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1. Introduction

In this report we will introduce the Lipschitz and Dahlquist functionals, [Sdder-
lind, 1992], and derive them for linear time invariant systems and for simple
static nonlinearities. Algorithms for the computation of the functionals will be
given in the linear case.

A stability theory for feedback systems will be developed. With stability
we will mean that the signals in the feedback loop are bounded and depend
Lipschitz continuously on the input signals. The stability theorems developed
will state conditions for stability in terms of the Lipschitz and the Dahlquist
functionals. The theorems are similar to those found in, for example, [Desoer
and Vidyasagar, 1975], but stated in terms of the introduced functionals.

The report puts, into a feedback system stability context, results from
nonlinear functional analysis that have been used in numerical analysis [S6der-
lind, 1984, [Soderlind, 1986], and [Soderlind, 1992]. The main stability theo-
rem in this report appeared in [Séderlind, 1992].

2. The Lipschitz and the Dahlquist functionals

In this section the Lipschitz and the Dahlquist functionals presented in [S6der-
lind, 1984, [Séderlind, 1986], and [Séderlind, 1992] will be introduced. We will
be concerned with operators H mapping a subset of a Banach space X into the
same Banach space, i.e. H : Dom(H) — Im(H), where Dom(H),Im(H) € X
denote the domain and range of H respectively.

Lipschitz functionals
For u,v € Dom(H) the upper and lower Lipschitz functionals are defined as
follows

L] = sup VI =@y IH () = H)]

uFv Hu = T.?” u#v ||‘H, - UH

(1)

We will call operators with L[H]| < oo Lipschitz continuous. The following
properties of the Lipschitz functionals can easily be proven [Séderlind, 1986].

THEOREM 1
Let H,H, and H, be Lipschitz continuous with Dom(H,) = Dom(H;) and
Im(H,) C Dom(H;). Then

1. L[H] > 0; L(H) = 0 & H = const.

2. LlaH] = |a|L[H]
3. L[Hy] - L{Hy) < L{H, + Hy) < L{H,] + L{H)
4. l[H,]L[H,] < L[H:H,) < L[H,]L[H,] D

It follows from the theorem above that L[-] is a seminorm on the space of
Lipschitz continuous operators. It is possible to construct equivalence classes
of Lipschitz continuous operators differing only by a constant term. Then we
get a linear quotient space called £[X] on which L[-] reduces to an operator
norm, see [Soderlind, 1992]. It was shown in [S8derlind, 1992] that £(X) is
complete and open. Let £(X ) be the closure of £(X), then it follows that the
boundary dL(X) = L(X)\ £(X) consists of unbounded operators.

The functional [[-] has the following properties, [Séderlind, 1992]



THEOREM 2
Let H,H,, Hy € L(X) , with Dom(H,;) = Dom(H,) and Im(H,) C Dom(H,).
Then

1. 0 < I[H] < L[H]

2. l{aH] = |a|l[H]
8. I[H,) — L[H,] < I[H, + H;) < I[H,] + L[H,]
4. l[H,)l[H,] < l[H,H,| < L[H,]l[H{] O

Remark. We may define [[-] even for unbounded operators. An example of
this will be given in Example 3.

We will, as discussed in the next section, have reason to restrict ourselves
to operators satisfying H(0) = 0. In what follows we will only consider this
class of operators. We define the linear space of operators Lo[X | = {H : L[H] <
oo on Dom(H) € X, with H(0) = 0}. The theorems and the comments above
hold also for £,(X).

The following theorem is useful when studying invertibility properties of
operators.

THEOREM 3
If [[H] > 0 then H e EO(X); L[H‘l] = I[H]‘1 O

Remark. In the case when Dom(H) = X, the condition [[H] > 0 only implies
that H~! is defined on Im(H ) and therefore in general not on all of X.

We will conclude the presentation of the Lipschitz functionals with an
important lemma that will be used in a proof later on.

LEmMaA 1
If L{[H]) <1, then (I + H) ' € Lo(X) and L[(I + H)™ '] < 1—_}/—[;!—] Further, if
Dom(H) = X then Dom((I + H) ') = X.

Proof:  Since l[I4+H] > I[I|-L[H]=1-L[H] > 0,1+ H is injective and thus
invertible on Im(I + H). The bound on the Lipshitz functional of (I + H)™!
follows easily from Theorem 3. It remains to prove that if Dom(H) = X
then Dom((I + H)~!) = X. This follows if we can show that the equation
(I + H)z = y has a unique solution for any y € X. The equation can be
rewritten as ¢ = y— He =: f(y,z), where f(y, ) is a contraction in X for any
y € X. This follows since for arbitrary ,2’ € X we have || f(y,z) — f(y,2)|| =
|Hz—Hz'|| < L(H)||z—=z'||, and from the fact that L(H) < 1. Hence, it follows
from Banach’s fixed point theorem that ¢ = f(y,z) has a unique solution for
any y € X and the lemma is proven. a

Dahlquist functionals
The Dahlquist functionals M([-] and m/[-] are defined for H € Ly(X) as, see
[S6derlind, 1992],

MH] = i 2LERI=L g g, SR

e—0+ £ e—0— £

(2)

It follows from the definition that m[H]} = —M[—H]. Further it should be
noted that the Dahlquist functionals are only defined for bounded operators,



i.e. operators in £o(X ). However if X = H, a Hilbert space, then the definition
of the Dahlquist functionals reduce to

— v, F - H —~v,H(u)— H
M[H] = sup Re(u — v, H(u)2 (v)) m{H] = inf Re{u — v, (1’..:)2 (v))
uFu ”u = UH U ”u‘ - U“
(3)
and if we have a real valued Hilbert space then this reduce to

(u—v, H(u) — H(v)

M[H] = sup BT ) lu — vl

utv [ — |2

) (a)

m[H] = inf
u#v

These definitions also hold for operators that are not in £,(X), i.e. unbounded
operators.
The functionals M[-] and m/[.] satisfy the following properties [Séderlind, 1986].

