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Abstract—We present a belief propagation (BP) algorithm with
probabilistic data association (DA) for detection and tracking
of specular multipath components (MPCs). In real dynamic
measurement scenarios, the number of MPCs reflected from
visible geometric features, the MPC dispersion parameters, and
the number of false alarm contributions are unknown and
time-varying. We develop a Bayesian model for specular MPC
detection and joint estimation problem, and represent it by a
factor graph which enables the use of BP for efficient computation
of the marginal posterior distributions. A parametric channel
estimator is exploited to estimate at each time step a set of MPC
parameters, which are further used as noisy measurements by
the BP-based algorithm. The algorithm performs probabilistic
DA, and joint estimation of the time-varying MPC parameters
and mean false alarm rate. Preliminary results using synthetic
channel measurements demonstrate the excellent performance
of the proposed algorithm in a realistic and very challenging
scenario. Furthermore, it is demonstrated that the algorithm is
able to cope with a high number of false alarms originating from
the prior estimation stage.

I. INTRODUCTION

The information of dispersive wireless radio channels in de-
lay, angular, and frequency domain, and its temporal behavior
in dynamic scenarios are of great importance for the design
and development of radio-channel models [1], [2], 5G wireless
communication technologies [3]–[5], and multipath-based lo-
calization and mapping [6]–[8]. The response of a wireless ra-
dio channel is typically represented by superimposed multipath
components (MPCs) with parameters such as delay, angle-
of-arrival (AoA), and angle-of-departure (AoD). These MPC
parameters are usually estimated from multidimensional radio
measurements using antenna arrays and multiple frequencies
(wide-band or ultrawide-band signals) using super-resolution
parametric channel tracking algorithms that perform sequential
estimation of specular MPCs (SMCs).

A. State of the Art Methods

The existing MPC tracking algorithms can be grouped into
two broad categories. Algorithms of the first category estimate
and track the MPC parameters directly based on the radio
signals using for example an extended Kalman filter (EKF) [9],
[10]. Algorithms of the second category are based on a two-
stage approach, where a snapshot-based parametric channel
estimator such as [11]–[13] is incorporated into a tracking filter
[14], or extended with a state-transition model that enables
sequential Bayesian estimation [15]. In this work, we focus
on the two-stage algorithms. In general, the correct model

order (number of SMCs) is unknown, time-varying and need
to be estimated, i.e., the model-order selection problem. One
classical solution is to extend the tracking algorithm with
an outer stage for model order detection using for example
eigenvalue-based methods, or the generic information theo-
retic criteria, e.g., the Akaike/Bayesian information criterion.
Another choice is to adopt sparsity-based algorithms, which
aim to reconstruct sparse signals from a reduced set of
measurements specified by a sparse weight vector. By intro-
ducing a sparsity-promoting prior model for the weights, the
estimation of model order and MPC parameters can be jointly
formulated inside a Bayesian framework. Most of the sparsity-
based algorithms [16]–[18] are proposed for time-invariant
measurement. Examples of sparsity-based sequential Bayesian
algorithms are given in [15], [19]. In addition to the model-
order selection, data association (DA) i.e., which measurement
originates from which MPC, is potentially another problem
for two-stage methods. In general, existing methods adopt
single hypothesis, i.e., the state of each MPC is updated using
a single measurement specified by the metrics such as the
global nearest neighbor [20]. In comparison, probabilistic DA
[20], [21] which evaluates all the current measurements for the
update of each predicated MPC state would be more preferable
in the presence of false alarm measurements.

B. Contributions

In this work, we propose a belief propagation (BP) -based
algorithm for MPC detection and tracking (abbreviated as BP-
MPCT) which uses the MPC estimates from a parametric
super-resolution sparse Bayesian variational (abbreviated as
SBL) channel estimator as measurements. This BP-MPCT
algorithm jointly performs probabilistic DA and sequential
estimation of potential specular MPC (PSMC) parameters and
mean number of false alarms. Probabilistic DA and state
estimation are performed by running BP on a factor graph
[8], [21]. We use a probabilistic model for MPC existence
where each PSMC state is augmented by a binary existence
variable and associated with a probability of existence, which
is also estimated and used for detection of the reliable MPCs
modeling the birth and death. Inspired by [22]–[24], the
algorithm also exploits the estimates of mean and variance of
the complex amplitudes to calculate the detection probabilities
of path components. It is therefore also suitable for unknown
and time-varying detection probabilities [25].



