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Antenna Q and stored energy expressed in the
fields, currents, and input impedance

Mats Gustafsson, Member, IEEE and B. L. G. Jonsson

Abstract—Although the stored energy of an antenna is in-
strumental in the evaluation of antenna Q and the associated
physical bounds, it is difficult to strictly define stored energy.
Classically, the stored energy is either determined from the
input impedance of the antenna or the electromagnetic fields
around the antenna. The new energy expressions proposed by
Vandenbosch express the stored energy in the current densities
in the antenna structure. These expressions are equal to the
stored energy defined from the difference between the energy
density and the far field energy for many but not all cases.
Here, the different approaches to determine the stored energy
are compared for dipole, loop, inverted L-antennas, and bow-tie
antennas. We use Brune synthesized circuit models to determine
the stored energy from the input impedance. We also compare
the results with differentiation of the input impedance and the
obtained bandwidth. The results indicate that the stored energy
in the fields, currents, and circuit models agree well for small
antennas. For higher frequencies, the stored energy expressed
in the currents agrees with the stored energy determined from
Brune synthesized circuit models whereas the stored energy
approximated by differentiation of input impedance gives a lower
value for some cases. The corresponding results for the bandwidth
suggest that the inverse proportionality between the fractional
bandwidth and Q-factor depends on the threshold level of the
reflection coefficient.

Index Terms—Stored energy, Antenna Q, Antenna theory,
Brune Synthesis

I. INTRODUCTION

STORED electromagnetic energy is instrumental in deter-
mination of lower bounds on the Q-factor for antennas.

The classical results by Chu [1] and Collin & Rothschild [2]
are based on subtraction of the power flow and explicit cal-
culations using mode expansions of the stored energy outside
a sphere. This gives simple expressions for the minimum Q
of small spherical antennas [1, 2]. The major shortcoming is
that the results are restricted to spherical regions although
some results for spheroidal regions are presented in [3, 4]. The
results have also been generalized to the case with electric
current sheets by Thal [5]. Yaghjian and Best [6] analyze
stored energy for general media and its relation to the input
impedance. The new expressions by Vandenbosch [7] are use-
ful as they express the stored energy in the current density on
the antenna structure. This has been shown to be instrumental
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in the analysis of small antennas [8–11] and also for antenna
optimization [11–13]. The expressions have been verified for
wire antennas in [14] and applied to characteristic modes
in [10]. One minor problem with the proposed expressions
is that they can produce negative values of stored energy
for electrically large structures [9]. Alternative definitions and
derivations of the stored energy are presented in [10, 15–20].

In this paper, we investigate the stored electric and magnetic
energy expressions recently proposed by Vandenbosch [7]. We
compare these expressions with the stored energy defined from
subtraction of the energy density by the energy density in the
far-field term [16]. The results provide a new interpretation of
Vandenbosch’s expressions [7] and explain the observed cases
with negative stored energy [9]. We use Brune synthesis [21]
to construct equivalent lumped circuit models from the input
impedance, over a wide frequency band to accurately account
for the stored energy of the antenna. The numerical results
indicate that the stored energy in the circuit elements agree
well with the stored energy in [7]. The results also show
that the Q-factor calculated from differentiation of the input
impedance, QZ′ , agrees with the Q-factor computed from the
stored energy in the Brune circuit, QZB , if Q is large and
dominated by a single resonance. The values start to differ for
lower values of Q where multiple resonances are common [22,
23].

We also compare the corresponding bandwidth with and
without matching networks. The results indicate that the
inverse proportionality between the fractional bandwidth B ∼
1/Q is most accurate using Q = QZ′ for relative narrow
bandwidths B < 2/Q whereas Q = QZB

is better for
wider bandwidths. This is consistent with QZ′ being a local
function of the input impedance and QZB depending on the
global (all spectrum) behavior of the input impedance. The
bandwidth for a simple shunt and series resonance circuit [22]
is also analyzed using matching networks and Fano matching
bounds [22, 24–26] to illustrate a case with QZ′ ≈ 0, where
the inverse proportionality of the fractional bandwidth to Q
fails for QZ′ .

The paper is organized as follows. In Sec. II, the stored
energy defined by subtraction of the far-field and stored
energy expressed in the current density are analyzed. The
coordinate dependence is also discussed. Stored energy from
Brune synthesized circuits of the antenna input impedance is
analyzed in Sec. III. Comparisons with numerical results for
dipole, bow-tie, loop, and inverted L antennas are given in
Sec. IV. The paper is concluded in Sec. V.
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Fig. 1. Illustration of different approaches to estimate the stored energy and
antenna Q. The classical approach in [6, 28] is based on subtraction of the
far-field term (2) and expresses the stored energy in the frequency derivatives
of the far-fields and reactance (3). Stored energy expressed in the current
density (4) is e.g., used in [7, 9–11, 16, 27, 29, 30]. Circuit models synthesized
from the input impedance are considered in [1, 5, 22, 31] and Sec. III. Here,
we discuss the relation between the Q-factors expressed in the currents, fields,
reactance, and Brune circuits.

