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Supervisors

Anders Heyden, Carl Olsson
Title and subtitle

Robust Estimation of Motion Parameters and Scene Geometry: Minimal Solvers and
Convexification of Regularisers for Low-Rank Approximation
Abstract
In the dawning age of autonomous driving, accurate and robust tracking of vehicles is a quintessential part. This is inextricably linked
with the problem of Simultaneous Localisation and Mapping (SLAM), in which one tries to determine the position of a vehicle relative
to its surroundings without prior knowledge of them. The more you know about the object you wish to track—through sensors or
mechanical construction—the more likely you are to get good positioning estimates. In the first part of this thesis, we explore new
ways of improving positioning for vehicles travelling on a planar surface. This is done in several different ways: first, we generalise the
work done for monocular vision to include two cameras, we propose ways of speeding up the estimation time with polynomial solvers,
and we develop an auto-calibration method to cope with radially distorted images, without enforcing pre-calibration procedures.
We continue to investigate the case of constrained motion—this time using auxiliary data from inertial measurement units (IMUs) to
improve positioning of unmanned aerial vehicles (UAVs). The proposed methods improve the state-of-the-art for partially calibrated
cases (with unknown focal length) for indoor navigation. Furthermore, we propose the first-ever real-time compatible minimal solver
for simultaneous estimation of radial distortion profile, focal length, and motion parameters while utilising the IMU data.
In the third and final part of this thesis, we develop a bilinear framework for low-rank regularisation, with global optimality guarantees
under certain conditions. We also show equivalence between the linear and the bilinear framework, in the sense that the objectives
are equal. This enables users of alternating direction method of multipliers (ADMM)—or other subgradient or splitting methods—to
transition to the new framework, while being able to enjoy the benefits of second order methods. Furthermore, we propose a novel
regulariser fusing two popular methods. This way we are able to combine the best of two worlds by encouraging bias reduction while
enforcing low-rank solutions.

Key words

computer vision, visual odometry, simultaneous localization and mapping,
minimal solvers, convex relaxations, structure from motion
Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English
ISSN and key title

1404-0034
ISBN

978-91-7895-769-9 (printed)
978-91-7895-770-5 (electronic)

Recipient’s notes Number of pages

xx+367
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all
reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature: Date: 2021-03-25



ROBUST ESTIMATION OF MOTION

PARAMETERS AND SCENE GEOMETRY

MINIMAL SOLVERS AND CONVEXIFICATION OF

REGULARISERS FOR LOW-RANK APPROXIMATION

MARCUS VALTONEN ÖRNHAG
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Abstract

In the dawning age of autonomous driving, accurate and robust tracking of vehicles
is a quintessential part. This is inextricably linked with the problem of Simultaneous
Localisation and Mapping (SLAM), in which one tries to determine the position of a
vehicle relative to its surroundings without prior knowledge of them. The more you
know about the object you wish to track—through sensors or mechanical construction—
the more likely you are to get good positioning estimates. In the first part of this thesis,
we explore new ways of improving positioning for vehicles travelling on a planar surface.
This is done in several different ways: first, we generalise the work done for monocular
vision to include two cameras, we propose ways of speeding up the estimation time with
polynomial solvers, and we develop an auto-calibration method to cope with radially
distorted images, without enforcing pre-calibration procedures.

We continue to investigate the case of constrained motion—this time using auxil-
iary data from inertial measurement units (IMUs) to improve positioning of unmanned
aerial vehicles (UAVs). The proposed methods improve the state-of-the-art for partially
calibrated cases (with unknown focal length) for indoor navigation. Furthermore, we
propose the first-ever real-time compatible minimal solver for simultaneous estimation
of radial distortion profile, focal length, and motion parameters while utilising the IMU
data.

In the third and final part of this thesis, we develop a bilinear framework for low-
rank regularisation, with global optimality guarantees under certain conditions. We
also show equivalence between the linear and the bilinear framework, in the sense that
the objectives are equal. This enables users of alternating direction method of multipli-
ers (ADMM)—or other subgradient or splitting methods—to transition to the new
framework, while being able to enjoy the benefits of second order methods. Further-
more, we propose a novel regulariser fusing two popular methods. This way we are
able to combine the best of two worlds by encouraging bias reduction while enforcing
low-rank solutions.
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Populärvetenskaplig sammanfattning

De praktiska tillämpningarna av datorseende och artificiell intelligens har ökat markant
det senaste decenniet och finns bland annat inom säkerhetsbranschen, fordonsindustrin,
sjukvården, jordbruksindustrin och finansvärlden. Även om applikationerna är många är
den grundläggande matematiken bakom ofta densamma—detta ådagalägges i praktiken
av denna avhandling där allt från industrirobotar, drönare och diverse deformerande
objekt huserar.

Avhandlingen är uppdelad i tre delar. I den första delen ägnar vi oss åt att studera
ett problem som uppstår då man önskar att navigera i ett område karakteriserat av plana
ytor. Typiskt finner vi oss i sådana situationer då vi är inomhus; här finns väggar, golv
och tak. Vi kan t.ex. tänka oss en industrirobot som rör sig på ett golv i en fabrik, för
att nämna en praktiskt applicerbar situation. Flertalet metoder existerar redan idag för
självstyrande fordon och nästan alltid är det fördelaktigt att använda oss av all informa-
tion vi kan få om den tänkta miljön. Om vi nu vet att det finns plana ytor, då bör vi
också använda detta antagande när vi skapar algoritmerna. Vi studerar det monokulära
fallet, d.v.s. när en kamera finns tillgänglig, samt det binokulära fallet, då två kameror
finns tillgängliga. Det visar sig att när vi tar hänsyn till de plana ytorna blir metoderna
mer stabila och positionsbestämningarna mer exakta. I det binokulära fallet visar vi att
det är möjligt att förbättra resultaten ytterligare, genom att anta att kamerorna verkar i
en stelkroppsrörelse, vilket innebär att kamerornas orientering och avstånd till varandra
förblir oförändrade oberoende av hur fordonet rör sig. Detta kan garanteras genom en
mekanisk konstruktion som låser fast kamerorna i dessa lägen.

I den andra delen fördjupar vi oss återigen i inomhuspositionering, men denna gång
specifikt för drönare. Den stora skillnaden i detta fallet är att drönare har andra sen-
sorer som vi kan dra nytta av. I vårt fall antar vi att drönaren har en IMU (ibland
tröghetsmåttenhet på svenska), som kan hjälpa till att uppskatta drönarens rotation re-
lativt gravitationsriktningen. Detta gör att antalet frihetsgrader minskar, men ger samti-
digt upphov till att de styrande ekvationerna försvåras och ej längre är angripbara med
elementära metoder. Den bakomliggande matematiken som gör det möjligt att lösa des-
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sa typer av ekvationer är densamma som i fallet för industriroboten. Vi visar att de nya
ekvationerna också går att lösa, samt att detta kan göras tillräckligt snabbt för att i real-
tid kunna processera resultaten på drönaren. Dessutom är den föreslagna metoden nu-
meriskt stabil och noggrannheten i positioneringsestimaten är bättre än för befintliga
metoder.

Slutligen studerar vi ett område inom matematiken som kallas lågrangs-
approximation, i vilket flera intressanta fall av datorseende finns representerade.
Applikationerna är närbesläktade de positioneringsproblem som studerades i de första
två delarna av avhandlingen, men metoderna är annorlunda och vi tillåter nu även
dynamiska objekt. Detta kan vara människor och djur som rör sig eller objekt som
deformeras. Återigen finner vi att en och samma bakomliggande matematiska grund
leder till många olika tillämpningsområden. I dessa fall ökar komplexiteten och
problemen är ofta underbestämda, d.v.s. att det finns väldigt många lösningar som ger
ett bra återprojiceringsfel, men av dessa är få fysikaliskt rimliga. Av detta kan man dra
slutsatsen att återprojiceringsfelet, d.v.s. skillnaden mellan de uppmätta tvådimensionella
bildpunkterna och de skattade (från en 3D-modell), ej ger tillräcklig information för
att erhålla de sökta positionerna i rummet. För att kunna utesluta falska lösningar kan
man introducera regulariserare, som t.ex. straffar ofysikaliska lösningar. Vårt bidrag
utgör ett nytt ramverk för att effektivt kunna använda regulariserare inom flertalet
applikationer. Detta ramverk använder andra ordningens approximationer lokalt, för
snabbare konvergens, men har även garantier för globala optima i några fall, vilket är
ovanligt för denna typ av optimeringsmetoder.
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Chapter 1

Thesis Overview

Computer vision is a broad field with many applications. Simply put, whenever you are
trying to automatically gain understanding from images or videos you have entered the
field of computer vision. What kind of knowledge you seek from the input may vary—it
can be positioning, building 3D models, tracking and recognising objects, to name a few
examples. Many of the applications directly impact society and have done so for a long
time. An early example is the invention of the optical character recognition (OCR) scanner,
which was patented in 1931, and created to aid the visually-impaired. Fast forwarding
the story ninety years into the future, to modern society, we see applications of computer
vision and machine learning in many diverse industries, including the security sector,
the automotive industry, health care, agriculture, and the financial sector. While many
problems may be considered to be solved, the demand for new technical solutions incite
researchers from both academia and industry to pursue the continued growth of the field,
which is expanding rapidly.

This thesis consists of three parts. In the first part (Papers I–V) we study a case
of constrained motion, namely the general planar motion model. This model is applica-
ble where planar objects dominate the scene geometry, e.g. indoor environments, where
floors, walls and ceilings are present. Previous authors have investigated this model for
monocular vision; however, the case of binocular vision was not studied prior to Pa-
pers I and II.

In the second part (Papers VI and VII) we consider another case of constrained mo-
tion, namely navigation using unmanned aerial vehicles (UAVs), commonly referred to
as drones. Here auxiliary data is available from sensors, specifically an inertial measure-
ment unit (IMU). The IMU typically contains an accelerometer and a gyroscope that
measure acceleration and angular velocity, with respect to its frame. From these measure-
ments, it is possible to determine (at least) two degrees of freedom—the roll and pitch
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angles. Additionally, some IMUs contain a magnetometer that measures the magnetic
field. Modern algorithms can fuse magnetometer data in order to estimate the yaw an-
gle [40]; however, these measurements might be corrupted by indoor environments as
well as the magnetic field surrounding the UAV motors [22, 48]. The external magnetic
distortions are more common in indoor environments due to the presence of electronic
devices, iron reinforcements in buildings etc.

The third part (Papers VIII–XII) treats a different field, namely low-rank approxima-
tion. Here, we develop a broad framework, in the sense that it is compatible with many
core applications in pattern recognition, computer vision and machine learning. We will
focus on applications of non-rigid structure-from-motion, but will also look at applica-
tions concerning rigid structure-from-motion, background extraction and photometric
stereo.

The following papers form the basis of this thesis:

Main papers:

I M. Valtonen Örnhag and A. Heyden. “Relative Pose Estimation in Binocular
Vision for a Planar Scene using Inter-Image Homographies”. In: International
Conference on Pattern Recognition Applications and Methods (ICPRAM). Funchal,
Madeira, Portugal, Jan. 2018, pp. 568–575 [63],

II M. Valtonen Örnhag and A. Heyden. “Generalization of Parameter Recovery in
Binocular Vision for a Planar Scene”. In: International Journal of Pattern Recogni-
tion and Artificial Intelligence 33.11 (2019) [62],

III M. Valtonen Örnhag. “Fast Non-minimal Solvers for Planar Motion Compatible
Homographies”. In: International Conference on Pattern Recognition Applications
and Methods (ICPRAM). Prague, Czech Republic, Feb. 2019, pp. 40–51 [59],

IV M. Valtonen Örnhag. “Efficient Radial Distortion Correction for Planar Motion”.
In: Pattern Recognition Applications and Methods. ICPRAM 2020. Lecture Notes in
Computer Science. Springer International Publishing, 2021, pp. 46–63 [72],

V M. Valtonen Örnhag and M. Wadenbäck. “Enforcing the General Planar Motion
Model: Bundle Adjustment for Planar Scenes”. In: Pattern Recognition Applica-
tions and Methods. ICPRAM 2019. Lecture Notes in Computer Science. Vol. 11996.
Springer International Publishing, 2020, pp. 119–135 [70],

VI M. Valtonen Örnhag, P. Persson, M. Wadenbäck, K. Åström, and A. Heyden.
“Minimal Solvers for Indoor UAV Positioning”. In: International Conference on
Pattern Recognition (ICPR) (2020), pp. 1136–1143 [69],
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VII M. Valtonen Örnhag, P. Persson, M. Wadenbäck, K. Åström, and A. Heyden.
“Efficient Real-Time Radial Distortion Correction for UAVs”. In: The IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). 2021, pp. 1751–
1760 [68],

VIII M. Valtonen Örnhag, C. Olsson, and A. Heyden. “Bilinear Parameterization for
Differentiable Rank-Regularization”. In: In the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops. June 2020 [66],

IX M. Valtonen Örnhag, C. Olsson, and A. Heyden. “Differentiable Fixed-Rank
Regularisationusing Bilinear Parameterisation”. In: In the British Machine Vision
Conference (BMVC). 2019 [67],

X M. Valtonen Örnhag and C. Olsson. “A Unified Optimization Framework for
Low-Rank Inducing Penalties”. In: In the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2020, pp. 8474–8493 [65],

XI J. P. Iglesias, C. Olsson, and M. Valtonen Örnhag. “Accurate Optimization of
Weighted Nuclear Norm for Non-Rigid Structure from Motion”. In: European
Conference on Computer Vision (ECCV). Aug. 2020, pp. 21–37 [32],

XII M. Valtonen Örnhag, J. P. Iglesias, and C. Olsson. “Bilinear Parameterization for
Non-Separable Singular Value Penalties”. Submitted. To appear in the Conference
on Computer Vision and Pattern Recognition (CVPR). 2021 [64],

Subsidiary papers:

Papers II, IV and V are extended versions of the following conference papers (in the order
given), which are left out due to overlapping material.

• M. Valtonen Örnhag and A. Heyden. “Generalisation of Parameter Recovery in
Binocular Vision for a Planar Scene”. In: International Conference on Pattern Recog-
nition and Artificial Intelligence (ICPRAI). Montréal, Canada, May 2018, pp. 37–
42 [61],

• M. Valtonen Örnhag. “Radially Distorted Planar Motion Compatible Homogra-
phies”. In: International Conference on Pattern Recognition Applications and Meth-
ods (ICPRAM). Valletta, Malta, Feb. 2020, pp. 568–575 [60],

• M. Valtonen Örnhag and M. Wadenbäck. “Planar Motion Bundle Adjustment”.
In: International Conference on Pattern Recognition Applications and Methods
(ICPRAM). Prague, Czech Republic, Feb. 2019, pp. 24–31 [71],
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Chapter 2

Modelling Cameras

2.1 The Pinhole Camera Model

The pinhole camera model can be thought of as a light ray passing through a small hole in
a box. The light rays meet in the pinhole, or as it is otherwise known, the camera centre.
The light ray orthogonal to the image plane z = f and passing through the camera centre
will intersect the image plane in the principal point, which we denote (u0, v0). Now,
consider a light ray passing through a scene point (x, y, z) ∈ R3. Where will it intersect
the image plane? In Figure 2.1 we note two triangles, sharing parts of the projection line
as their hypotenuses; hence, they are similar. Therefore, the sought intersection point
in 3D space is given by ( f x/z + u0, f y/z + v0, f ), which is naturally mapped to
image coordinates by (u, v) = ( f x/z + u0, f y/z + v0).

In computer vision, it is convenient to work with homogeneous coordinates, since
projective transformations can be represented by a single matrix multiplication. Further-
more, points at infinity can be represented using finite coordinates. Given a non-zero
vector x ∈ Rn+1, the set of all vectors Rx = {λx | λ ∈ R \ {0}} is called a ray. The
n-dimensional real projective spacePn is a set of equivalence classes of vectors, identified
with the rays Rx, for all non-zero vectors x ∈ Rn+1. In this setting, equivalent repre-
sentations x and y of the same point must be in the same ray, i.e. ∃λ ∈ R \ {0} such
that x = λy, in which case we will write x ∼ y. The theory of projective spaces goes
far beyond the need of regular computer vision applications, and we shall settle with this
brief introduction, and recommend the work of Cox et al . [12] for further details.

More generally, the complete pinhole camera model can in homogeneous coordinates
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X = (x, y, z)

z = f

C
z

y

x

(u, v)

(u0 , v0 )

Figure 2.1: The pinhole camera model. A light ray passes through the camera centre C and a
scene point X. The corresponding image point is located at the intersection with the focal plane
z = f . The principal point (u0, v0) determines the location in the local coordinate system used
to represent the image.

be written asu
v
1

 ∼
 f γ u0 0

0 α f v0 0
0 0 1 0




x
y
z
1

 =

 f γ u0
0 α f v0
0 0 1


︸ ︷︷ ︸

:=K

1 0 0 0
0 1 0 0
0 0 1 0




x
y
z
1

 , (2.1)

where f is the focal length and α is the aspect ratio. Normally α ≈ 1, but may differ due
to a variety of optical and digital techniques, such as using anamorphic formats, flaws
in sensor manufacturing or digital post-processing. The skew parameter γ corrects for
non-rectangular pixels. Together these parameters are known as the intrinsic parameters,
and form the calibration matrix K. The intrinsic parameters affect the camera itself and
act in synergy with the extrinsic parameters which affect the relative pose of the camera
with respect to other cameras (or objects) in a global coordinate system.

Working with homogeneous coordinates, let X ∈ P
3 denote a scene point

and x ∈ P2 the corresponding image point, then x ∼ PX, where P is the camera
matrix. In general, there are six degrees of freedom for the extrinsic parameters—three
translational components, determining the position of the camera in 3D space, and
three rotational components determining the orientation. The translation is normally
modelled by a translation vector t and the rotation by a matrix R. Consequently, the
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camera matrix can then be decomposed into two parts P = KR[I | −t], where we
recognise the calibration matrix K, and R[I | −t] constituting the extrinsic parameters.

The pinhole camera is an idealised camera model, that does not model more complex
phenomena arising from imperfections in lenses and sensors, e.g. geometric distortion
(which is discussed in Section 2.2). It is, however, a very useful model, as many artefacts
can be compensated for; hence, it is of great theoretical importance.

In the general case, a projective camera P is of rank three and has eleven degrees of
freedom (as there is a scale ambiguity). It maps scene points X to image points x ∼ PX.
If we let P = [A | t], it can be shown that P is a finite camera if and only if A is
non-singular. Here a finite camera means that the camera centre is not located in a point
at infinity. For a more detailed discussion, the reader is referred to the standard reference
in computer vision by Hartley and Zisserman [27].

2.2 Physical Cameras

Physical cameras never obey the pinhole camera model exactly. In practice, the aperture
needs to be sufficiently large to allow enough light to reach the sensor, thus deviates from
the infinitesimal opening of the theoretical pinhole camera model. However, simply
enlarging the aperture would cause the image to blur, as an image point would have
multiple rays intersecting it, each corresponding to different 3D points. This is mitigated
by using lenses, which efficiently focus points at a specific distance to the focal plane.
Note that this is a trade-off, as rays emitted at other points do not converge to a single
point on the focal plane.

When working with a complete image system with sensors and optics, there are many
unwanted phenomena that arise. Limiting the discussion to the optics, we have issues
with (monochromatic) aberrations: defocus, spherical aberration, coma, astigmatism,
and field curvature, all of which cause the image to appear blurry. Professional lens
manufacturers must make trade-offs in design to suppress these artefacts while making
sure the optical elements are able to be mass-produced and sold at a reasonable price.
Even if these issues are reduced, the resulting image may still be distorted compared to
the pinhole camera model, e.g. physically straight lines may appear to be curved in the
image.

Furthermore, there are two types of chromatic aberrations—longitudinal and
lateral—which are caused by dispersion; that is, different wavelengths of natural light
are reflected differently. The blue channel is thus perceived as being augmented, causing
a blue (or purple) fringe around the object.
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Figure 2.2: Calibration setup for one of the sequences in the famous KITTI dataset, where
OpenCV’s findChessboardCorners has been used to find the leftmost chequerboard. The
radial distortion is noticeable on the sides of the image, where physically straight lines appear to
be curved. This phenomenon is not compatible with the pinhole camera model, and thus must
be compensated for prior to estimating the relative pose between images. Image credit: KITTI
dataset [23].

2.3 Correcting Lens Distortion

Some of the above-mentioned aberrations can be corrected for in software. For computer
vision applications, it has been observed that lens distortions can affect the overall per-
formance quite severely, and thus much research goes into correcting for it. The main
idea is to take a distorted image and rectify it, such that the rectified image is approxi-
mated well by the pinhole camera model. The most common way to approach this is
to assume a functional form to model the distortion profile, i.e. given distorted image
points xd the corresponding undistorted points xu are obtained using a function g, such
that xu = g(xd). Typically, these functions are assumed to be of a certain type, e.g.
polynomials with unknown coefficients, thus the problem of determining the distortion
profile has been reduced to finding these unknowns.

For radial distortion, the distortion at a point x = (u, v) is assumed to depend on
the Euclidean distance r = ‖x− xc‖ to the distortion centre xc. Although the distor-
tion centre and principal point are not necessarily the same, this is a common assump-
tion. The oldest approach, stemming from the Brown–Conrady model [6], assumes a
polynomial model where xu = h(r)(xd − xc), with

h(r) = 1 +
n

∑
i=1

cir
i . (2.2)

Originally, only even polynomials were used. Furthermore, tangential distortion is also
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taken into consideration, i.e. when the optics and focal plane are not parallel.
So, how does one calibrate a physical camera in practice? A popular method, that

estimates the calibration matrix and the distortion coefficients, is Zhang’s method [80],
in which images of a planar surface (a chequerboard) are captured from different views
(either the target or the camera moves) and then a series of homographies (see Chapter 3)
are computed, from which the relative poses are estimated. An initial solution for the
distortion parameters is obtained by a linear least-squares approximation, and, finally,
all parameters are refined by nonlinear optimisation (see Chapter 7). Although the un-
derlying theory is non-trivial, it is easy for non-mathematicians to practically apply this
method, as it is available in frameworks such as OpenCV [5], which only require the
input images in order to produce the wanted output, see Figure 2.2.

Polynomial models are not the only ones available. Another popular method is the
division model [21], where the function is given by

h(r) =
1

1 + ∑n
i=1 cir

i . (2.3)

The major benefit of using the division model is that fewer parameters are necessary in
order to model the distortion profile [52], though this may not be true when allowing
higher order polynomials [57]. Even with a single distortion parameter qualitative results
can be obtained, which opens up the possibility to use them in minimal solvers, which
we will discuss in Chapter 6.

Of course, by now we can think of more exotic models, such as combining the above
two models to yield a rational model, as in [34]. What is perhaps interesting to note is
a completely different approach, namely generic camera models, where gridded data is
used. Some recent papers, such as [54], suggest that these models will become prevalent
in the future, as parametric models tend to incur bias to the reconstruction.

2.4 Finding Point Correspondences

In this section, we will briefly discuss how to automatically find point correspondences
in images, which is needed in many computer vision applications. Early work, such as
Canny edge detection or the Sobel operator, typically involves computing gradients of the
image and using a Gaussian filter to reduce the impact of noise. Another well-known
detector is the Harris detector, which builds on the fact that the image intensity will vary
in more than one direction at a corner point—making it suitable as a feature point, as it
is translationally invariant. Due to the Gaussian filter causing the edge to smudge out, it
may be wise to use non-maximum suppression to get a thinner, and more accurate, edge.
This, however, comes at the cost of increased computational power.
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Modelling Cameras

Figure 2.3: Picture of the author and difference of Gaussians (DoG) applied to the image. Note
that the first images highlight features on small scale (top row) and, as the standard deviation grows,
coarser and coarser features are found (left to right, row by row).
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2.4. Finding Point Correspondences

Figure 2.4: SIFT keypoints of an industrial floor matched by a Nearest Neighbour matcher.

The procedure of applying Gaussians is popular, even in the absence of gradients,
and is formalised in what is known as scale-space theory. In fact, it can be shown that the
Gaussian kernel is the only choice fulfilling certain desirable properties, such as linearity,
shift-invariance and semigroup property [38]. Intuitively, by increasing the standard de-
viation of the Gaussian a more blurred version of the image is obtained. By taking the
difference of blurred images, features of varying scale may be extracted. This is known as
difference of Gaussians (DoG) and is illustrated in Figure 2.3. Keypoints that are extrema
of the DoG over several scales are good candidates for scale-invariant features, and is the
key idea behind the popular feature descriptor SIFT [39]. Among more recent descrip-
tors are SURF [3], FAST [49], BRIEF [8] and the combination of the latter two, known
as ORB [50], which is used in the popular SLAM system ORB-SLAM2 [45]. When
choosing a feature descriptor it is often a trade-off between speed and accuracy [10],
and as long as one is able to discard incorrect matches it is not clear which is preferable.
In Section 6.1 we will introduce a method capable of separating inliers from outliers.

Generating feature points is only a part of the pipeline—the next step is to match
features, and there are a variety of algorithms to facilitate this process. A classic method
is the Nearest Neighbour algorithm (NN) which takes one feature in the first image and
compares it to all other features in the second image, then selects the closest descriptor
with respect to some metric. Such an algorithm is also known as a brute-force matcher,
as it matches all possibilities, and is computationally intensive if the number of features
is large. To speed up the matching, one may use approximate algorithms, such as Fast
Library for Approximate Nearest Neighbours (FLANN) [44] which limits the number
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of matches to be compared.
In Figure 2.4 an example of SIFT keypoints (green circles) and their matches (lines

connecting the circles) obtained by the Nearest Neighbour matcher is shown. The image
depicts what could be a possible input to the algorithms developed in the first part of this
thesis—an industrial floor. Note that it appears that most of the points are transformed
in a consistent way from the left view to the right, indicating that they were correctly
matched. In the next chapter, we will see how these matches can be used in practice.
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Chapter 3

Homographies

In this chapter, we will discuss planar motion, as well as introduce the invertible map-
ping between projective spaces, known as a homography or projective transformation. For
the purpose of this thesis, the projective spaces are typically P2 and the corresponding
homography H : P2 −→ P

2, i.e. for two corresponding image points x ↔ x′, a ho-
mography H, if it exists, must fulfil x′ ∼ Hx. This is a key concept throughout the first
two parts of the thesis (Papers I–VII), and will be the input or output to many of the
proposed algorithms.

3.1 Properties of Homographies

We will use the Sherman–Morrison formula [55] to prove that points in a plane are related
by a homography.

Result 1 (Sherman–Morrison). Let A ∈ R
n×n be non-singular, and u, v ∈ R

n.
Then A + uvT is invertible if and only if 1 + vT A−1u 6= 0.

In addition, there is a closed-form expression for the inverse, but it is omitted here
as we do not use it explicitly. Instead, we focus on the following important result.

Result 2. If all scene points lie in a plane not intersecting the camera centres, there exists a
homography H between the corresponding image points.

Proof. The statement holds true for general projective cameras, but we show it for our
special case P = [I | 0] and P′ = R[I | −t]. Let the unknown plane be given by
π = (n, 1). The parameterisation of π is justified by the plane not intersecting any
of the camera centres. Given a scene point X on the plane π, it is imaged in the first
camera as x ∼ PX, hence X ∼ (x, λ), where λ is determined by the plane constraint

13



Homographies

πTX = 0, giving λ = −nTx. Similarly, for the second camera

x′ ∼ P′X = R
(

I + tnT
)

x, (3.1)

where we define H = R
(

I + tnT
)

. The matrix R is a rotation matrix, hence invertible.

By Result 1 the matrix I + tnT is invertible, as π does not intersect the second camera
centre t. Lastly, as the product of two invertible matrices is invertible, so is H, proving
that it is in fact a homography.

In the remaining parts of this thesis, we will use the notation [v]× to denote the
linear operation corresponding to the cross product of v and another vector,

[v]×x = v× x, ∀x ∈ R3. (3.2)

Furthermore, we note that [v]× is skew-symmetric, hence det([v]×) = 0, ∀v ∈ R3.

3.2 Direct Linear Transformation

Consider N scene points in a common plane, and project them in two views, forming
the image correspondences xi ↔ x′i, for i = 1, . . . ,N. We now know that x′i ∼ Hxi
for some homography H, or, equivalently,

x′i × Hxi = (xT
i ⊗ [x′i]×) vec(H) = 0, (3.3)

where vec(X) denotes the (column-wise) vectorisation of the matrix X and ⊗ denotes
the Kronecker product. The matrix xT

i ⊗ [x′i]× has rank two, and therefore it is only
necessary to include two linearly independent rows; we shall denote this matrix by ζ i.
Since the matrix H has eight degrees of freedom1, we need at least four point correspon-
dences to estimate H. With N ≥ 4 point correspondences, we are left with the following
problem  ζ1

...
ζN


︸ ︷︷ ︸

:=Ζ

vec(H) = 0, (3.4)

or, in other words, to find the one-dimensional null space of Ζ, which can be found
using singular value decomposition (SVD). This assumes that the matches are correct and

1The matrix H is a 3× 3 matrix with nine elements; however, the degrees of freedom are reduced to eight
due to the scale ambiguity.

14



3.2. Direct Linear Transformation

noise-free which is rarely the case in real-life applications. With real data such solutions
typically do not exist if N > 4, but the SVD can still be used to find the desired null
space (or an approximation thereof ). This algorithm is known as direct linear transforma-
tion (DLT). In Chapter 6, we will discuss problems arising due to noisy data and how to
determine which point correspondences that are correctly matched.

When the homography is found, it can be used to rectify the first image, which
is shown in Figure 3.1. In order to create this image, the matched SIFT keypoints
from Figure 2.4 are used together with the DLT equations in a RANSAC framework
(see Section 6.1). Creating panoramas from homographies, however, is only one of
many applications. Since the homography contains information about how the point
correspondences relate to each other, one may extract the relative camera pose between
subsequent images. By doing so, a method to track the camera trajectory can be devised,
and, therefore, the motion of the mobile platform on which it is mounted.

As discussed in Section 2.1, assuming known calibration, the relative pose consists
of three rotational components and three translational components. Therefore, it is pos-
sible to represent it using five degrees of freedom. By constraining the motion further,
the degrees of freedom will be reduced, and as a consequence, one would not need as
many as four point correspondences to fit such a model. In Section 5.3.1 an alterna-
tive method for computing the inter-image homography is proposed, where a specific
problem geometry, namely the general planar motion model, is enforced.
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Figure 3.1: Stitched image obtained by computing the inter-image homography from the SIFT
keypoints found in Figure 2.4 using direct linear transform (DLT) in a RANSAC framework
(Section 6.1). The red frame marks the border of the second image.
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Chapter 4

Epipolar Geometry

Consider a scene point X imaged in x and x′ by two cameras C and C′, respectively.
The back-projection of x is the ray joining the first camera centre and the scene point.
It is imaged as a line in the second camera, which is known as the epipolar line for x,
upon which x′ must lie, as is illustrated in Figure 4.1. The geometry is completely scene-
independent and captures the projective relation between two cameras defined by their
intrinsic and extrinsic parameters. This is known as epipolar geometry.

In fact, any image point x corresponds to an epipolar line `′ in the other view, given
the camera centre C. The ray joining the camera centres is known as the baseline and
the intersections with the image planes are known as the epipoles. The map x 7→ `′ is
represented by the fundamental matrix F, i.e. `′ = Fx, which we will derive in the next
section; however, we will need some basic results from epipolar geometry first, in order
to do so.

4.1 The Fundamental Matrix

The following result is important regarding how well a scene can be reconstructed from
uncalibrated cameras.

Result 3. If the calibration is unknown and possibly varying, the reconstruction can only be
uniquely determined up to a projective transformation.

Proof. Assume x ∼ PX, and let M : P3 −→ P
3 be a projective transformation. Then

x ∼ PX = PMM−1X = P′X ′, (4.1)
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C C′

X

e e′

x

`

x′

`′

Figure 4.1: Epipolar geometry. A scene point X is imaged in two cameras centred at C and C′;
the corresponding image points are given by x and x’, respectively. The baseline is the ray joining
the camera centres, and the intersections of the image planes with the baseline are the epipoles e
and e′. The epipolar lines ` and `′ are the intersections of the corresponding image planes and the
plane spanned by the camera centres and the scene point.

where P′ = PM and X ′ = M−1X. The existence of M−1 is guaranteed since M is a
projective transformation. Consequently, a new solution can be constructed by applying
a projective transformation to an existing one.

When considering the relative pose between cameras it is convenient to define the
canonical form for a camera pair, which is possible due to Result 3.

Result 4. A pair of cameras can always be expressed as P = [I | 0] and P′ = [A | t].

Proof. Let P1 and P2 be a pair of general projective cameras, and let C denote the camera
centre of the first camera expressed in homogeneous coordinates. Then M =

[
P+

1 C
]
,

where P+
1 is the Moore–Penrose pseudo-inverse of P1, defines a projective transforma-

tion. To see this, assume M is singular, and let pi denote the columns of P+
1 . Then

there exists λi, not all zero, such that C = ∑i λi pi. Since C is the camera centre
P1C = 0, implying that λ1 = λ2 = λ3 = 0, which is a contradiction. It is easy to
verify that P = P1M = [I | 0] and, together with P′ = P2M, forms an equivalent
representation of the original camera pair, according to Result 3.
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4.1. The Fundamental Matrix

Result 4 holds for all projective cameras; however, for practical purposes it is often
convenient to only consider a subset of this class—namely, those where A is a rotation
matrix, or at least invertible. In the remaining part of this thesis, we will assume that
this is the case, and explicitly write the camera matrix as KR[I | −t], where R is a
rotation matrix. When the calibration matrix K is unknown we will clearly separate the
intrinsic and extrinsic parameters, i.e. we may assume that two uncalibrated cameras can
be written as P ∼ K[I | 0] and P′ ∼ K′R[I | −t], respectively, and refer to this as
the canonical representation. Again, note that this is a restriction of the general case
and not all projective cameras are captured by this parameterisation. A benefit of this
parameterisation, however, is that the camera centres are located in the origin and t,
respectively, which is convenient for our applications. This follows from the camera
centres C and C′ fulfilling the relations

P
[

C
1

]
= KC = 0, P′

[
C′

1

]
= K′R(C′ − t) = 0, (4.2)

giving C = 0 and C′ = t, for the canonical representation of a camera pair. The
epipoles are thus given by

e ∼ P
[

C′

1

]
= Kt, e′ ∼ P′

[
C
1

]
= −K′Rt . (4.3)

We are now ready to state the epipolar constraint for the fundamental matrix and a pair
of corresponding points.

Result 5. For any pair of corresponding points x ↔ x′ the fundamental matrix F satisfies
the condition

x′T Fx = 0 . (4.4)

Furthermore, for a pair of camera matrices in canonical form, the fundamental matrix is
given by F = [e′]×K′RK−1.

Proof. Let P and P′ be a canonical representation of two camera matrices, and let X de-
note an arbitrary scene point. If x is the image point corresponding to X in the first cam-
era, then x ∼ PX and the corresponding viewing ray is given by X(λ) = (λK−1x, 1).
The projection of the viewing ray in the second camera is the corresponding epipolar line
`′ = P′X(λ) = K′R(λK−1x− t). Since a line in P2 can be expressed as `′Tx = 0,
and the line is defined by two points, we may pick λ = 0 and λ = 1 from the pa-
rameterisation of `′ which yields −K′Rt and K′R(K−1x− t), respectively. We note
that e′ ∼ −K′Rt, hence

`′ = e′ × K′R(K−1x− t) = e′ × K′RK−1x = [e′]×K′RK−1x, (4.5)

19



Epipolar Geometry

where F = [e′]×K′RK−1 is the fundamental matrix. Lastly, if x′ corresponds to x then

x′T`′ = x′T Fx = 0 . (4.6)

Note that the converse statement is not generally true—two points x and x′, fulfilling
the epipolar constraint for some fundamental matrix, need not stem from the same scene
point. They do, however, need to be in the same plane spanned by the camera centres
and the respective scene points, i.e. they must be mapped to the respective epipolar lines,
as can be seen in Figure 4.1.

In Chapter 3 we concluded that the scale ambiguity reduced the number of degrees
of freedom to eight when considering homographies. The very same argument applies
to the fundamental matrix. But is it a homography? The answer is no, as we shall see in
the following result.

Result 6. Any fundamental matrix F satisfies det F = 0.

Proof. Given a pair of camera matrices in canonical form, the fundamental matrix is
given by F = [e′]×K′RK−1, hence det F = 0, due to the determinant being a multi-
plicative map and since the determinant of a 3× 3 skew-symmetric matrix is zero.

Consequently, the fundamental matrix is singular, hence not a homography. We will
discuss the differences between the two in the next section and show how this constraint
can be used to estimate the fundamental matrix more accurately.

4.2 Why Homographies?

As previously mentioned, we will exclusively use homographies in the first part of the
thesis (Papers I–V), and the following result is a strong argument for this approach. As-
suming a set of point correspondences is noise-free and no outliers are present, we say
that it is geometrically degenerate (w.r.t. the fundamental matrix) if a unique epipolar
transformation does not exist. Specifically, if all point correspondences lie in a com-
mon plane, the fundamental matrix does not have a unique representation, which we
formulate in the following result. We also refer to scene points in a common plane as
being coplanar. The proof is inspired by the compact version given by Wadenbäck [73];
however, the result is well-known since earlier, see e.g. Torr et al . [58].
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Result 7. The estimation of the fundamental matrix degenerates when all scene points lie in
a common plane.

Proof. Assume there are N scene points. Since they all lie in a common plane, we may
assume the point correspondences are related by a homography, i.e. x′i ∼ Hxi, for
all i = 1, . . . ,N. It follows that

x′Ti Fxi = 0 ⇔ xT
i HT Fxi = 0 ⇔ (xi ⊗ xi)

T vec(HT F) = 0 . (4.7)

The vector xi ⊗ xi contains only six unique elements, as it consists of the product of all
elements of xi with itself, hence

rank


(x1 ⊗ x1)

T

...

(xN ⊗ xN)
T

 ≤ 6 . (4.8)

By the rank-nullity theorem, there is a three-dimensional family of fundamental matrices
compatible with all of the epipolar constraints.

4.3 Calibrated Cameras and the Essential Matrix

Let X̄ ∈ R3 denote the inhomogeneous representation of X ∈ P3. Assuming known
calibration, one may apply the inverse transformation of the calibration matrix to an
image point, i.e. given x ∼ PX = KR(X̄ − t), we obtain the normalised image
point x̃ = K−1x ∼ R(X̄ − t). Furthermore, this can be thought of as applying the
inverse transformation to the camera matrix itself, thus producing a normalised or cali-
brated camera P̃ = K−1P, or, equivalently, that the calibration matrix K is the identity.
When using normalised image points, the corresponding fundamental matrix is known
as the essential matrix, often denoted E. The epipolar constraint for a pair of calibrated
cameras is thus given by

x̃′TEx̃ = 0, (4.9)

where x̃ and x̃′ denote the normalised image points for the corresponding points x↔ x′.
From (4.9), the relation between the fundamental matrix and the corresponding essential
matrix can be established; namely, by substituting x̃ = K−1x and x̃′ = K′−1x′, one
obtains x′TK′−TEK−1x = 0, from which it follows that E = K′T FK. Since the
number of unknowns for the essential matrix is only dependent on the relative pose
between the cameras there are five degrees of freedom—three rotational components
and three translational components; however, as in the case of the fundamental matrix,
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the scale ambiguity is present. We leave the discussion on calibrated cameras for now,
and again refer to Hartley and Zisserman [27] for further analysis. We will, however,
note the following constraint that is necessary for an essential matrix.

Result 8 (Demazure [15]). Any essential matrix E satisfies

2EETE− tr(EET)E = 0 . (4.10)

This result is commonly referred to as the trace constraint and together
with det E = 0 (a simple modification of Result 6) it is possible to determine the
essential matrix from five point correspondences [36, 46]. We shall discuss such
methods in more detail in Chapter 6. Furthermore, it can be shown that an equivalent
statement to Result 8 is that either E ≡ 0, or E has two positive, identical singular
values and a third singular value equal to zero.

Since the intrinsic calibration only depends on the camera itself, it is often favourable
to calibrate it in order to reduce the number of unknown parameters to recover. Further-
more, physical cameras suffer from tangential and radial distortions to some degree, as
discussed in Section 2.2, which are not modelled by the pinhole camera model, nor are
wanted in the image1. In the first part of this thesis (Papers I–V), we will assume that
the intrinsic parameters are known, which in practice requires that the cameras used in
the experiments are calibrated.

4.4 The Eight-Point Algorithm

In this section we will describe a method for estimating the fundamental matrix, known
as the eight-point algorithm, which is similar to the DLT method described in Section 3.2.
Let xi ↔ x′i denote point correspondences between two cameras and let F be the corre-
sponding fundamental matrix. Each point pair must satisfy the epipolar constraint, and
therefore x′Ti Fxi = 0 for all i = 1, . . . ,N. Then

x′Ti Fxi = (xi ⊗ x′i)
T vec(F) = 0 . (4.11)

By considering all point correspondences, the following equation must be satisfied
(x1 ⊗ x′1)

T

...
(xN ⊗ x′N)

T


︸ ︷︷ ︸

:=A

vec(F) = 0 . (4.12)

1In certain cases these discrepancies are in fact wanted for aesthetic and artistic appearance; however, for
the topic of this thesis they are considered as defects.
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By computing the right null space of A, the fundamental matrix can be estimated; in
order to do so, one would typically use singular value decomposition (SVD) where the
matrix A decomposes into A = UΣV T . Assuming the point correspondences are
correctly matched, the column of V corresponding to the zero (or vanishing) singular
value is the null space of A. This requires a minimum of eight point correspondences;
hence the name. In practice, one would also normalise the image points for numerical
stability2, and enforce the constraint det F = 0. The latter can be accomplished by
nullifying the smallest singular value of the fundamental matrix, thus finding the closest
rank-2 matrix in the Frobenius norm. Another method would be to use but seven point
correspondences and add the cubic constraint emanating from the rank-2 constraint;
however, solving such equations requires different techniques, some of which we will
discuss in more detail in Chapter 6.

2As we treat the uncalibrated case we do not have access to the intrinsic parameters, and therefore do
not know the calibration matrix. When we refer to normalisation in this context, we mean Hartley normalisa-
tion [28], which scales the coordinates so that the average distance of an image point to the origin is

√
2.
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Chapter 5

Simultaneous Localisation and Mapping

5.1 Motivation and History

Imagine yourself waking up in an unknown environment—where are you and how
should you move in order to get to where you want to be? With the technological ad-
vances of today, similar questions arise for how to successfully manoeuvre autonomous
vehicles. One of the most fundamental questions is: where is the vehicle located with
respect to its surroundings? The question becomes harder to answer if the terrain, in
which the vehicle travels, is unknown.

In the second part of the 1980s, many papers were published concerning the recon-
struction of three-dimensional structures, including the uncertainty in measurements,
which was formalised by Smith and Cheeseman [56] and Durrant–Whyte [17]. At that
moment in time, the first algorithms dealing with the question of how to track a vehi-
cle in an unknown environment emerged. Today they can be grouped together under
what is known as Simultaneous Localisation and Mapping (SLAM). During its youth,
robotics researchers favoured sensors such as lasers and odometers; however, cameras are
a popular choice today. This is partly due to the many algorithms available from the com-
puter vision community, but also the decreasing price of imaging sensors and increased
computational capacity of commercial electronic devices. In the first two parts of this
thesis (Papers I–VII) the input is typically assumed to be sequences of images, and the
proposed algorithms will categorise as Visual Odometry (VO). One of the first VO algo-
rithms is due to Harris and Pike [26] in 1988. They used Kalman filtering, a technique
that has been proven successful when fusing data from multiple sensors and for dealing
with uncertainties in measurements [18].
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5.2 State-of-the-Art

During the three decades that have passed since the pioneering work of Harris and Pike,
a multitude of methods have surfaced. Among the latest and more popular ones are
ORB-SLAM2 [45], which supports monocular, stereo and RGB-D cameras.

In order to successfully deploy SLAM algorithms, it is often necessary to tailor them
after what is known about the vehicle and the expected surroundings, e.g. is it an au-
tonomous bus meant to travel in urban areas, or a drone monitoring the growth of
crops in a rural area, or perhaps an underwater vehicle? In the first part of this the-
sis (Papers I–V) we will look at specific algorithms suitable for indoor environments,
particularly such where it is known that the mobile platform is travelling parallel to a
floor, which could, e.g. be a moving manufacturing robot on a factory floor. In the sec-
ond part (Papers VI and VII), we look into models where auxiliary IMU data is merged
with the image data available from an onboard camera.

There is also a current trend concerning autonomous navigation using deep learn-
ing techniques where the classic SLAM system is replaced with an end-to-end network.
Networks such as DeepVO [78] and LS-VO [11] are examples of well-performing net-
works comparable with state-of-the-art methods using geometric computer vision mod-
els. Typically, a convolutional neural network (CNN) replaces the feature extraction
process (see Section 2.4) and the output is used for sequential learning. More recent
methods explore self-supervised learning, taking advantage of adversarial learning [37].

5.3 Constrained Motion

In this section, we discuss how the SLAM problem changes when the motion is con-
strained. We treat two special cases in detail—the general planar motion model and the
motion of a UAV with known IMU data. These cases are quite different mechanically.
In the first case, the vehicle cannot move in all six degrees of freedom, nor the camera
mounted on it, whereas, in the latter case, the IMU data provides us with information
that constrains the remaining motion parameters; however, the mechanical motion of
the UAV is not constrained.

Furthermore, we include derivations of the homographies and other trivial parts,
which were otherwise omitted due to the lack of space provided for the conference papers.

5.3.1 The General Planar Motion Model

Consider a mobile platform, e.g . an industrial robot, travelling along a planar surface.
Two cameras are assumed to be rigidly mounted on the platform, and we allow the

26



5.3. Constrained Motion

cameras to be tilted; however, the tilt is fixed (and possibly unknown) throughout the
entire movement of the mobile platform. Furthermore, assume that the cameras are
moving in the planes z = a and z = b, respectively. In this setting, there is a fixed rigid
body motion connecting the two camera centres, and, without loss of generality, we may
assume the centre of rotation of the mobile platform is located in the first camera centre.

z = 0

n̂ = (0, 0, 1)

z = b

z = a

Figure 5.1: The problem geometry considered in the first part of this thesis. The cameras are
assumed to move in the planes z = a and z = b, respectively, and the relative pose between them,
as well as the tilt towards the floor normal, is assumed to be fixed as the mobile platform moves
freely.

The camera matrices for the first camera centre in two consecutive views, A and B,
can be parameterised as

PA = Rψθ [I | 0],

PB = Rψθ Rϕ[I | −t],
(5.1)

where Rψθ is a rotation θ about the y-axis followed by a rotation ψ about the x-axis,
which are assumed to be fixed. The non-fixed parameters are the translation t and the ro-
tation ϕ, which depend on the motion of the mobile platform. Similarly, by accounting
for the relative translation τ and orientation η, the corresponding poses for the second
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camera are given by
P′A = Rψ′θ′RηTτ(b)[I | 0],

P′B = Rψ′θ′RηTτ(b)Rϕ[I | −t],
(5.2)

where Tτ(b) is a translation matrix with respect to the vertical positioning of the camera.
In Paper II we discuss in detail the consequences of having different planes and show
how this affects the translation matrix.

The homography relating the image correspondences for the first camera is derived
in [73], and is given by

H ∼ Rψθ RϕTtRT
ψθ . (5.3)

For the second camera, the derivation follows analogously; namely, consider a scene
point X imaged in x′A and x′B, respectively. Then the homography H ′ describes the
relation between the image correspondences as follows

x′B ∼ H ′x′A ⇔ P′BX ∼ H ′P′AX,

⇔ Rψ′θ′RηTτ(b)RϕTt(b)X̄ ∼ H ′Rψ′θ′RηTτ(b)X̄,
(5.4)

where X̄ ∈ R3 is the inhomogeneous representation of X. Since X was chosen arbitrar-
ily this must hold for all X ∈ P3, hence

H ′ ∼ Rψ′θ′RηTτ(b)RϕTt(b)Tτ(b)
−1RT

η RT
ψ′θ′ . (5.5)

The rigid body motion constraint, due to the relative translation τ joining the cam-
era centres, affects the translational component of the second camera centre. We will
discuss this geometric interpretation briefly, as it is necessary to understand in order to
convert a sequence of relative poses to absolute poses. Assume the mobile platform moves
in a direction given by the translation vector t without rotating about the floor normal.
Then, the second camera centre should move the same physical distance; however, due
to the relative orientation η the local representation of the translation may differ. Since
the world coordinate system is chosen such that the first camera centre is located in the
centre of rotation of the mobile platform, the second camera centre is subject to a transla-
tion depending on the rotation by ϕ, as well as the relative translation. This is illustrated
in Figure 5.2.

Absolute and Relative Poses

As we now know, a homography maps image correspondences between two images.
Given a sequence of images, a homography can be estimated between every pair of im-
ages, assuming there are enough image correspondences. The main idea in the first part
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Figure 5.2: The translational component, when treated as a monocular system, is dependent on
the relative translation from the origin and the angles ϕ and η. The dotted rectangular boxes
illustrate the intermediate step without the impact of the rotation by ϕ of the mobile platform.

of this thesis (Papers I–V) is to decompose the inter-image homographies in order to
extract information about the relative pose between the images, and thus the position of
the mobile platform.

Assume that a number of homographies are given, and that one is able to extract the
relative pose between the camera positions from them. How to estimate the trajectory of
the mobile platform from these estimates? As discussed in the previous section, the local
coordinate system has to be taken into account. Let ∆ti denote the relative translation
at a given time i, in a local coordinate system, and ∆ϕi the corresponding angle. The
absolute position t and angle ϕ is then given by

ti+1 = RT
ϕi

∆ti+1 + ti =
i

∑
k=0

RT
ϕk

∆tk+1, (5.6)

where ϕi = ∑i
k=0 ∆ϕk, with t0 = (0, 0, 0) and ϕ0 = 0. The inverse problem,

i.e. given absolute poses, compute the corresponding relative poses, leads to the rela-
tions ∆ti+1 = Rϕi

(ti+1 − ti) and ∆ϕi+1 = ϕi+1 − ϕi.
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Parameter Recovery of the Monocular Case

Trying to estimate the fundamental matrix from the traditional eight-point algorithm
fails since all points lie in a plane, cf . Result 7. One possible solution is to use the inter-
image homography and decompose it to extract information about the camera positions.
During the last twenty years, several papers have considered this or similar approaches,
and many of them will be discussed in the papers as related work. We must, however,
discuss the work by Wadenbäck and Heyden [75, 76] in more detail to understand the
pipeline of the intended VO system, as some of the algorithms presented in this thesis
are an extension to their work for monocular systems.

In the first paper [76] the camera matrices and the homography H ∼ Rψθ RϕTtRT
ψθ

were derived, as in Section 5.3.1. The algorithm proceeds to estimate Rψθ by an iterative
method, where one of the angles is fixed, while the other is solved for, as a coordinate-
descent optimisation scheme. This is possible by observing, after some algebraic manip-
ulation of (5.3), that

RT
ψθ MRψθ ∼ TTT =

 1 0 −tx
0 1 −ty

−tx −ty 1 + |t|2

 , (5.7)

where M = HT H. The top-left 2× 2 submatrix of the right-hand side is independent
of the translation t, whereas the left-hand side of the same submatrix only depends on
the unknown tilt angles and the known homography. By denoting the left-hand side
of (5.7) by L, this is equivalent to{

L11 −L22 = 0,

L12 = 0 .
(5.8)

From this observation we wish to extract the unknown tilt angles, but instead of solving
for both simultaneously, we fix one and solve for the other iteratively. Thus, fix θ and
form the matrix M̂θ = RT

θ MRθ , where Rθ is a rotation about the y-axis by an angle θ,
which together with (5.7) and some algebraic manipulation lead to the following relation

m̂11 − m̂22 −2m̂23 m̂11 − m̂33
m̂12 m̂13 0

0 m̂12 m̂13


 cos2 ψ

cos ψ sin ψ

sin2 ψ

 = 0 . (5.9)

The solution to (5.9) is equivalent to finding the null space of the coefficient matrix
in (5.9), which can be found using SVD. Given the null space vector v = (v1, v2, v3)
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5.3. Constrained Motion

the estimated value for ψ may be obtained as

ψ =
1
2

arcsin
2v2

v1 + v3
. (5.10)

Once an estimated value of ψ has been found the matrix M̂ψ = RT
ψ MRψ, can be used

to solve a similar null space problem. This process is repeated until convergence, and
when the overhead tilt Rψθ is estimated the angle ϕ and translation t can be extracted

by QR-decomposition of RT
ψθ HRψθ .

The main contribution of the second paper [75] is to note that the null space
of M̂ψ and M̂θ should be the same for all homographies, regardless of the motion pa-
rameters, i.e. given homographies H1, . . . ,HN , the corresponding coefficient matrices
in (5.9), denoted Ψi, can be used to estimate ψ from all homographies simultaneously
by finding the null space of

Ψ =

Ψ1
...

