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Indeed, what is there that does not appear marvelous
when it comes to our knowledge for the first time?

How many things, too, are looked upon as quite impossible
until they have actually been effected?

Gaius Plinius Secundus





Abstract

Over the last couple of years audio and radio sensors have become cheaper and more com-
mon in our everyday life. Such sensors can be used to form a network, from which one
can obtain distance measures by correlating the different received signals. One example
of such distance measures is time-difference of arrival measurements (TDoA), which can
be used to estimate the positions of the senders and receivers. The result is a 3D map of
the environment, similar to what you get from doing structure from motion (SfM) with
images. If a new sensor appears, the map can in turn be used to determine the position
of that sensor, i.e. for localisation. In this thesis we present three studies that take us to-
wards precise localisation. Paper i involves finding exact — on a subsample level — TDoA
measurements. These types of subsample refinements give a higher precision, but are sensi-
tive to noise. We present an explicit expression for the variance of the TDoA estimate and
study the impact that noise in the signals have. In Paper iii TDoA measurements are used
to estimate sender and receiver positions in an efficient way. We present a new initialisa-
tion approach followed by a scheme for performing local optimisation for TDoA data with
constant offset, i.e. when the sound events are repetitive with some constant period. The
sender and receiver positions together constitute a map of the environment and such maps
are studied in Paper ii. Assuming that we have a number of different map representations
of the same environment — coming from either sound, radio or image data — we present
an algorithm for how to merge these representations into one map, in an efficient way using
only a small memory footprint representation. The final map has a higher precision and
the method can also be used to detect changes that have occurred between the creation of
the different map representations. Thus, altogether, we present a number of improvements
of the localisation process. We perform analysis as well as experimental evaluation of each
of these improvements.
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Chapter 1

Introduction

Recently, audio and radio sensors have become more used in everyday tools, such as PC:s,
laptop and smartphones. If the locations of the sensors are known, they can form a sensor
network that can be used for localisation in and mapping of the environment [4, 7, 6, 11].
These two things will be the main topics of this thesis. Even if all the sensor positions
are unknown, both sender and receiver positions can be determined up to a choice of
coordinate system [9, 18, 21, 30, 43]. These calculations require either time of arrival (TOA)
or time-difference of arrival (TDoA) measurements, i.e. measurements of the travel time
from each sender to each receiver, or the differences in travel time from a sender to two
receivers, respectively. The two types of measurements can also be thought of as absolute
and relative time distances. Other usages of sensor networks are, among others, sound
quality improvement using beam-forming [1], and speaker diarisation [2].

TDoA measurements can for example be obtained by correlating two received signals,
where the TDoA estimation is given by the shift that maximises the correlation function.
The better these estimates are, the better will the precision of the applications be. Fur-
thermore, if the TDoA values are used for localisation, the result is also highly dependent
on the initialisation. One way to find initial estimates for the positions is to solve a large
system of equations, where the equations describe the distances between the sensors and
the connections between the TDoA measures [22, 37].

When we use these techniques for several TDoAmeasures we get a map of the environment,
but one can also compute the trajectory for a moving sensor in the scene. For vision, the
process of estimating map parameters and sensor motion using only images is referred to as
structure from motion (SfM) and simultaneous location and mapping (SLAM) [10, 12, 16,
40]. The resulting map consists of a set of points, which each have a position and a feature
vector. For sound and radio data a similar approach can be used, and sometimes this has
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been referred to as structure from sound [38]. If the measurement errors are zero mean and
Gaussian, the maximum likelihood estimate of the map is obtained by minimising the sum
of squared errors, where the errors are modelled by some error function connected to the
type of sensor data. The iterative process that is used for finding these estimates is within
photogrammetry and computer vision referred to as bundle adjustments [39].

A successful bundle adjustment and SfM outcome for vision — one that gives a good map
of the environment — requires a large amount of images. And actually, it is not only
the use of audio and radio sensors that has increased over the last couple of years, but
also the availability of cheap and good cameras. Today, there is a decent camera in every
mobile phone, every laptop and every new car. This allows for fast data collection using
crowdsourcing, which in turn requires faster algorithms to handle all data. One example
could be the following: Imagine that every car driving through a city could build its own
map of the city using its collected image data. The result would be a large amount of
representations of the same city map. If we have a fast and accurate way to merge individual
map representations into one global map, each car could contribute to that global map. The
city map would thus improve with each car passing.