II. STORED ELECTROMAGNETIC ENERGY

We consider time-harmonic electric, E(r), and magnetic,
H(r), fields and current density J(r), with a suppressed
ejωt dependence, where ω denotes the angular frequency and
t time. For simplicity, we interchange between the angular
frequency and the free space wavenumber k = ω/c0, where
the speed of light c0 = 1/

√
µ0ε0 and ε0, µ0, and η0 =

√
µ0/ε0

are the free space permittivity, permeability, and impedance,
respectively.

The electromagnetic energy in free space is the integral
of the electric, ε0|E|2/4, and magnetic, µ0|H|2/4, energy
densities. This electromagnetic energy increases to infinity as
the region approaches R3 for time harmonic sources as the
electric field approaches E(r) ∼ e−jkrF (r̂)/r as r → ∞,
where F is the far-field, r = |r| and r̂ = r/r. The total
electromagnetic energy is dominated by the energy in the ra-
diated field far away from the antenna and is hence dissipated.
The stored electromagnetic energy refers to the part of the
electromagnetic energy that is not dissipated from the antenna.
This quotient between the stored and dissipated power defines
the Q-factor that can be written Q = max{Q(E), Q(M)}, where

Q(E) =
2ωW (E)

Pr
, Q(M) =

2ωW (M)

Pr
, (1)

and W (E) is the stored electric energy, W (M) the stored
magnetic energy, and Pr the dissipated (radiated for a loss-
less antenna) power.

The stored energy can be estimated by circuit models
from the input impedance [1, 5, 22, 31], the far field and

reactance [6, 28], and the current density [7, 16, 17, 27, 32],
see Fig. 1. As there are different approaches to estimate the
stored energy, it is essential to investigate their pros and
cons and their relation. Here, we compare the stored energy
expressed in the fields, reactance and far field, and current
densities. Moreover, we compare the Q-factor obtained from
the current densities with the Q-factor obtained from Brune
synthesized circuits numerically. The Q-factor computed from
the differentiated input impedance [6] is also expressed in the
current density in [19, 27], see Fig. 1.

Collin and Rothschild [2, 33] defined the stored energy by
subtraction of the power flow. An alternative definition of the
stored energy is used by Fante [28], Yaghjian and Best [6],
where the far field energy density is subtracted

W
(E)
F =

ε0
4

∫
R3

r

|E(r)|2 − |F (r̂)|2

r2
dV (2)

and the integration is over the infinite sphere R3
r . The

subtracted far-field in the integrand can also be written as
a subtraction of the radius times the radiated power [6].
The subtraction of the radiated energy flow is equivalent to
subtraction of the energy density of the far field outside a
circumscribing sphere. The stored magnetic energy, W (M)

F , is
defined analogously.

A classical approach to analyze the stored energy is based
on differentiation of the Maxwell equations. This leads to
terms that include the feed current I0, the frequency derivatives
of the reactance, Xin = ImZin, and the far field, F [6, 28]

W
(E)
F =

|I0|2

4
X ′in −

1

2η0
Im

∫
Ω

F ′(r̂) · F ∗(r̂) dΩ (3)

for a self-resonant antenna, W (E)
F = W

(M)
F , in free space,

where ′ denotes differentiation with respect to the angular
frequency and ∗ the complex conjugate. The energy expression
is generalized to temporally dispersive bi-anisotropic material
models in [6, 34] and shown to be coordinate dependent for
some antennas [6].

The current based approach considered here is very different
from (3) and expresses the stored energy as quadratic forms
in the current density without using the input impedance and
frequency derivatives. This makes the expressions directly
applicable to current optimization [9, 11], where the optimal
current distribution on the antenna structure is determined.
The expressions are also useful in antenna optimization as
the antenna Q is directly determined from a single frequency
simulation [12, 13]. One common drawback with the two
approaches comes from the basic definition of the stored
energy as the energy density subtracted by the far-field energy.
This term can be negative [9] and coordinate dependent [6, 16]
as further discussed below.

The stored energy defined by subtraction of the far-field
energy (2) can be written as the sum of a coordinate indepen-
dent term W

(E)
C and a coordinate dependent term Wc,0 [16],

i.e., W (E)
F = W

(E)
C + Wc,0. In [16], it is shown that the

coordinate independent term W
(E)
C is identical to the stored
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energy expressions introduced by Vandenbosch [7] and given
by

W
(E)
C =

η0

4ω

∫
V

∫
V

∇1 · J1∇2 · J∗2
cos(kr12)

4πkr12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

) sin(kr12)

8π
dV1 dV2, (4)

where Jn = J(rn), n = 1, 2 and r12 = |r1−r2|. This gives a
direct interpretation of the integral expressions in [7, 16] as the
coordinate independent part of (2) and of the negative stored
energy in [9] from the subtraction of the far-field energy in
the interior of the smallest circumscribing sphere [16]. The
coordinate dependent part is [16]

Wc,0 =
η0

4ω

∫
V

∫
V

Im
{
k2J(r1) · J∗(r2)

−∇1 · J(r1)∇2 · J∗(r2)
}r2

1 − r2
2

8πr12
k j1(kr12) dV1 dV2, (5)

where j1(z) = (sin(z) − z cos(z))/z2 is a spherical Bessel
function.