ΨN

 . (5.11)

Similarly, the same approach can be used for estimating θ from multiple homographies.
By simultaneously using more than one homography the robustness of the overhead tilt
estimation is increased as well as the accuracy.

In Wadenbäck et al . [77] the method using multiple homographies was used to
initially estimate the tilt of the mobile platform. It was found that after approximately
15–20 frames (or 2 seconds of motion) the tilt estimation reached convergence, thus
being able to translate the subsequent problem to a two-dimensional rigid body motion
problem, for which the homography estimation step is not necessary.

A Minimal 2.5-Point Solver for Planar Motion

An alternative to the DLT equations for homography estimation (Section 3.2) is the
method by Wadenbäck et al . [74], which is compatible with the general planar motion
model. Since the homography (5.3) has five degrees of freedom the minimal problem is
given by 2.5-point correspondences. A solver to such a system can be obtained by consid-
ering the system of polynomial equations defined by λH − Rψθ RϕTtRT

ψθ = 0, which
gives eleven quartic constraints on H. The DLT system consisting of the constraints
generated by 2.5-point correspondences has a four-dimensional null space, which allows
a parameterisation of the homography in terms of the basis vectors of the null space,
i.e. H = ∑4

i=1 ki Hi, where one may assume k1 = 1 as it is only possible to recover
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the homography up to scale. Inserting this parameterisation of H into the quartic con-
straints gives eleven new quartic constraints in three variables, and by using the method
described in Section 6.4 a compatible homography is obtained.

In Paper III we will explore alternative, non-minimal solvers, which are shown to
be significantly faster than the existing 2.5-point solver, and show that they remain ro-
bust in cases where the planar motion model is invalid, whereas the minimal 2.5-point
solver does not. Furthermore, we incorporate the division model (from Section 2.3) into
the general planar motion model in Paper IV. This enables us to compensate for radial
distortion, without the need for pre-calibration procedures.

5.3.2 Utilising IMU Data

In this section, we look at how to incorporate IMU data in our methods. We will assume
that the IMU data is pre-processed—this can be achieved using e.g. filtering techniques—
which gives us two angles of the corresponding rotation matrix. Since a UAV can move
in all six degrees of freedom, the relative pose problem consists of finding a translation
vector t ∈ R3, as well as the unknown rotational angle, i.e. there are in total four degrees
of freedom in the calibrated case.

Camera Models for UAVs

Let us assume that the gravity direction is aligned with the y-axis, which is the common
reference direction given by the IMU. Furthermore, the pre-processed IMU data for the
first pose is encoded in R1 and, similarly in R2, for the second pose. The resulting
camera matrices are now given by1

P1 = K1[R1 | 0],

P2 = K2[R2Ry | t],
(5.12)

where Ry is the unknown rotation about the yaw angle (y-axis). In the second part
of the thesis (Papers VI and VII) we will explore indoor positioning methods for
UAVs, and thus continue using homographies for tracking. Therefore, consider a
scene point X ∈ P3 on a plane π. Projecting the first point x1 ∼ P1X = K1R1X̄,
where X̄ ∈ R

3 is the inhomogeneous representation of X, and applying the plane
constraint πTX = 0, where π = (n, 1), gives X = (RT

1 K−1
1 x1, −nT RT

1 K−1
1 x1).

Now, projecting the second point yields

RT
2 K−1

2 x2 ∼
(

Ry − RT
2 tnT

)
RT

1 K−1
1 x1, (5.13)

1Here we deviate from our standard canonical form in order to conform with other authors.

32



5.3. Constrained Motion

where we recognise the homography (in normalised and rectified space)

Hy ∼ Ry − t̂nT, (5.14)

where t̂ = RT
2 t. In the calibrated case, the vectors

y(i)
j := RT

j K−1
j xi, (5.15)

can be pre-computed, and as such, the only unknowns are embedded in Hy from (5.14).
The relation to the full homography H, such that x2 ∼ Hx1, is given by

Hy ∼ RT
2 K−1

2 HK1R1 . (5.16)

This, and other geometrical properties, was used by Ding et al . in [16]. In Papers VI
and VII we leverage this further by considering the floor normal only—this allows us
to construct significantly faster solvers, suitable for real-time applications. Furthermore,
we show that by incorporating IMU data using filtering techniques, we are able to do
further intrinsic calibration, such as correcting for radial distortion.
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Chapter 6

Minimal Problems in Computer Vision

In previous chapters, we have seen a method for estimating the fundamental matrix and
another similar method for estimating a homography between image correspondences,
when the scene points are coplanar. In most systems such image correspondences will be
automatically generated by e.g . matching SIFT descriptors, as described in Section 2.4.
This is, however, not a foolproof method, and mismatched features will occur, and must
therefore be recognised and discarded by the framework in order to get a robust method.
A common way of achieving this is by using RANSAC or one of the many derivations
thereof.

6.1 Random Sampling Consensus

Assuming that the number of outliers is small, the probability of selecting a subset of
point correspondences that are inliers is relatively high. From this simple heuristic, the
essence of random sampling consensus (RANSAC) is captured. Without going into detail,
the algorithm can be outlined as follows

1. Select a small subset of point correspondences, and solve the problem,

2. Evaluate the residuals for all point correspondences (for a suitable cost function),

3. Repeat and select the solution with the largest consensus set.

Here, the set of measurements with residuals smaller than a specified threshold is called
the consensus set. By choosing the minimal subset required to obtain the solution the
number of iterations necessary to pick a subset containing only inliers, by a certain prob-
ability, is as low as possible. This could, at least theoretically, decrease the total time of
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determining the largest consensus set, and thus result in a fast algorithm. Examples of
cost functions will be discussed in Chapter 7.

6.2 Minimal Solvers

A solver that uses the minimal number of points needed for a specific problem is known
as a minimal solver. Estimating the homography from the DLT system requires four
point correspondences as the homography has eight degrees of freedom. Furthermore,
we need at least eight point correspondences for the eight-point algorithm in order to
estimate the fundamental matrix; however, this is not a minimal solver. In fact, due
to Result 6, the fundamental matrix has seven degrees of freedom, but the determinant
constraint is cubic. One cannot apply the method of estimating the null space using
SVD, if trying to incorporate such a constraint. Similarly, we saw the trace constraint
from Result 8, that arises for the case of calibrated cameras, which is also nonlinear.

Polynomial systems of equations frequently arise in computer vision, and other meth-
ods must be used in order to solve these. We shall briefly explain the theory behind one
such method.

6.3 Solving Polynomial Systems of Equations

We will introduce some notation from algebraic geometry in order to outline the theory
behind the action matrix method. Using multi-index notation, let xα denote a monomial
of degree |α|. Our main goal is to solve a polynomial system of equations

f1(x) = 0,
...

fs(x) = 0,

(6.1)

where each polynomial equation can be expressed as f = ∑α cαxα. The set of all
solutions to (6.1) is called an affine variety, and is denoted V( f1, . . . , fs) ⊂ C. LetC[x]
denote the set of polynomials in x with coefficients in C. An ideal I ⊂ C[x] is an
additive group satisfying the absorption property, i.e. if f ∈ I and h ∈ C[x] then h f ∈ I.
Moreover, given a set of polynomials f1, . . . , fs ∈ C[x] we consider the ideal

〈 f1, . . . , fs〉 =
{

s

∑
i=1

hi fi : h1, . . . , hs ∈ C[x]

}
, (6.2)
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which we will refer to as the ideal generated by f1, . . . , fs. The Hilbert Basis Theorem
states that every ideal of C[x] is finitely generated, i.e. given an ideal I ⊂ C[x] there
exist f1, . . . , fs ∈ C[x] such that I = 〈 f1, . . . , fs〉. Thus, the polynomial system of
equations (6.1) is defined by the generated ideal; however, the basis is in general not
unique.

To be able to represent the system of equations uniquely, one must impose a
monomial ordering, e.g . the lexicographic order, the graded lex order or the graded
reverse lex order. Regardless of which monomial ordering is chosen the leading term
(w.r.t. the monomial ordering) is uniquely defined, and we shall denote it LT( f ).
Furthermore, for an ideal I define LT(I) := {LT( f ) : f ∈ I}. Then a finite subset
G = {g1, . . . , gt} ⊂ I is a Gröbner basis if 〈LT(g1), . . . ,LT(gt)〉 = LT(I).

After this exposition one may ask: how does this relate to solving polynomial sys-
tems of equations? The answer lies in the fact that we have efficient ways of computing
a Gröbner basis, by means of Buchberger’s algorithm. For more details regarding the algo-
rithm, and to get a deeper understanding of the subject, the work of Cox et al . [12, 13]
is highly recommended.

6.4 The Action Matrix Method

Let us return to the polynomial system of equations (6.1). Under the assumption that the
system has finitely many solutions, i.e. when V(I) is finite, it follows by the Finiteness
Theorem (see e.g . [13]) that I is zero-dimensional and the quotient space A = C[x]/I
is finite dimensional. Given the coset [ f ] = { f + h : h ∈ I}, consider the opera-
tor Tf : A −→ A, defined by Tf ([g]) = [ f g]. It is easily seen that Tf is linear with
the property that Tf = Tg if and only if f − g ∈ I. Since the quotient space A is
finite-dimensional this operation can be represented by a matrix M f , which is known
as the action matrix. Furthermore, we may select a basis for A, e.g . a monomial ba-
sis B = {[xαj ]}j∈J , typically obtained by (an improved version of ) Buchberger’s algo-
rithm. When the action matrix M f = (mij) acts on the basis elements we obtain a
linear combination of the monomials forming the basis, namely

Tf ([x
αj ]) = [ f xαj ] = ∑

i∈J
mij[x

αi ] . (6.3)

This implies that, for x ∈ V(I),

f (x)xαj = ∑
i∈J

mijx
αi . (6.4)
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By representing the basis B with a vector b, and using the fact that (6.4) must hold for
all basis elements, the problem can be reduced to

f (x)b(x) = MT
f b(x), (6.5)

which we recognise as an eigenvalue problem. Let us recapitulate: given a polynomial
system of equations, use Buchberger’s algorithm to obtain a Gröbner basis. Create the
action matrix and compute the eigenvalues and eigenvectors to extract the solutions.

38



Chapter 7

Bundle Adjustment

The theory so far has dealt with minimising the error locally between two consecutive im-
ages; however, small errors propagate over time and the global prediction of the trajectory
suffers. Furthermore, the DLT equations, and similar methods, measure an algebraic er-
ror, which is not an ideal estimation of the geometric error. As a consequence of these
observations, most modern SLAM systems do at some point minimise the geometric re-
projection error globally; however, exceptions exist and are discussed in Section 7.5. This
is known as bundle adjustment, as the bundle of rays passing through the camera centres
is adjusted to the scene points. In this section, we will try to convey the general idea, and
leave the details to Paper V regarding how to efficiently enforce the planar motion model
in a bundle adjustment algorithm.

7.1 The Geometric Reprojection Error

Let x(j)
i ∈ R

2 denote the measured image point in camera P(j) of the scene point Xi,
which, due to noise, may differ from the estimated measurement, i.e. the corresponding

reprojected image point x̂(j)
i ∼ P(j)Xi. A popular cost function for bundle adjustment

is the sum of squared distances between the reprojected points and the measured points,
known as the geometric reprojection error. There is a strong argument for this; namely, it is
the maximum likelihood estimation under the assumption of Gaussian noise. Assuming
all image points are visible in all views, we may formulate it as a minimisation problem

min
P(j), Xi

M

∑
i=1

N

∑
j=1
‖x(j)

i − ˆ̄x(j)
i ‖

2, (7.1)
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where ˆ̄x(j)
i is the inhomogeneous representation of x̂(j)

i . This is an example of a
nonlinear least-squares problem, which in general can be written as

min
x
‖ε(x)‖2

2, (7.2)

where x ∈ Rm and ε : Rm −→ R
n is the residual vector.

7.2 The Levenberg–Marquardt Algorithm

The objective function (7.2) is generally non-convex and methods constructed with the
purposes of solving such problems are usually iterative. If they converge, one cannot,
in general, guarantee global optimality, but can only hope to find a local optimum.
Therefore, it is often considered beneficial to have a good initial guess, although recent
advances in the field suggest that this may not be necessary if other objectives are consid-
ered instead. We will discuss such methods in Section 7.5, and return to them in the last
part of this thesis (Papers VIII–XII). In the first part of this thesis (Papers I–V), we will
develop a method for extracting a good initial guess (Papers I–II), and use it to globally
minimise the geometric reprojection error (Paper V), as defined in (7.1). In order to
solve (7.1) we will use the Levenberg–Marquardt algorithm (LM) [35, 42], which we will
discuss now.

Using the general form (7.2), consider a neighbourhoodN∆x(x) in which the Taylor
expansion ε(x + ∆x) ≈ ε(x) + J(x)∆x holds. Applying this to each subsequent step
in the iteration yields ε(xi+1) = ε(xi + ∆xi) ≈ ε(xi) + J(xi)∆xi. Hence, each step
should minimise

min
∆xi
‖εi + Ji∆xi‖2

2, (7.3)

where εi := ε(xi) and Ji := J(xi). The approximated expression (7.3) is the linear
least-squares problem, which is known to have a closed-form solution that coincides
with solution to the normal equations, given by

JT J∆xi = JTεi . (7.4)

In general, there is no guarantee that the solution to (7.4) gives an error reduction, as it
assumes that ε can be approximated well by the first order Taylor expansion in N∆x(x);
however, this is not known a priori. One possible solution is to use the Levenberg–
Marquardt algorithm which solves the augmented normal equations(

JT J + µI
)

∆xi = JTεi . (7.5)
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The damping factor µ > 0 can be tuned to ensure that the error is reduced in every step.
Note that if µ is made large enough the sum JT J + µI is diagonally dominant, hence
positive definite, which implies that the update moves in the direction of the gradient, as
in the steepest descent algorithm. On the other hand, assuming that the linearisation ap-
proximates the objective well in an increasing neighbourhood around the current point,
we may choose decreasing values of µ. Secondly, note that the eigenvalues are shifted
along the real axis by the damping factor µ, and therefore convergence can be guaran-
teed if the right-hand side is positive definite, i.e. when all eigenvalues are positive. In
practice, however, the damping factor µ is controlled by some simple heuristics, as an
eigendecomposition is too expensive to compute. If such an approach is used one would
pick the first value of µ that reduces the reprojection error, update the solution accord-
ingly, and repeat the process until the value of the cost function does not decrease by
more than a predefined threshold, or some other suitable stopping criteria.

7.3 Separable Nonlinear Least-Squares Problems

Certain objectives that arise naturally in computer vision are separable least-squares prob-
lems, meaning that they can be written as

‖ε(u, v)‖2
2 = ‖A(u)v− b(u)‖2

2, (7.6)

for variables u ∈ Rp and v ∈ Rq, and (possibly) nonlinear operators A : Rp −→ R
t×q

and b : Rp −→ R
t.

One could, of course, treat this objective as a general nonlinear least-squares prob-
lem of the form (7.2) and simply stack the variables u and v, which is known as joint
optimisation. We will look at another method known as the variable projection method
(VarPro), originally proposed by Golub and Pereyra [24]. While the method has been
around for many decades, the benefits of applying it to computer vision problems just re-
cently emerged in a series of publications by Hong et al . [29–31]. Essentially, it has been
empirically established that the basin of convergence is significantly larger when applying
VarPro compared to LM—it is even possible to converge to the (best known) optima for
several difficult real-life datasets using only random initial starting points, thus making
complex initialisation schemes unnecessary.

We use the nomenclature introduced in [31]. The method makes use of the following
observation: Fix u and solve for the second variable

v∗(u) := arg min
v
‖A(u)v− b(u)‖2

2 = A(u)+b(u) . (7.7)
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Now, inserting (7.7) back into the objectives, gives a problem in u

min
u
‖ε∗(u)‖2

2 := min
u
‖ε(u, v∗(u))‖2

2 = min
u
‖
(

A(u)A(u)+ − I
)

b(u)‖2
2,

(7.8)
where the objective can be simplified to (see e.g . [31] for details)

ε∗(u) =
(

I − Jv(u)Jv(u)
+
)

ε(u, v) . (7.9)

Now, consider solving (7.8) using LM, in which case we seek the Jacobian dε∗(u)
du . Ap-

plying the chain rule, we need to evaluate dv∗(u)
du , which requires one to differentiate a

pseudo-inverse. While this can be done analytically, an approximation known as RW2
(Ruhe and Wedin Algorithm 2, after the second algorithm proposed by the original au-
thors in [51]), is often used. The approximation gives the update

dε∗(u)
du

=
(

I − Jv(u)Jv(u)
+
)

Ju(u, v
∗(u)), (7.10)

which has been shown to have similar convergence properties as the full pseudo-inverse
update, while enjoying reduced computational complexity.

We will use VarPro in the third part of this thesis (Papers VIII–XII), as our second
order method of choice, for a variety of different objectives found in computer vision
literature.

7.4 Schur Complement

In Paper V, it is shown that one does not need to compute and store the complete
Jacobian, but only the non-zero elements. This speeds up performance significantly and
makes it tractable for real-time applications. The main idea is to decompose the Jacobian
using the Schur complement. Assume that the Jacobian J may be decomposed into the
following block structure

J =

[
A B
C D

]
, (7.11)

and define the Schur complement S of block D as S := A− BD−1C. It follows that[
I −BD−1

0 I

] [
A B
C D

]
=

[
S 0
C D

]
. (7.12)

The form (7.12) can be used to boost performance if the size of A, and thus S, is
significantly smaller than D, which is typically the case for bundle adjustment. Due to
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the top-right zero block in (7.12), the parameters related to A can be solved for by back-
substitution. Furthermore, as noted in Section 7.2, positive definiteness is an attractive
property, that can guarantee convergence in certain cases, which is why the following
result is of interest to us. We use the notation X � 0 to denote that X is positive
definite.

Result 9. Let J � 0 be a symmetric matrix, of the form

J =

[
A B

BT C

]
, (7.13)

where C is invertible. Then C � 0 and the Schur complement S = A− BC−1BT � 0.

Proof. Define

X =

[
I −BC−1

0 I

]
, (7.14)

and note that

X JXT =

[
S 0
0 C

]
. (7.15)

Congruence transformations preserve positive definiteness, i.e. for any square matrices Y
and Z, where Z is invertible, the matrix Y � 0 if and only if ZYZT � 0. Furthermore,
a block diagonal matrix is positive definite if and only if each block is positive definite,
which concludes the proof.

If S � 0, the Cholesky decomposition can be used to solve the system

SX = B . (7.16)

This is done by decomposing S = LLT where L is a lower triangular matrix. The
solution to (7.16) can thus be obtained by solving LY = B, by forward-substitution
with Y = LTX, followed by back-substitution of LTX = Y . In general, the Cholesky
decomposition is of order O(n3) for a dense n × n matrix; however, it can be shown
that for sparse matrices the computational complexity is dependent on the number of
non-zero elements in the Cholesky factor L, which is related to the sparsity pattern of S.
In some applications of SLAM, where the sparsity pattern is often very structured, the
Cholesky decomposition can be obtained in O(n) computations [41].
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7.5 Alternative Approaches

Bundle adjustment can be time consuming, and the classic approach has been to es-
tablish an initial solution from pairwise views. If the initial reconstruction is good it
increases the chances for the bundle adjustment algorithm to reach a good reconstruc-
tion result. Furthermore, the number of necessary iterations to reach a local minimum
might decrease.

One way of boosting the performance of the initial solution was proposed in [43]
for the case of 3D point-cloud registration. They show that computing the initial poses
of cameras in small loops, i.e. solving the pose problem for groups of three, four, or five
cameras, can achieve superior performance compared to pairwise methods. This is done
using minimal solvers.

Another attractive way is to completely skip the initialisation step and rely on the
bundle adjustment algorithm. It has been shown in a number of recent publications that
the VarPro algorithm exhibits a large basin of convergence, which makes this a feasible
approach [30, 31].

Minimising the reprojection error is not the only way to enforce consistency and
feasibility of the 3D reconstruction. Another approach, that has been used successfully
with dense reconstructions, is minimising the photometric error [1, 14, 79]. When
minimising the reprojection error we rely on feature-based detectors to extract keypoints,
which introduce errors, partly originating from pixel noise. The photometric error comes
closer to the source by directly working with the pixels, and minimises the consistency
of neighbouring image patches. In [79] a low memory VarPro algorithm was proposed,
making it feasible to consider large scale models for photometric bundle adjustment.

Another important question to be raised is: “Are large-scale 3D models really nec-
essary for accurate visual localisation?” which is also the title of the paper [53], where
the authors consider geo-tagged 2D images, as an alternative to 3D models. The main
argument for doing so is that large scale 3D models are hard to acquire and maintain,
whereas the 2D models are significantly easier. They show that it is possible to use visual
navigation with enough relevant databases, and get results comparable to the state-of-the-
art.
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Chapter 8

Low-Rank Matrix Completion and
Applications to Computer Vision

Many problems in computer vision can be treated as low-rank approximation, i.e. a min-
imisation problem where one seeks to approximate a given data matrix while encouraging
solutions with low rank. The Eckart–Young theorem is one of the earliest results in this
field.

Result 10 (Eckart–Young [19]). Let X0 ∈ Rm×n, where m ≥ n, and consider finding
the best rank-k approximation

min
rank(X)≤k

‖X − X0‖2
F . (8.1)

Let X0 = ∑n
i=1 σi(X0)uiv

T
i be an SVD of X0, then

X∗ =
k

∑
i=1

σi(X0)uiv
T
i , (8.2)

is an optimal solution to (8.1).

The Eckart–Young theorem is well-known in the community, and the fact that it has
a closed-form solution is far from obvious. This can be illustrated through the following,
seemingly trivial generalisation, that does not behave as well. Consider

min
rank(X)≤k

‖X − X0‖2
F + c(X), (8.3)

where c is a “nice” convex function. In general, there is no closed-form solution to this
problem, nor is it differentiable, or even convex. All of this together makes it difficult to
use local optimisation, in order to find a global optimum.
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(a) (b)

Figure 8.1: Examples of convexification. The function corresponding to the red curve is non-
convex and has two local minima, where only one of them is globally optimal. If one would
convexify the objective (black dashed line) as in (a), the global optimum is not preserved. When
convexification is done with care, as in (b), the global optima of the convexified function and the
original function coincide. In this case, the convex function is the convex envelope of the original
function.

8.1 Convexification

One way of tackling problems of the form (8.3) is to use convexification, i.e. to replace
the cost function with a convex counterpart. The benefit of this approach is that you
can find the global minimum of your new cost function; however, this does not neces-
sarily mean that it is the global minimum of the original problem formulation, which is
illustrated in Figure 8.1.

It is natural to ask: how does one obtain a convexification such that the global optima
are preserved? The answer is the l.s.c. convex envelope of f : X −→ R, denoted co f ,
which is defined as

co f (x) := sup {g(x) | g convex and g ≤ f on X} . (8.4)

In fact, the convexification shown in Figure 8.1b is the convex envelope of the original
function. Unfortunately, it can be hard to compute the convex envelope of a function;
hence, this definition is of less practical importance. One way of explicitly computing
the convex envelope of a function f is by using the Fenchel conjugate, denoted by f ∗,

f ∗(y) := sup
x
〈x, y〉 − f (x) . (8.5)

Note that for any choice x ∈ X, the function h(x) = 〈x, y〉 − f ∗(y) ≤ f (x) is
a hyperplane. Therefore, the conjugate can be interpreted as a supporting hyperplane
with slope y, see Figure 8.2a. Now, in order to construct the convex envelope, we sim-
ply need to consider the conjugate of the conjugate function, known as the biconjugate.
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(a) (b)

Figure 8.2: (a) Example of hyperplanes, h(x) = xy− f (y), with the supremum marked (thicker
line). (b) The pointwise maximum of the hyperplanes form the biconjugate, which is the l.s.c.
convex envelope.

This is the pointwise supremum of all supporting hyperplanes, which is illustrated in Fig-
ure 8.2b.

Result 11. The l.s.c. convex envelope is the biconjugate, i.e. for a function f : Rn −→ R

co( f ) = ( f ∗)∗ := f ∗∗ . (8.6)

Computing the biconjugate is a useful tool; however, for more complex cost func-
tions, one might not be able to compute it explicitly. For such problems, convex relax-
ations are an alternative, i.e. convex cost functions mimicking the original cost functions
as much as possible, but perhaps without theoretical guarantees—such as ensuring that
the global optima coincide.

In the following sections, we will focus on low-rank approximations. This means
that we are interested in solving problems such as

min
rank(X)≤k

‖A(X)− b‖2, (8.7)

where A : Rm×n −→ R
p is a linear operator and b ∈ Rp is a data term. We can

write this as
min

X
ιk(X) + ‖A(X)− b‖2, (8.8)

where ιk is the indicator function

ιk(X) =

{
0, if rank(X) ≤ k,

∞, else .
(8.9)
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When the rank of the sought matrix is not known a priori, one may also be interested in
studying objectives of the form

min
X

µ rank(X) + ‖A(X)− b‖2, (8.10)

where the parameter µ controls the impact of the rank—larger values of µ encour-
ages solutions with lower rank. Sometimes we refer to (8.7) as the hard rank problem,
whereas (8.10) is referred to as the soft rank problem. In both cases, however, for a general
operatorA, one cannot find explicit formulations for the convex envelope, and is forced
into convex relaxations (if possible).

8.2 The Nuclear Norm Heuristic

The rank function is non-convex and discontinuous, hence hard to optimise numerically.
A common convex relaxation is therefore to use the nuclear norm, defined as the sum of
the singular values

‖X‖∗ :=
n

∑
i=1

σi(X) . (8.11)

This relaxation is theoretically justified, through the following result.

Result 12 (Fazel [20]). The convex envelope of the rank function, restricted to the
set {X ∈ Rm×n | σ1(X) ≤ 1}, is the nuclear norm.

Consequently, instead of optimising (8.7) or (8.10) the convex surrogate

min
X

µ ‖X‖∗ + ‖A(X)− b‖2, (8.12)

has been used in a multitude of applications, some of which exhibited state-of-the-art per-
formance at the time. One issue, however, concerning this objective, is revealed through
a simple example. Consider

min
X

µ ‖X‖∗ + ‖X − X0‖2
F = min

X

n

∑
i=1

µ σi(X) + (σi(X)− σi(X0))
2 , (8.13)

where we restrict the optimisation to the singular values. By completing squares, we note
that the sum is minimised if

σi(X) =

[
σi(X0)−

1
2

µ

]
+
, (8.14)

where [·]+ = max{0, ·}. In a typical scenario, we are observing a low-rank struc-
ture X0, but noise in the measurement data obstructs us from retrieving the true signal.
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Figure 8.3: Given an initial measurement matrix with noise X0 of rank ten, we wish to find the
best rank-5 matrix. We would like to achieve what the rank penalty does (red), but with the nuclear
norm we get a heavily altered solution (yellow).

This causes the smaller singular values to be non-zero. Ideally, as in the case of the
Eckart–Young theorem, we would simply force these smaller singular values to be zero,
while leaving the true signal (the larger singular values) untouched. This is where the
problems of the nuclear norm emerge. Regardless of the size of the singular values, we
remove at least 1

2 µ from the true signal, cf . (8.14), using this heuristic, i.e. suppres-
sion of noise requires equal or greater suppression of the true signal. This phenomenon
is known as shrinking bias, and is illustrated in Figure 8.3. This motivates the use of
stronger alternatives.

8.3 Non-Convex Relaxations

From the previous section, we see a need to penalise singular values differently—why pe-
nalise large singular values, when they are likely to be correlated to the sought structure?
We may consider penalties such as

p(X) =
n

∑
i=1

f (σi(X)) , (8.15)
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Figure 8.4: Different non-convex regularisers penalising smaller singular values proportionally
harder than the larger ones. The nuclear norm (dashed) is used as a reference.

for some function f . In order to penalise small singular values proportionally harder than
the larger ones, these functions typically have non-increasing derivatives on [0,∞), i.e.
are concave. In Figure 8.4 we show a variety of such penalties acting on the singular
values, where the dashed line corresponds to the nuclear norm.

First of all, since we left the convex realm, we are dealing with potentially discontin-
uous objectives. Furthermore, far from all penalties on the form (8.15) are theoretically
justified. We still want to solve problems of the form (8.7) or (8.10), and therefore we
must ask ourselves: when do the global minima coincide? A problem with the nuclear
norm approach is that it does not use the potential contribution from the convex datafit
term ‖A(X)− b‖2. For generalA and b there are no explicit expressions available, but
one may consider the simple cases

fk(X) = ιk(X) + ‖X − X0‖2
F, (8.16)

and

fµ(X) = µ rank(X) + ‖X − X0‖2
F . (8.17)

Now, including the datafit terms, what are the convex envelopes of fk and fµ? By now

we know that this can be answered by computing f ∗∗k and f ∗∗µ , respectively. Successfully
doing so—hopefully with explicit expressions—can lead to global minima not moving.
In [33] these objectives were studies, or, in fact, a family of functions, in which (8.16)
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and (8.17) are special cases. For the soft rank problem, it was found that

f ∗∗µ (X) = Rµ(X) + ‖X − X0‖2
F, (8.18)

where the regulariserRµ has an explicit expression

Rµ(X) =
n

∑
i=1

(
µ− [

√
µ− σi(X)]2+

)
. (8.19)

Note that (8.19) is a concave function f (s) = µ−
[√

µ− s
]2
+

, acting on the singular
values, but with the added benefit of having the global optima coincide for this particular
case. It is natural to ask, when do the global minima of (8.10), coincide with the global
minimisers of

min
X
Rµ(X) + ‖A(X)− b‖2 ? (8.20)

It was shown in [9] that they do when ‖A‖ < 1. Compared to the nuclear norm, this
is a great improvement, but there are still some gaps to fill.

In order to handle non-convex objectives, one often turns to first order methods, such
as splittings schemes and subgradient based methods. These are known to be initially fast
in convergence but can be slow in the neighbourhood of a minimum [4]. This is rarely
an issue with low-level imaging objectives but is becoming clear when dealing with more
complex objectives, such as those encountered in rigid and non-rigid structure-from-
motion. We will demonstrate this in Paper X, and show how shrinking bias manifests
itself in various computer vision applications.

Typically, state-of-the-art methods in structure-from-motion rely on second order
methods. These methods are known to be robust—at least empirically—but theoreti-
cal optimality guarantees are often only available for simple objectives. For interesting
objectives, there is always the risk of ending up in a local minimum.

8.4 Bilinear Parameterisation

So far we have only discussed how one can encourage a matrix to have low rank by
penalising the singular values. A completely different approach is to use bilinear pa-
rameterisation. Note that a rank-k matrix X ∈ Rm×n can be written as X = BCT ,
where B ∈ Rm×k and C ∈ Rn×k. The original problem formulation (8.7) can now,
equivalently, be transformed into

min
B,C
‖A(BCT)− b‖2, (8.21)
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which is differentiable, and thus second order methods, such as LM and VarPro, are
applicable.

Note that the decomposition X = BCT is not unique; indeed, given an invertible

matrix P ∈ R
k×k, we have B̂ = BP ∈ R

m×k and Ĉ = CP−T ∈ R
n×k, with

B̂ĈT
= X.

Now, this formulation makes sense when the sought rank is known. But what if it is
not? One approach is to bring back a type of penalty, which encourages such solutions.
Since the nuclear norm heuristic has been popular in the linear setting, it is natural to
consider it in the bilinear setting as well. It turns out that there is a variational form of
the nuclear norm [47],

‖X‖∗ = min
X=BCT

‖B‖2
F + ‖C‖2

F
2

, (8.22)

hence, a bilinear soft rank equivalent to (8.10) could be formulated as

min
B,C

µ

2

(
‖B‖2

F + ‖C‖2
F

)
+ ‖A(BCT)− b‖2

F . (8.23)

Let us look at the differences between (8.10) and (8.23). In the linear case we have a
convex, but non-differential objective. In the bilinear case, however, we have a twice
differential objective, but we may have introduced additional stationary points, e.g. the
point (B, C) = (0, 0).

To some relief, it was shown in [2, 25], that any local minimiser (B, C) is globally
optimal, as long as rank(BCT) < k, where k is the number of columns. This, however,
does not compensate for the shrinking bias, and, even in this setting, the nuclear norm
penalty has been shown to be too weak for more complex objectives. Nevertheless, it has
not stopped people from using it to achieve good performance for certain tasks, e.g. by
reducing the parameterisation, as in [7]. While doing this, however, many of the initial
theoretical optimality guarantees are lost.

The main accomplishment in the third part of this thesis (Papers VIII–XII) is the
unification of non-convex penalties and bilinear parameterisation—by doing so we are
leveraging the best of two worlds: the theoretical justification and guarantees of optimal-
ity from the linear framework and the convergence speed from the bilinear counterpart.
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Chapter 9

Closing Words

The main contributions of this thesis are threefold. First is the extension of previous
work for monocular cameras to include a binocular vision system, and the extension
to minimise the geometric reprojection error, instead of a purely algebraic error, in a
bundle adjustment algorithm. The latter was not well-researched, although outlined
in [73], prior to Paper V. Furthermore, the radial distortion auto-calibration algorithm
presented in Paper IV was a novel addition to the existing literature. This part of the
thesis has focused on the tracking problem of SLAM, both locally and globally, but there
are other aspects, such as mapping and practical implementation on real-time systems
that are left out. These parts would be interesting to explore in the future. When having
access to the mobile platform, other sensory data can be utilised and incorporated to
increase performance. Perhaps one could incorporate the IMU data for this setup as
well, as was done in the second part of the thesis (Papers VI and VII) concerning UAV
navigation. Using an IMU would also allow us to fix the scale in metric units, and rid
ourselves of the global scale ambiguity.

In the second part, we analysed another constrained motion problem, namely that
of a UAV with IMU data available. Here we proposed a method surpassing the state-
of-the-art in terms of speed and accuracy for indoor navigation, with partially calibrated
cameras. More specifically, we proposed the first-ever minimal solver capable of simulta-
neous estimation of motion parameters, focal length and distortion profile while being
tractable for real-time applications. While the assumption of having a ground floor avail-
able at all times worked well in the datasets used in these papers, it is easy to think of
scenarios where they would fail. It would be interesting to explore other methods by
relaxing this constraint.

In the final part, we built a bilinear framework, in which many famous low-rank
objectives are compatible. This allowed us to achieve faster convergence speed, while still
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having theoretical guarantees. In Paper VIII we discussed some situations in which global
optimality can be achieved; however, with missing data, such conditions are not met. It
would be interesting to analyse under which conditions global optimality can be achieved
with missing data present. Furthermore, one of the benefits of using bilinear optimisation
is that we have access to the bilinear factors explicitly. In e.g. SLAM, this is useful as the
factors can be interpreted as the camera matrices and scene points, respectively. Adding
constraints to the bilinear factors would improve the practical aspects of the framework;
however, one would lose the optimality guarantees.

As an example consider the structure-from-motion problem without missing data,
for orthographic cameras, i.e. the (stacked) scene points X ∈ R3×M are projected in
the i:th frame as xi = RiX. Here Ri ∈ R2×3 is the first two rows of the i:th camera
rotation, thus RiR

T
i = I2. Assuming N cameras, we may stack all rotation matrices Ri

into R ∈ R2N×3, and the resulting objective is given by

min
R∈R2N×3, X∈R3×M

‖RX −M‖2
F, subject to RiR

T
i = I2, for i = 1, . . . ,N,

(9.1)
where M is the measured image points. Such, and many other interesting objectives
involving constraints on the bilinear factors, would benefit the framework. Therefore, it
would be of interest to analyse optimality conditions given these constraints.
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Chapter 10

Overview of Papers

Paper I In this paper, we show that it is possible to retrieve the relative pose between
two cameras positioned on a mobile platform under the assumption that the camera cen-
tres are located at the same height above the floor. This is done by decomposing the
inter-image homographies and separating the translational and rotational components
by a series of algebraic observations. Finally, the problem can be formulated as a non-
convex optimisation problem in the translational components, and a method for solving
this problem robustly and efficiently is proposed. The rotational component can later be
obtained by rearranging the elements of the inter-image homographies leading to a min-
imisation problem, which, it is shown, has a closed-form solution. By using synthetically
generated image sequences, the method for estimating the relative parameters is analysed.
It is proven to be comparable in accuracy and robustness to the method proposed by
Wadenbäck and Heyden [75], which estimates the motion parameters of the monocular
case.

Authors contributions: AH came up with the problem. MVÖ outlined the theory, con-
ducted the experiments and wrote the paper.

Paper II In this paper, we generalise the work conducted in Paper I by allowing the
cameras to be positioned at different heights. This makes the algorithm more tractable
for real-life situations, as it is hard to mount the cameras exactly at the same height. It is
shown that much of the theory from Paper I can be reused by adding an extra parameter
to the non-convex optimisation problem. Furthermore, by imposing a constraint on the
motion, simulating a calibration sequence of the mobile platform, it is shown that the
height can be estimated more robustly.
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Authors contributions: AH came up with the problem. MVÖ outlined the theory, con-
ducted the experiments and wrote the paper.

Paper III In this paper, several novel polynomial solvers for homographies compatible
with the general planar motion model was presented. The sensitivity to noise is com-
pared to the existing minimal solver (see Section 5.3.1) and the traditional 4-point solver
(see Section 3.2), and is demonstrated to have a median error between the corresponding
values of the other solvers. For real data, where the general planar motion model is only
a crude approximation of the actual scene, the proposed solvers have an advantage. This
has applications to autonomous driving, where the mechanical construction of vehicles
often allow them to perform motions not valid in the general planar motion model. Fur-
thermore, it is significantly faster than the existing minimal solver, and comparable in
speed to the traditional 4-point solver.

Authors contributions: MVÖ came up with the idea, outlined the theory, conducted
the experiments and wrote the paper. Magnus Oskarsson suggested using a sampled
basis instead of a Gröbner basis to reduce the elimination template.

Paper IV In this paper, we propose polynomial solvers capable of rectifying images
taken with cameras suffering from radial distortion (see Section 2.2), while enforcing the
general planar motion model. Furthermore, we propose a fast minimal solver for the case
when the overhead tilt is known, which has applications to aerial imagery.

Authors contributions: MVÖ came up with the idea, outlined the theory, conducted the
experiments and wrote the paper.

Paper V In this paper, a specific bundle adjustment method is devised, which refines
the local estimates and the scene points obtained by the method developed in the Papers I
and II. The assumption of constant tilt and rigid body motion gives rise to a specific
block structure of the Jacobian, and standard methods for sparse bundle adjustment are
not directly applicable; however, it is shown that by nesting Schur complements, the
method can take advantage of the sparsity. Furthermore, experiments show a physically
correct solution, with an advantage compared to generic bundle adjustment solvers.

Authors contributions: MW outlined the monocular case in his PhD thesis, but it did
not lead to a publication. MVÖ revived the idea after extending it to the binocular case,
and outlined the theory and conducted the experiments. MVÖ and MW jointly wrote
the paper.
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Paper VI In this paper, we propose a minimal solver for indoor UAV navigation, capa-
ble of incorporating the IMU data. We treat the case of a partially calibrated setup, where
the focal length is unknown. In this setting, we show that our method is significantly
faster than state-of-the-art methods, while also returning superior positioning estimates.

Authors contributions: MVÖ came up with the idea, and outlined the theory, and
constructed the minimal solvers. PP collected the UAV sequences with ground truth.
MVÖ and PP conducted the experiments together. MVÖ, MW, and PP wrote most of
the paper, with some sections contributed from KÅ and AH.

Paper VII In this paper, we once again consider UAV navigation; however, this time we
propose the first-ever minimal solver for simultaneous radial distortion correction, focal
length and motion parameter estimation, incorporating IMU data. This is accomplished
by utilising existing filtering techniques of IMU data, allowing for accurate estimation
of all angles—including the yaw angle. Since our method is capable of calibrating the
distortion profile and intrinsic parameters, we have made calibration procedures obsolete.
Furthermore, we perform on par or better than state-of-the-art methods that rely on pre-
calibration procedures, while also being able to run in real-time.

Authors contributions: PP came up with the idea to use filtering techniques to avoid
IMU drift. MVÖ outlined the theory and implemented the solvers. PP and MVÖ made
the experiments together. The paper was written by MVÖ, PP, and MW with feedback
from KÅ and AH.

Paper VIII In this paper, we propose using bilinear parameterisation where splitting
methods are commonly used, to make objectives smooth. This allows for using second
order methods, which are known to exhibit good convergence properties. We show on a
variety of different pattern recognition and computer vision problems, that our method
performs as good or better than the state-of-the-art.

Authors contributions: CO had the initial idea. MVÖ proved Theorem 1, and CO
proved the theorems concerning low-rank optima. MVÖ conducted most of the experi-
ments, with a VarPro implementation by CO. MVÖ and CO wrote the paper jointly.

Paper IX In this paper, we devise a fixed rank version of the bilinear method proposed
in Paper VIII, and again show similar performance boosts. A toy example illustrates how
one may avoid local minima by overparameterisation, and for real data, we experiment
on a motion capture dataset. The results indicate a more robust performance than regular
VarPro implementations when using random initialisations.
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Authors contributions: The idea was developed jointly by CO and MVÖ. MVÖ ex-
tended the theory from Paper VIII to this case. The paper was written by MVÖ with
feedback from CO.

Paper X In this paper, we introduce a new regulariser, fusing two popular methods.
This way we are able to combine the best of two worlds by encouraging bias reduction
while enforcing low-rank solutions. Furthermore, we investigate the effect of shrinking
bias, and how it manifests itself differently in various computer vision applications.

Authors contributions: CO came up with the idea. MVÖ developed the theory and
conducted the experiments. MVÖ and CO wrote the paper jointly.

Paper XI In this paper, we propose a bilinear framework for efficient optimisation of
weighted nuclear norm objectives. Compared to standard ADMM implementations the
proposed method performs superior, which is validated on several rigid and non-rigid
structure-from-motion test sets.

Authors contributions: CO came up with the idea. The theory was developed by JPI,
CO, and MVÖ. More specifically, CO did the initial theory and identified the space S ,
as well as the theory for how to extend the problem to non-square matrices. MVÖ con-
tributed with relaxing the space S to the space of superstochastic matrices, which is
essential to prove the main theorem. JPI did all the experiments and wrote most of the
paper.

Paper XII In this paper, the regulariser from Paper X is modified to fit the bilin-
ear framework and additional experiments confirm that using the proposed framework
greatly increases the performance compared to using splitting schemes such as ADMM,
for more demanding applications, such as non-rigid structure-from-motion. We also mo-
tivate this theoretically by showing a novel variational formulation proving equivalence
between the bilinear and the linear objectives of the fused regulariser.

Authors contributions: The idea and theory were jointly developed by MVÖ and CO.
JPI conducted the experiments, and MVÖ, CO, and JPI wrote the paper together.

All papers are reproduced with permission of their respective publishers.
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[62] M. Valtonen Örnhag and A. Heyden. “Generalization of Parameter Recovery in
Binocular Vision for a Planar Scene”. In: International Journal of Pattern Recogni-
tion and Artificial Intelligence 33.11 (2019).
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[70] M. Valtonen Örnhag and M. Wadenbäck. “Enforcing the General Planar Motion
Model: Bundle Adjustment for Planar Scenes”. In: Pattern Recognition Applica-
tions and Methods. ICPRAM 2019. Lecture Notes in Computer Science. Vol. 11996.
Springer International Publishing, 2020, pp. 119–135.
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Relative Pose Estimation in Binocular Vision for a Planar Scene
using Inter-Image Homographies

MARCUS VALTONEN ÖRNHAG AND ANDERS HEYDEN

Centre for Mathematical Sciences, Lund University

Abstract: In this paper we consider a mobile platform with two cameras directed towards
the floor mounted the same distance from the ground, assuming planar motion and constant
internal parameters. Earlier work related to this specific problem geometry has been carried
out for monocular systems, and the main contribution of this paper is the generalisation to
a binocular system and the recovery of the relative translation and orientation between the
cameras. The method is based on previous work on monocular systems, using sequences of
inter-image homographies. Experiments are conducted using synthetic data, and the results
demonstrate a robust method for determining the relative parameters.

1 Introduction

In robotics research, it is of interest to accurately track the position of a mobile robot
relative to its surroundings. The emergence of artificial intelligence and autonomous
vehicles in recent years demand robust algorithms to handle such problems. During
the years of research in the field many kinds of sensors have been used—LIDAR, rotary
encoders, inertial sensors and GPS, to mention a few—and often in combination. The
type of sensor one chooses to work with restricts what algorithms that can be used, and
how the resulting map of the robot and its surroundings will look.

One sensor of particular interest for the robotics and computer vision community is
the image sensor and there are many reasons why it is popular. One important factor is
that the wide range of algorithms used in computer vision, e.g . visual feature extraction
and pose estimation, can be used in this setting; however, from an industrial point of view
image sensors are an often considered design choice since they are relatively cheap com-
pared to other sensors. Furthermore, they are often available on consumer products, such
as smartphones and tablets, where similar techniques can be used, e.g. in Augmented Re-
ality (AR). With image sensors one is not limited to sparse 3D clouds of feature points,
but can model the map using dense and textured 3D models.

Visual SLAM systems have been developed for nearly three decades, with [5] be-
ing one of the first. Since then, several improvements have been made, and with the
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aid of modern computing power, a variety of methods for real-time SLAM are avail-
able. Among the more recent once are MonoSLAM [1], LSD-SLAM [2] and ORB-
SLAM2 [10], where the latter includes support for monocular, stereo and RGB-D cam-
eras.

2 Related Work

In epipolar geometry, the fundamental matrix, introduced by [3] and [6], has been a
tool for many algorithms concerning scene reconstruction; however, planar motion is
known to be ill-conditioned, see e.g . [7]. The problem geometry considered in this
paper is forced to planar motion, which is common in e.g . indoor environments. To
overcome this issue algorithms that take advantage of planar homographies have been de-
vised, which by construction are constrained to planar motion and therefore do not suffer
from being ill-conditioned. Some early work on planar motion using homographies in-
clude that of [8] and [4]. More recent work on ego-motion recovery in a monocular
system using inter-image homographies for a planar scene has been covered in [13] for
a single homography and by the same authors for several homographies in [12]. In [14]
the same methods are used to calibrate the fixed parameters initially, transforming the
subsequent problem to a two-dimensional rigid body motion problem.

The stereo rig problem involving two cameras with fixed relative orientation is investi-
gated for auto-calibration in [7]. In [11] a method for multi-camera platform calibration
using multi-linear constraints is developed; however, this method does not rely on the
inter-image homographies, but rather using the camera matrices.

3 Theory

3.1 Problem Geometry

In this paper we consider a mobile platform with two cameras directed towards the
floor mounted the same distance from the ground. By a suitable choice of the world
coordinate system the cameras move in the plane z = 0 and relative to the ground plane
positioned at z = 1. Both cameras are assumed to be mounted rigidly onto the platform
and no common scene point is assumed to be visible in the cameras simultaneously.
Furthermore, the mobile platform’s centre of rotation is assumed to be located in the first
camera centre. In this setting the second camera centre is connected to the first by a rigid
body motion.
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The 3D rotations are parametrised using Tait–Bryan angles

R(ψ, θ, ϕ) = Rx(ψ)Ry(θ)Rz(ϕ), (1)

where Rx, Ry and Rz denote the rotation around the respective coordinate axes with a
given angle. The problem geometry is illustrated in Figure 1.

z = 1

plane normals

z = 0

Figure 1: The problem geometry considered in this paper. The cameras are assumed to move in
the plane z = 0 and the relative orientation between them as well as the tilt towards the floor
normal is assumed to be fixed as the mobile platform moves freely.

3.2 Camera Parametrisation

As in [13], consider two consecutive images, A and B, for the first camera. The camera
matrices are then

PA = Rψθ [I | 0],

PB = Rψθ Rϕ[I | −t],
(2)

where Rψθ is a rotation θ around the y-axis followed by a rotation of ψ around the
x-axis. The movement of the mobile platform is modelled by a rotation ϕ around the
z-axis, corresponding to Rϕ and translation vector t.
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The camera matrices for the second camera can be parametrised as

P′A = Rψ′θ′RηTτ [I | 0],

P′B = Rψ′θ′RηTτ Rϕ[I | −t],
(3)

where Rψ′θ′ is the tilt, defined as for the first camera. Furthermore, Rη is a fixed rotation
by η degrees around the z-axis relative to the first camera, and τ is the rigid body transla-
tion vector between the first and the second camera centre. The matrix Tτ corresponds
to a translation by τ defined as Tτ = I− τnT , where n = (0, 0, 1)T is a floor normal.

3.3 Homographies

Given point correspondences x1 and x2, in homogeneous coordinates, the homogra-
phy H transforms the points such that x2 = λHx1, where λ 6= 0 is due to universal
scale ambiguity. In [13] the homography for the first camera is derived and is given by

λH = Rψθ RϕTtRT
ψθ . (4)

Similarly, the homography H ′ for the second camera is given by

λ′H ′ = Rψ′θ′RηTτ RϕTtT−1
τ RT

η RT
ψ′θ′ . (5)

3.4 Parameter Recovery

By separating the fixed angles from ϕ and the translation t the following relation holds

RϕTt = λRT
ψθ HRψθ = λ′T−1

τ RT
η RT

ψ′θ′H
′Rψ′θ′RηTτ , (6)

It is shown in [13] how to recover the parameters for the monocular case, and by doing
so the parameters ψ, θ, ϕ and t as well as ψ′ and θ′ can be recovered; the latter two from
treating the second camera as a monocular system. Furthermore, we shall assume that all
homographies H are normalised such that det H = 1.

Recovering the Relative Translation

The relative translation and rotation can be separated by putting (6) in the form

Tτ RϕTtT−1
τ = λ′RT

η RT
ψ′θ′H

′Rψ′θ′Rη, (7)

and multiplying with the transpose from the left on both sides yield

TT
t−τ RT

ϕTT
τ Tτ RϕTt−τ = λ′RT

η RT
ψ′θ′H

′T H′Rψ′θ′Rη . (8)
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The left hand side of (8) can be simplified to

L =

 1 0 `1
0 1 `2
`1 `2 `3

 , (9)

where
`1 = τx − tx − τy sin ϕ− τx cos ϕ,

`2 = τy − ty + τx sin ϕ− τy cos ϕ,

`3 = k1τx + k2τy + cτ2
x + cτ2

y + |t|2 + 1,

(10)

and
k1 = 2(tx cos ϕ− ty sin ϕ− tx),

k2 = 2(tx sin ϕ + ty cos ϕ− ty),

c = 2(1− cos ϕ) .

(11)

The eigenvalues of L from (9) are given by λ2 = 1 and λ1, λ3 such that
λ1λ3 = `3 − `2

1 − `2
2 = 1. Furthermore, the right hand side of (8) has the same

eigenvalues as H ′T H ′, as they are similar. Since the sum of the eigenvalues is the trace
of the corresponding matrix, the following relation holds

tr H ′T H ′ = 2 + `3, (12)

which is independent of η. By letting h = tr H ′T H − 3− |t|2 the relation becomes

k1τx + k2τy + cτ2
x + cτ2

y − h = 0 . (13)

The other invariants do not give any new relations for τ since, det L = 1 and
1
2

(
(tr L )2 − tr L 2

)
= tr L .

Solving for the Relative Translation

With only one pair of homographies one cannot determine τ explicitly; however, using
multiple pairs one equation on the form (13) for each pair of homography is given, which
yields a system of equations

k(1)1 τx + k(1)2 τy + c(1)(τ2
x + τ2

y )− h(1) = 0,

k(2)1 τx + k(2)2 τy + c(2)(τ2
x + τ2

y )− h(2) = 0,

...

k(n)1 τx + k(n)2 τy + c(n)(τ2
x + τ2

y )− h(n) = 0 .

(14)
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The system in (14) is over-determined for n > 2, hence minimising

min
τ∈R2

n

∑
i=1

∣∣∣k(i)1 τx + k(i)2 τy + c(i)(τ2
x + τ2

y )− h(i)
∣∣∣2 , (15)

gives the desired result. This can be re-formulated as

min
τ∈R2

‖Kτ + cτTτ − h‖2
2, (16)

where

K =


k(1)1 k(1)2

k(2)1 k(2)2
...