The problem of map merging has a strong connection to loop closure, where any drift that
has arisen in the SfM process has to be adjusted for when the camera returns to a position
that has already been visited [42]. This corresponds to a merge of the start and the end of
the map. The issue has also been addressed within the field of collaborative SLAM, where
several cameras are simultaneously used for SLAM.There are for example applications with
several drones where the merge is based on a few keyframes [34]. This is fast, but is highly
dependent on the choice of keyframes. In some other cases the problem has been simplified
by common initialisation [44], or by mounting the cameras on a platform [28].

In this thesis we investigate several ways of achieving precise localisation. The three included
papers are ordered according to their publication dates, but following a logical order we
would first look at Paper i, followed by Paper iii and lastly Paper ii. In Paper i we study
how to find exact TDoA estimates from received sound data and we also present a stochastic
analysis to explain the precision of such estimates. Paper iii uses TDoA measures to both
initialise and optimise a map of the sensors involved. Finally, Paper ii explains how a
number of map realisations of the same scene can be merged to obtain a global map of
lower variance.

Before the papers are presented, the introductory part of the thesis will be organised as
follows: InChapter 2 somemethodology will be introduced and inChapter 3 we go through
sensor modelling. In Chapter 4 we show how sensor data can be used for mapping and
localisation. Chapter 5 treats the problem of map merging and in Chapter 6 we present
some results from the three papers and discuss how this work can be developed in the future.
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Chapter 2

Methodology

This thesis is devoted to the study of signals. A signal can be described as the entity that
carries some sort of information from one point to another [17, p. 1]. One can also view
it as any physical quantity that varies with time, space or one or several other independent
variables [31, p. 2]. A large part of this thesis regards the study and analysis of audio, i.e.
information transmitted as an acoustic wave through space. This is an example of a one-
dimensional signal. Other examples of such are radio signals, e.g. ultra wide-band (UWB),
which is used in Paper iii. UWB is a radio technology that transmits information short
distances using a wide frequency band and low energy [36]. There are also signals of higher
dimensions than these, such as two-dimensional images.

Even if we study several different signal realisations, many principles are the same for them
all and both methods and applications can be adjusted slightly such that another signal type
can be used. Therefore, parts of this thesis will discuss signals in general, while parts will
be more focused on for example audio and images.

1 Sampling, Interpolation and Smoothing

Most of the signals that wemodel and analyse are in reality analog, but for analysis they need
to be converted into a digital format. For the one-dimensional case this is done through
sampling. Assume that we have an analog signal xa(t) and denote the discretisation operator
byD : B → ℓ. Here, B are functions f ∈ C(R,R) that are square integrable with vanishing
Fourier transform outside [−π, π], while ℓ denotes the set of discrete, square integrable
functions from Z to R. An analog signal can thus be sampled by

x(n) = D(xa)(n) = xa(nT), (2.1)
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where T is the period, i.e. a sample is taken every T seconds, and x(n) is the digital signal
corresponding to xa(t). The sampling period also defines the sampling frequency, Fs =
1/T.

As long as the sampling frequency is at least twice as big at the highest frequency Fmax in
the signal, Fs > 2 · Fmax, the sampling theorem states that the analog xa(t) can be recovered
exactly from its digital representation x(n) [20, 29, 31, 35, 41]. The analog signal x̂a can
be obtained by interpolation of x with a kernel g. If we denote the interpolation operator
Ig : ℓ → B, we have

x̂a(t) = Ig(x)(t) =
∞∑

i=−∞
g(t − i)x(i). (2.2)

With g given by the normalised sinc operator

sinc(k) =
sin(πk)

πk
, (2.3)

we have that
Isinc(D(xa)) = xa. (2.4)

Hence, x̂a(t) = xa(t) if x̂ is obtained using g = sinc. This is referred to as ideal interpolation.

In many cases a sampled signal does however also contain noise. Then, the connection
could rather be described as

x̃(n) = x(n) + e(n) = D(xa)(n) + e(n), (2.5)

where e(n) describes the noise and x̃(n) is the digital signal that is used for analysis. The
noise can have several origins, such as other signals that were not supposed to be captured
or added noise that has arisen in the sampling process. For an audio signal this could be
someone speaking in the background, or disturbances in the microphone.