The stored magnetic energy is similarly given by W (M)
F =

W
(M)
C +Wc,0, where the coordinate independent part is

W
(M)
C =

η0

4ω

∫
V

∫
V

k2J1 · J∗2
cos(kr12)

4πkr12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

) sin(kr12)

8π
dV1 dV2 . (6)

We also have the radiated power [7, 35]

Pr =
η0

2

∫
V

∫
V

(
k2J(r1) · J∗(r2)

−∇1 · J(r1)∇2 · J∗(r2)
) sin(kr12)

4πkr12
dV1 dV2 (7)

expressed as a quadratic form in J .
One major difference between the expressions for W (E)

F

in (2), (3), and W
(E)
F = W

(E)
C + Wc,0 is the coordinate

dependence, see also Fig. 1. The stored electric and magnetic
energies defined by subtraction of the far field (2) contain
the potentially coordinate dependent part Wc,0 defined in (5).
Assume the term Wc,0 for one coordinate system. Consider
a shift of the coordinate system r → d + r and use that
r2
1 − r2

2 → r2
1 − r2

2 + 2d · (r1− r2). This gives the coordinate
dependent term [16]

Wc,d = Wc,0 − kd ·
ε0
4k

∫
Ω

r̂|F (r̂)|2 dΩ. (8)

The corresponding Q-factor is shifted as

∆Qc,d =
−kd ·

∫
Ω
r̂|F (r̂)|2 dΩ

2
∫

Ω
|F (r̂)|2 dΩ

, (9)

where we see that |∆Qc,d| ≤ ka for all coordinate shifts
within the a circumscribing sphere with radius a. We note
that this term is similar to the coordinate dependence ob-
served in [6] from the far-field term in (3). The fundamental

difference between the coordinate dependence of (3) and the
current expression (5) is that the current based expressions
has a natural decomposition in one coordinate independent
term (4) and one coordinate dependent term (5) whereas (3)
combines the two [6].

III. STORED ENERGY FROM THE INPUT IMPEDANCE

The bandwidth of an antenna is often determined from the
antenna input impedance. The fractional bandwidth is related
to the Q-value for single resonance circuits as [6]

B =
ω2 − ω1

ω0
≈ 2Γ0

Q
√

1− Γ 2
0

, (10)

where ω0 = (ω1 + ω2)/2 and Γ0 is the threshold of the
reflection coefficient. Similarly, the Fano limit [22, 24–26]
for a single resonance circuit, B ≤ 27.29/(Q|Γ0, dB|), is
an upper bound on the bandwidth after matching, where
Γ0, dB = 20 log10 Γ0. For more general circuit networks, we
consider the Q-values determined from the differentiated input
impedance and the stored energy in equivalent circuit models,
see also Fig. 1. The Q-factors calculated from the stored and
dissipated energy are given by

Q(E) =

∑
n |In|2/Cn

ω
∑

nRn|In|2
and Q(M) =

ω
∑

n Ln|In|2∑
nRn|In|2

, (11)

where Cn, Ln, Rn, and In are the capacitance, inductance,
resistance and current in branch n of the network. The Q
factors determined from the differentiated input impedance
is [6, 22]

QZ′ = ω|Γ ′| = ω|Z ′t|
2R

=

√
(ωR′)2 + (ωX ′ + |X|)2

2R
, (12)

where ′ denotes differentiation with respect to ω, Zt is the
input impedance Zin = Rin + jXin tuned to resonance
with a lumped series (or analogous for lumped elements in
parallel [19]) inductor or capacitor, and Γ the corresponding
reflection coefficient. In addition to the Q-factor in (12), we
determine the stored energy in the lumped element normalized
with the radiated power as |Xin|/Rin giving the electric and
magnetic Q factors, cf., (1)

Q
(E)
Z′ =

{
QZ′ if Xin(ω0) < 0

QZ′ − |Xin|/Rin if Xin(ω0) > 0
(13)

and

Q
(M)
Z′ =

{
QZ′ if Xin(ω0) > 0

QZ′ − |Xin|/Rin if Xin(ω0) < 0,
(14)

respectively.
The QZ′ expression can be interpreted as a local approxima-

tion of the input impedance with a Padé approximation and
subsequent evaluation of the stored energy in the resulting
RCL circuit [22]. An alternative way to estimate the Q-factor
of an antenna is to synthesize a broadband circuit model of
the input impedance and to determine the stored energy in
the inductors and capacitors (11). The circuit models and
their stored energy are in general non-unique. One can e.g.,
easily construct a frequency independent purely resistive input
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Fig. 2. Illustration of the Brune synthesis of a lumped circuit from a rational
positive real (PR) input impedance Zin = Z1. In each iteration step, Zn →
Zn+1, series and shunt capacitance and inductance are first removed. Then
the series resistance RB = minω ReZ is removed. This leaves a PR function
with Z(ω0) = jXB. Depending on the sign of XB = ImZ(ω0) a negative
inductance or capacitance is removed. Finally, a resonance LC circuit and
series inductance or shunt capacitance are removed, see [21, 36] for details.
Note, that the cases RB = 0 and XB = 0 are treated separately.

impedance lumped circuit network containing inductors and
capacitors. Here, we consider Brune synthesis [21, 36] as an
automated synthesis technique that does not produce such
types of non-observable circuit networks.

