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Abstract—The frequency dependence of the permittivity, per-
meability, and index of refraction restrict metamaterial applica-
tions such as cloaking and perfect lenses. Here, the principles
of causality and passivity together with identities for Herglotz
functions are used to construct various sum rules. The sum
rules relate the frequency dependence of the material parameters
with their high- and low-frequency values. The corresponding
physical bounds determine minimum variations of the material
parameters over a frequency interval.

I. INTRODUCTION

It is well known that metamaterials are temporally dis-
persive, i.e., the permittivity and permeability depend on
frequency. The Kramers-Kronig relations [1], [2] are com-
monly used to model the dispersion as they relate the real
and imaginary parts of the permittivity and permeability for
causal material models. The ideal behavior of the (relative)
permittivity and (relative) permeability in applications such
as the perfect lens are that �(!) ≈ −1 and �(!) ≈ −1,
respectively, over a range of angular frequencies, !.

The results in [2] show that ! ∂�
∂! > 4 in frequency intervals

! ∈ ℬ = [!1, !2] where the model is lossless, i.e., Im �(!) =
0. This can be rewritten

max
!∈ℬ
∣�(!) + 1∣ ≥ 2B, (1)

where B is the fractional bandwidth B = (!2 − !1)/!0 and
!0 = (!2 + !1)/2. The requirements of lossless material
models are removed in [3], where it is shown that

max
!∈ℬ
∣�(!) + 1∣ ≥ B (2)

for all square integrable susceptibilities �(!)− 1.
In this paper, sum rules are used to derive constraints

on the constitutive relations. The sum rules relate weighted
integrals of the constitutive parameter over all spectrum with
the instantaneous and static response of the material model.
Various sum rules are presented that constrain the dispersion
of the constitutive relations. The sum rules evaluate how close,
e.g., �(!) can be to −1 over a frequency interval. These are the
main results and they bound integrals of the type ln ∣�(!)+1∣
integrated over a bandwidth. They also give lower bounds on
the variation, e.g., that the maximum of ∣�(!) + 1∣ over a
frequency interval is greater than a number determined by the
difference between the static and instantaneous permittivity,
�s − 1. This is particularly important for the permeability,

�, as there is no magnetic static conductivity and the static
permeabilities of many materials are close to the free space
permeability, � = 1.

II. HERGLOTZ FUNCTIONS AND CONSTITUTIVE RELATIONS

The permittivity and permeability are functions of the angu-
lar frequency !, and their frequency dependence is restricted
by the Kramers-Kronig relations [1], [4]. These relations
follow from the analytic properties of �(!) in Im! > 0 (using
time dependence e−i!t) together with basic assumptions on
the asymptotic properties of � for low and high frequencies.
Here, an alternative approach is considered that is based on
the additional assumption of passivity. This restricts � such that
ℎ� = !�(!) is a Herglotz function [1], [5], i.e., ℎ� = ℎ�(!)
is holomorphic and Imℎ�(!) ≥ 0 in the upper halfplane
Im! > 0. The permeability defines a similar Herglotz
function ℎ�(!) = !�(!). For simplicity it is assumed that
the instantaneous responses are �(!) → 1 and �(!) = 1 as
!→̂∞, where symbol →̂ is a short hand notation for limits
such that � < arg! < � − � for some � > 0.

Sum rules and bounds on several electromagnetic problems
are obtained by considering weighted integrals applied to
symmetric, ℎ(!) = −ℎ∗(−!∗), Herglotz functions under the
assumption of the following asymptotic expansions at low fre-
quencies: ℎ(!) =

∑
n a2n−1!

2n−1+o(!2N0−1) as k→̂0, and
at high frequencies, ℎ(!) =

∑
n b2n−1!

1−2n + o(!−2N∞+1)
as k→̂∞, where a star denotes the complex conjugate, see
e.g., [6]–[11]. These Herglotz functions satisfy the following
family of integral identities:

2

�

∫ ∞
0

Imℎ(!)

!2n
d! = a2n−1 − b1−2n, (3)

for 1 − N∞ ≤ n ≤ N0. Bounding the integral from below
by restricting it to a finite interval produces various physical
bounds [6], [7], [10]–[12].

The sum rules generated by ℎ� and ℎ� themselves are iden-
tical to the ones obtained from the Kramers-Kronig relations
in, e.g., [1], [2], [4]. These sum rules relate the losses to the
asymptotic values. Compositions of Herglotz functions can
be used to create new Herglotz function that instead relate
negative values of the real-valued part and the variation around
a fixed value to the corresponding asymptotes. In this paper,
the cases −1/ℎ, i

√
−ℎ1ℎ2, i ln(1 − iℎ), and 1

� ln z−�
z+� are

investigated. Here, the square root and logarithm have their



branch cuts along the negative real axis and the −sign and
imaginary unit, i, are essential to preserve the symmetry and
the Herglotz property.

III. SUM RULES FOR METAMATERIALS

Candidates to create sum rules that are suited for the case
where ideally �(!) ≈ −1 over a frequency interval are e.g.,
based on the Herglotz function ℎm1(!) = −1/(!(�(!) + 1))
that has a n = 0 sum rule. To bound the bandwidth of � when
� ≈ −1, it is necessary to consider a Herglotz function that has
a large imaginary part when ∣�+1∣ is small. This is achieved
with compositions with the logarithm, e.g., i ln(1−�!0iℎm1),
giving

ℎ3(!) = i ln
(
1 + i

�!0

!(�(!) + 1)

)
, (4)

where !0 > 0 and � > 0. This function has the appropriate
properties as Imℎ3 ≈ ln�/∣�+1∣ if ∣�+1∣ ≪ 1 and ! ≈ !0.
It has the asymptotes ℎ3(!) = o(!−1) as !→̂0 and ℎ3(!) =
−�!0/(2!) + o(!−1) as !→̂∞.

