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Abstract—Radio based positioning or tracking solutions typ-
ically require wideband signals or phase coherent antennas. In
this paper, we present a target tracking method based on received
non-coherent signal strength differences (RSSDs) between anten-
nas for outdoor Internet-of-things (IoT) scenarios. We introduce
an RSSD model based on classical path-loss models. With known
antenna patterns and antenna array geometries, the RSSD model
enables direct mapping between RSSD and angle of arrival,
without involving parameters like transmit power, path-loss
coefficient, etc. The RSSD model is then exploited in a recursive
Bayesian filtering method for target tracking where a particle
filter-based implementation is used. The performance is evaluated
using outdoor measurements in a low-power wide area network
(LoRaWAN) based IoT system. Besides, we also investigate the
potential of the RSSD model for AoA estimation. The experimen-
tal results show the capability of the proposed framework for
real-time target/AoA tracking; reasonable accuracy is achieved
even when using non-averaged RSS measurements and under non
line-of-sight (NLoS) conditions. Furthermore, the non-coherent
approach has low computational complexity, scales well, and is
flexible to allow for different antenna array configurations.

I. INTRODUCTION

Location-awareness is a key enabler for various emerging
applications related to the Internet-of-things (IoT). Numerous
existing commercial systems and research prototypes for lo-
calization in IoT scenarios build upon features like time-of-
arrival (ToA), angle-of-arrival (AoA), received signal strength
(RSS), etc. Among these, RSS-based localization is especially
appealing due to its simplicity and broad support for many
low-cost technologies, for instance radio frequency identifi-
cation (RFID), Bluetooth Low Energy, and LoRa [1], with a
working range from a few meters up to several kilometers.
In this work, we focus on RSS-based localization methods,
with particular interest in the middle to long-range outdoor
IoT scenarios.

To formulate the localization problem, connected IoT de-
vices are classified as anchor nodes with known locations,
and a target node of which the location is to be determined.
RSS-based localization and tracking solutions are typically
based on proximity, fingerprinting [2], [3] and ranging [4]
methods. Fingerprinting-based localization exploits the unique
structure of RSS spatial distribution by matching position-
labeled RSS measurements with the pre-acquired measure-
ments (fingerprints) at the positions of interest. The perfor-
mance is influenced by the density of fingerprints and degrades
in dynamic scenarios. RSS-based ranging for localization is
another common approach. By exploiting a path-loss model
(PLM) [5], it is possible to map the RSS measurement to a

range estimate, which is further used to infer the target location
w.r.t. the anchor coordinates. RSS-based ranging can be unreli-
able under the conditions of imperfect knowledge about source
transmit power, path-loss coefficient, environmental influence,
etc. Moreover, it should be noted that long-range IoT systems
normally use very high receiver sensitivity for extending the
coverage range, but very low bandwidth and packet rate. This
means that when tracking a moving target, sufficient RSS
samples are often not available to average out small scale fad-
ing. Typically, RSS-based ranging for outdoor IoT localization
solutions provide accuracies from one to a few hundred meters
[6], [7]. Instead of directly using RSS, localization approaches
are proposed to use differences between RSS measurements
(RSSDs) obtained at, e.g., consecutive sampling steps [8],
different anchors [9], [10], or adjacent antennas at each anchor
[11]. However, most of them are dedicated to short-range and
indoor scenarios.

In this work, each anchor node is assumed to be equipped
with an antenna array of known geometry and antenna pattern.
On the basis of the PLM, we introduce an RSSD model, which
enables direct mapping between the AoAs and the RSSD
measurements obtained from non-coherent antennas, without
involving parameters like transmit power, path-loss coefficient,
etc. The RSSD model is then exploited in a recursive Bayesian
filter for target tracking or AoA estimation. Experimental re-
sults using outdoor LoRaWAN based measurements show that
real-time outdoor target tracking using RSSD measurements is
possible even with non-averaged measurements under NLoS
conditions. Besides, the proposed framework has good gener-
ality, scales well with different antenna array configurations,
and is compatible with different IoT technologies.