The Brune circuit synthesis is based on expressing the input
impedance as a (rational) positive real (PR) function in the
complex frequency variable s = σ + jω and subsequent ma-
nipulation of the PR function to identify the circuit elements.
This requires modeling over wide bandwidths and shows that
the resulting Q-factor depends on the global (all spectrum)
properties of the input impedance. We start to construct a
rational approximation of the antenna input impedance. It is
essential to have an accurate approximation from DC up to
the frequencies of interest. In the range 0 ≤ ω ≤ ωu we use
a rational function of order (m,n), with |m − n| ≤ 1, that
is fitted to the input impedance using vector fitting [37, 38].
The order is chosen as low as possible such that the relative
error is below some threshold, here we use 10−3, and that the
rational function is a PR function [21, 38].

Brune synthesis [21, 36] is an iterative procedure, where
the order of the rational PR function modeling the input
impedance is reduced in each step Zn → Zn+1, see Fig. 2.
Here, we only present a brief overview of the Brune synthesis
for the purpose of calculating the stored energy, see [21, 36] for
details. First, series (C1, L1) and shunt (C2, L2) capacitance
and inductance are removed by identification of the asymptotic
expansion of the input impedance and admittance at s = 0
and s = ∞. Then, the series resistance RB = mins=jω ReZ
is removed. This leaves a PR function with Z(jω0) = jXB at
ω = ω0. Depending on the sign of XB = ImZ(jω0) either a

negative inductance or a negative capacitance is removed, see
Fig. 2. Finally, a resonance LC circuit and series inductance or
shunt capacitance are removed, see [21, 36] for details. Note,
that also the cases RB = 0 and XB = 0 are treated separately.
This leaves a PR function, Zn+1 of lower order than Zn. The
iteration, Zn → Zn+1, is terminated when a purely resistive
load remains, i.e., ImZn+1 = 0.

The stored energy is easily calculated in the iterative syn-
thesis procedure. The stored electric and magnetic energy in
a capacitor, C, and inductor, L, are W (E) = |V |2C/4 and
W (M) = |I|2L/4, respectively, where I denotes the current
and V the voltage. For simplicity, consider the case with a
series inductor, i.e., ZB = jωLB. The stored electric and
magnetic energies are then iteratively given by

W
(E)
B,n =

|In|2

4ω2C1
+
|Ṽ1|2C2

4

+
|Ṽ2|2

4ω2C3(ωL3 − 1
ωC3

)2
+W

(E)
B,n+1 (15)

and

W
(M)
B,n =

L1|In|2

4
+
|Ṽ1|2

4ω2L2
+
|Ṽ1|2LB

4|Z̃1|2

+
|Ṽ2|2L3

4(ωL3 − 1
ωC3

)2
+
|In+1|2L4

4
+W

(M)
B,n+1, (16)

where Ṽn is the voltage over Z̃n for n = 1, 2. One problem
with the Brune synthesis is that it uses negative inductors LB

and capacitors CB [21, 36], see also Fig. 2. This is resolved by
transforming the Tee network containing the negative element
to an ideal transformer, see App. A.

IV. NUMERICAL EXAMPLES

We consider a resonance circuit and dipole, bow-tie, loop,
and inverted L antennas to illustrate the Q-factors determined
from differentiation of the input impedance, the stored energies
expressed in the current densities, and Brune synthesized
circuits. For the antenna cases in Figs 4 to 8, we use solid
curved for Q-factors from the current densities (4) and (6),
dotted curved for the Brune circuits (11), and dash-dotted
curves for the differentiated input impedance (13) and (14).
Moreover, curves for the electric Q(E) and magnetic Q(M)

factors (1) are labeled by (E) and (M), respectively.

A. Resonance circuit

The first example is a simple resonance circuit composed
of cascaded shunt LC and series LC networks, see Fig. 3.
This example extends the results in [22] and clearly illustrates
the difference between QZ′ and QZB

. In particular, the case
QZ′ = 0 and resulting bandwidths after Fano matching are
considered. The elements are chosen to have the same reso-
nance frequency and the element values are expressed in the
series Qs and parallel Qp Q-factors. The Q-factor determined
from the stored energy, QZB

, in the circuit elements and from
differentiation of the input impedance, QZ′ , are [22]

QZB
= Qs +Qp and QZ′ = |Qs −Qp|, (17)



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, NOVEMBER 3, 2014 5

0.1 1 10

F

M

R

BQ (1-¡  )0

2¡0

2 1/2

0.1

1

10

R

Q w
0

R

Q w
0

1

w0

Q w0

Q R
R

R
s

s

p

p

F

Q  =Q +Qp s

Q  =jQ {Q jp sZ'

-27dB

-20dB

-6dB

Q /Qp s

a)

ZB

0.1 1 10
0.1

1

10

Q /Qp s

F

M

R

F

Q  =Q +Qp s

Q  =jQ {Q jp s

-4dB

R

Q w
0

R

Q w
0

1

w0

Q w0

Q R
R

R
s

s

p

p

BQ (1-¡  )0

2¡0

2 1/2

-1dB

Z'
¡ ¼-13dB0

b)