...

k(n)1 k(n)2

 , c =


c(1)

c(2)

...

c(n)

 and h =


h(1)

h(2)

...

h(n)

 . (17)

By introducing a new variable r = |τ|2, an equivalent problem is obtained

min
τ∈R2, r=|τ|2

‖Kτ + cr− h‖2
2 = min

x∈R3, r=|τ|2
‖Mx− h‖2

2, (18)

where x = (τx, τy, r)T and M = [K | c], where the objective function can be written
as

‖Mx− h‖2
2 = xTQx + dTx + hTh, (19)

where Q = MT M and dT = −2hT M. In conclusion, one may consider minimising
f (x) = xTQx + dTx, subject to x2

1 + x2
2 − x3 = 0. Note that, the constraint can be

written as xT Ax + bTx = 0, where

A =

1
1

0

 and b =

 0
0
−1

 . (20)

The Lagrangian is given by

L (x; λ) = xTQx + dTx + λ(xT Ax + bTx), (21)

and solving ∇xL (x; λ) = 0 results in

x = −1
2
(Q + λA)−1(d + λb) . (22)

The constraint ∇λL (x; λ) = 0 yields a rational equation in λ, which can be turned
into finding the roots of a fifth degree polynomial. This in turn can be translated into an
eigenvalue problem, and solved robustly. Using this approach solving (16) takes∼100 µs
which is suitable for real-time applications. Furthermore, due to the precision of modern
eigenvalue solvers, the error is usually negligible.
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Solving for the Relative Orientation

Given τ from the previous step consider (6) and multiply the first homography with the
matrix corresponding to the translation τ. This yields

Tτ RT
ψθ HRψθT−1

τ ∼ RT
η RT

ψ′θ′H
′Rψ′θ′Rη, (23)

where η is the only unknown parameter. Define W = Tτ RT
ψθ HRψθT−1

τ and W ′ =

RT
ψ′θ′H

′Rψ′θ′ and note that W and W ′ share the same eigenvalues since they are similar

and the corresponding eigenvectors are rotated η degrees.
Let us recall that the null space of a matrix is spanned by the right-singular vectors

corresponding to zero—or due to noise, vanishing—singular values. Using the same ap-
proach as in [12] we conclude that nulldim W ′TW ′ = 1. Consequently, the eigenvec-
tors spanning the null spaces, x ∈ N (W TW) and x′ ∈ N (W ′TW ′), can be obtained
using SVD—this ensures that we work with real eigenvectors.

We will use the following theorem to recover η robustly, using all available pairs of
homographies.

Theorem 1. Let Y ,Y ′ ∈ R
3×N and non-zero. Furthermore, let Rη = Rz(η) be a

rotation matrix, corresponding to a rotation of angle η around the third axis. Then

min
η∈(−π,π]

λ 6=0

‖Y ′ − λRηY‖F, (24)

is solved when

ηopt = α +

{
0, if yT

3 y′3 > 0,

π, otherwise,
(25)

where α may be expressed using the programming friendly atan2 function,

α = atan2
(

yT
1 y′2 − yT

2 y′1, yT
1 y′1 + yT

2 y′2
)

. (26)

Here yi denotes the column vector of dimension N corresponding to the i:th row of Y . The
vectors y′i are defined analogously. The angles are considered as equivalence classes, where
η ≡ η + 2πk, k ∈ Z , with the class representative being in the interval (−π,π].

Proof. Using the relation between the Frobenius norm and the trace, the square of the
objective function can be simplified

‖Y ′ − λRηY‖2
F = tr

[
(Y ′ − λRηY)(Y ′ − λRηY)T

]
= tr Y ′Y ′T − λ tr Y ′YT RT

η

− λ tr RηYY ′T + λ2 tr RηYYT RT
η .

(27)
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Since the trace is invariant under cyclic permutations it follows that the last term is
independent of η. Furthermore,

tr Y ′YT RT
η = tr

((
Y ′YT RT

η

)T
)
= tr RηYY ′T . (28)

Combining these observations (24) is equivalent to solving

min
η∈(−π,π]

λ 6=0

λ2‖Y‖2
F − 2λ tr RηYY ′T . (29)

The reader can easily verify that the optimum is reached when η is on the form (25).

In conclusion, the angle η may be obtained using Theorem 1 where the i:th column
of Y corresponds to the eigenvector spanning the null space of W T

i Wi—the matrix Y ′

is defined analogously.

4 Experiments

4.1 Synthetic Data

In order to validate the theory and evaluate the algorithm synthetic data was generated in
form of sequences of images mimicking those taken by a mobile platform as described in
Section 3.1. A high-resolution image of a planar scene, in this case a textured floor, was
chosen to yield many key-points. Furthermore, different paths simulating the mobile
platform was defined. In order to simulate the tilt the original image was transformed
around a given point along the predefined path and then cropped, such that the centre
point in the cropped image coincide with this point. The parameters used in the transfor-
mation serve as ground truth, and the resolution used in each image is 400× 400 pixels.
The field of view of the simulated camera is normalised to 90 degrees, which affects the
impact of the distortion of the images caused by the cameras being tilted.

4.2 Homography Estimation

The homography estimation was done by extracting SIFT keypoints [9] from every
frame, keeping the most prominent once as candidates for key-point matching. The
remaining key-points are then matched between subsequent images only, using a brute-
force matcher based on the K Nearest Neighbour algorithm. From the matched key-
points a random subset is chosen iteratively in the RANSAC framework and from these
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a homography is estimated. The homography with the highest amount of inliers is cho-
sen, where the maximum allowed reprojection error for a point pair to be considered as
an inlier is five pixels.

4.3 Parameter Recovery

The parameters were recovered using the method proposed in [12] for both trajectories,
treated as two independent monocular systems, using five homographies to determine
the tilt, rotation and translation in each step. The optimal relative translation vector was
obtained by solving (16) using the optimisation scheme proposed in Section 3.4.

Using the closed form solution presented in Theorem 1 the relative rotation around
the z-axis was estimated for the five pairs of homographies used in the previous step. The
computations involves finding the vectors spanning the null spaces in order to compute
the matrices used in the closed form expression (24) for η which is computationally
inexpensive.

4.4 Test Cases

Elliptic path

This case simulates the mobile platform moving in an elliptic path while rotating between
the images. The test case was chosen as it includes general motions which generates many
different combinations of values for the nonfixed parameters. The sequence of images
for both cameras used in this case is shown in Figure 2. The parameters used in this
experiment are ψ = 3.3◦, θ = −1.2◦, ψ′ = 5.1◦, θ′ = −4.6◦, τ = (100, 80) and
η = 30◦.

The results from analysing the two paths independently are shown in Figure 3 and
Figure 4. The estimation of the relative pose is shown in Figure 5.

Rotation around the First Camera Centre

Estimating the tilt in a monocular system with only rotations and no translation is gener-
ally hard. A possible benefit of a binocular system is that the rigid body motion between
the cameras results in a translational component in the second camera. The generated
paths are shown in Figure 6. All fixed angles are set to 0◦ and the relative translation
τ = (800, 0). Furthermore, the mobile platform is moving with a constant rotation.

Since (8) degenerates, as k(i)1 = k(i)2 = 0 for all homographies, one cannot expect to
recover the components of τ but it is possible to recover |τ|, as shown in Figure 7.
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Figure 2: Path of the simulated mobile platform for the first camera (left) and the second camera
(right). The red dots represent the absolute position of the camera and the blue squares are the
extracted images. The impact of the tilt is illustrated by the frames not being square, but rather
slanted. Note that the second camera path is not elliptic as the translational components are
affected by the rotation of the mobile platform.

Mean Error vs. Number of Homographies

The relation between the accuracy and the amount of homographies used to estimate the
relative pose is shown in Figure 8. The same setup as in Section 4.4 was used but the
amount of homographies varied. From the figures one can see that it is not a significant
improvement in the parameter estimation of the relative pose after approximately twenty
homographies. In practice this means that the calibration could be done initially, and
then be used to track the position of the mobile platform, without re-computation of the
fixed parameters.

5 Conclusion

This paper has extended the work of [12] to binocular vision. A method has been devised
to robustly estimate the relative translation and orientation of the two cameras using sev-
eral pairs of homographies, by reusing the computations from the cameras treated as two
monocular systems. The translational component is recovered by solving a non-convex
problem, which can be turned into an eigenvalue problem. The proposed optimisation
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Figure 3: Estimated parameters for the first camera. In all plots the blue circles represent the
ground truth. The red dots are the estimated parameters for the angles (first three subplots) and in
the last subplot the red dots and the green diamond are the error in tx and ty respectively. The error
in translation is measured in pixels. The estimates have been calculated using five homographies at
each frame.
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Figure 4: Estimated parameters for the second camera. In all plots the blue circles represent the
ground truth. The red dots are the estimated parameters for the angles (first three subplots) and in
the last subplot the red dots and the green diamond are the error in tx and ty respectively. The error
in translation is measured in pixels. The estimates have been calculated using five homographies at
each frame.
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Figure 5: Estimated value of τ = (τx, τy) and η using five pairs of homographies at each frame.
The magnitude of the translational component |τ| is also shown. The red dots are the estimated
parameter and the blue circles represent the ground truth.
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Figure 6: Path of the simulated mobile platform for the first camera (left) in the second test case,
and for the second camera (right). The red dots represent the absolute position of the camera and
the blue squares are the extracted images. Due to the rigid body motion connecting the cameras the
second camera rotates around the first camera centre causing a non-zero translational component.
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Figure 7: Estimated value of |τ| using five pairs of homographies at each frame. When considering
only rotations for the first camera, the components of τ cannot be obtained by the proposed
method. The red dots are the estimated parameter for the magnitude and the blue circles represent
the ground truth.

scheme is robust and suitable for real-time applications. Furthermore, when solving for
the relative rotation, the closed form solution presented in Theorem 1 is computation-
ally inexpensive. Experimental results from synthetic data have demonstrated that the
method has an acceptable accuracy for most problems, and highlighted problems where
the method fails to recover both of the translational components; it is also shown that in
this case the magnitude can be recovered accurately.
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Figure 8: Mean error for the relative translation and rotation as a function of the number of
pairs of homographies used in the optimisation step. The error for the translational component
is measured in the Euclidean norm. The mean error is computed from 49 pairs of homographies
estimated from the sequence described in Section 4.4.
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Appendix: Proof of Theorem 1

In this appendix we give a complete proof of Theorem 1, which was left out due to space
limitations.

Proof of Theorem 1 (cont.). Consider the equivalent formulation (29). The second term
can be simplified due to the following observation

RηYY ′T =

cos η − sin η 0
sin η cos η 0

0 0 1

∑i y1iy
′
i1 ∑i y1iy

′
i2 ∑i y1iy

′
i3

∑i y2iy
′
i1 ∑i y2iy

′
i2 ∑i y2iy

′
i3

∑i y3iy
′
i1 ∑i y3iy

′
i2 ∑i y3iy

′
i3

 , (30)

and therefore

tr RηYY ′T =

(
∑

i
y1iy

′
i1 + y2iy

′
i2

)
cos η +

(
∑

i
y2iy

′
i1 − y1iy

′
i2

)
sin η + ∑

i
y3iy

′
i3

= A (cos α cos η + sin α sin η) + γ = A cos(η − α) + γ,
(31)

where A and α are obtained by the cosine subtraction formula and γ is the constant tern.
Using (31) consider the objective function

f (η,λ) = kλ2 − 2λ[A cos(η − α) + γ] , (32)

where k = ‖Y‖2
F > 0, since Y 6= 0. The partial derivatives are

∂ f
∂η

= 2λA sin(η − α),

∂ f
∂λ

= 2kλ− 2[A cos(η − α) + γ] ,

(33)

and since λ 6= 0 it follows that sin(η − α) = 0, at a critical point, i.e. η = α + πn,
n ∈ Z . Furthermore,

kλ = A cos(η − α) + γ = A(−1)n + γ . (34)

The determinant of the Hessian H, evaluated at the critical points, are given by
det H(α + πn, λ̂) = 4kλ̂(−1)n. Thus, a local minimum can only occur when λ̂ > 0
and n = 0 or λ̂ < 0 and n = 1, as we consider the angles as equivalence classes, with
the representative in the interval (−π,π]. It follows that the objective function has two
potential minimiser,

f
(

α,
γ + A

k

)
= − (γ + A)2

k
, (35)
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and

f
(

α + π,
γ− A

k

)
= − (γ− A)2

k
. (36)

We now derive the constraint necessary for deducing whether η = α or η = α + π is
the correct solution for the angle

f
(

α,
γ + A

k

)
< f

(
α + π,

γ− A
k

)
⇔ (γ + A)2 > (γ− A)2 ⇔ γ > 0,

(37)
where we use that k > 0 and A > 0. In conclusion,

ηopt = α +

 0, if ∑
i

y3iy
′
i3 > 0,

π, otherwise,

where α may be expressed using the programming friendly atan2 function,

α = atan2

(
∑

i
y1iy

′
i2 − y2iy

′
i1, ∑

i
y1iy

′
i1 + y2iy

′
i2

)
,

and the desired form may be obtained by vectorisation.
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Generalisation of Parameter Recover in
Binocular Vision for a Planar Scene

MARCUS VALTONEN ÖRNHAG AND ANDERS HEYDEN

Centre for Mathematical Sciences, Lund University

Abstract: In this paper we consider a mobile platform with two cameras directed towards
the floor. In earlier work this specific problem geometry has been considered under the
assumption that the cameras have been mounted at the same height. This paper extends
the previous work by removing the height constraint, as it is hard to realize in real-life
applications.

We develop a method based on an equivalent problem geometry, and show that much of
previous work can be re-used with small modification to account for the height difference.
A fast solver for the resulting non-convex optimization problem is devised. Furthermore, we
propose a second method for estimating the height difference by constraining the mobile
platform to pure translations. This is intended to simulate a calibration sequence, which
is not uncommon to impose. Experiments are conducted using synthetic data, and the
results demonstrate a robust method for determining the relative parameters comparable to
previous work.

1 Introduction

The past decades Simultaneous Localization and Mapping (SLAM) has been studied by
the robotics community and the computer vision community alike. The importance
of correctly mapping and navigating through unknown terrain is crucial as we enter
the age of autonomous vehicles, which is why SLAM is still an active field of research.
Furthermore, as the cost for well-performing image sensors is low compared to other
alternatives they are an understandable design choice for many applications.

Taking the known properties of the physical environment into account when con-
structing a SLAM system can increase performance in all stages—from navigation and
localization to consistent map building—and many SLAM systems have been developed
in different domains, ranging from outdoor environments, to underwater and airborne
systems. Modern SLAM systems can, due to the increasing computational power avail-
able on consumer products and carefully developed algorithms, handle all of the stages
in real-time. Not only monocular systems are available, but a variety of different setups
including stereo and RGB-D cameras are supported by the latest frameworks.
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In this paper we will continue to investigate methods suitable for planar motion, a
problem which is typical for indoor environments. A common approach to determine
the correlation between scene points is to estimate the fundamental matrix [1, 4]. This
approach fails for planar motion, as it is known to be ill-conditioned, see e.g. [5], and
other algorithms have been devised to take the intended environment into account. One
way of doing so is by using inter-image homographies, which was proposed by Liang and
Pears [6] and Hajjdiab and Laganière [3] among others.

2 Related Work

Recent work on ego-motion recovery has been conducted by Wadenbäck and Hey-
den [10] for a monocular system using inter-image homographies for a planar scene.
The work was later generalized to use more than one homography in each frame in order
to make the estimations more accurate and robust [9]. In [12] the authors demonstrate
that the parameter recovery can be used as an initial stage in order to transform the prob-
lem into a two-dimensional rigid body motion problem, thus being able to track the
motion by point correspondences alone, by first correcting for the fixed parameters.

It was shown in Valtonen Örnhag and Heyden [8] how to recover the parameters
from a binocular system by extending the methods developed by Wadenbäck and Hey-
den [9]; however, the method assumed the camera centers to be positioned at the same
height above the ground floor, which is hard to achieve in real-life applications.

In [8] the procedure for recovering all parameters, i.e. the tilt angles, the motion of
the mobile platform, as well as the relative translation and orientation between the cam-
eras, can summarized by the following: Step 1: Compute the translation and rotation for
the mobile platform using images from the first camera. The tilt angles are obtained for
both cameras by treating each camera trajectory as being monocular. Step 2: The relative
translation is estimated by minimizing the error of a function relating the homographies
from the second camera to the motion of the mobile platform. Step 3: The relative ro-
tation is estimated using the homographies and the estimated fixed angles as well as the
relative translation.

3 Theory

3.1 Problem Geometry

Consider a mobile platform with two cameras directed towards the floor. By a suitable
choice of the world coordinate system the cameras move in the plane z = a and z = b
respectively relative to the ground plane positioned at z = 0. Both cameras are assumed
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z = 0

n̂ = (0, 0, 1)

z

z = b

z = a

Figure 1: The problem geometry considered in this paper. The cameras are assumed to move in
the planes z = a and z = b the relative orientation between them as well as the tilt towards the
floor normal is assumed to be fixed as the mobile platform moves freely.

to be mounted rigidly onto the platform and no common scene point is assumed to
be visible in the cameras simultaneously. In this setting the second camera center is
connected to the first by a rigid body motion.

It is convenient to work with the camera centers at z = 0 and therefore, we consider
the equivalent problem where both camera centers are positioned at z = 0, but with
different ground planes, as is illustrated in Figure 1 and Figure 2.

These two models are equivalent; however, in order to re-use results from previous
work one may consider the relative translation τ = (τx, τy, τz) decomposed into two
components τxy = (τx, τy, 0) and τz = (0, 0, τz). By doing so, τxy from the
physical problem geometry is identical to τ in the theoretical model with two ground
planes. The z-component from the original problem, τz, corresponds to the difference
between the image planes in the theoretical model. Without loss of generality, one may
assume that the origin is located in the first camera center.
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z = b

z

z = an̂ = (0, 0, 1)

z = 0

Figure 2: An equivalent problem is to assume that the cameras move in the same plane but the
image planes are different. This is, of course, only of theoretical value, but simplifies some of the
relations.

3.2 The Impact of Different Image Planes

In general, a translation by t = (tx, ty, 0)T in a plane z = z0 is given by (x, y, z0) 7→
(x− tx, y− ty, z0), which in homogeneous coordinates correspond to

X̂ 7→ [I | − t]X =

(
I − tnT

z0

)
X̂, (1)

where X = (x, y, z0, 1), X̂ = (x, y, z0) is the corresponding image point and
n = (0, 0, 1)T is a floor normal. We introduce the notation Tt(z0) = I − tnT/z0,
which is justified by (1). For convenience, let Tt(1) = Tt, thereby leading to the relation
Tt(b) = Tt/b.

The difference, compared to the simplified case where a = b = 1, is that the
translations occur in different image planes. This physical property can be incorporated
in the translation matrices Tτ and Tt by a scaling factor equal to the distance to the image
plane. The monocular case is not affected by introducing different image planes more
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than up to scale; however, this issue is always present due to global scale ambiguity. The
method proposed in [8] for estimating the relative orientation can be re-used with the
modified translation matrix without changing the theoretical aspects or the performance.
Therefore, the major concern in the generalized problem is to estimate the position of
the different image planes relative to each other.

3.3 Camera Matrices

It was shown in [10] that the camera matrices for the first camera, assuming two consec-
utive images A and B, can be parametrised as

PA = Rψθ [I | 0],
PB = Rψθ Rϕ[I | −t],

(2)

where Rψθ is a rotation θ around the y-axis followed by a rotation of ψ around the x-axis.
The translational component of the mobile platform is denoted t and the rotational com-
ponent by ϕ, which is assumed to rotate about the z-axis. The corresponding rotation
matrix is denoted by Rϕ. In [8] the camera matrices for the second camera were derived.
By accounting for the different image planes they are given by

P′A = Rψ′θ′RηTτ(b)[I | 0],
P′B = Rψ′θ′RηTτ(b)Rϕ[I | −t],

(3)

where ψ′ and θ′ are the tilt angles defined as in the first case, τ is the relative translation
between the camera centers and η is the fixed rotation about the z-axis relative to the
first camera.

3.4 Homographies

The homographies between two consecutive images are derived as in Valtonen Örnhag
and Heyden [8], taking the impact of different image planes into account, giving

H ∼ Rψθ RϕTt(a)RT
ψθ,

H ′ ∼ Rψ′θ′RηTτ(b)RϕTt(b)T
−1
τ (b)RT

η RT
ψ′θ′ .

(4)

The matrices representing the homographies can be made unique by imposing det H =
det H ′ = 1, which will be assumed throughout the paper.
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4 Parameter Recovery

By separating the fixed angles from ϕ and the translation t in (4) the following relation
holds

RϕTt(a) = RT
ψθ HRψθ,

RϕTt(b) = T−1
τ (b)RT

η RT
ψ′θ′H

′Rψ′θ′RηTτ(b) .
(5)

4.1 Pure Translation

Impose the constraint Rϕ = I, i.e. the mobile platform does not rotate. Due to global
scale ambiguity one may choose a = 1. This leaves the translation vector t = (tx, ty),
the fixed parameters and the additional scale parameter b to be estimated. Under these
assumptions (5) is simplified to,

Tt = RT
ψθ HRψθ

Tt(b) = T−1
τ (b)RT

η RT
ψ′θ′H

′Rψ′θ′RηTτ(b)
(6)

Note that in this model the translation vector t can be estimated from the first homog-
raphy. Following the same method used by Valtonen Örnhag and Heyden [8], when
treating the case b = 1, one may separate the relative translation vector from the relative
orientation, which in this case cancels out, due to commutativity of translation matrices

Tt(b) = RT
η RT

ψ′θ′H
′Rψ′θ′Rη . (7)

Since the eigenvalues of Tt/b do not depend on t nor b one may multiply both sides
with the transpose from the left, which yields

TT
t (b)Tt(b) = RT

η RT
ψ′θ′H

′T H′Rψ′θ′Rη . (8)

By interpreting the right-hand side of (8) as a similarity transformation, it follows that
the eigenvalues of the right-hand side are those of H ′T H ′. In [11] it was shown that the
eigenvalues for the general form TT

s Ts are given by

λ2 = 1, λ1,3 = 1 +
|s|2

2
± |s|

2

√
|s|2 + 4, (9)

where all eigenvalues are positive and λ1 ≥ 1, and λ3 ≤ 1 fulfilling the relation
λ1/λ3 = λ2

1. Using the same approach as in [8] and the relation Tt(b) = Tt/b,
the sum of the eigenvalues gives an equation for b

3 +
∣∣∣∣ tb
∣∣∣∣2 = tr H ′T H ′ . (10)
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For convenience, introduce ξ = 1/b2, then ξ > 0. Furthermore, when b = 1 it follows
that ξ = 1, which gives the same equation as when the cameras are mounted at the same
height. For a single pair of homographies one gets

riξ − hi = 0, (11)

where ri = |ti|2 and hi = tr H ′Ti H ′i − 3. Due to noise one may consider minimizing

min
ξ≥0

N

∑
i=1
|riξ − hi|2 , (12)

for N pairs of homographies. Vectorizing the objective function, this can be written as

f (ξ) = ‖rξ − h‖2
2 = ξ2rTr− 2ξrTh + hTh, (13)

giving an optimal value ξ∗ = (hTr)/(rTr), which in turn gives an estimate for b,
namely

b =

√
rTr

hTr
. (14)

The practical implications of this result is that one may recover b when no rotations
are present, which implies that the mobile platform can be calibrated along a straight
path before allowing more general motion. In practice, it is not uncommon to impose
a calibration sequence on a mobile platform; however, in the following section we will
device a method that recovers the parameters for general planar motion.

4.2 General Planar Motion

Consider (5) without the constraint Rϕ = I. Again, t and also ϕ, can be recovered from
the monocular case and the second equation can be re-written as

Tτ/bRϕTt/bT−1
τ/b = RT

η RT
ψ′θ′H

′Rψ′θ′Rη, (15)

where we use the relation Tt(b) = Tt/b and similarly for τ. Multiplying with the
transpose from the left yields

TT
t/b−τ/bRT

ϕTT
τ/bTτ/bRϕTt/b−τ/b = RT

η RT
ψ′θ′H

′T H ′Rψ′θ′Rη . (16)

It is shown in Valtonen Örnhag and Heyden [8] that the left-hand side LHS of (16) can
be simplified to

LHS =

 1 0 `1
0 1 `2
`1 `2 `3

 , (17)
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which still holds true, with a modification of the values `1, `2 and `3. It is also shown
that the eigenvalues of LHS are given by λ2 = 1 and λ1, λ3 such that λ1λ3 = `3 −
`2

1 − `2
2 = 1. Introducing ξ = 1/b2 for convenience, it follows that

`3 = k1ξτx + k2ξτy + cξ|τ|2 + ξ|t|2 + 1, (18)

where
k1 = 2(tx cos ϕ− ty sin ϕ− tx),

k2 = 2(tx sin ϕ + ty cos ϕ− ty),

c = 2(1− cos ϕ) .

(19)

Furthermore, the right hand side of (16) has the same eigenvalues as H ′T H ′, as they are
similar. Since the sum of the eigenvalues is the trace of the corresponding matrix, the
following relation holds

tr H ′T H ′ = 2 + `3, (20)

which is independent of η. By letting h = tr H ′T H ′ − 3 the relation becomes

k1ξτx + k2ξτy + cξ|τ|2 + ξ|t|2 − h = 0 . (21)

4.3 Solving for the Relative Translation and Unknown Scale

Using multiple pairs of homographies the problem can be formulated as

k(1)1 ξτx + k(1)2 ξτy + c(1)ξ|τ|2 + ξ|t(1)|2 − h(1) = 0,

k(2)1 ξτx + k(2)2 ξτy + c(2)ξ|τ|2 + ξ|t(2)|2 − h(2) = 0,

...

k(N)
1 ξτx + k(N)

2 ξτy + c(N)ξ|τ|2 + ξ|t(N)|2 − h(N) = 0 .

(22)

The system (22) is over-determined for N > 3, hence minimising

min
τ∈R2

ξ∈R+

N

∑
i=1

∣∣∣k(i)1 ξτx + k(i)2 ξτy + c(i)ξ|τ|2 + ξ|t(i)|2 − h(i)
∣∣∣2 , (23)

reduces the impact of noise. The minimization problem (23) can be re-formulated as

min
τ∈R2

ξ∈R+

‖Kξτ + cξ|τ|2 + ξr− h‖2
2, (24)
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where K ∈ RN×2, c ∈ RN , r ∈ RN and h ∈ RN . The vector r consists of the
elements ri = |ti|2, and the other follow the naming convention used in Valtonen
Örnhag and Heyden [8]. Introducing x = (ξτx, ξτy, ξ|τ|2, ξ)T the problem can be
reformulated as

min
x2

1+x2
2=x3x4

‖Mx− h‖2
2, (25)

where M = [K | c | r]. The constraint can be written xT Ax = 0 where

A =


1 0 0 0
0 1 0 0
0 0 0 −1/2
0 0 −1/2 0

 . (26)

The Lagrangian is given by

L (x; λ) = xTQx− 2dTx + λxT Ax, (27)

where Q = MT M and d = MTh. A necessary condition for a minimizer is given by
∇xL (x; λ) = 0, which yields

x = (Q + λA)−1d . (28)

We will denote Qλ = Q + λA in the remaining part of this section. Inserting (28) in
the equation obtained by ∇λL (x; λ) = 0 yields

dTQ−T
λ AQ−1

λ d = 0, (29)

which is a rational equation in λ. Assuming det Qλ 6= 0 this can be turned into a sixth
degree polynomial equation

dT adj Qλ
T A adj Qλd = 0, (30)

where adj A denotes the adjoint matrix of A. The degree of the polynomial equation
is due to the adjoint matrix containing cubic terms. This can in turn be transformed
into an eigenvalue problem, and solved robustly as the error is negligible in the case of a
general 6× 6 matrix.

5 Experiments

The experimental setup follows the one presented in [8], by using synthetic data. Firstly,
images simulating those taken by a mobile platform was extracted from a high-resolution
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image, by transforming image segments into 400× 400 pixels. The original image is of
a highly textured floor, chosen to yield many keypoints. Secondly, homographies were
estimates from these sequences of images estimated by extracting SIFT keypoints and
matching them between subsequent images. The best homography was estimated using
RANSAC, where, in order to be considered an inlier, the reprojection error for a point
pair was set to five pixels.

The field of view of the simulated cameras are normalized to 90 degrees, and the
non-fixed parameters for the mobile platform were estimated from the first camera using
the method proposed in [9].

The simulated path of the mobile platform starts by translating along the y-direction.
This part of the trajectory is intended as a calibration sequence for estimating the param-
eter b, as explained in Section 4.1, and consists of ten images—the remaining 30 images
are generated from general planar motion, as shown in Figure 3.

5.1 Initial Calibration vs. General Motion

This test case highlights the differences between the two proposed methods, i.e. as an
initial calibration sequence consisting of pure translation or allowing general motion. By
only considering the first ten images, containing pure translation, the distance to the
ground floor was estimates.

Using the same setup, but considering only the last 30 images including general
planar motion the distance to the ground floor was estimated. In both cases five pairs of
homographies were used in each frame. The result is shown in Figure 4.

If one restricts the movements of the mobile platform by imposing an initial calibra-
tion sequence the estimated height generally gives a better result than allowing general
motion. The methods are both suitable for real-time application, and the average speed,
computed on a normal laptop, was 700 µs for the general case and even faster using the
initial calibration sequence.

5.2 Error vs. Noise

Homographies on the form (4) were generated with a = 1, and b randomly chosen, as
well as the other parameters. Normal distributed noise was added to the parameters t, ϕ
and h after generating the homographies. The angle was distorted by 0.01ε (in radians)
and the others ε, where ε ∈ N (0, σ). The error was measured in the weighted norm

e =

√√√√ |τ∗ − τ|2

|τ|2
+

(b∗ − b)2

b2 , (31)
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Figure 3: Synthetically generated images cropped from a high-resolution image. The sequence
consists of ten images with pure translation initially, which may be used to calibrate the height.
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Figure 4: Estimated distance to the ground floor for pure translations (top) and general motion
(bottom). The blue circles represent the ground truth and the red dots are the estimated parameters.
Five pairs of homographies have been used in each frame.

where the starred variables denote the estimated values, and the values were averaged
over 1000 randomised problems for different numbers of homographies and standard
deviation. The results are shown in Figure 5.

5.3 Evaluation on the KITTI Dataset

In order to demonstrate the performance of the proposed method, and the advantage
of imposing the planar motion model, the KITTI Visual Odometry / SLAM bench-
mark [2] was chosen. Since the proposed method is intended for planar surfaces where
both cameras are tilted towards the floor—with possibly non-overlapping fields of view—
the KITTI dataset is not an ideal testset. It does, however, contain subsequences with
planar or near planar motion; therefore, by considering these trajectories, a qualitative
study can be made. Furthermore, it demonstrates the robustness of the method in cases
where the planar motion model is not strictly followed, e.g. irregularities in the ground
floor (road or sidewalks) or vibrations causing the cameras to move in the direction of the

102



5. Experiments

0 2 4 6 8 10
Standard deviation of noise

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr
or

N = 5

N = 10

N = 20

N = 50

Figure 5: Error vs. noise for different amounts of pairs of homographies N. The error was
estimated from the mean of 1000 randomly generated problem instances.

floor normal (speed bumps). Even under more controlled cicumstances, it may be hard
in practice to impose the planar motion model due to similar, but perhaps less severe,
violations of the model assumptions.

In order to be able to estimate a homography compatible with the planar motion
model, the images were cropped such that the majority of the image depict a planar
surface. This is achieved by cropping the upper parts (sky and trees) and the side (posts
and parked vehicles) before estimating the image, see Figure 6.

The homographies were estimated using the same setup as in the previous experi-
ments, and the same method for decomposing the homographies were used. Further-
more, the tilt angles were estimated using all available homographies.

For longer sequences, it is customary to apply bundle adjustment in order to reduce
the error propagation of the estimated trajectories. A well-known package for bundle
adjustment is Sparse Bundle Adjustment (SBA) by Lourakis and Argyros [7]; however,
the available methods do not enforce the planar motion model, but allow a general 6-
DoF model (or a model where all motion parameters are decoupled). To this end, we
will enforce the planar motion model, thus reducing the number of degrees of freedom
and increasing the performance. Furthermore, we do not match any keypoints between
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Figure 6: Image from the KITTI Visual Odometry / SLAM benchmark, Sequence 00. The thick
black border indicates the area which is cropped prior to estimating the homography. This is only
a crude approximation, and cannot guarantee that the image only depicts a planar surface, which
is clearly shown as the bicyclists pass by the car, as well as the vehicle parked to the right. This,
however, shows that the proposed method is robust enough to deal with violations of the planar
motion model. Image credit: KITTI dataset [2].

the stereo frames, in order to demonstrate that the increased perfromance can be obtained
by enforcing the planar motion model despite not having overlapping fields of view. The
initial trajectory used for the bundle adjustment is the one obtained by the method
directly. The results are shown in Figure 7.

In both cases, the trajectories obtained by enforcing the planar motion model is
qualitatively better than the ones obtained by a general 6-DoF model. By using the 6-
DoF model the trajectory does not change significantly from the initial trajectory, which
may be an indication that the underlying optimisation method is unable to find a better
local minimum. It is plausible that this is because the general 6-DoF model negelects
the (near) constant tilt angles throughout the movement of the car. In Figure 7d the
car starts at an intersection with a strong left turn in which the sidewalk and a hedge is
severly violating the planar motion model—an image of this is shown in Figure 8. Note,
however, except from an over-estimation of the scale and the acuteness of the turn, the
trajectory is physically reasonable, which is not the case for the solution obtained from a
general 6-DoF model.

6 Conclusion

This paper has extended the work of Valtonen Örnhag and Heyden [8] to account for
two cameras positioned at different heights relative to the ground floor.

A method comparable in speed and robustness to the simplified case when the cam-
eras are located at the same height has been proposed. The method can easily be incorpo-
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(a) Sequence 00 (60 images). (b) Sequence 03 (40 images).

(c) Sequence 05 (80 images). (d) Sequence 07 (80 images).

Figure 7: Estimated trajectories of subsequences of Sequence 00, 03, 05 and 07. In order to
align the estimated trajectories with the ground truth, procustes analysis was employed. The
initial trajectory is obtained by the proposed method and the planar motion model enhanced non-
linearly refined by Planar Motion Bundle Adjustment (PMBA) compared to the general 6-DoF
Spare Bundle Adsjutment (SBA).
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Figure 8: Image from the KITTI Visual Odometry / SLAM benchmark, Sequence 07. The image
clearly violates the planar motion model, and the method fails in estimating the scale and acuteness
of the turn. Image credit: KITTI dataset [2].

rated in a complete system to determine all fixed and non-fixed parameters of the mobile
platform, and makes use of several pairs of homographies at each time step. Furthermore,
a method for computing the distance to the ground floor for pure translations has been
devised, which can be used as an initialization sequence of the mobile platform.

Experimental results using synthetic data show that both methods give a good esti-
mate for the height of the cameras; however, using an initial calibration sequence yields
a better result at the cost of imposing pure translation for the first frames.

On real data the proposed method remains stable and robust despite containing
obstacles and motions violating the planar motion model. By enforcning the planar
motion model using bundle adjustment, it is proven to perform better than generic 6-
DoF methods.
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Fast Non-Minimal Solvers for
Planar Motion Compatible Homographies

MARCUS VALTONEN ÖRNHAG
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Abstract: This paper presents a novel polynomial constraint for homographies compati-
ble with the general planar motion model. In this setting, compatible homographies have
five degrees of freedom—instead of the general case of eight degrees of freedom—and, as
a consequence, a minimal solver requires 2.5 point correspondences. The existing minimal
solver, however, is computationally expensive, and we propose using non-minimal solvers,
which significantly reduces the execution time of obtaining a compatible homography, with
accuracy and robustness comparable to that of the minimal solver. The proposed solvers are
compared with the minimal solver and the traditional 4-point solver on synthetic and real
data, and demonstrate good performance, in terms of speed and accuracy. By decompos-
ing the homographies obtained from the different methods, it is shown that the proposed
solvers have future potential to be incorporated in a complete Simultaneous Localization
and Mapping (SLAM) framework.

1 Introduction

Polynomial systems of equations naturally arise in the field of computer vision, as an
instrument of encoding geometric properties and other constraints one wishes to impose
on the desired output. To solve a general system of polynomial equations, is, however, a
task requiring certain endeavour, in order to produce a solver that is sufficiently fast and
numerically stable.

In this paper we will investigate methods for Visual Odometry (VO), where the ex-
pected input is a sequence of images from a camera mounted on a mobile platform. The
goal is to estimate the ego-motion of the platform, in indoor environments or other
challenging scenes containing planar surfaces. This is done by considering homography
based methods, where we enforce the general planar motion model. By imposing these
constraints, thus lowering the total degrees of freedom of the motion parameters, it is
possible to navigate robustly in scenes containing planar structures, which are problem-
atic for VO systems where a general structure of the scene is assumed. It does, however,
introduce a number of non-trivial polynomial constraints, and a proper framework for
dealing with them must be employed.
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The major contributions are:

i. To derive a new polynomial constraint for the general planar motion model, and
show that this, together with known constraints, are sufficient conditions for com-
patibility.

ii. To develop a series of non-minimal solvers to enforce a weaker form of the general
planar motion model, with a similar accuracy as the existing minimal solver, at a
greatly reduced speed.

iii. To demonstrate that pre-optimization on an early stage in the intended VO
pipeline, by enforcing the general planar motion model on the homographies
(but not a sequence of homographies), do not necessarily give an increased
performance.

2 Related Work

Planar motion models with different complexity have been considered to increase robust-
ness of navigation systems, by decreasing the total number of parameters to be recovered.
In [16] a mobile platform with a single camera was considered, where the optical axis
was parallel to the floor. This made it possible to parameterize the essential matrix by
imposing a planar motion model with two translational components and a single rota-
tional component. They propose a linear 3-point algorithm and a non-linear 2-point
algorithm; however, only the direction of the translation can be recovered using their
method. Furthermore, the alignment of the optical axis with the floor is not feasible
for real-life applications. The same geometrical setup was considered in [1], but the
algorithm was extended to stereo vision.

The fundamental matrix (or the essential matrix in the calibrated case) have been
successfully used in many computer vision and robotics applications. Despite many
promising navigation systems for general scenes, such methods will not work well under
planar motion, as it is known to be ill-conditioned [7, 17]. As planar structures are
common in man-made environments, researchers have considered alternative methods,
many of which are based on inter-image homographies.

In [6] a planar motion model with one tilt parameter was considered, and they pro-
posed a method for estimating all motion parameters. By allowing an arbitrary tilt about
the floor normal Liang and Pears showed that the eigenvalues of the homography matrix
is related to the rotation of the mobile platform, regardless of the tilt [14]. Their method,
however, did not estimate the tilt parameters.

The method proposed in [22, 23] estimates the full set of motion parameters for the
general planar motion model with five degrees of freedom by decoupling the overhead
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tilt using an iterative scheme. From the same model assumption, but employing a dense
matching scheme, Zienkiewicz and Davison devise a non-linear optimization scheme for
the full set of motion parameters [25].

Without enforcing any model constraints, a general homography has eight degrees
of freedom; however, a homography compatible with the general planar motion model
only has five, as it is determined (up to scale) by the motion parameters. Due to the
automated process of extracting and matching keypoints, homography solvers often em-
ploy RANSAC, or similar frameworks, to reject outliers. The number of iterations N
required to select a set of keypoints only containing inliers is dependent on the size of the
subset of keypoints n, the desired probability p and inlier ratio w, by the well-known re-
lation N = log(1− p)/ log(1− wn) [3]. One way of increasing the speed of such an
algorithm is to reduce the necessary number of iterations, i.e. to create a solver that only
uses the minimal number of point correspondences needed for the application. Such
a solver is known as a minimal solver. In line with this argument, it is natural to con-
sider a minimal homography solver compatible with the planar motion model, which
has been constructed in [21]. They parameterize the homography as a linear combina-
tion of the basis elements of the null space of the corresponding DLT system, with 2.5
DLT constraints, and construct eleven quartic constraints on the homography matrix,
which results in a system of eleven quartic equations in three variables. By generating the
corresponding ideal, a basis for the quotient space can be constructed and the original
problem solved by employing the action matrix method [15]. Their derivation involves
steps of manual selection of basis monomials, which is a time-consuming task.

In [8] an automatic generator for polynomial systems was introduced, and several
improvements have been made in recent years to increase the performance, see e.g . [9–
11, 13]. Such methods have been successfully used in several computer vision applica-
tions, e.g. [20, 24].

Minimal solvers permit intrinsic constraints to be enforced on the solutions, while
minimizing the number of necessary iterations in a RANSAC framework; however, there
are cases when the minimal solvers are sensitive to noise, see e.g. [19], or when the
complexity of minimal solver is large, thus making it very slow, see e.g . [12]. Under such
circumstances constructing a non-minimal solver is a viable option.

3 Planar Motion

3.1 Problem Geometry

In this paper we consider a mobile platform with a single camera directed towards
the floor. The world coordinate system is chosen such that the camera moves in the
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plane z = 0. The scale is fixed by assuming the ground plane is positioned at z = 1,
which is illustrated in Figure 1.

z = 1

plane normal

z = 0

Figure 1: The problem geometry considered in this paper. The camera moves in the plane z = 0,
and is tilted about the y-axis an unknown angle θ, followed by a rotation about the x-axis by an
unknown angle ψ, The ground floor is positioned at z = 1.

We employ the parameterization used in [23], where the camera matrices for two
consecutive poses A and B, are given by

PA = Rψθ [I | 0],

PB = Rψθ Rϕ[I | −t],
(1)

where Rψθ is a rotation θ about the y-axis followed by a rotation ψ about the x-axis.
As the mobile platform rotates about the plane normal (or z-axis) the angle ϕ varies,
corresponding to Rϕ. The translation of the mobile platform is modelled by a translation

vector t = (tx, ty, 0)T . It follows that the inter-image homography is given by

H ∼ Rψθ RϕTtRT
ψθ, (2)

where Tt = I − tnT is the translation matrix corresponding to the translation t, and
n = (0, 0, 1)T is a floor normal. The homography matrix can be made unique by
imposing det H = 1, which will be assumed throughout the paper.
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n = (nx, ny, nz)

t · n = 0

‖n‖2 = 1

t = (tx, ty, tz)

Figure 2: Revised problem geometry. The camera moves parallel to an unknown plane defined by
a normal vector n of unit length.

3.2 Parameter Recovery

In [23] an algorithm for recovering the full set of motion parameters for the general
planar motion model was suggested. Their approach is to separate the overhead tilt Rψθ

from the nonconstant motion parameters. This can be achieved using a coordinate-
descent like optimization scheme, where one of the tilt angles are fixed and the other is
solved for. A more robust version by the same authors was introduced in [22] by using
more than one homography, and incorporating the assumption of a fixed overhead tilt
throughout the entire trajectory of the mobile platform.

4 Compatible Homographies

The Direct Linear Transform (DLT) equations for a pair of point correspondences x↔ x̂,
where x = (x, y, 1)T and x̂ = (x̂, ŷ, 1)T is given by 0 −xT ŷxT

xT 0 −x̂xT

−ŷxT x̂xT 0


h1

h2
h3

 = 0, (3)
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Figure 3: Distribution of homography error in the Frobenius norm for different noise levels σN .
The proposed non-minimal solvers have a median error between the 2.5-point solver and DLT for
all noise levels considered in the experiment.

where hT
k is the k:th row of the homography matrix H. It is only necessary to consider

the first two rows of the DLT system matrix in (3), as the third is a linear combination of
the others. We will use these equations to parameterize the null space of the homography
matrix H in Section 6.

We will introduce some notation from algebraic geometry in order to outline the
method employed to create the polynomial solvers we will consider in this paper.

4.1 The Action Matrix Method

Consider a polynomial system of equations

f1(x) = 0,
...

fs(x) = 0 .

(4)

The set of all solutions to (4), is known as an affine variety, and denoted V( f1, . . . , fs) ⊂
C[x], where C[x] is the set of polynomials in x with coefficients in C. The ideal gener-
ated by f1, . . . , fs, is denoted

〈 f1, . . . , fs〉 =
{

s

∑
i=1

hi fi : h1, . . . , hs ∈ C[x]

}
. (5)

Every ideal of C[x] is finitely generated, thus, the polynomial system of equations (4) is
defined by the generated ideal.

Under the assumption that the system has finitely many solutions, I = 〈 f1, . . . , fs〉
is zero-dimensional and the quotient space A = C[x]/I is finite dimensional [2].
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Let [ f ] = { f + h | h ∈ I} denote the coset and consider the operator Tf : A −→ A,
defined by Tf ([g]) = [ f g]. Since the quotient space A is finite-dimensional this
operation can be represented by a matrix M f , which is known as the action matrix. Fur-

thermore, select a monomial basis for A, which we denote B = {[xαj ]}j∈J . Typically,
such a basis is obtained by using an improved version of Buchberger’s algorithm. When
the action matrix M f = (mij) acts on the basis elements a linear combination of the
monomials forming the basis is obtained,

Tf ([x
αj ]) = [ f xαj ] = ∑

i∈J
mij[x

αi ] . (6)

Consequently, for x ∈ V(I),

f (x)xαj = ∑
i∈J

mijx
αi . (7)

The basis B may be represented by a vector b, and since that (7) must hold for all basis
elements, the problem can be reduced to an eigenvalue problem, given by

f (x)b(x) = MT
f b(x) . (8)

By multiplying (4) by a set of monomials an equivalent, but larger problem is ob-
tained. The problem of finding a suitable monomial basis remains, and there is no
exact criterion for doing so; however, it is desirable to find the minimal set of mono-
mials to make the problem solvable (or numerically stable). The coefficient matrix of
the expanded matrix is known as an elimination template, and numerous attempts of
optimizing these have been made, see e.g. [8, 9, 11, 13].

4.2 Necessary Conditions

In [21] eleven quartic constraints for planar motion compatible homographies were de-
rived, and used to create a minimal solver. These constraints were experimentally ob-
tained by randomly generating points on the manifold defining the planar motion com-
patible homographies. In order to be able to work over a finite field, the rotation matrices
were constructed using Pythagorean triplets, hence integer versions of the problem were
obtained. By doing so, the coefficients for the polynomials could be found. With this
approach, however, one cannot rule out the existence of higher order polynomials, and
thus, sufficiency cannot be proven. We will approach this differently in the next Section.
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5 Sufficient Conditions

In this section, we will show that the eleven quartic constraints discussed in Section 4.2
are necessary but not sufficient. Furthermore, we show that by adding a sixth degree
polynomial to the existing quartic constraints one may guarantee sufficiency. This is
done by a novel parameterization, which allows one to efficiently compute the relevant
elimination ideal.

Instead of considering the original camera matrices (1), choose the coordinate system
such that PA = [I | 0], giving PB = [Rn(ϕ) | − t]. This can be thought of as travelling
parallel to an unknown plane, as is illustrated in Figure 2, hence the homography can be
parameterized as

H = Rn(ϕ) + tnT, (9)

where t = (tx, ty, tz)
T is a translation vector orthogonal to the plane normal

n = (nx, ny, nz)
T . The constraint of travelling parallel to the plane can be expressed

as t · n = 0 and, to fix the scale, one may assume that ‖n‖2 = 1.
Let q = (1, qx, qy, qz) be a unit quaternion, then n = (qx, qy, qz) and

the corresponding rotation matrix R = R(q). Let the ideal generated by
λH − R(q)− tnT = 0 and t · n = 0 be denoted I, then we seek the elimina-
tion ideal I ∩K[H], for some suitable field K. Over a finite field, this can be done
using Macaulay2 [5]. This results in the eleven quartic constraints found in [21] and an
additional sixth degree polynomial1. The constraints were symbolically verified to hold
over C as well.

6 Non-Minimal Solvers

In this section we consider different non-minimal solvers as an alternative to the minimal
solver proposed in [21]. The main reason we consider such solvers is due to the minimal
solver being computationally expensive. Also, there is no advantage between a 2.5-point
solver and a 3-point solver, in terms of the number of iterations required to select a subset
of inliers with a certain probability—this is a favourable trait, compared to the standard
4-point DLT solver. Furthermore, we would like to explore different methods using
the novel sixth degree polynomial, derived in Section 5. Lastly, and most importantly
for practical applications, the condition that the overhead tilt remains constant is not
enforced by using any of the described method, but is achieved at a later step in the VO
pipeline. Therefore, it is uncertain if pre-optimizing the homographies will yield a better
end result.

1See the Appendix for implementation details.
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6. Non-Minimal Solvers

In this paper we construct four different non-minimal solvers

3pt(4+4) a 3-point solver enforcing two quartic constraints,

3pt(4+6) a 3-point solver enforcing one quartic constraint and the sextic constraint,

3.5pt(4) a 3.5-point solver enforcing one quartic constraint,

3.5pt(6) a 3.5-point solver enforcing the sextic constraint.

These solvers were chosen because they enforce a weaker version of the general planar
motion model in different ways. Furthermore, we will compare with the minimal solver
and the standard 4-point DLT solver.

5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

Number of homographies

M
ea
n
er
ro
r
ψ

2.5pt

3pt(4+4)

3pt(4+6)

3.5pt(4)

3.5pt(6)
4pt

Figure 4: Mean error for ψ (in degrees) for 100 iterations.

From the eleven quartic constraints the first two w.r.t. DEGLEX was chosen to
construct the solvers; however, this was only chosen for reproducibility, as empirical
tests showed that the size of the elimination template did not change by considering
other pairs. Similarly, when constructing the 3pt(4+6) and 3.5pt(4) solvers only the first
quartic constraint was chosen.

119



Paper III

6.1 Parameterizing the Null Space

The standard approach, which we will utilize, is to parameterize the null space, and use
the parameterization to obtain the desired polynomial system of equations. Using three
DLT constraints (3) the homography matrix H has a 3-dimensional null space, hence
can be parameterized as

H(z) = H0 + z1H1 + z2H2 . (10)

Similarly, for the 3.5-point solvers, the null space is two-dimensional, leaving a single
variable. For such systems, the action matrix method is replaced with a simpler root
finding algorithm, involving the companion matrix [18]. In both cases this allow the ho-
mography to be written as a function H = H(z), and inserted to any of the polynomial
constraints fi, yields an equation fi(H(z)) = 0 in the variable z. For the 3-point solvers
a system of two equations are obtained, and the corresponding ideal I = 〈 f1, f2〉 can be
studied. The number of basis elements in the quotient space determines the number of
solutions (for non-degenerate configurations).

For the 3pt(4+4) solver the basis consists of 16 elements, hence the polynomial sys-
tem of equations has at most 16 solution. By using the automatic generator proposed
by [10] an elimination template of size 20× 36 was constructed. Due to the increased
complexity of the sextic constraint the 3pt(4+6) solver has in general 24 solutions, and
the corresponding elimination template is of size 31× 55. Furthermore, the coefficients
in the elimination template are significantly more complex.

7 Experiments

7.1 Noise Sensitivity

In order to be comparable with the study of noise sensitivity for the minimal solver pro-
posed in [21], the same setup was used. Homographies Hj compatible with the general
planar motion model were generated together with randomly generated keypoints xk
with zero mean and unit variance. The image correspondences x̂k ∼ Hjxk were com-
puted and normalized to unit variance. To simulate noise, a normal distributed term was
added to xk and x̂k with standard deviation σN . The homographies obtained from the
solvers were normalized such that det Hj = 1, and the error measured in the Frobenius
norm of the difference between the ground truth and the estimated homographies, see
Figure 3. The median sensitivity to noise of the proposed solvers is between the corre-
sponding values for the 2.5-point solver and the 4-point (DLT) solver for all noise levels,
which indicates a trade-off between accuracy and speed.
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Secondly, we generate a sequence of homographies compatible with the general pla-
nar motion model, and use the method described in Section 3.2 to recover the motion
parameters. For this example the noise level was kept constant while increasing the num-
ber of homographies used to estimate the motion parameters. For σN = 10−2 the results
are shown in Figure 4. The results for the other motion parameters, and different stan-
dard deviation σN follow the same trend, and can be found in the Appendix. Note, that
the mean error for the 3-point solvers are close to the minimal solver after approximately
15 homographies are used.

Table 1: Mean execution time for 10,000 randomly generated problems.

Solver Exec. time (ms)
2.5pt 0.7960
3pt(4+4) 0.1334
3pt(4+6) 1.6161
3.5pt(4) 0.0344
3.5pt(6) 0.2919
4pt 0.0334

7.2 Speed Evaluation

The solvers were implemented in MATLAB, with mex-compiled C++ routines. For a
fair comparison, the 2.5-point method and the 4-point (DLT) method were also con-
structed this way. The 2.5-point method was generated using the automatic solver by
Larsson et al . [10], thus producing a different elimination template than the one pro-
posed in [21].

The execution time of the solvers was tested on a standard laptop computer, and
the measurements include the complete process of estimating a homography, i.e. staring
from point correspondences, the construction of the DLT system, extracting the null
space through SVD, and—except for the 4-point solver—the parameter estimation for
the basis elements of the null space, and construction of putative homographies.

The timing comparison is shown in Table 1, and the speed-up between the minimal
2.5-point solver and 3pt(4+4) solver is clear, however, in terms of speed the traditional
4-point solver is faster. In a complete RANSAC framework, however, the 3-point solver
and the 4-point solver is closer in terms of speed, due to the 4-point solver requiring more
iterations to achieve the same probability of selecting a subset containing only inliers.

When enforcing the sixth degree polynomial in the 3-point solver the number of
solutions increase, hence the corresponding elimination template. Furthermore the com-
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Figure 5: The sequence of the planar motion test set. The entire trajectory is shown to the left,
and to the right a zoomed in version showing the difference in estimates by using different solvers.
The total sequence contains 320 images.

plexity of the coefficients increase, and this holds true in the case of the 3.5-point solvers
as well, which is why the execution time is faster without the sextic constraint.

7.3 Synthetic Image Evaluation

A sequence of synthetic images were generated, compatible with the general planar mo-
tion model, by cropping out images from a high-resolution image. In order to simulate
the overhead tilt the original image was transformed prior to cropping it. An elliptic path
containing 49 images were generated, as well as the corresponding ground truth.

