RSS-Based Localization of Low-Power IoT Devices Exploiting AoA and Range Information

Li, Xuhong; Leitinger, Erik; Tufvesson, Fredrik

Published in:
54th Asilomar Conference on Signals, Systems, and Computers

DOI:
10.1109/IEEECONF51394.2020.9443542

2021

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
RSS-Based Localization of Low-Power IoT Devices
Exploiting AoA and Range Information

Xuhong Li*, Erik Leitinger†, and Fredrik Tufvesson*
*Department of Electrical and Information Technology, Lund University, Sweden.
†Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria
Email: {xuhong.li, fredrik.tufvesson}@eit.lth.se, erik.leitinger@tugraz.at

Abstract—We present a localization algorithm for low-power long-range Internet-of-things (IoT) networks, which exploits angle of arrival (AoA) and range information from non-coherent received signal strength (RSS) measurements. In this work, each anchor node is equipped with array antennas of known geometry and radiation patterns. The position of the target node and the path-loss exponent to each anchor are unknown and possibly time-varying. The joint estimation problem is formulated with a Bayesian model, where the likelihood functions are derived from the classical path-loss model and an RSS difference model. A message passing method is then exploited for efficient computation of the marginal posterior distribution of each unknown variable. The proposed algorithm is validated using real outdoor measurements from a low-power wide area network based IoT system in a challenging scenario. Results show that the proposed algorithm can adapt to dynamic propagation conditions, and improve the localization accuracy compared to a method that exploits only single geometric feature. Furthermore, the algorithm scales well in different antenna array configurations, and is compatible with various existing IoT standards.

I. INTRODUCTION

Location-awareness is a key enabler for various emerging applications related to the Internet-of-things (IoT). Existing localization methods applied in IoT scenarios typically build upon features like time-of-arrival (ToA), angle-of-arrival (AoA), or received signal strength (RSS). Among these, RSS-based localization is especially appealing due to its broad support from low-cost technologies, such as the radio frequency identification, Bluetooth Low Energy, and low-power wide area network (LPWAN) [1] technologies like SIGFOX and LoRa. In this work, we focus on RSS-based localization methods, with particular interest in mid- to long-range outdoor scenarios.

To formulate the localization problem, connected IoT devices are classified as a target node of which the location is to be determined and anchor nodes with known locations. In general, target localization using RSS measurements are based on proximity, fingerprinting [2], [3] or ranging [4], [5] methods. Fingerprinting-based localization exploits the unique structure of the spatial distribution of RSS measurements by matching an RSS measurement with pre-acquired RSS measurements (fingerprints) at the positions of interest. The achievable accuracy is related to the density of fingerprints and degrades in dynamic scenarios. RSS-based ranging for localization is another common method. By exploiting the path-loss model (PLM) [5], it is possible to map an RSS measurement to a range estimate, which is further used to infer the target location w.r.t. the anchor coordinates. However, RSS-based ranging can be unreliable under the conditions of imperfect knowledge of path-loss exponent (PLE) and environmental influence. Typically, RSS-based ranging for outdoor IoT localization provide accuracies from one to a few hundred meters [6]. In recent years, the potential of AoA estimation using non-coherent RSS measurements for target localization is explored in some works [7], [8]. Angle information is mostly obtained by using phase coherent antennas, however this is not feasible for IoT networks when maintaining a low system cost. Most of the existing localization methods have in common that they exploit a single geometric feature, as for example range or angle, and are dedicated to short-range and indoor scenarios.

In this work, we propose a message passing algorithm for target tracking, that exploits both range and angle information from RSS measurements obtained from anchors equipped with non-coherent antenna arrays. To be adaptive to dynamic propagation conditions, the PLE to each anchor is assumed to be unknown and time-varying. The joint estimation of the target location and PLEs is formulated in a Bayesian sense, where the likelihood functions are derived from the classical path-loss model [5] and an RSS difference (RSSD) model [8]. The statistical model is represented with a factor graph which enables the use of message passing for efficient computation of the marginal posterior distribution of each unknown variable. Furthermore, an interacting multiple model (IMM) method is used to resolve the motion uncertainty of the target [9]. The results are validated using real outdoor measurements from an IoT network based on LoRa system.