The rest of the paper is structured as follows: Section II
introduces the RSSD model and problem formulation. Section
III presents the RSSD-based tracking algorithms. Experimental
results are given in Section IV. Section V concludes the paper.

II. PROBLEM OVERVIEW

We consider the case that a target node is equipped with
a single antenna and has unknown time-varying positions
pk = [px,k, py,k]T ∈ R2×1, k = 1, · · · ,K. In the area of
interest, J anchor nodes are distributed with known positions
cj ∈ R2×1 and known array orientations φj , j ∈ J ,
{1, · · · , J}. Each anchor node has Nj directional antennas
indexed with i ∈ Nj , {1, · · · , Nj} and the angular sepa-
ration between adjacent antennas is β, as depicted in Fig. 1.



x

y

dk,j

cj

ϕk,j

target node
pk

Lc

direction of plane
wave propagationϕi−1

k,j

ϕi
k,j

φj

β

αi
j

cj

ci−1
j

cij

anchor node

Fig. 1: An exemplary antenna array structure equipped at an
anchor node.

The anchor position cj refers to the center of the array, or
more precisely the intersection point of perpendicular lines
to antennas’ surfaces. The target node is assumed to be the
transmitter, and anchor nodes to be the receivers, but with
some straightforward modifications, it can work in the opposite
direction as well. At time k, AoA ϕk,j and the propagation
distance1 dk,j from the target to the jth anchor are defined
as ϕk,j = ∠(pk − cj) + φj and dk,j = ‖pk − cj‖, ‖·‖ is
the Euclidean norm. With known distance Lc from antenna
phase center cij to cj , and the orientation αi

j of the ith
antenna w.r.t. the local coordinate system of jth anchor, the
propagation distance dik,j and AoA ϕi

k,j w.r.t. ith antenna are

easily calculated as dik,j =
√
L2

c + (dk,j)2 − 2Lcdk,j cosβi
k,j

and ϕi
k,j = ϕk,j +

π

2
− αi

j , where the angle βi
k,j is given as

βi
k,j = |ϕk,j−αi

j | and |·| is the absolute value, Here, we define
the domain ϕk,j ∈ [0◦ ∼ 180◦] as the positive array direction,
ϕk,j ∈ (180◦ ∼ 360◦) as the negative array direction.

A. RSS model

At time k, the instantaneous received RSS (in dBm) at the
ith antenna of jth anchor can be generally expressed as

P i
k,j = P0 +GRx(ϕi

k,j)− 10η log10

(
dik,j
d0

)
+ Si

L,k,j + Si
S,k,j ,

(1)

according to the PLM [5]. The first term on the right side P0

accounts for the transmit power PTx (in dBm), the transmit
antenna gain GTx and the path loss Lref(d0) at the reference
distance d0 = 1 m, i.e., P0 = PTx + GTx + Lref(d0).
Furthermore, η is the path-loss coefficient, GRx(ϕi

k,j) is the
receive antenna gain, Si

L,k,j models the position-dependent
shadowing term, which is slowly varying over time. The last
term Si

S,k,j models the random and fast variations of RSS
in time or space, of which the impact is normally reduced

1We assume that the propagation condition from the target to each anchor
is either line-of-sight (LoS) or obstructed LOS (OLoS), hence the propagation
distance could be approximately given as the norm product.

by averaging over multiple samples that are consecutively
received within a certain time duration.

RSS-based ranging for localization based on (1) can be
problematic. PTx is typically unknown to receivers, and may
vary slowly with battery drain over time. Unknown device
orientation leads to the variation of GTx. η is closely related
to the specific characteristics of the environment. As common
practice, those parameters are either simultaneously estimated
at each time instance, or precomputed from measurements.
Under far-field propagation conditions, the parameters PTx,
GTx and η can be assumed as the same for the antennas at
each anchor node. Besides, the position-dependent slow fading
process Si

L,k,j are highly correlated over adjacent antennas.
Inspired by the arguments above, the difference between RSSs
measured at adjacent antennas can be described by a much
simpler model than (1), which excludes those unknown but
common parameters.