Noise coming from disturbances often has a high frequency. To remove some of that noise
one can apply a filter to the sampled signal, in order to smooth out the high-frequency
components. Usually the signal itself contains lower frequencies, somost of the information
in the signal can be kept through the filtering. Furthermore, patterns on a coarser scale are
easier captured after smoothing [25]. In this thesis, smoothing will refer to interpolation
with the Gaussian kernel

Gσ(x) =
1√
2πσ2

ex
2/(2σ2). (2.6)

The value σ is the standard deviation of the Gaussian and determines the width of the
kernel.

Furthermore, there is another advantage of smoothing with a Gaussian when ideal inter-
polation is employed. It turns out that interpolation with a Gaussian kernel followed by
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interpolation with the sinc kernel can be approximated by only Gaussian interpolation [3].
What we get is

x̂a(t) = (Gσ ∗ Isinc(x))(t) = IGσ∗sinc(x)(t) ≈ IGσ(x)(t). (2.7)

However, this only holds when the standard deviation σ is large enough. How large it has
to be is studied in Paper i.

2 Bundle Adjustment

The term bundle adjustment originates from the field of photogrammetry [15], and has later
been widely used within computer vision [16]. The name refers to the bundle of light rays
that goes from points in space to each camera. The process consists of simultaneous optim-
isation of the cameras and the structure of the scene. In the case of computer vision, this
would refer to the camera positions, their intrinsic parameters and the 3D feature points.
The method can also be translated to one-dimensional signals, and for sound signals the
optimisation would be performed over the senders as well as the receiver positions. In
[39], the method is described as: “Bundle adjustment is really just a large sparse geometric
parameter estimation problem”.

Classically, bundle adjustment is formulated as a non-linear least squares problem. Within
this thesis, this is also what has been used, but it is worth mentioning that there does exist
a number of variations where the cost models are non-quadratic, see [39].

If we collect the parameters which we want to optimise in θ and the values that can be
measured in β, we want to minimise the distance from the measured values βm to the by θ
estimated values βe(θ). This gives the error function

f (βm, θ) =
n∑

i=1

d(βe(θi), βmi)
2, (2.8)

where n is the number of measured values and d is a distance function, often given by the
Euclidean norm ||·||2. This problem is large, non-linear and can be solved by some method
for non-linear optimisation, such as Gauss-Newton [14, 23], or Levenberg-Marquardt [24,
27]. To obtain the optimal parameters,

θopt = argminθ f (βm, θ), (2.9)

we perform iterative minimisation of the error function in Equation (2.8). When the meas-
urement errors are zero mean Gaussian the simplest way to express the optimal parameter
update in each iteration step is by

Δθ = −(JTJ)−1JTr, (2.10)

5



with r being a vector of all the residuals, i.e. all the terms in f, and J the corresponding
Jacobian. The equation shows the update for the Gauss-Newton method. Levenberg-
Marquardt is an extension of this, with the update described by

Δθ = −(JTJ + λI)−1JTr, (2.11)

where I is the identity matrix and λ is a non-negative scalar which follows some updating
scheme.

For the bundle adjustment to give a good result, a good initialisation is required. However,
this is a research area in itself and will not be covered in the introductory part of the thesis.
In two of the papers, we assume that a good initialisation is already found, while we present
a solution for the initialisation in Paper iii.

3 RANSAC

A big challenge that arises when working with real data is the handling of outliers. In the
error model in Equation (2.8) each of the n measurements is equally important and if a few
measurements are wrong, that will be highly penalised. In the presence of outlier values,
a parameter estimation that in reality is good can give a large error, which would make us
discard that estimation. Actually, many big outliers may prevent us from finding any good
solution to the optimisation problem at all.

One way to get past this problem is to use the RANdom SAmpling Consensus (RANSAC)
[13]. The idea with RANSAC is to use as little data as possible to estimate the model para-
meters and then use the rest of the data to evaluate these parameters. If m is the minimum
number of data points that are needed to estimate parameters for the chosen model, the
algorithm works as follows:

Algorithm 1: RANSAC
while Model is not good enough do

Randomly select an initial guess of m data points
Estimate the model parameters from the selected set of points
Count how many of the other data points that are close enough to the
estimated model (this is the consensus set)

end
The model is good enough, keep the model and (potentially) improve it using all of
the consensus set.

In the instructions above, we have not defined what close enough means for the consensus
set and how to know that a model is good enough to terminate. These are parameters for
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the RANSAC method that have to be decided. A maximum number of iterations is also
required in order to not get stuck when an optimum cannot be found.