The homographies were computed by extracting and matching SURF features. In
order to estimate the trajectory, the homographies were decomposed using the method
described in Section 3.2. The point correspondences were normalized prior to estimating
the homographies to increase numerical stability. The extracted motion parameters were
compared to the ground truth. Due to the random nature of the RANSAC, the recovered
parameters were averaged over 100 iterations. The results are shown in Table 2.

We observe that the minimal solver is no longer producing the best results, and
one may note the advantage of using non-minimal solvers. The exact reason why this
phenomenon arises when considering synthetically generated sequences of images and
not synthetically generated sequences of homographies is hard to pinpoint; however, we
note the following differences:

(a) the matched points, which are the input to the solvers do not follow a Gaussian
distribution, and
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Table 2: Mean estimation error for the motion parameters for the synthetic image test averaged over
100 iterations. Angles are measured in degrees, and translation in pixels. The best performance is
in bold.

2.5pt 3pt(4+4) 3pt(4+6) 3.5pt(4) 3.5pt(6) 4pt

ψ 0.0035 0.0005 0.0029 0.0004 0.0006 0.0007
θ 0.0019 0.0006 0.0013 0.0005 0.0006 0.0007
ϕ 1.08 0.68 0.77 0.76 0.73 0.86
t 20.36 6.85 10.49 6.99 7.65 11.29

(b) when analyzing the numerical rank of the elimination template it often has less
than full rank, which is not the case for the Gaussian distributed noise. This holds
true regardless of whether one normalizes the image points or not.

(c) the numerical rank of the other elimination templates do not change when going
from synthetic homographies to synthetic images.

7.4 Planar Motion Evaluation

The following experiments were conducted using a mobile robot with omnidirectional
wheels, of model Fraunhofer IPA rob@work. A camera was mounted, directed towards
the floor, and the ground truth was measured using a Nikon Metrology K600 optical
tracking system. The system has an absolute accuracy of 100 µm. In Figure 6 example
images from one of the sequences are shown. In the first test sequences the robot travels
along a straight line, while keeping the orientation constant.

The same approach for computing the homographies in Section 7.3, after first com-
pensating for geometric distortion. The results are shown in Figure 5, and more test
results are shown in the Appendix. Note, that the minimal solver and the 4-point solver
are the ones to deviate the most from the ground truth trajectory.

7.5 Evaluation on the KITTI Dataset

The KITTI Visual Odometry / SLAM benchmark [4] is a well-known evaluation dataset
for SLAM frameworks, and contains several sequences with planar or near planar mo-
tion. A large portion of the images depict the roads, on which the car travels, however,
one must note that this is only a coarse approximation to the general planar motion
model, as all sequences contain non-planar structures to some extent, e.g . passing vehi-
cles, pedestrians, traffic barriers and road signs. This, however, is a good way of testing
the robustness of the proposed solvers, as future applications may not entirely fulfill the
general planar motion model. Furthermore, in order to be able to consider the input
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Figure 6: Example image from the planar motion sequence.
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Figure 7: Mean translation error for the first ten images of the first camera of Sequence 00–10
of the KITTI dataset. These are all image sequences containing ground truth. At least on of the
proposed solvers have the lowest mean translation error in all but one of the eleven cases. The
mean translation error is computed over 500 iterations.

images as depicting a (near) planar scene, a subset of the image is cropped out before
estimating the homographies, as is illustrated in Figure 8.

From the cropped images of the first eleven sequences of the KITTI dataset, for
which ground truth data is available, the homographies were computed using SURF fea-
tures, as in the previous experiments. The performance of the solvers was measured as the
mean error of the Euclidean distance between the ground truth positions and estimated
positions. The results are averaged over 500 tests, and include the first ten images of each
sequence. This number was chosen to reduce the impact of error propagation, while still
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8. Conclusions

Figure 8: Image from the KITTI Visual Odometry / SLAM benchmark, Sequence 03. The
cropped area (contained within the thick border) depict the image used to compute the homo-
graphies. Image credit: KITTI dataset [4].

having a noticeable effect of imposing the general planar motion model. The differences
of the estimation is due to the matching algorithm as well as the RANSAC framework
for estimating the homographies. No non-linear refinement of the homographies were
used. The results are shown in Figure 7.

The proposed solvers are robust, and produce a good initial estimate for the trajectory,
and at least one of the proposed solvers has the lowest median translation error in all
sequences, except Sequence 01.

This result may, to some extent, be unanticipated, however, one must not forget
that the conditions for the general planar motion model is not fulfilled in the KITTI
dataset. The disadvantage of using the minimal 2.5-point solver, it seems, is that the
model is imposed exactly, whereas for the 4-point DLT solver, the model is completely
disregarded, and instead are determined solely by the data. One possible answer to the
results we observe on the KITTI dataset, which favours the the proposed solvers, is that
it enforces a weaker form of the general planar motion model (since only one or two of
the defining equations are considered) and tunes to the data in cases where the model
assumptions are invalid.

8 Conclusions

In this paper a novel non-minimal polynomial constraint for homographies compatible
with the general planar motion model has been derived. A series of non-minimal solvers
have been proposed, which enforces one or two of the defining constraints. They have
been demonstrated on synthetic and real data to perform well, and two of them are
reported to be faster than the minimal solver.

In cases where the general planar motion model is a coarse approximation of the
actual scene it is likely that the proposed solvers are more robust, compared to both
the minimal solver and the 4-point solver. Hence, it has been demonstrated that pre-
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maturely enforcing the planar motion model, without incorporating the fixed overhead
tilt constraint, does not necessarily yield a better end result.

By incorporating the proposed solver in a complete SLAM system, it is likely that
the total execution time will decrease due to a lower number of iterations needed by
non-linear refinement of poses and scene points in a bundle adjustment framework.
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[10] V. Larsson, K. Åström, and M. Oskarsson. “Efficient Solvers for Minimal Prob-
lems by Syzygy-based Reduction”. In: Computer Vision and Pattern Recognition
(CVPR) (July 2017), pp. 2383–2392.
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Figure 9: Mean re-projection error for different noise levels σN . Similar to Figure 3 the median
value for the proposed solvers is between the corresponding values for the 2.5-point solver and
DLT; however, for higher noise levels, we note an advantage for the non-minimal solvers and DLT
compared to the minimal 2.5-point solver.

Appendix

Synthetic Experiments

Re-projection Error

In [74] the re-projection error for the point correspondences not used in order to obtain
the estimated homographies were analysed, and we reproduce it here together with the
proposed solvers. As seen in Figure 9, the trend is similar to what was observed in the
previous case (cf . Frobenius norm estimate, Figure 3) namely, the median re-projection
errors for the non-minimal solvers are between the corresponding values of the minimal
2.5-point solver and the 4-point solver (DLT) for all noise levels. Note, however, that
for large noise levels, the 2.5-point solver does not perform as well as the non-minimal
solvers or the traditional 4-point solver.

Motion Parameters

Additional plots for the second synthetic experiment, regarding the estimation of the
motion parameters, is shown in Figure 11. The mean errors are for noise level σN =

10−2. In Figure 12 the same parameters, but for σN = 10−1 are shown.

Synthetic Images

Example images that were used in the synthetic image experiment is shown in Figure 10,
and example output for the reconstructed path is shown in Figure 13 for all solvers.
Neither the 4pt solver, nor the minimal solver performs best in this case.
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Figure 10: Two consecutive images from the synthetic dataset.
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Figure 11: Mean error for θ, ϕ (in degrees) and t for 100 iterations with σN = 10−2.
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Figure 12: Mean error for θ, ϕ (in degrees) and t for 100 iterations with σN = 10−1.

Experiments on Real Data

Planar Motion

We here show two more test cases conducted with the omnidirectional robot rob@work,
from Section 7.4. In the first test case the robot moves forward (in relation to its own
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Figure 13: Example of reconstructed path for the synthetic image sequence for all solvers, and
zoomed in at the final position (right image).

Figure 14: Estimated trajectories of the mobile robot used in the planar motion experiments for
the “turn” experiment (left) and the “parallel parking” experiment.

frame), while rotating, thus creating a light turn. The sequence contains 344 images. In
the second test case the robot simulates a sequences of parallel parking, by first driving
straight and then making a sharp turn, while keeping the orientation constant. This
sequence contains 325 images. The estimated paths are shown in Figure 14.
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(a) Sequence 03 (200 images). (b) Sequence 04 (50 images).

Figure 15: Estimated trajectories of subsequences of Sequence 03 and 04 of the KITTI dataset.
Procrustes analysis has been carried out to align the estimated trajectories with the ground truth.
Note that the aspect ratio differs between sequences, in order to clearly visualize the differences
between the estimated trajectories. No non-linear refinement has been carried out in any of the
test cases. The 3-point solver used is the 3pt(4+4) solver.

KITTI Dataset

To demonstrate some qualitative usage of the proposed solvers, four longer subsequences
of the KITTI dataset were evaluated, see Figure 15. Only the 3pt(4 + 4) solver is
shown in order to make the plots legible. For sequences of this length it is customary to
use bundle adjustment, or some other non-linear refinement that minimize a physically
meaningful error such as the geometric re-projection error or photometric error. In order
for such optimization schemes to converge in a reasonable amount of time it is often nec-
essary to supply a good initial guess of the trajectory. Due to the reduced computational
complexity, comparable to using the 4-point DLT solver, when considered in a RANSAC
framework, and the qualitative performance on the KITTI dataset, we find the proposed
3-point solver to be a suitable alternative to be incorporated in a SLAM system.

132



IV





Efficient Radial Distortion Correction for Planar Motion
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Abstract: In this paper we investigate simultaneous radial distortion calibration and mo-
tion estimation for vehicles travelling parallel to planar surfaces. This is done by estimating
the inter-image homography between two poses, as well as the distortion parameter. Radial
distortion correction is often performed as a pre-calibration step; however, accurately esti-
mating the distortion profile without special scene requirements may make such procedures
obsolete. As many modern day consumer cameras are affected by radial distortion to some
degree, there is a great potential to reduce production time, if properly implemented.

We devise two polynomial solvers, for radially distorted homographies compatible with dif-
ferent models of planar motion. We show that the algorithms are numerically stable, and
sufficiently fast to be incorporated in a real-time frameworks. Furthermore, we show on
both synthetic and real data, that the proposed solvers perform well compared to competing
methods.

1 Introduction

When designing a Visual Odometry (VO) pipeline it is beneficial to integrate any prior
knowledge of the intended environment or known motion model parameters. One par-
ticular instance, that will be further investigated in this paper, is the planar motion model,
in which a vehicle travels on—or parallel to—a planar surface. Such a scenario is com-
mon in man-made environments, but can also accurately approximate outdoor scenarios
under certain conditions, such as cars travelling on a highway. In the current literature
we find several papers on planar motion models, restricted to fit particular use cases or
pre-calibrated parameters [3, 6, 20]. The general case, however, was first introduced
in [17] which incorporates two unknown overhead tilt angles, which are assumed to be
constant throughout the trajectory of the vehicle. They assumed the floor is in the field
of view of the camera, allowing them to compute the motion parameters through inter-
image homographies. Another approach utilizing the floor to compute the motions was
done by [6]. More recent development was done by [27, 28], and is the first to accurately
recover the complete set of motion parameters using inter-image homographies. Other
notable approaches include that of [30], in which a planar VO pipeline using a dense
matching scheme was proposed.
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In the most general setting, assuming the camera is rigidly mounted on the vehicle,
the number of motion parameters are reduced to five, which should be compared to the
general homography, which has eight degrees of freedom [7]. These parameters consist
of the two overhead tilt parameters, and three non-constant parameters: one rotational
angle (about the floor normal), and two translational components.

In order to obtain a homography, keypoints are extracted and matched. These key-
points then serve as input to the homography estimation algorithm. Since the extraction
and matching steps are imperfect for any realistic image sequence, outliers and noise are
prone to exist. Typical steps taken to resolve this issue include the use of robust esti-
mation frameworks, e.g . RANSAC. It is at this point the benefit of working with fewer
motion parameters come to light. Since fewer motion parameters demand fewer point
correspondences in order to be estimated, one can select a minimal amount of points in
the RANSAC framework. The fewer points you are able to select, the greater the prob-
ability of selecting only inliers. By doing so, one can reduce the number of RANSAC
iterations.

In the general case, with four point correspondences, one may linearly extract the
homography; however, if any of the motion parameters are known or constrained, this
may no longer be the case, as the resulting systems of equations often are nonlinear.
This poses a new type of problem—can we solve these equations sufficiently fast and
accurate? Luckily, many methods from computational algebraic geometry [4] has been
used in many computer vision problems, and certain frameworks already exist for how
to proceed. One of the earliest, and still used today, was [10].

This paper is a revised journal version of [24], where we will consider the general pla-
nar motion model with unknown radial distortion, and devise a polynomial solver that
can accurately recover the motion and distortion parameters in real-time applications.
Furthermore, we propose a planar motion compatible minimal two point solver with
radial distortion when the tilt angles are known. This situation arises when the tilt is pre-
calibrated or can be accessed using external sensors, such as an IMU to extract the gravity
direction. For indoor scenarios, assuming that the gravity direction is aligned with the
floor normal— which often is a valid approximation—is equivalent to knowing the tilt
angles. There are situations where similar assumptions can be made, without significant
loss in accuracy, e.g . aerial imagery. Regardless of the situation, radial distortion is nec-
essary to account for in any accurate VO pipeline, and is often done in a pre-calibration
step, where the distortion parameters are obtained. By incorporating the parameter in
the homography estimation process, we hope to eliminate this pre-processing step.
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2 Related Work

2.1 Homography Estimation

The Direct Linear Transform (DLT) equations is a linear system of equations to extract a
homography H given a number of point correspondences. In the general setting, with
eight degrees of freedom, the minimal case requires four point correspondences. To see
this, let us consider a single pair of point correspondences on a common scene plane,
denoted by x ↔ x̂. They are related by a homography H as λx̂ = Hx, for some
scalar λ 6= 0. Equivalently, we may express this as x̂× Hx = 0, thus eliminating the
scale parameter λ, or,  0 −ŵxT ŷxT

ŵxT 0 −x̂xT

−ŷxT x̂xT 0


h1

h2
h3

 = 0, (1)

assuming homogeneous coordinates, i.e. x = [x, y, w]T and x̂ = [x̂, ŷ, ŵ]T , respec-
tively. Here hT

k is the k:th row of the homography matrix H. As the cross product
introduces a linear dependence, only two of the equations are necessary, hence explain-
ing why four point correspondences are minimal in the general case. Thus, using four
point correspondences the problem can be transformed into finding the one-dimensional
null space h = [hT

1 hT
2 hT

3 ]
T , which is typically obtained using SVD of the coefficient

matrix.
In the general planar motion model there are only five motion parameters, hence

the minimal case requires but 2.5 point correspondences. Similarly, we may construct a
system of equations, by using three point correspondences and discard the last equation
in the corresponding DLT system. This can be written as Ch = 0 where C ∈ R5×9 is
the coefficient matrix. Again, this is a problem of finding the null space of C; however,
the null space is now four-dimensional. As an additional step, one must now find the
null space coefficients which makes H a homography compatible with the general planar
motion model. It was shown in [23, 26] that there are eleven quartic constraints (as well
as a sextic constraint) in the elements of H that has to be fulfilled in order to guarantee
compatibility.

2.2 Modelling Radial Distortion

In order to compensate for the radial distortion, several models have been proposed. A
classic method, still in use today, is the Brown–Conrady model [2], in which also tangen-
tial distortion is corrected. The division model introduced in [5], has gained attention as
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it provides accurate approximations of the distortion profile with fewer parameters. For
this reason, we will only consider the distortion model, and restrict ourselves to a single
distortion parameter, as this allows us to use fewer point correspondences.

Let λ denote the distortion parameter. Then the distorted (or measured) image
points can be expressed as xi = [xi, yi, 1]T

xu
i = f (xi,λ) =

 xi
yi

1 + λ(x2
i + y2

i )

 , (2)

where xu
i are the undistorted image points, assuming the distortion center is aligned to

the center of the image. Furthermore, we select the coordinate system such that the
origin is aligned with the distortion center.

We may now modify the DLT equations (1) as the distortion parameter only appears
in the homogeneous coordinates. Consider two point correspondences xi ↔ x̂i, then

f (x̂i,λ)× H f (xi,λ) = 0 . (3)

This approach has been used for the general case of radially distorted homogra-
phies [9], conjugate translations with radial distortion [21], and the case of jointly es-
timating lens distortion and affine rectification from coplanar features [22]. The last two
use an explicit parameterization of the motion parameters, instead of trying to parame-
terize the null space of the DLT system. In common for all methods is that the resulting
problem is a polynomial system of equations, and is solved by further reduction to an
eigenvalue problem [4]. Automatic solvers for polynomial systems have been proposed,
primarily using Gröbner bases, such as [10, 12–14, 16], or resultant based methods [1].
Alternative approaches include considering the problem as a Quadratic Eigenvalue Prob-
lem (QEP) [5, 8, 11].

3 The General Planar Motion Model

Consider a camera mounted rigidly on a vehicle travelling on a planar surface. We model
this scenario by assuming that the camera moves in the plane z = 0, parallel to the
surface on which the vehicle moves, located in z = 1. This parameterization also fixes
the scale of the global coordinate system.

Consider two consecutive views, A and B, with the corresponding camera matrices

PA = Rψθ [I | 0],

PB = Rψθ Rϕ[I | −t],
(4)
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z = 1

plane normal

z = 0

Figure 1: Illustration of the problem geometry considered in the paper. The camera is mounted
rigidly on a mobile platform, thus travelling parallel to the ground floor in the plane z = 0. We
allow a constant, but generally unknown, overhead tilt to be present, which is modelled by the
angles psi (about the x-axis and θ (about the y-axis). Furthermore, the camera can rotate about
the z-axis (by an angle ϕ) and translate in the plane z = 0, i.e. there are in total five degrees of
freedom—three rotations and two translations. Figure reproduced from [24].

where the constant overhead tilt is modeled by Rψθ , and consists of a rotation θ about
the y-axis followed by a rotation of ψ about the x-axis. Furthermore, we allow the vehicle
to rotate an angle ϕ about the z-axis, which may vary. As the camera is assumed to be
mounted rigidly on the vehicle, the height above the floor is constant, hence we may
assume that it travels in the plane z = 0, leaving two translation components tx and ty,
see Figure 1. From this, one may derive the corresponding inter-image homography

H = λRψθ RϕTtRT
ψθ, (5)

where Tt = I − tnT is a translation matrix, for the translation t = [tx, ty, 0]T , relative

the plane normal n = [0, 0, 1]T . The homography matrix can be made unique by
e.g. imposing det(H) = 1.

In addition to the DLT constraints, the elements of a homography compatible with
the general planar motion model must satisfy a number of polynomial constraints. Such
constraints were numerically derived in [26], where it was shown that that there are at
least eleven quartic constraints. The novel theoretical framework used in [23], showed
that these constraints were necessary, but not sufficient; however, by adding a sextic
constraint, it was shown that they are sufficient.
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Figure 2: Error histogram of the estimated distortion parameter λ (left) and the homography H
for 100,000 random instances, for both of the proposed methods.

4 Polynomial Solvers

4.1 A Non-Minimal Relaxation (4 point)

In theory, one would be able to construct a minimal solver with three point correspon-
dences, as there are six degrees of freedom—the five motion parameters discussed in Ap-
pendix 3, and the distortion parameter. In practice, however, this problem is hard, and
we have yet to find a tractable solution which is numerically stable and sufficiently fast
for real-time applications. Consequently, we have opted for a non-minimal four point
relaxation. We do believe this is an acceptable compromise, as a general homography
with a single distortion parameter requires 4.5 point correspondences for the minimal
configuration. This effectively means one has to sample five point pairs to estimate a
hypothesis. This section is largely reproduced from [24].

Similarly, to the approach in [9] we expand the third row of (3); however, we consider
using only four point correspondences. This results in the following equation

(−ŷih11 + x̂ih21)xi + (−ŷih12 + x̂ih22)yi + (−ŷih13 + x̂ih23)wi = 0, (6)

where wi = 1 + λ(x2
i + y2

i ) and ŵi = 1 + λ(x̂2
i + ŷ2

i ) are functions of the radial
distortion parameter λ. There are eight monomials involved in this expression, namely

v1 =
[
h11 h12 h13 h21 h22 h23 λh13 λh23

]T . (7)

Using four point correspondences results in a system of equations, which can be written
as

M1v1 = 0, (8)
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where M1 is a 4× 8 matrix. For non-degenerate configurations the null space of M1 is
four-dimensional. Consequently, we may parameterize v1 as

v1 =
4

∑
i=1

γini, (9)

where γi are unknown basis coefficients. Since the last two monomials of v1 depend
on the previous elements, this relation has to be enforced when computing the basis
coefficients γi. These give rise to two equations

v8 = λv6 and v7 = λv3 . (10)

Furthermore, we proceed to fix the scale by letting γ4 = 1.
We will now use the second row of (3). Similarly, we may write this as

M2v2 = 0, (11)

where M2 ∈ R4×16. Here the null space vector v2 consists of seven variables, and 16
monomials: h31, h32, h33, λh33 and λ2γi, λγi, γi for i = 1, 2, 3 and λ2, λ, 1. We
may now proceed to eliminate the first three variables—h31, h32 and h33—as they are
only present in four monomials. As we are using four point correspondences, yielding
four equations, Gauss–Jordan elimination can be used. We obtain the following upon
performing the elimination

M̂2 =


h31 h32 λh33 h33 λ2γ1 λγ1 γ1 λ2 λ 1
1 • • • · · · • • •

1 • • • · · · • • •
1 • • • · · · • • •

1 • • • · · · • • •

 .
(12)

It turns out that the columns of the right 4× 12 submatrix are not independent. In
order to generate a correct solver, it is important to generate integer instances satisfying
these dependencies.

From the eliminated system M̂2v2 = 0 we get the four equations

h31 + f1(γ1,γ2,γ3,λ) = 0,

h32 + f2(γ1,γ2,γ3,λ) = 0,

λh33 + f3(γ1,γ2,γ3,λ) = 0,

h33 + f4(γ1,γ2,γ3,λ) = 0,

(13)
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Figure 3: Distribution of estimation error in the distortion parameter λ, and the the homogra-
phy H (measured in the Frobenius norm) for different noise levels σ and unknown tilt. The
proposed solver is compared to the five point solver [5]. Figure and caption reproduced from [24].

where fi(γ1,γ2,γ3,λ) are polynomials in the variables γ1, γ2, γ3, λ. Exploiting the
relations between the last two equations of (13), an additional constraint is obtained

λ f4(γ1,γ2,γ3,λ) = f3(γ1,γ2,γ3,λ) . (14)

The eliminated variables h31, h32 and h33 are polynomials of degree three, thus mak-
ing (14) of degree four. Together with (10) we have three equations in four unknowns.
Since we are able to express all elements of the homography H as a function of four
variables, we can enforce one of the 11 quartic constraints originally found in [26]. Eval-
uating these constraints using H it turns out that ten of the constraints are of degree 12
and one of degree 10 due to cancellation of higher order terms. We choose the smallest
one to build the polynomial solver.

Using the automatic generator [12] we find that there are 18 solutions to the problem
in general, and by sampling a basis based on the heuristic presented in [15] an elimination
template of size 177× 195 could be created.

4.2 Minimal Solver with Known Tilt (2 point)

If the tilt angles are known, we can treat the planar motion case with radial distortion. In
this case there are four degrees of freedom, and thus the minimal configuration requires
two point correspondences. In this section, we will derive a novel solver for this case.
Using a different approach than in the previous section, we may explicitly parameterize
the homography. Let us use the following parameterization for the rotation matrix

Rz =

c −s 0
s c 0
0 0 1

 , (15)
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Figure 4: Distribution of estimation error in the distortion parameter λ, and the the homogra-
phy H (measured in the Frobenius norm) for different noise levels σ and known tilt (assumed to
be compensated for). The proposed two point solver is compared to the four point and five point
solver [5].

where c2 + s2 = 1, hence the sought homography is given by H ∼ Rz + tnT ,
where t = [tx, ty, 0]T is a translation vector and n = [0, 0, 1]T is a floor normal. Let us
consider the modified DLT equations (3) again, but this time using two point correspon-
dences. Using the first and third rows, we note that there are in total five unknowns—c,
s, tx, ty and the radial distortion parameter λ—and in total eleven monomials, hence
we may write the system as Mv = 0, where M is a 4× 11 matrix and vec v is the
vector of monomials. Furthermore, of these eleven monomials, we find only four which
contain the variables c and s. Therefore, it is possible to use Gauss–Jordan elimination
to eliminate these variables. The corresponding system, after elimination, is on the form

M̂ =


λc c λs s λtx tx λ2ty λty ty λ 1
1 • • • • • • •

1 • • 0 • • 0 0
1 • • • • • • •

1 • • 0 • • 0 0

 .
(16)

Notice the pattern of zeros emerging in the eliminated system. This, and other more
intricate relations, between the coefficients are necessary to account for in order to create
an accurate polynomial solver.

From the above system we may introduce the functions gi, such that

λc + g1(tx, ty,λ) = 0,

c + g2(tx, ty,λ) = 0,

λs + g3(tx, ty,λ) = 0,

s + g4(tx, ty,λ) = 0 .

(17)
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where gi(tx, ty,λ) are polynomials in the variables tx, ty and λ. Furthermore, we utilize
the two relations

g1(tx, ty,λ) = λg2(tx, ty,λ),

g3(tx, ty,λ) = λg4(tx, ty,λ) .
(18)

The constraint c2 + s2 = 1 translates into

g2
2(tx, ty,λ) + g2

4(tx, ty,λ) = 1 . (19)

Now, we have a reduced system with three unknowns—tx, ty and λ—given by (18)
and (19). It turns out that (18) are cubic and (19) are quartic, and by analyzing the
dimension of the corresponding quotient ring, we find that the system has six solutions
in total (it can be verified that the original system has six solutions as well). Using [15]
an elimination template of size 18× 24 was constructed.

5 Experiments

5.1 Synthetic Data

In this section we investigate the numerical stability and noise sensitivity of the proposed
solver. We generate synthetic homographies, compatible with the general planar motion
model (with and without tilt), as well as distortion parameters. Random scene points are
generated using the homography and subsequently distorted using the division model.

The polynomial solvers were generated according to Appendix 4 in C++, and the
mean runtime for the 4 point solver is 730 µs and for the 2 point solver 13 µs (measured
over 100,000 instances on a standard desktop computer).

5.2 Numerical Stability

By using the described method, we generate noise-free problem instances. Similarly
to [9], we use physically reasonable parameters, and cover a wide range of distortions by
allowing the distortion parameter λ to be chosen at random in the interval [−0.7, 0].
In Figure 2 we show the error histogram for 100,000 random problem instances. When
measuring the Frobenius norm error, the homographies have been normalized to h33 =
1.

From the histogram of the four point solver, we conclude that most parameters are
estimated accurately, with an error in the range of 10−10. Such an error is acceptable
for most applications; however, some errors are higher, reaching an error around 10−2.
After careful analysis, we attribute this to the ten degree polynomial, which was added to
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Input Output

Figure 5: Two radially distorted images (left) and the rectified and stitched panorama. The distor-
tion parameter and homography was obtained using the proposed solver in a RANSAC framework.
Blue border added for visualization. Figure and caption reproduced from [24].

conform with one of the original quartic constraints necessary for making the proposed
solver compatible with the general planar motion model. Luckily, errors of the higher
magnitude is less frequently occurring, and can be efficiently discarded in a robust frame-
work, such as RANSAC. We will show that this is the case in the coming sections.

For the two point solver the errors are negligible for most computer vision applica-
tions, and is also a strong candidate for a robust framework, given that the assumptions
of known tilt are met.

5.3 Noise Sensitivity

Similar to the previous section we generate synthetic problem instances, but corrupt
the radially distorted image coordinates with Gaussian noise with a variance σ2. The
noise is varied from mild to severe and at every noise level 10,000 problem instances
were generated and the corresponding error measured. As a comparison, the five point
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method based on the QEP approach [5] was used.
The result is shown in Figure 3. Note that the mean error for both quantities are

lower for the proposed method compared to the five point method, for all noise levels.
Analogously, but with known overhead tilt, we compare the two point solver to the other
methods, see Figure 4. Here we see a clear benefit over the other, more general, methods.

Figure 6: Setup used in the panorama stitching experiment. Figure and caption reproduced
from [24].

5.4 Image Stitching

In this section, we use the proposed four point solver in a classic stitching pipeline based
on a standard approach for estimating a homography. The pipeline consists of first
detecting and extracting SURF keypoints, followed by nearest neighbor matching. From
all matched keypoints we select four at random and feed to the proposed solver in a
RANSAC framework. The input images are taken using a digital camera with a fish-eye
lens mounted on a tripod, overlooking a textured floor, see Figure 6. The camera tilt was
fixed during the experiment, and only the tripod itself was moved, hence generating a
motion compatible with the general planar motion model.

The output from the experiment is shown in Figure 5. Bundle adjustment or other
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non-linear refinements of the obtained homography was not performed. Apart from
being aligned with the correct edges we also note that lines that are straight in reality also
appear straight in the final panorama, thus indicating that the radial distortion parameter
was correctly estimated.

In terms of the efficiency of the robust framework, we use the same input images and
compare the five point solver [5] with the proposed solver. This is done by recording
the number of inliers as a function of the number of RANSAC iterations. We repeat
the experiment 500 times, and show the average result in Figure 7, which shows that the
proposed method consistently has a higher number of inliers.

Figure 7: Number of inliers vs. number of RANSAC iterations for the images in Figure 5. The
data has been averaged over 500 test instances. Figure and caption reproduced from [24].

5.5 Application to Visual Odometry

In this section we use real data from a mobile robot of model Fraunhofer IPA rob@work.
The sequence was originally used in [29], but the radial distortion profile was pre-
calibrated. On the mobile robot a camera is mounted rigidly, with an unknown over-
head tilt, which excludes the application of the two point solver. The distortion is clearly
noticeable and the field of view is almost entirely of the textured floor upon which the
robot travels. Furthermore, the robot is equipped with omni-directional wheels, which
allows for pure rotations. A reference system with an absolute accuracy of 100 µm tracks
the robot as it moves about, and the resulting data is used as ground truth.

We consider three sequences:

Line Forward motion in a straight line with a constant orientation (320 images),
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Figure 8: (Left) Histogram of estimated distortion parameters for the proposed method evaluating
during the parallel parking sequence. The selected parameter λ∗ is marked with a dashed line.
(Middle) Undistorted image of a calibration chart, not part of the sequence. (Right) Rectified
image using the estimated parameter λ∗. Figure and caption reproduced from [24].

Turn Forward motion while rotating, resulting in a slight turn (344 images),

Parallel Parking Forward motion followed by a sharp turn, while keeping constant
rotation (325 images).

We consider a standard VO pipeline, including an initial solution via homography
estimation, from which the initial camera poses are estimated (both intrinsic and extrinsic
parameters) and finally a non-linear refinement step using bundle adjustment. Both
the proposed method and the five point method [5] are capable of producing an initial
estimation through inter-image homographies. Given a pair of consecutive images we
may estimate the distortion parameter as well as the homography, using either solver, in
a RANSAC framework. To extract the full set of motion parameters, we use the method
in [27], hence establishing the initial poses. The estimated robot trajectory can then be
extracted and compared to the ground truth. Note that in a complete VO pipeline, the
initial position is important in order to avoid excessive amounts of bundle adjustment
iterations, as these typically become large-scale optimization problems. Therefore, it is of
interest to decrease the number of necessary iterations, by supplying a good initial guess.

The methods are comparable in terms of accuracy, as can be seen in Figure 9, with a
slight preference for the proposed method. As noted in [23, 25], there is no significant
boost in performance by pre-optimizing early on in the VO pipeline. One of the main
issues is that the constant overhead tilt, due to the camera being rigidly mounted onto
the robot, is not enforced throughout the entire trajectory by only considering a single
homography. For consistency, one must consider an entire sequence of homographies.
Nevertheless, the proposed method benefits from the same performance gain as was
noted in Appendix 5.4; namely, that the number of RANSAC iterations required are
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Figure 9: Estimated trajectories for line, turn and parallel parking of the VO experiment in Ap-
pendix 5.5. Images to the left show the entire trajectory, and the ones to the right are zoomed in
on a region of interest. Figure and caption reproduced from [24].
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Figure 10: Mosaics from the 1000 m sequence (top) and 1500 m sequence of the TAVT
dataset [19] obtained using the proposed two point solver.

fewer than for the five point method.
The problem with considering only a single homography also affects the estimation

of the radial distortion coefficient. In return, every pair of consecutive images yields a
new estimate; however, we know a priori that it is constant through the trajectory. We
propose using histogram voting as a robust way to obtain an initial guess. To evaluate the
performance we use previously unseen images of calibration charts, that were acquired
during the creation of the robot test sequences. We proceed by considering the parallel
parking test sequence, and use the estimated parameters as a basis for the histogram
voting experiment, see Figure 8. As can be seen, the chosen parameter λ∗, yields an
acceptable initial solution, to be refined in a bundle adjustment framework.

5.6 Application to Aerial Imagery

In this final section we test the novel two point solver for aerial imagery. We use the TNT
Aerial VideoTestset (TAVT) [19]. In this dataset, video sequences from a UAV have been
recorded, at varying flight heights. The onboard global shutter camera is recording in
full HDTV resolution at 30 fps, and suffers from mild radial distortion. Although the
distortion is not severe, it was shown in [18] that failure to compensate for it results in
severely distorted mosaicing attempts.

We use the sequences recorded at higher altitudes, in this case 1000 m and 1500 m

150



6. Conclusions

above ground, as these are not affected as much by potential non-zero and non-constant
tilt, making the two point solver suitable. The solver is incorporated in a RANSAC
framework, and the pipeline is identical to previous setups for real images. The sequences
are subsampled to include every tenth image of the original sequences, hence contain 117
and 158 images each. The resulting mosaics are shown in Figure 10. Note that no
non-linear optimization has been performed, nor histogram voting to determine the
distortion profile. Yet, even for this simple pipeline, we manage to produce visually
acceptable results, similar to those of the original articles [18, 19]. Perhaps the only
noticeable difference is the lack of blending, seam-finding and other processing involved;
however, these artifacts do not stem from the solver.

6 Conclusions

In this paper, we studied simultaneous radial distortion correction and motion estimation
for planar motion. We proposed two polynomial solvers for estimating the homography
and distortion parameter, and showed that they are sufficiently numerically robust and
fast to be incorporated in a real-time VO pipeline. The proposed solvers were tested
rigorously on both synthetic and real data, and were shown to be on par or superior to
competing methods.
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Abstract: In this paper we consider the case of planar motion, where a mobile platform
equipped with two cameras moves freely on a planar surface. The cameras are assumed to
be directed towards the floor, as well as being connected by a rigid body motion, which
constrains the relative motion of the cameras and introduces new geometric constraints. In
the existing literature, there are several algorithms available to obtain planar motion com-
patible homographies. These methods, however, do not minimise a physically meaningful
quantity, which may lead to issues when tracking the mobile platform globally. As a remedy,
we propose a bundle adjustment algorithm tailored for the specific problem geometry. Due
to the new constrained model, general bundle adjustment frameworks, compatible with the
standard six degree of freedom model, are not directly applicable, and we propose an effi-
cient method to reduce the computational complexity, by utilising the sparse structure of
the problem. We explore the impact of different polynomial solvers on synthetic data, and
highlight various trade-offs between speed and accuracy. Furthermore, on real data, the
proposed method shows an improvement compared to generic methods not enforcing the
general planar motion model.

1 Introduction

The prototypical problem in geometric computer vision is the so called Structure from
Motion (SfM) problem [12, 24]; the objective of which is to recover the scene geometry
and camera poses from a collection of images of a scene. The SfM problem has, in some
form or other, been studied since the very earliest days of photography, and many funda-
mental aspects of SfM were well understood already by the end of the 19th century [23].
Solving SfM problems of meaningful size and with actual image data, however, has been
made possible only through the computerisation efforts that were commenced in the late
1970s, and which have since led to increasingly automatic methods for SfM. Modern
SfM systems, e.g . Bundler [22] and other systems under the wider BigSFM banner1 [1,

1
http://www.cs.cornell.edu/projects/bigsfm/
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8], have managed to produce impressive city-scale reconstructions from large unordered
and unlabelled sets of images.

A major paradigm in SfM, which has proven hugely successful, is Bundle Adjustment
(BA) [26], which treats SfM as a large optimisation problem. With a parameterisation
describing the scene geometry and the cameras, BA employs numerical optimisation tech-
niques to find parameter values which best explain the observed images. Here, “best” is
determined by evaluating a cost function which is often—but not always—chosen as the
sum of squared geometric reprojection errors. The BA formulation of the SfM problem
puts it in a unified framework which still has extensive model flexibility, e.g . with regards
to (a) assumptions on the camera calibration, (b) different cost functions, and (c) dif-
ferent parameterisations of the cameras and the scene geometry—including implicit and
explicit constraints to enforce a particular motion model.

While camera based Simultaneous Localisation and Mapping (SLAM) and Visual
Odometry (VO) can be thought of as special classes of SfM, the computational effort to
approach SLAM and VO via BA has traditionally been inhibiting, and for this reason,
BA has mostly been used in offline batch processing systems such as the BigSFM systems
mentioned earlier. During the last two decades, however, SLAM and VO systems have
started incorporating regular BA steps to improve the consistency of the reconstruction
and the precision of the camera pose estimation. Performance improvements across the
spectrum—the algorithms, their implementation, the hardware—are paving the way for
application specific BA to make its entrance in the area of real-time systems.

Especially in the case of visual SLAM, there are a number of factors which can be
exploited to alleviate the computational burden compared to a more generic SfM system.
The images are acquired in an ordered sequence, and this can significantly speed up the
search for correspondences by avoiding the expensive “all-vs-all” matching. Additionally,
a suitable motion model may often be incorporated in a SLAM system, which can be
used e.g . (a) to further speed up the search for correspondences by predicting feature lo-
cations in subsequent images [5, 6], (b) to facilitate faster and more accurate local motion
estimation via nonholonomic constraints [20, 21, 39] or other constraints which reduce
the set of parameters [27, 31], or (c) to enforce globally a planar motion assumption on
the camera motion [10, 18, 32].

In this paper, we present a BA approach to visual SLAM for the case of a stereo rig,
where the cameras do not necessarily have an overlapping field of view, and where each
of the two cameras move in parallel to a common ground plane. The present paper is an
extension of the system described earlier in [30], to which a more extensive experimental
evaluation has been added. In particular, we have investigated how initialisation using
planar motion compatible homographies based on minimal [31] or non-minimal [27]
polynomial solvers affect the final reconstruction.
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2 Related Work

Planar Motion is a frequently occurring constrained camera motion, which arises nat-
urally when cameras are attached to a ground vehicle operating on a planar ground sur-
face. As mentioned in the introduction, deliberately enforcing planar motion can help
to improve the quality of the reconstruction.

An early SfM approach to plane constrained visual navigation was proposed by Wiles
and Brady [34, 35]. They suggested a hierarchical framework of camera parameterisa-
tions, and explored in detail the remaining structural ambiguity for each of these. The
lasting contribution of this work lies chiefly in its classification and description of the dif-
ferent modes of motion. The least ambiguous level in the case of planar motion—which
they called α-structure—contains only an arbitrary global scaling ambiguity and an arbi-
trary planar Euclidean transformation parallel to the ground plane, and is precisely the
level aimed at in the present paper.

If the optical axis of the camera is either orthogonal or parallel to the ground plane,
the parameterisation can be much simplified compared to the general case described
by Wiles and Brady. This situation can of course also be achieved if the camera tilt is
known with sufficient precision to allow a transformation to, e.g., an overhead view. An
approach for this case by Ort́ın and Montiel parameterises the essential matrix explic-
itly in the motion parameters, and then estimates the parameters using either a linear
three-point method or a non-linear two-point method [18]. Scaramuzza used essentially
the same parameterisation of the essential matrix, but combined it with an additional
nonholonomic constraint based on the assumption that the local motion is a circular
motion [20, 21]. Because of this additional constraint, the local motion can be com-
puted from only one point correspondence, and this allows for an exceptionally efficient
outlier removal scheme based on histogram voting.

Since the essential matrix is a homogeneous entity, it does not capture the length
of the translation, and the maintaining of a consistent global scale then requires some
additional information. One possibility for this, explored by Chen and Liu, is to add
a second camera [4]. This allows the length of the local translation to be computed
in terms of the distance between the two cameras, and since this remains constant, it
provides a way to prevent scale drift.

If the camera is oriented such that it views a reasonable part of the ground plane,
an alternative to using the essential matrix is to instead use homographies for the local
motion estimation. This has the advantage that the length of the translation between
frames can be expressed in terms of the height above the ground plane, which thus defines
the global scale. The homography based approach by Liang and Pears is based on an
eigendecomposition of the homography matrix, and it is shown that the rotation about
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the vertical axis can be determined from the eigenvalues, regardless of the camera tilt [14].
Hajjdiab and Laganière parameterised the homography matrix under the assumption of
only one tilt angle, and then transformed the images into a synthetic overhead view to
compute the residual rigid body motion in the plane [10].

A more recent homography based method by Wadenbäck and Heyden, which also
exploits a decoupling of the camera tilt and the camera motion, uses an alternating it-
erative estimation scheme to compute the two tilt angles and the three motion parame-
ters [32, 33]. Zienkiewicz and Davison solved the same 5-DoF problem through a joint
non-linear optimisation over all five parameters to achieve a dense matching of successive
views, with the implementation running on a GPU to reach very high frame rates [39].

Valtonen Örnhag and Heyden extended the general 5-DoF situation to handle a
binocular setup, where the two cameras are connected by a fixed (but unknown) rigid
body motion in 3D, and where the fields of view do not necessarily overlap [28, 29].

Bundle Adjustment is used to optimise a set of structure and motion parameters,
and is typically performed over several camera views. Triggs et al . give an excellent
overview [26]. Since the number of parameters optimised over is in most cases very
large, naı̈ve implementations will not work, and care must be taken to exploit the prob-
lem structure (e.g . the sparsity pattern of the Jacobian).

Generic software packages for bundle adjustment, which use sparsity of the Jacobian
matrix together with Schur complementation to speed up the computations, include
SBA (Sparse Bundle Adjustment) by Lourakis and Argyros, sSBA (Sparse Sparse Bundle
Adjustment) by Konolige, and SSBA (Simple Sparse Bundle Adjustment) by Zach [13,
16, 37].

Additional performance gains may sometimes be obtained through parallelisation.
GPU accelerated BA systems using parallelised versions of the Levenberg–Marquardt
algorithm [11] and the conjugate gradients method [36] have been presented e.g. by
Hänsch et al . and by Wu et al .. More recently, distributed approaches by e.g . Eriks-
son et al . and by Zhang et al . have employed splitting methods to make very large SfM
problems tractable [7, 38].

The present paper extends the sparse bundle adjustment system for the binocular
planar motion case by Valtonen Örnhag and Wadenbäck. The aim of our approach is
to exploit the particular structure in the Jacobian which arises due to the planar motion
assumption for the two cameras. We demonstrate how this particular situation can be at-
tacked via the use of nested Schur complementations when solving the normal equations.
In comparison to the earlier paper [30], we have significantly extended the experimental
evaluation of the system. Additionally, we have investigated the effect of enforcing the
planar motion assumption earlier on a local level, by using homographies estimated such
that they are compatible with this assumption [27, 31].
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3 Theory

3.1 Problem Geometry

The geometrical situation we consider in this paper is that of two cameras which have
been rigidly mounted onto a mobile platform. Due to this setup, which is illustrated in
Figure 1, the cameras are connected by a rigid body motion which remains constant over
time but which is initially not known. Each camera is assumed to be mounted in such
a way that it can view a portion of the ground plane, but it is not a requirement that
the cameras have any portion of their fields of view in common. The world coordinate
system is chosen such that the ground plane is positioned at z = 0, whereas the cameras
move in the planes z = a and z = b, respectively. We may also, without loss of
generality, assume that the centre of rotation of the mobile platform coincides with the
centre of the first camera.

z = 0

z = b

z = a

Figure 1: The problem geometry considered in this paper. The cameras are assumed to move in
the planes z = a and z = b, the relative orientation between them as well as the tilt towards the
floor normal is assumed to be constant as the mobile platform moves freely.
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3.2 Camera Parameterisation

We shall adopt the camera parameterisation for internally calibrated monocular planar
motion that was introduced in [33]. With this parameterisation, the camera matrix
associated with the image taken at position j will be

P(j) = Rψθ R(j)
ϕ [I | −t(j)], (1)

where Rψθ is a rotation θ about the y-axis followed by a rotation of ψ about the x-

axis. The motion of the mobile platform contains for each frame a rotation ϕ(j) about

the z-axis, encoded as R(j)
ϕ , and a vector t(j) for the translational part. The second

camera, which is related to the first camera through a constant rigid body motion, uses
the parameterisation

P′(j) = Rψ′θ′RηTτ(b)R(j)
ϕ [I | −t(j)], (2)

introduced in [28]. Here, ψ′ and θ′ are the tilt angles (defined in the same way as for the
first camera), τ is the relative translation between the camera centres and η is the constant
rotation about the z-axis relative to the first camera. None of the constant parameters are
assumed to be known. The translation matrix Tτ(b) is defined as Tτ(b) = I− τnT/b,
where τ = (τx, τy, 0) T , n is a floor normal and b is the height above the ground floor.
The global scale ambiguity allows us to set a = 1 without any loss of generality.

4 Prerequisites

4.1 Geometric Reprojection Error

Consider the pose of the first camera at position j, given by the camera matrix in (1), and

let x̂(j)
i denote the estimated measurement of the scene point Xi in homogeneous coor-

dinates, i.e. x̂(j)
i ∼ P(j)Xi. Let x(j)

i denote the measured image point, and define the

residual rij as rij = x(j)
i − ˆ̄x(j)

i , where ˆ̄x(j)
i is the inhomogeneous representation of x̂(j)

i .

Analogously to the first camera, define the residual r′ij for the image of Xi in the second
camera. Given N stereo camera locations and M scene points, we seek to minimise the
geometric reprojection error E given by

E(β) =
N

∑
i=1

M

∑
j=1
‖rij‖2

2 + ‖r′ij‖2
2, (3)

where β is the parameter vector consisting of the camera parameters and the scene points.
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4.2 The Levenberg–Marquardt Algorithm

For bundle adjustment it is common to use the Levenberg–Marquardt algorithm (LM)
which solves the augmented normal equations(

JT J + µI
)

δ = JTε, (4)

where J is the Jacobian of the cost function, ε the residual vector, and µ ≥ 0 is the
damping parameter. The reader is referred to [16, 26] for more details regarding the LM
algorithm and its application to bundle adjustment. There are other options to the LM
algorithm, e.g. the dog-leg solver [15] and preconditioned CG [3]; however, LM is one
of the most commonly used algorithms today, and is used in modern systems such as
SBA [16] and sSBA [13]. Note, however, that SBA assumes the camera parameters for
each camera to be decoupled, which is not the case for this specific problem geometry.

4.3 Obtaining an Initial Solution for the Camera Parameters

Homographies can be estimated in a number of different ways; however, the classical
approach is to compute point correspondences from matching robust feature points
in subsequent images. Popular feature extraction algorithms include SIFT [17] and
SURF [2], but many more are available and implemented in various computer vision
software. When the putative point correspondences have been matched a popular choice
is to use RANSAC (or similar frameworks) to robustly estimate a homography. Such
an approach is suitable in order to discard mismatched feature points. A well-known
method is the Direct Linear Transform (DLT); however, it requires four point correspon-
dences, and does not generate a homography compatible with the general planar motion
model. A good rule of thumb is to use a minimal amount of point correspondences,
since the probability of finding a set of points containing only inliers decreases with each
additional point that is used. However, as e.g . Pham et al . point out, for very severely
noisy data it may in some cases still be preferable to use a non-minimal set [19].

In [31] a minimal solver compatible with the general planar motion model was stud-
ied. It was shown that a homography compatible with the general planar motion model
must fulfil 11 quartic constraints, and that, a minimal solver only requires 2.5 point corre-
spondences. In a recent paper, a variety of different non-minimal polynomial solvers are
considered, partly because of execution time, but also because of sensitivity to noise [27].
These non-minimal solvers enforce a subset of the necessary and sufficient conditions for
compatibility with the general planar motion model, thus enforcing a weaker form of it.
By accurately making a trade-off between fitting the model constraints (i.e. using more
model constraints) and tuning to data (i.e. using more point correspondences), one can
increase the performance for noisy data. It is important to note that the assumption of
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constant tilt parameters cannot be enforced by only considering a single homography,
and, therefore, pre-optimisation in an early step of the complete SfM pipeline is not
guaranteed to yield better performance.

Once the homographies are obtained, one may enforce the constant tilt constraint
by employing the method proposed by Wadenbäck and Heyden [32], to obtain a good
initial solution for the monocular case. The method starts by computing the overhead
tilt Rψθ from an arbitrary number of homographies, followed by estimating the transla-
tion and orientation about the floor normal.

The method by Valtonen Örnhag and Heyden [28] extended the method to include
the stereo case, and starts off by treating the two stereo trajectories individually, and
estimates the tilt parameters by employing the monocular method described in the pre-
vious paragraph. Once the monocular parameters are known for the individual tracks,
the relative pose can be extracted by minimising an algebraic error in the relative transla-
tion between the cameras, followed by estimating the relative orientation about the floor
normal.

4.4 Obtaining an Initial Solution for the Scene Points

Linear triangulation of scene points does not guarantee that all points lie in a plane, and
the resulting initial solution would not be compatible with the general planar motion
model. In order to obtain a physically meaningful solution we make use of the fact that
there is a homography relating the measured points and the ground plane positioned at
z = 0.

Given a camera P, an image point x and the corresponding scene point X ∼
(X, Y, 0, 1) T , they are related by x ∼ PX = HX̃, where H is the sought homogra-
phy. By denoting the i:th column of P by Pi, it may be expressed as H = [P1 P2 P4] ,
where X̃ ∼ (X, Y, 1) T contains the unknown scene point coordinates. It follows that
the corresponding scene point can be extracted from X̃ ∼ H−1x.

In the presence of noise, using more than one camera results in different scene points,
which all will be projected onto the plane z = 0. In order to triangulate the points we
compute the centre mass; such an approach is computationally inexpensive, however, it
is not robust to outliers, which have to be excluded in order to get a reliable result.
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5 Planar Motion Bundle Adjustment

5.1 Block Structure of the Jacobian

Denote the unknown and constant parameters for the first camera path by γ = (ψ, θ)

and the second camera path by γ′ = (ψ′, θ′, τx, τy, b, η) . Furthermore, let the non-
constant parameters for position j be denoted by ξ j = (ϕ(j), t(j)

x , t(j)
y ) . Given N stereo

camera positions and M scene points, the following, highly structured Jacobian J, is
obtained

J =



Γ11 A11 B11
...

. . .
...

Γ1N A1N B1N
...

...
...

...
. . .

ΓM1 AM1 BM1
...

. . .
...

ΓMN AMN BMN
Γ
′
11 A′11 B′11
...

. . .
...

Γ
′
1N A′1N B′1N
...

...
...

...
. . .

Γ
′
M1 A′M1 B′M1
...

. . .
...

Γ
′
MN A′MN B′MN



, (5)

where we use the following notation for the derivative blocks

Aij =
∂rij

∂ξ j
, Bij =

∂rij

∂X̃i
, Γij =

∂rij

∂γ
,

A′ij =
∂r′ij
∂ξ j

, B′ij =
∂r′ij
∂X̃i

, Γ
′
ij =

∂r′ij
∂γ′

,

(6)

where X̃i = (Xi, Yi) are the unknown scene coordinates. This can be written in a more
compact manner as

J =

[
Γ 0 A B
0 Γ

′ A′ B′

]
. (7)

5.2 Utilising the Sparse Structure

In SfM, the number of scene points is often significantly larger than the number of
cameras, which makes Schur complementation tractable, and can significantly decrease
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the execution time. Standard Schur complementation is, however, not directly applicable
due to the constant parameters giving rise to the blocks Γ and Γ

′. We will, however, show
in this section, that it is indeed possible to use nested Schur complements, i.e. to recursively
apply Schur complements to different parts, and that, in fact, several of the intermediate
computations can be stored, thus drastically decreasing the computational time. First,
note that the approximate Hessian JT J, in compact form, can be written

JT J =

[
C E
ET D

]
. (8)

Here the contribution from the constant parameters are stored in C, the contribution
from the nonconstant parameters and the scene points are stored in D, and the mixed
contributions are stored in E. Furthermore, the matrix D can be written as

D =

[
U W

W T V

]
, (9)

with block diagonal matrices U = diag(U1, . . . ,UN) and V = diag(V1, . . . ,VM),
where

Uj =
M

∑
i=1

AT
ij Aij + A′Tij A′ij,

Vi =
N

∑
j=1

BT
ij Bij + B′Tij B′ij,

Wij = AT
ij Bij + A′Tij B′ij .