II. PROBLEM FORMULATION

A. Radio Signal Model

We consider a single-input–multiple-output (SIMO) channel
model, where a baseband radio signal s(t) is transmitted from
a mobile user (UE) to a base station (BS) equipped with
an antenna array of J elements. For the sake of simplicity
we assume a two dimensional scenario with horizontal-only
propagation.1 The received signal at each antenna element
indexed by j ∈ {1, . . . , J} is given as

r(j)(t) =

Lt∑
l=1

αl,ts
(
t− f(τl,t, ϕl,t,p

(j))
)

+ w(t), (1)

where the first term comprises Lt SMCs, with each being char-
acterized by the complex amplitude αl,t, the time delay τl,t to
the array’s center of gravity, and the AoA ϕl,t with respect to
the array orientation. The function f(τl,t, ϕl,t,p

(j)) maps the
SMC parameters from the array’s center to the position p(j)

of the jth array element [26]. We assume that the UE and
BS are time synchronized and the array orientation is known.
The second term w(t) in (1) represents the measurement noise
which is described by additive white Gaussian noise (AWGN)
with double-sided power spectral density N0/2.

The received signal r(j)(t) observed over a duration T
is sampled with frequency fs = 1/Ts, yielding a length
Ns = T/Ts sample vector r(j)n ∈ CNs×1 from each ar-
ray element, and n is the discrete time index. By stacking
r
(j)
n from J array elements, the discrete time signal vector
rn , [(r

(1)
n )T, . . . , (r

(J)
n )T]T ∈ CNsJ×1 is given as

rn = S(θn)αn +wn, (2)

where S(θn) , [s(θ1,n), . . . , s(θLn,n)] ∈ CNsJ×Ln

with s(θl,n) ∈ CNsJ×1 accounting for signal samples
of the lth SMC from all array elements, and αn ,
[α1,n, . . . , αLn,n]T ∈ CLn×1. The SMC parameter vector is
θn , [θT1,n, . . . ,θ

T
Ln,n

]T, with θl,n , [τl,n, ϕl,n]T. The vector
wn contains the sampled AWGN from all array elements. A
SMC exists only during the time duration (i.e., lifetime) that
the BS/associated environment features are visible at the UE
position. We assume that the true model order Ln is unknown
and time-varying in dynamic measurement scenarios.

B. Parametric Channel Estimation

At each time n, a SBL channel estimator [12], [16]–
[18] is used to estimate the SMC parameters θ̂n ,
[θ̂T1,n, . . . , θ̂

T
Mn,n

]T with θ̂m,n = [τ̂m,n, ϕ̂m,n]T, the mean
value vector µα,n , [µα,1,n, . . . , µα,Mn,n]T and covariance
matrix Σα,n ∈ CMn×Mn of corresponding complex ampli-
tudes and the model order Mn. During the estimation process,
we assume that miss detection of SMCs and estimation of
MPCs which did not originate from any distinct environment
features might occur. Hence, Mn is time-varying and it can be
equal to, or larger/smaller than the true model order Ln. We

1An extension to three dimensional scenarios with horizontal and vertical
propagation is straightforward, but it would lead to a cumbersome notation
and one would not gain any new insights.

also introduce the normalized amplitude ûm,n =
√

SNRm,n

with SNRm,n = |µα,m,n|2/
[
Σα,n

]
m,m

as the square root of
the estimated posterior signal-to-noise ratio (SNR) of the mth
SMC [23], [24]. The normalized amplitudes ûm,n are directly
related to the detection probabilities of the estimated SMCs as
introduced in Sections III-C and III-D.

The estimates are stacked into the vector zn ,
[zT1,n, . . . ,z

T
Mn,n

]T, where zm,n , [d̂m,n, ϕ̂m,n, ûm,n]T with
d̂m,n = cτ̂m,n and c denotes the speed of light. We also define
the vectors z , [zT1 , . . . ,z

T
n ]T and m , [M1, . . . ,Mn]T.