The RANSAC method is specifically good when the set of outliers is large. In this case,
just optimising over the whole dataset will not yield a satisfying result, while RANSAC
can provide a good solution and detect the outliers as well [13]. Since the first paper about
RANSAC was published, a number of variations have been presented and today these are
also widely used. For some of them, see [5, 19, 32].
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Chapter 3

Sensor Modelling

In this chapter details about sensor modelling are presented and the analysis of signals is
developed. First, the focus will be on sound, but the same principles often apply to other
signals, such as UWB. Later, we will also present some modelling equations for images.
First, we will focus on measurements that can be used to calculate sender and receiver
positions and thus can be used for localisation.

1 TOA and TDoA

Assume a setup with a number of senders, si ∈ R3, i = 1, ..,m and receivers rj ∈ R3,
j = 1, .., n. Also, assume that these are synchronised, i.e. that their internal clocks coincide.
Then, by comparing when the signals were emitted from the senders to when they reached
the receivers, we can get the travel time, and by multiplying these measurements with the
speed of the signal v, the absolute distance measures between each sender and receiver can
be derived. The distance will be

dij = v(tij − Ti) = ∥rj − si∥, (3.1)

where tij denotes the arrival time for signal i to receiver j and Ti is the emission time. This
time difference is called the time of arrival measurement (TOA) or absolute travel time, see
[37].

One could also consider a setup where the senders are synchronised and the receivers are
synchronised, but not to each other. That would instead give us time-difference of arrival
measurements (TDoA), or relative travel time; for emitted sound, we know how much
longer it took for the sound to reach receiver 2 compared to receiver 1, etc. This could be
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a

b

Figure 3.1: The figure is illustrating TOA and TDoA measures. The sound emitted from the speaker will reach the two micro-
phones at different times. For TOA we have that d11 = a and d12 = b. For TDoA we instead measure the difference,
(t12 − T1) − (t11 − T1) = (b − a)/v.

explained by the following equation

zij = ∥rj − si∥+ oi. (3.2)

Here, oi is an offset that is different for each sound event and the arrival and emission times
are not synchronised. What we actually measure in this case is

(tij − Ti)− (tik − Ti) = tij − tik, (3.3)

i.e. how much longer it took for sound i to reach receiver j than receiver k. The value can
be multiplied by v to give the difference in distance. Equation (3.2) can be obtained from

∥rj − si∥ = v(tij − Ti) = vtij − vTi. (3.4)

Now, we add and subtract the constant T0 = tik from this equation, which gives

∥rj − si∥ = v(tij − T0 + T0 − Ti) = v(tij − tik) + v(T0 − Ti). (3.5)

Note that the receiver index k in tik is fixed. Since v is known and tij − tik can be measured,
we call that term zij = v(tij − tik), while the part that cannot be measured will be the offset
oi = −v(T0−Ti), which results in Equation (3.2). For an illustration of TOA and TDoA,
see Figure 3.1.

There are also other variations of TOA and TDoA. One can think of a situation where the
senders are not synchronised with the receivers, but where the signals are emitted regularly.
This would give an expression similar to Equation (3.2), but with a constant offset, i.e.

zij = ∥rj − si∥+ o. (3.6)
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A

B

C

Figure 3.2: This shows what different sound models can capture. In A we have a sound and a translated copy of it, connected
to Equation (3.7). Plot B shows what happens if we only have the impact of an amplitude, corresponding to γ, with
h = 0, in Equation (3.8) and C shows the same thing but for Doppler, corresponding to h = 0, γ = 0 in Equation
(3.9).

Paper i in this thesis uses regular TDoA measurements, while Paper iii focuses on the con-
stant offset problem. Note that by subtracting the offsets oj or o from zij we get the distance
measurements dij.

2 Model Selection and Parameter Estimation

To find the optimal model parameters using Equation (2.9) the model must first be decided.
Assume that we have two measurements from different receivers, where the received signals
x(n) and x̄(n) come from the same emitted signal. The easiest connection between these
two is to consider one of them to be a translated version of the other,

x(n) = x̄(n + h). (3.7)

This corresponds to TDoA, where h would be the time difference value in Equation (3.3).
However, the connection between the signals could also look differently. For example, it is
reasonable to assume that the signal is stronger when it reaches a receiver that is close to the
sender, compared to one that is further away. Therefore, an amplitude parameter γ might
be added

x(n) = γx̄(n + h). (3.8)

Furthermore, if the sender is actually moving while emitting the sound this may result in a
stretched or compressed signal. This raises the need of a Doppler parameter α,

x(n) = γx̄(αn + h). (3.9)

The effect of a translation, an amplitude difference and the presence of a Doppler factor is
shown in Figure 3.2. The models in Equations (3.7), (3.8) and (3.9) have been used in Paper
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i. One could also think of a number of other suitable models, and the model might need
to be adjusted to the specific problem.