ZB

Fig. 3. Illustration of the Q-factor fractional bandwidth product for a cascaded
shunt LC and series LC network, where the bandwidth is determined for the
resonance model (R), matching network (M), and Bode-Fano limit (F). The
Q factors are determined from the stored energies in the circuit elements
and from differentiation of the input impedance (12). The maximal reflection
coefficient is determined over the fractional bandwidths B = {2, 4}/QZB

with and without matching networks for the case Qs = 10 and 1 ≤ Qp ≤
100. The matching network is determined using genetic algorithms with four
ideal lumped elements. a) B = 2/QZB

and b) B = 4/QZB
.

respectively. Here, we note that QZB
≥ QZ′ and that QZ′ = 0

for the case of a flat match Qs = Qp.
The resulting bandwidth depends on the threshold of the

reflection coefficient as seen for the simple RCL resonance
circuit in (10). We illustrate the relation between Q and
the fractional bandwidth B, by plotting BQ

√
1− Γ 2

0 /(2Γ0)
for Q = {QZB

, QZ′}, i.e., Q given by the stored energy
in the circuit elements and by differentiation of the input
impedance in (17), see Fig. 3. We consider the well matched
case (|Γ | ≤ −10 dB) but narrow bandwidth and less well
matched case (|Γ | ≤ −3 dB) and wider bandwidth to illustrate
the dependence on QZB

and QZ′ . The series Q value is fixed
to Qs = 10 whereas the parallel Q-factor is in the range
1 ≤ Qp ≤ 100. The curves labeled (R) show the unmatched
bandwidth Q-factor product (10) for the fractional bandwidths
B = 2/QZB

and B = 4/QZB
.

We observe that the product is close to unity at the end
points Qp = {1, 100}, where the input impedance resembles
series and parallel RCL circuits, respectively. In the region
Qp ≈ Qs the curves deviate from unity as the input impedance
does not resemble an RCL resonance circuit. We also note
that the approximation with QZ′ = |Qs−Qp| gives vanishing
small values showing that the QZ′ approximation fails for this

case [22]. The use of the Q-factor from the stored energy,
Q = QZB , gives better results. In particular for the wider
bandwidth case B = 4/QZB

.
We also consider the case with matching circuits. The

Bode-Fano matching limits [22, 24] are depicted by the curves
labeled (F) for the cases B = 2/QZB

and B = 4/QZB
. We

use optimization to synthesize lossless matching networks. The
curves labeled (M) in Fig. 3 show the resulting bandwidth
Q-factor product (10) after matching. The first case gives
a matching threshold Γ0 in the range −15 dB to −20 dB
whereas the second case gives Γ0 in the range −3 dB to
−6 dB. We note that the Bode-Fano limit mainly depends
on the maximal Q value that can be interpreted as the mean
〈Q〉 = (QZB + QZ′)/2 = max{Qp, Qs}. A genetic algo-
rithm [39] is used to determine the parameters of a matching
network composed of up to two capacitors and two inductors.

The results show that the inverse proportionality between
B and Q in (10) is valid for the resonance circuit case far
away from Qs = Qp. Closer to Qs = Qp, the results are
better for the stored energy, QZB

= Qs + Qp, than for the
differentiated input impedance QZ′ = |Qs−Qp|. The addition
of a matching network increases the bandwidth. Also for
this case, the stored energy results are better although they
underestimate the bandwidth with up to approximately a factor
of two. It should also be noted that the addition of the matching
network increases the stored energy and hence the QZB

, so
the QZB

after matching can underestimate the bandwidth even
more.

B. Strip dipole antenna

Consider a center fed strip dipole with length ` and width
`/100 modeled as a perfect electric conductor (PEC). The Q-
factors (1) determined from the current expressions Q(E)

C in (4)
and Q

(M)
C in (6), the Brune synthesized circuit model (15)

and (16), and differentiation of the input impedance (13)
and (14) are all compared in Fig. 4. The Q-factors derived
from the circuit model approximates the current expression
well up to at least `/λ = 3. The Q-factor computed from the
frequency differentiated input impedance is very close to the
stored energy up to the resonance at half a wavelength and
slightly lower for higher frequencies.

We also consider an off center fed strip dipole with length `
and width `/100. The feed is placed at the distance 0.27` from
the center and modeled as an ideal voltage gap. The stored
energy is evaluated with the current expressions (4) and (6),
a Brune synthesized circuit (15) and (16), and differentiation
of the input impedance (13) and (14) for the wavelength
(frequency) range ` ≤ 6λ. The strip dipole is discretized into
100 rectangles and 200 rectangles with negligible differences
in the results.