(10)

First, note that the system (D + µI)δ = ε, where D is defined as in (9), is not affected
by the constant parameters. Such a system reduces to that of the unconstrained case,
which can be solved using standard SfM frameworks, such as SBA, or other packages
utilising Schur complementation.

We will now show how to efficiently treat the decomposition of (8) as nested Schur
complements, by reducing the problem to a series of subproblems of the form used
in SBA and other computer vision software packages. In order to do so, consider the
augmented normal equations (4) in block form[

C∗ E
ET D∗

] [
δc
δd

]
=

[
εc
εd

]
, (11)

where C∗ = C + µI and D∗ = D + µI denote the augmented matrices, with the
added contribution from the damping factor µ, as in (4). Now, utilising Schur comple-
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mentation yields[
C∗ − ED∗−1ET 0

ET D∗

] [
δc
δd

]
=

[
εc − ED∗−1εd

εd

]
. (12)

Let us take a step back and reflect over the consequences of the above equation. First,
note that D∗−1 is present in (12) twice, and is infeasible to compute explicitly. This can
be avoided by introducing the auxiliary variable δaux, defined as

D∗δaux = εd . (13)

Again, such as system is not affected by the constraints of the constant parameters, and
can be solved with standard computer vision software. Furthermore, we may introduce
∆aux and solve the system D∗∆aux = ET in a similar manner by iterating over the
columns of ET . Since the number of constant parameters are low, such an approach is
highly feasible, but the performance can be further boosted by storing the Schur com-
plement and the intermediate matrices not depending on the right-hand side, from the
previous computations of obtaining δaux from (13).

When the auxiliary variables have been obtained, we proceed to compute δc from(
C∗ − E∆aux

)
δc = εc − Eδaux, (14)

and, lastly, δd by back-substitution

D∗δd = εd − ETδc . (15)

Again, by storing the computation of the Schur complement and intermediate matrices,
these can be reused to solve (15) efficiently.

6 Experiments

6.1 Initial Solution

The inter-image homographies were estimated using the MSAC algorithm [25] from
point correspondences by extracting SURF keypoints and applying a KNN algorithm
to establish the matches. In the first experiment, we use the standard DLT solver, the
minimal 2.5 pt solver [31] and the four different polynomial solvers studied in [27].

In all experiments we use all available homographies, and extract the monocular
parameters using the method proposed in [32]. Similarly, the binocular parameters were
extracted using [28]. When all motion parameter have been estimated the camera path
is reconstructed by aligning the first camera position to the origin, and use the estimated
camera poses to triangulate the scene points as in Section 4.4.
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Figure 2: Errors before applying BA. The angles are measured in degrees, and the translation in
pixels.
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Figure 3: Errors after applying BA. The angles are measured in degrees, and the translation in
pixels.

6.2 Impact of Pre-Processing Steps

In this section we work with synthetic data in order to have access to accurate ground
truth data. We generate an image sequence from a high-resolution image, depicting
a floor, which is the typical use case for the algorithm. This is done by constructing
a path compatible with the general planar motion model, and project that part of the
floor through the camera and extract the corresponding image. The resulting image is
400× 400 pixels, and all cameras are set to a field of view of 90 degrees, with parameters
ψ = −2◦, θ = −4◦, ψ′ = 6◦, θ′ = 4◦, τ = (0 400) , η = 20◦ and b = 1. In total, the
image sequence consists of 20 images. Lastly, to simulate image noise, we add Gaussian
noise with a standard deviation of five pixels, where the pixel depth allows 256 different
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Figure 4: Mean reprojection error vs execution time (s) over 50 iterations.

intensities per channel.

In order to study the difference in accuracy for the constant parameters, we proceed
by obtaining homographies as described in Section 6.1, using the minimal 2.5 point
solver [31], four non-minimal solvers [27] and the DLT equations (4 point). The ac-
curacy, over 50 iterations, is reported before BA, in Figure 2, and after BA, in Figure 3.
In general, the overall performance of the solvers are almost equal; however, some ten-
dencies are present. The minimal solver performs worse than the other before BA, but
this deviation is smaller after BA, although present. One possible explanation is that the
general planar motion model is enforced too early in the pipeline — in fact, since it is en-
forced between two consecutive image pairs only, it does not guarantee that the overhead
tilt is constant throughout the entire sequence, and thus, in the presence of noise, the
error propagates differently, compared to the other methods that partially (non-minimal)
or completely (DLT) tune to the data.

Overall, the performance is acceptable after BA, regardless of how the homographies
are obtained. Hence, the differentiating factors come down to convergence rates. For the
same problem instances as in the previous section we also save the convergence history in
terms of the mean reprojection error and the execution time in seconds. The results are
shown in Figure 4. It is clear that the execution time for reaching convergence increase
with the number of point correspondences required by the polynomial solvers. This
suggests that one can make a trade-off between speed and accuracy when designing a
planar motion compatible BA framework by choosing different solvers, in order to suit
ones specific needs. Note, however, that the implementation used in this paper is a native
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Figure 5: Images from the KITTI Visual Odometry / SLAM benchmark, Sequence 01 (left) and
03 (right). Since the algorithm is homography-based the images are cropped a priori in order to
contain a significant portion of planar or near planar surface. Such an assumption is not valid on
all sequences of the dataset, however, certain cases, such as the highway of Sequence 01 (left) is a
good candidate. There are several examples where occlusions occur, such as the car in Sequence 03
(right). These situations typically occur at crossroads and turns. Image credit: KITTI dataset [9].

Matlab implementation, and that the absolute timings can be greatly improved by careful
implementation; however, the relative execution time between the solvers will be similar.

6.3 Bundle Adjustment Comparison

In this section we compare the qualitative difference between enforcing the general pla-
nar motion model versus the general unconstrained six degree of freedom model on a real
dataset. Currently, there is not a good or well-established dataset compatible with the
general planar motion model, and as a substitute, we use the KITTI Visual Odometry
/ SLAM benchmark [9]. Since many sequences or subsequences depict urban environ-
ments with paved roads, the general planar motion model can roughly be applied. In
case of clear violation of the general planar motion model, we proceed to use only sub-
sequences where the model is applicable. As we are only interested by the road in front
of the vehicle, and not the sky and other objects by the roadside, we proceed to crop a
part of the image prior to estimating the homography. An example of this is shown in
Figure 5.

We use SBA [16] to enforce the general 6-DoF model from the initial trajectory
obtained using the traditional 4-point DLT solver, and from the same trajectory our
proposed BA algorithm is used. The same thresholds for absolute and relative errors,
termination control and damping factors are used for both methods. Furthermore, we do
not match features between the stereo views, in order to demonstrate that enforcing the
model is enough to increase the overall performance. The results are shown in Figure 6.

In most cases it is favourable to impose the proposed method compared to the general
6-DoF method, using SBA. Furthermore, note that irregularities that are present in the
initial trajectory is often transferred to the solutions obtained by SBA, thus producing
physically improbable solutions. These irregularities are rarely seen using the proposed
method, which results in smooth realistic trajectories under general conditions, regardless
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(a) Sequence 01 (60 images). (b) Sequence 03 (200 images).

(c) Sequence 04 (40 images). (d) Sequence 06 (330 images).

Figure 6: Estimated trajectories of subsequences of Sequence 01, 03, 04 and 06. In order to align
the estimated paths with the ground truth, Procrustes analysis has been carried out. N.B. the
different aspect ratio in (c), which is intentionally added in order to clearly visualise the difference.
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of whether the initial solution contains irregularities or not.
In fact, it is interesting to see what happens in cases where the general planar motion

model is violated. Such an instance occurs in Figure 6b depicting Sequence 03, and is
due to the car approaching a crossroads, where a passing vehicle enters the field of view.
The observed car, and the surroundings, are highly non-planar; one would, perhaps,
expect such a clear violation to result in completely unreliable output, however, the only
inconsistency in comparison to the ground truth, is that the resulting turn is too sharp,
and the remaining path is consistent with the ground truth. This is not true for the
general 6-DoF model, where several obvious inconsistencies are present.

7 Conclusion

In this paper a novel bundle adjustment method has been devised, which enforces the
general planar motion model. We provide an efficient implementation scheme that ex-
ploits the sparse structure of the Jacobian, and, additionally, avoids recomputing unnec-
essary quantities, making it highly attractive for real-time computations.

The performance of different polynomial solvers are studied, in terms of both accu-
racy and speed, taking the entire bundle adjustment framework into account. We discuss
how enforcing different polynomial constraints, through planar motion compatible ho-
mography solvers, in an early part of the bundle adjustment framework affect the end
results. Furthermore, we discuss which trade-offs between speed and accuracy that can
be made to suit ones specific priorities.

The proposed method has been tested on real data and was compared to state-of-
the-art methods for sparse bundle adjustment, for which it performs well, and gives
physically accurate solutions, despite some model assumptions not being fulfilled.
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Abstract: In this paper we consider a collection of relative pose problems which arise
naturally in applications for visual indoor navigation using unmanned aerial vehicles (UAVs).
We focus on cases where additional information from an onboard IMU is available and
thus provides a partial extrinsic calibration through the gravitational vector. The solvers are
designed for a partially calibrated camera, for a variety of realistic indoor scenarios, which
makes it possible to navigate using images of the ground floor. Current state-of-the-art
solvers use more general assumptions, such as using arbitrary planar structures; however,
these solvers do not yield adequate reconstructions for real scenes, nor do they perform fast
enough to be incorporated in real-time systems.

We show that the proposed solvers enjoy better numerical stability, are faster, and require
fewer point correspondences, compared to state-of-the-art approaches. These properties
are vital components for robust navigation in real-time systems, and we demonstrate on
both synthetic and real data that our method outperforms other solvers, and yields superior
motion estimation1.

1 Introduction

One of the lessons which have been learned in computer vision is the importance of
leveraging prior knowledge pertaining to the specific vision task at hand. For geomet-
rical computer vision problems, this often means introducing constraints encoding the
prior knowledge already at the modeling stage. Successfully making use of such prior
information in a vision system can have numerous direct benefits, such as improved ro-
bustness, better accuracy, and faster performance. However, constraining the solution
space will in many cases come at the cost of requiring significantly more complex al-
gorithms. A familiar illustration of this is the computation of fundamental or essential
matrices in epipolar geometry; the simplicity of the seven-point [10] or eight-point [29]
algorithms stands in stark contrast to the complexity of the five-point algorithm [32].

1Code available at: https://github.com/marcusvaltonen/minimal_indoor_uav.
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Figure 1: The pitch and roll angles can be estimated from the IMU data, leaving the unknown
yaw angle to be determined.

In particular over the past two decades, the embracement of approaches based on
algebraic geometry has allowed many constrained geometrical problems to be solved
with a minimal (or near-minimal) amount of data. This has notably been the case for
notorious problems such as five-point essential matrix estimation [28, 32, 38] or optimal
three-view triangulation [5, 20, 39], but also for pose estimation problems involving
some kind of geometric distortion such as radial distortion [11, 14, 15, 18, 24, 25, 34,
40] or refractive distortion in underwater problems [8, 33]. These successes have been
enabled chiefly thanks to improvements in the computational algorithms themselves, but
to a lesser extent also by improvements in hardware which have made it feasible to solve
increasingly large systems.

Inspired primarily by recent papers by Saurer et al . [35] and by Ding et al . [6], we
aim to create a homography based indoor positioning system for UAVs, that utilizes data
from an onboard IMU. One benefit of using the IMU data is that two degrees of freedom,
the roll and the pitch, are removed from the positioning problem, only leaving a single
rotational parameter—the yaw angle—to determine. An illustration of the envisaged
situation is provided in Figure 1.
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Our main contributions are fourfold:

1. We incorporate the known IMU data for positioning using the ground floor and
a partially calibrated camera with unknown focal length,

2. The resulting solvers are orders of magnitude faster than the current state-of-the-
art,

3. We demonstrate through numerical experiments that our solvers are better than
or on par with existing solvers with respect to accuracy and runtime, and

4. We run the solvers in real-time on a UAV system, demonstrating that the derived
solvers are feasible for practical real-world situations.

2 Related Work

Pose estimation with a known direction For many practical pose estimation prob-
lems, there are simple ways which allow the extraction of one particular direction, thus
giving some of the pose parameters for free. As shown by Kalantari et al . [12], this could
happen e.g . by detection in the image of a horizon line or vanishing points, or through ex-
ternal sources such as the gravitational vector from an IMU. Provided a known direction
and 2D–3D correspondences, Kukelova et al . gave a closed-form solution to the absolute
pose problem for a calibrated or partially calibrated (unknown focal length) camera [17].

Homography-based relative pose, where the plane normal is taken as the known
direction, has also been considered in the literature. Minimal solvers for the calibrated
case, including using the ground floor (2pt) or unknown vertical plane (2.5pt) and an
arbitrary plane (3pt), were treated in [36] and [35]. In Ding et al . the 3pt case was
considered, and also included some partially calibrated cases [6], e.g. with either one or
two unknown focal lengths.

Estimation of focal lengths Hartley considered the problem of estimating the essential
matrix and focal lengths from point correspondences, under the assumption that all other
intrinsic camera parameters were known [9]. The method is based on the eight-point
algorithm [29] followed by a series of algebraic manipulations of the fundamental matrix
to extract the focal lengths. Under the same assumptions, Bougnoux derived a closed-
form formula for computing the focal lengths [1]. With the introduction of polynomial
solvers for various problems in computer vision, people have proposed solvers which
give directly the essential matrix and the focal lengths, without the necessity to go via the
fundamental matrix. One of the early such algorithms was presented by Li [27], who
solved the problem with six point correspondences (the minimal case). A recent paper
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by Kukelova et al . [19] contains, as an application, a state-of-the-art solver to the six-
point essential matrix and focal length estimation problem. In the experiments, we will
compare our proposed solvers against this last solver by Kukelova et al .

Solving multivariate polynomial equations Solving systems of multivariate polyno-
mial equations numerically is usually done through the action matrix method [4, 16, 30].
This works by first expanding the equations into an elimination template, which is then
reduced to an eigenvalue problem, where the matrix in question is known as the action
matrix. The speed of the solver depends on (i) how fast the coefficients of the polyno-
mials can be calculated, (ii) the size of the elimination template, and (iii) the number
of solutions. For most cases the size of the elimination template is the dominant factor.
The numerical stability does also depend on the design, although in a more complicated
way.

Finding a reasonably sized and numerically stable elimination template for a given
problem is a highly non-trivial task, although it has been greatly simplified through the
introduction of automatic generators. One early such automatic generator by Kukelova
et al . [16] used a heuristic approach to expand the system of equations until a valid
elimination template was obtained, and then proceeded with successively removing one
row at a time from the elimination template to prune redundancies. Larsson et al . [22]
exploited the inherent relations between the equations to directly compute a set of mono-
mials with which to expand the equations in order to yield a valid elimination template.

In addition to elimination template generation, there have been several improve-
ments to the numerical accuracy, numerical stability, and speed of polynomial solvers.
In [3] and [4], Byröd et al . proposed performing the reduction to the action matrix by
means of either a QR decomposition or a singular value decomposition, together with
an adaptive scheme for pruning columns which are deemed unnecessary. Naroditsky
and Daniilidis suggested elimination template trimming based on certain algebraic con-
ditions [31]. However, as it turns out, there are situations where excessive reduction in
template size comes at the cost of inferior numerical stability [2]. Kuang and Åström
suggested evaluating many reduction schemes for a large number of random problem
instances in order to ensure good numerical properties of the resulting template [13].

3 Incorporating the IMU Data

We follow the approach used in [6]. A general homography H has eight degrees of
freedom, fulfilling the Direct Linear Transform (DLT) constraint,

x2 ∼ Hx1, (1)
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Figure 2: Error histogram for 10,000 randomly generated problem instances for the partially cali-
brated cases. Top to bottom: f H f , H f , f1H f2.

for two point correspondences x1 ↔ x2 on a common scene plane. The relation (1)
yields two linearly independent equations, hence a minimum of four point correspon-
dences are necessary in order to estimate the homography. In the calibrated case, with
intrinsic parameters encoded in the calibration matrices K1 and K2, respectively, one
obtains

Heuc ∼ K2HK−1
1 , (2)

where the Euclidean homography Heuc can be written as

Heuc ∼ R +
1
d

tnT, (3)

where R is the relative rotation between the views, n is the plane normal, and t is the
relative translation. The depth parameter d is the distance from the first camera center
to the scene plane.

We consider the case of a common reference direction, assumed to be aligned with
the gravitational direction, which eliminates two degrees of freedom, see Figure 1. There-
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fore, after a suitable change of coordinates, we may assume that

Hy ∼ Ry +
1
d′

t′n′T, (4)

where Ry is a rotation about the y-axis (gravitational direction). Hence, the DLT equa-
tions (1) can be written as

RT
2 K−1

2 x2 ∼ HyRT
1 K−1

1 x1 . (5)

The known matrices R1 and R2 are given by the IMU data, and consist of the pitch and
roll angles for the first and second camera positions.

The relation between the original homography H, from (1), and Hy, from (4), is
thus given by

Hy ∼ RT
2 K−1

2 HK1R1 . (6)

Furthermore, the relative rotation R and the relative translation t, are given by

R = R2RyRT
1 and

t
d
= R2

t′

d′
, (7)

with the modified plane normal n′ = R1n.

3.1 Navigation Using the Ground Plane

By introducing the auxiliary variables

yi = RT
j K−1

j xi, (8)

one may reduce (5) to y2 ∼ Hyy1. For an arbitrary plane normal n′, the matrix Hy,
defined as in (4), has 6 degrees of freedom (DoF). However, if we constrain ourselves
to navigating using the ground plane, then the plane normal is uniquely defined (up to
scale), with n′ = (0, 1, 0)T . Note, that we can only recover the translation up to scale,
hence we may assume that the depth d′ = 1. Parameterizing the rotation matrix as

Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (9)

we may write

Hy =

 h1 h3 h2
0 h4 0
−h2 h5 h1

 , (10)
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where R and t can be extracted directly through the entries hi, given by

R =

 h1 0 h2
0 1 0
−h2 0 h1

 and t =

 h3
h4 − 1

h5

 , (11)

where the trigonometric constraint h2
1 + h2

2 = 1 must be enforced to get a valid rotation
matrix.

3.2 The Calibrated Case

In [35], the authors construct a minimal solver for the calibrated case, with 4 DoF (three
translation components, and the unknown rotation about the ground floor normal). As a
consequence, one only needs two point correspondences, which give rise to four linearly
independent equations. By parameterizing Hy as in (4), it is possible to form the linear

system2

Ah = 0, (12)

where A is a 4× 5 matrix and h contains the hi. For non-degenerate configurations, the
matrix A has a one-dimensional nullspace, which can be obtained using singular value
decomposition (SVD). One may fix the scale of Hy, in order to acquire valid rotation
parameters. This is achieved by using the trigonometric constraint introduced through
the parameterization of the rotation matrix, h2

1 + h2
2 = 1, as in (11). This approach

leaves two possible solutions [35].

4 Partially Calibrated Cases for Ground Plane Naviga-
tion

We will extend the ground plane solver to three partially calibrated cases, also considered
in [6].

4.1 Equal and Unknown Focal Length ( f H f , 2.5-point)

Parameterize the inverse of the unknown calibration matrix as K−1 = diag(1, 1, w),
and consider the rectified points (8), which now depend linearly on the unknown pa-
rameter w. Parameterizing Hy as in (10), it is clear that the equations obtained from (5)

2In [35] the camera is aligned with the z-axis, but the same procedure can be repeated using the y-axis
instead.
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Figure 3: Noise sensitivity comparison for Gaussian noise with standard deviation σN . For each
noise level 1,000 random problem instances were generated.

are quadratic in hi, i = 1, . . . , 5 and w. Using 2.5-point correspondences, i.e. using
3-point correspondences and discarding one of the DLT equations, together with the
constraint h2

1 + h2
2 = 1, gives six equations and six unknowns. This system of equations

has infinitely many solutions, if we allow w = 0. Such solutions, however, do not yield
geometrically meaningful reconstructions, and should therefore be excluded. This can
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4. Partially Calibrated Cases for Ground Plane Navigation

be achieved using saturation, through the method suggested in [23].
To generate a polynomial solver, we use the automatic generator proposed in [21],

from which we have 14 solutions, and an elimination template of size 10× 17. Exploit-
ing symmetries, the solutions can be obtained by solving a 7× 7 eigenvalue problem.

4.2 One Unknown Focal Length (H f , 2.5-point)

We may use the same approach as in the previous case, but may pre-compute y1 =

RT
1 K−1

1 xi, to reduce the number of unknown coefficients in the elimination template.
Due to this approach, we are able to reduce the eigenvalue problem to a 4× 4 matrix 3,
despite having the same amount of solutions and elimination template

4.3 Different and Unknown Focal Lengths ( f1H f2, 3-point)

Using the same approach as previously for this case resulted in a large elimination tem-
plate, and in order to reduce the template size we opted for a different approach. Similar
to [6] we parameterize the nullspace of the homography (1). In general, three point corre-
spondences yield six linearly independent equations, hence the corresponding nullspace
is of dimension 3 and can be parameterized using

H = α0H0 + α1H1 + α2H2. (13)

We may fix the scale by letting α0 = 1. As in the previous case, we may parameterize
the calibration matrices K1 = diag(1, 1, w1) and K−1

2 = diag(1, 1, w2). Inserting
this into (6) yields a parameterization of Hy in the unknowns α1, α2, w1, w2 of cubic
degree.

Finally, given

Hy =

ĥ1 ĥ2 ĥ3
ĥ4 ĥ5 ĥ6
ĥ7 ĥ8 ĥ9

 , (14)

and comparing to (10), we obtain the four equations

ĥ1 − ĥ9 = 0, ĥ3 + ĥ7 = 0, ĥ4 = ĥ6 = 0 . (15)

In conclusion, we get four cubic equations in four unknowns. Using the automatic gen-
erator, and carefully selecting a basis [26], we are able to find an elimination template of
10× 15, with five solutions, which are obtained by solving a 5× 5 eigenvalue problem.

3In fact, one may use the quartic formula for root finding instead, to gain a bit of extra performance.
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4.4 Synthetic Experiments

Numerical Stability and Noise Sensitivity

In this section the proposed solvers are tested on synthetic data. We generate points
on the ground plane y = 0 and compare the proposed solvers with the corresponding

solvers by Ding et al . [6]4. We only compare these solvers as they both estimate homo-
graphies, as compared to the methods by Kukelova et al . [19] and Bougnoux [1], which
estimates the fundamental matrix. Furthermore, with noise-free data, the latter methods
degenerate for planar correspondences.

We generate all solvers in C++, and measure the error for the obtained homography
and the focal length(s) over 10,000 randomly generated problem instances. The prob-
lem instances are obtained by generating scene points [xi, 0, zi, 1]T , where xi, zi are
chosen from a random distribution with zero mean and unit variance, then projected

through cameras Pi = [Ri | ti], where Ri = R(i)
imuR(i)

z . The translation component
was generated at random with zero mean and unit variance. When measuring the error,
the homographies are normalized to have last entry equal to 1. To increase numerical
stability, we use the normalization technique proposed by Ding et al . [6]. The results
are shown in Figure 2. For the partially calibrated cases with unknown and equal focal
length ( f H f ), and one unknown focal length (H f ) the proposed solvers are significantly
more stable. Furthermore, in the case of unknown and (possibly) different focal lengths
( f1H f2) the method by Ding et al . [6] uses 4 point correspondences, hence the homogra-
phy estimation is a regular 4-point DLT system obtained using SVD, with known stable
properties.

5 Experiments

To mimic real data, we distort the image point correspondences by adding zero mean
Gaussian noise with a standard deviation σN , and vary the noise level. To be able to
compare the same quantity, the obtained homographies and fundamental matrices, are
decomposed to relative translation and orientation. We proceed as in the previous ex-
periment by generating ground truth data, but also include non-planar point correspon-
dences for the 6-point and 7-point methods, in order for them to not degenerate.

4Code shared by the authors.
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Figure 4: Number of RANSAC inliers vs. time for the different methods. The horizontal dashed
lines are the thoeretical maximal limits for the homography based methods (lower) and the method
by Kukelova et al . (upper).

We define the errors as in [6, 35], namely

eR = arccos

(
tr(RGTRT

est)− 1
2

)
,

et = arccos

(
tT

GTtest
‖tGT‖‖test‖

)
,

e f =
| fGT − fest|

fGT
.

(16)

In Figure 3 we show the results for the noise sensitivity experiments. We note that
the proposed solvers perform consistent to SOTA solvers in all cases. We emphasize,
however, that, for the synthetic data experiments, the main benefit of using our method
is the execution time, which we show in the next section.

Speed Evaluation

The experiments were run on a laptop with an Intel Core i5-6200U 2.30GHz CPU
using C++ implementations based on the Eigen linear algebra library [7]. The same
optimization flags were used for all solvers. The mean runtime for one hypothesis esti-
mation is shown in Table 1. We note that the proposed methods are faster than [19],
which is partly due to the number of operations required to compute the coefficients
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Figure 5: Drone experiment ground truth trajectories (black) for the indoor sequence, and the
estimated trajectories for the different solvers. Green dots indicate inliers (from at least one frame)
and red dots denote outliers (all frames). Left to right: Our, Ding et al . [6] and Kukelova et al . [19].

in the elimination template is significantly less in our case, as well as the corresponding
eigenvalue problems being smaller. Furthermore, we note a speed-up of more than 75×
for our f H f solver compared to the SOTA solver by Ding et al . [6]. Furthermore, we
argue that this is the most relevant case for indoor UAV navigation, as most consumer-
grade UAVs have fixed focal length; however, when considering more than one drone,
the other cases are relevant. For the case of H f , one could have a calibrated camera
on one of the UAVs, as a reference, thus not having to calibrate all remaining UAVs,
potentially eliminating exhaustive calibration procedures. For the f1H f2 case we may
consider two drones (with possibly different focal lengths) covering the same area, e.g.
drone swarms [37], or drones with varifocal optics.

Apart from being significantly faster than the SOTA solvers, our approach benefits
from requiring one less point correspondence. In practice, when one uses a robust frame-
work, such as RANSAC, the number of iterations required depends on the number of
points to select, hence the practical speed-up is greater than 75×, see Table 2.

Furthermore, the 2.5-point and 3.5-point methods both benefit from being able to
do a consistency check of the putative solutions, by using the third or fourth point cor-
respondence, respectively, whereas other methods need to estimate the hypothesis every
iteration. This optimization step was implemented for the f H f solvers, and we com-
pare the number of inliers vs total execution time, see Figure 4, in a complete RANSAC
framework. In this experiment 100 points were generated on the ground plane, as well as
30 non-planar correspondences, in order to simulate a possible real-life scenario. Noise
was added, and 20 % of the points were scrambled to simulate outliers. Note, that the
method by Kukelova et al . can make use of all points, including the non-planar cor-
respondences, hence the theoretical maximal limit is higher than for the homography
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based methods. As is evident, our method is superior in terms of reaching its theoretical
maximal limit fastest, and significantly faster than the SOTA solver [6].

Table 1: Mean execution time for 10,000 randomly generated problems in C++. All solvers were
implemented using Eigen [7] and compiled in g++ with the -O3 optimization flag.

Case Author Execution time (µs)
f H f Our 14

Ding et al . [6] 1052
f E f Kukelova et al . [19] 103
H f Our 5

Ding et al . [6] 124
E f Kukelova et al . [19] 25
f1H f2 Our 9

Ding et al . [6] 47
f1E f2 Bougnoux [1] 27

Table 2: Mean execution time for reaching at least 95 % inlier ratio in a RANSAC loop, based on
100 randomly generated problems in C++.

Case Author Execution time (ms)
f H f Our 0.035

Ding et al . [6] 19.32
f E f Kukelova et al . [19] 0.118

5.1 Real Data

The real data was captured using a monochrome global shutter camera (OV9281) with
resolution 480× 640 and an inertial measurement unit (MPU-9250). The extracted
feature locations were undistorted to remove fish-eye effects. Ground truth and pair-
wise feature matches were generated by a simultaneous localization and mapping system,
where both the re-projection and IMU error were minimized; this is in order to create
a globally consistent solution in metric scale. No assumptions about the scene structure
were made, which lead to some matches not belonging to the ground plane, resulting in
natural outliers, for the proposed method.

The data consists of both indoor and outdoor sequences containing mostly planar
surfaces. The dataset contains shorter sequences (containing fewer than 50 images), as
well as longer ones (containing more than 600 images), with varying kinds of motions.
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Figure 6: Drone experiment: (Left to right) Example image of the scene from the UAV. Focal
length error, rotation error, translation error (as defined in (16)).

Examples of input images can be seen in the left-most column of Figure 6. Here, we also
present the focal length, rotation and translation errors compared to the ground truth
data for all frames. The estimated poses were obtained using 200 RANSAC iterations
per method and frame for the equal and unknown focal length solvers.

To visualize the qualitative difference between the methods, we show the estimated
trajectories for the indoor sequence in Figure 5. The initial pose was synchronized with
the ground truth pose and the length of the translations scaled to match the ground
truth translation vector for each frame. From here we converted the relative poses to
the absolute poses and display the estimated trajectories together with the ground truth
trajectories individually.

We also include green dots indicating feature points that have been matched (at least
once) as an inlier in the sequence. The red dots are feature points that have consistently
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been rejected as outliers. For the proposed method a red cluster of rejected outliers is
clearly visible, and these are all feature point of a door, hence do not belong to the
ground plane. It is interesting to see that the method by Ding et al . [6] uses these points
as well when trying to estimate the relative pose. This, of course, is valid given the more
general assumption used, by allowing arbitrary plane normals; however, it is readily seen
from the estimated trajectory alone, that this approach is not robust enough for real-life
applications.

6 Conclusions

In this paper we have presented new minimal solvers to perform homography based
indoor positioning. The solvers can utilize IMU data to obtain a partial extrinsic cal-
ibration. We have evaluated the solvers on both synthetic and real world data, where
we have shown that they are robust to both Gaussian noise, as well as noise present in
real world data. Comparing with the current state of the art, our solvers are on par with
SOTA [6] on synthetic data and outperforms them on real world data, where the solvers
can be seen to follow ground truth more accurately. However, the main benefit of the
solvers compared to the current state of the art is the execution speed, which is several
orders of magnitude faster. In addition to this the solvers require fewer points compared
to their counterparts. These attributes make the solvers viable for real-time systems, such
as UAVs, requiring many RANSAC iterations to ensure robustness and therefore fast
execution to meet the short time budget per frame.
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yond Gröbner Bases: Basis Selection for Minimal Solvers”. In: Computer Vision
and Pattern Recognition (CVPR) (2018), pp. 3945–3954.

[27] H. Li. “A Simple Solution to the Six-Point Two-View Focal-Length Problem”.
In: European Conference on Computer Vision (ECCV). Graz, Austria, May 2006,
pp. 200–213.

[28] H. Li and R. I. Hartley. “Five-Point Motion Estimation Made Easy”. In: Pro-
ceedings of the 18th International Conference on Pattern Recognition (ICPR). Vol. 1.
Hong Kong (SAR): IEEE, Aug. 2006, pp. 630–633. ISBN: 0-7695-2521-0.

[29] H. C. Longuet-Higgins. “A computer algorithm for reconstructing a scene from
two projections”. In: Nature 293 (Sept. 1981), pp. 133–135.
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Abstract: In this paper we present a novel algorithm for onboard radial distortion correction
for unmanned aerial vehicles (UAVs) equipped with an inertial measurement unit (IMU),
that runs in real-time. This approach makes calibration procedures redundant, thus allowing
for exchange of optics extemporaneously. By utilizing the IMU data, the cameras can be
aligned with the gravity direction. This allows us to work with fewer degrees of freedom, and
opens up for further intrinsic calibration. We propose a fast and robust minimal solver for
simultaneously estimating the focal length, radial distortion profile and motion parameters
from homographies. The proposed solver is tested on both synthetic and real data, and
perform better or on par with state-of-the-art methods relying on pre-calibration procedures.
Code available at: https://github.com/marcusvaltonen/HomLib.1

1 Introduction

In epipolar geometry, the relative pose of two uncalibrated camera views is encoded al-
gebraically as the fundamental matrix F concomitant with the two views. When trying
to estimate F from point correspondences, it is well-known that the minimal case—i.e.
the smallest number of point correspondences for which there exists at most finitely
many solutions—uses seven point correspondences [18]. By using eight point corre-
spondences instead of seven, the estimation problem results in a system of eight linear
equations, which can be solved fast and in a numerically robust manner using the sin-
gular value decomposition (SVD) [19]. To solve the minimal case, i.e. using only seven
point correspondences, one must conjoin the seven linear equations with one cubic equa-
tion emanating from the rank constraint det F = 0. In the case of calibrated cameras,
the minimal case involves only five point correspondences; however, the corresponding
system of polynomial equations now contains ten cubic equations, and the complexity
of the solver increases further [40].

1This work was supported by the Swedish Research Council (grant no. 2015-05639), the strategic research
projects ELLIIT and eSSENCE, the Swedish Foundation for Strategic Research project, Semantic Mapping
and Visual Navigation for Smart Robots (grant no. RIT15-0038), and Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.
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Figure 1: Utilizing the IMU data it is possible to align the camera views, only leaving an unknown
translation t. This assumes that the IMU drift is negligible, which is a realistic assumption if the
measurements are not taken too far apart in time.

There are several benefits of reducing the number of point correspondences used
to estimate the motion parameters. In most cases, this comes at the cost of increased
complexity of the system to be solved. Solving systems of polynomial equations numer-
ically, in a sufficiently fast and robust way, is a challenging task. One popular method,
sometimes referred to as the action matrix method, works if there are finitely many solu-
tions [10, 38]. The system of polynomial equations defines an ideal, for which a Gröbner
basis can be computed, leading to an elimination template, where the solutions to the
original problem are obtained by solving an eigenvalue problem [5, 8, 24]. This process
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has been automated by several authors, with the automatic solver by Kukelova et al . [24]
as one of the first. Recent advances use syzygies to make the elimination template
smaller [30], as well as discarding spurious solutions by saturating the ideal [31]. Us-
ing Gröbner bases is not the only option; it has for example been shown that other bases
can yield better performance [34], and that overcomplete spanning sets sometimes give
better numerical stability [8]. Recently, alternative methods relying on resultants show
promising results [1, 2].

Apart from adding extra constraints to the motion of the cameras, one may add
scene requirements to reduce the number of necessary point correspondences. A clas-
sic example is when the point correspondences lie on a plane, in which case they are
related through a homography. In applications where a planar environment is known
to exist, such as indoor environments, the minimal number of point correspondences
for the uncalibrated case is reduced from seven to four, and the corresponding system
of equations—known as the Direct Linear Transform (DLT) equations—is linear in the
entries of the homography, and can thus be solved using SVD.

If available, additional input data can be obtained from auxiliary sensors. In this
paper we will consider UAVs equipped with an IMU, from which the gravity direction
can be obtained. This, in turn, is assumed to be aligned with the ground plane normal.

Many commercially available UAVs are equipped with a camera that suffers from
radial distortion to some degree. In order for the pinhole camera model to apply, such
distortions must be compensated for, which is usually done in a pre-calibration process
involving a calibration target. In contrast, we investigate a process for onboard radial
distortion auto-calibration, i.e. a method capable of computing the radial distortion pro-
file (and focal length) of the optics as well as the motion parameters, without a specific
calibration target, thus eliminating the pre-calibration process. This enables the user of
the UAV to exchange optics, without the need of intermediate calibration procedures,
which may not be feasible without a calibration target. The main contributions of this
paper are:

(i) a novel polynomial solver for simultaneous estimation of radial distortion profile,
focal length and motion parameters, suitable for real-time applications,

(ii) new insights in how to handle IMU drift, and
(iii) extensive validation on synthetic and real data on a UAV system demonstrating

the applicability of the proposed method.

While the algorithms proposed in this paper works for any application where a camera
and IMU are available, we will use them exclusively for UAV positioning.
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2 Related Work

In most Simultaneous Localization and Mapping (SLAM) frameworks the distortion
profile is pre-calibrated using a calibration target. This requires extra off-line processing,
as well as scene requirements. For general scenes, there are a number of algorithms
for simultaneously estimating the distortion profile and the motion parameters. Some
authors propose methods based on large-scale optimization (bundle adjustment) [37],
while others suggest using polynomial solvers [6, 7, 20, 22, 23, 25, 26, 29, 32, 33,
41, 42, 47]. A polynomial solver for the minimal case, i.e. the smallest number of
point correspondences, is referred to as a minimal solver. There are several reasons to
prefer minimal solvers, as they accurately encode intrinsic constraints, and transfer such
properties to the final solution. Furthermore, they are suitable for robust estimation
frameworks, e.g . RANSAC, as the number of necessary iterations (to obtain an inlier set
with a pre-defined probability) is minimized.

There exists a number of different models for estimating the distortion profile. One
classic approach, that is still frequently used in applications is the Brown–Conrady
model [4]; however, although exceptions do exist [35], the division model by Fitzgib-
bon [12] is almost universally used in the construction of minimal solvers that deal with
radial distortion. One reason for this is that the distortion profile can be accurately
estimated using fewer parameters, which is consistent with the general theory behind
minimal solvers. Other parametric models, recently e.g . [45], have been proposed, but
are not suitable for minimal solvers for the same reason.

There are several methods that leverage the IMU data—or, simply, rely on the me-
chanical setup to be accurate enough—to assume a motion model with a known reference
direction [11, 13–16, 21, 39, 43, 44, 46, 48]. None of the mentioned papers, however,
include simultaneous radial distortion correction, while only a handful consider the case
of unknown focal length [11, 14, 16, 48]. To the best of our knowledge, we propose
the first ever simultaneous distortion correction, focal length and motion estimation al-
gorithm utilizing IMU data.

3 Embracing the IMU Drift

Prevailing methods have been conceived under the assumption that only two angles can
be compensated for using the IMU data, which is true under general conditions. The
drift in the yaw angle, however, is often very small for consecutive frames. The idea is
that we can disregard the error for the yaw angle initially, and instead correct for it later
in the pipeline when enough time has passed for the drift to make a noticeable impact.
This makes the equations significantly easier to handle, and allows for further intrinsic
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y

z
x

IMU drift

Figure 2: The pitch and roll angles can be accurately estimated using an IMU; however, the yaw
angle (about the y-axis, also the gravity direction) often suffers from a drift that accumulates over
time. By fusing angular velocity and accelerometer measurements, the drift is negligible for small
time frames.

calibration, such as radial distortion correction.
Using [36], the orientation can be estimated both robustly and efficiently by fus-

ing angular velocity and accelerometer measurements to form a single estimate of the
orientation. The filter operates by integrating gyroscopic data and compensating for
bias and integration errors by using the orientation that can be observed from the ac-
celerometer. The rotation about the gravitational direction, however, is not observable
and an inevitable drift will accumulate, see Figure 2. The drift is typically very small for
short time frames since the sensor noise of the gyroscope is usually very low and the bias
changes slowly.

3.1 New Assumptions on the Homography

Assume the reference direction is known, and aligned with the gravitational direction,
chosen as the y-axis. Then, after a suitable change of coordinates, we may assume that

Hy ∼ I +
1
d

tnT, (1)

where I is the identity matrix, t is the translation vector and n is the unit normal of the
plane, see Figure 1. We will assume that the plane normal is aligned with the gravitational
direction, which is a valid assumption when using the ground floor, thus n = [0, 1, 0]T .
To ease notation, define

y(j)
i := RT

j K−1xi, (2)
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where Rj is the rotation between the two coordinate systems (given by the IMU)
and K = diag( f , f , 1) is the calibration matrix, where f is the focal length, which
is assumed to be constant. Then for two point correspondences x1 ↔ x2 the DLT
equations can be written as

y(2)
2 × Hyy(1)

1 = 0 . (3)

The relation between the general (uncalibrated) homography H and Hy is thus given
by

Hy ∼ RT
2 K−1HKR1, (4)

where x2 ∼ Hx1. From this, the relative rotation Rrel and the direction of the relative
translation trel can be extracted, and are given by

Rrel = R2RT
1 and trel ∼ R2t . (5)

Due to the global scale ambiguity, we may assume d = 1, and write

Hy =

1 h1 0
0 h2 0
0 h3 1

 , (6)

where t can be extracted directly through the entries hi, given by

t =

 h1
h2 − 1

h3

 . (7)

In order to apply the pinhole camera model, radially distorted feature points must
be rectified. Assuming the distortion can be modeled by the division model [12], using
only a single distortion parameter λ, the distorted (measured) image point xi in camera
i obeys the relationship

xu
i = ϕ(xi,λ) =

 xi
yi

1 + λ(x2
i + y2

i )

 , (8)

where xi = [xi, yi, 1]T , and xu
i are the undistorted image points compatible with the

pinhole camera model. Here we implicitly assume that the distortion center is at the
center of the image. The modified DLT equations, can therefore be written as

ϕ(xi,λ)× H ϕ(xj,λ) = 0, (9)

for two point correspondences xi ↔ xj.
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Figure 3: Error histogram for 10,000 randomly generated problem instances for the proposed
solvers: (left) f H f and (right) f rH f r. The solver [23] estimates two focal lengths, and we cal-
culate the error for both and report the geometric mean. Most solvers have an acceptable error

distribution, since in practice it rarely has an impact if the error is of the magnitude 10−14 or

10−10.

3.2 Benefits of this Approach

The homography described in Appendix 3.1 is greatly simplified compared to a gen-
eral homography and has fewer parameters that need to be determined. In the case of
unknown radial distortion profile, the competing methods [12, 23] return a general ho-
mography, i.e. with eight degrees of freedom. Unless one makes assumptions about the
motion of the cameras—for example that it consists only of pure rotations—it is not
possible to extract the motion parameters, even in the partially calibrated case. To see
this, note that a Euclidean homography

Heuc ∼ R + tnT, (10)

has eight degrees of freedom—three in R, three in t and two in n (since the length of n is
arbitrary). This is to be compared to a general homography that also has eight degrees of
freedom. We conclude that a partially calibrated homography on the form KHeucK−1
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must have nine degrees of freedom (the focal length f in K and the eight from Heuc),
hence is over-parametrized, i.e. there exists a one-dimensional family of possible decom-
positions. For this reason, we cannot extract the pose of the methods [12, 23], unless
we assume that we know the focal length a priori, or constrain the motion. This, in
itself, makes the methods infeasible to include in a SLAM framework, where we want to
estimate the camera positions.

4 Polynomial Solvers

In this section we present two-sided solvers, i.e. when the same intrinsic parameters (focal
length and/or radial distortion parameter) are assumed for both cameras.

4.1 Calibrated Case (1.5-point)

This case does not model an unknown focal length or distortion parameter, and is essen-
tially the same approach as in [15], but is given here for completeness. Given 1.5 point
correspondences it is possible to form the linear system Ah = b, where A is a 3× 3
matrix and h contains the hi from (6). For non-degenerate configurations, the matrix A
has full rank, and the solution can be obtained immediately as h = A−1b. This is a very
fast solver, since it is linear and can be solved without SVD.

4.2 Equal and Unknown Focal Length ( f H f , 2-point)

Parameterize the inverse of the unknown calibration matrix as K−1 = diag(1, 1, w),
and consider the rectified points (2), which now depend linearly on the unknown param-
eter w. Parameterizing Hy as in (6), it is clear that the equations obtained from (3) are
linear in h1, h2 and h3 and quadratic in w. This system of equations has infinitely many
solutions, if we allow w = 0. Such solutions, however, do not yield geometrically mean-
ingful reconstructions, and should therefore be excluded. This can be achieved using
saturation, through the method suggested in [31].

We exploit the linear relation of h1, h2, h3, making it possible to write the equations
as

M
[

h
1

]
= 0, (11)

where M is a 4 × 4 matrix depending on w, and h is the vector containing the ele-
ments hi. Thus, we may consider finding a non-trivial nullspace of M, which exists if
and only if det M = 0. This equation reduces to a sextic polynomial in the unknown w,
thus has six solutions, which can be found using a simple root finding algorithm (action
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Figure 4: Noise sensitivity comparison for Gaussian noise with standard deviation σN . For each
noise level 1,000 random problem instances were generated. The geometric mean error is shown
for [23].

matrix method is not necessary). Since we know from before that the original problem
has four solutions, we conclude that two spurious solutions have been added; in fact,
these can easily be disregarded as a pre-processing step, as they correspond to nullspace
basis vectors with last element equal to zero. Numerical tests confirm that this is the case.

When the (up to) four possible real solutions of w have been obtained, the unknowns
h1, h2 and h3 can be obtained using SVD.

4.3 Equal and Unknown Focal Length and Radial Distortion Coef-
ficient ( f rH f r, 2.5-point)

Let us now consider the case with equal and unknown focal length and radial distor-
tion coefficient. We use the division model introduced in [12], with a single distortion
parameter λ.

Given two point correspondences x1 ↔ x2, the modified DLT equations (9) hold
true. Building an elimination template from these equations yields a large and numer-
ically unstable solver, and therefore, we reparameterize the problem. Applying Hy =

I + tnT to (4), we get

K−1HK ∼ R2HyRT
1 = R2RT

1 + R2tnT RT
1 . (12)

209



Paper VII

(a) Our, 70 % inliers. (b) Kukelova et al . [23], 62 %
inliers.

(c) Fitzgibbon [12], 67 % in-
liers.

Figure 5: Selection of panoramas created with the competing methods. The blue frame is added
for visualization, as well as inliers (green circles) and outliers (red crosses). Note that none of the
methods require a checkerboard to be visible in the scene, but is simply chosen to ease the ocular
inspection of the stitching. A correct rectification will map physically straight lines to straight
lines, i.e. the yellow area should be a quadrilateral. Only our method is capable of producing this
result.

Denote the elements of R1 by rij. Introducing R̂ = R2RT
1 , t̂ = R2t and n̂ = R1n =

[r12, r22, r32]
T , the general homography can now be written as

H ∼ K
(

R̂ + t̂n̂T
)

K−1 . (13)

This accomplishes two things: (1) we have replaced several multiplications, (2) we have
reduced the number of input data necessary. Analyzing the quotient ring of the corre-
sponding ideal, we conclude that there are three possible solutions.

We parameterize the calibration matrix as K = diag( f , f , 1) and its in-

verse K−1 = diag( f−1, f−1, 1), respectively. From here on it would be possible to
construct an elimination template; however, we may eliminate one variable in order to
get a reduced system. Using only the third row of (9), from three point correspondences,
one obtains a system on the form Mv = 0, where M is a 3 × 9 coefficient matrix,
and v is the vector of monomials, more precisely2

v =
[
t̂1 f λ t̂1 f t̂1 t̂2 f λ t̂2 f t̂2 f λ f 1

]T . (14)

Since t̂1 and t̂2 are present in only three monomials, either of the two can be eliminated;
we will proceed by eliminating the latter, as it yields a smaller elimination template. After

2It turns out that the third row does not contain any reciprocal f .
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Gauss–Jordan elimination, the coefficient matrix is given by

M̂ =


t̂2 f λ t̂2 f t̂2 t̂1 f λ t̂1 f t̂1 f λ f 1

1 • • • • • •
1 • • • • • •

1 • • • • • •

,
(15)

from which we establish the following relations

t̂2 f λ + g1(t̂1, f ,λ) = 0,

t̂2 f + g2(t̂1, f ,λ) = 0,

t̂2 + g3(t̂1, f ,λ) = 0,

(16)

where gi are polynomials of three variables. Furthermore, the following constraints must
be fulfilled

g1(t̂2, f ,λ)− λg2(t̂2, f ,λ) = 0,

g2(t̂2, f ,λ)− f g3(t̂2, f ,λ) = 0,

g1(t̂2, f ,λ)− λ f g3(t̂2, f ,λ) = 0 .

(17)

We can now use the first row of (9), from which we get two equations (which must be
multiplied by f to make it polynomial). Together with (17) we have five equations in
four unknowns.

To build a solver we saturate f , to remove spurious solutions corresponding to zero
focal length. Analyzing the quotient ring we have again three solutions and the basis
heuristic [34] yields a template size of 26 × 29. Using the hidden variable trick, as
in Appendix 4.2, we were able to construct a solver with a template size of 17 × 20;
however, this solver was not as numerically stable as the one proposed, nor faster.

5 Experiments

5.1 Numerical Stability and Noise Sensitivity

We compare the proposed methods with other state-of-the-art methods on synthetic data,
to evaluate the numerical stability. For the case of unknown focal length we compare to
the 2.5 point method [48] and the 3.5 pt method [11], and in the case of unknown
radial distortion we compare to the 5 point methods [12, 23]. We generate noise free
problem instances, by generating homographies and rotation matrices, and project a
random set of points to establish point correspondences. In the case of radial distortion,
these points are distorted using the division model. The error histograms are shown in
see Figure 3. In the case of unknown focal length our method is superior to the others;
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Figure 6: Estimated trajectories from the Indoor dataset. From left to right: Our f H f , our f rH f r,
Valtonen Örnhag et al . [48], Ding et al . [11] and Kukelova et al . [27]. The green dots indicate
points that have been selected as inliers at least once, and the red points those which have been
consistently rejected. Rectified images were used as input to all solvers except for f rH f r, which
received the raw input images.

however, with unknown radial distortion, we are not as stable as others. The accuracy,
however, is in the order of 10−10. This is sufficient for most applications. We will see
in future experiments, that this does not cause any practical issues. The homography
error is measured as the difference between the estimated homography and the ground
truth in the Frobenius norm, normalized with the Frobenius norm of the ground truth
homography, where the homographies are chosen such that h33 = 1. The errors of
the focal length and radial distortion coefficient are measured as the absolute difference
divided by the ground truth value.

Lastly, Gaussian noise is added to the image correspondences, in order to compare
the noise sensitivity of the methods. The standard deviation σN is varied for a number
of different noise levels. For all noise levels, our solvers perform superior to the other
methods, for both the case with and without radial distortion, see Figure 4.

5.2 Speed Evaluation

Next we compare the execution time for the considered methods. We compare the
mean execution time given a minimal set of point correspondences until the putative
homographies, and other parameters are obtained, i.e. including all pre-processing and
post-processing steps. Furthermore, for the 2.5 and 3.5 point methods, we discard false
solutions using the previously unused DLT equation.

As we are interested in performing the computations onboard the UAV, we evaluate
the performance on a Raspberry Pi 4, and the mean execution times are listed in Table 1.
All solvers are implemented in C++ using Eigen [17] and compiled in g++ with the -O2
optimization flag. Lastly, we list the maximal number of iterations possible on a 30 fps
system, which we will use in Appendix 5.3 to compare real-time performance.
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Table 1: Mean execution time on a Raspberry Pi 4 for 100,000 randomly generated problem
instances in C++. The last column is the maximal number of iterations possible when running 30
fps.

Author Time (µs) No. iter.
Our f H f 215 155
Our f rH f r 149 223
Valtonen Örnhag et al . [48] 80 416
Ding et al . [11] 3301 10
Kukelova et al . [27] 371 89
Fitzgibbon [12] 428 77
Kukelova et al . [23] 226 147

5.3 Real Data

In this section, we compare the proposed methods on real data. We use the datasets
from [48], captured using a UAV with a monochrome global shutter camera (OV9281)
with resolution 640× 480. The UAV is equipped with an inertial measurement unit
(MPU-9250). In the experiments with only unknown focal length, the extracted fea-
tures where undistorted using a pre-calibrated distortion profile (using the OpenCV [3]
camera calibration procedure); for the case with unknown radial distortion profile, the
raw unprocessed coordinates were used as input.

The ground truth was obtained using a complete SLAM system where the reprojec-
tion error and IMU error were minimized. No scene requirements are enforced by the
system, hence feature points from non-planar structures will be present—such feature
points should be discarded by a robust framework as outliers.

The dataset consists of both indoor and outdoor sequences containing planar sur-
faces, and includes varying motions and length of sequences. Example images from the
sequences are shown in Figure 7.

We exclusively use consecutive keyframes for extracting and matching features. The
following keyframe insertion heuristic is used: (i) If the frame has moved more than
2.5% of its median depth from the previous keyframe, then proceed to next step, (ii) If
we are tracking 10 % fewer 3D points in the current frame compared to the closest
keyframe, or if the uncertainty of the projection of a 3D point is higher than a predefined
threshold, then increase new information counter, otherwise, reset counter. (iii) If the
new information counter is above 3 and the current frame tracks at least 10 3D points,
add frame as keyframe.

We use the IMU filter technique [36], described in Appendix 3, to obtain the es-
timates. Since these measurements are noisy, we propose to use the novel solvers in a
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LO-RANSAC framework [9]. As a first step the solvers are used to discard outliers and
in the inner LO loop we propose to optimize over the space of Euclidean homographies
with unknown focal length. This refinement step allows for correction of the errors ini-
tially caused by the IMU filter. Empirically, we have seen that this improves the accuracy.

For a fair comparison, we simulate a scenario where the UAV uses a frame rate of 30
fps, and limit the number of RANSAC cycles to fit this time frame. For simplicity, we use
the values from Table 1 alone, acknowledging there are other parts in the pipeline—such
as image capturing, feature extraction and matching, LO cycles, etc.—that would affect
a complete system; however, we argue that this overhead time is roughly independent of
the solver used.