The above models could be used to express an optimisation problem, similar to the one
in Equation (2.9), if we collect the parameters of interest in θ. For the model in (3.7) we
would have θ = {h} and for the model in (3.9) we have θ = {h, γ, α}, while β = {x, x̄}
in both cases.

3 Estimating TOA and TDoA

Once the model has been decided, the error function from Equation (2.8) can be used to
estimate the parameters θ. Again, assume that we have two signals x and x̄ and that we
want to find how these relate to one another. In this case, we can express the error function
as

f (β, θ) =
∑

n

(x(n)− x̄(η(θ)))2, (3.10)

where β = {x, x̄} and η(θ) can be either n, n+h or αn+h, in accordance with the previous
section. Comparing this to the general error function (2.8) we see that the distance function
d is given by the difference between the two signals. Once this error function is formulated,
the parameter estimation can be found using the methods previously described.

If x is the emitted signal, x̄ is the received signal and the model is that of Equation (3.7)
the estimated value h will represent the time of arrival. If we instead choose x and x̄ to be
the signals received by two different receivers coming from the same emitted signal, we will
estimate a time-difference of arrival.

Furthermore, if we use the model in Equation (3.7) we can also estimate the parameter h
using cross-correlation. The cross-correlation for real signals x and x̄ is defined as

(x ⋆ x̄)(h) =
∑

n

x(n)x̄(n + h). (3.11)

The translation h is obtained by maximising the cross-correlation function,

hopt = argmaxh(x ⋆ x̄)(h). (3.12)

This estimation will be exactly the same as the one coming from minimisation of (3.10),
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since

argminh f (β, θ) = argminh
∑

n

(x(n)− x̄(n + h))2 = argminh

∑
n

(x(n))2+

(x̄(n + h))2 − 2x(n)x̄(n + h) = argminh

∑
n

−2x(n)x̄(n + h)

=argmaxh

∑
n

x(n)x̄(n + h) = argmaxh (x ⋆ x̄)(h).

(3.13)

Hence, for the models in Equations (3.8) and (3.9) we use error function (3.10), but if we
stay with the smaller model (3.7) we can use cross-correlation to find the h that minimises
the error function. There are also variants of cross-correlation, e.g. GCC-PHAT, which we
used for initialisation in Paper i. For more information, see [18].

3.1 Estimation on Subsample Level

In the equations above, the translation h will be estimated as an integer number of samples.
To refine the estimations further, we can do the parameter estimation on continuous signals,
achieved from ideal interpolation. This would result in the following error function

f (β, θ) =
∫

t
(xa(t)− x̄a(τ(θ)))

2 dt, (3.14)

with τ defined in accordance with η above, but for continuous values. Minimising this
error would result in parameters on an even finer scale than the sample rate, and thus even
more exact measures. However, the estimation also becomes more sensitive to noise. This
matter is considered in Paper i.

4 Sensor Modelling for Vision

For computer vision and 3D reconstructions the pinhole camera model is a common way
to model the relation between the 3D points, 2D points and the camera matrices [16]. Two
alternatives are the affine and projective camera models.

4.1 Camera Models

The pinhole camera model takes a point U =
[
X Y Z

]T in 3D to a point u =
[
x y

]T

in the image by following the straight line from U to the camera center in the origin,
c =

[
0 0 0

]T, and intersecting it with the image plane. If the distance from the camera
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Figure 3.3: An illustration of the pinhole camera model. The camera centre c is located in the origin in the xyz-coordinate system.
The image plane is parallel to the xy-plane and located at unit distance from c in the positive z-direction. A 3D point
U is mapped to the image point u, where u is given by the intersection of the image plane and the straight line going
from U to c, see Equation (3.15).

centre to the image plane is 1 and we assume that the image plane is parallel to the xy-plane,
the projection is given by

u =

[
x
y

]
=

[
X/Z
Y/Z

]
, (3.15)

see Figure 3.3.

