωε(ω) + ω0∆

)
dω =

ω0∆

ε∞
. (23)

This identity is transformed into a bound on ε where it is
observed that the bound in lossy media is similar to the bound
in [19] for B � 1 with ε∞ = 1, see [8] for details.

As an example, consider the Drude model

ε(ω) = 1 +
1

−iω(0.01− iω)
, (24)

where ω is a dimensionless frequency variable, see Fig. 5. The
permittivity is near zero for ω ≈ 1 = ω0. The sum rule (23) is
evaluated with ∆ = 0.5. The integrand in (23) is depicted in
Fig. 5b, where it is observed that it has most of its area in the
region around ω ≈ 1, i.e., in the region where |ε(ω)| ≤ ∆. The
amplitudes |hε(ω)| and |ε(ω)| are also included in the figure.
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Fig. 5. Illustrations of the Drude model (24) with the sum rule (23). a) the per-
mittivity ε(ω). b) the integrand in the sum rule (23), Imh∆1 = Imh∆(h1),
the function |hε|, and the difference |ε| with ∆ = 0.5.

VI. CONCLUSIONS

It is shown that several sum rules in electromagnetic theory
can be derived in a unified way using integral identities
for Herglotz functions. The approach is illustrated with sum
rules for the extinction cross section, antenna impedance
and admittance, reflection and transmission coefficients, and
dispersion of metamaterials.
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[17] D. Sjöberg, “Low frequency scattering by passive periodic structures
for oblique incidence: low pass case,” J. Phys. A: Math. Theor., 2009,
accepted for publication.

[18] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskiı̆, Electrodynamics of
Continuous Media, 2nd ed. Oxford: Pergamon, 1984.

[19] Ø. Lind-Johansen, K. Seip, and J. Skaar, “The perfect lens on a finite
bandwidth,” J. Math. Phys., vol. 50, p. 012908, 2009.