THEOREM 4

Let H, H; and H, be Lipschitz continuous, with Dom(H;) = Dom(H;). Then
1. ~I[H) < M{H] < L[H]

MI[H + zI] = M[H] + Rez

M[aH]|=aM[H], a>0

m[H,]| + M[H,) < M[H, + H,]) < M[H,| + M|H,]

~L(H] < m[H] < I[H]

m[H + zI] = m[H] + Rez

m[aH] = am[H], a>0

m[H,| + m[H;] < m[H, + H;]) < M[H,] + m[H,) O

® N oo W

In what follows we will mainly be concerned with the functional m[:].
The reason for this is that concepts in systems theory such as passivity of
an operator H can be stated as m[H] > 0. However, also the operator M[:]
has well known applications. For example, when A is a matrix we have that
M[A] = p[A], the logarithmic norm of the matrix.

The next theorem will be of tremendous importance in this report. It
states a condition in terms of m/[:] for the operator H € Ly(X) to be invertible
with the inverse defined on all of X .

THEOREM 5
If H € Lo(X) and m[H] > 0, then H-' € Lo(X), with L[H"Y] < =i
Further, if Dom(H) = X, then Dom(H ') = X.

Proof: l[H] > m[H] > 0 = H is injective, and thus invertible on Im(H).
It follows from Theorem 3 that L[H '] = Tlfﬁ < ﬁ It remains to prove
that Im(H) = X when Dom(H) = X. It is no restriction to redefine the
problem as follows. Let H = I+ (H — I) = I + H'. We need to prove that
if Dom(H') = X and if m[H'] > —1 then (I + H')™! is defined on all of X.
Introduce the operator F(a) = I 4+ aH', for a € [0,1]. It is clearly true that
F(0) = I is invertible with the inverse defined on all of X and we want to show
that F(1) = I + H' has the same property. Assume that F(a) is invertible,
then the following identity holds F(a') = (I + (o' — a)H'(I + aH')™*)F(a).
Now if |[a' — a < 5, where 8 = max(l—ﬂfT;]{—q,L[H’]) < 00, i.e. § > ¢ for some
€ > 0, then L{(a' — a)H'(I + aH')"'] < 1,Va € [0,1], and it follows from
Lemma 2 that the first factor on the right hand side of the identity above
is invertible on all of X. Now divide [0, 1] into N intervals [a;, a;;1] each of
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length smaller than 1/8, (that is [3] > N < oo, where [-] denote the smallest
integer larger than the argument). Then invertibility of F(a;) on all of X
implies invertibility of F(a;1;) on all of X, and since F(0) is invertible on all
of X the theorem follows from an induction type argument. O

From the proof of the previous theorem we have the following important
corollary

COROLLARY 1
If H € Lo(X) has Dom(H) = X and if m[H] > —1, then (I 4+ H) ! € Lo(X)
and Dom((I + H) ') = X. =]

In the proof of Theorem 5 we made crucial use of the assumption that
H € Lo(X),i.e that H is Lipschitz continuous. If X is a Hilbert space H, then
it is possible to weaken the requirement of Lipschitz continuity and only require
continuity. This follows from the classical uniform monotonicity theorem, see
[Browder, 1963] or [Minty, 1962]. This theorem goes as follows.

THEOREM 6—Uniform momotonicty theorem
If H:H +— H is a continuous mapping on a Hilbert space H and if there
exists a real constant ¢ > 0 for which

Re(H(z)— H(z'),z — ') > c|jx — 2'||, Ve,2' € H

Then H is one-to-one and onto M and has a continuous inverse. ]

Remark. Note that the conditions of the theorem could be stated as H : H —
H should be a continuous mapping on a Hilbert space H, with m[H] > 0.

3. The Functionals L, [, M and m for Linear
Time—-Invariant Dynamical Systems

Introductory example
We will start this section with an example to see what the introduced func-
tionals are in a simple matrix case.

ExamPLE 1

A linear operator from IR™ to IR" is defined by an n X n matrix A. If the
2-norm is used on IR™, we can derive the following results that are well-known
in matrix theory.

Ly[A] = max; /Ai(AT A) l,[A] = min; /X (AT 4) (5)
M,[A] = max; Xi(3(A+ AT)) my[A] = min; Ai(3(A4 + AT))

We recognize L,[A] as what normally is denoted by||A]|2, the induced 2-norm
of the matrix. We conclude that L,[A] is the largest singular value of the matrix
A, and [;[A] is the smallest singular value of A. M,[A] is sometimes called the
matrix measure or the logarithmic norm, see [Desoer and Vidyasagar, 1975].

If we let
1 1
A=
0 0

we get L,[A] = V2, L[A] = 0, M,[A] = (1 4+ v/2)/2 and m,[4] = (1 — v2)/2.
We note that all the inequalities from the previous section are satisfied. The
matrix is not invertible which is consistent with I;[A] = 0. ]

After this introductory example we will look at L, I, M and m for linear
time invariant dynamical systems.



L, 1, M, m for the signal space L}[0, c0)
In this subsection we will show how the functionals L,[G], l;[G], M;[G] and
m,[G] are computed when G is a linear time—invariant dynamical system with
a stable, proper and rational transfer function matrix and when the signal
space is X = L%[0,00). The subscripts on the functionals indicate the signal
space used.

Let the linear time—invariant dynamical system G be given by

z = Az 4+ Bu (6)
y=Cz+ Du (7)

with the transfer function defined by
G(s)=C(sI-A)'B+D

We will sometimes use the notation

A|B
C|D
to mean either the state space realization or the transfer function.

Instead of looking at G as a function from L%[0, 00) to L}[0, c0) we can
define it by means of G(s) as a mapping between the Laplace transforms of the
signals in L}[0, o), see [Francis, 1987],i.e. G(s) : U(s) — Y (s). The operator
is then a square matrix in the complex variable s. The different functionals can
now be obtained from simple matrix theory as in the introductory example.
The only difference is that here we have a matrix in a complex variable and

we therefore have to find the infimum or the supremum in the open right half
plane over this complex variable.

