
Illustrations of Physical Bounds on Non-Dipole Radiators

Marius Cismasu and Mats Gustafsson
Dept. of Electrical and information technology, Lund University, Lund, Sweden.

{marius.cismasu, mats.gustafsson}@eit.lth.se

Abstract
Applications of physical bounds for radiator structures can be used to derive a priori estimates

for antenna parameters in terms of directivity-bandwidth product. These estimates relate the static
electric and magnetic polarizability properties of the radiating structure to its dynamic features. Highly
electrically polarizable structures are analyzed numerically. Electric polarizability is computed using
a Method of Moments (MoM) code and, based on it, the physical bounds are expressed. The realized
parameters of the structures, computed using commercial electromagnetic simulators, are then compared
with the bounds to show very good agreement.

1. INTRODUCTION

The physical bounds on antennas, described in [1–
4], relate the performance of the antenna to the
electrostatic and magnetostatic polarizabilities of
its geometry and the generalized absorption effi-
ciency. This approach is a generalization of Chu’s
classical bounds for spherical geometries [5] to ge-
ometries of arbitrary shape.

The generalized (or all spectrum) absorption ef-
ficiency is the only parameter in the bound related
to the dynamic properties of the antenna. Min-
imum scattering is a well known property that
many small matched antennas have; based on this
property it is demonstrated that η is close to 1/2
for many small antennas connected to a frequency
independent resistive load (see [1–4]).

Here it is shown that we obtain good estimates
for antenna parameters from the static polariz-
ability of the radiating structure. Only electri-
cally highly polarizable antennas are analyzed.

2. PHYSICAL BOUNDS

2.1. Theory

A number of previous articles have been ded-
icated to establishing a solid base for express-
ing physical bounds in engineering terms, [1–4].
We consider in the following that we are analyz-
ing single port, linearly polarized, reciprocal and
lossless antennas; denote the reflection coefficient
Γ (k) and the directivity D(k; k̂, ê), where k is the
free-space wavenumber, k̂ the specific direction of
radiation and ê the electric polarization. The sum
rule derived in [1] gives the antenna identity∫ ∞

0

(1− |Γ (k)|2)D(k; k̂, ê)
k4

dk

=
η

2

(
ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê)

)
, (1)

where γe and γm are the electrostatic and magne-
tostatic polarizability dyadics, respectively.

Bounding the integral (1) in various ways pro-
duces relations for different applications. The res-
onant case, described in detail in [3], can be used
when the antenna’s behavior shows a dominant
resonance in the partial realized gain and gives
the following:

D(k0; k̂, ê)
Q

≤

≤ ηk3
0

2π

(
ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê)

)
, (2)

where k0 is the resonance wavenumber and Q is
the quality factor at the resonance. Most of the
usual narrow band radiators show a dominant res-
onance which is the first resonance frequency.

The electric polarizability dyadic is evaluated
for perfect electric conductors (see [1, 6]) to the
high contrast polarizability dyadic, γ∞ (because
the electric susceptibility dyadic is infinitely large
for PEC). The same result is obtained for any elec-
tric material if a conductivity term is present in its
susceptibility dyadic, regardless of other material
parameters, cf., [7]. Assuming that magnetic po-
larizability has negligible influence – usually neg-
ative value for PEC – for electric antennas with
linear polarization, we rewrite 2 as:

D(k0; k̂, ê)
Q

≤ ηk3
0

2π
(ê · γ∞ · ê). (3)

The above equation shows that an immediate
upper bound estimation for the performance pa-
rameters D and Q of an electric antenna derives
from the static electric polarizability. The lat-
ter parameter is usually much easier to compute
than the directivity of the antenna and this is the
advantage of 3. Furthermore, in order to directly
compare the performance of different antennas we



normalize 3 to the value obtained for the smallest
circumscribing sphere, i.e., we divide by k3

0a
3:

D(k0; k̂, ê)
Qk3

0a
3
≤ η

2πa3
(ê · γ∞ · ê), (4)

where a is the the radius of the smallest circum-
scribed sphere to the antenna geometry.

There are two things that have to be accounted
for when using the above results. The first one
is to verify that the radiator has a generalized
absorption efficiency of 1/2. The second one is
to evaluate whether the influence of the magnetic
polarizability on the results is negligible or not.
These two effects can be verified at the same time
using a broadband scattering analysis of the radi-
ator.

