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Abstract—We present a localization algorithm for low-power
long-range Internet-of-things (IoT) networks, which exploits
angle of arrival (AoA) and range information from non-coherent
received signal strength (RSS) measurements. In this work, each
anchor node is equipped with array antennas of known geometry
and radiation patterns. The position of the target node and the
path-loss exponent to each anchor are unknown and possibly
time-varying. The joint estimation problem is formulated with a
Bayesian model, where the likelihood functions are derived from
the classical path-loss model and an RSS difference model. A mes-
sage passing method is then exploited for efficient computation
of the marginal posterior distribution of each unknown variable.
The proposed algorithm is validated using real outdoor measure-
ments from a low-power wide area network based IoT system in
a challenging scenario. Results show that the proposed algorithm
can adapt to dynamic propagation conditions, and improve the
localization accuracy compared to a method that exploits only
single geometric feature. Furthermore, the algorithm scales well
in different antenna array configurations, and is compatible with
various existing IoT standards.

I. INTRODUCTION

Location-awareness is a key enabler for various emerging
applications related to the Internet-of-things (IoT). Exist-
ing localization methods applied in IoT scenarios typically
build upon features like time-of-arrival (ToA), angle-of-arrival
(AoA), or received signal strength (RSS). Among these, RSS-
based localization is especially appealing due to its broad
support from low-cost technologies, such as the radio fre-
quency identification, Bluetooth Low Energy, and low-power
wide area network (LPWAN) [1] technologies like SIGFOX
and LoRa. In this work, we focus on RSS-based localization
methods, with particular interest in mid- to long-range outdoor
scenarios.

To formulate the localization problem, connected IoT de-
vices are classified as a target node of which the location
is to be determined and anchor nodes with known locations.
In general, target localization using RSS measurements are
based on proximity, fingerprinting [2], [3] or ranging [4], [5]
methods. Fingerprinting-based localization exploits the unique
structure of the spatial distribution of RSS measurements
by matching an RSS measurement with pre-acquired RSS
measurements (fingerprints) at the positions of interest. The
achievable accuracy is related to the density of fingerprints
and degrades in dynamic scenarios. RSS-based ranging for
localization is another common method. By exploiting the
path-loss model (PLM) [5], it is possible to map an RSS

measurement to a range estimate, which is further used to
infer the target location w.r.t. the anchor coordinates. However,
RSS-based ranging can be unreliable under the conditions of
imperfect knowledge of path-loss exponent (PLE) and envi-
ronmental influence. Typically, RSS-based ranging for outdoor
IoT localization provide accuracies from one to a few hundred
meters [6]. In recent years, the potential of AoA estimation
using non-coherent RSS measurements for target localization
is explored in some works [7], [8]. Angle information is mostly
obtained by using phase coherent antennas, however this is not
feasible for IoT networks when maintaining a low system cost.
Most of the existing localization methods have in common that
they exploit a single geometric feature, as for example range or
angle, and are dedicated to short-range and indoor scenarios.

In this work, we propose a massage passing algorithm for
target tracking, that exploits both range and angle information
from RSS measurements obtained from anchors equipped
with non-coherent antenna arrays. To be adaptive to dynamic
propagation conditions, the PLE to each anchor is assumed
to be unknown and time-varying. The joint estimation of the
target location and PLEs is formulated in a Bayesian sense,
where the likelihood functions are derived from the classical
path-loss model [5] and an RSS difference (RSSD) model [8].
The statistical model is represented with a factor graph which
enables the use of message passing for efficient computation of
the marginal posterior distribution of each unknown variable.
Furthermore, an interacting multiple model (IMM) method is
used to resolve the motion uncertainty of the target [9]. The
results are validated using real outdoor measurements from an
IoT network based on LoRa system.

II. PROBLEM FORMULATION

We consider the case that a target node is equipped with an
omnidirectional antenna and has unknown time-varying state
xn , [pT

n , v
T
n ]T ∈ R4×1, n = 1, · · · , N , where pn ∈ R2×1

is the position and vn ∈ R2×1 is the velocity. In the area
of interest, anchor nodes indexed by s ∈ S , {1, · · · , S}
are distributed with known static positions cs ∈ R2×1 and
array orientations φs. Each anchor node is equipped with As
directional antennas indexed by a ∈ As , {1, · · · , As}, and
the radiation patterns are assumed to be known. At time n,
the AoA ϕn,s (w.r.t. the sth anchor’s coordinate system) and
the propagation distance dn,s from the target to the center cs
of the sth anchor are defined as ϕn,s = ∠(pn − cs) + φs and



dn,s = ‖pn−cs‖. The AoA ϕan,s w.r.t. the ath antenna’s local
coordinate system and the distance dan,s to the ath antenna’s
phase center can be easily calculated from dn,s and ϕn,s given
known array geometry as shown in [8].