L,[G] and ;|G]

We can derive, see [Francis, 1987]

L(G) = sup Gy — Gull2 _ - |Gul|2
wge  |lu=vllz  wzo [Jull2

= [G(iw) oo = 5B Tmas(G(iw))

For I(G) we get

= in —_||G'u—Gv||2 =1 M = inf oy; iw
1O = B oy~ 336 g = 12T ()

We can of course also use the relation
[G] = LIG™1]™!

if the inverse of G exists and is stable and proper.

Several comments regarding {[G] are in place. As pointed out in previous
sections {[G] > 0 implies that G is invertible on Im(G) but not necessarily on
the whole Banach space, which is L§[0, 0o) in our case. On Im(G) we also have

that L(G™1) = ﬁ This is illustrated by an example.



EXAMPLE 2

The system G(s) = ﬁ% has a zero in the right half plane. It is therefore
not considered as an invertible system in ordinary control context. However
I2[G] = 1 so the system should be invertible. This is true but Im(G) is just a
subset of L}[0, 00) and it is only on this subset that G is invertible. The subset
is the set of signals

{u(t) = 2(t) — z(t)|=(t) is a differentiable signal in L,{0, co)}

This shows that it is extremely important to be aware of what spaces the
operators are defined on when using the theory in this report, and most im-
portantly one must be very careful when drawing conclusions about existence
of inverses from inequalities such as {[G] > 0. If we instead use the Dahlquist
functional we find that m[G] = —1 and therefore it does not conclude anything
about invertibility on all of the Banach space as discussed previously. a

We will now give a necessary condition for G to be invertible with G~!
stable and proper. If G(s) has the realization

G(s) = (%'%) = C(sI - AY'B+D

then G is invertible, but not necessarily stable, if D is invertible, i.e. if opin(D) >
0. This follows since {(G) > 0y,in(D). The inverse has the realization

A-BD-'C | BD! S n-1p -1 -
G(s):( —c I e ):—D'IC(sI—A—l—BD 'C)"'BD '+ D™}

The condition oy,;,(D) > 0 is, however, not sufficient for the inverse to be
stable since it only ascertains that the inverse of G(s) is proper. We need one
more condition, namely that G(s) has no right half plane zeros. In conclusion
we have that the condition G(s) has no right half plane zeros together with
the condition op;,(D) > 0 are necessary and sufficient for G(s) to be invertible
on the whole Banach space with the inverse being stable.

Another example will be used to show that the definition of {[-] may hold
even for unstable systems.

ExamPLE 3
Consider the system G(s) = £} which is unstable. As before all initial condi-
tions are zero. It has the realization

z=2a+ 2u
y=z+4+u

and the output is for an arbitrary input u € L;[0, 00) given as

t

y(t) = 26‘/0 e "u(7)dr + u(t)

If we take the input signal u(t) = e™* — 2te™* which is in L,[0,00) then we
get after simple calculations y(t) = e~*, which means that the definition for
l[G] still makes sense and {[G] < oo, since the infimum in the definition will
be bounded. O
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Figure 1. Nyquist curve for the transfer function in Example 4.

M,[G] and m;[G]
For M,[G] we get

im Lz[f = EG] -1 _ sup,, amu::(f + EG(?-W)) =1

M,G)= 1l m s lir(§1+ -
i %P VA (I + eG(iw)) (I + eG(iw))) — 1
- 5—101(1)’1-{— £
—— Auinx(G (u;] + G(iw))

and m;[G] is given in the same way by

Amin (G* (iw) 4+ G(iw))
2

my[G] = —M,[-G] = inf

In the SISO case this reduces to
M;[G] = sup Re G(iw)
my[G| = inf Re G(iw)
EXAMPLE 4

Let us look at the single-input single-output first order transfer function

3
-1
s+1

G(s) =

The Nyquist curve of this transfer function is shown in Figure 1. For that
system we find that L,[G] = 2, [;[G] = 1, M;[G] = 2 and m;[G] = —1. Which
easily can be found either from the formulas or directly from the Nyquist plot.

O

To summarize in words, what we have for a SISO system is that L,[G] is
the largest distance from the Nyquist curve to the origin, I;[G] is the smallest

7



N

Figure 2. The bounds on the Nyquist curve imposed by the Lipschitz and
Dahlquist functionals.

distance from the Nyquist curve to the origin, M;[G] is the smallest value
such that the Nyquist curve is to the left of the line Re(s) = M;[G] and m,[G]
is the largest value such that the Nyquist curve is to the right of the line
Re(s) = m;[G]. Figure 2 shows these bounds on the Nyquist curve. Similarily
we have in the MIMO case that m[G(iw)] > 0 implies that all the characteristic
loci of G(iw) are in the right half plane. Of course one can relate this to classical
control theory concepts such as passivity and positive realness.

Relation to classical control concepts

What has been stated in the previous subsection is almost the same as saying
that a system is positive real except for a shift along the real axis. Let us look
at the problem of determining if m[G] > §. This problem is transformed to
the ordinary positive realness problem by including the term —6I in the D-
matrix of the system. From the theory of positive real (PR) transfer functions
we know that the Kalman-Yakubovitch Lemma determines when a system in
state-space form is PR. For our MIMO-system the lemma reads as follows.

LEMMA 2

Let the stable transfer function matrix G(s) in state space form have the
matrices A,B,C and D as a minimal realization . The poles of G(s) lie in the
open left half plane except for simple ones on the imaginary axis and with the
associated residue matrix non-negative definite hermitian. Then m[G] > § if
and only if a positive definite matrix P and matrices Q and S exist such that

PA+ ATP = —QQ~ (8)
CT -PB=QS§ (9)
STS§ =D+ DT — 261 (10)

Proof:  The proof can be found in [Andersson and Vongpanitlerd, 1973] or
[Narendra and Taylor, 1973] o

From the lemma we can easily deduce some variations, which we state in
a few remarks.