II. PROBLEM FORMULATION

We consider the case that a target node is equipped with an omnidirectional antenna and has unknown time-varying state \(\mathbf{x}_n \triangleq [\mathbf{p}_n, \mathbf{v}_n]^T \in \mathbb{R}^{4 \times 1}, n = 1, \ldots, N \), where \(\mathbf{p}_n \in \mathbb{R}^{2 \times 1} \) is the position and \(\mathbf{v}_n \in \mathbb{R}^{2 \times 1} \) is the velocity. In the area of interest, anchor nodes indexed by \(s \in S \triangleq \{1, \ldots, S\} \) are distributed with known static positions \(\mathbf{c}_s \in \mathbb{R}^{2 \times 1} \) and array orientations \(\phi_s \). Each anchor node is equipped with \(A_s \) directional antennas indexed by \(a \in A_s \triangleq \{1, \ldots, A_s\} \), and the radiation patterns are assumed to be known. At time \(n \), the AoA \(\varphi_{n,s} \) (w.r.t. the \(s \)th anchor’s coordinate system) and the propagation distance \(d_{n,s} \) from the target to the center \(\mathbf{c}_s \) of the \(s \)th anchor are defined as \(\varphi_{n,s} = \angle (\mathbf{p}_n - \mathbf{c}_s) + \phi_s \) and
At time n, the RSS (in dBm) obtained at the jth antenna of the sth anchor is given as

$$P_{n,j} = P_{0,j} + G_{\text{Rx}}(\phi_{n,j}) - 10\eta_{n,j} \log_{10}(d_{n,j}^2/d_0^2) + S_{n,j}^a + n_{n,j}^a,$$

where $d_{n,j} = \|\mathbf{p}_n - \mathbf{c}_s\|$. The AoA $\phi_{n,j}$ w.r.t. the jth antenna’s local coordinate system and the distance $d_{n,j}$ to the jth antenna’s phase center can be easily calculated from $d_{n,j}$ and $\psi_{n,j}$ given known array geometry as shown in [8].

A. RSS Model and RSSD model

At time n, the RSS (in dBm) obtained at the jth antenna of the sth anchor, i.e., G_n is the transmit antenna gain and the correlation is denoted by $\rho_{n,s}$.}
B. Likelihood Functions

We assume that the individual measurements inside vectors $z_{n,s}$ and $z_{D,n,s}$ are conditionally independent given the states x_n and $\eta_{n,s}$, and $\eta_{n,s}$ is independent of RSSD measurements $z_{D,n,s}$. The conditional pdfs $h(z_k^n, x_n, \eta_{n,s})$ and $h(z_{D,n,s}^k, x_k)$ (i.e., likelihood functions) derived from (1) and (2) are given as

$$h(z_k^n, x_n, \eta_{n,s}) = C_1 \exp \left\{ -\frac{(z_{n,s}^k - s_{n,s}^k)^2}{2(\sigma_z^2 + \sigma^2)} \right\},$$

(4)

$$h(z_{D,n,s}^k, x_k) = C_2 \exp \left\{ -\frac{(z_{D,n,s}^k - G^{(r_1^k, r_2^k)}(x_k))^2}{4\sigma_n^2} \right\},$$

(5)

where $s_{n,s}^k = P_{0,s} + G_{R_s}(\varphi_{n,s}^k) - 10\eta_{n,s} \log_{10} \left(\frac{d_k}{d_0} \right)$, and $G^{(r_1^k, r_2^k)}(x_k)$ represents the nonlinear mapping from the hidden state x_k to an RSSD observation described in (2), with $C_1 = (2\pi(\sigma_z^2 + \sigma^2))^{-\frac{1}{2}}$, $C_2 = (4\pi\sigma_n^2)^{-\frac{1}{2}}$.