B. RSSD model

Based on (1), the RSSD measurement between two antennas
of the jth anchor node at time k is modeled as

P
(a,b)
∆,k,j = P a

k,j − P b
k,j

= G
(a,b)
∆,k,j(ϕk,j) +D

(a,b)
k,j + ω

(a,b)
k,j , (2)

where {a, b} ∈ Nj , and a < b. The first term on the right side
G

(a,b)
∆,k,j(ϕk,j) represents the antenna gain difference, given as

G
(a,b)
∆,k,j(ϕk,j) = GRx(ϕa

k,j)−GRx(ϕb
k,j). (3)

The second term D
(a,b)
k,j = 10η log10

db
k,j

da
k,j

in (2) involves the
propagation distances and path-loss coefficient. The last term
ω

(a,b)
k,j accounts for the difference between two independent

fast fading processes, the difference between two highly
correlated slow fading processes, as well as hardware-related
impairments. Fig. 2 shows simulated values of D

(a,b)
k,j by

assuming η = 3.5 and β = 45◦. It can be observed that
given a constant AoA ϕk,j , the value of D

(a,b)
k,j drops to

under 1 dB after 5 m and continuously converges to 0 dB with
distance dk,j increasing. Since we focus on scenarios where
the distance dk,j is at least a few tens of meters, D(a,b)

k,j has a
negligible impact on P (a,b)

∆,k,j compared to the other two terms
in (2). Hence, the model (2) can be further simplified as

P
(a,b)
∆,k,j , G

(a,b)
∆,k,j(ϕk,j) + ω

(a,b)
k,j . (4)

An experimental measurement is performed to test how the
simplified model works. Two directional antennas shown in
Fig. 5b are placed in the middle of the open field (IV-A1)
with the angular separation β = 45◦ and one wavelength
distance between phase centers. RSS samples are measured
every 5◦ in the angular domain ϕk,j ∈ [0◦ ∼ 360◦) while
keeping dk,j = 20 m. As shown in Fig. 3, the measured RSSDs
with/without averaging match well with the predicted RSSD
values G

(a,b)
∆,k,j(ϕk,j) in the positive array direction. In the

negative array direction, the measured RSSDs show a similar
but noisier pattern as G(a,b)

∆,k,j(ϕk,j). We also noticed that one
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RSSD value is not uniquely mapped to one AoA, meaning
that the posterior distribution of the AoA given one RSSD
measurement can be multimodal. However, fusing RSSD mea-
surements from more than one antenna pair and anchors would
lead to a unimodal distribution. According to the empirical
density of RSSD errors shown in Fig. 4, ω(a,b)

k,j approximately
follows a Gaussian process, i.e., ω(a,b)

k,j ∼ N (µk,j , σ
2
k,j), with

the mean µk,j close to zero.

C. Target Tracking and AoA Estimation Problems

In reality, it is possible that at some time instances only a
subset of antennas of each anchor, i.e., N ′k,j and N ′k,j ⊆ Nj ,
provide valid RSS measurements. At time k, we assume that at
least two antennas at each anchor provide RSS measurements,
i.e., card{N ′k,j} ≥ 2, card{·} represents the cardinality of
a set. The RSSD measurements at the jth anchor are given
as zk,j = [z1

k,j , . . . , z
lj,k
k,j , . . . , z

Lj,k

k,jk
]T, with lj,k ∈ Lj,k ,

{1, · · · , Lj,k}. Each RSSD measurement zlj,kk,j is obtained by
taking the differences between RSS measurements from an-
tenna pairs with adjacent indexes, for instance {alj,k , blj,k} ∈
N ′k,j , and alj,k < blj,k . Hence, the number of RSSD measure-
ments Lj,k = card{N ′k,j}− 1 is time variant. By stacking the
vectors zk,j from all anchors, we have the full measurement
vector at time k, zk = [zT

k,1, . . . ,z
T
k,j , . . . ,z

T
k,J ]T.