Considering a plane wave of polarization ê im-
pinging in direction k̂ on the analyzed antenna,
the generalized absorption efficiency is defined as
(see [3]):

η(k̂, ê) =

∫∞
0
σa(k; k̂, ê)/k2dk∫∞

0
σext(k;k̂,ê)

k2 dk
, (5)

where σa is the absorption cross section (or the
effective antenna aperture) and σext is the extinc-
tion cross section. The denominator of the pre-
vious equation is called the integrated extinction
cross section (

∫
σext) and it is related to the an-

tenna characteristics by:∫ ∞
0

σext(k; k̂, ê)
k2

dk

=
π

2

(
ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê)

)
, (6)

By computing 6 and comparing with 4 it is possi-
ble to estimate the influence of the magnetic po-
larizability on the result. Note that in the view
of the plane wave scattering on the structure, the
bounds will read:

D(k0; k̂, ê)
Qk3

0a
3
≤ η(−k̂, ê)

2πa3
(ê · γ∞ · ê), (7)

saying that if the directivity in one direction of
the space is inserted into the bounds, then ver-
ification should be carried out by considering a
plane wave impinging from that direction, thus
the minus sign.

2.2. Implementation

The above theoretical results have been rigor-
ously proven and verified. They have not yet
been used as estimators for real structures’ per-
formance. In the real life applications, one should
start by analyzing the chosen geometry. This is
done by computing the right hand side of 4 using

η = 1/2 and the electric polarizability computed
for the structure:

η

2πa3
(ê · γ∞ · ê) ≈ 0.5 · γc

2πa3
, (8)

where γc = ê · γ∞ · ê can be obtained by using
a MoM code, to obtain γ∞, and then computing
the scalar product for the analyzed polarization.

Direct comparison can be made between the an-
alyzed structure and a reference geometry. Refer-
ence geometry might be the geometry of the avail-
able space in the device, a circumscribed geometry
or even the smallest circumscribing sphere. There
are a number of geometries for which the high con-
trast polarizability can be expressed analytically;
otherwise the reference geometry has to be ana-
lyzed with a MoM code to obtain its high contrast
polarizability and then compute the scalar prod-
uct to obtain γcg. The closer

γc
γcg
≤ 1 (9)

is to 1, the better the analyzed antenna performs
compared to the chosen (optimal) reference geom-
etry with respect to the D/Q value.

From an engineering point of view we are in-
terested to see to what extent the theory agrees
with the experiment. To do this we must simu-
late the structure as a transmitter antenna; here
we use Efield† to compute the far field and ob-
tain D. Note that D is computed in the direction
of interest and considering only the analyzed lin-
ear polarization. The Q-factor is computed based
on the impedance behavior around the resonance
( [8, 9]) as:

Q ≈ ω0
Z ′i
2R

, (10)

where ω0 is the angular frequency at the reso-
nance, Z ′i is the first derivative of the structure’s
input impedance with respect to the angular fre-
quency and R = ReZi is the real part of the input
impedance at the resonance frequency.

We can now verify the bound 4 using the sim-
plified right hand side in 8. The closer the realized
D/Q value is to the bound, the better the antenna
performs.

Further on, the assumptions made in 2.1.should
be verified. A scattering simulation is needed: the
same structure analyzed before is now excited by
a plane wave impinging from the direction and
having the same polarization as the previously
computed directivity. The extinction cross section
is computed from the forward scattering dyadic,
S(k;−k̂, ê) (see [6]):

σext(k;−k̂, ê) =
4π
k

Im{ê∗ ·S(k;−k̂, ê) · ê}. (11)
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Fig. 1: Two dipole array.

The absorption cross section is related to the di-
rectivity and feed mismatch, cf., [3], and thus
does not necessarily require the scattering simu-
lation:

σa(k;−k̂, ê) =
π

k2
D(k; k̂, ê)(1− |Γ (k)|2). (12)

The integrals under 5 can be evaluated numer-
ically, thus the above functions must be defined
in a large number of discrete frequencies. After
this computation is performed, the assumption of
η ≈ 1/2 and

(
ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê)

)
≈

ê · γ∞ · ê can be verified.

2.3. Numerical Examples

Two simple arrays have been simulated and the
results are presented in the following. They are
designed according to the guidelines in [?].

2.3..1 Two Dipole Array

The first example is an array made of two sim-
ple half lambda dipoles. Feeding/loading point
is F . The dimensions in Fig. 1 are: dipole
length, l = 509.5 mm, dipole spacing, d = 470 mm
and feeding spacing, s = 9.5 mm; this results in
the radius of the smallest circumscribing sphere
a = 349 mm. All wires, dipoles and feeding struc-
ture, have the radius Rw = 4 mm.