IV. THE MESSAGE PASSING LOCALIZATION ALGORITHM

A. State Estimation

The joint estimation of x_n and $\eta_{n,s}$ given the measurements $z_{1:n}$ and $z_{D,1:n}$ is formulated with a Bayesian model, where the joint posterior pdf $f(x_{1:n}, m_{1:n}, \eta_{1:n}|z_{1:n}, z_{D,1:n})$ can be factorized as

$$f(x_{1:n}, m_{1:n}, \eta_{1:n}|z_{1:n}, z_{D,1:n}) \propto f(z_{1:n}, z_{D,1:n}|x_{1:n}, m_{1:n}, \eta_{1:n}) f(x_{1:n}, m_{1:n}, \eta_{1:n})$$

$$= f(x_0)f(m_0) \prod_{s=1}^{n} f(\eta_{0,s})$$

$$\times \prod_{n'=1}^{n} f_{m,n'}(x_{n'}/x_{n'-1}) f(m_{n'}|m_{n'-1}) \prod_{s=1}^{S} f(\eta_{n',s}|\eta_{n'-1,s})$$

$$\times \prod_{k \in K_{n,s}} h(z_{n,s}^k, x_{n'}), \eta_{n,s} \prod_{l \in L_{n,s}} h(z_{D,n,s}^k, x_{n'}, \eta_{n,s})$$

(6)

according to the Bayes’ rule and independence assumptions over the prior pdfs, state-transition pdfs, and the likelihood functions.

Based on the marginal posterior pdfs $f(x_n|z_{1:n}, z_{D,1:n})$ and $f(\eta_{n,s}|z_{1:n})$, the Bayesian estimation of the target state x_n, the PLEs $\eta_{n,s}$ can be approximately calculated by means of the minimum mean square error (MMSE) estimator [12], given as

$$\hat{x}_{n,\text{MMSE}} = \int x_n f(x_n|z_{1:n}, z_{D,1:n}) dx_n,$$

(7)

$$\hat{\eta}_{n,s,\text{MMSE}} = \int \eta_{n,s} f(\eta_{n,s}|z_{1:n}) d\eta_{n,s}.$$

(8)

B. Message Passing Algorithm

The marginal posterior pdfs $f(x_n|z_{1:n}, z_{D,1:n})$ and $f(\eta_{n,s}|z_{1:n})$ are obtained by running messaging passing on the factor graph (Fig. 1) representing the factorization of the joint posterior pdf $f(x_{1:n}, m_{1:n}, \eta_{1:n}|z_{1:n}, z_{D,1:n})$ (6). Following
and $\beta^n_S(x_n,m_n)$ is the message passed from the factor node $h(z_{D,n,s}^i|x_n)$ to the variable node x_n, given by

$$\beta^n_S(x_n,m_n) = \prod_{l \in \mathcal{L}_{n,s}} h(z_{D,n,s}^l|x_n). \quad (14)$$

3) Belief calculation: Finally, the beliefs $q(\eta_{n,s})$ approximating the marginal posterior pdfs $f(\eta_{n,s}|z_{1:n})$ are calculated as

$$q(\eta_{n,s}) = \alpha(\eta_{n,s})u(\eta_{n,s}). \quad (15)$$

Furthermore, the belief $q(x_n,m_n)$ approximating the marginal posterior pdf $f(x_n,m_n|z_{1:n}, z_{D,1:n})$ is calculated as

$$q(x_n,m_n) = \alpha(x_n,m_n) \prod_{s=1}^S \gamma^s(x_n,m_n). \quad (16)$$

Finally, the belief $q(x_n)$ and $q(m_n)$ approximating $p(x_{1:n}|z_{1:n}, z_{D,1:n})$ and $p(m_{1:n}|z_{1:n}, z_{D,1:n})$ are calculated as $q(x_n) = \int q(x_n,m_n)dm_n$ and $q(m_n) = \int q(x_n,m_n)dx_n$.