The resulting Q-values are depicted in Fig. 5. We observe
that the Q-values from the current expressions and the Brune
circuit agree well for the considered frequency range. Here,
we note that it is essential to use an accurate approximating
rational PR function from static up to the highest considered
frequency. For the data in Fig. 5, we use a rational PR
function of the order 20. The corresponding values from the
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Fig. 4. Illustration of the Q-factor for a center fed strip dipole with length `
and width `/100. The Q factors are determined from the stored energies (4)
and (6), the stored energy in the Brune synthesized lumped circuit model (15)
and (16), and from differentiation of the input impedance (13) and (14).
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Fig. 5. Illustration of the Q-factor for a strip dipole with length ` and width
`/100 fed 0.27` from the center of the strip. The Q factors are determined
from the current expressions (4) and (6), the Brune synthesized lumped circuit
model (15) and (16), and from differentiation of the input impedance (13)
and (14).

differentiated input impedance agree well for ` ≤ 0.5λ and
starts to deviate for higher frequencies. There is however a
large deviation around ` ≈ 2λ, where QZ′ ≈ 0. This resembles
the lumped circuit case in Sec. IV-A, see also [22, 23].

C. Bow-tie antenna

The bow-tie antenna is a wide-band version of the dipole
antenna. The computed Q-factors for a smooth bow-tie antenna
is depicted in Fig. 6. The Q factors determined from the current
expressions, the Brune synthesized lumped circuit model, and
from differentiation of the input impedance agree for `/λ <
0.4`, where Q > 5. The Q-factor drops to below 2 for `/λ >
0.5, where the different Q-values start to deviate. Here, the use
of Q to evaluate the performance of antennas is questionable
and the inverse proportionality to the fractional bandwidth (10)
is in general not valid. However, it is interesting to compare
the Q-values given by the different approaches. In Fig. 6, we
note that the Q-factors from the current expressions (4) and (6)
gives the highest values with a Q ≈ 2. The stored energy
in the Brune synthesized circuits gives Q ≈ 1, whereas the
differentiated input impedance oscillates between 0.1 and 1.

0.5 1 1.5 2

1

10

Q

`/¸

`/2

`

(E)

(M)

Q  C
(E)

Q  
(E)

Q  Z'
(E)

BZ

Fig. 6. Illustration of the Q-factor for a bow-tie antenna with length ` and
width `/2. The Q factors are determined from the current expressions (4)
and (6), the Brune synthesized lumped circuit model (15) and (16), and from
differentiation of the input impedance (13) and (14).

We note that the absolute difference between QC and QZB is
of the order one. This is similar to the observed difference
in Fig. 5. The relative difference is however larger as the Q-
factors are much lower. Although, the Q-values are very low,
the example shows that the Q factors from the current densities
and Brune circuits can differ. We have also considered higher
orders of the Brune circuit and larger frequency intervals with
similar results.

D. Loop antenna

The computed stored electric and magnetic energies for a
loop antenna are depicted in Fig. 7. The strip loop antenna
is rectangular with height `, width `/2, strip width `/64,
vanishing thickness, and is modeled as a perfect electric
conductor (PEC). We see that the magnetic energy dominates
for low frequencies. This changes to dominant electric energy
at approximately λ ≈ 6` or equivalently C ≈ λ/2, where
C = 3` denotes the circumference of the loop. The Q-factors
determined from the stored energies (4) and (6) and from the
Brune synthesized lumped circuit (15) and (16) agree very
well. The Q factors also agree with the differentiation of the
input impedance for Q ≥ 10. The difference increases for
lower Q values. This is consistent with the increasing difficulty
to approximate the input impedance with a single resonance
model [22]. Here, it is also important to realize that the concept
and usefulness of the Q-factor is increasingly questionable as
Q decreases towards unity.

E. Inverted L-antenna

An inverted L-antenna on a finite ground plane is considered
to illustrate the usefulness of the stored energies for terminal
antennas, see also [12, 13]. The structure has total length ` and
width `/2. The inverted L fills the top 8% of the structure and
consists of strips with widths `/64 and `/32, see Fig. 8. The
electric and magnetic Q-factors are depicted as a function of
`/λ in Fig. 8. We see that QC, QZB , and QZ′ agree well for
Q ≥ 10, that is for approximately ` ≤ λ/3 or below 1 GHz
for 10 cm chassis. The results for QZ′ start to differ for larger
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`/2. The Q factors are determined from the current expressions (4) and (6),
the Brune synthesized lumped circuit model (15) and (16), and from
differentiation of the input impedance (13) and (14).
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Fig. 8. Q factors for an inverted L antenna with height ` and width `/2. The
Q factors are determined from the current expressions (4) and (6), the Brune
synthesized lumped circuit model (15) and (16), and from differentiation of
the input impedance (13) and (14).

structures, where e.g., Q(E)
C ≈ 5 and Q

(E)
Z′ ≈ 2 at `/λ = 0.4

or ka ≈ 1.4. For these levels of QZ′ , the underlying single
resonance model [22] is problematic and hence QZ′ reduces in
accuracy. At the same time Q is low enough to be considered
less useful as a quantity to estimate the bandwidth, e.g., Q ≈ 2
corresponds to a half-power bandwidth of 100%.