A. RSS Model and RSSD model

At time n, the RSS (in dBm) obtained at the ath antenna
of sth anchor is given as

P an,s ,P0,s+GRx(ϕan,s)

−10ηn,s log10

(
dan,s
d0

)
+San,s+nan,s , (1)

according to the path-loss model [5]. The first term on the
right side P0,s accounts for the transmit power PTx (in dBm),
the transmit antenna gain GTx and the path loss Lref,s(d0) at
the reference distance d0 = 1 m, i.e., P0,s = PTx + GTx +
Lref,s(d0), Lref,s(d0) = 20 log10( λ4π )− 10ηn,s log10(d0), and
λ is the wavelength. Furthermore, GRx(ϕan,s) is the receive an-
tenna gain at angle ϕan,s, ηn,s is the PLE, and San,s ∼ N (0, σ2

S)
models the log-normal shadow fading, which is independent
and identically distributed (iid) across n and s. The shadow
fading processes at adjacent antennas of each anchor are highly
correlated and the correlation is denoted by CLSF. We assume
that PTx and GTx are known; ηn,s is time-varying, unknown
and independent across n and s. Here, the small scale fading
and the measurement noise are jointly modeled using a zero-
mean and Gaussian distribution that is iid across n, s and a,
i.e., nan,s ∼ N (0, σ2

n), with variance σ2
n.

Based on (1), the RSSD measurement between two adjacent
antennas of the jth anchor node at time n is modeled as [8]

P
(r1,r2)
∆,n,s , G

(r1,r2)
∆,n,s (ϕn,s) + ω(r1,r2)

n,s , (2)

where the first term G
(r1,r2)
∆,n,s (ϕn,s) represents the antenna gain

difference, given as G(r1,r2)
∆,n,s (ϕn,s) = GRx(ϕr1n,s)−GRx(ϕr2n,s),

with {r1, r2} ∈ As, and r1 < r2. The noise term ω
(r1,r2)
n,s

is approximated as the difference between two iid noise
processes nr1n,s and nr2n,s, thus ω(r1,r2)

n,s ∼ N (0, 2σ2
n).

The models (1) and (2) provide nonlinear mappings from the
hidden state xn of the target to RSS and RSSD observations,
which enables the proposed algorithm to infer and fuse the
distance and AoA information for target localization.

B. Inference Problem

In reality, it happens that at some time instances only a
subset of antennas of each anchor, i.e., Kn,s ⊆ As, provide
valid RSS measurements. Hence, the number Kn,s = |Kn,s|
of RSS measurements zkn,s, k ∈ Kn,s , {1, · · · ,Kn,s}
is time-varying. Accordingly, the RSSD measurement zlD,n,s
with l ∈ Ln,s , {1, · · · , Ln,s} and Ln,s = Kn,s − 1 is
obtained by taking the difference between RSS measurements
from antenna pairs with adjacent indices, i.e., {rl1, rl2} ∈ Kn,s,
rl1 < rl2. At each time n, we assume that at least two antennas
of each anchor provide RSS measurements. By stacking the
measurement vectors zn,s , [z1

n,s, . . . , z
Kn,s
n,s ]T and zD,n,s ,

[zlD,n,s, . . . , z
Ln,s

D,n,s]
T from all anchors, the full measurement

vectors at time n are given as zn , [zT
n,1, . . . ,z

T
n,S ]T and

zD,n , [zT
D,n,1, . . . ,z

T
D,n,S ]T.

Our goal is to estimate of the target state xn, the path-loss
exponents ηn = [ηn,1, . . . , ηn,S ]T, using the past and present
measurement vectors z1:n , [zT

1 , . . . ,z
T
n ]T and zD,1:n ,

[zT
D,1, . . . ,z

T
D,n]T.