For camera modelling it is convenient to describe the points in 2D and 3D using ho-
mogeneous coordinates, i.e. we write u as û =

[
x y 1

]T and represent U by Û =[
X Y Z 1

]T. For a general camera projection matrix P ∈ R3×4, we have the relation-
ship a

b
c

 = P


X
Y
Z
1

 , (3.16)

where we then can divide by c to obtain the image point in homogeneous coordinates,[
a/c b/c 1

]T
=

[
x y 1

]T. We usually write this as a proportionality,

x
y
1

 ∼ P


X
Y
Z
1

 . (3.17)

For the pinhole camera model the camera matrix is P =
[
I 0

]T, with I being the 3 × 3
identity matrix, and 0 a 3× 1 vector of zeros. If the camera moves, that can be represented
by a 3× 3 rotation matrix R (i.e. RTR = I and det(R) = 1) and a 3× 1 translation vector
t, giving P =

[
R t

]T. These are sometimes referred to as extrinsic parameters.

14



A more general model of the camera matrix is

P = K
[
R t

]
=

µf s x0
0 f y0
0 0 1

 [
R t

]
. (3.18)

The matrix K describes the intrinsic parameters of the camera. The value f is called the
focal length and is a re-scaling parameter. Both the aspect ratio µ and the skew parameter s
re-scales for non-square pixels and the point

[
x0 y0

]T is referred to as the principal point,
and gives a translation. A camera represented by the matrix in Equation (3.18) is called a
finite projection camera.

We call P and affine camera if it has the structure

P =

[
A t
0 1

]
, (3.19)

where A is a 2×3 matrix, t has size 3×1 and 0 is 1×3 vector of zeros. The affine camera is
a good approximation when the distance from the camera to the scene is much larger than
the depth of the scene. A general projection camera is given by an arbitrary 3 × 4 matrix
with rank 3 [16].

4.2 Parameter Estimation for Vision

When it comes to vision, we can always measure the images, and thus the image points,
while the 3D points and the camera matrices might be known or unknown. Assume that
we have a set of m cameras which each capture n different 3D points. If both 3D points and
cameras are unknown, our sought set of parameters will be θ = {P1, ..., Pm,U1, ...,Un}.
The measurable quantities will be the image points that comes from projecting each 3D
point in each camera, β = {u11, ..., u1n, u21, ..., umn}, where ûij ∼ PiÛj and β in total
contains 2mn values, since each uij has 2 unknown coordinates. Remember that ûij and
Ûj are the honomgeneous representations of uij and Uj, respectively. If the 3D points or
the cameras are known, we move these parameters from θ to β. In either case, the error
function can be described as

f (β, θ) =
∑

ij

∥ûij −
PiÛj

λij
∥2. (3.20)

The values λij are proportionality constants that arise when we make PiÛj homogeneous.
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Chapter 4

Mapping and Localisation

1 Multilateration for TOA

Multilateration describes the process of determining the position of a sender given the
distances to several receivers. These distances can for example come from TOA or TDoA
measurements. To illustrate the idea, we consider two receivers r1, r2 and one sender s1,
all located in a plane. If the distances d11 and d12 from the sender to each of the receivers
are known, there are two potential points where the sender could be located, namely where
the circle with centre in r1 and radius d11 and the circle with centre in r2 and radius d12

b

a

c

Figure 4.1: The figure shows multilateration in a plane using one sound source and three receivers. The location of the speaker
is unknown and the positions of the microphones, r1, r2, r3 are known. Furthermore, the distances d11 = a, d12 = b
and d13 = c are measured. The location of the loudspeaker is given by the intersection of the three circles.
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intersect. If we add a third receiver r3, the circle around that with radius d13 will contribute
to a single intersection point of the three circles and thus the solution for the position of
s1. For an illustration, see Figure 4.1.

In three dimensions each distance measure dij defines the radius of a sphere with rj as centre,
and in a similar way the positions of the senders can be found as the intersections of the dif-
ferent spheres. If we have few measurements, we might get several possible solutions. The
opposite problem, when senders are known and receivers and unknown, is solved identic-
ally, i.e. it does not matter for the algorithm whether a node is a sender or a receiver. In the
presence of noise, the system has to be be solved in a least squares sense.

1.1 System of Equations

From the TOA or TDoA measurements we can formulate a large system of equations,
representing the spheres we discussed in the previous section. We could have a static setup
where the receiver positions are unknown, but one wants to locate the sender positions,
as in the small 2D example above. Actually, given enough measurements, it is possible to
calculate both receiver and sender position, if all are unknown [22, 38]. Independently of
which case we are looking at, the following will be true.