Remark 1. The equations in the lemma above can be reformulated as a Linear
Matrix Inequality (LMI). Rewriting them in a slightly different way as a single
matrix equation yields.

T T _
[—PA—AP CT - PB ]:[Q][QT 5)
C-BTP D4 DT — 21 ST

The matrix on the right hand side is clearly positive semidefinite and therefore
the problem is to find a positive definite matrix P such that

—PA-ATP CT - PB ]>0
C-BTP D+D¥-26I) "~

Thus the system is positive real if there exists such a P satisfying the LMI,
see [Willems, 1971].

Remark 2. Assuming that 2§ is not an eigenvalue of D + DT, then D + DT —
2681 is invertible and the equations in the Kalman-Yakubovitch lemma above
reduce to a Riccati equation. We can solve for S in the third equation of the
lemma and substitute into the second, solve for @ and then substitute into the
first to get a Riccati equation. A positive definite solution to this equation will
then guarantee the positive realness of G(s) — 6 or in other terms, m[G] > §.
The Riccati equation looks as follows.

P(A—BRC)+ (A" - CTRB")P+ CTR™'C + PBR'BTP =0 (11)

where

R=D+ DT —25I (12)

Remark 3. The Riccati equation in the previous remark has a corresponding
Hamiltonian matrix, see [Bittanti et al., 1991}, which looks as follows

P A— BRC BR-1BT
| =CTR'C -AT + CTR'BT

Remark4. A singular D+ D7 —261 can be handled if the Kalman-Yakubovitch
formalism is used. The Riccati equation does not work nor does a test on the
Hamiltonian matrix.

Computation of the Dahlquist and Lipschitz functionals for the
signal space L5[0, 00)

We need a way to compute Ly[G] = 0yax(G(iw)) of a transfer function matrix.
This is the same problem as finding the so called H,-norm of a transfer
function. A bisection method for doing this was presented in [Boyd et al.,
1989]. The method is based on the following theorem.

THEOREM 7

Let the transfer matrix G(s) have a state space realization with the matrices
A, B, C and D which are real and of dimensionn x n, n X p, p X n and p X p,
respectively. Then if A is a strictly stable matrix, i.e. all eigenvalues in the
open left half plane, and v > 0yax(D). Then ||G(iw)||o > 7 if and only if M,
has imaginary eigenvalues. Where M, is the Hamiltonian matrix

_(A-B(DTD —~*I)"'DTC —~yB(DTD — 4*I)"*BT
"\ 4CT(DDT -4*)"'C  —AT +CTD(DTD —4*I)~1BT



Remark. There are no assumptions on controllability or observability of the
realization of the system.

The bisection algorithm for computing ||G(iw)||c is.

YL = Yivy
YU = Yuby
repeat{
7= (e +70)/2
Form M,;
if M, has no imaginary eigenvalues then
TH =7
else
Yo =7

until vy — vy < 2evg

In [Boyd et al., 1989] it was also noted that a similar bisection method
could be used for computing what is equivalent to M,(G) and m,(G). We will
now derive that method. Similarly to Theorem 7 we have

THEOREM 8

Let the transfer function matrix G(s) be realized with the matrices 4, B, C
and D which are real and of dimension nXn, nXp, pxn and p X p, respectively.
Then, if A is a strictly stable matrix and § > )\,,M(DT%), M,[G] > 6 if and
only if N,; has imaginary eigenvalues, where N; is the Hamiltonian matrix

NE:(’S _3T>—(§T)(DT+D—251)—1(C —BT) (13)

Proof:  Since lim,_,., G(iw) = D it is clear that M;[G] > Amax(D—Tz“LD), S0
when § > )\max(g%“ﬂ) the following statements are equivalent

L. M3(G) = sup Amax(%(G*(iw) +G(iw)) > 6

2. Jwy and 3 eigenvector z such that %(G*(iwo) + G(iwg))z = bz
3. The matrix G(s) = G*(s) + G(s) — 261 looses rank at s = iw,

4. The matrix G(s) has at least one zero at s = iw,

where the equivalence between 1 and 2 follows since the maximal eigenvalue
depends continuously on w. The other equivalences follow trivially. A realiza-
tion of G(s) is given by

A 0 B
Gis)=| 0 -4 cT (14)
C —BT | DT+ D - 261

10



G is clearly invertible since DT + D — 261 is invertible. A realization of the
inverse is given as

A 0 BY ., . B\ _,
cor=[Lo_ar) () ie | (&) 3]
(C -BT)R | R

where R = DT+ D —261. The necessity follows since é’(s)‘1 has by assumption
at least one pole at s = iwy and from (15) we see that this implies that the
Hamiltonian matrix N; has at least one eigenvalue equal to iw,. The sufficiency
part follows if we can prove that the realization of G~ in (15) cannot have any
pole zero cancellations on the imaginary axis. However, since A by assumption
does not have any imaginary eigenvalues, relation (16) below together with
the PBH test shows that there are no uncontrollable modes on the imaginary
axis. Similarly, it can be shown that there are no unobservable modes on
the imaginary axis, and therefore no pole zero cancellation can occur on the
imaginary axis.

sI — A+ BR™IC _BR'BT BR-1
CTR'C sI+ AT — CTR-1BT CTR-!
I 0 o\! (16)

sl — A 0 B
St e) ()] 1o
-C BT R

Remark 1. There are no assumptions on controllability or observability of
the system.

a

Remark 2. The Hamiltonian Ny is the same as in Remark 3 of Lemma 2.

The bisection algorithm presented earlier can be modified for computing
M,[G].

To compute m,[G] we need the following theorem, which is proven in the
same way as Theorem 8.