III. SYSTEM MODEL AND STATISTICAL FORMULATION

A. Target Dynamics

For tracking a maneuvering target node, the IMM method
[9]–[11] is used, which resolves the target motion uncertainty
by using multiple dynamic models (i.e., modes) indexed by
mn ∈ H , {1, · · · , H} at time n. The state-transition pdf
of the target state fh(xn|xn−1), h ∈ H when consider-
ing the hth mode is defined by the corresponding dynamic
model. To account for the uniform motion as well as the
maneuver of the target such as left/right turn, the nearly-
constant velocity (NCV) model and the coordinated turn (CT)
model [9] are used respectively. The NCV model is defined
as xn = FNCVxn−1 +Γνn,h, where the matri FNCV ∈ R4×4

and Γ ∈ R4×2 are chosen as in [9, Section 6.3.2] with the
sampling period ∆T . The driving process νn,h ∈ R2×1 is
iid across n and h, zero-mean and Gaussian with covariance
matrix σ2

hI2, I2 denotes a 2 × 2 diagonal matrix, and σh
represents the average speed increment along x or y axis
during the sampling period ∆T . Furthermore, the turn of
a target is modeled with the CT model, characterized by
a constant turn rate Ωh and a (nearly) constant speed, i.e.,
xn = FCT(Ωh)xn−1 +Γνn,h, the matrices FCT(Ωh) ∈ R4×4

are chosen as in [9, Section 11.7.1]. The dynamic mode (DM)
index mn is modeled as a random variable which evolve
according to the first-order Markov chain with a constant
transition matrix P ∈ [0, 1]H×H over time, where [0, 1]H×H

denotes a H × H matrix with entries between 0 and 1. The
DM transition probability mass function (pmf) of mn is given
by p(mn = j|mn−1 = i) = [P ]i,j for i, j ∈ H. Note that∑H
j=1[P ]i,j = 1 ∀ i. The target state xn and the DM index

mn are assumed to jointly evolve according to a Markovian
dynamic model. Furthermore, we assume that the state xn is
conditionally independent of mn−1 given xn−1 and mn, and
mn is conditionally independent of xn−1 given mn−1. Thus,
the joint prior pdf f(x1:n,m1:n) of x1:n , [xT

1 , . . . ,x
T
n ]T

and m1:n , [m1, . . . ,mn]T can be factorized as

f(x1:n,m1:n)

= f(x0,m0)

n∏
n′=1

f(xn′ ,mn′ |xn′−1,mn′−1)

= f(x0)f(m0)

n∏
n′=1

fmn′ (xn′ |xn′−1)f(mn′ |mn′−1), (3)

where fmn
(xn|xn−1) = f(xn|mn,xn−1), f(x0) and f(m0)

are the initial prior pdf and pmf, which are assumed to be
uniform on their respective regions of interest (RoIs).



B. Likelihood Functions

We assume that the individual measurements inside vec-
tors zn,s and zD,n,s are conditionally independent given
the states xn and ηn,s, and ηn,s is independent of RSSD
measurements zD,n,s. The conditional pdfs h(zkn,s|xn, ηn,s)
and h(zlD,n,s|xk) (i.e., likelihood functions) derived from (1)
and (2) are given as

h(zkn,s|xn, ηn,s) = C1 exp
{
−

(zkn,s − skn,s)2

2(σ2
S + σ2

n)

}
, (4)

h(zlD,n,s|xn) = C2 exp
{
−

(zlD,n,s −G
(rl1,r

l
2)

∆,n,s (xn))2

4σ2
n

}
, (5)

where skn,s = P0,s + GRx(ϕkn,s) − 10ηn,s log10

(
dkn,s

d0

)
, and

G
(rl1,r

l
2)

∆,n,s (xn) represents the nonlinear mapping from the hid-
den state xn to an RSSD observation described in (2), with
C1 =

(
2π(σ2

S + σ2
n)
)− 1

2 , C2 = (4πσ2
n)−

1
2 .

IV. THE MESSAGE PASSING LOCALIZATION ALGORITHM

A. State Estimation

The joint estimation of xn and ηn,s given the measurements
z1:n and zD,1:n is formulated with a Bayesian model, where
the joint posterior pdf f(x1:n,m1:n,η1:n|z1:n, zD,1:n) can be
factorized as

f(x1:n,m1:n,η1:n|z1:n, zD,1:n)

∝ f(z1:n, zD,1:n|x1:n,m1:n,η1:n)f(x1:n,m1:n,η1:n)

= f(x0)f(m0)

(
S∏
s=1

f(η0,s)

)

×
n∏

n′=1

fmn′ (xn′ |xn′−1)f(mn′ |mn′−1)

S∏
s=1

f(ηn′,s|ηn′−1,s)

×
∏

k∈Kn′,s

h(zkn′,s|xn′ , ηn′,s)
∏

l∈Ln′,s

h(zlD,n′,s|xn′), (6)

according to the Bayes’ rule and independence assumptions
over the prior pdfs, state-transition pdfs, and the likelihood
functions.

