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Abstract — Antenna current optimization offers per-
formance bounds and suggestions for the distribu-
tion of the desired antenna currents. Many current
optimization problems can be formulated as con-
vex optimization problems that are solved efficiently
with explicit error bounds. The formulations as con-
vex optimization problems are also illuminating as
they can easily be generalized to specific antenna
problems by adding convex constraints.

1 INTRODUCTION

Optimization is used in antenna design to improve
existing antenna designs and to find new designs [1].
Random search algorithms, such as genetic algo-
rithms [2] and particle swarm, and gradient based
algorithms dominate the field due to the complex-
ity of the antenna design problems. Optimiza-
tion of the antenna current density [3, 4] is inher-
ently different from antenna optimization and can
often be formulated as convex optimization prob-
lems [4]. The formulations as convex optimization
problems are advantageous as there are many ef-
ficient solvers and the solvers can provide explicit
error estimates [5]. We combine quadratic forms,
such as stored energy and radiated power, linear
forms, such as near- and far fields and induced cur-
rents, and norms to formulate convex optimization
problems relevant for specific antenna problems [4].

The evaluation of the stored energy [6, 7] ma-
trices are in principle already implemented in
many Method of Moments (MoM) codes based on
Galerkins method [7]. It is sufficient to separate the
electric and magnetic parts of the MoM impedance
matrix from the Electric Field Integral Equation
(EFIE) and to add a non-singular part. Here, we re-
strict the analysis to surface currents in free space.
We present an overview of antenna current opti-
mization.

2 CURRENT OPTIMIZATION

Optimization is a powerful tool in antenna de-
sign [1, 2] that can handle the contradictory re-
quirements on performance and size. Here, we con-
sider generic antenna geometries to illustrate the
approach. The antenna structure is denoted V and
consists of an antenna region V1 ⊂ V and a remain-
der V − V1. The antenna is part of the structure
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but restricted to the region V1. We assume that the
antenna designer is free to determine the material
properties in the region V1 but not allowed to al-
ter the material properties of the remaining region
V − V1.

We can consider many optimization problems for
the antenna design. We use the Q-factor to esti-
mate the fractional bandwidth and the case with a
minimal Q-factor can be written

minimize
stored energy

radiated power
=

max{We,Wm}
Prad

(1)
for lossless antennas, where the Q-factor is obtained
by multiplication with 2ω and ω denotes the angu-
lar frequency. We minimize the Q for an antenna by
changing the material properties in the region V1 for
fixed material properties in V − V1, see e.g., [8, 9].
The minimal Q-factor (1) can be reformulated as a
minimization problem for the stored energy subject
to a fixed radiated power Pr, i.e.,

minimize stored energy = max{We,Wm}
subject to radiated power = Pr

(2)

The two formulations (1) and (2) are equivalent but
the latter formulation is more powerful for current
optimization as it is easy to generalize it by includ-
ing additional constraints.

The classical problem of maximal gain over Q,
G/Q is

minimize
stored energy

partial radiation intensity
(3)

where G is the partial gain and (3) can be written

minimize stored energy = max{We,Wm}
subject to partial radiation intensity = P0

(4)

3 CONVEX OPTIMIZATION

Convex optimization problems are solved with ef-
ficient algorithms [5] and dual problems are used
for posterior error estimates. One can often state
that a problem is solved if it is formulated as a
convex optimization problem. Convex optimiza-
tion includes linear programming (LP), quadratic
programing (QP), and quadratically constrained
quadratic programing (QCQP) as special cases, see
also Fig. 1 for an illustration of convex functions.
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Figure 1: Illustration of convex and non-convex
functions. Convex functions satisfy f(αx + βy) ≤
αf(x) + βf(y) for α, β ≥ 0, i.e., the curve is below
the straight line between two points [5].

We first expand the current density in basis func-
tion that implies the approximations We ≈ JHXeJ
and Wm ≈ JHXmJ of the stored electric and mag-
netic energies, respectively. The gain Q-factor quo-
tient (3) is

G(k̂, ê)

Q
≈ 4π|FJ|2

η0 max{JHXeJ,JHXmJ}
(5)

where FJ is the MoM approximation of the far-
field in the direction k̂ projected on ê. Using the
scaling invariance of G/Q in the current density
J, i.e., G/Q is invariant for the complex scaling
J→ αJ, we rewrite the maximization of G/Q into
minimization of the stored energy for a fixed partial
radiation intensity (4)

minimizeJ max{JHXeJ,J
HXmJ}

subject to |FJ|2 = 1,
(6)

where we for simplicity use the dimensionless nor-
malization |FJ|2 = 1 that can be written |FJ| = 1.
Moreover, the scaling invariance shows that we can
consider an arbitrary phase Re{FJ} = 1 that re-
moves the absolute value [4]. In total, we have
the convex optimization problem to minimization
of the stored energy for a fixed partial far-field in
one direction [4], i.e.,

minimizeJ max{JHXeJ,J
HXmJ}

subject to Re{FJ} = 1.
(7)

Let Jo denote a current density column matrix that
solves (7). The minimal value of the stored energy
in (7) is unique. The solution Jo gives an upper

bound on G/Q for the considered direction k̂ and

polarization ê, i.e.,

G(k̂, ê)

Q
≤ G(k̂, ê)

Q

∣∣∣∣∣
ub

=
4π|FJo|2

η0 max{JH
o XeJo,JH

o XmJo}
(8)

The convex optimization problem (7) can be
written in many alternative forms. Introduce the
stored energy W and use that We ≤W and Wm ≤
W to get the alternative convex optimization prob-
lem

minimizeJ W

subject to JHXeJ ≤W
JHXmJ ≤W
Re{FJ} = 1,

(9)

where we used a normalized stored energy W .
There are several efficient implementations that
solve convex optimization problems, here we use
CVX [10], that gives the MATLAB code

cvx begin
variable J(N) complex; % current density
variable W; % stored energy
minimize W
subject to

quad form(J,Xe) <= W; % stored E energy
quad form(J,Xm) <= W; % stored M energy
real(F*J) == 1; % far−field

cvx end

CVX solves the convex optimization problem itera-
tively, see the CVX manual [10] for details.

4 CONCLUSIONS

Current optimization can be considered as an al-
ternative antenna optimization problem that offers
information of the desired antenna currents for op-
timal radiation. The approach is powerful as many
antenna problems can be formulated as convex opti-
mization problems and are hence solved efficiently.
A fundamental step in the formulation is to ex-
press the stored energy [6, 7] in the current den-
sity [4]. There are several unresolved question for
the interpretation and accuracy of the stored ener-
gies [3, 6, 7, 11–14].
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