When working with radial distortion correction, one may choose to minimize the
reprojection error in the undistorted image space, or in the distorted image space. In [28],
it was shown that it is beneficial to perform triangulation in the distorted image space.
Therefore, we chose to measure the reprojection in the distorted space.

Image Stitching

As argued in Appendix 3.2 we cannot decompose the homographies obtained from [12,
23], into a relative pose; however, we can still test the ability of the methods to return an
accurate distortion profile.

We simulate a scenario where a UAV is navigating in 30 fps, and limit the number
of iterations for each method according to Table 1. We use the same pixel threshold for
all methods, for two consecutive keyframes of the Indoor sequence. We chose this se-
quence, because it naturally contains a checkerboard pattern, which facilitates in making
an accurate ocular evaluation of the quality of the estimated distortion profile. Physically
straight lines should be mapped to straight lines if the rectification is successful.

In Figure 5 we show the results of the estimated distortion profile. We notice that the
distortion profile is correct for the proposed method as the yellow area is a quadrilateral,
whereas this is not the case for other methods. Furthermore, we note that the method by
Kukelova et al . [23] does not contain all inliers of the ground plane, and that the method
by Fitzgibbon [12] pick incorrect matches of the wall.

Basement Carpet Indoor Outdoor

Figure 7: Example images from the dataset [48].
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Figure 8: Errors for the different methods—from left to right: f H f , f rH f r, Valtonen Örn-
hag et al . [48], Ding et al . [11], Kukelova et al . [27]—using the metrics (18). (Top) rectified input
images were used for all but the f rH f r. (Bottom) unrectified images were used for all methods.
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For the same pair of images we measure the inliers as a function of time, see Figure 9.
The only method converging to the correct number of inliers in the allotted time is our
method, which it does by a large margin.
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Figure 9: Number of inliers over time (average of 100 tests). The proposed method is the only
method to converge to the correct number of inliers (black dashed line) within the 33.3 ms allotted
per frame when running at 30 fps.

Pose Estimation

In this final section, we compare both proposed methods to [11, 27, 48]. Note that
only one of these methods (our f rH f r) estimates the radial distortion profile. As argued
in Appendix 3.2, the methods [12, 23] cannot estimate the motion parameters without
additional requirements that are not applicable for UAVs, hence cannot be compared in
this section.

The error metrics are defined as in [11, 43, 48], and are given by

eR = arccos

(
tr(RGTRT

est)− 1
2

)
,

et = arccos

(
tT

GTtest
‖tGT‖‖test‖

)
,

e f =
| fGT − fest|

fGT
.

(18)

In Figure 6 we compare the estimated trajectories for all methods. It can be seen
that there are only small differences between the methods using pre-calibrated radial
distortion profile, and the proposed f rH f r solver. Furthermore, we measure the errors,
according to (18) for all four sequences. In the left part of Figure 8 we use rectified
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images for all except the f rH f r method, which still performs best or on par with the
other methods in terms of all errors. In the right part of the figure, we run the same
experiment, but all methods are given the raw (unrectified) images as input—here it is
clear that out method achieves superior results.

6 Conclusions

We have presented the first ever method capable of simultaneously estimating the dis-
tortion profile, focal length and motion parameters from a pair of homographies, while
incorporating the IMU data. The method relies on a novel assumption that the IMU
data is accurate enough, to disregard the IMU drift for small time frames, allowing for
simpler equations and faster solvers. We have shown that this assumption is true on both
synthetic and real data, and that the proposed methods are robust. The method has been
shown to give accurate reconstructions, and performs on par or better than state-of-the-
art methods relying on pre-calibration procedures, while being fast enough for real-time
applications.
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Abstract: Low rank approximation is a commonly occurring problem in many computer
vision and machine learning applications. There are two common ways of optimizing the
resulting models. Either the set of matrices with a given rank can be explicitly parametrized
using a bilinear factorization, or low rank can be implicitly enforced using regularization
terms penalizing non-zero singular values. While the former approach results in differen-
tiable problems that can be efficiently optimized using local quadratic approximation, the
latter is typically not differentiable (sometimes even discontinuous) and requires first order
subgradient or splitting methods. It is well known that gradient based methods exhibit slow
convergence for ill-conditioned problems.

In this paper we show how many non-differentiable regularization methods can be refor-
mulated into smooth objectives using bilinear parameterization. This allows us to use stan-
dard second order methods, such as Levenberg–Marquardt (LM) and Variable Projection
(VarPro), to achieve accurate solutions for ill-conditioned cases. We show on several real and
synthetic experiments that our second order formulation converges to substantially more
accurate solutions than competing state-of-the-art methods.

1 Introduction

Low rank models have been applied to numerous vision applications ranging from high
level shape and deformation to pixel appearance models [2, 6, 11, 21, 22, 48, 50, 52].
When the sought rank is known, a commonly occurring formulation is the least squares
minimization

min
rank(X)≤r

‖AX − b‖2, (1)

where A : Rm×n → R
p is a linear operator, and ‖ · ‖ is the standard Euclidean vector

norm. In general, this is a difficult non-convex problem and some versions are even
known to be NP-hard [26]. In structure from motion, a popular approach [7] is to
optimize over a bilinear factorization X = BCT , where B is m× r and C is n× r, and
solve

min
B,C
‖ABCT − b‖2. (2)
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Since the rank is bounded by the number of columns in B and C this approach explicitly
parametrizes the set of matrices of rank r. While bilinear approaches often perform well
[16, 29] they can have local minima [7]. Recent works [29–32] have, however, shown
that properly implemented, LM and VarPro approaches are remarkably robust to local
minima, achieve quadratic convergence and give impressive reconstruction results. Re-
cently [3, 23, 24] was able to give conditions which guarantee that there are no ”spurious”
local minimizers (meaning that all local minimizers are close to or identical to the global
solution). They use the notion of restricted isometry property (RIP) [45] which assumes
that the operator A fulfills

(1− δr)‖X‖2
F ≤ ‖AX‖2 ≤ (1 + δr)‖X‖2

F, (3)

with 0 ≤ δr < 1, if rank(X) ≤ r. If the isometry constant δr is sufficiently small [3,
23, 24] prove that every local minimizer is optimal (or near optimal). Similarly, for the
matrix completion problem [23] showed that there are no spurious local minima under
uniformly distributed missing data. While the above theoretical assumptions generally
do not hold for computer vision problems such as structure from motion, these results
still give some intuition as to why bilinear parameterization often works well.

An alternative approach is to optimize directly over the entries of X and penalize
high rank using regularization terms. Applying a robust function f to the singular values
σi(X) = 1, . . . ,N = min(m, n) results in a low-rank inducing objective

min
X
R(X) + ‖AX − b‖2, (4)

where R(X) = ∑N
i=1 f (σi(X)). Besides controlling the rank of the solution the gener-

ality of the function f offers increased modeling capability compared to (1) and can for
example be used to add priors on the size of the non-zero singular values.

The most popular regularization approach is undoubtedly the nuclear norm,
f (σi(X)) = σi(X), due to its convexity [9, 10, 18, 44, 45]. Under the RIP assumption
exact or approximate recovery with the nuclear norm can then be guaranteed [10, 45].
On the other hand, since it penalizes large singular values, it suffers from a shrinking
bias [8, 11, 36]. Ideally f should penalize small singular values (assumed to stem from
measurement noise) harder than the large ones. Therefore non-increasing derivatives
on [0,∞), or concavity, has been shown to give stronger relaxations [12, 27, 33, 37,
39, 43, 47]. These non-convex formulations usually only come with local convergence
guarantees. Two exceptions are [36, 40] which gave optimality guarantees for (4) with
f = fµ as in (8).

The regularization term is generally not differentiable as a function of X. Thus,
optimization methods based on local quadratic approximation become infeasible. Fig-
ure 1 gives a simple illustration of a 1-dimensional example of how non-differentiability
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SCAD [17]: Log [19]: MCP [53]: ETP [20]: Geman [25]:

Figure 1: A few commonly occurring robust penalties of the form f (σ), with σ ∈ [0,∞) and f
differentiable everywhere (blue graph). The green dashed graph shows how non-differentiability
occurs at the origin when applying the penalty to a 1× 1 matrix x ∈ R. In this case σ(x) = |x|
and therefore f (σ(x)) = f (|x|). Note also that (8) is a special case of MCP.

occurs at the origin. In addition it is well known that the singular values become non-
differentiable functions of the matrix elements when they are non distinct. To circum-
vent these issues subgradient and splitting methods are often employed [12, 27, 36, 38,
47]. It is well known from basic optimization theory (e.g . [5]) that gradient based meth-
ods exhibit slow convergence for ill-conditioned problems. It has also been observed
(e.g. [4]) that splitting methods rapidly reduce the objective value the first couple of iter-
ations, while convergence to the exact solution can be slow. In this paper we show that
there are computer vision problems where these approaches make very little improve-
ments at all, returning a solution that is far from optimal. In contrast, bilinear formu-
lations with either LM or VarPro can be made to yield accurate results in few iterations
[29].

An alternative approach that unifies bilinear parameterization with regularization
approaches is based on the observation [45] that the nuclear norm ‖X‖∗ of a matrix X

can be expressed as ‖X‖∗ = minBCT=X
‖B‖2

F+‖C‖2
F

2 . Thus when f (σi(X)) = µσi(X),
where µ is a scalar controlling the strength of the regularization, optimization of (4) can
be formulated as

min
B,C

µ
‖B‖2

F + ‖C‖2
F

2
+ ‖ABCT − b‖2. (5)

Optimizing directly over the factors has the advantages that the number of variables is
much smaller and one may add constraints if a particular factorization is sought. Sur-
prisingly, while (5) is non-convex, using the convexity of the underlying regularization
problem (4) it can be shown that any local minimizer B,C with rank(BCT) < k, where
k is the number of columns in B and C, is globally optimal [1, 28]. Additionally, the ob-
jective function is two times differentiable and second order methods can be employed.

In this paper we develop new regularizing terms that, similar to (5), work on the
bilinear factors. However, in contrast to previous approaches we investigate formulations
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that exhibit less shrinking bias and go beyond convex penalties. Specifically, we prove
thatR(X) = minX=BCT R̃(B,C), where

R̃(B,C) =
k

∑
i=1

f

(
‖Bi‖2 + ‖Ci‖2

2

)
, (6)

k is the number of columns, and Bi and Ci are the i:th columns of B and C, respectively.
The result holds for a general class of concave penalty functions f , a few of which are
illustrated in Figure 1. In view of the above result, we propose to minimize

R̃(B,C) + ‖ABCT − b‖2. (7)

Rather than resorting to splitting or subgradient methods we present an algorithm that
uses a quadratic approximation of the objective. Under the assumption that f is differ-
entiable, we show that our quadratic approximation reduces to a weighted version of (5)
to which we can apply VarPro. We show on several computer vision problems that our
approach outperforms state-of-the-art methods such as [4, 12, 27, 46, 47].

While our problem is non-convex (both in the X parameterization (4) and in the
B, C parameterization (7)) we show that in some cases it is still possible to give global
optimality guarantees. Building on the results of [40] we characterize the local minima
of the new formulation with the choice

f (x) = fµ(x) := µ−max(
√

µ− x, 0)2. (8)

Specifically, for this choice, we give conditions that ensure that when a RIP con-
straint [45] holds a local minimizer of (7) is a global solution of both

min
rank(X)≤r

R(X) + ‖AX − b‖2, (9)

whereR(X) = ∑i fµ(σi(X)), and

min
rank(X)≤r

µ rank(X) + ‖AX − b‖2. (10)

In summary our main contributions are:

• A new stronger non-convex regularization term for bilinear parameterizations with
less/no shrinking bias.

• A new iteratively reweighed VarPro algorithm optimizing accurate quadratic ap-
proximations.

• Theoretical conditions that guarantee optimal recovery under the RIP constraint.

• An experimental evaluation that shows that our methods outperforms state-of-the-
art methods on several real computer vision problems.
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1.1 Related Work

Our work is very much inspired by a recent series of papers by Hong et al . [29–32]
which show that bilinear formulations can be made remarkably robust to local minima,
and achieve impressive reconstruction results for uncalibrated structure from motion
problems, using the so called VarPro method. Our work represents an attempt to unify
this line of work with regularization based alternatives, leveraging the benefits of them
both.

An approach that is closely related to ours is that of [8] which uses (5) to unify the use
of a regularized objective and factorization. They show that if the obtained solution has
lower rank than its number of columns it is globally optimal. In practice [8] observes that
the shrinking bias of the nuclear norm makes it too weak to enforce a low rank when the
data is noisy. Therefore, a “continuation” approach where the size of the factorization is
gradually reduced is proposed. While this yields solutions with lower rank, the optimality
guarantees no longer apply.

Bach et al . [1] showed that

‖X‖s,t := min
X=BCT

k

∑
i=1

‖Bi‖2
s + ‖Ci‖2

t
2

, (11)

is convex for any choice of vector norms ‖ · ‖s and ‖ · ‖t. In [28] it was shown that a
more general class of 2-homogeneous factor penalties result in a convex regularization
similar to (11). The property that a local minimizer B, C with rank(BCT) < k, is
also extended to this case. Still, because of convexity, it is clear that these formulations
will suffer from a similar shrinking bias as the nuclear norm. Shang et al . [46] showed

that penalization with the Schatten semi-norms ‖X‖q =
q
√

∑N
i=1 σi(X)q, for q = 1/2

and 2/3, can be achieved using a convex penalty on the factors B and C. A generaliza-
tion to general values of q is given in [51]. While this reduces shrinking bias to some
extent, it results in a non-differentiable and non-convex formulation that is optimized
with ADMM. In [34] a bilinear framework on the class of semi-definite matrices was
proposed for a general class of low-rank inducing penalties.

Valtonen Örnhag et al . [42] considered a framework similar to the one we propose;
however, the rank is assumed to be known a priori. Furthermore, they do not show
equivalence between the proposed bilinear regularizer and the corresponding original
fixed rank regularizer from [36].

It is important to note that many of the above methods that are considered state-of-
the-art have been developed for low level vision tasks such as image denoising, inpainting,
alignment and background subtraction. The ground truth for these models are often of
higher rank than models in e.g . structure from motion, making it possible to obtain
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good results with weaker regularization. Additionally, as we will see in the experiments,
more difficult data terms prevent rapid convergence of the splitting methods they often
employ.

2 Non-Convex Penalties and Shrinking Bias

In this section we will show how to formulate regularization terms of the type

R(X) =
N

∑
i=1

f (σi(X)), (12)

by penalizing the factors of the factorization X = BCT . We assume that B and C have
k columns, making σi(X) = 0 if i > k and rank(X) ≤ k. Note, however, that we are
aiming to achieve a lower rank using the regularization term. In many applications, the
sought rank is unknown and should be determined by the regularization. We therefore
set k large enough not to exclude the optimal solution. As we shall see in Section 3, this
ability to over-parameterize can be used to ensure optimality.

Theorem 1. If f is concave, non-decreasing on [0,∞) and f (0) = 0 then

R(X) = min
BCT=X

k

∑
i=1

f (‖Bi‖‖Ci‖), (13)

where Bi and Ci, i = 1, ..., k are the columns of B and C respectively.

Proof. The result is a consequence of the fact that R will fulfill a triangle inequality
R(X + Y) ≤ R(X) +R(Y) under the assumptions on f . This is clear from Theo-
rem 4.4 in [49] which shows that

N

∑
i=1

f (σi(X + Y)) ≤
N

∑
i=1

( f (σi(X)) +
N

∑
i=1

f (σi(Y))). (14)

Applying this to X = BCT = ∑k
i=1 BiC

T
i we see that

R(X) = R(
k

∑
i=1

BiC
T
i ) ≤

k

∑
i=1
R(BiC

T
i ). (15)

Since rank(BiC
T
i ) = 1 we also have

R(BiC
T
i ) = f (σ1(BiC

T
i )) = f (‖BiC

T
i ‖F). (16)
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2. Non-Convex Penalties and Shrinking Bias

Lastly, since ‖BiC
T
i ‖F = ‖Bi‖‖Ci‖ we get

R(X) ≤
k

∑
i=1

f (‖Bi‖‖Ci‖). (17)

To see that equality can be achieved, let Bi =
√

σi(X)Ui and Ci =
√

σi(X)Vi, where

X = ∑k
i=1 σi(X)UiV

T
i is the SVD of X. Then, BCT = X and f (‖Bi‖‖Ci‖) =

f (σi(X)).

While the above result allows optimization over the factors B and C we note that it
yields an objective that is non-differentiable at ‖Bi‖‖Ci‖ = 0. Next we reformulate the
objective to achieve a differentiable problem formulation.

Corollary 1. Under the assumptions of Theorem 1, it follows that R(X) =
minX=BCT R̃(B,C), where

R̃(B,C) =
k

∑
i=1

f

(
‖Bi‖2 + ‖Ci‖2

2

)
. (18)

If f is differentiable then R̃(B,C) is also differentiable.

Proof. By the rule of arithmetic and geometric means

‖Bi‖‖Ci‖ ≤
1
2
(‖Bi‖2 + ‖Ci‖2), (19)

with equality if ‖Bi‖ = ‖Ci‖ which is achieved when Bi =
√

σi(X)Ui and Ci =√
σi(X)Vi. Since f is assumed to be non-decreasing, it follows from (13), thatR(X) =

minX=BCT R̃(B,C). The differentiability of R̃(B,C) is now trivially checked using
the chain rule.

We are particularly interested in the case (8) since, with this choice, it is known that
the global minimizer of (4) is the same as that of µrank(X) + ‖AX − b‖2 if ‖A‖ < 1,
see [13] for a proof. Note that fµ is a special case of the MCP class [53]. With this choice

R̃(B,C) is differentiable and the second derivatives are also defined almost everywhere

except in the transition ‖Bi‖2+‖Ci‖2

2 =
√

µ where the function switches from quadratic
to constant.

We conclude this section by comparing the shrinking bias of our approach and three
others that can also be optimized over the factorization. Theorem 1 makes it possible
to compute the global optimizer of R̃(B,C) + ‖BCT − X0‖2

F since the equivalent
problem R(X) + ‖X − X0‖2

F has closed form solution in the X-parameterization. It
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3. Overparameterization and Optimality
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0

0.2

0.4

0.6

0.8

1

1.2
X0
R
‖ · ‖2/3
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‖ · ‖1/2
1/2

‖ · ‖∗

Figure 2: Singular values obtained when minimizing ‖X −X0‖2
F with the four regularizersR(X)

with f = fµ, ‖X‖1/2
1/2, ‖X‖2/3

2/3 and ‖X‖∗. Large singular values are left unchanged byR.

is shown in [36] that with f = fµ the solution is obtained by thresholding the singular
values at

√
µ. Similarly, closed form solutions are also available when regularizing ‖X −

X0‖2
F with ‖ · ‖1/2, ‖ · ‖2/3 and ‖ · ‖∗ [46]. In Figure 2 we show the singular values

obtained when regularizing ‖X −X0‖2
F with these four options, and for comparison the

singular values of X0. For all methods we have selected regularization weights as small
as possible so that the five smallest singular values are completely suppressed, which
minimizes the bias. While all choices, exceptR, subtract a part from the singular values
that should be retained, the Schatten norms reduce the bias significantly compared to
the nuclear norm. For the Schatten norms the bias is larger for singular values that are
close to the threshold since the derivative of σq, 0 < q < 1, decreases with increasing
σ. For problem instances where there is a clear separation in size between singular values
that should be retained and those that should be suppressed, it is likely that this can be
done with negligible bias. Since f ′µ(σ) = 0 when σ ≥ √µ this method does not affect
the first five singular values.

3 Overparameterization and Optimality

The results of the previous section show that a global optimizer (B,C) of (7) gives a
solution BCT which is globally optimal in (4). On the other hand, optimizing (7) over
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B and C introduces additional stationary points, due to the non-linear parameterization,
that are not present in (4). One such point is (B,C) = (0, 0) where the gradients of
‖ABCT − b‖2 with respect to B and C vanish (in contrast to the gradient w.r.t. X). In
this section we show that by overparametrizing, in the sense that we use B and C with
more columns than the rank of the solution we seek, it is still possible to use properties of
(4) to show optimality in (7). We will exclusively use fµ from (8), assume that B and C

have 2k columns and study locally optimal solutions with rank(BCT) < k. The size of
B and C makes it possible to parametrize line segments between such points and utilize
convexity properties, see proof of Theorem 3. The following result (which is proven
in the supplementary material) gives conditions that ensure that local minimality in (7)
implies that (4) grows in all “low rank” directions.

Theorem 2. Assume that (B̄, C̄) ∈ R
m×2k × Rn×2k, where B̄ = U

√
Σ and C̄ =

V
√

Σ, and X̄ = UΣV T , is a local minimizer of (7) with rank(X̄) < k and letN (X) =

R(X)+ ‖AX− b‖2. ThenR(X̄) = R̃(B̄, C̄) and the directional derivativesN ′∆X(X̄),
where ∆X = X̃ − X̄ and rank(X̃) ≤ k, are non-negative.

Note that there can be local minimizers for which R̃(B̄, C̄) > R(B̄C̄T) since R̃
is non-convex. From an algorithmic point of view we can, however, escape such points

by taking the current iterate and recompute the factorization of B̄C̄T using SVD. If the

SVD of B̄C̄T = ∑r
i=1 σiUiV

T
i we update B̄ and C̄ to B̄i =

√
σiUi and C̄i =

√
σiVi,

which we know reduces the energy and gives R̃(B̄, C̄) = R(B̄C̄T).
Theorem 2 allows us to derive optimality conditions using the properties of (4). As a

simple example, consider the case where ‖AX‖2 ≥ ‖X‖2, which makes (4) convex [13],
and let B and C have 2k columns. Suppose that we find a local minimizer (B̄, C̄) ful-
filling the assumptions of Theorem 2. Then the derivative along a line segment towards

any other low rank matrix is non-decreasing, and therefore B̄C̄T is the global optimum
of (4) over the set of matrices with rank ≤ k by convexity.

Below we give a result that goes beyond convexity and applies to the important class
[45] of problems that obey the RIP constraint (3). Let A∗ denote the adjoint operator
of A, then:

Theorem 3. Assume that (B̄, C̄) is a local minimizer of (7), fulfilling the assumptions
of Theorem 2. If the singular values of Z = (I − A∗A)B̄C̄T + A∗b fulfill σi(Z) /∈
[(1− δ2k)

√
µ,

√
µ

(1−δ2k)
] then B̄C̄T is the solution of (9) and (10).

The proof builds on the results of [40] and is given in the supplementary material.
The assumption that the singular values of Z are not too close to the threshold

√
µ is a

natural restriction which is valid when the noise level is not too large. In case of exact
data, i.e. b = AX0, where rank(X0) = r it is trivially fulfilled for any choice of µ
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4. An Iterative Reweighted VarPro Algorithm

Figure 3: Comparison of reprojection error obtained using the bilinear formulation and ADMM,
for datasets Door and Vercingetorix [41]. The red circles mark the feature points and the green dots
the projected image points obtained from the different methods. The best rank 4 solution for the
respective method was used. The control parameter η = 0.5 in both experiments.

such that
√

µ < (1− δ2k)σr(X0) since we have Z = X0. For additional details on Z’s
dependence on noise see [14].

The above result is similar in spirit to those of [28, 45], which show that, in the con-
vex case, having 2k columns and rank 2k− 1 is enough to ensure that a local minimizer
is global. For the proof in our non-convex case we need rank at most k− 1. Presently, it
is not clear if our assumption can be relaxed to match that of the convex case or not.

4 An Iterative Reweighted VarPro Algorithm

In this section we give a brief overview of our algorithm for minimizing (7). A more
detailed description is given in the supplementary material.

Given a current iterate, B(t) and C(t), the first step of our algorithm is to replace
the term R̃(B,C) with a quadratic function. To do this we note that by the Taylor
expansion f (x) ≈ f (x0) + f ′(x0)(x − x0), minimizing f (x) and f ′(x0)x around

x0 is roughly the same (ignoring constants). Inserting x0 =
‖B(t)

i ‖
2+‖C(t)

i ‖
2

2 and x =
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‖Bi‖2+‖Ci‖2

2 now gives our approximation

k

∑
i=1

w(t)
i (‖Bi‖2 + ‖Ci‖2) + ‖ABCT − b‖2, (20)

where w(t)
i = 1

2 f ′
(
(‖B(t)

i ‖
2 + ‖C(t)

i ‖
2)/2

)
. Here B(t)

i and C(t)
i are the i:th columns

of B(t) and C(t), respectively. Minimizing (20) over C is now a least squares problem
with closed form solution. Inserting this solution into the original problem gives a non-
linear problem in B alone, which is what VarPro solves. We use the so called Ruhe and

Wedin (RW2) approximation with a dampening term λ‖B−B(t)‖2
F, see [31] for details.

In each step of the VarPro algorithm we update the weights w(t)
i .

As previously mentioned, there can be stationary points for which R̃(B,C) >

R(BCT). In each iteration we therefore take the current iterate and recompute the

factorization of B(t)C(t)T using SVD. If the SVD of B(t)C(t)T = ∑r
i=1 σiUiV

T
i we

update B(t) and C(t) to B(t)
i =

√
σiUi and C(t)

i =
√

σiVi which we know reduces the

energy and gives R̃(B(t),C(t)) = R(B(t)C(t)T).

Our approach can be seen as iteratively reweighted nuclear norm minimization [12];
however, our bilinear formulation allows us to use quadratic approximation, thus bene-
fiting from second order convergence in the neighborhood of a local minimum.

5 Experiments

In this section we will show the versatility and strength of the proposed method, focusing
on computer vision problems. In Section 5.2 we show an example where state-of-the-
art methods fail to achieve a value close to global optimality. We include two more
examples of real problems, in the supplementary material: background extraction and
photometric stereo. In both cases our method shows superior performance. In the main
paper we focus on the trade-off between datafit and rank, but show, in the examples in
the supplementray material, the added benefits of convergence speed using the proposed
method. This is done by minimizing the same energy with ADMM and the proposed
method, in which case the splitting schemes can be tediously slow. In all experiments
our proposed method is initialized randomly, with zero mean and unit variance.
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5. Experiments

Figure 4: Rank vs datafit for the synthetic experiment in Section 5.1. No true low rank solution
using LpSq [38] could be found, regardless of the choice of parameters.

5.1 Synthetic Missing Data Problem

Let � denote the Hadamard product, and consider the missing data formulation

min
X

µ rank(X) + ‖W � (X −M)‖2
F, (21)

where M is a measurement matrix and W a missing data mask with entries wij = 1 if
the entry is known, and zero otherwise.

In low-level vision applications such as denoising and image inpainting a uniformly
random missing data pattern is often a reasonable approximation of the distribution;
however, for structure from motion, the missing data pattern is often highly structured.
To this end, we investigate two kinds of patterns: uniformly random and “tracking fail-
ure”. In order to construct realistic patterns of tracking failure, we use the method in [35].
This is done by randomly selecting if a track should have missing data (with uniform
probability), then select (with uniform probability, starting after the first few frames) in
which image tracking failure occurs. If a track is lost, it is not restarted.

We generate random ground truth matrices M0 ∈ R32×512 of rank 4, which can
be expressed as M0 = UV T , where U ∈ R32×4 and V ∈ R512×4. The entries of
U and V are normal distributed with zero mean and unit variance. The measurement
matrix M = M0 + N, where N simulates noise and has normal distributed entries with
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Drink Pickup

Stretch Yoga

Figure 5: First and third row: Example frames from the MOCAP dataset of the drink, pickup,
stretch and yoga sequences. Second and last row: The bilinear method finds the same or a better
datafit compared to the other methods for all ranks.

zero mean and variance σ2.

Our proposed method is compared to a variety of different methods [4, 8, 9, 12, 27,
36, 38, 46, 47]. For the methods that need an initial estimate of the rank as input, the
rank estimation heuristic by Shang et al . [46] is used. The regularization parameter is
set to λ =

√
max(m, n), given a sought m × n matrix, as proposed by [9, 46]. In
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case other parameters should be provided, the one recommended from the respective au-
thors have been used. The number of columns, for our proposed method, is set to k = 8,
i.e. twice the rank of the original matrix M0. We exclusively use the fµ regularization (8),
and use

√
µ = λ. Since fµ is a special case of MCP, it is used for IRNN as well. Fur-

thermore, we include the results for regularizing with nuclear norm [4] and fµ (8) using
ADMM, as proposed in [36]. Note that ADMM comes without optimality guarantees,
however, it has been shown to work well for several computer vision problems in prac-
tice [36, 40]. Several of the compared methods solve the robust PCA problem, thus also
include a sparse component, which is not taken into account.

The results are shown in Table 1. Note that most algorithms perform significantly
better for the uniformly random missing data pattern, than compared to the structured
missing data pattern. Our proposed method outperforms all other methods in this com-
parison.

Since the final rank of the estimated matrix is not necessarily the same as that of M0,
we show the rank vs datafit obtained when varying the regularization parameter λ in
Figure 4. It is evident from the results that the only candidates that yield an acceptable
result for low rank solutions are ADMM with fµ, IRNN with MCP and our proposed
method.

5.2 pOSE: Pseudo Object Space Error

The Pseudo Object Space Error (pOSE) objective combines affine and projective camera
models

`OSE = ∑
(i,j)∈Ω

‖(Pi,1:2 x̃j − (pT
i,3 x̃j)mi,j)‖2, (22)

`Affine = ∑
(i,j)∈Ω

‖Pi,1:2 x̃j −mi,j‖2, (23)

`pOSE = (1− η)`OSE + η`Affine, (24)

where `OSE is the object space error and `Affine is the affine projection error. Here Pi,1:2
denotes the first two rows, pi,3 the third row of the i:th camera matrix, and x̃j is the j:th
3D point in homogeneous coordinates. The control parameter η ∈ [0, 1] determines
the impact of the respective camera model. This objective was introduced in [30] to be
used in a first stage of an initialization-free bundle adjustment pipeline, optimized using
VarPro.

The `pOSE objective is linear, and acts on low-rank components P and X, which are

constrained by rank(PXT) = 4. Instead of enforcing the rank constraint, we replace it
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as before with a relaxation. By not enforcing the rank constraint we demonstrate the abil-
ity of the methods to make accurate trade-offs between minimizing the rank and fitting
the data. Since the objective now becomes more complex, and is no longer compatible
with the missing data formulations, only IRNN and APGL are directly applicable, as
well as the ADMM approach using fµ and nuclear norm. We use two real-life datasets
with various amounts of camera locations and 3D points: Door with 12 images, resulting
in seeking a matrix of size 36× 8850 and Vercingetorix [41] with 69 images, resulting in
seeking a matrix of size 207× 1148, both of which have rank 4.1

As in the synthetic experiment from Section 5.1, the regularization parameter is
varied and the resulting rank and datafit is stored and reported in Figure 3. To visualize
the results, we considered the best rank 4 approximations, and show the reprojected
points and the corresponding measured points obtained from the best method (ours in
both cases) and the second best (IRNN in both cases), see Figure 3. As is readily seen
by ocular inspection, the rank 4 solution obtained by our proposed method significantly
outperforms those of other state-of-the-art methods.

5.3 Non-Rigid Structure from Motion

In this section we test our approach on non-rigid reconstruction (NRSfM) with the
CMU Motion Capture (MOCAP) dataset. In NRSfM, the complexity of the deforma-
tions are controlled by some mild assumptions of the object shapes. Bregler et al . [6]
suggested that the set of all possible configurations of the objects are spanned by a low di-
mensional linear basis of dimension K. In this setting, the non-rigid shapes Xi ∈ R3×n

can be represented as Xi = ∑K
k=1 cikBk, where Bk ∈ R3×n are the basis shapes and

cik ∈ R the shape coefficients. This way, the matrix Xi contains the world coordi-
nates of point i, hence the observed image points are given by xi = RiXi. We will
assume orthographic cameras, i.e. Ri ∈ R2×3 where RiR

T
i = I2. As proposed by Dai

et al . [15], the problem can be turned into a low-rank factorization problem by reshaping

and stacking the non-rigid shapes Xi. Let X]
i ∈ R

1×3n denote the concatenation of the

rows in Xi, and create X] ∈ RF×3n by stacking X]
i . This allows us to decompose the

matrix X] in the low-rank factors X] = CB], where C ∈ RF×K contains the shape
coefficients cik and B] ∈ RK×3n is constructed as X] and contains the basis elements.

A suitable objective function is thus given by

µ rank(X]) + ‖RX −M‖2
F, (25)

1The datasets are available here: http://www.maths.lth.se/matematiklth/personal/calle/
dataset/dataset.html.
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where R ∈ R2F×3F is a block-diagonal matrix with the camera matrices Ri on the main
diagonal, X ∈ R3F×n is the concatenation of the 3D points Xi, and M ∈ R2F×n

is the concatenated observed image points xi. By replacing the rank penalty with a
relaxation and minimize it using the proposed method and the methods used in the
previous section. The regularization parameter is varied for the respective methods in
order to obtain a rank 1–8 solution, and the respective datafit is reported in Figure 5, for
four different sequences.

In all sequences, the best datafit for each rank level is obtained by our proposed
method. IRNN and ADMM using fµ is able to give the same, or very similar, datafit for
lower ranks, but for solutions with rank larger than four our method consistently reports
a lower value than the competing state-of-the-art methods.

6 Conclusions

In this paper we presented a unification of bilinear parameterization and rank regular-
ization. Robust penalties for rank regularization has often been used together with split-
ting schemes, but it has been shown that such methods yield unsatisfactory results for
ill-posed problems in several computer vision applications. By using the bilinear for-
mulation, the objective functions become differentiable, and convergence rates in the
neighborhood of a local minimum are faster. Furthermore, we showed that theoreti-
cal optimality results known from the regularization formulations can be lifted to the
bilinear formulation.

Lastly, the generality of the proposed framework allows for a wide range of problems,
some of which, have not been amenable by state-of-the-art methods, but have been
proven successful using our proposed method.
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Supplementary Material

A Proofs

In this section we present the proofs of Theorems 2 and 3. Our analysis will make use of
the differentiable objective

D(B,C) := R̃(B,C) + ‖ABCT − b‖2, (26)

the non-convex function

N (X) := R(X) + ‖AX − b‖2, (27)

and the convex function

C(X) = R(X) + ‖X − Z‖2
F. (28)

We will also use the functions

G̃(B,C) = R̃(B,C) + ‖BCT‖2
F, (29)

G(X) = R(X) + ‖X‖2
F, (30)

H(X) = ‖AX − b‖2 − ‖X‖2
F. (31)

Note that D(B,C) = G̃(B,C) + H(BCT) and N (X) = G(X) + H(X). Through-
out the section we use f = fµ with fµ as in (8) (of the main paper) but for simplicity of
notation we will suppress the subscript µ. Furthermore, the subdifferential ∂G(X) of G
will be of importance. Let g(x) = f (|x|) + x2. The scalar function g has

∂g(x) =


2x |x| ≥ √µ

2
√

µsign(x) 0 < |x| ≤ √µ

2
√

µ[−1, 1] x = 0

. (32)

The following lemma shows how to compute ∂G for the matrix case using ∂g.

Lemma 1. The subdifferential of G(X) is given by

∂G(X) = {U∂g(Σ)V T + M : σ1(M) ≤ 2
√

µ,

UT M = 0 and MV T = 0}
(33)

where X = UΣV T is the SVD and ∂g(Σ) is the matrix of same size as Σ with diagonal
elements ∂g(σi).
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Next we give the stationary point conditions for D that are needed for proving The-
orem 2.

Lemma 2. Let B = U
√

Σ, C = V
√

Σ and X = UΣV T . If (B,C) is a stationary
point of D, then

0 = B∂G(Σ) +∇H(BCT)C, (34)

0 = ∂G(Σ)CT + BT∇H(BCT). (35)

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let X̄ = B̄C̄T , X̃ = B̃C̃T and ∆X = B̃C̃T − B̄C̄T . We first note
that the limit

N ′∆X(X̄) = lim
t↘0

N (X̄ + t∆X)−N (X̄)

t
, (36)

exists since N is a sum of a finite convex function G and a differentiable function H.
Our goal is now to show that the limit is non-negative. Suppose that we can find a
factorization B(t)C(t)T = X̄ + t∆X, such that R(X̄ + t∆X) = R̃(B(t),C(t)),
(B(t),C(t)) is continuous and (B(0),C(0)) = (B̄, C̄). Then for small enough t we
have

N (X̄ + t∆X)−N (X̄) = D(B(t),C(t))−D(B̄, C̄). (37)

This quantity is clearly non-negative since (B̄, C̄) is a local minimizer ofD, which would
prove that the limit (36) is non-negative. It is not difficult to see that this can be done
when the two matrices X̄ and X̃ have singular value decompositions with the same U
and V . In what follows we will first show that all other cases can be reduced so that the
matrices are of this form. When this is done we proceed to construct the factorization
B(t)C(t)T which completes the proof.

The directional derivatives can be computed using the sub-differential

N ′∆X = max
2Z∈∂G(B̄C̄T)

〈2Z,∆X〉+ 〈∇H(B̄C̄T),∆X〉. (38)

By Lemma 1, the first term becomes

〈U∂G(Σ)V T + M,∆X〉 = 〈U∂G(Σ)V T, B̃C̃T〉
+ 〈M, B̃C̃T〉
− 〈U∂G(Σ)V T, B̄C̄T〉.

(39)
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The columns of B̃ can be written as a linear combination of the columns in B̄ and
those of a matrix B̄⊥ with at most k columns that are perpendicular to B̄. Similarly, the
columns of C̃ can be written as a linear combination of the columns in C̄ and those of a
matrix C̄⊥ with at most k columns that are perpendicular to C̄. Therefore, we may write

B̃C̃T =
[
B̄ B̄⊥

] [K11 K12
K21 K22

] [
C̄T

C̄T
⊥

]
= B̄K11CT + B̄K12C̄T

⊥

+ B̄⊥K21C̄T + B̄⊥K22C̄T
⊥,

(40)

where B̄TB̄⊥ = 0 and C̄TC̄⊥ = 0. Our goal is now to show that the terms K12 and
K21 and the off diagonal elements of K11 vanish from (38) and can be assumed to be
zero.

For the last term of (39) we have

〈U∂G(Σ)V T, B̄C̄T〉 = 〈∂G(Σ),UTB̄C̄TV〉
= 〈∂G(Σ),Σ〉,

(41)

which is clearly independent of B̃ and C̃. The first term of (39) reduces to

〈U∂G(Σ)V T, B̃C̃T〉 = 〈U∂G(Σ)V T, B̄K11C̄T〉
= 〈B̄TU∂G(Σ)V TC̄,K11〉
= 〈Σ∂G(Σ),K11〉.

(42)

Note that the off diagonal elements of K11 vanish from this expression since Σ∂G(Σ) is
diagonal. Similarly, the second term of (39) reduces to

〈M, B̃C̃T〉 = 〈M, B̄⊥K22C̄T
⊥〉. (43)

We now consider the second term of (38)

〈∇H(B̄C̄T),∆X〉 =
〈∇H(B̄C̄T), B̄K11C̄T + B̄K12C̄T

⊥

+ B̄⊥K21C̄T + B̄⊥K22C̄T
⊥ − B̄C̄T〉.

(44)

For the first term we have

〈∇H(B̄C̄T), B̄K11C̄T〉 = 〈∇H(B̄C̄T)C̄, B̄K11〉
= −〈B̄∂G(Σ), B̄K11〉
= −〈B̄TB̄∂G(Σ),K11〉
= −〈Σ∂G(Σ),K11〉.

(45)
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Again the off diagonal elements of K11 vanish. For the second term of (44) we have

〈∇H(B̄C̄T), B̄K12CT
⊥〉 = 〈BT∇H(BCT),K12CT

⊥〉
= −〈∂G(Σ)C̄T

,K12C̄⊥〉
= −〈∂G(Σ)C̄TC̄⊥,K12〉 = 0.

(46)

Similarly, the third term is 〈∇H(B̄C̄T), B̄⊥K21C̄T〉 = 0. Thus

〈∇H(B̄C̄T),∆X〉 = 〈∇H(B̄C̄T), B̄T
⊥K22C̄T

⊥〉
− 〈Σ∂G(Σ),K11〉
− 〈∇H(B̄C̄T), B̄C̄T〉.

(47)

Summarizing we see that we have now proven that all the terms in (39) are independent
of K12, K21 as well as the off diagonal terms of K11. They therefore do not affect the
value of N ′∆X and can be assumed to be zero. We can now write ∆X as

∆X =
[
U U⊥

] [(D− I)Σ 0
0 Σ̃

] [
V T

V T
⊥

]
, (48)

where D are the diagonal elements of K11 and U⊥Σ̃V T
⊥ is the SVD of B̄⊥K22C̄T

⊥. Note
that UT

⊥U = 0 since U and U⊥ span orthogonal subspaces. Similarly V T
⊥V = 0.

We now consider the directional derivative (36) with B̄ = U
√

Σ, C̄ = V
√

Σ. It is
clear that for small t the matrix X̄ + t∆X has the singular value decomposition

[
U U⊥

] [((1− t)I + tD)Σ 0
0 tΣ̃

] [
V T

V T
⊥

]
. (49)

We now let

B(t) =
[
U U⊥

]√[((1− t)I + tD)Σ 0
0 tΣ̃

]
, (50)

C(t) =
[
V V⊥

]√[((1− t)I + tD)Σ 0
0 tΣ̃

]
. (51)

Then, we clearly have R̃(B(t),C(t)) = R(X + t∆X) for small enough t, which
completes the proof.
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Next we will prove Theorem 3. Our results build on those of [8] and we remind
the reader that we exclusively use fµ(σ) = µ −max(

√
µ − σ, 0)2 throughout this

section, but suppress the subscript µ. We will use the fact that the directional derivatives
in a local minimum are non-negative for all low rank directions to show that (B̄, C̄)
minimizes the non-convexN over matrices of rank < k in Theorem 3. For this we will
need the following result:

Lemma 3. If X̄ is a solution to minrank(X)≤k C(X) with rank(X̄) < k and the singular

values of Z fulfill σi(Z) /∈ [(1− δ2k)
√

µ,
√

µ

(1−δ2k)
] then X̄ also solves minX C(X).

Proof of Lemma 3. By von Neumann’s trace theorem it is easy to see that the problem
minrank(X)≤k C(X) reduces to a minimization over the singular values of X. We should
thus find σi(X) such that

n

∑
i=1
−max(

√
µ− σi(X), 0)2 + (σi(X)− σi(Z))2︸ ︷︷ ︸

:=gi(σi(X))

(52)

is minimized and at most k singular values are non-zero. The unconstrained minimizers
of gi can be written down in closed form: If 0 ≤ √µ < σi(Z) then σi(X) = σi(Z) is
optimal giving gi(σi(X)) = 0. If 0 ≤ σi(Z) <

√
µ then σi(X) = 0 is optimal giving

gi(σi(X)) = −µ + σi(Z)2. Hence for any solution of minrank(X)≤k C(X) we have
σi(X) = 0 if 0 ≤ σi(Z) ≤ √µ. There are now two cases:

1. If σk+1(Z) <
√

µ then the sequence of unconstrained minimizers has at most k
non-zero values. Thus, in this case the resulting X solves both minX C(X) and
minrank(X)≤k C(X).

2. If σk+1 >
√

µ we will not be able to select σi(X) = σi(Z) for all i where

0 ≤ √µ < σi(Z). Choosing σi(X) = 0 gives gi(0) = −µ + σi(Z)2 < 0.
Since σi(Z) is decreasing with i it is clear that the smallest value is obtained when
selecting σi(X) = σi(Z) for i = 1, ..., k.

We now conclude that if rank(X̄) < k then we are in case 1 and therefore X̄ solves the
unconstrained problem.

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3. Since C and N has the same subdifferential (see [6]) at X̄ = B̄C̄T

it is clear that the directional derivatives C ′∆X(X̄) = N ′∆X(X̄) ≥ 0, where ∆X =
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X̃ − B̄C̄T and rank(X̃) ≤ k. By convexity of C it is then also clear that

B̄C̄T ∈ arg min
rank(X)≤k

C(X). (53)

Since rank(B̄C̄T) < k, B̄C̄T is also the unrestricted global minimizer of C(X) accord-
ing to Lemma 3. By Lemma 3.1 of [8] it is then a stationary point of N (X).

What remains now is to prove that X̄ = B̄C̄T is a global minimizer of N over all
line segments X̄ + t∆X. This can be done by estimating the growth of the directional
derivatives along such lines. For this purpose we consider the functions G and H defined
as in (30) and (31). Note that X̄ is a stationary point of N (X) = G(X) + H(X) if
and only if −∇H(X̄) = 2Z ∈ ∂G(X̄).

Since∇H(X̄ + t∆X)−∇H(X̄) = t∇H(∆X) = 2t(A∗A∆X − ∆X) we have

〈∇H(X̄ + t∆X)−∇H(X̄), t∆X〉 = 2t2(‖A∆X‖2 − ‖∆X‖2
F), (54)

and due to RIP ‖A∆X‖2− ‖∆X‖2
F ≥ −δ2r‖∆X‖2. From Corollary 4.2 of [8] we see

that for any 2Z′ ∈ ∂G(X̄ + t∆X) we have

〈Z′ − Z, t∆X〉 > t2δ2r‖∆X‖2
F, (55)

as long as t 6= 0. Since G′∆X(X) = max2Z∈∂G(X)〈2Z,∆X〉, H′∆X(X) =

〈∇H(X),∆X〉 and 2Z +∇H′(X̄) = 0 we get

N ′∆X(X̄ + t∆X) ≥ 〈2Z′ +∇H(X̄ + t∆X),∆X〉 > 0 (56)

This shows that X̄ solves (9). That X̄ also solves (10) is now a consequence of the fact
that R(X) ≤ µ rank(X) with equality if X have no singular values in the interval
(0,
√

µ]. Note that X̄ is the unrestricted minimizer of C(X), where the singular values

of Z fulfill σi(Z) /∈
[
(1− δ2k)

√
µ,

√
µ

1−δ2k

]
. Since the solution to this problem is hard

thresholding X̄ has no singular values in
(

0,
√

µ
1−δ2k

]
⊃ (0,

√
µ].

For completeness we give the proofs that were previously omitted.

Proof of Lemma 1. With some abuse of notation we define the function g : Rn → R

by g(x) = ∑n
i=1 g(xi), where xi, i = 1, ..., n are the elements of x and g(x) =

f (|x|) + x2. The function g is an absolutely symmetric convex function and G can be
written G(X) = g ◦ σ(X), where σ(X) is the vector of singular values of X. Then
according to [7] the matrix Y ∈ ∂G(X) if and only if Y = U ′ diag(∂g ◦ σ(X))V ′T

when X = U ′ diag(σ(X))V ′T . (Here we use the full SVD with square orthogonal
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matrices U ′ and V ′.) Now given a thin SVD X = UΣV T all possible full SVD’s of X
can be written

X =
[
U U⊥

] [Σ 0
0 0

] [
V T

V T
⊥

]
, (57)

where U⊥ and V⊥ are singular vectors corresponding to singular values that are zero.
Note that U⊥ and V⊥ are not uniquely defined since their corresponding singular values
are all zero. Therefore we get

Y =
[
U ′ U⊥

] [∂g(Σ) 0
0 D

] [
V ′T

V T
⊥

]
= U ′∂g(Σ)V ′T + U⊥DV T

⊥,

(58)

where D is a diagonal matrix with elements in 2
√

µ[−1, 1]. It is clear that

σ1(U⊥DV T
⊥) = σ1(D) ≤ 2

√
µ. Furthermore, since U⊥ and V⊥ can be any

orthogonal bases of the spaces perpendicular to the column and row spaces of X, it is
clear that any matrix M fulfilling UT M = 0, MV = 0 and σ1(M) ≤ 2

√
µ can be

written M = U⊥DV T
⊥, hence

∂G(X) = {U∂g(Σ)V T + M : σ1(M) ≤ 2
√

µ,

UT M = 0, MV = 0}.
(59)

Proof of Lemma 2. The gradients of G̃ are given by

∇BG̃(B,C) = ∇B(R̃(B,C)) +∇B(‖BCT‖2
F). (60)

For the first term we get

∇Bi
R̃(B,C) = f ′

(
‖Bi‖2 + ‖Ci‖2

2

)
Bi. (61)

With B = U
√

Σ and C = V
√

Σ we get

∇BR̃(B,C) = B

 f ′(σ1) 0 . . .

0 f ′(σ2) . . .
...

...
. . .

 = B f ′(Σ), (62)
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which gives

∇BG̃(B,C) = B f ′(Σ) + 2BCTC = B( f ′(Σ) + 2Σ). (63)

For a non-zero σ we have ∂g(σ) = { f ′(σ) + 2σ} and therefore

∇BG̃(B,C) = B(∂G(Σ)), (64)

where g(X) = Rµ(X) + ‖X‖2
F. Similarly we get

∇CG̃(B,C) = C(∂G(Σ)). (65)

If (B,C) is a stationary point then

0 = B∂G(Σ) +∇H(BCT)C, (66)

0 = C∂G(Σ) + (∇H(BCT))T B. (67)

The second equation can be re-written to the form stated in the lemma.

B Implementation Details

In this section we present some more details on our Iteratively Reweighted VarPro ap-
proach. Recall that our approach consists of three main steps. In the first step we make
a quadratic approximation (20) of the regularization term by replacing R̃(B,C) with

∑k
i=1 w(t)

i

(
‖Bi‖2 + ‖Ci‖2

)
as described in Section 4.

In the second step we apply one step of VarPro with the Ruhe Wedin approximation,
see [4] for details on the implementation. VarPro uses Jacobians with respect to both the
B and C parameters. In our case we have two terms that needs to be linearized. The
regularization term can be written

‖diag(w(t))B‖2
F + ‖diag(w(t))C‖2

F, (68)

where diag(w(t)) is a diagonal matrix with the weights w(t)
i in the diagonal. The

residuals diag(w(t))B are already linear and by column stacking the varaibles we can
write them as Jreg

B b, where b is a column stacked version of B. If B has k columns the

matrix Jreg
B will consist of k copies of the matrix diag(w(t)). Additionally, each row

of Jreg
B has only one non-zeros element making the matrix extremely sparse. Similarly,

we obtain the contribution due to the second bilinear factor C, which can be written as
Jreg
C c. Here we use c = vec(CT), as it alleviates the computations of the data terms,
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hence Jreg
C consists of a k copies of diag(w(t)) permuted to match this design choice.

Given a current iterate (b(t), c(t)) we write the regularization term as ‖Jreg
B δb+ rB‖2 +

‖Jreg
C δc + rC‖2, where rB = Jreg

B b(t), rC = Jreg
C c(t), b = b(t) + δb and c =

c(t) + δc.
Linearizing the residuals ABCT − b around (b(t), c(t)) gives an expression of the

form
Jdata
B δb + Jdata

C δc + rdata. (69)

The particular shape of the Jacobians in this expression depends on the application; how-
ever, in all of our applications they are sparse. For example, in the missing data problem
each residual corresponds to an element of the matrix X which in turn only depends on
k elements of B and C. Locally we may now write the objective function as

‖JBδb + JCδc + r‖2, (70)

where

JB =

 Jreg
B
0

Jdata
B

 , JC =

 0
Jreg
C

Jdata
C

 , r =

 rB
rC

rdata

 . (71)

It was shown in [5] that each step of VarPro is equivalent to first minimizing (70) with
the additional dampening term λ‖δb‖2 and then performing an exact optimization of
(20) over the C-variables (when fixing the B-variables to their new values). Since we
also have a reweighing we only do one iteration with VarPro before updating the weights

w(t).
The above procedure can return stationary points for which R̃(B,C) > R(BCT).

Our last step is designed to escape such points by taking the current iterate and recom-

pute the factorization of B̄C̄T using SVD. If the SVD of B̄C̄T = ∑r
i=1 σiUiV

T
i we up-

date B̄ and C̄ to B̄i =
√

σiUi and C̄i =
√

σiVi which we know reduces the energy and

gives R̃(B̄, C̄) = R(B̄C̄T). Therefore we proceed by refactorizing the current iterate
using SVD in each iteration. The detailed steps of the bilinear method are summarized
in Algorithm 1.

C Additional Experiments on Real Data

pOSE: Psuedo Object Space Error

In this section we compare the energies over time for ADMM optimizing the same en-
ergy [6], i.e. with the regularizer R, and f = fµ as in (8) (of the main paper), and our
proposed method. We let the bilinear method run until convergence, and let ADMM

255



Paper VIII

Input: Robust penalty function f , linear operator A and regularization parameter µ,
damping parameter λ.

Initialize B and C with random entries
while not converged do

Compute weights w(t) from current iterate (B, C)

Compute the vectorizations b = vec(B), c = vec(CT)

Compute residuals rB rC , and Jacobians Jdata
B and Jdata

B depending on A
Compute residual rreg, and Jacobians Jreg

B and Jreg
C

Create full residual r and Jacobians JB and JC

Compute J̃T J̃ + λI = JT
B(I − JC J+C )JB + λI

Compute b′ = b− ( J̃T J̃ + λI)−1 JBr and reshape into matrix B′

Compute C′ by minimizing (20) with fixed B′

ifR(B′C′
T
) + ‖A(B′C′

T
)− b‖2 < R(BCT) + ‖A(BCT)− b‖2 then

[U, Σ, V ] = svd(B′C′
T
)

Update B = U
√

Σ and C = V
√

Σ

Decrease λ

else
Increase λ

end
end

Algorithm 1: Outline of the bilinear method.

execute the same time in seconds. As a comparison we use the nuclear norm relaxation
and the discontinuous rank regularization. The results of the experiment are shown in
Figure 6.