THEOREM 9
T
Under the same assumptions as in Theorem 8, we have that when § < )\min(g—z"ﬂ)

then m,[G] < § if and only if N; has imaginary eigenvalues, where N; was
defined in (13). m]

The bisection algorithm can also easily modified for computations of

L,l, M and m for the signal space L™ [0, ).

In this subsection we give formulas for computing Lo,[G], loo[G], Mo[G] and
Mo [G] when G is a linear time invariant and stable dynamical system for the
case when the signals are in L% [0, co).

11



L,[G] and [,[G]

We start with the SISO case, when the realization of the transfer function is

G(s) = (%) =c(sI—A)"'b+d

The impulse response of the LTI operator is g(t) = ce#tbd(t)+d§(t), where 6(t)
is the unit step function and §(t) is the dirac function. We have, see [Desoer
and Vidyasagar, 1975] or [Dahleh and Pearson, 1987]

= M‘E = su J_|Gu"_'”_w'
Loo[G] = M S PP uzo |[]]eo

= [ lec*blat+ 1) |gl,

@l =1 [ g(ryute - r)ar

</ ml A*be( rJult = 7)ldr +|d-u(t)

< ([ leetslde + ) ullo
0

This follows since

which imply that L[G] < [;° |ce#tb|dt + |d|. For the reversed inequality fix t
and let
sign(ce®™Mp), 0<T <t
u(t —7) =< sign(d), 7=0 (17)
0, otherwise

Then we have ||u|l = 1 and we get

y(t) = /-0:0 g(r)u(t — 7)dr = /Ot |ce*tb|dt + |d|

which imply that y(t) — [° |cetb|dt+|d| ast — oco. Hence we have L [G(iw)] >
IS |ee?tb|dt + |d|.
For the MIMO case we assume that G has the realization

G(s) = (%—%) =C(sI-A)™'B+D

which have the impulse response matrix g(t) = Ce**B(t) + D6(t) = {g:,}.
We have

|Gu=Gulls ____ [|Gulls

L, [G] = sup =
v e =2l uzo [Jufle
n (18)
=max ) |94
=1
where the norm || - || is defined as ||u||c = max; ||u;]|o for any vector u €

L% [0, 00). The result follows since
[Gulle = max|| Zgu #Uilloo < maxy  [1g:lalluslloo
7=1

n
< (max ) llg:,slla) max |luilioo
i=1

12



That is .
LG] < max ) [|gslla
i=1
and we can achieve the reversed inequality by taking u as u(t) = [u}(t)...u%(2)]7,
where the components of u are chosen as

sign({Ce*™B}..;), 0<T<t
u;(t —7) = ¢ sign({D}i;), 7=0
0, otherwise

where ¢* is the ¢ which gives the maxima in (18). Hence ||u||cc = 1 and we get
the i*th component of y to be

dt + |{D}:-;

yi- (1) = i(/ot [{C*B}.. ; )

By letting t — oo we see that Lo [G] > max; 305, |1gi5]l4-
For 1,[G] we cannot derive a nice looking expression but [,,[G] can be

computed from
1

L,[G-1]
when G is invertible. The necessary and sufficient conditions for G to be in-
vertible with an inverse mapping from L. [0, 00) into itself are the same as
previously.

M, [G] and m[G]
From the definition of M[G] we derive

M [G] = lilgl+ Lol +:G] =t
_ i en(Ee o e{Ce'B}i;(t)|dt + |8, + ediz|) — 1
T em04 €
=max(}_ [ {CeMBYay(Oldt + dog + 3 Idis])
o= I

which in the SISO case reduces to
MI[G) = / |ceAtb|d + d
0

For m[G] we get
Ms[G) = ~ MG = ~max(Y [ HCBYoy (D)t — dis + 3 ldiy )
=T i

which reduces to -
MG = —/ |ceb|dt + d
0

in the SISO case.

13



4. L, 1, M and m for static diagonal nonlinearities

In this section we will determine the Lipschitz and Dahlquist constants for
static diagonal nonlinearities. To define what we mean by a static diagonal non-
linearity, let the input to the linearity be u € L7 [0, 00) and the output be y €
L3[0,00). Our static diagonal nonlinearity is an operator from the input to the
output, i.e. K : u — y. It is defined by a function K’ from IR" to IR" by y(t) =
(33(8), 3a(8)s -, 9 (1)) = K'(u(t)) = (Ki(us(t)), K3us(t)), -, KL (un(2).
This means that for each time instant the output of the nonlinearity does only
depend on the input at that time instant, not on the history of the input, i.e.
it is memoryless. Furthermore we restrict us to look at time invariant nonlin-
earities. We assume that all K] are Lipschitz continuous functions from IR to
IR, i.e. ’
!
L[Kll] = sup lKl(u) - K‘('U)l < 00
v lu — vl

which means that we can define K; i, and K; jax as follows

] K'(u) — K!
K’i.min d:f inf l(u) K‘l('v)
wFv u—v

> —0

K!(u) - K!
Ki,mnx déf sup ‘(u) l(v) <
uEv u—v

clearly
L{K;] = max(| Ki max|, | Ki,min|)

K max( K min) is the supremum(infimum) of the slope of K7, where the slope is
considered with its sign. Note that K] need not be differentiable, but if so the
slope is equal to the derivative of K. Now we look at the Lipschitz constant
for K when the input and output are signals in L3[0, c0) and when we use the
induced norm. We get

* K (u(s)) — K'(v(s))||Pds)*/?
1y 5] = sup U 1000~ K(w(5)s
uZv (J57 Nlu(s) — v(s)|[pds) (19)
(S~ (L[ K ||u(s) — v(s)|[2ds)*/?

oo i = L Kl
= T Tule) — (@) Rds) rl]
where
LP[K’] = sup ”K (U‘) - K (v)HP
ol
g N4 ) ~ K (00), K (0) — Ki(on) -, K] = )l
u#v ||(u1_v1)u2_v2:"’:un—vn)”p

< max L[K] = L[K].]
t
(20)
We can show that we, in fact, can achieve equalities above. Let the *th com-
ponent of u(t) and v(t) be constant during a bounded time interval T' and zero
thereafter and let the other components be zero all the time, i.e.