Based on the marginal posterior pdfs f(xn|z1:n, zD,1:n) and
f(ηn,s|z1:n), the Bayesian estimation of the target state xn,
the PLEs ηn,s can be approximately calculated by means of
the minimum mean square error (MMSE) estimator [12], given
as

x̂MMSE
n ,

∫
xnf(xn|z1:n, zD,1:n)dxn, (7)

η̂MMSE
n,s ,

∫
ηn,sf(ηn,s|z1:n)dηn,s. (8)

B. Message Passing Algorithm

The marginal posterior pdfs f(xn|z1:n, zD,1:n) and
f(ηn,s|z1:n) are obtained by running massage passing on the
factor graph (Fig. 1) representing the factorization of the joint
posterior pdf f(x1:n,m1:n,η1:n|z1:n, zD,1:n) (6). Following

time n . . .

. . .
fy y

q−y αy qy

hm hl

ηfη

s = S
q−η,S αη qη,S

γS
hl hk

ηfη

s = 1
q−η,1 αη qη,1

γ1

uη

..
.

Fig. 1: Factor graph representation of the factorized joint posterior
pdf (6), shown for time n. For simplicity, the joint vector of xn and
mn are denoted as yn = [xn,mn]

T, the time indices are omitted and
the following short notations are used: the beliefs calculated at the
previous time n−1, q−η,s = q(ηn−1,s) and q−y = q(yn−1); the state-
transition pdfs fy = f(yn|yn−1) and fη = f(ηn,s|ηn−1,s); the pre-
dicted messages αy = α(yn) and αη = α(ηn,s); the measurement-
update messages uη = u(ηn,s) and γs = γs(yn); the likelihood
functions related to RSS/RSSD measurements hk = h(zkn,s|xn, ηn,s)
and hl = h(zlD,n,s|xn); the beliefs that approximately representing
the marginal posterior pdfs qη,s = q(ηn,s) and qy = q(yn).

the generic rules for calculating messages and beliefs intro-
duced in [13], the following operations are performed at each
time n:

1) Prediction: First, a prediction step is performed, and the
messages α(ηn,s) and α(xn,mn) are calculated as

α(ηn,s) =

∫
q(ηn−1,s)f(ηn,s|ηn−1,s)dηn−1,s, (9)

α(xn,mn) =
∑

mn−1∈H

∫
q(xn−1,mn−1)fmn(xn|xn−1)

× f(mn|mn−1)dxn−1, (10)

where q(ηn−1,s) and q(xn−1,mn−1) are calculated at
time n− 1.

2) Measurement update: In the measurement update step,
the messages u(ηn,s) are calculated as

u(ηn,s) =
∑
mn∈H

∫
α(xn,mn)

×
∏

k∈Kn,s

h(zkn,s|xn, ηn,s)dxn, (11)

and the message γs(xn,mn) from each anchor is given
by

γs(xn,mn) = βs(xn,mn)βsD(xn,mn), (12)

where βs(xn,mn) is the message passed form the factor
node h(zln,s|xn, ηn,s) to the variable node xn, given by

βs(xn,mn) =

∫
α(ηn,s)

∏
k∈Kn,s

h(zkn,s|xn, ηn,s)dηn,s,

(13)



and βsD(xn,mn) is the message passed form the factor
node h(zlD,n,s|xn) to the variable node xn, given by

βsD(xn,mn) =
∏

l∈Ln,s

h(zlD,n,s|xn). (14)

3) Belief calculation: Finally, the beliefs q(ηn,s) approx-
imating the marginal posterior pdfs f(ηn,s|z1:n) are
calculated as

q(ηn,s) = α(ηn,s)u(ηn,s). (15)

Furthermore, the belief q(xn,mn) approximating the
the marginal posterior pdf f(xn,mn|z1:n, zD,1:n) is
calculated as

q(xn,mn) = α(xn,mn)

S∏
s=1

γs(xn,mn). (16)

Finally, the belief q(xn) and q(mn) approximating
p(xn|z1:n, zD,1:n) and p(mn|z1:n, zD,1:n) are calcu-
lated as q(xn) =

∫
q(xn,mn)dmn and q(mn) =∫

q(xn,mn)dxn.
4) Particle-based implementation: A sequential Monte

Carlo (particle-based) implementation [11], [14] is used
to represent the messages and beliefs presented above.
Furthermore, a “stacked state” [15] which comprises the
target state and the PLE state is used in the implemen-
tation. Hence, the resulting complexity scales linearly in
the number of particles, in the number of measurements
per anchor, and quadratically in the number of mode
number H .