The vector z is further used as noisy measurements in the
BP-MPCT algorithm.

C. Inference Problem

Given all the past and current measurements z, our goal is to
infer the time-varying states of the SMCs, as well as the model
order. Besides, the unknown and potentially time-varying
false alarm measurement rate and detection probabilities are
automatically adapted online, which avoids manually tunning
of these measurement parameters for different datasets.

III. SYSTEM MODEL AND STATISTICAL FORMULATION

A. PSMC States and Dynamics

At each time n, the numbers of emerging SMCs and the
SMCs that survived from the previous time are unknown.
To account for this fact, the concept of potential SMC, i.e.,
PSMC, is introduced. At time n, a PSMC yk,n, k ∈ Kn ,
{1, . . . ,Kn} is either a legacy PSMC ỹk,n, which is already
established in the previous time, or a new PSMC y̆m,n which
is established for the first time. The existence/nonexistence of
a PSMC as an actual SMC is modeled by a binary variable
rk,n ∈ {0, 1}, i.e., it exists (not exist) if rk,n = 1 (rk,n = 0).
Thus, the number of PSMCs Kn represents the maximum
possible number of SMCs that can be detected and estimated
at time n.

The augmented state of a PSMC is defined as yk,n ,
[ψk,n, rk,n]T, where ψk,n = [xT

k,n, uk,n]T and xk,n =

[dk,n, ϕk,n, vd,k,n, vϕ,k,n]T with vd,k,n and vϕ,k,n denoting
the distance and angular velocities. The states of nonexisting
PSMCs are obviously irrelevant, but will be convenient if for-
mally considered. Therefore, all probability density functions
(pdfs) defined for PSMC states f(yk,n) = f(ψk,n, rk,n) have
the property that f(ψk,n, rk,n = 0) = fk,nfD(ψk,n), where
fk,n is a constant representing the probability of nonexistence
of yk,n, and fD(ψk,n) is an arbitrary “dummy pdf” [21],
[27]. Accordingly, the augmented states of legacy PSMCs
and new PSMCs are denoted by ỹk,n , [ψ̃T

k,n, r̃k,n]T,
k ∈ Kn−1 , {1, . . . ,Kn−1} and y̆m,n , [ψ̆T

m,n, r̆m,n]T,
m ∈ Mn , {1, . . . ,Mn}, respectively. At each time n,
one new PSMC y̆m,n is introduced for each measurement
zm,n, thus the number of new PSMCs equals to the number
of measurements Mn. Before the current measurements zn
are observed, the number Mn is random. The new PSMCs
become legacy PSMCs when the measurements at next time
are observed, accordingly the set and number of legacy
PSMCs are updated as Kn = Kn−1 ∪ Mn and Kn =



Kn−1 + Mn. We further define the stacked state vectors
as follows: for legacy PSMCs ỹ , [ỹT

1 , . . . , ỹ
T
n ]T, ỹn ,

[ỹT
1,n, . . . , ỹ

T
Kn−1,n

]T, x̃n , [x̃T
1,n, . . . , x̃

T
Kn−1,n

]T, ũn ,

[ũ1,n, . . . , ũKn−1,n]T, r̃n , [r̃1,n, . . . , r̃Kn−1,n]T; for new
PSMCs y̆n , [y̆T

1,n, . . . , y̆
T
Mn,n

]T, x̆n , [x̆T
1,n, . . . , x̆

T
Mn,n

]T,
ŭn , [ŭ1,n, . . . , ŭMn,n]T, r̆n , [r̆1,n, . . . , r̆Mn,n]T; for
combination of the legacy and new PSMCs, yn , [ỹT

n, y̆
T
n]T,

yn , [yT
1,n, . . . ,y

T
Kn,n

]T with k ∈ Kn , {1, . . . ,Kn}.
Assume that the states ỹk,n with k ∈ Kn of the legacy