As a proof-of-concept work, we investigate the potential of
the proposed RSSD model in two aspects: i) tracking the target
node pk by fusing all the past and current measurements from
all anchors z1:k = [zT

1 , . . . ,z
T
k ]T; ii) recursively estimating

the AoA ϕk,j using RSSD measurements from a single anchor,
z1:k,j = [zT

1,j , . . . ,z
T
k,j ]

T. The reason to bring up the second
aspect is that AoA estimates can potentially be fused with
existing ranging features, such as the TDoA in LoRaWAN, to
enhance outdoor IoT localization.

III. RSSD-BASED TRACKING ALGORITHMS

A. Target Tracking
1) State Space and Measurement Model: The state space

vector of the target at time k is given by xk = [pT
k , ∆pT

k ]T ∈
R4×1, where the vector ∆pk = [∆px,k, ∆py,k]T ∈ R2×1

contains the change rates of the target position pk. The agent
state evolves according to a first-order Markov process. The
evolution of the state xk is described by the state-transition
probability density function (pdf) f(xk|xk−1), which is de-
fined by a linear, near constant-velocity model [12, Section
6.3.2], i.e.,

xk = Fxk−1 + Γnk, (5)

where the state transition matrix F ∈ R4×4 and Γ ∈ R4×2

are given as

F =


1 0 ∆T 0
0 1 0 ∆T
0 0 ∆T 0
0 0 0 ∆T

 , Γ =


∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T

 . (6)

Here, ∆T is the update rate, nk ∈ R2×1 is the driving process
that is independent and identically distributed (iid) across
k, zero-mean and Gaussian with covariance matrix σ2

nI2.
I2 represents the 2 × 2 identity matrix. The corresponding
measurement model which describes the non-linear mapping
from state vector to an RSSD measurement is defined as

z
lj,k
k,j = G

(alj,k
,blj,k )

∆,k,j (xk) + ωlj,k , (7)

where G
(alj,k

,blj,k )

∆,k,j (xk) represents the nonlinear mapping
from the hidden state xk to an RSSD observation described
in (3), and ωlj,k is iid across lj,k, j and k, zero-mean and
Gaussian with variance σ2

g .
2) Recursive Bayesian Filtering: The estimation of the

target state xk is formulated as a Bayesian filtering problem,
where the posterior pdf f(xk|z1:k) is recursively obtained in
two stages: prediction and update. The prediction step is based
on the Chapman-Kolmogorov equation [13]

f(xk|z1:k−1) =

∫
f(xk|xk−1)f(xk−1|z1:k−1)dxk−1, (8)



and an update step is performed based on Bayes’ rule

f(xk|z1:k) =
f(zk|x)f(xk|z1:k−1)

f(zk|z1:k−1)
(9)

given the measurement at time k. Assuming that the mea-
surement zlj,kk,j is conditionally independent across lj,k and j
given the target state xk, the likelihood function f(zk|xk) is
factorized as

f(zk|xk) =

J∏
j=1

Lj,k∏
lj,k=1

f(z
lj,k
k,j |xk), (10)

where

f(z
lj,k
k,j |xk) =

1√
2πσ2

g

exp
{
−

(z
lj,k
k,j −G

(alj,k
,blj,k )

∆,k,j (xk))2

2σ2
g

}
.

(11)

An estimate of the target state xk is then provided by the
minimum mean-square error (MMSE) estimator [14], given
as

x̂MMSE
k ,

∫
xkf(xk|z1:k)dxk. (12)

3) Particle-Based Implementation: A sequential Monte
Carlo (particle-based) implementation [15] is used to realize
the recursive Bayesian filtering process, where the prediction
and update steps are formulated in an approximate manner.
The posterior pdf f(xk|z1:k) is represented by a finite set of
particles and corresponding weights, {(x̄m

k , w̄
m
k )}Mm=1. Here,

M is the number of particles and the weights sum to one,
i.e.,

∑M
m=1 w̄

m
k = 1. At time k, the particles are predicted by

simply passing the filtered particles at time k− 1 through the
system dynamics as shown in (6), yielding

x̄m
k ∼ f(x̄m

k |x̄m
k−1). (13)