We use the fractional bandwidth for the antenna tuned
to resonance with an inductor or capacitor to analyze the
difference between the Q factors from the stored energy and
differentiated input impedance. The fractional bandwidth Q-
factor product, BQ, is given by (10) for simple RCL resonance
circuits. The corresponding BQ product for the inverted L
antenna is depicted in Fig. 9 for the reflection coefficient
thresholds Γ0 = −{1, 3, 10, 20} dB. It is seen that BQ is
close to the value given by (10) as indicated by the rhombi for
`/λ ≤ 0.25, where also QC ≈ QZB

≈ QZ′ . The BQ product
starts to deviate from (10) for shorter wavelengths except for
the low reflection coefficient Γ0 = −20 dB and QZ′ case.
This is consistent with QZ′ being a local approximation of
the Q-factor around the tuned resonance frequency and hence
it is more accurate for relatively narrow fractional bandwidths
B � 1/Q or equivalently Γ0 � 1. The Q factors from QC

0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

 

 

2

5

0.2

0.5

¡ =-1dB

BQ

`/¸

Q   Z'

Q  , QC

`

`/2
0

¡ =-3dB0

¡ =-10dB0

¡ =-20dB0

Q  , QC

Q   Z'

a)

BZ

BZ

Fig. 9. Illustration of the Q-factor fractional bandwidth product for the
inverted L antenna using the Q-factor from the current expressions QC, energy
in the Brune synthesized lumped circuit model QZB

, and differentiation of
the input impedance QZ′ . The bandwidth is determined for the thresholds
Γ0 = −{1, 3, 10, 20} dB corresponding to the fractional bandwidths B ≈
{48, 32, 14, 4.6}% at `/λ = 0.4.

and QZB underestimate the fractional bandwidths for this case.
The accuracy of QZ′ deteriorates as the threshold Γ0 is relaxed
due to the difficulties to approximate the input impedance
with a resonance circuit over large bandwidths. The results for
the Q-factor determined from the stored energy QC ≈ QZB

are on the contrary improving as the requirements on the
matching are relaxed. This is consistent with QZB being a
global quantity determined from the input impedance over a
large bandwidth.

Matching networks can be used to increase the bandwidth
B for a given matching threshold Γ0 or to decrease the
matching threshold Γ0 for a fixed bandwidth B. The Bode-
Fano limits [24] are useful for simple circuits such as the RCL
resonance circuit. The increasing complexity of the Bode-Fano
limits prohibits its use for general circuits. Here, we instead
consider the real frequency technique to determine the optimal
parameter values [40]. The resulting reflection coefficient is
approximately −12 dB and −6 dB for the B = 2/〈Q〉 and
B = 4/〈Q〉 cases, respectively, where 〈Q〉 denotes the mean
〈Q〉 = (QC + QZ′)/2. It is noted that QC and QZ′ are most
accurate for the wide and narrow bandwidths, respectively.

V. CONCLUSIONS

The energy expressions proposed by Vandenbosch in [7]
are very well suited for optimization formulations as they are
simple quadratic forms of the current density. The quadratic
form is very practical as it allows for various optimization
formulations such as Lagrangian [9] and convex optimiza-
tion [11] and has already led to many new antenna results.
Their resemblance of the electric field integral equation (EFIE)
makes the numerical implementation very simple.

Numerical results for dipole, bow-tie, loop, and inverted
L antennas are used to illustrate the accuracy of the energy
expressions. The Q-factors from the stored energy in the
fields, QC, from the stored energy in Brune synthesized circuit
models, QZB

, and from differentiation of the input impedance,
QZ′ are compared. It is observed that QC ≈ QZB

for the
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Fig. 10. Illustration of the Q-factor fractional bandwidth product for the
inverted L antenna using the Q factors from the far-field stored energy
QC, energy in the Brune synthesized lumped circuit model QZB

, and
differentiation of the input impedance QZ′ . The matching threshold Γ0

is determined using the real frequency technique [40] over the fractional
bandwidths B = {2, 4}/〈Q〉, where 〈Q〉 is the mean 〈Q〉 = (QC+QZ′ )/2.
The resulting Γ0 are approximately Γ0 ≈ −12 dB for B = 2/〈Q〉 and
−6 dB to −4 dB for B = 2/〈Q〉 as indicated in the graph.

considered cases. The good agreement is based on Brune
circuits synthesized from the input impedance over a wide
frequency range and it is observed that QZB

can be lower
if a narrow range of frequencies is used. We also observe
that QC ≈ QZB

≈ QZ′ in the regions where the Q-factor
is QC ≥ 10 and that QZ′ ≤ QC ≈ QZB otherwise. This
is consistent with the shunt and series resonance circuit that
can have QZ′ = 0 although QZB

� 1, see (17) and [22].
The numerical results also show that the modification of the
stored energy in [41] by addition of ka increases the deviation
from QZB . For example, the QC for the strip dipole in Fig. 5
and bow-tie in Fig. 6 would increase with approximately
ka = 2π ≈ 6.3 for `/λ = 2.