PSMCs are distributed independently across k and n, and
evolve independently according to their respective Markovian
state dynamics. The state-transition pdf for legacy PSMC state
ỹn factorizes as

f(ỹn|yn−1) =

Kn−1∏
k=1

f(ỹk,n|yk,n−1), (3)

where f(ỹk,n|yk,n−1) = f(ψ̃k,n, r̃k,n|ψk,n−1, rk,n−1) is the
single PSMC state-transition pdf. If the PSMC did not exist
at time n− 1, i.e., rk,n−1 = 0, it cannot exist at time n as a
legacy PSMC. This means that

f(ψ̃k,n, r̃k,n|ψk,n−1, 0) =

{
fD(ψ̃k,n), r̃k,n = 0

0, r̃k,n = 1 .
(4)

If the PSMC existed at time n − 1, i.e., rk,n−1 = 1, it
either dies i.e., r̃k,n = 0 or it still exist i.e., r̃k,n = 1 with
the survival probability denoted as Ps. If it does survive, the
state ψ̃k,n is distributed according to the state-transition pdf
f(ψ̃k,n|ψk,n−1). Thus we have

f(ψ̃k,n, r̃k,n|ψk,n−1, 1) =

{
(1− Ps)fD(ψ̃k,n), r̃k,n = 0

Psf(ψ̃k,n|ψk,n−1), r̃k,n = 1 .
(5)

We further factorize the state-transition pdfs as
f(ψ̃k,n|ψk,n−1) = f(x̃k,n|xk,n−1)f(ũk,n|uk,n−1) given
the independence assumptions between that the state vectors
x̃k,n and the normalized amplitudes ũk,n.

B. Associations of PSMCs with Measurements

The association of PSMCs and measurements is compli-
cated by the DA uncertainty: at time n it is unknown which
measurement zm,n originates from which PSMC, or if a
measurement did not originate from a PSMC (false alarm
or clutter), or if a PSMC did not generate any measurement
(missed detection). Any PSMC-to-measurement association is
described by PSMC-oriented variables

ak,n ,


m ∈Mn, if the legacy PSMC k generate

the measurement m
0 if the legacy PSMC k does not

generate any measurement,

stacked into the PSMC-oriented association vector an ,
[a1,n, . . . , aKn−1,n]T. To reduce computational complexity,
following [8], [21], [27], we use a redundant descrip-
tion of PMSC-measurement associations, i.e., we introduce

wall

UE
time n

time n − 1

BS

missed
detection

z1,n

z2,n

z3,n

ỹ1,n

ỹ2,n

Kn−1

y̆1,n

y̆2,n

y̆3,n

Mn

false
alarm

Measurements DA PSMCs

Fig. 1: An example of probabilistic DA, where the association
probability between a measurement and a PSMC is denoted with the
line thickness. At time n, three measurements are generated from
the SBL channel estimator. The probability that the measurement
z1,n is associated with the new PSMC y̆1,n is much higher than
the probability that z1,n is associated with a legacy PSMC. The
measurement z3,n is associated with the legacy PSMC ỹ2,n with
high probability. Besides, it is highly possible that the measurement
z2,n is a false alarm and the legacy PSMC ỹ1,n did not generate any
measurement (missed detection).

measurement-oriented association variables

bm,n ,


k ∈ Kn−1, if the measurement m is generated

by the legacy PSMC k

0 if the measurement m is not
generated by any legacy PSMC,

and define the measurement-oriented association vector bn ,
[b1,n, . . . , bMn,n]T. Note that the “redundant formulation” of
using an together with bn is the key to make the algorithm
scalable to the varying numbers of PSMCs and measurements.

The example presented in Fig. 1 explains how the proba-
bilistic DA is performed. The probabilities of all association
hypotheses of PSMCs and measurements are evaluated, and
a high probability indicates that the PSMC state explains a
measurement well.

C. States of Unknown Parameters

The detection and estimation of PSMC states require the
information of the spatial density of false alarm measurements,
and the detection probabilities, i.e., the probability that a
PSMC yk,n generates a measurement zm,n. We assume that
the false alarm measurements are independent and identically
distributed (iid) according to the pdf fc(zm,n), which is
uniform on the region of interest (RoI), and the number of
false alarm measurements at each time n, i.e., false alarm rate
(FAR), is Poisson distributed with mean µFA,n. The detection
probability Pd(ψk,n) , Pd(uk,n) is characterized by its
normalized amplitude [23], [24]. Both µFA,n and Pd(uk,n) are
assumed to be unknown and potentially time-varying, and the
algorithm is designed to automatically adapt these parameters
online. More specifically, µFA,n is estimated continually along
with the PSMC states, and Pd(uk,n) is given at each time by
using the normalized amplitudes uk,n, as explained in [23],
[24] and Section III-D. The mean FAR µFA,n is independent
of the states of the legacy PSMCs, and evolve according to
the state-transition pdf f(µFA,n|µFA,n−1).