If we let i denote the sender number and j the number of the receiver, the TOA case will
yield the system of equations

d 2
ij = ∥rj − si∥2, (4.1)

and in the case of TDoA we get

(zij − oi)
2 = ∥rj − si∥2, (4.2)

for all i and j. If we have m senders and n receivers this will result in mn equations. An
initial guess for the unknowns can be found with methods from algebraic geometry using
Groebner bases, see [8, 37].

Once the initial guess is found, the error function (2.8) can be formulated as

f ({dij}, {rj, si}) =
∑
i,j

(d 2
ij − ∥rj − si∥2)2, (4.3)

for TOA and

f ({zij}, {rj, si, oi}) =
∑
i,j

((zij − oi)
2 − ∥rj − si∥2)2, (4.4)

for TDoA. After this, bundle adjustment can be performed to minimize the error and to
achieve optimal estimates.
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Figure 4.2: Triangulation of three points given two images. The point pairs ui, ūi as well as the cameras P and P̄ are given. Each
3D point Ui is obtained by intersecting the lines from each camera centre through the corresponding image point.

2 Triangulation for Image Data

Triangulation refers — just as the name suggests — to deciding distances using triangles.
In computer vision, this can be used to find 3D points and it is the correspondence to
multilateration for sound.

Assuming that we have two images u and ū taken by the cameras P and P̄, respectively, we
for each corresponding feature point pair j have,

uj = PUj and ūj = P̄Uj, (4.5)

where Uj is the unknown 3D feature point that the image points uj and ūj depict. If the
camera matrices P and P̄ are known, one can draw a line from each camera centre, through
the corresponding image point, out in space. The two lines will lie in a plane and intersect
in a point — the point Uj [16]. If this is done for many points and images you finally get
a map of the environment. A small triangulation example is shown in Figure 4.2. To find
corresponding image points {uj, ūj}, one can for example use SIFT [26], or ORB features
[33].

In reality, there is in most cases some noise in the measurements and the 3D points will
have to be estimated in a least squares sense instead. Furthermore, the camera matrices are
often unknown as well. Both estimates of the cameras and 3D points can be obtained using
bundle adjustment.

2.1 Localisation in a Known Environment

For TOA and TDoA problems, the algorithms for mapping the environment and localising
a new sensor in the scene are identical. The reason for this is that senders and receivers are
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represented in the same way. However, this is not the case for vision. A scene can be
mapped using the triangulation described in the previous section on several images. In that
case, the image points and the cameras are known, while 3D points are unknown. When it
comes to localisation, we have the opposite problem: the image points and the 3D points
are known, while the cameras are unknown. The problem is solved by finding a solution
to the system of equations given by

λjuj = PUj, j = 1, ..., n, (4.6)

where the camera matrix P is the sought value and λj are unknown factors that arise when
we make the image points homogeneous. This corresponds to the error function in Equa-
tion (3.20), but with only one camera matrix. As long as we have sufficiently many point
correspondences uj and Uj — at least six — we can solve for the unknowns using a method
called direct linear transform (DLT). If we are interested in the intrinsic parameters of the
camera, we first find P and then factorise it to obtain K, see [16] for details.

3 Structure from Motion

We have previously in this chapter explained how mapping and localisation can be done
using sensor data. For sound and radio data localisation corresponds to finding a sender
position si and mapping is done by finding the receivers rj. The correspondence in vision
is finding the cameras Pi for localisation and the 3D points Uj for mapping. When both
mapping and localisation are performed at once, this is within the field of computer vision
referred to as structure frommotion (SfM) or simultaneous location andmapping (SLAM).
This section, however, treats both vision, sound and radio, since the principles are the same
for other type of sensor data than images.

For audio and radio the TOA or TDoA measures are the known sensor data, while both
sender and receiver positions are solved for. In the case of vision, the images and image
points are known, while both 3D feature points and camera matrices are unknown. Such
systems can be solved iteratively, using bundle adjustment. The error functions will be
expressed according to Equations (3.10) and (3.20). The difference to previous cases will be
which parameters that are contained in the set of unknowns θ and and which in the set
of known parameters β. This will in turn change the Jacobian used to find the parameter
update in Equations (2.10) and (2.11). In many cases when we want to use vision to map
an environment we need to use SfM algorithms, since it is uncommon that the camera
positions are known. However, once the map is obtained we can use it for localisation.
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Chapter 5

Map Merging

The previous chapters have described mapping and localisation and some methods needed
for that. In this chapter we will discuss one matter that can improve the localisation in a
known environment. Except for a good algorithm and exact measurements, the localisation
is highly dependent on the description of the environment, i.e. the map. A map consists of
a number of feature points and each feature point has a descriptor and a position. In the
case of TOA or TDoA each point would be a receiver, with an ID as the descriptor and the
position in 3D as the position. For image data, the position would be a 3D point as well,
while the descriptor could be a SIFT descriptor [26], ORB feature [33] or correspondingly.
The map would be the set of all such feature points.