= 'Ui(t) —

Cy OStST,Z:i* Co OStST,Z:i*
ui(t) =

0 otherwise 0 otherwise

14



In the definition of L,[K] we take the supremum over all possible u(t) and
v(t). This clearly includes taking the supremum over ¢; and c; for u;.(t) and
v+ (t) defined as above. We have

B, 1K) = sup (1K (6() = K'ols) o)
uFv (fo Hu(s) - 'v(s)||,,ds)

(f(;r H(Oa <o, 0, Kc{‘(cl) - K:*(C2)’07 o "O)H;ds)l/p
i/p

> sup o
Saizea (fo ”(03"'70:‘:1_ c2:0)""0)“gds)

| K (e1) — K. (ea)

= 51 = L K'.
c;;flc)z |C1 - Cz[ [ ' ]
So we have shown that in fact
L,[K] = L[K].] (21)

which means that the Lipschitz constant is the same irrespective of the norm
used on the time functions. It is equal to the supremum of the absolute value
of the slope of any K where K is a function from IR to IR. In the same way
the lower Lipschitz constant I[K] can be seen to equal the infimum of the
absolute value of the slope of any K.

Let us now look at the Dahlqvist constants for the same type of nonlin-
earity. We want to determine

, K|l—1
i Dl teK]-1

My K = Jig “220

Since I 4+ ¢ K is just a static diagonal nonlinearity as discussed above, we know
that

LI +eK'|~1
M[K] = Tim ZelI X
e—0+4 £

and since we are looking at the limit when ¢ is small and positive
Lp[l + EK/] =1+ Em_anKi,max

and hence
M,[K] = max K; pax

By the same reasoning we find that
m, [ K] = min K; min

Put in words we can conclude that M,[K] equals the supremum of the
slope of any K and m,[K] equals the infimum of the slope of any K|, where
the slope is considered with its sign.

5. Stability theorems

In this section we will derive stability theorems for feedback interconnections
using the operators L[-] and m[-]. The first theorem is the classic incremental
small gain theorem and the other three are new theorems that involve the use
of the operator m[-]. An example will also be given that show cases where the

15



Figure 3. Feedback system under consideration

new theorems give less conservative conditions for stability. With stability we
will mean existence of a unique solution that depends Lipschitz continuously
on the input signals.

We will state and prove the theorems in a general Banach space. There
are, however, several drawbacks with working in a Banach space when deriv-
ing stabilty theorems for feedback systems. For example, all signals must be
contained in the Banach space, which sometimes deny interesting and in prac-
tice often appearing signals from consideration. One way to get around this
is to work in extended spaces. We will in this report avoid the technicalities
involved in defining Lipschitz and Dahlquist functionals in extended space.
For details on extended spaces and the derivation of extended space versions
of the theorems in this section, see [Jonsson, 1993].

Before stating any stability theorems we need to define the Banach space
X and the type of operators and the feedback system that will be considered
in this section. The Banach space X is specified to be a signal space according
to the following definition.

DEeFINITION 1
The space X is a linear space of functions z of the type

z: T~V

where T is a half infinite subset of the real numbers IR, i.e.T=[T;,00) C R,
or the integers Z, i.e. T=[T},00) C Z. It is assumed that X is a Banach space
with norm bounded elements, i.e. ¢ € X < ||z|| < o0. )

Examples of signal spaces X are the L7[Ty,00)and [}[Tg, co) spaces, where
p € [1,00].

We will study the properties of the feedback system in Figure 3 with
respect to boundedness, continuity, existence and uniqueness of solutions. The
equations of the feedback system are

€=U — Y2

€y = Uy +
2 2 T U (22)
1= Hiey
Yy = Hep

The operators H; and H, are assumed to be nonlinear operators in the class

H defined as follows.

DEFINITION 2
An operator H in H maps X into itself and has the property H(0)=0. O

Remark 1. This essentially means that we do not consider constant signals
in the feedback system. The reason is that constant signals are not bounded in
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important signal spaces such as L}[0, 00). We can always redefine an operator
that does not satisfy the condition H(0) = 0 of the definition above. This
means that we disregard the constant signals in the feedback system when
analyzing stability.

Remark 2. Tt is in practice only sensible to consider causal operators, that
is, operators whose output does not depend on future inputs. We will make
the implicit assumption that the operators are causal. However no attempt to
define causality mathematically will be done since this requires the introduc-
tion of extended spaces. We refer to [Willems, 1971], [Zames, 1966) or [Desoer
and Vidyasagar, 1975] for more details on extended spaces.

The operator H € H is Lipschitz continuous if H € Lo(X), i.e. when

L{H]=su |7~ el < 0o
wto  |lu— v
It follows that a Lipschitz continuous operator is also bounded. Since H(0) = 0,
we have
) — sup M IO T
wzo [lull T uze  lu— o]

that is, the gain of H is less than or equal to the Lipschitz functional of H.

We will only regard operators in H and therefore when stated H € Lo(X),
we mean a Lipschitz continuous operator with H(0) = 0. We will also assume
that the initial conditions of the feedback system in Figure 3 are zero. If this is
not the case then it is still possible to use the theorems of this section if we can
replace the effect of the initial conditions with corresponding input signals.
This is for example the case when the operators H; and H, are linear. We
will also assume that the operators have stable internal states (uncontrollable
and unobservable modes), since otherwise we could have an operator that
“explodes” even though our analysis indicates that the system is stable. Note
that the operators L[-] and m/[:] only consider the input-output map of an
operator and does not take internal modes into consideration.

Our first stability theorem is the classical incremental small gain theorem,
see [Desoer and Vidyasagar, 1975]

THEOREM 10—Incremental small gain theorem
If the operators H; and H, in Figure 3 are in Lo(X ) with Lipschitz constants
satisfying the condition L[H{]|L[H;] < 1 then

a. Yu;,u, € X, there exists a unique solution e, ez, y; and y, € X.

b. ey, es,y; and y, depend Lipschitz continuously on u; and u,.