Again, note that the bilinear method optimizes the same energy as ADMM-Rµ, and
that, despite the initial fast lowering of the objective value, the ADMM approach fails
to reach the global optimum, within the allotted 150 seconds. This holds true for all
methods employing ADMM. In all experiments, the control parameter η = 0.5, and
the µ parameter was chosen to be smaller than all non-zero singular values of the best
known optimum (obtained using VarPro). For a fair comparison, the µ-value for the
nuclear norm relaxation, was modified due to the shrinking bias, and was chosen to be
the smallest value of µ for which a solution with accurate rank was obtained. Due to this
modification, the energy it minimizes is not directly correlated to the others, but is shown
for completeness. Furthermore, the iteration speed of ADMM is significantly faster than
for VarPro, and therefore we show the elapsed time (in seconds) for all methods. The
reported values are averaged over 50 instances with random initialization.
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Figure 6: The average energy for the pOSE problem over 50 instances with random initializations,
for test sequence Door. (Note that the energy for ADMM-Rank and ADMM-Rµ are very similar).

Background Extraction

The missing data problem formulation can also be used in e.g. background extraction,
where the goal is to separate the foreground from the background in a video sequence.
For this experiment, security footage of an airport is used. The frame size is 144× 176
pixels, and we use the first 200 frames, as in [3]. The camera does not move, hence the
background is static.

By concatenating the vectorization of the frames into a matrix we expect it to be
additively decomposable in terms of a low rank matrix (background) and a sparse matrix
(foreground). We follow the setup used in [1], and crop the width to half of the height,
and shift it 20 pixels to the right after 100 frames to simulate a virtual pan of the camera.
This increases the complexity of the background, as it is no longer static. Lastly, we
randomly drop 70 % of the entries. To allow for smaller singular values, we use Geman,
as it is a robust penalty with shrinking bias. The results are shown in Figure 8.

Figure 7: Energy minimization comparison for the background extraction experiment.
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Figure 8: Background extraction using Geman. Samples from frame no. 40, 70, 100, 130, 170
and 200. Top row: Original images. Middle row: Training data with 70 % missing data. Bottom
row: Reconstruction of background (bilinear method).

Initially ADMM struggles to find the correct balance between lowering the rank and
fitting the data, which is seen in Figure 7, where the objective is almost unaffected the
first forty seconds. At this point, the bilinear method has already converged.

Photometric Stereo

Photometric stereo can be used for estimating depth and surface orientation from im-
ages of the same object and view with varying lighting directions. Assuming M lighting
directions and N pixels define I ∈ R

M×N , where Iij is the light intensity for light-
ing direction i and pixel j. Assuming Lambertian reflectance, uniform albedo and a
distant light source, I = LN, where L ∈ RM×3 contains the lighting directions and
N ∈ R3×N the unknown surface normals. Thus, the resulting problem is to find a
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Figure 9: Images from the photometric stereo experiment. From left to right: (a) Ground truth
image, (b) missing data mask with static background (black), dark pixels (purple), bright pixels
(yellow), (c) reconstruction using ADMM, and (d) reconstruction using the Bilinear formulation.

rank 3 approximation of the intensity matrix I.
We use the Harvard Photometric Stereo testset [2], which contains images of various

objects from varying lighting direction. The images are scaled to 160× 125 pixels, and
only the foreground pixels are used in the optimization. Similar to [1], we introduce
missing data by thresholding dark pixels with pixel value less than 40 and bright pixels
with pixel value more than 205. The measurement matrix is reconstructed using the
bilinear method and the ADMM equivalent with the Rµ regularization. The result is
shown in Figure 9. We let the bilinear method run until convergence and let the ADMM
equivalent run for the same time in seconds, at which point the objective value is still
decreasing when ADMM is interrupted; however, the reduction is almost negligible. In
all cases ADMM fails to converge to a low rank solution in the same time as the bilinear
method, which yields a consistent result.
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Abstract: Low rank structures are present in many applications of computer vision and
machine learning. A popular approach consists of explicitly parameterising the set or matri-
ces with sought rank, leading to a bilinear factorisation, reducing the problem to find the
bilinear factors. While such an approach can be efficiently implemented using second-order
methods, such as Levenberg–Marquardt (LM) or Variable Projection (VarPro), it suffers
from the presence of local minima, which makes theoretical optimality guarantees hard to
derive.

Another approach is to penalise non-zero singular values to enforce a low-rank structure. In
certain cases, global optimality guarantees are known; however, such methods often lead
to non-differentiable (and even discontinuous) objectives, for which it is necessary to use
subgradient methods and splitting schemes. If the objective is complex, such as in structure
from motion, the convergence rates for such methods can be very slow.

In this paper we show how optimality guarantees can be lifted to methods that employ
bilinear parameterisation when the sought rank is known. Using this approach the best
of two worlds are combined: optimality guarantees and superior convergence speeds. We
compare the proposed method to state-of-the-art solvers for prior-free non-rigid structure
from motion.

1 Introduction

The singular value decomposition (SVD) has long been the main tool for enforcing rank
constraint. It is well-known that when all elements are measured the optimal solution is
obtained by finding the SVD of a matrix, thresholding the first k singular values, and re-
combining the remaining entries to obtain the optimal rank k approximation (measured
in the Frobenius norm). In computer vision and machine learning applications, however,
missing data patterns emerge, often in structured ways, and such simple methods are not
directly applicable.

In this paper we will consider low rank approximation problems with structured
missing data problems, which e.g .emerge in structure from motion problems. More
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specifically, we are interested in solving

min
rank(X)≤r0

‖A(X)− b‖2. (1)

where A : Rm×n → R
p is a linear operator, b ∈ R

p and ‖ · ‖ is the standard
Euclidean norm. We may, equivalently, consider the unconstrained problem formulation

min
X
I(rank(X) ≤ r0) + ‖A(X)− b‖2. (2)

where I(rank(X) ≤ r0) is the indicator function attaining the value 0 if rank(X) ≤ r0
and ∞ otherwise. Due to being discontinuous, the indicator function is not suitable
for numerics. The standard approach has been to relax it with a convex alternative,
such as the nuclear norm ‖X‖∗ = ∑n

i=1 σi(X), where σi(X) is the i:th singular value
of X. This relaxation has the theoretical benefit of being the convex envelope of the
rank function over the set {X : σ1(X) ≤ 1}, see e.g . [10], which further has led
to generalisations with performance guarantees [5, 6, 22, 24]. Due to the fact that
the singular values are penalised equally hard, regardless of size, the nuclear norm has
a shrinking bias [20]. For computer vision problems this is often an undesirable effect,
which has been shown on structure-from-motion problems [8, 19]. Instead, non-convex
relaxations that penalise smaller singular values harder than larger ones have been shown
to improve performance [14, 16, 17, 21]. One of the downsides of using these types
of regularisation terms is that they often result in non-differentiable objectives, which
makes it necessary to use splitting schemes or subgradient based methods. This in turn
may affect the convergence rates, making it infeasible for certain types of problems.

Since the sought rank is known, we may instead consider optimising over a bilinear
factorisation X = BCT , where B ∈ Rm×r and C ∈ Rn×r, which explicitly parame-
terises the family of matrices of size m× n with rank at most r. While methods utilising
a bilinear parameterisation can be extended to second order methods, with fast conver-
gence rates in the neighbourhood of local minima, they instead suffer from the presence
of local minima. Therefore, attempts to unify regularisation terms with bilinear fac-
torisation has gained some attention in recent years [2, 4, 20, 25, 27], with the hope
of combining the best from both worlds: theoretical performance guarantees and fast
convergence.

2 Related Work

Cabral et al . [4] considered the variational formulation of the nuclear norm

‖X‖∗ = min
BCT=X

1
2
(‖B‖2

F + ‖C‖2
F), (3)
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see [24], and unified the use of a regularised objective and bilinear factorisation. They
are able to prove global optimality in cases where the obtained solution has lower rank
than the number of columns. Bach [2] extended this property to regularisers on the

form ‖X‖s,t = minBCT=X
1
2 ∑k

i=1(‖Bi‖2
s + ‖Ci‖2

t ), where ‖ · ‖p is the `p-norm.
These methods, however, rely on convexity, thus implicitly suffers from shrinking bias.
Shang et al . [25] went beyond convexity and studied the Schatten semi-norms ‖X‖q =

q
√

∑N
i=1 σi(X)q, for q = 1/2 and q = 2/3 (which was generalised in [27]). The

shrinking bias was drastically reduced, but the proposed method does not benefit from
the convergence rates of second-order methods, as the non-convexity is treated using a
splitting scheme.

Recently, Valtonen Örnhag et al . [20] studied a family of regularisers on the form

R(X) = ∑k
i=1 f (σi(X)), where f is a robust penalty function, assumed to be concave

and nondecreasing on [0,∞) with f (0) = 0. They showed that objectives incorpo-
rating such regularisers, which are non-differentiable by nature, can be reformulated
into differentiable objectives using bilinear factorisation. Furthermore, they can be op-
timised using second-order methods such as Levenberg–Marquardt (LM) and Variable
Projection (VarPro). Theoretical optimality guarantees for the choice f (x) = fµ(x) :=
µ−max(

√
µ− x, 0) which is equivalent to the the convex envelope of the “soft rank”

objective µ rank(X) + ‖X −M‖2
F were studied. Previously known results, including

global optimality guarantees, were transferred to the bilinear setting.
In this paper we will focus on overparameterising bilinear formulations for the “hard

rank” objective (2). In [15] a special case was studied

min
X
I(rank(X) ≤ r0) + ‖X −M‖2

F, (4)

and it was shown that the convex envelope of the objective function is given by

Rr0
(X) + ‖X −M‖2

F, (5)

where

Rr0
(X) = max

Z

n

∑
i=r0+1

σi(Z)2 − ‖X − Z‖2
F, (6)

Since (5) is the convex envelope of (4) the global minimisers are attained simultaneously.
Furthermore, (5) is continuous and convex, which makes it tractable for practical prob-
lems. Inspired by the approach used in Valtonen Örnhag et al . [20] we show that it is
possible to combine theoretical optimality guarantees and second order methods for the
hard rank objective as well. Our contributions are:

• A novel method for regularising fixed-rank problems,
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• Optimality guarantees for a wide range of problems,

• Comparison to state-of-the-art methods on Non-Rigid Structure from Motion.

3 Differentiable Regularisers

In this section we will derive an alternative regulariser to (6) with certain desired prop-
erties suitable in a framework utilising bilinear parameterisation. One such property is
differentiability.

3.1 Bilinear Parameterisation and Pseudo-Singular Values

Let X ∈ Rm×n, with rank(X) = r0. Then there exists a decomposition B ∈ Rn×k

and C ∈ Rm×k, with r0 ≤ k, such that X = BCT . Furthermore, define the pseudo-
singular values

γi(B,C) :=
‖B[i]‖2 + ‖C[i]‖2

2
, (7)

where the square brackets indicate the columns of B and C such that the pseudo-singular
values are sorted in descending order γ1(B,C) ≥ · · · ≥ γk(B,C) ≥ 0. Note that
if X = UΣV T is a SVD of X, then the re-factorisation B = U

√
Σ and C = V

√
Σ,

such that X = BCT , has the properties that the singular values and the pseudo-singular
values coincide γi(B,C) = σi(X), for all i = 1, . . . , k, if we use the convention
that σi(X) = 0 for i > r0.

3.2 A Bilinear Fixed-Rank Regulariser

Let σ(X) denote the singular value vector of X, and note that the first term
of (6) is unitarily invariant, whereas the second term can be expressed as −‖X −
Z‖2

F = 2〈X,Z〉F − ‖X‖2
F − ‖Z‖2

F. Recall that, by von Neumann’s trace theo-
rem, |〈X,Z〉F| ≤ 〈σ(X),σ(Z)〉, with equality when X and Z are simultaneously
unitarily diagonalisable. This reduces the problem to maximising over the singular
values alone,

Rr0
(X) = max

σ(Z)

(
n

∑
i=r0+1

σ2
i (Z)−

n

∑
i=1

(σi(Z)− σi(X))2

)
. (8)
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A bilinear formulation equivalent to (8) can now be created by replacing the singular
values by the pseudo-singular values (7), which yields

R̃r0
(B,C) := max

z∈ Z

(
n

∑
i=r0+1

z2
i −

n

∑
i=1

(zi − γi(B,C))2

)
, (9)

where Z = {z : z1 ≥ · · · ≥ zn ≥ 0}. Clearly, Rr0
(X) = 0 if and only

if rank(X) ≤ r0; hence, the proposed regulariser will penalise solutions admitting
more than r0 non-zero columns in the bilinear factorisation. By recomputing the bi-
linear factors such that B = U

√
Σ and C = V

√
Σ, where X = UΣV T is a SVD,

yields R̃r0
(B,C) = Rr0

(BCT), thus, implicitly, enforces the rank constraint.

3.3 Differentiability

We next show that the cost function, including the bilinear regulariser (9), is differen-
tiable.

Theorem 1. The function F : Rm×k ×Rn×k → R, defined as

F (B,C) = R̃r0
(B,C) + ‖A(BCT)− b‖2, (10)

is differentiable w.r.t. B and C.

Proof sketch. For a complete proof, see the supplementary material. Decompose

F (B,C) = G(B,C) + H(B,C) where G(B,C) = R̃r0
(B,C) + ∑k

i=1 γ2
i (B,C)

and H(B,C) = −∑k
i=1 γ2

i (B,C) + ‖A(BCT) − b‖2. Clearly, H is differentiable,

and we will show that G is convex and differentiable. Let γ : Rm×k ×Rn×k → R
k

denote the function that takes the bilinear factors and returns the pseudo-singular values,

γ(B,C) =
1
2

(
‖B[1]‖2 + ‖C[1]‖2, . . . , ‖B[k]‖2 + ‖C[k]‖2

)
. (11)

and

ϕ(γ) = max
z1≥z2≥...≥zk≥0

L(γ, z)T, (12)

where L(γ, z) = −∑
r0
i=1 z2

i + 2 ∑k
i=1 ziγi. Note that G(B,C) = ϕ(γ(B,C)) and

by the chain rule ∂BG(B,C) = ∇Bγ(B,C)∂γ ϕ(γ(B,C)). Here ∇Bγ(B,C) =

blkdiag(B[1],B[2], ...,B[k]), ∂γ ϕ =
(
∂γ[1]

ϕ(γ), ∂γ[2]
ϕ(γ), ..., ∂γ[k]

ϕ(γ)
)T

and
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therefore ∂BG(B,C) is an mk × 1 vector containing derivatives with respect to the
elements of B. Using a similar argument as in [15], the subdifferential can be written as

∂ϕ(γ) = 2 argmax
z1≥···≥zk≥0

{L(γ, z)}. (13)

Analogously to [15], the optimising vector z is given by

zi ∈


{max(γi, s)}, i ≤ r0

{s}, i ≥ r0, γi 6= 0

[0, s], i > r0, γi = 0

(14)

for some s ≥ γr0
. For G to be differentiable with respect to B it is sufficient that

∂BG(B,C) contains a single element. To see that this is true one notes that only the
elements of the subgradient ∂ϕ(γ), for which γi = 0 and i > r0, can have non-
singleton sets; however, γi = 0 implies that both B[i] and C[i] are zero vectors. There-
fore all elements ∂γ[i]

ϕ(γ) that can take multiple values vanish in the multiplication

∇Bγ(B,C)∂γ ϕ(γ(B,C)). In conclusion, G is differentiable with respect to B, thus
also F . An identical argument now shows that the same is true for derivatives with
respect to C.

4 Optimality Conditions

In this section, we show that previously known results concerning the regulariser (6) can
be transferred to the bilinear setting. This is done by first establishing a crucial rela-
tion between Rr0

(X) and the proposed regulariser R̃r0
(B,C). This is a generalisation

of [20], and we use the same strategy, namely, to overparameterise the bilinear factorisa-
tion such that B and C have 2k columns. This, in turn, allows us to parameterise line
segments between points of at most rank k, in addition to applying convexity properties.

It should be noted that overparameterisation introduces additional stationary points.
Considering the data term ‖A(BCT)− b‖2, it is clear that the gradients w.r.t. the bilin-
ear factors vanish at (B,C) = (0, 0). This is not the case for gradients w.r.t. X = BCT

which are non-zero, in general. Nevertheless, it is possible to relate the local minima of
the problem formulation (5) and the directional derivatives between low rank factorisa-
tions of the proposed bilinear formulation, which is done in Theorem 2.

Theorem 2. Assume that (B̄, C̄) ∈ Rm×2k ×Rn×2k is a local minimizer of (10), where
B̄ = U

√
Σ and C̄ = V

√
Σ, and X̄ = UΣV T , with r0 < k non-zero columns and

let N (X) = Rr0
(X) + ‖A(X)− b‖2. If Rr0

(X̄) = R̃r0
(B̄, C̄) then the directional

derivatives N ′∆X(X̄), where ∆X = X̃ − X̄, rank(X̃) ≤ k are non-negative.
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5. Implementation

The assumptions that the local minimizers must be on the form B̄ = U
√

Σ and
C̄ = V

√
Σ, respectively, is not restricting the applicability, since there can be local

minimizers for which R̃r0
(B̄, C̄) 6= Rr0

(B̄C̄T). In order to avoid such situations, we

recompute the SVD each iteration, according to B̄ = U
√

Σ and C̄ = V
√

Σ, assuming

UΣV T is an SVD of B̄C̄T . By doing so, we enforce R̃r0
(B̄, C̄) = Rr0

(B̄C̄T).
Using the result from Theorem 2, we can apply the non-negativity argument of the

directional derivatives, to problems obeying the restricted isometry property (RIP) [24]

(1− δ2k)‖X‖2
F ≤ ‖A(X)‖2 ≤ (1 + δ2k)‖X‖2

F, (15)

for some 0 < δ2k < 1. The theory of local minimizers in the bilinear factors
of ‖A(BCT) − b‖2 under the RIP constraint has recently been developed in [3, 11,
23]. This is a well-studied class of problems, for which it can be shown that no spurious
local minima are introduced using the bilinear factorisation [23] (under standard
regulatory assumptions on A). The fundamental idea is to bound the distance between
the global minimum and the local minima, which can be made small in terms of the
residual error; however, this approach does not, in general, guarantee uniqueness of
local minima. By lifting the results of [18] to the bilinear setting, we can in fact prove
uniqueness under the RIP constraint. Theorem 3 shows how this can be incorporated
to ensure global minimality.

Theorem 3. Assume that (B̄, C̄) is a local minimizer of (10) fulfilling the assumptions of
Theorem 2. If the singular values of Z = (I−A∗A)B̄C̄T +A∗b, whereA∗ is the adjoint
operator of A, fulfil σr0+1(Z) < (1− 2δ2r0

)σr0
(Z), then

B̄C̄T ∈ arg min
rank(X)≤r0

‖A(X)− b‖2. (16)

In most practical situations, the separation of the singular values of Z is easily ful-
filled. Consider, e.g . the case of exact data, when b = A(X0), where rank(X0) = r0.
Then Z = X0, and the condition is transferred to the properties of the local (global)
minima X0, i.e. σr0+1(X0) < (1− 2δ2r0

)σr0
(X0). The proof is given in the supple-

mentary material.

5 Implementation

The method we propose is based on VarPro [12], which allows us to work with the low-
rank factors B and C directly. Assuming a separable non-linear least squares problem, in
the components b = vec(B) and c = vec(CT), VarPro reduces the problem by solving
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a nonlinear problem in b only. This is done by marginalising c, prior to optimising
over b. For a thorough overview of VarPro for computer vision applications, see [13].

Many computer vision and machine learning problems are large, but highly struc-
tured. Failure to retain any previous structure by adding a regulariser may result in
a non-feasible optimisation scheme, due to the computational cost of estimating the
(modified) Jacobians. In order to make minimal impact on existing structures, we there-
fore proceed to linearise the proposed regulariser. This is done by using the alternative
formulation in [1], which yields

R̃r0
(B,C) =

1
r0 − `

(
∑
i>`

γi(B,C)

)2

−∑
i>`

γ2
i (B,C), (17)

where ` is the smallest non-negative integer fulfilling γ` ≥ 1
r0−` ∑i>` γi(B,C) ≥ γ`+1.

After expanding the parenthesis, we arrive at

R̃r0
(B,C) =

1
r0 − ` ∑

i>`
∑
j > `

i 6= j

γiγj −
(

1− 1
r0 − `

)
∑
i>`

γ2
i . (18)

For each i > ` let αi = ∑j > `

i 6= j
γj, then

R̃r0
(B,C) = ∑

i>`

fi(γi(B,C)), (19)

where fi(x) = καix − (1− κ)x2 with κ = 1/(r0 − `). By considering the first or-
der Taylor expansion fi(x) ≈ fi(x0) + f ′i (x0)(x− x0) termwise (discarding constant
terms) about x0, we get the approximation

R̃r0
(B,C) ≈ ∑

i>`

w(t)
i

(
‖B(t)

i ‖
2 + ‖C(t)

i ‖
2
)
, (20)

where B(t) and C(t) are the current iterates, and

w(t)
i =


0, i ≤ `

1
2

f ′i

(
‖B(t)

i ‖
2 + ‖C(t)

i ‖
2

2

)
i > ` .

(21)

When rank(BCT) ≤ r0, we use the right limit of the weights, i.e.w(t)
i = 0 for i ≤ r0

and 1
2 f ′r0

(
(‖B(t)

r0
‖2 + ‖C(t)

r0
‖2)/2

)
otherwise. We give a more detailed exposition of

the algorithm in the supplementary material.
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6. Why Overparameterisation?

Figure 1: Convergence for different initial values of the first bilinear factor B0, for regular VarPro
(left) and using overparameterisation (right). Circles indicate the initial positions, whereas crosses
indicate the final positions. The lines connecting the markers indicate the intermediate updates.
The path is coloured blue if the algorithm converged to the correct global minimum for the cor-
responding initial point, otherwise it is coloured red. The dotted line indicate the fixed points,
discussed in Section 6.

6 Why Overparameterisation?

Consider the original problem of solving (2). One could, with good reason, ask whether
it suffices to use VarPro with a bilinear parameterisation admitting a solution of rank
at most r0, i.e.with k = r0 columns. Why bother overparameterising with k > r0
columns and regularise the excess columns? In this section we will show, by a toy exam-
ple, that constraining the solvers to seek solutions in a low rank manifold may converge
to incorrect solutions for a significant part of initial points, whereas, by using overparam-
eterisation, convergence to false minima is significantly reduced.

Consider the problem of finding a 2× 2 matrix of rank 1, minimising ‖A(X)−
b‖2, where A(X) = A vec X, with

A =


1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and b =


1
0
1
0

 . (22)

The problem is constructed such that there is a unique solution to A(X) = b, given by

X∗ =
[

1 1
0 0

]
, (23)

which is also a rank 1 matrix. Therefore, the global minimum is 0, with the unique
minimizer X∗. Note, however, that for regular VarPro, any bilinear factorisation on the
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form

B̄ =
α√
2

[
1 −1

]T
and C̄ =

1√
2α

[
−1 1

]T
, (24)

where α 6= 0, gives a fixed point corresponding to X̄ = B̄C̄T 6= X∗. Indeed, the
Jacobians Jb and Jc are non-zero, however JT

b ε = 0 and JT
c ε = 0, where ε is the

residual vector. In fact, VarPro converges locally to points on this line, which is shown
in Figure 1, where we illustrate the convergence from different initial points. In the

example we use C0 =
[
1 1

]T
and fix λ = 1, but other values result in a similar overall

trend. The initial points marked red converge to a point on the line (24), which is a
significant part of the initial values. Avoiding such false minima can be alleviated by
overparameterisation. Consider using k = 2 columns. Starting at the same initial point,
by adding a zero column to both B0 and C0, it turns out that (24) is not necessarily
a fixed point, as JT

b ε and JT
c ε are non-zero, in general. This is further supported by

Figure 1, where it is readily seen that only initial points on the line (24) converges to a
non-global minimizer.

7 Non-Rigid Structure from Motion

To show the benefits of using the proposed method, we compare it to state-of-the-art
methods compatible with (1) on the CMU Motion Capture (MOCAP) dataset. We
compare it to the method proposed by [15] which utilises ADMM and the proximal
operator of Rr0

. We include two relaxations for the “soft-rank” penalty: APGL [26] us-
ing nuclear norm, and IRNN [7] which is iteratively reweighted with the robust penalty
function MCP [28]1. Lastly, the standard VarPro [12] method is used in the comparison.

We shall treat this as a low-rank factorisation problem, by employing the approach
proposed by Dai et al . [9]. Define the matrices

X =



X1
Y1
Z1
...

XF
YF
ZF


and X] =

X1 Y1 Z1
...

...
...

XF YF ZF

 , (25)

1This was chosen since f (x) = fµ(x) := µ−max(
√

µ− x, 0) (the convex envelope of the “soft rank”
objective) is a special case of MCP.
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7. Non-Rigid Structure from Motion

Table 1: Rank vs datafit for the MOCAP experiment. For the bilinear method k = 2r0 columns
were used, and was set to a maximum of 80 iterations. Unregularised VarPro and ADMM-Rr0
were allowed to run for the same time (in seconds), or until a local minimum was reached.

Drink

Pickup

Stretch

r0 APGL∗ [26] IRNN∗ [7] Rr0
[15] VarPro [12] Our

2 26.4174 17.0260 17.0586 17.0260 17.0260
3 21.3455 11.0075 12.4201 10.9480 10.9478
4 14.1693 5.9002 6.7927 5.6855 5.6855
5 10.3880 4.5602 5.0217 4.4170 4.3143
6 5.9997 4.3858 3.9884 3.5106 3.4804
7 5.7065 3.4676 3.2135 2.9517 2.9048
8 5.4290 2.9927 2.7530 2.6283 2.4146

2 46.4320 25.3353 25.4007 25.3351 25.3351
3 14.8115 8.7234 8.9140 9.3662 8.7234
4 13.7479 6.6112 6.9091 6.5398 6.4909
5 11.1644 4.8863 5.4458 4.9002 5.0270
6 9.5866 3.5880 4.6723 3.5187 3.4900
7 6.3250 3.3919 3.5680 2.7745 2.7342
8 5.8710 2.4373 2.8725 2.1132 2.2077

2 31.6038 21.8045 21.8224 21.8045 21.8045
3 18.4486 10.6094 10.6484 11.7657 10.6094
4 14.8941 7.4601 7.4022 7.5132 7.2913
5 11.4202 6.9302 6.1334 5.8904 5.8798
6 9.4485 4.9070 4.9382 4.6281 4.6626
7 8.2575 4.6458 4.1228 3.6614 3.6249
8 6.8711 2.9488 3.1748 2.7256 2.7044

(∗) APGL and IRNN use the “soft rank” constraint, for which a regularisation parameter must be set. For
this experiment, we selected a large range of values and reported the best values (not the mean as for the other
methods).

where Xi, Yi and Zi contain the x-, y- and z-coordinates of the tracked points of the

i:th image. Assuming K basis shapes, the matrix X] may be decomposed into low-rank

factors X] = CB], where C ∈ R
F×K are the shape coefficients and B] ∈ R

K×3n

contains the basis elements. The reason for working with the reshuffled matrices X] and

B], respectively, is to be able to enforce a stronger rank penalty.

Assuming orthographic cameras, the projection of the scene points are given
by Mi = RiXi, where Ri ∈ R

2×3, with RiR
T
i = I2. A suitable objective

function [19] is thus given by

min
rank(X])≤K

‖RX −M‖2
F + ‖DX]‖2

F, (26)
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where R ∈ R
2F×3F is a block-diagonal matrix with the camera matrices Ri on the

main diagonal, and M ∈ R
2F×n contain the image points. It is known that only

considering the datafit as an object is not ideal for NRSfM [9, 19], and, in some cases,
promotes non-physical high-rank solutions, and, further penalising the derivative of the
3D projections have been suggested to increase performance [9]. Therefore, the term

containing a (modified) difference operator D : RF → R
bF/2c, where b·c is the floor

operator, is included to promote realistic reconstructions. The difference operator is
modified to be block-diagonal, hence does not affect the structure of the Jacobians. The
results can be seen in Table 1.

Note that we only report the best results for APGL and IRNN as they require the
corresponding regularisation parameter to be correctly set. We, therefore, run several
tests with varying regularisation strengths and pick the best result for each rank level.
This is to minimise potential shrinking bias. In all but three cases the proposed method
produced the lowest mean value.

8 Conclusions

In this paper we have presented a novel unification of bilinear parameterisation and rank
regularisation utilising overparameterisation to achieve new theoretical optimality guar-
antees. These results were previously only known in the context of rank penalisation ob-
jectives, for which second-order methods are not feasible due to non-differentiability. Us-
ing our proposed algorithm we are able to lift essential parts of the theoretical framework
developed for regularisation methods, while retaining a differentiable objective suitable
for second-order methods. Among the theoretical contributions, we show new strong
optimality results under the RIP constraint.

We proposed an algorithm based on VarPro, and show increased performance for
difficult objectives for estimating the human pose in a Non-Rigid Structure from Motion
framework, compared to state-of-the-art methods.
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Supplementary Material

A Proofs

Theorem 1

We start by giving a complete proof of Theorem 1.

Proof of Theorem 1. Decompose F (B,C) = G(B,C) + H(B,C) where G(B,C) =

R̃r0
(B,C) + ∑k

i=1 γ2
i (B,C) and H(B,C) = −∑k

i=1 γ2
i (B,C) + ‖A(BCT)− b‖2.

Clearly, H is differentiable, and we will show that G is convex and differentiable. By
introducing

L(γ, z) = −
r0

∑
i=1

z2
i + 2

k

∑
i=1

ziγi, (27)

it is clear that

G(B,C) = ϕ(γ(B,C)) = max
z∈Z

L(γ(B,C), z), (28)

where ϕ : Rk → R, is defined as ϕ(x) = maxz∈Z L(x, z), and, as before, Z =
{z | z1 ≥ z2 · · · ≥ zk ≥ 0}. Clearly, Z is closed, and, due to the quadratic terms, the
maximisers can be restricted to a convex set (i.e. there exists M ∈ R such that z1 ≤ M).

Since L(x, z) is convex in x ∈ Rk for every z ∈ Z , Danskin’s Theorem (see e.g. [2])
is applicable. In particular, this means that ϕ is convex and that the directional derivative
exists. Furthermore, define the set of maximising points

Z0(x) =
{

z∗ | L(x, z∗) = max
z∈Z

L(x, z)
}
, (29)

and note that L(·, z) is differentiable at x for all z ∈ Z . It now follows analogously to
[7] that the optimising pseudo-singular value vector z is given by

zi ∈


{max(γi, s)}, i ≤ r0

{s}, i ≥ r0, γi 6= 0

[0, s], i > r0, γi = 0

(30)

for some s ≥ γr0
. (This number can be given more specifically, see e.g. [1], but we do

not need the exact value to prove differentiability).
We will show that the subgradients ∂BG(B,C) and ∂CG(B,C) are singleton sets,

for an arbitrary choice of (B,C), for which it follows that G is differentiable.
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We will use the well-known fact that [9, Theorem 10.6,Corollary 10.9]

∂(h ◦ c)(x) = ∇c(x)T∂h(c(x)), (31)

where h : Rm → R is a convex and L-Lipschitz continuous function, and c : Rd →
R

m is a C1-smooth mapping with a β-Lipschitz continuous Jacobian map.

Recall that γ : Rm×k ×Rn×k → R
k is defined by

γ(B,C) =
1
2

(
‖B[1]‖2 + ‖C[1]‖2, . . . , ‖B[k]‖2 + ‖C[k]‖2

)
, (32)

where the brackets indicate they are sorted in descending order. To simplify notation,
assume that the vectors are already sorted, i.e. [i] = i, for all i. Consequently,

∇Bγ(B,C) = blkdiag(B1, . . . ,Bk) and ∇Cγ(B,C) = blkdiag(C1, . . . ,Ck),
(33)

where blkdiag(X1, . . . ,Xk) is a block-diagonal matrix with the blocks X1, . . . ,Xk.
Only the elements of the subgradient ∂ϕ(γ), for which γi = 0 and i > r0, can have
non-singleton sets; however, γi = 0 implies that both B[i] and C[i] are zero vectors of
suitable length, which implies that the subdifferentials at such points will be the single-
ton set {0}. In conclusion, ∂BG(B,C) and ∂CG(B,C), are singleton sets, and G is
differentiable, and therefore also F .

Theorem 2

In order to prove Theorem 2 we need to characterise the subdifferential, which is shown
in the following lemma. Our analysis will make use of the differentiable objective

D(B,C) := R̃r0
(B,C) + ‖A(BCT)− b‖2, (34)

the non-convex function

N (X) := Rr0
(X) + ‖A(X)− b‖2, (35)

and the convex function

C(X) = Rr0
(X) + ‖X − Z‖2

F. (36)

We will also use the functions

G̃(B,C) = R̃r0
(B,C) + ‖BCT‖2

F, (37)

G(X) = Rr0
(X) + ‖X‖2

F, (38)

H(X) = ‖A(X)− b‖2 − ‖X‖2
F. (39)
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Note that D(B,C) = G̃(B,C) + H(BCT) and N (X) = G(X) + H(X). Further-
more, note that the definition of G is different compared to the previous section.

Lemma 1. The subdifferential of G(X) is given by

∂G(X) = {U∂g(Σ)V T + M : σ1(M) ≤ s∗(X),UT M = 0 and MV T = 0}
(40)

where X = UΣV T is the SVD and ∂g(Σ) is the matrix of same size as Σ with diagonal
elements ∂g(σi).

Proof. Write G(X) = g ◦ σ(X), where σ(X) is the vector of singular values of X and
g is an absolutely symmetric function. Then, according to [6], the matrix Y ∈ ∂G(X)

if and only if Y = U ′ diag(∂g ◦ σ(X))V ′T when X = U ′ diag(σ(X))V ′T . (Here
we use the full SVD with square orthogonal matrices U ′ and V ′.) Now given a thin
SVD X = UΣV T all possible full SVD’s of X can be written

X =
[
U U⊥

] [Σ 0
0 0

] [
V T

V T
⊥

]
, (41)

where U⊥ and V⊥ are singular vectors corresponding to singular values that are zero.
Note that U⊥ and V⊥ are not uniquely defined since their corresponding singular values
are all zero. Therefore we get

Y =
[
U ′ U⊥

] [∂g(Σ) 0
0 D

] [
V ′T

V T
⊥

]
= U ′∂g(Σ)V ′T + U⊥DV T

⊥,

(42)

where D is a diagonal matrix with elements in [−s∗(X), s∗(X)]. It is now clear that
σ1(D) = σ1(U⊥DV T

⊥) ≤ s∗(X). Furthermore, since U⊥ and V⊥ can be any orthog-
onal bases of the spaces perpendicular to the column and row spaces of X, it is clear that
any matrix M fulfilling UT M = 0, MV = 0 and σ1(M) ≤ s∗(X) can be written
M = U⊥DV T

⊥, hence

∂G(X) = {U∂g(Σ)V T + M : σ1(M) ≤ s∗(X) UT M = 0, MV = 0}. (43)

The proof of Theorem 2 now follows identically to that of [8, Theorem 2], by replac-
ing the subdifferential of the “soft rank” regulariser with the one obtained in Lemma 1.
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Theorem 3

We use the same notation as in the previous section. For this we will need the following
result:

Lemma 2. If X̄ is a solution to minrank(X)≤k C(X), with rank(X̄) = r0 < k, then X̄
also solves minX C(X). If the singular values of Z fulfil σr0+1(Z) 6= σr0

(Z), then X̄ is
the unique minimizer.

Proof. Note that C(X) is the l.s.c. convex envelope of I(rank(X) ≤ r0) + ‖X − Z‖2
F,

and, therefore, the global minimium is the same. The solution, which can be obtained
in closed form through SVD, is unique if and only if σr0+1(Z) 6= σr0

(Z).

We are now ready to prove Theorem 3.

Proof of Theorem 3. Since C and N has the same subdifferential (see [5]) at X = B̄C̄T

it is clear that the directional derivatives C ′∆X(X̄) = N ′∆X(X̄) ≥ 0, where ∆X =

X̃ − B̄C̄T and rank(X̃) ≤ r0. By convexity of C it is then also clear that

B̄C̄T ∈ arg min
rank(X)≤k

C(X). (44)

Since rank(B̄C̄T) = r0 < k, B̄C̄T is also the unrestricted global minimizer of C(X)
according to Lemma 2. By Lemma 1.1 of [7], it is then a stationary point of N (X).

What remains now is to prove that X̄ = B̄C̄T is a minimizer over all line segments
X̄ + t∆X. This can be done by estimating the growth of the directional derivatives along
such lines. Note that X̄ is a stationary point of N (X) = G(X) + H(X) if and only if
−∇H(X̄) = 2Z ∈ ∂G(X̄).

Since∇H(X̄ + t∆X)−∇H(X̄) = t∇H(∆X) = 2t(A∗A∆X − ∆X) we have

〈∇H(X̄ + t∆X)−∇H(X̄), t∆X〉 = 2t2(‖A∆X‖2 − ‖∆X‖2
F), (45)

and due to RIP ‖A∆X‖2 − ‖∆X‖2
F ≥ −δ2r0

‖∆X‖2. From Corollary 2.3 [7] we see

that for any 2Z′ ∈ ∂G(X̄ + t∆X) we have

〈Z′ − Z, t∆X〉 > t2(1− c)
2

‖∆X‖2
F, (46)

as long as t 6= 0. Since the directional derivatives G′∆X(X) = max2Z∈∂G(X)〈2Z,∆X〉,
H′∆X(X) = 〈∇H(X),∆X〉 and 2Z +∇H′(X̄) = 0 we get

N ′∆X(X̄ + t∆X) ≥ 〈2Z′ +∇H(X̄ + t∆X),∆X〉 > 0. (47)
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B Implementation Details

Next, we give a more detailed overview of our proposed method, which consists of three
main parts. Initially, we consider the first order Taylor expansion (termsize) of the reg-
ularisation term by replacing R̃r0

(B,C) and instead consider the iteratively reweighted

term (21), ∑k
i=1 w(t)

i

(
‖Bi‖2 + ‖Ci‖2

)
as described in Section 5.

Then, we apply one step of VarPro with the Ruhe Wedin (RW-2) approximation,
see [3] for details on the implementation. Since the Jacobians with respect to both the
B and C parameters are necessary for updating the VarPro algorithm, they must be
linearised. The contribution to the the regularisation term is thus given by

‖diag(w(t))B‖2
F + ‖diag(w(t))C‖2

F, (48)

where diag(w(t)) is a diagonal matrix with the weights w(t)
i in the diagonal. Note that,

the residuals diag(w(t))B are linear. We can therefore write them as Jreg
B b, where b

is a column stacked version of B. In the case where B has k columns, the matrix Jreg
B

will consist of k instances of the matrix diag(w(t)). Furthermore, each row of Jreg
B has

only one non-zero element making the matrix extremely sparse. In a similar manner, we
obtain the contribution due to the second bilinear factor C, which we write as Jreg

C c. We

use the convention c = vec(CT), as it makes the computations of the data terms easier.

Due to this choice Jreg
C consists of a k permuted copies of diag(w(t)). Given a current

iterate (b(t), c(t)) the regularisation term becomes ‖Jreg
B δb + rB‖2 + ‖Jreg

C δc + rC‖2,

where rB = Jreg
B b(t), rC = Jreg

C c(t), b = b(t) + δb and c = c(t) + δc.

Then, consider linearising the residuals A(BCT) − b around (b(t), c(t)), which
gives an expression of the form

Jdata
B δb + Jdata

C δc + rdata. (49)

The sparsity pattern of the Jacobians, as well as their dependency, depends on the appli-
cation; however, for the NRSfM applications they are sparse (block-diagonal), making
them easy to compute and invert. Locally, the objective function is approximated by

‖JBδb + JCδc + r‖2, (50)

where

JB =

 Jreg
B
0

Jdata
B

 , JC =

 0
Jreg
C

Jdata
C

 , r =

 rB
rC

rdata

 . (51)

283



Paper IX

In [4] it was shown that each step of VarPro is equivalent to first minimising (50) with
the additional dampening term λ‖δb‖2 and then performing an exact optimisation of
(21) over the C-variables (when fixing the B-variables to their new values). Due to the

reweighting, we only do one iteration with VarPro before updating the weights w(t).
Since the above steps may return stationary points where R̃(B,C) > R(BCT), we

perform a last step to escape such points. This is done by taking the current iterate and

recompute the factorisation of B̄C̄T using SVD. If the SVD of B̄C̄T = ∑r
i=1 σiUiV

T
i

we proceed to update B̄ and C̄ to B̄i =
√

σiUi and C̄i =
√

σiVi which is guaranteed to

reduce the energy, and yields R̃(B̄, C̄) = R(B̄C̄T). The detailed steps of the bilinear
method are summarised in Algorithm 1.

Input: Linear operator A and desired maximum output rank r0, damping parameter λ.
Initialise B and C with random entries
while not converged do

Compute weights w(t) from current iterate (B,C)

Compute the vectorisations b = vec(B), c = vec(CT)

Compute residuals rB rC , and Jacobians Jdata
B and Jdata

C depending on A
Compute residual rreg, and Jacobians Jreg

B and Jreg
C

Create full residual r and Jacobians JB and JC

Compute J̃T J̃ + λI = JT
B(I − JC J+C )JB + λI

Compute b′ = b− ( J̃T J̃ + λI)−1 JBr and reshape into matrix B′

Compute C′ by minimising (21) with fixed B′

ifR(B′C′
T
) + ‖A(B′C′

T
)− b‖2 < R(BCT) + ‖A(BCT)− b‖2 then

[U, Σ, V ] = svd(B′C′
T
)

Update B = U
√

Σ and C = V
√

Σ

Decrease λ

else
Increase λ

end
end

Algorithm 1: Outline of the bilinear method.
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Abstract: In this paper we study the convex envelopes of a new class of functions. Using
this approach, we are able to unify two important classes of regularizers from unbiased non-
convex formulations and weighted nuclear norm penalties. This opens up for possibilities
of combining the best of both worlds, and to leverage each method’s contribution to cases
where simply enforcing one of the regularizers are insufficient.

We show that the proposed regularizers can be incorporated in standard splitting schemes
such as Alternating Direction Methods of Multipliers (ADMM), and other subgradient
methods. Furthermore, we provide an efficient way of computing the proximal operator.

Lastly, we show on real non-rigid structure-from-motion (NRSfM) datasets, the issues that
arise from using weighted nuclear norm penalties, and how this can be remedied using our
proposed method.1

1 Introduction

Dimensionality reduction using Principal Component Analysis (PCA) is widely used for
all types of data analysis, classification and clustering. In recent years, numerous subspace
clustering methods have been proposed, to address the shortcomings of traditional PCA
methods. The work on Robust PCA by Candès et al . [7] is one of the most influential
papers on the subject, which sparked a large research interest from various fields includ-
ing computer vision. Applications include, but are not limited to, rigid and non-rigid
structure-from-motion [1, 4], photometric stereo [2] and optical flow [13].

It is well-known that the solution to

min
rank(X)≤r

‖X − X0‖2
F, (1)

1Code available: https://github.com/marcusvaltonen/UnifiedFramework. This work was
supported by the Swedish Research Council (grants no. 2015-05639 and 2018-05375) and the Swedish Foun-
dation for Strategic Research (Semantic Mapping and Visual Navigation for Smart Robots).
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where ‖ · ‖F is the Frobenius norm, can be given in closed form using the singular value
decomposition (SVD) of the measurement matrix X0. The character of the problem
changes drastically, when considering objectives such as

min
rank(X)≤r

‖A(X)− b‖2, (2)

where A : R
m×n → R

p is a linear operator, b ∈ R
p, and ‖ · ‖ is the standard

Euclidean norm. In fact, such problems are in general known to be NP hard [14]. In
many cases, however, the rank is not known a priori, and a “soft rank” penalty can be
used instead

min
X

µ rank(X) + ‖A(X)− b‖2. (3)

Here, the regularization parameter µ controls the trade-off between enforcing the rank
and minimizing the residual error, and can be tuned to problem specific applications.

In order to treat objectives of the form (2) and (3), a convex surrogate of the rank
penalty is often used. One popular approach is to use the nuclear norm [7, 30]

‖X‖∗ =
n

∑
i=1

σi(X), (4)

where σi(X), i = 1, . . . , n, is the i:th singular value of X. One of the drawbacks of using
the nuclear norm penalty is that both large and small singular values are penalized equally
hard. This is referred to as shrinking bias, and to counteract such behavior, methods
penalizing small singular values (assumed to be noise) harder have been proposed [9, 16,
21, 23, 26, 27, 29, 32].

1.1 Related Work

Our work is a generalization of Larsson and Olsson [21]. They considered problems on
the form

min
X

g(rank(X)) + ‖X − X0‖2
F, (5)

where the regularizer g is non-decreasing and piecewise constant,

g(k) =
k

∑
i=1

gi. (6)

Note, that for gi ≡ µ we obtain (3). Furthermore, if we let gi = 0 for i ≤ r0, and ∞
otherwise, (2) is obtained. The objectives (5) are difficult to optimize, as they, in general,
are non-convex and discontinuous. Thus, it is natural to consider a relaxation

min
X
Rg(X) + ‖X − X0‖2

F, (7)
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where

Rg(X) = max
Z

(
n

∑
i=1

min(gi, σ
2
i (Z))− ‖X − Z‖2

F

)
. (8)

It was shown in [21], that this is the convex envelope of (5), hence share the same global
minimizers.

Another type of regularizer that has been successfully used in low-level imaging ap-
plications [15, 36, 37] is the weighted nuclear norm (WNNM),

‖X‖w,∗ =
k

∑
i=1

wiσi(X), (9)

where w = (w1, . . . ,wk) is a weight vector. Note that the WNNM formulation does
not fit the assumptions (6), hence cannot be considered in this framework.

For certain applications, it is of interest to include both regularizers, which we will
show in Section 6. Typically, this is preferable when the rank constraint alone is not
strong enough to yield accurate reconstructions, and further penalization is necessary to
restrict the solutions. To this end, we suggest to merge these penalties. In [28] a similar
approach was suggested, but is not general enough to include penatlies like WNNM.

Our main contributions are:

• A novel method for combining bias reduction and non-convex low-rank inducing
objectives,

• An efficient and fast algorithm to compute the proposed regularizer,

• Theoretical insight in the quality of reconstructed missing data using WNNM,
and practical demonstrations on how shrinking bias is perceived in these applica-
tions,

• A new objective for Non-Rigid Structure from Motion (NRSfM), with improved
performance, compared to state-of-the-art prior-free methods, capable of working
in cases where the image sequences are unordered.

First, however, we will lay the ground for the theory of a common framework of
low-rank inducing objectives.

2 Problem Formulation and Motivation

In this paper we propose a new class of regularization terms for low rank matrix recovery
problems that controls both the rank and the magnitude of the singular values of the
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recovered matrix. Our objective function has the form

fh(X) = h(σ(X)) + ‖A(X)− b‖2, (10)

where h(σ(X)) = ∑k
i=1 hi(σi(X)) and

hi(σi(X)) =

{
2aiσi(X) + bi σi(X) 6= 0,
0 otherwise.

(11)

We assume that the sequences {ai}k
i=1 and {bi}k

i=1 are both non-decreasing.
Our approach unifies the formulation of [19] with weighted nuclear norm. The

terms 2aiσi(X) correspond to the singular value penalties of a weighted nuclear
norm [15]. These can be used to control the sizes of the non-zero singular values. In
contrast, the constants bi corresponds to a rank penalization that is independent of these
sizes and, as we will see in the next section, enables bias free rank selection.

2.1 Controlled Bias and Rank Selection

To motivate the use of both sets of variables {ai}k
i=1 and {bi}k

i=1, and to understand
their purpose, we first consider the simple recovery problem minX fh(X), where

fh(X) := h(σ(X)) + ‖X − X0‖2
F. (12)

Here X0 is assumed to consist of a set of large singular values σi(X0), i = 1, ..., r,
corresponding to the matrix we wish to recover, and a set of small ones σi(X0), i =
r + 1, ..., k, corresponding to noise that we want to suppress.

Due to von Neumann’s trace theorem [22] the solution can be computed in closed
form by considering each singular values separately, and minimize{

2aiσi(X) + bi + (σi(X)− σi(X0))
2 σi(X) 6= 0,

σi(X0)
2 σi(X) = 0,

(13)

over σi(X) ≥ 0. Differentiating for the case σi(X) 6= 0 gives a stationary point
at σi(X) = σi(X0) − ai if σi(X0) − ai > 0. Since this point has objective value
2aiσi(X0)− a2

k + bk it is clear that this point will be optimal if

2aiσi(X0)− a2
i + bi ≤ σi(X0)

2, (14)

or equivalently σi(X0) − ai ≥
√

bi. Summarizing, we thus get the optimal singular
values

σi(X) =

{
σi(X0)− ai σi(X0)− ai ≥

√
bi,

0 otherwise.
(15)
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Figure 1: The optimal recovered singular value σi(X) as a function (red curve) of the observed
σi(X0).

Note, that this is a valid sequence of singular values since under our assumptions
σi(X0) − ai is decreasing and

√
bi increasing. The red curve of Figure 1 shows the

recovered singular value as a function of the corresponding observed singular value.
For comparison, we also plot the dotted blue curve which shows hard thresholding
at ai +

√
bi, i.e. singular values smaller than ai +

√
bi vanish while the rest are left

unaltered.

Now, suppose that we want to recover the largest singular values unchanged. Using
the weighted nuclear norm (bi = 0) it is clear that this can only be done if we know
that the sought matrix has rank r and let ai = 0 for i = 1, ..., r. For any other setting
the regularization will subtract ai from the corresponding non-zero singular value. In
contrast, by letting ai = 0 allows exact recovery of the large singular values by selecting
bi appropriately even when the rank is unknown. Hence, in the presence of a weak
prior on the rank of the matrix, using only the bi (the framework in [21]) allows exact
recovery for a more general set of problems than use of the ai (weighted nuclear norm
formulations).

The above class of problems are well posed with a strong data term ‖X −X0‖2
F. For

problems with weaker data terms, priors on the magnitude of the singular values can
still be very useful. In the context of NRSfM it has been observed [12, 27] that adding a
bias can improve the distance to the ground truth reconstruction, even though it does not
alter the rank. The reason is that, when the scene is not rigid, several reconstructions with
the same rank may co-exist, thus resulting in similar projections. By introducing bias on
the singular values, further regularization is enforced on the deformations, which may aid
in the search for correct reconstructions. For example, with a1 = 0 and ai > 0, i > 1
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we obtain a penalty that favors matrices that “are close to” rank 1. In the formulation of
[12], where rank 1 corresponds to a rigid scene this can be thought of as an “as rigid as
possible” prior, which is realistic in many cases [18, 24, 31, 33], but which has yet to be
considered in the context of factorization methods. 2

2.2 The Quadratic Envelope

As discussed above the two sets of parameters {ai} and {bi} have complementary reg-
ularization effects. The main purpose of unifying them is to create more flexible priors
allowing us to do accurate rank selection with a controlled bias. In the following sections,
we also show that they have relaxations that can be reliably optimized. Specifically, the re-
sulting formulation h(σ(X)), which is generally non-convex and discontinuous, can be
relaxed by computing the so called quadratic envelope [10, 11]. The resulting relaxation
Rh(σ(X)) is continuous and in addition Rh(σ(X)) + ‖X − X0‖2

F is convex. For a
more general data term there may be multiple local minimizers. However, it is known
that

h(σ(X)) + ‖A(X)− b‖2, (16)

and
Rh(σ(X)) + ‖A(X)− b‖2, (17)

have the same global minimizer when ‖A‖ < 1 [10]. In addition, potential local
minima of (17) are also local minima of (16); however, the converse does not hold. We
also show that the proximal operator of Rh(σ(X)) can be efficiently computed which
allows simple optimization using splitting methods such as ADMM [3].

3 A New Family of Functions

Consider functions on the form (12). This is a generalization of [21]; and the derivation
for our objective follows a similar structure. We outline this in detail in the supplemen-
tary material, where we show that convex envelope f ∗∗h is given by

f ∗∗h (X) = Rh(X) + ‖X − X0‖2
F, (18)

2To regularize the problem Dai et al . incorporated a penalty of the derivatives of the 3D tracks, which also
can be seen as a prior preferring rigid reconstructions. However, this option is not feasible for unsorted image
collections.
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where

Rh(X) := max
Z

(
n

∑
i=1

min
(

bi, [σi(Z)− ai]
2
+

)
+ ‖Z‖2

F

− ‖X − Z‖2
F −

n

∑
i=1

[σi(Z)− ai]
2
+

)
.