D. Likelihood Functions

If the measurement zm,n is originated from the PSMC k,
i.e., ak,n = m, then the conditional distribution given the state
ψk,n is described by the pdf f(zm,n|ψk,n). Assuming the
individual measurements inside vector zm,n are conditional
independent given the state ψk,n, the pdfs f(zm,n|ψk,n) of
PSMC-originated measurements factorizes as

f(zm,n|ψk,n) = f(d̂m,n|dk,n)f(ϕ̂m,n|ϕk,n)f(ûm,n|uk,n), (6)

where the conditional pdfs f(d̂m,n|dk,n) and f(ϕ̂m,n|ϕk,n)
are defined by Gaussian measurement models, yields

f(d̂m,n|dk,n) =
1√

2πσ2
d,m,n

exp
(−(d̂m,n − dk,n)2

2σ2
d,m,n

)
, (7)

f(ϕ̂m,n|ϕk,n) =
1√

2πσ2
ϕ,m,n

exp
(−(ϕ̂m,n − ϕk,n)2

2σ2
ϕ,m,n

)
. (8)

The variances are computed using the norm amplitude mea-
surements, i.e., σ2

d,m,n = c2/(8π2βbwû
2
m,n) and σ2

ϕ,m,n =
c2/(8π2f2c û

2
m,nD

2(ϕ̂m,n)), where βbw is the mean square
bandwidth of the transmit signal pulse s(t) and D2(ϕ̂m,n)
is the squared array aperture [24], [26]. The pdf f(ûm,n|uk,n)
of the normalized amplitude ûm,n conditioned on the state
uk,n is given by a unit-variance Rician distribution as in [23],
[24].

If zm,n is a false alarm measurement, it is distributed
according to the pdf fFA(zm,n), which factorizes as

fFA(zm,n) = fFA(d̂m,n)fFA(ϕ̂m,n)fFA(ûm,n), (9)

where fFA(d̂m,n) and fFA(ϕ̂m,n) are assumed to be uni-
form in their respective RoIs, i.e., fFA(d̂m,n) = 1/dmax

and fFA(ϕ̂m,n) = 1/2π. The false alarm pdf fFA(ûm,n)
of the normalized amplitude is given by a unit-variance
Rayleigh distribution [20, Ch. 1.6.7], i.e., fFA(ûm,n) =
ûm,n exp(−û2m,n/2)/PFA. The false alarm probability is given
as PFA = exp (−u2th/2) with the normalized amplitude
threshold uth.

E. Joint Posterior pdf and Factor Graph

By using common assumptions [8], [21], and for fixed and
thus observed measurements z, it can be shown that the joint
posterior pdf of ỹ, y̆, a, b, µFA and m, conditioned on z is
given by

f(ỹ, y̆,a, b,µFA,m|z)

∝ f(µFA,1)

M1∏
m′=1

h(ψ̆m′,1, r̆m′,1, bm′,1, µFA,1; z1)

×
n∏

n′=2

f(µFA,n′ |µFA,n′−1)

Kn′−1∏
k=1

f(ỹk,n′ |yk,n′−1)


×

Kn′−1∏
k=1

Mn′∏
m=1

g(ỹk,n′ , ak,n′ , µFA,n′ ; zn′)Ψ(ak,n′ , bm,n′)



×

Mn′∏
m=1

f(y̆m,n′)h(y̆m,n′ , bm,n′ , µFA,n′ ; zn′)

 , (10)

where we introduced the functions g(ỹk,n, ak,n, µFA,n; zn),
h(y̆m,n, bm,n, µFA,n; zn), f(y̆m,n), and Ψ(ak,n, bm,n) that
will be discussed next.