V. PERFORMANCE EVALUATION

We validate the proposed message passing based localiza-
tion algorithm using both synthetic and real measured RSS
datasets. The work in [8] which exploits AoA information
from RSSD measurements for target tracking is used as a
reference method. Note that in [8] a single dynamic model
is used. To remove the influence of difference target dynamic
models on the results in two methods and make a fair
comparison, we extend the algorithm in [8] with the IMM
method introduced in Section (III-A) and keep the same setup
on the DM modes. For simplicity, the two methods above will
be briefly referred to as “MP-tracking” and “AoA-tracking” in
what follows.

A. Measurement and Simulation Setup

The synthetic datasets are generated according to the setup
of real outdoor measurement, which is described as follows:
A LoRa based network [1] is used in our experimental
setup. As shown in Fig. 2, the target node is equipped with
an omnidirectional antenna with known transmit power of
14 dBm. Two anchor nodes are used, which are equipped with
four and three directional antennas respectively, i.e., A1 = 4
and A2 = 3, and each receive antenna is connected with a
gateway as shown in Fig. 2c. The gateways act as bidirectional
relays between the target node and a network server, in

(a) (b) (c)

Fig. 2: Experimental setup: (a) target node: TTGO T-Beam module,
(b) anchor node: four 9 dBi circular antennas are used, and each
antenna is connected to a TTGO gateway shown in (c).

which the messages like GPS “ground truth” and RSS values
are decoded. The distance between the phase centers and
the orientation difference of two adjacent antennas are one
wavelength and 45 degrees, respectively. One of the receive
antenna beam patterns is measured and assumed to be the
same for the rest of the antennas. The system is operating at the
carrier frequency 868 MHz, with a bandwidth of 125 kHz. The
maximum spreading factor 12 is used to achieve the longest
working range, however at the cost of low data and package
rate. The gateways are listening to several different channels,
every 6 seconds one packet is received at each antenna.

The following parameters and simulation setup are used
for both synthetic and real measurements. We assume that
the initial target position is roughly known, and the particles
for the initial target state are drawn from a 4-D uniform
distribution with the center at [p1 0 0], where p1 denotes the
ground truth position of the target at time n = 1, and the
supports for the position and velocity are given as [−50, 50] m
and [−1, 1] m/s, respectively. The state-transition pdfs of the
target state fh(xn|xn−1) under three DM modes are defined
by the following models respectively: 1) CT model for right
turn with Ω1 = −5 deg/s, σ1 = 0.001 m/s2; 2) NCV model
with σ2 = 0.001 m/s2; 3) CT model for left turn with
Ω3 = 5 deg/s and σ3 = 0.001 m/s2. The sampling period
∆T = 6 s. The DM transition probabilities are chosen as
[P ]1,1 = [P ]3,3 = 0.95, [P ]2,2 = 0.96, [P ]2,1 = [P ]2,3 =
0.02, [P ]1,2 = [P ]3,2 = 0.04, and [P ]1,3 = [P ]3,1 = 0.01.
Besides, the state-transition pdfs of the path-loss exponents
f(ηn,s|ηn−1,s) are given as Gaussian distributions with noise
standard deviations ση = 0.07. The particles for the initial PLE
state η0,s are drawn from a uniform distribution on [1, 5]. The
pdf of each variable state is represented by 5000 particles.