Apply the integral identities (3) with n = 0 to get

2

�

∫ ∞
0

ln

∣∣∣∣∣!
(
�(!) + 1

)
+ i�!0

!
(
�(!) + 1

) ∣∣∣∣∣d! =
�!0

2
. (5)

This integral is bounded in several steps. As the primary
interest is for ∣�(!) + 1∣ ≪ 1, it is practical to simplify the
integrand. Consider a frequency interval ℬ = [!1, !2], with the
center angular frequency !0 = (!1+!2)/2, and the fractional
bandwidth B = (!2 − !1)/!0. Use that Im!(� + 1) ≥ 0
implies ln ∣!(�+1)/(�!0)+ i∣ ≥ 0 and

∫ !2

!1
ln(!0/!) d! > 0

to get
1

!0

∫ !2

!1

ln ∣ �

�(!) + 1
∣d! ≤ ��

4
. (6)

Assuming that �(!) is point wise defined in (6) gives the bound

Bmin
!∈ℬ

ln ∣ �

�(!) + 1
∣ ≤ ��

4
(7)

that can be written max!∈ℬ ∣�(!)+1∣ ≥ �e−��4B . This is valid
for all � > 0 and using �e−�/� ≤ �/e to maximize the
right-hand side over � gives the final bound

max
!∈ℬ
∣�(!) + 1∣ ≥ 4B

�e
. (8)

This bound is not as sharp as (1) and (2), but an additional
sum rule that also incorporates the static value �s is instead
constructed from the Herglotz function

ℎm2(!) = −
!0

!

�(!) + 1

�(!)− 1
=
−!0

!

(
�s + 1

�s − 1

)
!→̂0 (9)

that has the property ∣ℎm2(!)∣ ≈ 0 if �(!) ≈ −1. Compose
ℎm2 with the logarithm as

ℎ4(!) = i ln

(
1 +

i�

!0ℎm2(!)

)
=
!�

!0

(
�s − 1

�s + 1

)
+ o(!)

(10)

as !→̂0 and ℎ4(!) = o(!) as !→̂∞. This offers a n = 1
sum rule according to (3), viz.,

2

�

∫ ∞
0

1

!2
ln

∣∣∣∣!0ℎm2(!) + i�

!0ℎm2(!)

∣∣∣∣d! =
�

!0

�s − 1

�s + 1
. (11)

Simplifications in analogy with the (5) case produce a bound
on the permittivity

1

!0

∫ !2

!1

ln

∣∣∣∣��(!)− 1

�(!) + 1

∣∣∣∣d! ≤ ��

2

�s − 1

�s + 1
(12)

that is valid for all � < 0. A bound of the integral together
with maximization over � show that the deviation around �m
is at least

max
!∈ℬ

∣∣∣∣�(!) + 1

�(!)− 1

∣∣∣∣ ≥ 2B

�e

�s + 1

�s − 1
(13)

The sum rule (11) and bounds (12) and (13) show that the
constraints on the variation of � around −1 is proportional to
the fractional bandwidth B and inversely proportional to the
difference �s − 1.

As an example, a model with negative index of refraction
and low losses over a broad frequency range is considered [13].
It is generated by the Kramers-Kronig relations [1] using the
imaginary parts

Im �(!) = 0.9
!(!2 − 25)2

!8 + 5.5
, Im�(!) = 0.7

!(!2 − 25)2

!8 + 4.2
.

(14)
The index of refraction n = i

√
−�� is depicted in 1a and it

has n(0) ≈ 79, n∞ = 1, !p ≈ 6.7, and n(!0) ≈ −1, where
!0 ≈ 4.9. The normalized integrands in the sum rules (5)
and (11) are depicted in Fig. 1. It is observed that the area
is concentrated around !0, where n(!) ≈ −1. A box with
unit area is included in the figure to illustrate the associated
physical bounds. The approximate integrands in (6) and (12)
are also depicted.

The constraints (8) and (13) are not as sharp as (1) and (2)
for the �s ≫ 1 case. This is due to the bounds of the integrals
in (6) and (12). Compositions with the Herglotz function

ℎ�(z) =
1

�

∫ �

−�

1

� − z
d� =

1

�
ln
z −�
z +�

(15)

improve the bounds as Im{ℎ�(z)} ≈ 1 for ∣z∣ < � and
Im z ≈ 0. Composition of −1/ℎm1 with ℎ� and use of the
identity (3) leads to the bounds

max
!∈ℬ
∣�(!) + 1∣ ≥ 2B

1 +B/2

{
1/2 lossy case
1 lossless case,

(16)

that is identical to (1) and (2) for B ≪ 1. Similarly, ℎm2 gives
the constraints

max
!∈ℬ

∣�(!) + 1∣
∣�(!)− 1∣

≥ B

1 +B/2

�s + 1

�s − 1

{
1/2 lossy case
1 lossless case

(17)
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Fig. 1. Illustrations of the model (14) with nm = −1. a) the refractive index
n(!). b) normalized integrands (solid curved) of the sum rules (5) and (11).
The dashed curves show the approximations (6) and (12).

IV. CONCLUSIONS

Here, sum rules are presented that constrain the dispersion
of passive metamaterials. The limitations on the variation of
the material parameters over a bandwidth are expressed in the
differences between the low- and high-frequency permittivity.
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