The pseudo likelihood functions are given as
g(ỹk,n, ak,n, µFA,n; zn) = g(ψ̃k,n, r̃k,n, ak,n, µFA,n; zn) and
h(y̆m,n, bm,n, µFA,n; zn) = h(ψ̆m,n, r̆m,n, bm,n, µFA,n; zn)

g(ψ̃k,n, 1, ak,n, µFA,n; zn)

=


n(µFA,n)f(zm,n|ψ̃k,n)Pd(ũk,n)

µFA,nfFA(zm,n)
, ak,n = m ∈Mn

1− Pd(ũk,n), ak,n = 0,

(11)

and g(ψ̃k,n, 0, ak,n, µFA,n; zn) = 1(ak,n)n(µFA,n) with
n(µFA,n) , (µMn

FA,ne
−µFA,n/Mn!)1/(Kn−1+Mn) as well as

h(ψ̆m,n, 1, bm,n, µFA,n; zn)

=


0, bm,n = k ∈ Kn−1
n(µFA,n)f(zm,n|ψ̆m,n)

µFA,nfFA(zm,n)
, bm,n = 0,

(12)

and h(ψ̆m,n, 0, bm,n, µFA,n; zn) = n(µFA,n). The prior distri-
butions f(y̆m,n) = f(ψ̆m,n, r̆m,n) for new PSMC states can
be expressed as

f(ψ̆m,n, r̆m,n) =

{
µnfn(ψ̆m,n), r̆m,n = 1

fD(ψ̆m,n), r̆m,n = 0,
(13)

where µn and fn(ψ̆m,n) are the mean and pdf of a Poisson
point process, respectively. Finally, the binary indicator func-
tions that check consistency for any pair (ak,n,bm,n) of PSMC-
oriented and measurement-oriented association variable at time
n, read [8], [21]

Ψ(ak,n, bm,n) =


0, ak,n = m, bm,n 6= k

or bm,n = k, ak,n 6= m

1, otherwise.
(14)

In case the joint PSMC-oriented association vector an and the
measurement-oriented association vector bn do not describe
the same association event, at least one indicator function in
(10) is zero and thus f(ỹ, y̆,a, b,µFA,m|z) is zero as well.
The factor graph describing the factorization (10) of the joint
posterior pdf is shown in Fig. 2.

IV. THE BP-BASED MPC TRACKING ALGORITHM

In the Bayesian setting, the detection of PSMCs yk,n with
k ∈ Kn relies on the marginal posterior existence probabilities
f(rk,n = 1|z), and the estimation of the detected PSMC
states xk,n, the amplitudes uk,n and the mean FAR µFA,n

rely on the marginal posterior pdfs f(ψk,n|rk,n = 1, z)
and f(µFA,n|z). More specifically, a PSMC is detected if
p(rn,k = 1|z) > Pdet [28], where p(rn,k = 1|z) is obtained
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ỹ1

ỹK
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Fig. 2: Factor graph representation of the factorized joint pos-
terior pdf (10), shown for time n. For simplicity, the following
short notations are used: K , Kn−1, M , Mn; variable
nodes: ak , ak,n, bm , bm,n, µFA , µFA,n, ỹk , ỹk,n,
y̆m , y̆m,n; factor nodes: fk , f(ỹk,n|yk,n−1), fµFA ,
f(µFA,n|µFA,n−1), gk , g(ψ̃k,n, r̃k,n, ak,n, µFA,n;zn), hm ,
h(ψ̆m,n, r̆m,n, bm,n, µFA,n;zn), Ψk,m , Ψ(ak,n, bm,n); beliefs:
q̃−k , q̃(ψ̃k,n−1, r̃k,n−1), q̃k , q̃(ψ̃k,n, r̃k,n), q̆m , q̆(ψ̆m,n, r̆m,n),
q−µFA

, q(µFA,n−1), qµFA , q(µFA,n).

from the marginal posterior pdfs of the augmented PSMC state
f(yk,n|z) = f(ψk,n, rk,n|z) as

p(rk,n = 1|z) =

∫
f(ψk,n, rk,n = 1|z)dψk,n. (15)