Then in the measurement update step, the weights w̄m
k are

computed according to (10), i.e., w̄m
k = f(zk|x̄m

k ), and
normalized as w̄m

k = w̄m
k /
∑M

m=1 w̄
m
k . Two more steps are

introduced after measurement update, i.e., resampling and
regularization, to counteract particle degeneracy and impov-
erishment effects. The reader is referred to [13], [15] for
more details. The posterior pdf can be approximated as
f(xk|z1:k) ≈

∑M
m=1 w̄

m
k K(xk − x̄m

k ) where K(·) denotes
the regularization Gaussian Kernel. An approximation of the
MMSE state estimate (12) is calculated according to

x̂MMSE
k ≈

M∑
m=1

w̄m
k x̄m

k . (14)

The four steps are iterated after setting k = k + 1.
At time k = 1, the particles are initialized by drawing sam-

ples x̄m
1 from the prior pdf f(x1|z1) ≡ f(x1). Two situations

are considered here: i) no-prior: if no informative prior pdf
f(x1) is available, a 2-D uniform distribution with zero center
and radius σp is used to initialize p̄m

1 , and for the position
change rate, we use {∆p̄mx,1, ∆p̄my,1} ∼ U(−σ∆p, σ∆p); ii)

(a) (b) (c)

Fig. 5: Experimental measurement setup: (a) target node:
TTGO T-Beam ESP32 module. (b) anchor node 1: four 9 dBi
circular antennas are used, and each antenna is connected to
a TTGO-LORA32 gateway shown in (c).

noisy-prior: if noisy information of the ground truth start
position p1 is given, x̄m

1 follows a 2-D uniform distribution
with radius σ′p and center p1.

B. AoA Estimation

The AoA estimation problem is solved by following the
same steps given in III-A. A few minor differences in the for-
mulation are presented here. The AoA state vector is given as
xk = [ϕk,j , ∆ϕk,j ]

T ∈ R2×1, where ∆ϕk,j is the change rate
of ϕk,j . Accordingly, the sizes of the matrices in (5) should
be adjusted, more details can be found in [12]. Only mea-
surements from the jth anchor are involved in the likelihood
function calculation in (10). We assume no prior pdf f(x1)
is available, hence the particles are initialized from a uniform
distribution ϕ̄m

1,j ∼ U(−π, π) and ∆ϕ̄m
1,j ∼ U(−σϕ, σϕ).

IV. EXPERIMENTAL RESULTS

A. Measurement Setup

A LoRaWAN network [1] is used in our experimental setup,
where a single-hop link is established between the target node
and the gateways. The gateways are connected to a network
server via standard IP protocols, and act as bidirectional relays
to convert between RF packets and IP packets. The data
like GPS “ground truth” and RSS values are decoded in the
network server. As shown in Fig. 5, the target node is equipped
with an omnidirectional antenna and the transmit power is
14 dBm. Two anchor nodes are used, which are equipped with
four and three directional antennas respectively, i.e., N1 = 4
and N2 = 3. The positive array directions are pointing to the
target moving areas. The distance between the phase centers
of two adjacent antennas is one wavelength, and the angular
separation is β = 45◦. One of the receive antenna beam
patterns is measured and assumed to be the same for the rest
of the antennas. The maximum spreading factor 12 is used to
achieve the longest range, however at the cost of low data rate.
The system is operating at the carrier frequency 868 MHz, with
a bandwidth of 125 kHz. The gateways are listening to several
different channels, every 6 seconds one packet is received at
each antenna.

The measurement campaign was performed in two different
outdoor scenarios, which are described as follows:
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1) LoRa open field: The first scenario is an open field
surrounded by rich vegetation in Sankt Hans backar, Lund,
as shown in Fig. 6. The target node and two anchor nodes
are placed at the same height about 1.5 m above the ground.
LoS condition is satisfied and measurements are received at
all antennas during the whole measurement time. In total, RSS
measurements are collected at K = 38 sample positions, and
the distance inbetween is 1 m. At each position, around five
RSS samples are measured at each antenna. Parameters used in
the tracking algorithms are: M = 2000, ∆T = 1 s, σp = 40 m
and σ∆p = 1.5 m/s, σϕ = 3 degree/s, σg = 2.5 dB.