Proof:  The proof is similar to a more general proof (valid in extended spaces)
in [Desoer and Vidyasagar, 1975].

a. If there exists a solution to the feedback system in X, then from the
feedback equations (22) we have

€1 = Uy — Hz(Uz + Hlel) (23)

However, this equation makes no sense until we have proven that there
really exists a solution e; € X to it. We can regard (23) as a map of the
form e; = f(uy,uz,e;). We will show that the map f is a contraction.
Then it follows from Banach’s fixed point theorem that there is a unique
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solution e¢; € X to (23). Let u; and u, be given signals in X and let e,
and e} be arbitrary in X, then

llex — eill = [lus — Hy(uz + Hier) — (wa — Ha(uz + Hyel))|
< L{H]||Hiey — Hiél|| < L{Ho]L[Hy]lles — €|

From the assumption it follows that f is a contraction. It follows that
y1 = Hiey, e = y3 + up and y, = H,e, also exist and are unique.

b. It follows from a that for arbitrary u,,u, € X and u/,u, € X there exist
unique solutions ey, ez, 41,y2 € X and e}, e}, y;,y; € X. We get

lex — 41| = Ilus — Ha(ua + Hyes) — (w — Ha(uh + Hie}))]
< llus = w4l + L Hallfus - wil] + LUH LU les - €}

From the assumption L{H,)L[H,] < 1 it follows that

1
les — 4ll < (
1= L{H,IL{H]

|us — w3l + L(Hz)l|uz — up])

It is proven in a similar way that

1

—ell <« o L(H o
62” [ L[IIIIL[}‘IQI(”’U’Z u’Z” + ( 1)”11.1 ul”)

llea

and since |ly1 — y3|| < L[H,]|lex — e}]| and ||y — 3]l < L[Ha)llez — ¢} b is
proven. O

Remark 1. In the case that H, = G, is linear the conditions of the theorem
reduce to G, Hy € Lo(X) with L[G,H;] < 1. Similarly if H, = G; is linear
then the conditions of the theorem reduce to Gi, H; € Lo(X) with L[G1H,] <
1.

Remark 2. It can be shown that if the operators H; and H, are causal then
the closed loop system is also causal. The idea of the proof is that the solution
to the feedback system can be obtained by a fixed point iteration involving
causal operators, hence the signals ey, e;,y; and y, will depend causally on u,
and u,.

In the case that one of the operators H; or H, are linear we can achieve
less conservative theorems for stability. Before we state any theorems it is in
place to introduce the notion of well posedness. We will denote the feedback
system in Figure 3 well posed if, from both a mathematical and a practical
point of view, there exists a solution e;, ez, y:1,y2 € X to every input pair
u1,uz € X. There are cases when a solution to the feedback system exists
from a mathematical point of view even though the system makes no sense
from a practical point of view. Such feedback systems will not be considered
as well posed. The following example shows such a feedback system.

ExaMPLE 5—[Willems, 1971]

Consider the feedback system in Figure 4, where K > 0. If a mathematical
point of view is taken when analyzing the response of the system, then y(t) =
HLKul(t) when K # —1. However, in practice we will always have some slight
delay in the system. This follows since the transmission speed of the signals
in a physical system is finite. A simple calculation shows that the response at
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:Q_J = K IS

-

Figure 4. The feedback system of Example 5

t = 1 to a unit pulse (i.e. the response to u,(t) = 6(t) —6(t —1) at ¢t = 1) when
a delay e~*T¢ is inserted in the feedback system is

Tie

" 1

y(1) = K;(—K) , where n, = LTeJ

where |-| denotes the truncation operator, which gives the integer part of its
argument. It follows that y(1) — oo as T, — 0 when K > 1,1.e. the output y(1)
can be extremely large when the transmission time is small. OQur conclusion
is that from a practical point of view, a solution to the feedback system in
Figure 4 exists only if K < 1. This feedback system is in other words only well
posed when K < 1 O

We have the following two theorems

THEOREM 11

If H, = G, is linear and if the feedback system in Figure 3 is well posed, then
a sufficient condition for the solution e;,es, y1,¥: € X to depend Lipschitz
continuously on u;,u; € X is that H;,G; € Lo(X) and m[G,H,] > —1. The
solution to the feedback system will also be unique.

Proof:  From the feedback equations (22) we have
e; = u; — Gy(uz + Hyey) (24)
by adding G He; on both sides of this equation we get
(I+ GyHi)ey = uy+ GaHien — Ga(uz + Hieq) = ug — Gauy (25)

From Corollary 1 we know that m[G;H;] > —1 is a sufficient condition for the
operator on the left hand side to be invertible and the inverse is bounded by
L[(I+ G,H,)™ '] < Hence, we get

1
— l4m[GaHy]®
€y = (I + GzHl)_l(’lLl - GzUz)

Which also shows that e; is unique. We also have

lug — uy || + L(G2)||u2 — usl]

les — €] < ————(]
1 e ﬂI[Gng]

where e; and e} are the solution to (25) when the inputs are u;,u, € X and
u},u, € X respectively. Since y; = Hye1, e; = uy+y; and y, = Gaey, it follows
that y;, ey, y, also depend Lipschitz continuously on u; and u,. O
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THEOREM 12

If H; = G, is linear and if the feedback system in Figure 3 is well posed,
then a sufficient condition for a solution e, e, y;,y2 € X to depend Lipschitz
continuously on u;,u; € X is that H;,G; € Lo(X) and m[G1H,] > —1. The
solution to the feedback system will also be unique.

Proof:  This theorem is proven in the same way as the last theorem a

If u; = 0 then we have a theorem similar to those above where both
operators H; and H, are allowed to be nonlinear [Séderlind, 1992].