The estimates of µFA,n, and the states ψk,n and uk,n of
detected PSMCs are calculated by means of the minimum
mean-square error (MMSE) estimator [29]

µ̂MMSE
FA,n ,

∫
µFA,nf(µFA,n|z)dµFA,n, (16)

x̂MMSE
k,n ,

∫
xk,nf(ψk,n|rk,n = 1, z)dψk,n, (17)

ûMMSE
k,n ,

∫
uk,nf(ψk,n|rk,n = 1, z)dψk,n, (18)

where the marginal posterior pdf f(ψk,n|rk,n = 1, z) can be
obtained from f(ψk,n, rk,n|z) as

f(ψk,n|rk,n = 1, z) =
f(ψk,n, rk,n = 1|z)

f(rk,n = 1|z)
. (19)

Note that the posterior existence probabilities f(rk,n = 1|z)
are also used in the pruning step removing PSMCs with
f(rk,n = 1|z1:n) < Pprun. As explained in Section III-A, the
number of legacy PSMCs are updated as Kn = Kn−1+Mn at
each time n, the pruning step would prevent Kn from growing
indefinitely.

To obtain the marginal posterior pdfs f(ψ̃k,n, r̃k,n|z),
f(ψ̆m,n, r̆m,n|z) and f(µFA,n|z) of the join posterior pdf
f(ỹ, y̆,a, b,µFA,m|z), direct marginalization is infeasi-
ble. However, their respective approximations q̃(ỹk,n) =
q̃(ψ̃k,n, r̃k,n), q̆(y̆m,n) = q̆(ψ̆m,n, r̆m,n) and q(µFA,n) can

be obtained efficiently by running the iterative BP [30] on
the factor graph in Fig. 2. Since this factor graph is loopy,
we now specify the following order in which the message are
computed: (i) messages are not sent backward in time; (ii)
iterative message passing is only performed for probabilistic
DA at each time step. In addition, the generic BP rules for
calculating messages and beliefs introduced in [21, Ch. III]
are also followed. A sequential particle-based message passing
implementation [8], [21], [27] is used to approximate the
messages and beliefs.

V. EXPERIMENTAL RESULTS

The proposed BP-MPCT algorithm is validated using syn-
thetic channel measurement data. Given the floor plan of a
seminar room at Graz University of Technology [8], the true
SMC parameters and model order are firstly obtained by using
a ray tracing (RT) method, and then applied in the radio signal
model (2) to synthetically generate the channel measurement
data for each simulation run. We assume that the amplitude
of each SMC follows free-space pathloss and is attenuated by
3 dB after each reflection. The transmit pulse s(t) is a root-
raised-cosine pulse with a symbol duration Tp = 2 ns and a
roll-off factor of 0.6 at a center frequency of fc = 6 GHz with
bandwidth of 500 MHz. The number of samples Ns = 94.
A 3 × 3 uniform rectangular array with an inter-element
spacing of 1 cm is used at the BS. The true SNR of a MPC
is computed as SNRl,n = 10 log10(

|αl,n|2‖s(θl,n)‖2Ts

N0
). For

each simulation run, the AWGN is generated with the noise
variance σ2

w = N0/Ts specified with a given SNR1m =

10 log10( |αLOS|2‖sLOS‖2Ts

N0
), where the amplitude αLOS and the

signal vector sLOS from all array elements of the line-of-sight
(LOS) component are computed at 1 m distance. The synthetic
channel measurement data is used in the SBL channel estima-
tor to obtain the noisy measurements zm,n at each time n,
and the true number of false alarm measurements is obtained
by checking the optimal sub-pattern assignment (OSPA) ma-
trix [31] between zm,n and the true SMC parameters from
RT. Note that we on purposely generated more false alarm
measurements by setting the detection threshold (on individual
MPC’s SNR) to 8 dB in the SBL channel estimator, which is
smaller than the threshold according to [18], therefore the per-
formance of the BP-MPCT algorithm can be validated in more
challenging situations. In total, we performed 50 simulation
runs for each given SNR1m ∈ {25 dB, 30 dB, 35 dB}. The
parameters used in the BP-MPCT algorithm are as follows:
the number of particles is 10000, the survival probability
Ps = 0.999, the detection probability threshold Pdet = 0.5,
the pruning threshold Pprun = 10−4, the mean number of
newly detected SMCs µn = 0.01, the birth pdf fn(ψ̆m,n)
is uniform on the RoI, i.e., fn(ψ̆m,n) = 1/(2πdmax) with
dmax = 30 m. The PFA is calculated for a threshold of uth = 1.
The detection probabilities Pd(ûMMSE