4) Particle-based implementation: A sequential Monte Carlo (particle-based) implementation [11], [14] is used to represent the messages and beliefs presented above. Furthermore, a “stacked state” [15] which comprises the target state and the PLE state is used in the implementation. Hence, the resulting complexity scales linearly in the number of particles, in the number of measurements per anchor, and quadratically in the number of mode number H.

V. PERFORMANCE EVALUATION

We validate the proposed message passing based localization algorithm using both synthetic and real measured RSS datasets. The work in [8] which exploits AoA information from RSSD measurements for target tracking is used as a reference method. Note that in [8] a single dynamic model is used. To remove the influence of difference target dynamic models on the results in two methods and make a fair comparison, we extend the algorithm in [8] with the IMM method introduced in Section (III-A) and keep the same setup on the DM modes. For simplicity, the two methods above will be briefly referred to as “MP-tracking” and “AoA-tracking” in what follows.

A. Measurement and Simulation Setup

The synthetic datasets are generated according to the setup of real outdoor measurements, which is described as follows: A LoRa based network [1] is used in our experimental setup. As shown in Fig. 2, the target node is equipped with an omnidirectional antenna with known transmit power of 14 dBm. Two anchor nodes are used, which are equipped with four and three directional antennas respectively, i.e., $A_1 = 4$ and $A_2 = 3$, and each receive antenna is connected with a gateway as shown in Fig. 2c. The gateways act as bidirectional relays between the target node and a network server, in which the messages like GPS “ground truth” and RSS values are decoded. The distance between the phase centers and the orientation difference of two adjacent antennas are one wavelength and 45 degrees, respectively. One of the receive antenna beam patterns is measured and assumed to be the same for the rest of the antennas. The system is operating at the carrier frequency 868 MHz, with a bandwidth of 125 kHz. The maximum spreading factor 12 is used to achieve the longest working range, however at the cost of low data and package rate. The gateways are listening to several different channels, every 6 seconds one packet is received at each antenna.

The following parameters and simulation setup are used for both synthetic and real measurements. We assume that the initial target position is roughly known, and the particles for the initial target state are drawn from a 4-D uniform distribution with the center at $[p_1,0,0]$, where p_1 denotes the ground truth position of the target at time $n = 1$, and the supports for the position and velocity are given as $[-50,50]$ m in and $[-1,1]$ m/s, respectively. The state-transition pdfs of the target state $f_h(x_n|x_{n-1})$ under three DM modes are defined by the following models respectively: 1) CT model for right turn with $\Omega_1 = -5 \text{deg/s}$, $\sigma_1 = 0.001 \text{m/s}^2$; 2) NCV model with $\sigma_2 = 0.001 \text{m/s}^2$; 3) CT model for left turn with $\Omega_3 = 5 \text{deg/s}$ and $\sigma_3 = 0.001 \text{m/s}^2$. The sampling period $\Delta T = 6 \text{s}$. The DM transition probabilities are chosen as $[P]_{1,1} = [P]_{3,3} = 0.95$, $[P]_{2,2} = 0.96$, $[P]_{2,1} = [P]_{2,3} = 0.02$, $[P]_{1,2} = [P]_{3,2} = 0.04$, and $[P]_{1,3} = [P]_{3,1} = 0.01$. Besides, the state-transition pdfs of the path-loss exponents $f(\eta_{n,s}|\eta_{n-1,s})$ are given as Gaussian distributions with noise standard deviations $\sigma_{\eta} = 0.07$. The particles for the initial PLE state $\eta_{0,s}$ are drawn from a uniform distribution on $[1,5]$. The pdf of each variable state is represented by 5000 particles.

B. Synthetic Measurements

Using the GPS positions of the anchors and the target at each time n, we calculate the ground truth distances and AoAs, and then apply them in model (1) to generate the synthetic RSS measurements. Furthermore, the ground truth PLEs are set according to the true propagation conditions and the estimates from the real measurements as shown in Fig. 8. For each simulation run, the shadow fading and Gaussian noise processes are generated at each time n under one of the two setups: 1) setup-1: $\sigma_S = 2 \text{dB}$, $\sigma_n = 0.8 \text{dB}$,
c_{LSF} = 0.9; 2) setup-2 (based on the statistics from real measurements): $\sigma_S = 4$ dB, $\sigma_n = 1$ dB, $C_{LSF} = 0.8$. The noise standard deviations σ_S are σ_n are assumed to be known in the simulations. In total, we performed 100 Monte-Carlo (MC) simulation runs for each setup.