2) LoRa urban: The second scenario is the campus of Lund
University, Sweden, as shown in Fig. 7. Two anchor nodes are
placed on two building roofs, which are around 20 m above
the ground. The target node is carried by a person walking
along a predefined trajectory at a speed around 1 m/s. Every 6
seconds, the movement is paused and we collect around three
samples at each antenna. At a few positions, only a subset of
antennas provide valid RSS measurements. In total, we have
K = 120 sample positions. The decoded GPS data from the
network server is used as ground truth. Parameters used in the
tracking algorithms are: M = 2000, ∆T = 1 s, σp = 400 m,
σ∆p = 7 m/s, σ′p = 50 m, σϕ = 5 degree/s, and σg = 3.6 dB.

Using the measured RSS samples, we generate two type
of datasets for performance evaluation: i) open field-ave and
urban-ave: multiple RSS samples collected from the same
antenna at each position are averaged; ii) open field-one and
urban-one: only one RSS sample of each antenna is used.

B. Results

1) Target tracking: Fig. 8 and Fig. 9 present the target posi-
tion estimation errors and corresponding empirical cumulative
distribution functions (CDFs). For the open field scenario,
even without a prior information, the tracking algorithm gives
a good initial estimate at k = 1 with/without measurement
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Fig. 7: Target tracking results for urban datasets: urban-ave +
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noisy-prior ( ). Background map: c© 2019 Google
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Fig. 8: Target position estimation error: (a) open field datasets;
(b) urban datasets: urban-ave + noisy-prior ( ), urban-
ave + no-prior ( ), urban-one + noisy-prior ( ). NLoS
domains for anchors are denoted with gray dashed lines.

averaging. as shown in Fig. 6. The root mean square position
error (RMSE) of the target is 1 m for open field-ave and 2.9 m
for open field-one. The urban scenario is quite challenging,
because during the whole measurement time, it is NLoS
propagation from the target to one or both anchors. However,
the anchors are placed on the high buildings, if the signal
is received via roof diffraction, the information of target
direction still remains. The target’s RMSE is 42 m for urban-
ave + noisy-prior, 47.5 m for urban-ave + no-prior. Given
the most challenging scenario, i.e., urban-one, 59.5 m RMSE
is achieved with a noisy prior, meaning that real-time outdoor
target tracking is possible with RSSD measurements using the
proposed framework.
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Fig. 9: Empirical CDFs of the position estimation errors: (a)
open field datasets; (b) urban datasets.
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Fig. 10: Empirical CDFs of the AoA estimation errors. (a)
open field datasets; (b) urban datasets. Anchor 1 and 2 are
abbreviated to A1 and A2.

2) AoA estimation: Empirical CDFs of AoA estimation
errors are shown in Fig. 10. It can be observed that anchor 2
achieves similar performance as anchor 1 for all datasets, even
with fewer RSSD measurements. Using open field-ave dataset,
90% of AoA estimation errors are smaller than 2◦, and it
increases to 5◦ when there is no sample averaging (open field-
one). As shown in Fig. 10b, 90% of errors are smaller than
11◦ when using urban-ave, and 19◦ when using urban-one. It
means that for long-range and NLoS propagation conditions,
AoA estimates with reasonable accuracy are feasible with the
proposed framework. However, averaging over RSS samples
did not show significant improvements of the estimates in our
case.

V. CONCLUSION

We proposed an RSSD-based target-tracking/AoA-

estimation algorithm for outdoor IoT scenarios. Given
known antenna patterns and antenna array geometries, the
RSSD model provides direct mapping between AoAs and
RSSD measurements, without involving transmit power,
path-loss coefficient, phase coherent arrays, etc. Experimental
results using LoRaWAN based outdoor measurements show
that the proposed framework is able to perform real-time
target tracking with reasonable accuracy even without
RSS measurements averaging and under NLoS propagation
conditions. The AoA estimates can potentially be fused with
range estimates to enhance localization. In summary, the
proposed framework has very low computational complexity,
and is compatible with existing low cost IoT technologies
and with different antenna array configurations.
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