The MoM code used to compute the high con-
trast polarizability of the structure gives the value
γc,xx = 43.9 · 10−3 m3. This value does not say
anything by itself, so we compare it with the elec-
tric polarizability of a PEC sphere circumscribing
the array: γcg,xx = 4πa3 = 535.6 · 10−3 m3. This
results in: γc,xx/γcg,xx = 0.082; in other words,
the maximum attainable performance of this ar-
ray in terms of D/Q is approximately 8 % of the
performance of the optimum sphere.

Next we simulate the structure in transmission
by connecting at point F a voltage gap. The
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Fig. 2: Input impedance of the array in Fig. 1.

feeding structure, as it is designed, does not ra-
diate. Input impedance behavior is shown in
Fig. 2. It shows the first resonance approximately
at 210 MHz with the radiation resistance R = 6 Ω.
At this frequency, the maximum partial directiv-
ity of the far field in the x polarization is D = 2.3
achieved in the broadside. Computing Q = 10
and k0a = 1.54 we get the left hand side of 4 as
D/Qk3

0a
3 = 0.062. We have all the data to ex-

press 4 in numbers: 0.062 ≤ 0.082.
Under the assumptions that η ≈ 0.5 and the

influence of the magnetic polarizability is negli-
gible, the previously computed result shows that
the antenna achieves 75.6 % of the optimal perfor-
mance of this structure. This leads to the conclu-
sion that there is room for improvement for such
a structure.

The verification of the assumptions is done by
impinging a plane wave on the structure, from
the broadside (the direction of maximum radia-
tion at the first resonance); the antenna is loaded
at point F with a resistance R = 6 Ω. A num-
ber of 1000 frequency points evenly distributed
between 1 MHz and 1 GHz were used to obtain
η = 0.46 and Iσext = 42.6 · 10−3 m3. These
figures show us that indeed the contribution of
the magnetic polarization is negligible (Iσext is
less than 3% away from γc,xx = 43.9 · 10−3 m3

even though the integration interval is limited and
small) and the antenna does not absorb as much
power as it radiates at the dominating resonance.
Thus we can say that the right hand side of 4 is
0.46 · γc/2πa3 = 0.075 showing an antenna per-
forming at 82 % of its optimum.

2.3..2 Four Dipole Array

The second example is a four dipole linear ar-
ray depicted in Fig. 3. The dimensions are:
l = 500 mm, d = 500 mm and s = 2.7 mm.
The dipoles are connected via a transmission line
made of two parallel wires. All wires have the
same radius Rw = 1 mm. The smallest circum-
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Fig. 3: Four dipole array.
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Fig. 4: Input impedance of the array depicted in
Fig. 3.

scribing sphere to this structure has the radius
a = 792 mm.

The high contrast polarizability of this struc-
ture is γc,xx = 57.5 · 10−3 m3. Compared with
its smallest circumscribing sphere γc,xx/γcg,xx =
0.009. Note that when comparing with the small-
est circumscribed sphere, the previous ratio has
the same value as the simplified bound in equa-
tion 8.

For the transmission simulation we connect a
voltage gap at point F . In this way all the dipoles
are in phase at the designed frequency. Fig. 4
shows the input impedance. The array has the
first resonance with non-zero radiation resistance,
R = 9 Ω, approximately at 232 MHz. Maximum
partial directivity of the x polarization is D = 6.3
in the broadside. With Q = 20 and k0a = 3.85
we get D/Qk3

0a
3 = 0.006 and 0.006 ≤ 0.009. This

shows that the array achieves approximately 60 %
of the optimum performance.

For verification we simulate the structure in
plane wave excitation, impinging from broadside,
at 1000 frequencies evenly distributed between
1 MHz and 1 GHz and with a load of 9 Ω con-
nected at point F . The results are: η = 0.42
and Iσext = 56.3 · 10−3 m3. The deviation be-
tween the integrated extinction cross section and
the polarizability of the structure is less than 2 %,
so the influence of the magnetic polarizability is
negligible and the absorption efficiency computed

before is a realistic value. Under these circum-
stances the bound is decreased to 0.008 showing
an array performing at more than 70 % of the op-
timum performance.

3. CONCLUSION

The well established bounds are applied to prac-
tical high directivity antennas. The agreement
between theory and simulations is very good espe-
cially considering the fact that the antennas have
not been optimized in any way.

Static electric polarizability properties of an-
tennas can be used to compare their achievable
performance in the first stage of the design pro-
cess. These properties require very little compu-
tational effort as compared with the far field and
input impedance computation. In this sense, the
term expressed in 8 is the performance figure to
be directly compared between different radiators.
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