B. Synthetic Measurements

Using the GPS positions of the anchors and the target at
each time n, we calculate the ground truth distances and
AoAs, and then apply them in model (1) to generate the
synthetic RSS measurements. Furthermore, the ground truth
PLEs are set according to the true propagation conditions and
the estimates from the real meausrments as shown in Fig. 8.
For each simulation run, the shadow fading and Gaussian
noise processes are generated at each time n under one
of the two setups: 1) setup-1: σS = 2 dB, σn = 0.8 dB,
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Fig. 3: Results for synthetic data. (a) Target position RMSEs. (b)
Empirical CDFs of the position RMSEs. setup-1: MP-tracking ( ),
AoA-tracking ( ), setup-2: MP-tracking ( ), AoA-tracking
( ). The vertical dashed lines highlight the times around which
the target node performs sharp turns as shown in Fig. 6.

cLSF = 0.9; 2) setup-2 (based on the statistics from real
measurements): σS = 4 dB, σn = 1 dB, CLSF = 0.8. The
noise standard deviations σS are σn are assumed to be known
in the simulations. In total, we performed 100 Monte-Carlo
(MC) simulation runs for each setup.

Fig. 3a depicts the target position RMSEs of MP-tracking
and AoA-tracking methods, and the corresponding empirical
cumulative distribution function (CDF) are given in Fig. 3b.
By exploiting both range and angle information from RSS
measurements, it shows that the MP-tracking method achieves
lower RMSEs then the AoA-tracking method mostly. More
specifically, the maximum RMSEs for MP-tracking are below
40 m and 65 m for setup-1 and setup-2, while the values are
95 m and 75 m for AoA-tracking. Fig. 4 shows the averaged
PLE estimates over 100 MC runs. It can be seen that the
PLE estimates of MP-tracking represent the ground truth well
in both setups, which proves that MP-tracking can adapt to
dynamic propagation conditions. Moreover, the averaged DM
mode beliefs are given in Fig. 5. As can be observed, whenever
the target performs a sharp turn, the belief of the corresponding
DM mode increases and tends to be dominant, and the smooth
movement in between those turns is captured by the NCV
model, as expected.

C. Real Measurements

The real RSS measurements are collected at the campus
of Lund University, Sweden, as shown in Fig. 6. Two anchor
nodes are placed on two building roofs, which are around
20 m above the ground. The target node is carried by a person
walking along a predefined trajectory at a speed around 1 m/s.
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Fig. 4: Results for synthetic data using MP-tracking. Averaged PLE
estimates for (a) anchor 1: ground truth ( ), setup-1 ( ), setup-
2 ( ); (b) anchor 2: ground truth ( ), setup-1 ( ), setup-2
( ).
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Fig. 5: Results for synthetic data using MP-tracking. Averaged DM
mode beliefs for setup-2. (a) CT model for right turn ( ). (b)
NCV ( ). (C) CT model for left turn ( ).

Every 6 seconds, the movement is paused and we collect
around three samples at each antenna. Still, at a few positions
only a subset of antennas provide valid RSS measurements.
In total, there are N = 120 sample time instances. In Fig. 6,
we mark the time instances where the target performs sharp
turns with brown circle. In the simulations, we assume the
noise standard deviations for the shadow fading and Gaussian
noise processes to be σS = 4 dB, σn = 1 dB. We evaluate the
performance both for the averaged and non-averaged measure-
ments. For the first case, the RSS measurements collected at
each antenna are averaged. For the second case, we randomly
pick one measurement from each antenna at each time, and in
total 50 MC simulation runs are performed.

As shown in Fig. 7, the MP-tracking algorithm outperforms
the AoA-tracking algorithm especially when non-averaged
measurements are used. Furthermore, the true propagation
conditions from the target to each anchor are denoted with
line-of-sight (LoS), obstructed-LoS (OLoS) where the direct
propagation is blocked by trees, and non-LoS (NLoS) where
the direct propagation is blocked by one or two buildings
(abbreviated as bul.). As shown in Fig. 8, the PLE estimates
well capture the dynamics of the true propagation conditions
to each anchor.

VI. CONCLUSION

We proposed a localization algorithm that exploits both
range and angle information from non-coherent RSS measure-
ments for IoT networks. Results using real outdoor measure-
ments show that the proposed algorithm can adapt to dynamic
propagation conditions, and improve the localization accuracy
compared to the method which exploits single geometric
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Fig. 6: Picture of the outdoor measurement environment, Lund
University, Sweden. Background map: c© 2019 Google
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Fig. 7: Results for real data. (a) Target position RMSEs. (b) Empirical
CDFs of the position RMSEs. For averaged RSS measurements: MP-
tracking ( ), AoA-tracking ( ), For single RSS measurement:
MP-tracking ( ), AoA-tracking ( ).

feature. Moreover, the proposed algorithm is compatible with
many existing low cost IoT technologies and different antenna
array configurations.
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