THEOREM 13

If up = 0 and if the feedback system in Figure 3 is well posed, then a sufficient
condition for a solution ey, €3, y1,y2 € X to depend Lipschitz continuously on
uy,u; € X is that Hy, H, € Lo(X) and m[H,H,] > —1. The solution to the
feedback system will also be unique.

Proof:  From the feedback equations in (22) we get
€ = Uy — Hngel

Since m[H,H,] > —1, we can solve for e; and get e; = (I + H,H;) *uy, and
unicity of the solution follows. From this equation it is easy to derive the
following inequalities

les = 4l € Tzl — ]
"= 14 m[H H,)
L(H]
llyr — ill = lles — €5} < mzﬂ_l]”m — uy|
L[Ha]L[H,]
_ 4l < o
lyz — vl < 1+m[H2H1]”u1 uy ||
so the system is Lipschitz continuous. O

Remark. In Theorem 11, the assumption on well posedness guarantees that
equation (24) makes sense. However, if we take a strictly mathematical at-
titude to the problem of existence of a solution, we see that the condition
m[G,H,] > —1 is sufficient to guarantee that a solution exists to equation
(25) and therefore to equation (24). The reason we have the assumption on
well posedness of the feedback system is that there are examples of systems
that do not work in practice even though the condition M[G,H,] > —1 is sat-
isfied. This is shown in the example below. This remark also holds for Theorem
12 and Theorem 13

We will now show that the system in Example 5 is a system where the
conditions on the Lipschitz and the Dahlquist functionals in the theorems
above are satisfied even though the system is not well posed.

ExampLE 6—Continuation of Example 5

Both H; and H; in the example are linear and in Lo(X). Further, we have
that m[H H,] = m[H,H,] = m[K] = K > —1. Therefore the conditions for
continuity of Theorem 11 - 13 are fulfilled even though the system is not well
posed. O

From the example we see that systems with direct feedthrough greater
than or equal to one might not be well posed. It will be shown in [Jénsson,
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Figure 5. Feedback system in Example 7

1993] that the condition of well posedness is satisfied for systems with direct
feedthrough less than one and for systems containing a delay.

In practice all well designed feedback systems satisfy the condition on di-
rect feedthrough less than one and there will be no problem using the theorems
involving the Dahlquist functionals when the model of the physical system is
good.

We will now give an example that shows that there are cases when the
theorems involving m/[-] give less conservative conditions for stability than the
incremental small gain theorem.

EXAMPLE 7
In this example it is assumed that the feedback interconnection consists of two
linear time invariant SISO systems as in Figure 5. We also assume that the
signal space under consideration is L;[0, 00). We know from Section 3 that the
Lipschitz functional is L,[G] = sup,, |G(iw)| and the Dahlquist functional is
ms[G] = inf, Re G(iw). The conditions for stability in the incremental small
gain theorem reduces in this case to the condition that both G; and G, are
stable and that the open loop gain G, = G;G; has a Nyquist curve strictly
inside a disc with radius 1. This should be compared to the conditions for
stability when using the theorems involving m][-]. There we need G; and G, to
be stable and that the real part of the nyquist curve of the open loop gain G,
is strictly in the half plane Re s > —1. The condition of well posedness must
of course also be satisfied.

It is easy to find examples where the conditions for stability in the theo-
rem involving m/[:] are satisfied even though the conditions of the small gain

theorem are violated. For example, let Gi(s) = ;5 and G, = 444 then
G, = G.G; = J—;—g and it is seen from the Nyquist curve in Figure 6 that the

theorems involving m[-] guarantee stability while the small gain theorem does
not. The closed loop system is G = ;5%, which of course is stable.
O

The passivity theorem and M and m for interconnected systems

The application of the classical passivity theorem to two LTI systems in a
simple feedback loop says that if either one of G;(iw) or G,(iw) lies in the
open right half plane and the other in the closed right half plane then the
closed loop is stable. The conditions on Gy(iw) and G;(iw) implies that the
Nyquist curve of the product of the two systems must lie in the complex plane
cut open along the negative real axis, i.e. the phase of the loop gain lies in
the open interval(—m, 7). If we try to state this theorem in terms of my,[]
we find that we can easily formulate the two restrictions on G,(s) and G;(s)
respectively in terms of m,[-] but that the resulting system G(s)G;(s) does
not necessarily satisfy any bound on m,[-]. Only if both G,(s) and G;(s) have
finite gains can we guarantee that m,[G;G;| > R for some R. The problem
is of course that the Dahlquist functionals do not have any submultiplicative
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Figure 6. Nyquist curve for the open loop gain of the feedback system in ex-
ample 7

property irrespectively of the norm used, which means that we cannot deduce
anything about m[G,G;] from m[G] and m[G;] only. If we for instance have
two LTI systems in a simple feedback loop as above with realizations

A, | B
Gism 1 2
C,| D

A, | B
G, = 2 | Bs
C: | D,
and we want to decide if m[G;(s)G.(s)] > §, then we cannot look at m[G,]

and m[G;] but have to study the interconnection of the two system matrices,
i.e. the realization of G,G; namely

and

Az BzCl Ble
GzGl = 0 Al Bl
C, DiC: | DyD,

Now the results above can be applied to this system matrix.

6. Conclusions

We have in this report applied Lipschitz and Dahlquist functionals for stabil-
ity analysis of feedback systems. Closed expressions for the functionals have
been given in the Banach spaces L}[0,00) and L% [0, 00) for linear time in-
variant dynamical systems and for static diagonal nonlinearities. In the case
of L}[0,00) we get familiar results from system theory. We have also given
a simple example where a stability theorem using Dahlquist functionals give
less restrictive conditions than the small gain theorem. The problem with us-
ing Dahlquist functionals for stability analysis is that they do not posses a
submultiplicative property. We have also seen that it is restrictive to derive
stability theorems in Banach space since we cannot always treat signals, such
as sinusoidals, commonly appearing in practice.
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