Fig. 3a depicts the target position RMSEs of MP-tracking and AoA-tracking methods, and the corresponding empirical cumulative distribution function (CDF) are given in Fig. 3b. By exploiting both range and angle information from RSS measurements, it shows that the MP-tracking method achieves lower RMSEs than the AoA-tracking method mostly. More specifically, the maximum RMSEs for MP-tracking are below 40 m and 65 m for setup-1 and setup-2, while the values are 95 m and 75 m for AoA-tracking. Fig. 4 shows the averaged PLE estimates over 100 MC runs. It can be seen that the PLE estimates of MP-tracking represent the ground truth well in both setups, which proves that MP-tracking can adapt to dynamic propagation conditions. Moreover, the averaged DM mode beliefs are given in Fig. 5. As can be observed, whenever the target performs a sharp turn, the belief of the corresponding DM mode increases and tends to be dominant, and the smooth movement in between those turns is captured by the NCV model, as expected.

C. Real Measurements

The real RSS measurements are collected at the campus of Lund University, Sweden, as shown in Fig. 6. Two anchor nodes are placed on two building roofs, which are around 20 m above the ground. The target node is carried by a person walking along a predefined trajectory at a speed around 1 m/s. Every 6 seconds, the movement is paused and we collect around three samples at each antenna. Still, at a few positions only a subset of antennas provide valid RSS measurements. In total, there are $N = 120$ sample time instances. In Fig. 6, we mark the time instances where the target performs sharp turns with brown circle. In the simulations, we assume the noise standard deviations for the shadow fading and Gaussian noise processes to be $\sigma_S = 4$ dB, $\sigma_n = 1$ dB. We evaluate the performance both for the averaged and non-averaged measurements. For the first case, the RSS measurements collected at each antenna are averaged. For the second case, we randomly pick one measurement from each antenna at each time, and in total 50 MC simulation runs are performed.

As shown in Fig. 7, the MP-tracking algorithm outperforms the AoA-tracking algorithm especially when non-averaged measurements are used. Furthermore, the true propagation conditions from the target to each anchor are denoted with line-of-sight (LoS), obstructed-LoS (OLoS) where the direct propagation is blocked by trees, and non-LoS (NLoS) where the direct propagation is blocked by one or two buildings (abbreviated as bul.). As shown in Fig. 8, the PLE estimates well capture the dynamics of the true propagation conditions to each anchor.

VI. CONCLUSION

We proposed a localization algorithm that exploits both range and angle information from non-coherent RSS measurements for IoT networks. Results using real outdoor measurements show that the proposed algorithm can adapt to dynamic propagation conditions, and improve the localization accuracy compared to the method which exploits single geometric
The propagation conditions from the target node to anchor 1 and anchor 2 are labeled in blue and red colors respectively. Furthermore, the vertical lines (---) and (----) highlight the time instances around which the propagation conditions to anchor 1 and anchor 2 change respectively.

Fig. 6: Picture of the outdoor measurement environment, Lund University, Sweden. Background map: © 2019 Google

Fig. 7: Results for real data. (a) Target position RMSEs. (b) Empirical CDFs of the position RMSEs. For averaged RSS measurements: MP-tracking (---), AoA-tracking (----). For single RSS measurement: MP-tracking (), AoA-tracking ().

feature. Moreover, the proposed algorithm is compatible with many existing low cost IoT technologies and different antenna array configurations.

VII. ACKNOWLEDGMENT

This work was supported in part by the Swedish Research Council (VR), in part by the strategic research area ELLIIT and in part by the TU Graz.

REFERENCES