APPENDIX A
BRUNE SYNTHESIS

One problem with the Brune synthesis is that it uses
negative inductors and capacitors [21, 36], see also Fig. 2. This
is resolved by transforming the Tee network containing the
negative element to an ideal transformer, see Fig. 11, where
L1 < 0. The inductors in the ideal transformer are M = L3,
La = L1 + L3, and Lb = L2 + L3 ≥ 0. From the Brune
synthesis [21, 36], it follows that the inductors are related as
L1L2 + L1L3 + L2L3 = 0, and hence LaLb = L2

3 showing
that La > 0. The stored magnetic energy in the Tee network
and ideal transformer in Fig. 11 is

W (M) =
|I1|2L1

4
+
|I2|2L2

4
+
|I1 + I2|2L3

4

=
|I1|2La

4
+
|I2|2Lb

4
+

Re{I1I∗2}M
2

. (18)

The corresponding stored electric energy is W (E) = |I1 +
I2|2/(4ω2C) showing that the stored energy in the ideal
transformer is identical to the stored energy in the original
circuit representation.

The interpretation for the case XB > 0 is more involved [21,
36]. Here, the Π network with a negative capacitance C1 and

L2

C

L3
L1

a) b)

Lb

C

La

MI1 I2I1 I2

Fig. 11. Transformation of the Tee network (a) to an ideal transformer (b).

L2

C

L3
L1

b)a) I1 I2

C

I1 I2

C

C

L

1 2

3

Fig. 12. Transformation of the Π network (a) to a Tee network (b).

positive capacitances C2, C3 are first transformed to a Tee
network with the components C = C1 + C2, L1 = LC2/C,
L2 = LC1/C, L3 = LC3/C, see Fig. 12. The stored energies
are not the same in the Π and Tee networks for general
component values. However, the components are not arbitrary
in the Brune synthesis [21, 36]. The capacitors in the Π
network are constrained as C1C2 +C1C3 +C2C3 = 0 and the
inductors in the Tee network satisfy L1L2+L1L3+L2L3 = 0.
The stored energies are identical for this case. The Tee network
is finally transformed to an ideal transformer, see Fig. 11.
We consider the stored electric energy to see that the stored
energies are identical for the Brune case. With prescribed
voltages V1 and V2, we have

4W (E) = |V1|2C1 + |V2|2C2 + |V1 − V2|2C3

= |V1|2C1 + |V2|2C2 − |V1 − V2|2
C1C2

C1 + C2

=
|C1V1 + C2V2|2

C1 + C2
=
|C1V1 + C2V2|2

C
(19)

for the Π network, where C1C2 +C1C3 +C2C3 = 0 is used.
The stored energy in the corresponding Tee network is

4W (E) =
|V |2

|ωL3 − 1
ωC |2ω2C

=
|V |2C

|ω2LC3 − 1|2
(20)

where V is the voltage

V =

V1

jωL1
+ V2

jωL2

1
jωL1

+ 1
jωL2

+ 1
jωL3+ 1

jωC

=
C1V1 + C2V2

C + C1C2

C3− 1
ω2L

= (C1V1 + C2V2)
ω2LC3 − 1

C
(21)

that inserted into (20) gives (19) and shows that the stored
electric energies are identical for the Π and Tee networks
for the case C1C2 + C1C3 + C2C3 = 0. The Tee network
has a negative inductance L2 that is removed in the final
transformation to the ideal transformer, see Fig. 11.
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APPENDIX B
BODE-FANO MATCHING LIMITATIONS

We consider the Bode-Fano matching limitations [22, 24–
26] for the cascaded shunt LC and series LC circuit in Fig. 3.
Using the asymptotic expansions and the zeros in the complex
half plane, we have the integral identities

2

π

∞∫
0

ω2 ln
1

|Γ (ω)|
dω =

2

Qe
+

2

3

∑
n

λ3
n (22)

2

π

∞∫
0

ln
1

|Γ (ω)|
dω =

2

Qg
− 2

∑
n

λn (23)

2

π

∞∫
0

1

ω2
ln

1

|Γ (ω)|
dω =

2

Qg
− 2

∑
n

1

λn
(24)

2

π

∞∫
0

1

ω4
ln

1

|Γ (ω)|
dω =

2

Qe
+

2

3

∑
n

1

λ3
n

(25)

where Qg = max{Qp, Qs}, Ql = min{Qp, Qs}, Qe =
3Q3

gQl/(3Q
2
gQl + 3Qg − Ql) ≤ Qg, Reλn ≥ 0, and we

have assumed that ω0 = 1. We bound the integrals using
maxω |Γ (ω)| = Γ0 for ω ∈ ω0[1 − B/2, 1 + B/2] giving
the inequalities

1

π
(B +B3/12) ln

1

|Γ0|
≤ 1

Qe
+

1

3

∑
n

λ3
n (26)

1

π
B ln

1

|Γ0|
≤ 1

Qg
−
∑
n

λn (27)

1

π

B

1−B2/4
ln

1

|Γ0|
≤ 1

Qg
−
∑
n

1

λn
(28)

1

π

B +B3/12

(1−B2/4)3
ln

1

|Γ0|
≤ 1

Qe
+

1

3

∑
n

1

λ3
n

(29)

We note that the middle equations are identical to the Bode-
Fano bound for the RCL circuit [22] for maximal Q value
max{Qp, Qs}. This is natural as the cascaded shunt (or series)
circuit cannot improve the matching. It is also seen that a
complex conjugate pair gives the optimal λn for B � 1 and
that this case reduces to the bound for the RCL circuit. The
set of inequalities are solved numerically for Γ0 given B and
assuming a complex conjugate pair λn, see Fig. 3.
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