The more exact our map is, the better will the localisation be. Furthermore, the more meas-

A B C

Merge

Figure 5.1: A and B shows two different map representations — in blue and red, respectively — of the same environment.
However, the corresponding feature points are not exactly the same. In C these are merged into one global map, in
green. The positions of the original feature points are shown by contours.
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SfM SfM SfM SfM SfM

Merge

Figure 5.2: An overview of the idea of map merging and how it can be used to improve map quality. First, individual map
estimates are created from several images using SfM. Then, these can be merged in order to obtain a global map
with lower variance.

urements we have when creating our map, the better will it be. Therefore, the knowledge
of how to merge maps is important. If we can merge maps, we can use this to add inform-
ation — represented as a new map — when we get hold of new information about the
environment. Imagine a scenario with self-driving cars in a city. A car is passing though
this city; it has a camera and collects a lot of data — enough to build its own local map
of the parts that it passes. This data can then be used to contribute to the global map of
that city, reducing the variance in those parts of the global map. The next time a car drives
through that city, the map would be a bit better.

One straightforward way to add several maps would be to make a new estimation of the
environment, using all the data that was used to obtain each of the individual maps. In
the case of computer vision, this would correspond to bundling over all 3D points and all
camera matrices for each of the local maps at once. However, this process could be time
consuming and computationally heavy, since the number of images involved grows quickly.
In Paper ii, we investigate how map merging can be made more efficient by linearising the
residuals. Furthermore, we look into at what cost this would be, i.e. howmuch information
that might be lost in the linearisation.

Map merging has previously been used in e.g. the fields of collaborative SLAM [44] and
loop closure [42]. In collaborative SLAM, several cameras are used simultaneously and the
problem can be simplified by initialising the cameras such that their relative positions are
known. This makes the problem similar to that of loop closure, where the beginning and
end of an SfM maps should be merged. In our paper, we have no common initialisation
and the mappings are assumed to be done at different times. An image illustrating the idea
of map merging can be seen in Figure 5.2 and a small example of map merging is shown in
Figure 5.1.
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Chapter 6

Conclusions

The common theme for the papers included in this thesis is the goal to achieve precise
localisation. A majority of the work has been focused on sound and UWB signals, but can
in many cases also be applied to images or other types of signals.

In Paper i, we concentrate on the details. Given a good initialisation, the subsample meth-
ods that are presented result in estimates with a high precision. We investigate the limits in
precision and examine whether a more complicated model that includes more parameters
than translation can give an even better result. It turns out that so is the case, but that a
larger model than necessary gives a less exact result, i.e. a higher variance. We believe that
these explicit formulas for the covariance matrix brings certainty and thoroughness.

Paper iii also treats TOA and TDoA problems, and more specifically the TDoA case with
a constant offset. We present a novel method for how to efficiently initialise and solve this
problem, together with a fast solver for the system of equations in the case of five senders and
five receivers. This paper and Paper ii concentrate on the speed. The faster the algorithm
is, the more iterations can be run and the more data can be used.

As the others, Paper ii is primarily devoted to one-dimensional signals. However, it also
contains a part where the algorithm is tested on image data. Except for the contribution of
a fast algorithm for merging of maps one can also talk about preciseness in the terms of an
exact map, i.e. the more exact the map is, the more precise will the localisation be. Since
the map merging algorithm is fast, this will in turn bring that more measurements can be
used and this gives a better localisation. Furthermore, we show how our method can detect
differences between the map realisations. With this we can avoid merging the points that
do not match — a situation that can arise when an object in the scene has moved.

Hence, this thesis is an attempt to move towards precise localisation — precise both in
terms of exactness and of speed. However, there is still work to be done. The map merging
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algorithm presented in Paper ii needs further focus concerning robustness to outliers and
the coordinate system. Another subject for future studies is the initialisation process, since
many of the presented algorithms rely on a good initialisation.

Henceforth, we would like to improve the merging algorithm even more, to include a
simultaneous estimation of the coordinate system. Another investigation for the future
would be to combine these geometric models with modern machine learning techniques
to achieve a framework for semantic structure from motion.
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