k,n ) are calculated using
the MMSE estimates of the normalized amplitudes ûMMSE

k,n

[23]. The particles for the initial mean FAR are drawn from
a uniform distribution on [0.001, 15]. The particles for the
initial states ψ̆m,n of a new PSMC are drawn from a 5-
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D uniform distribution with center at [d̂m,n, ϕ̂m,n, 0, 0, ûm,n]
and the support of each component is given by: [−0.3, 0.3] m,
[−0.7, 0.7] rad, [−0.01, 0.01] m/s, [−0.01, 0.01] rad/s, [−1, 1] .
The state-transition pdf of xk,n is defined by a nearly-constant
velocity model [32, Section 6.3.2] with ∆T = 1 s and noise
standard deviations σd = 0.01 m/s2 and σϕ = 0.02 rad/s2

for distance and AoA, respectively. Furthermore, the state-

transition pdfs of the normalized amplitude f(uk,n|uk,n−1)
and the mean FAR f(µFA,n|µFA,n−1) are given as Gaussian
distributions with noise standard deviations σu = 1 and
σFAR = 0.4, respectively.

The results of the BP-MPCT algorithm after averaging
over 50 simulation runs are presented in Fig. 3, and the
estimates zm,n from the SBL estimator (after excluding the
false alarm measurements) are used for comparison. It can
be seen that the mean OSPA (MOSPA) [31] errors on the
distances, AoAs and amplitudes obtained with BP-MPCT are
mostly lower than the errors with SBL, and the advantage gets
more obvious at low SNR1m. This can be explained that: given
low SNR1m, there exist more “weak” SMCs with low SNRs
that are sometimes miss detected in SBL, and some of the miss
detections can be reconstructed in BP-MPCT, which leads to
the better estimation of the model order and therefore lower
MOSPA errors. Given the SNR1m = 35 dB, the MOSPA errors
obtained with BP-MPCT are mostly below 2 cm for distances,
2 degrees for AoAs and -40 dB for amplitudes. Furthermore,
raises of the MOSPA errors for BP-MPCT are observed at
time instances where the true number of SMCs changes, which
happen mainly due to model order mismatch instead of the
increases on the root mean square errors of individual detected
PSMCs. More specifically, it takes one or two steps until the
existence probabilities of the legacy/new PSMCs reach the
detection probability threshold Pdet, so tracks are terminated
or newly detected, and therefore the change on the model
order can be followed. As shown in Fig. 3d, the BP-MPCT
algorithm is able to follow the correct model order for the
most of the time, even for SNR1m = 25 dB. Moreover, the
estimated mean FAR converges to the true value regardless of
the SNR1m condition as depicted in Fig. 3e.

The results of an exemplary simulation run given SNR1m =
25 dB are shown in Fig. 4. As can be seen, the BP-MPCT al-
gorithm shows good ability to distinguish between false alarm
measurements and measurements originated from SMCs. The
birth-death processes of SMCs are accurately detected and
tracks are well reconstructed even for some “weak” SMCs,
for example, the estimated track denoted in cyan between time
n = 1 and n = 200, of which the true SNR is mostly below
the 8 dB detection threshold. Furthermore, the association of
estimates over time in delay and angular subspaces are robust
even in the presence of intersections between SMCs.

VI. CONCLUSIONS

We presented a BP-MPCT algorithm which jointly performs
probabilistic DA, detection and tracking of MPC parameters.
This algorithm is adaptive to time-varying mean false alarm
rate, as well as the detection probabilities by utilizing the
amplitude statistics of the MPC estimates. Simulation results
showed that the BP-MPCT algorithm has excellent perfor-
mance regarding the scalability to the time-varying model
order, estimation accuracy, and association property over time
in a realistic and very challenging scenario.
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