(19)

As in [21], the optimization can be reduced to the singular values only,

Rh(X) = max
σ(Z)

(
n

∑
i=1

min
(

bi, [σi(Z)− ai]
2
+

)
+ σ2

i (Z)

− (σi(X)− σi(Z))2 − [σi(Z)− ai]
2
+

)
.

(20)

This can be achieved by applying von Neumann’s trace theorem (see supplementary ma-
terial). The optimization problem is concave, hence can be solved with standard convex
solvers such as MOSEK or CVX; however, in the next section we show that the problem
can be turned into a series of one-dimensional problems, and the resulting algorithm for
computing (19) is magnitudes faster than applying a general purpose solver.

4 Finding the Maximizing Sequence

Following the approach used in [21], consider the program

max
s

f (s)

s.t. σi+1(Z) ≤ s ≤ σi−1(Z).
(21)

where σi(Z) is the i:th singular value of the maximizing sequence in (20), and

f (s) = min{bi, [s− ai]
2
+} − (s− σi(X))2 + s2 − [s− ai]

2
+. (22)

The objective function f can be seen as the pointwise minimum of two concave func-
tions, namely, f1(s) = bi + 2σi(X)s− σ2

i (X)− [s− ai]
2
+ and f2(s) = 2σi(X)s−

σi(X)2, i.e. f (s) = min{ f1(s), f2(s)}, hence f is concave.
The individual unconstrained optimizers are given by si = ai +max{

√
bi, σi(X)}.

In previous work [21], where ai ≡ 0, an algorithm was devised to find the maximizing
singular vector, by turning it to an optimization problem of a single variable. This

method is not directly applicable, as the sequence {si}k
i=1, in general, does not satisfy
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Data: Weights a, b, and σ(X)
Result: Maximizing vector σ(Z∗) = {σi}i
Initialize with the unconstrained maximizers σi = ai + max{

√
bi, σi(X)};

while σ(Z∗) is not a valid singular value vector do
Find local extrema of σ(Z∗) and generate subintervals {ιk}k∈I ;
for k ∈ I do

Find scalar s∗ = argmaxs f (s) where f is defined in (22);
Update σi = s∗ for all i ∈ ιk.

end
end

Algorithm 1: Algorithm for finding the maximizing singular value vector.

the necessary conditions3. In fact, the number of local extrema in the sequence {si}k
i=1

is only limited by its length. We show an example of a sequence in Figure 2, and the
corresponding maximizing sequence. Nevertheless, it is possible to devise an algorithm
that returns the maximizing singular value vector, as we will show shortly.

In order to do so, we can apply some of the thoughts behind the proof behind [21].

Consider the more general optimization problem of minimizing g(σ) = ∑k
i=1 fi(σi),

subject to σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, where fi are concave. Then, given the

unconstrained sequence of minimizers {si}k
i=1, the elements of the constrained

sequence {σi}k
i=1 can be limited to three choices

σi =


si if σi+1 ≤ si ≤ σi−1,

σi−1 if σi−1 < si,

σi+1 if si < σi+1.

(23)

Furthermore, the regions between local extreme points (of the unconstrained singular
values) are constant.

Lemma 1. Assume sp and sq are local extrema of {si}k
i=1 and that the subsequence {si}

q
i=p

are non-decreasing. Then the corresponding subsequence of the constrained problem {σi}
q
i=p

is constant.

Proof. Consider σi for some p ≤ i ≤ q− 1. If σi > si, then by (23) we have σi+1 = σi.
If instead σi ≤ si, we have σi+1 ≤ σi ≤ si ≤ si+1 and by (23), σi+1 = σi.

3In order to use the algorithm, the sequence {si}k
i=1 must be non-increasing for i < p, non-decreasing

for p ≤ i ≤ q, and non-increasing for i > q, for some p, and q.
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5. ADMM and the Proximal Operator

We can now devise an algorithm that returns the maximizing sequence, see Algo-
rithm 1. Essentially, the algorithm starts at the unconstrained solution, and then adds
more constraints, by utilizing Lemma 1, until all of them are fulfilled.

Theorem 1. Algorithm 1 returns the maximizing sequence.

Proof. See the supplementary material.

4 8 12 16
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24
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28

Singular value no.

Si
ng

ul
ar
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lu
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Figure 2: Example of a sequence of unconstrained maximizers (blue line), local extrema (green and
red) and the maximizing sequences (dashed black) obtained by Algorithm 1.

5 ADMM and the Proximal Operator

We employ the splitting method ADMM [3], which is a standard tool for problems of
this type. Thus, consider the augmented Lagrangian

L(X,Y ,Λ) = f ∗∗h (X) + ρ‖X − Y + Λ‖2
F + C(Y)− ρ‖Λ‖2

F, (24)

where X and Y are minimized sequentially, and Λ is the dual variable. All variables are
of the same dimensionality. The function C is assumed to be convex and incorporates
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6. Experiments

additional priors. In each iteration, we solve

Xt+1 = arg min
X

f ∗∗h (X) + ρ‖X − Yt + Λt‖2
F, (25)

Yt+1 = arg min
Y

ρ‖Xt+1 − Y + Λt‖2
F + C(Y), (26)

Λt+1 = Xt+1 − Yt+1 + Λt. (27)

To evaluate the proximal operator f ∗∗h one must solve

min
X
Rh(X) + ‖X − X0‖2

F + ρ‖X −M‖2
F. (28)

Note, that due to the definition of (19), this can be seen as a convex-concave min-max
problem, by restricting the minimization of X over a compact set. By first solving for X
one obtains,

X = M +
X0 − Z

ρ
=

(ρ + 1)Y − Z
ρ

, (29)

where Y =
X0+ρM

1+ρ . Similarly, as in [21], we get a program of the type (excluding
constants)

max
Z

(
n

∑
i=1

min
(

bi, [σi(Z)− ai]
2
+

)
− ρ + 1

ρ
‖Z− Y‖2

F

+ ‖Z‖2
F −

n

∑
i=1

[σi(Z)− ai]
2
+

)
.

(30)

Again, the optimization can be reduced to the singular values only. This bears strong
resemblance to (21), and we show in the supplementary material that Algorithm 1 can
be modified, with minimal effort, to solve this problem as well.

6 Experiments

We demonstrate the shortcomings of using WNNM for non-rigid reconstruction esti-
mation and structure-from-motion, and show that our proposed method performs as
good or better than the current state-of-the-art. In all applications, we apply the popular
approach [8, 15, 17] to choose the weights inversely proportional to the singular values,

wi =
C

σi(X0) + ε
, (31)
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where ε > 0 is a small number (to avoid division by zero), and X0 is an initial estimate
of the matrix X. The trade-off parameter C will be tuned to the specific application. In
the experiments, we use wi = 2ai, and choose bi depending on the specific application.
This allows us to control the rank of the obtained solution without excessive penalization
of the non-zero singular values.

6.1 Synthetic Missing Data

In this section we consider the missing data problem with unknown rank

min
X

µ rank(X) + ‖W � (X −M)‖2
F, (32)

where M is a measurement matrix, � denotes the Hadamard (or element-wise) product,
and W is a missing data mask, with wij = 1 if the entry (i, j) is known, and zero
otherwise.

Ground truth matrices M0 of size 32× 512 with rank(M0) = 4 are generated, and
to simulate noise, a matrix N is added to obtain the measurement matrix M = M0 + N.
The entries of the noise matrix are normally distributed with zero mean and standard
deviation σ = 0.1.

When benchmarking image inpainting and deblurring, it is common to assume a
uniformly distributed missing data pattern. This assumption, however, is not applicable
in many other subfields of computer vision. In structure-from-motion the missing data
pattern is typically very structured, due to tracking failures. For comparison we show
the reconstruction results for several methods, on both uniformly random missing data
patterns and tracking failures. The tracking failure patterns were generated as in [20].

The results are shown in Table 1. Here we use the ai =
√

µ

σi(M)+ε
, and bi =

µ
σi(M)+ε

,

with ε = 10−6. All other parameters are set as proposed by the respective authors.

6.2 Non-Rigid Deformation with Missing Data

This experiment is constructed to highlight the downsides of using WNNM, and to
illustrate how shrinking bias can manifest itself in a real-world application. Non-rigid
deformations can be seen as a low-rank minimizing problem by assuming that the tracked
image points are moving in a low-dimensional subspace. This allows us to model the
points using a linear shape basis, where the complexity of the motion is limited by the
number of basis elements. This in turn, leads to the task of accurately making trade-offs
while enforcing a low (and unknown) rank, which leads to the problem formulation

min
X

µ rank(X) + ‖W � (X −M)‖, (33)
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where X = CBT , with B being concatenated basis elements and C the corresponding
coefficient matrix. We use the experimental setup from [19], where a KLT tracker is used
on a video sequence. The usage of the tracker naturally induces a structured missing data
pattern, due to the inability to track the points through the entire sequence.

We consider the relaxation of (33)

min
X
Rh(X) + ‖W � (X −M)‖2

F, (34)

and choose ai =
C

σi(M)+ε
and bi = 0 for i ≤ 3 and bi = 1/(C + ε) otherwise. This

choice of b encourages a rank 3 solution without penalizing the large singular values. By
choosing the parameter C, one may vary the strength of the fixed-rank regularization
versus the weighted nuclear norm penalty. The datafit vs the parameter C is shown in
Table 2, and the reconstructed points for four frames of the book sequence are shown in
Figure 3.

Notice that, the despite the superior datafit for C = 1 (encouraging the WNNM
penalty), it is clear by visual inspection that the missing points are suboptimally recovered.
In Figure 3 the white center marker is the origin, and we note a tendency for the WNNM
penalty to favor solutions where the missing points are closer to the origin. This is the
consequence of a shrinking bias, and is only remedied by leaving the larger singular values
intact, thus excluding WNNM as a viable option for such applications.

Table 2: Datafit for different values of C. Note that the datafit for C = 1 is better than for
C = 10−2. This comes at the cost of incorrectly reconstructing the missing points, as is shown in
Figure 3. The datafit is measured as ‖W � (X −M)‖F.

C 10−2 1 100
Datafit 0.8354 0.4485 6.5221

6.3 Motion Capture

The popular prior-free objective, proposed by Dai et al . [12], for NRSfM

min
X

µ ‖X]‖∗ + ‖RX −M‖2
F, (35)

where X] a stacked version of X (see [12] for details), suffers from shrinking bias, due to
the nuclear norm penalty. Essentially, the nuclear norm penalty is a way of relaxing the
soft rank penalty,

min
X

µ rank(X]) + ‖RX −M‖2
F, (36)
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however, it was shown in [27], that simply using the convex envelope of the rank function
leads to non-physical reconstructions. To tackle this situation, it was proposed to penalize
the 3D trajectories using a difference operator D,

min
X

µ rank(X]) + ‖RX −M‖2
F + ‖DX]‖2

F. (37)

While such an objective leads to more physical solutions [27], it also restricts the method
to ordered sequences of images. To allow for unordered sequences, we replace the dif-
ference operator with an increasing penalty for smaller singular values, modelled by an
increasing sequence of weights {ai}. More specifically, we consider the problem of min-
imizing

min
X
Rh(X]) + ‖RX −M‖2

F, (38)

where sequences {ai} and {bi} are non-decreasing. This bears resemblance to the
weighted nuclear norm approach presented in [17], recently, which coincide for the
special case bi ≡ 0. Furthermore, this modified approach exhibits far superior recon-
struction results compared to the original method proposed by Dai et al . [12]. In our
comparison, we employ the same initialization heuristic for the weights wi on the singu-
lar values as in [15, 17], namely

wi =
C

σi(X]
0) + ε

, (39)

where ε = 10−6 and C > 0. The matrix X]
0 = R+M, where R+ is the pseudo-inverse

of R, has successfully been used as an initialization scheme for NRSfM by others [12,
17, 35].

In practice, we choose 2ai = wi, as in (39), with C = 2
√

µ and bi = wi, with
C = µ. This enforces mixed a soft-rank and hard rank thresholding.

We select four sequences from the CMU MOCAP dataset, and compare to the orig-
inal method proposed by Dai et al . [12], the newly proposed weighted approach by Ku-
mar [17], the method by Larsson and Olsson [21] and our proposed objective (38), all
of which are prior-free, and do not assume that the image sequences are ordered. For the
nuclear norm approach by Dai et al . we use the regularization parameter λ = 2

√
µ, and

for Kumar, we set C = 2
√

µ (as forRh) and run the different methods for a wide range
of values for µ, using the same random initial solutions. We then measure the datafit,
defined as ‖RX −M‖F and the distance to ground truth ‖X − Xgt‖F, and show how
these depend on the output rank (here defined as the number of singular values larger
than 10−6). By doing so, we see the ability of the method to make accurate trade-offs
between fitting the data and enforcing the rank. The results are shown in Figure 4.
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Note that, the datafit for all methods decrease as the rank increases, which is to be
expected; however, we immediately note that the “soft rank” penalty (3), in this case,
is too weak. This manifests itself by mostly fitting to data, and the distance to ground
truth does not correlate with the datafit for solutions with rank larger than three. For
the revised method by Kumar [17], as well as ours, the correlation between the two
quantities is much stronger. What is interesting to see is that our method consistently
performs better than the WNNM approach for lower rank levels, suggesting that the
shrinking bias is affecting the quality of these reconstruction. Note, however, that the
minimum distance to ground truth, obtained using the WNNM approach is as good (or
better) than the one obtained using Rh. To obtain such a solution, however, requires
careful tuning of the µ parameter and is unlikely to work on other datasets.

7 Conclusions

Despite success in many low-level imaging applications, there are limitations of the ap-
plicability of WNNM in other applications of low-rank regularization. In this paper,
we have provided theoretical insight into the issues surrounding shrinking bias, and pro-
posed a solution where the shrinking bias can be partly or completely eliminated, while
keeping the rank low. This can be done using the proposed Rh regularizer, which has
the benefit of unifying weighted nuclear norm regularization with another class of low-
rank inducing penalties. Furthermore, an efficient way of computing the regularizer
has been proposed, as well as the related proximal operator, which makes it suitable for
optimization using splitting scheme, such as ADMM.
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7. Conclusions

Drink

Pickup

Stretch

Yoga

Figure 4: Results for the experiment on the CMU MOCAP dataset. First column: Example images
with skeleton added for visualization. Second column: The datafit, measured as ‖RX −M‖F, as
a function of the rank. Last column: Distance to ground truth, measured as ‖X − Xgt‖F, as a
function of the rank.
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Figure 5: Two different cases for values of ai, bi and σi(X) of (21).

Supplementary Material

A Von Neumann’s Trace Theorem

We use von Neumann’s trace theorem repeatedly in the main paper, hence we state it here

for completeness, using the inner products 〈X,Y〉 = tr(XTY), and 〈x, y〉 = xTy.

Theorem 2 (Von Neumann [3]). Let X, Y ∈ Cn×n and σ(X) be the singular value
vector of X. Then

〈X,Y〉 ≤ 〈σ(X), σ(Y)〉,

with equality if and only if X and Y are simultaneously unitarily diagonalizable.

Consider maximization over Z in (19) and note that

−‖X − Z‖2
F = −‖X‖2

F − ‖Z‖2
F + 2〈X,Z〉, (40)

and by Theorem 2, 〈X,Z〉 ≤ 〈σ(X), σ(Z)〉, with equality if X and Z are simultane-
ously unitarily diagonalizable. Note that the Frobenius norm is unitarily invariant, with
‖X‖2

F = ∑i σi(X)2. Therefore

−‖X − Z‖2
F ≤ −∑

i
(σi(X)− σi(Z))2 , (41)

with equality if X and Z are simultaneously unitarily diagonalizable, i.e. X =

UDσ(X)V
T and Z = UDσ(Z)V

T , where Dx is a diagonal matrix with x on the main
diagonal.

The remaining terms of (19) only depend on the singular values of Z and therefore
the maximum occurs when we select Z so that we have equality in (41). This establishes
the equality between (19) and (20) of the main paper.
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B The Fenchel Conjugate

In this section, we compute the Fenchel conjugate of (12), which is necessary in order to
find the convex envelope. Let 〈X,Y〉 = tr(XTY), and note that we can write

〈Y ,X〉 − ‖X − X0‖F = ‖Z‖2
F − ‖X0‖2

F − ‖Z− X‖2
F. (42)

where Z = 1
2 Y + X0. By definition, the Fenchel conjugate of (12) is given by

f ∗h (Y) = sup
X
〈Y ,X〉 − fh(X) = sup

X
‖Z‖2

F − ‖X0‖2
F − ‖X − Z‖2

F − h(σ(X)),

(43)
where we use (42) in the last step. Note that the function h, as well as the Frobenius
norm, is unitarily invariant. Furthermore, ‖X − Z‖2

F = ‖X‖2
F + ‖Z‖2

F − 2〈X,Z〉,
and 〈X,Z〉 ≤ 〈σ(X), σ(Z)〉 by von Neumann’s trace inequality, with equality if X and
Z are simultaneously unitarily diagonalizable. This reduces the problem to optimizing
over the singular values alone, which, after some manipulation, can be written as

f ∗h (Y) = max
σ(X)
−‖X0‖2

F −
k

∑
i=1

(
σ2

i (X)− 2[σi(Z)− ai]σi(X) + bi

)
, (44)

where rank(X) = k. Considering each singular value separately leads to a program on
the form

min
xi

x2
i − 2[σi(Z)− ai]xi + bi, (45)

subject to σi+1(X) ≤ xi ≤ σi−1(X). The sequence of unconstrained minimizers is
given by xi = σi(Z)− ai. If there exists xi < 0, then this is not the solution to the
constrained problem. Nevertheless, the sequence is non-increasing, hence there is an
index p, such that xp ≥ 0 and xp+1 < 04.

Note that
k

∑
i=1

x2
i − 2sixi = ‖x‖2 − 2〈x, s〉, (46)

hence we can consider optimizing ‖x− s‖2 = ‖x‖2− 2〈x, s〉+ ‖s‖2 subject to x1 ≥
x2 ≥ · · · ≥ xk ≥ 0. Furthermore, s1 ≥ s2 ≥ · · · ≥ sk.

Assume that minimum is obtained at x∗ and fix x∗p. Since sj < 0 for all j > p,

we must have x∗j = 0 for j > p. It is now clear that, x∗j = sj otherwise, hence

x∗j = max{sj, 0} = [sj]+. Inserting into (44) gives

f ∗h (Y) = max
k
−‖X0‖2

F −
k

∑
i=1

(
bi − [σi(Z)− ai]

2
+

)
. (47)

4We allow the case p = 0, in which case the zero vector is optimal.
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Since [si]+ = [σi(Z)− ai]+ is non-increasing, and bi is non-decreasing, the maximiz-
ing k is obtained when

[σk(Z)− ak]
2
+ ≥ bk and bk+1 ≥ [σk+1(Z)− ak+1]

2
+. (48)

For the maximizing k = k∗, we can write

−
k∗

∑
i=1

(
bi − [σi(Z)− ai]

2
+

)
=

n

∑
i=1

[σi(Z)− ai]
2
+ −

n

∑
i=1

min{bi, [σi(Z)− ai]
2
+}.

(49)

From this observation, we get

f ∗h (Y) =
n

∑
i=1

[
σi(

1
2

Y + X0)− ai

]2

+
− ‖X0‖2

F

−
n

∑
i=1

min

(
bi,

[
σi(

1
2

Y + X0)− ai

]2

+

)
.

(50)

C The Convex Envelope

Applying the definition of the bi-conjugate f ∗∗h (X) = supY 〈Y ,X〉 − f ∗h (Y) to (50),
and introduce the change of variables Z = 1

2 Y + X0 we get

f ∗∗h (X) = max
Z

2〈X,Z− X0〉 −
n

∑
i=1

[σi(Z)− ai]
2
+

+ ‖X0‖2
F +

n

∑
i=1

min
(

bi, [σi(Z)− ai]
2
+

)
.

(51)

By expanding squares and simplifying, 2〈X,Z − X0〉 + ‖X0‖2
F = ‖X − X0‖2

F −
‖X − Z‖2

F + ‖Z‖2
F, which yields (19).

D Obtaining the Maximizing Sequences

In this section we give the proof for the convergence of Algorithm 1, and how to modify
it to cope with the corresponding problem for the proximal operator.
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Figure 6: Illustration of the three different cases for the proximal operator.

E Proof of Theorem 1

Proof of Theorem 1. First, we will show that each step in the algorithm returns a solution
to a constrained subproblem Pi, corresponding to a (partial) set of desired constraints Zi.

Let P0 denote the unconstrained problem with solution ∫ ∈ Rn
+. Denote the first

interval generated in Algorithm 1 by ι1 = {m1, . . . , n1}, and consider optimizing the
first subproblem P1

max
zm1
≥···≥zn1

c(z), (52)

where Z1 = {z ∈ Z0 | zm1
≥ · · · ≥ zn1

}. By Lemma 1 the solution vector is constant
over the subinterval zi = s for i ∈ ι1, which is returned by the algorithm. The next
steps generates a solution to subproblem of the form

max
zm1
≥ · · · ≥ zn1

.

.

.
zmk
≥ · · · ≥ znk

c(z), (53)

corresponding to subproblem Pk. If the solution to subproblem Pk is in Z , then it is a
solution to the problem, otherwise one must add more constraints. We solve problems
on the form

max
z∈Z0

c(z) ≥ max
z∈Z1

c(z) ≥ · · · ≥ max
z∈Z`

c(z) = max
z∈Z

c(z), (54)

where the last step yields a solution fulfilling the desired constraints. Furthermore Z0 ⊃
Z1 ⊃ · · · ⊃ Z` ⊃ Z , where Z = {z | z1 ≥ · · · ≥ zn ≥ 0}. Finally, it is
easy to see that the algorithm terminates, since there are only finitely many possible
subintervals.
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Figure 7: Convergence for the different methods compared in Section 6.3. NB: The energies
are different, and have been been averaged over 35 different values of µ (the same values as in
Figure 4).

F Modifying Algorithm 1

Following the approach used in [2], consider the program

max
s

min{bi, [s− ai]
2
+} −

ρ + 1
ρ

(s− σi(Y))
2

+ s2 − [s− ai]
2
+,

s.t. σi+1(Z) ≤ s ≤ σi−1(Z).

(55)

Note that the objective function is the pointwise minimum of

f1(s) = bi −
ρ + 1

ρ
(s− σi(Y))

2 + s2 − [s− ai]
2
+,

f2(s) = s2 − ρ + 1
ρ

(s− σi(Y))
2,

(56)

both of which are concave, since ρ+1
ρ > 1. For f1 the maximum is obtained in s =

aiρ
ρ+1 + σi(Y), if s ≥ ai otherwise when s = (ρ + 1)σi(Y). The minimum of f2 is

obtained when s = (ρ + 1)σi(Y).
There are three possible cases, also shown in Figure 6.

1. The maximum occurs when s > ai +
√

bi, hence f1(s) < f2(s), hence s =
aiρ

ρ+1 + σi(Y).

2. The maximum occurs when s < ai +
√

bi, where f1(s) > f2(s), hence s =
(ρ + 1)σi(Y).

3. When s = ai +
√

bi, which is valid elsewhere.
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in summary

si =



aiρ

ρ + 1
+ σi(Y),

ai
ρ + 1

+
√

bi < σi(Y),

ai +
√

bi,
ai +

√
bi

1 + ρ
≤ σi(Y) ≤

ai
ρ + 1

+
√

bi,

(1 + ρ)σi(Y), σi(Y) <
ai +

√
bi

1 + ρ
,

(57)

By replacing the sequence of unconstrained minimizers {si} defined by (57), with the
corresponding sequence in Section 4 (of the main paper), and changing the objective
function of Algorithm 1, to the one in (55), the maximizing singular value vector fo the
proximal operator is obtained.

G Convergence: Motion Capture

In this section we compare the convergence of the different regularizers used in Sec-
tion 6.3, see Figure 7. Note that the energies are different, and one can only compare
the number of steps needed until convergence. For this particular choice of ai and bi the
Rh regularizer behaves much like WNNM used in [1].
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Abstract: Fitting a matrix of a given rank to data in a least squares sense can be done very
effectively using 2nd order methods such as Levenberg–Marquardt by explicitly optimizing
over a bilinear parameterization of the matrix. In contrast, when applying more general
singular value penalties, such as weighted nuclear norm priors, direct optimization over
the elements of the matrix is typically used. Due to non-differentiability of the resulting
objective function, first order sub-gradient or splitting methods are predominantly used.
While these offer rapid iterations it is well known that they become inefficent near the
minimum due to zig-zagging and in practice one is therefore often forced to settle for an
approximate solution.

In this paper we show that more accurate results can in many cases be achieved with 2nd
order methods. Our main result shows how to construct bilinear formulations, for a general
class of regularizers including weighted nuclear norm penalties, that are provably equiva-
lent to the original problems. With these formulations the regularizing function becomes
twice differentiable and 2nd order methods can be applied. We show experimentally, on a
number of structure from motion problems, that our approach outperforms state-of-the-art
methods.1

1 Introduction

Matrix recovery problems of the form

min
X

f (σ(X)) + ‖AX − b‖2, (1)

where A is a linear operator and σ(X) = (σ1(X), σ2(X), . . .) are the singular values
of X, are frequently occurring in computer vision. Applications range from high level
3D reconstruction problems to low level pixel manipulations [3, 6, 11, 16–18, 24, 32,

1This work was supported by the Swedish Research Council (grants no. 2015-05639, 2016-04445 and
2018-05375), the Swedish Foundation for Strategic Research (Semantic Mapping and Visual Navigation for
Smart Robots) and the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.
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40, 42, 46]. In structure from motion (SfM) the most common approaches enforce a
given low rank r without additionally penalizing non-zero singular values [6, 20, 40] (a
special case of (1) by letting f assign zero if fewer than r singular values are non-zero and
infinity otherwise).

Since the rank of a matrix X is bounded by to the number of columns/rows in a
bilinear parameterization X = BCT , the resulting optimization problem can be written
minB,C ‖A(BCT) − b‖2. This gives a smooth objective function and can therefore
be optimized using 2nd order methods. In SfM problems, where the main interest is
the extraction of camera matrices from B and 3D points from C, this is typically the
preferred option [7]. In a series of recent papers Hong et al . showed that optimization
with the VarPro algorithm is remarkably robust to local minima converging to accurate
solutions [20, 22, 23]. In [21] they further showed how uncalibrated rigid SfM with a
proper perspective projection can be solved within a factorization framework. On the
downside, typically the iterations are costly since (even when the Schur complement
trick is used) 2nd order methods require an inversion of a relatively large hessian matrix,
which may hinder application when suitable sparsity patterns are not present.

For low level vision problems such as denoising and inpainting, eg. [18, 24, 32], the
main interest is to recover the elements of X and not the factorization. In this context
more general regularization terms that also consider the size of the singular values are of-
ten used. Since the singular values are non-differentiable functions of the elements in X
first order methods are usually employed. The simplest option is perhaps a splitting meth-
ods such as ADMM [5] since the proximal operator arg minX f (σ(X))+ ‖X−X0‖2,

can often be computed in closed form [13, 18, 24, 27, 32]. Alternatively, subgradient
methods can be used to handle the non-differentiability of the regularization term [11].

It is well known that while first order methods have rapid iterations and make large
improvements the first couple of iterations they have a tendency to converge slowly when
approaching the optimum. For example, [5] recommends to use ADMM when a solu-
tion in the vicinity of the optimal point is acceptable, but suggests to switch to a higher
order method when high accuracy is desired. For low level vision problems where suc-
cess is not dependent on achieving an exact factorization of a particular size, first order
methods may therefore be suitable. In contrast, in the context of SfM, having roughly
estimated elements in X causes the obtained factorization B, C to be of a much larger
size than necessary yielding poor reconstructions with too many deformation modes.

In this paper we aim to extend the class of methods that can be optimized using
bilinear parameterization allowing accurate estimation of a low rank factorization from a
general class of regularization terms. While our theory is applicable for many objectives
we focus on weighted nuclear norm penalties since these have been successfully used
in SfM applications. We show that these can be optimized with 2nd order methods
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which significantly increases the accuracy of the reconstruction. We further show that
with these improvements the model of Hong et al . [21] can be extended to handle non-
rigid reconstruction with a proper perspective model, as opposed to the orthographic
projection model adopted by other factorization based approaches, e.g. [13, 17, 27, 46].

1.1 Related Work and Contributions

Minimization directly over X has been made popular since the problem is convex when f
is convex and absolutely symmetric, that is, f (|x|) = f (x) and f (Πx) = f (x), where
Π is any permutation [29]. Convex penalties are however of limited interest since they
generally prefer solutions with many small non-zero singular values to those with few
large ones. A notable exception is the nuclear norm [9, 10, 14, 35, 36] which penalizes
the sum of the singular values. Under the RIP assumption [36] exact or approximate
low rank matrix recovery can then be guaranteed [10, 36]. On the other hand, since the
nuclear norm penalizes large singular values, it suffers from a shrinking bias [8, 11, 28].

An alternative approach that unifies bilinear parameterization with regularization ap-
proaches is based on the observation [36] that the nuclear norm ‖X‖∗ of a matrix X can

be expressed as ‖X‖∗ = minBCT=X
‖B‖2

F+‖C‖2
F

2 . Thus when f (σ(X)) = µ ∑i σi(X),
where µ is a scalar controlling the strength of the regularization, optimization of (1) can
be formulated as

min
B,C

µ
‖B‖2

F + ‖C‖2
F

2
+ ‖ABCT − b‖2. (2)

Optimizing directly over the factors has the advantages that the number of variables
is much smaller and the objective function is two times differentiable so second order
methods can be employed. While (2) is non-convex because of the bilinear terms, the
convexity of the nuclear norm can still be used to show that any local minimizer B,
C with rank(BCT) < k, where k is the number of columns in B and C, is globally
optimal [2, 19]. The formulation (2) was for vision problems in [8]. In practice it was
observed that the shrinking bias of the nuclear norm makes it too weak to enforce a low
rank when the data is noisy. Therefore, a “continuation” approach where the size of the
factorization is gradually reduced was proposed. While this yields solutions with lower
rank, the optimality guarantees no longer apply. Bach et al . [2] showed that

‖X‖s,t := min
X=BCT

k

∑
i=1

‖Bi‖2
s + ‖Ci‖2

t
2

, (3)

where Bi, Ci are the ith columns of B and C respectively, is convex for any choice
of vector norms ‖ · ‖s and ‖ · ‖t. In [19] it was shown that a more general class of
2-homogeneous factor penalties result in a convex regularization similar to (3). The
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property that a local minimizer B, C with rank(BCT) < k, is global is also extended to
this case. Still, because of convexity, it is clear that these formulations will suffer from a
similar shrinking bias as the nuclear norm.

One way of reducing shrinking bias is to use penalties that are constant for large
singular values. Shang et al . [38] showed that penalization with the Schatten semi-norms

‖X‖q =
q
√

∑N
i=1 σi(X)q, for q = 1/2 and 2/3, can be achieved using a convex penalty

on the factors B and C. A generalization to general values of q is given in [44]. An
algorithm that address a general class of penalties for symmetric matrices is presented in
[26]. In [34] it was shown that if f is given by f (σ(X)) = ∑i g(σi(X)), where g is
differentiable, concave and non-decreasing then (1) can be optimized using 2nd order
methods such as Levenberg–Marquardt or VarPro. This is achieved by re-parameterizing
the matrix X using a bilinear factorization X = BCT and optimizing

min
B,C

f (γ(B,C)) + ‖A(BCT)− b‖2. (4)

Here γ(B,C) = (γ1(B,C), γ2(B,C), . . .) and γi(B,C) =
‖Bi‖2+‖Ci‖2

2 . In con-
trast to the singular value σi(X) the function γi(B,C) is smooth which allows opti-
mization with second order methods. It is shown in [34] that if X∗ is optimal in (1)
then the factorization B = L

√
Σ,C = R

√
Σ, where X∗ = LΣRT is the SVD of

X∗, is optimal in (4) (here we assume that L is m× r, Σ is r× r and R is n× r, with
rank(X) = r). Note also that this choice gives γi(B,C) = σi(X∗).

A less restrictive way of reducing bias is to re-weight the nuclear norm and use
f (σ(X)) = ∑i aiσi(X) [18, 24, 27]. Assigning low weights to the first (largest) sin-
gular values allows accurate matrix recovery. In addition the weights can be used to
regularize the size of the non-zero singular values which has been shown to be an ad-
ditional useful prior in NRSfM [27]. Note however that the singular values are always
ordered in non-increasing order. Therefore, while the function is linear in the singular
values it is in fact non-convex and non-differentiable in the elements of X whenever the
singular values are not distinct (typically the case in low rank recovery).

In this paper we show that this type of penalties allow optimization with γ(B,C)
instead of σ(X). In particular we study the optimization problem

minB,C f (γ(B,C)) (5)

s.t. BCT = X, (6)

and its constraint set for a fixed X. We characterize the extreme-points of the feasible set
using permutation matrices and give conditions on f that ensure that the optimal solu-
tion is of the form γ(B,C) = Πσ(X), where Π is a permutation. For the weighted nu-
clear norm f (σ(X)) = aTσ(X) we show that if the elements of a are non-decreasing
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the optimal solution has γ(B∗, C∗) = σ(X). A simple consequence of this result is
that

min
B,C

aTγ(B,C) + ‖A(BCT)− b‖2 (7)

is equivalent to minX aTσ(X) + ‖AX − b‖2. While the latter is non-differentiable
the former is smooth and can be minimized efficiently with second order methods.

Our experimental evaluation confirms that this approach outperforms current first
order methods in terms of accuracy as can be expected. On the other hand first order
methods make large improvments the first coupler of iterations and therefore we combine
the two approaches. We start out with a simple ADMM implementation and switch to
our second order approach when only minor progress is being made. Note however
that since the original formulation is non-convex local minima can exist. In addition
bilinear parameterization introduces additional stationary points that are not present in
the original X parameterization. One such example is (B, C) = (0, 0), where all
gradients vanish. Still our experiments show that the combination of these methods
often converge to a good solution from random initialization.

2 Bilinear Parameterization Penalties

In this section we will derive a dependence between the singular values σi(X) and the
γi(B,C), when BCT = X. For ease of notation we will suppress the dependence on X
and (B,C) since this will be clear from the context. Let X have the SVD X = RΣLT ,

B = R
√

Σ and C = L
√

Σ. We will study other potential factorizations X = B̂ĈT

using B̂ = BV , Ĉ = CH and V HT = Ir×r. In this section we will further assume that

V is a square r× r matrix and therefore HT is its inverse. (We will generalize the results
to the rectangular case in Section 3).

We begin by noting that γj =
‖B̂j‖2+‖Ĉ j‖2

2 =
‖BVj‖2+‖CHj‖2

2 , where Vj and Hj

are columns j of V and H respectively. We have ‖BVj‖2 = V T
j BT BVj = V T

j ΣVj =

‖
√

ΣVj‖2, and similarly ‖CHj‖2 = ‖
√

ΣHj‖2 and therefore γj =
‖
√

ΣVj‖2+‖
√

ΣHj‖2

2 .
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This gives γj =

(
σ1(v

2
1j+h2

1j)+σ2(v
2
2j+h2

2j)+···+σr(v
2
rj+h2

rj)

2

)
, or in matrix form


γ1
γ2
...

γr

 =
1
2


v2

11 v2
21 . . . v2

r1
v2

12 v2
22 . . . v2

r2
...

...
. . .

...
v2

1r v2
2r . . . v2

rr


︸ ︷︷ ︸

=V T�V T


σ1
σ2
...

σr

+
1
2


h2

11 h2
21 . . . h2

r1
h2

12 h2
22 . . . h2

r2
...

...
. . .

...
h2

1r h2
2r . . . h2

rr


︸ ︷︷ ︸

=HT�HT


σ1
σ2
...

σr

 .

(8)
Minimizing (5) over different factorizations is therefore equivalent to solving

minγ,M∈S f (γ), (9)

s.t. γ = Mσ. (10)

where S = { 1
2 (V

T � V T + HT � HT); V HT = I}. It is clear that V = H = Π
T ,

where Π is any permutation, is feasible in the above problem since permutations are
orthogonal. In addition they contain only zeros and ones and therefore it is easy to see
that this choice gives γ = 1

2 (Π�Π + Π�Π)σ = Πσ. In the next section we will
show that these are extreme points of the feasible set, in the sense that they can not be
written as convex combinations of other points in the set. Extreme points are important
for optimization since the global minimum is guaranteed to be attained (if it exists) in
such a point if the objective function has concavity properties. This is for example true
if f is quasi-concave, that is, the super-level sets Sα = {x ∈ R

r
≥0; f (x) ≥ α} are

convex. To see this let x = λx1 + (1− λ)x2, and consider the super-level set Sα where
α = min( f (x1), f (x2)). Since both x1 ∈ Sα and x2 ∈ Sα it is clear by convexity that
so is x and therefore f (x) ≥ min( f (x1), f (x2)).

2.1 Extreme Points and Optimality

We now consider the optimization problem (9)-(10) and a convex relaxation of the
constraint set. For this purpose we let D be the set of doubly stochastic matrices
D = {M ∈ R

r×r; mij ≥ 0, ∑i mij = 1, ∑j mij = 1}. Note that if V is or-

thogonal, and therefore H = V , then the row sum ∑r
j=1

v2
ij+h2

ij
2 , and the column sum

∑r
i=1

v2
ij+h2

ij
2 are both one. Hence such a matrix is in D. To handle non-orthogonal

matrices we define the set of superstochastic matrices SW as all matrices M = D + N,
where D ∈ D and N is a matrix with non-negative elements. It can be shown that (see
Theorem 6 in [4]) that S ⊂ SW . In addition it is easy to see that SW is convex since it
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consists of affine constraints. Therefore the problem

minγ,M∈SW
f (γ), (11)

s.t. γ = Mσ. (12)

is a relaxation of (9)-(10). Next we show that the two problems have the same minimum
if a minimizer to (11)-(12) exists when f is quasi-concave (on Rr

≥0). As mentioned
previously, the minimum (over SW) is then attained in an extreme point of SW . We
therefore need the following characterization.

Lemma 1. The extreme points of SW are r× r permutation matrices.

Proof. First we note that any extreme point of SW has to be in D since if M = D + N
with N 6= 0 then M = 1

2 D + 1
2 (D + 2N), which is a convex combination of two

points in SW . By Birkhoff ’s Theorem [15] any matrix in D can be written as a convex
combination of permutation matrices.

Since permutation matrices are orthogonal with 0/1 elements it is clear they can be
written Π = 1

2 (Π�Π + Π�Π), with ΠΠ
T = I. Therefore the extreme points of

SW are also in S . Hence if the minimum of (11)-(12) is attained, there is an optimal
extreme point of SW which also solves (9)-(10), and therefore the solution is given by a
permutation V = H = Π.

We conclude this section by giving sufficient conditions for the minimum of (11)-
(12) to exist, namely that f is lower semi-continuous and non-decreasing in all of its
variables, that is, if γ̃i ≥ γi for all i then f (γ̃) ≥ f (γ). Since the singular values are all
positive it is clear that the elements of (D + N)σ are larger than those of Dσ. Hence
when f is non-decreasing it is enough to consider minimization over D. We then have
a lower semi-continuous objective function on a compact set for which the minimum is
known to be attained.

We can now summarize the results of this section in the following theorem:

Theorem 1. Let f be quasi-concave (and lower semi-continuous) onRr
≥0 fulfilling f (γ̃) ≥

f (γ) when γ̃i ≥ γi for all i. Then there is an optimal γ∗ of (9)-(10) that is of the form
γ∗ = Πσ where Π is a permutation.

3 Non-Square Matrices

In the previous section we made the assumption that V and H where square ma-
trices, which corresponds to searching over B̂ and Ĉ consisting of r columns when
rank(X) = r. In addition since V and H are invertible this means that B̂ and Ĉ have
linearly independent columns. In this section we generalize the result from Section 2.1
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to rectangular matrices V and H. Therefore we suppose that V and H are non-square
of size r× p, p > r, with V HT = Ir×r, and consider the slightly modified problem

minγ,V ,H f (γ), (13)

γ =
1
2
(V T � V T + HT � HT)σ (14)

V HT = Ir×r (15)

Note that V HT do not commute and we therefore only assume that V is a left inverse
of HT . In what follows we show that by adding zeros to the vector σ we can extend V ,
H into square matrices without changing the objective function.

Note that we may assume that V has full row rank since otherwise X 6= BV HTCT .
Let V † be the Moore–Penrose pseudo inverse and OV⊥ a (p− r)× p matrix containing

a basis for the space orthogonal to the row space of V (and the column space of V †).
Since V HT = Ir×r the matrix HT is of the form HT = V † + OT

V⊥K1, where K1
is a (p − r) × r coefficient matrix. We now want to find matrices Ṽ and H̃ such

that

[
V
Ṽ

] [
V † + OT

V⊥K1 H̃T
]
=

[
Ir×r 0

0 I(p−r)×(p−r)

]
. To do this we first select

H̃T = OT
V⊥ since VOT

V⊥ = 0. Then we let Ṽ = OV⊥ + K2V , where K2 is a size

(p− r)× r coefficient matrix, since this gives Ṽ H̃T = I(p−r)×(p−r). To determine K2

we consider Ṽ(V † + OT
V⊥K1) = K2 Ir×r + I(p−r)×(p−r)K1 = K2 + K1. Selecting

K2 = −K1 thus gives square matrices such that

[
V
Ṽ

] [
HT H̃T

]
= I. Further letting

Σ̃ =

[
Σ 0
0 0

]
shows that ‖BVi‖ = ‖

√
Σ̃

[
Vi
Ṽi

]
‖ and ‖CHi‖ = ‖

√
Σ̃

[
Hi
H̃i

]
‖ and

the results of the previous section give that the minimizer of f (γ1, γ2, . . . , γp) is a
permutation of the elements in the vector (σ1, σ2, . . . , σr, 0, . . . , 0). We therefore
have the following result:

Corollary 1. Let f be quasi-concave (and lower semi-continuous) on R
p
≥0 fulfilling

f (γ̃) ≥ f (γ) when γ̃i ≥ γi for all i. Then an optimizer γ∗ of (13)-(15) is of the form
γ∗ = Πp×rσ where Πp×r contains the first r columns of a p× p permutation matrix.

4 Linear Objectives – Weighted Nuclear Norms

We now consider weighted nuclear norm regularization f (γ) = aTγ. To ensure that
the problem is well posed we assume that the elements of a are non-negative. It is then
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clear that f (γ̃) ≥ f (γ) when γ̃i ≥ γi. Since linearity implies concavity the results of
Sections 2.1 and 3 now show that the minimum of f (Mσ), over M ∈ S is attained
in M = Π for some permutation matrix. To ensure that the bilinear formulation is
equivalent to the original one we need to show that the optimum occurs when Π = I.
Suppose that the elements in a are sorted in ascending order a1 ≤ a2 ≤ . . . ≤ ap. It is
easy to see that for Π to give the smallest objective value it should sort the elements of
γ so that γ1 ≥ γ2 ≥ . . . ≥ γp, which means that Π = I and γ = σ. We therefore
conclude that minimizing (4) with a linear objective corresponds to regularization with
a weighted nuclear norm with non-decreasing weights.

5 Experiments

In this section we start by describing implementation details of our method and then
apply it to the problems of low matrix recovery and non-rigid structure recovery. Solving
the weighted nuclear norm regularized problem (7) now amounts to minimizing

p

∑
i=1

ai
‖Bi‖2 + ‖Ci‖2

2
+ ‖A(BCT)− b‖2. (16)

Note that the terms in the (16) can be combined into a single norm term by vertically
concatenating the vectors Bi and Ci, weighted by

√
ai/2, with A(BCT)− b. We

define the resulting vector as ra := Aa(BCT)− ba, giving the objective ‖ra(BCT)‖2,
where the subscript reflects the dependence on the weights a. Since the objective
is smooth, standard methods such as Levenberg–Marquardt can be applied and
Algorithm 1 shows an overview of the method used. Additional information about the
algorithm is provided in the supplementary material.

The remainder of this section is organized as follows. The particular form of the
data fitting term in (16) when applied to structure from motion is described in Sec-
tion 5.1. In Section 5.2 we compare the convergence of first and second-order methods,
and motivated by the ADMM fast iterations but low accuracy, as opposed to the bilinear
parameterization’s high accuracy but slower iterations, we combine the two methods by
initializing the bilinear parameterization with the ADMM’s solution [5, 27] for a non-
rigid structure structure recovery problem. Our work focus on the increased accuracy
of our method compared to first-order methods, so the comparison of our results with
works such as [1, 31, 43, 45] (without the desired regularization term) are not covered.
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Result: Optimal B, C to (16)

B = UΣ
1
2 , C = VΣ

1
2 , where X = UΣV T is the ADMM solution to (16) ;

Choose initial α > 1 and λ, and define z = [vec(B); vec(CT)];

Compute error = ‖ra(BCT)‖2;
while not converged do

Compute r = ra(BCT), and the Jacobian J of (16) in terms of z;

Update z̃ = z− (JT J + λI)−1 JTr, where z̃ = [vec(B̃); vec(C̃T)];

if error > ‖ra(B̃C̃T)‖2 then
Update z← z̃, λ← α−1λ, and error ← ‖Aa(B̃C̃T)− ba‖2;

else
λ← αλ;

end
end

Algorithm 1: Bilinear parameterization of weighted nuclear norm

5.1 Pseudo Object Space Error (pOSE) and Non-Rigid Structure
from Motion

To compare the performance of 1st and 2nd order methods, we choose as objective func-
tion the Pseudo Object Space Error (pOSE) [21], which consists of a combination of the
object space error `OSE := ∑(i,j)∈Ω ‖Pi,1:2x̃j − (pT

i,3x̃j)mi,j‖2
2 and the affine projec-

tion error `Affine := ∑(i,j)∈Ω ‖Pi,1:2x̃j −mi,j‖2
2, where Pi,1:2 and pi,3 are, respectively,

the first two and the third rows of the camera matrix Pi, with i = 1, . . . , F; x̃j is a 3D
point in homogeneous coordinates, with j = 1, . . . , P; mi,j is the 2D observation of the
j:th point on the i:th camera; and Ω represents the set of observable data. The pOSE is
then given by `pOSE := (1− η)`OSE + η`Affine where η ∈ [0, 1] balances the weight
between the two errors. One of the main properties of pOSE is its wide basin of conver-
gence while keeping a bilinear problem strucuture. The `pOSE, originally designed for
rigid SfM, can be extended for the non-rigid case by replacing Pix̃j by a linear combina-

tion of K shape basis, i.e., ΠiŜj, where Πi ∈ R3×(3K+1) and Ŝj ∈ R3K+1 are structured

as Πi =
[
ci,1Ri · · · ci,KRi ti

]
and Ŝj =

[
ST

1,j · · · ST
K,j 1

]T
. We denote

by Π and Ŝ the vertical and horizontal concatenations of Πi and Ŝj, respectively. Note

that by construction rank(ΠŜ) ≤ 3K + 1, and for K = 1 we have ΠiŜj = Pix̃j, which
corresponds to the rigid case.
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5.2 Low-Rank Matrix Recovery with pOSE Errors

In this section we compare the convergence and accuracy of 1st and 2nd order methods,
starting from the same initial guess, for low-rank matrix recovery with pOSE. In this
problem, we define X = ΠŜ and aim at minimizing

min
X

aTσ(X) + `pOSE(X). (17)

We apply our method and solve the problem (16) by using the bilinear factorization
X = BCT , with B ∈ R

3F×r, and C ∈ R
P×r, with r ≥ 3K + 1. We test the

performance of our method in 4 datasets: Door [33], Back [37], Heart [39], Paper [41].
The first one consists of image measurements of a rigid structure with missing data, while
the remaining three datasets track points in deformable structures.

For the Door dataset, we apply two different selections of weights on the singular
values of X, corresponding to the nuclear norm, i.e., ai = µNN , and truncated nuclear
norm, i.e., ai = 0, i = 1, . . . , 4 and ai = µTNN , i > 4. We select µNN = 1.5× 10−3,
and µTNN = 1. For the Back, Heart and Paper datasets, we apply the nuclear norm and
a weighted nuclear norm, in which the first four singular values of X are not penalized
and the remaining ones are increasingly penalized, i.e., ai = 0, i = 1, . . . , 4 and ai =

(i − 4)µWNN , i > 4. We select µNN = 7.5× 10−4, µWNN = 2.25× 10−3. The
values of the weights ai are chosen such that there is a 3K + 1 rank solution to (17), with
K = 1 and K = 2 for the rigid and non-rigid datasets, respectively.

We compare the bilinear parameterization with three first-order methods commonly
used for low-rank matrix recovery: Alternating Direction Method of Multipliers
(ADMM) [5], Iteratively Reweighted Nuclear Norm (IRNN) [12], and Accelerated
Gradient Descend (AGD) [30]. We also test the methods for two different cases of the
`pOSE error, with η = 0.05 and η = 0.95, which correspond to the near-perspective
and near-affine camera models, respectively. To improve numerical stability of the
algorithms, as pre-processing step we normalize the image measurements matrix M
by its norm. The methods are initialized with the closed-form solution of the
regularization-free problem, i.e., X = A†(b). The comparison of the four algorithms
in terms of total log-loss over time is shown in Figure 1. The log-loss is used for better
visualization purposes. The plots for the IRNN for the nuclear norm are omitted
since it demonstrated slow convergence compared to the remaining three methods. A
qualitative evaluation of the results on one of the images of the Door dataset for the
truncated nuclear norm and near perspective camera model is shown in Figure 2. The
qualitative results for the remaining datasets are provided in the supplementary material.

In general, we can observe that first-order methods demonstrate faster initial conver-
gence, mostly due to faster iterations. However when near minima, the convergence rate
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drops significantly and the methods tend to stall. Contrarily, bilinear parameterization
compensates its slower iterations by demonstrating higher accuracy and and reaching
solutions with lower energy. This is specially visible for the near perspective camera
model, which reinforces the advantages of using a second-order method on image data
under perspective projection. To compensate for the slower convergence, we propose the
initialization of the bilinear parameterization with the solution obtained with ADMM.
In this way, the bilinear parameterization starts near the minimum and performs local
refinement to further improve accuracy.

5.3 Non-Rigid Structure Recovery

Consider now that the camera rotations in Π are known (or previously estimated). In
this case we have ΠŜ = RX + t1T , with R = blkdiag(R1, . . . , RF) and t =

[tT
1 , . . . , tT

F ]
T , where X, the non-rigid structure, and t are the unknowns. It is directly

observed that rank(ΠŜ) ≤ rank(RX) + rank(t1T), with the latter being equal to 1
by construction and independent on K. As consequence, it follows that rank(RX) =
rank(X) ≤ 3K, and the rank regularization can be applied on X. A similar problem
was studied in [13] but for orthogonal camera models, where the authors propose the
rank regularization to be applied on a reshaped version of X, given by X# = g−1(X),
a F × 3P, where the function g performs the permutation on the elements of X# to
obtain X. With this reshaping we have that rank(X#) ≤ K, meaning that we can
factorize it as X# = BCT with B ∈ R

F×K and C ∈ R
3P×K. The optimization

problem then becomes

min
B,C, t

K

∑
i=1

ai
‖Bi‖2 + ‖Ci‖2

2
+ `pOSE(Rg(BCT) + t1T). (18)

Solving this optimization problem requires small adjustments to be done to the proposed
Algorithm 1, which can be consulted in the supplementary material. We apply our meth-
ods to the 5 datasets (Articulated, Balloon, Paper, Stretch, Tearing) from the NRSfM
Challenge [25]. Each of these datasets include tracks of image points for orthogonal and
perspective camera models for six different camera paths (Circle, Flyby, Line, Semi-circle,
Tricky, Zigzag), as well as the ground-truth 3D structure for one of the frames. We use
the 2D observation for the orthogonal camera model to compute the rotation matrix
R, as done in [13], and the ground-truth 3D structure to estimate the intrinsic camera
matrix, which is assumed to be fixed during each sequence. The intrinsic camera matrix
is used to obtain the calibrated 2D observation of the perspective camera model data.
For the nuclear norm (NN), we set ai = 1× 10−3, i = 1, . . . ,K. For the weighted
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(a) Door Dataset.

(b) Heart Dataset.

(c) Back Dataset.

(d) Paper Dataset.

Figure 1: Convergence of the four methods for low-rank matrix recovery on the Door, Heart, Back
and Paper datasets.
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Figure 2: Evaluation of the four methods for low-rank matrix recovery on one of the images of
the Door dataset. The red circles show the target image measurements and the green circles the
estimate image points.

nuclear norm (WNN), the weights a are selected similarly to [27] ai =
ξ

σi(g−1(X0))+γ
,

i = 1, . . . ,K where ξ = 5× 10−3, γ is a small number for numerical stability, and X0
is the closed-form solution of the objective minX `pOSE(RX).

For these datasets we choose K = 2 and set the η = 0.05. As baseline we use the
best performing first-order method according to the experiments Section 5.2, ADMM,
and apply the method described in Algorithm 1 for local refinement starting from the
ADMM’s solution. We also try our method for the orthogonal camera model (by set-
ting η = 1), and compare it with BMM [13] and R-BMM [27], which correspond
to ADMM implementations for nuclear norm and weighted nuclear norm, respectively.
These methods perform a best rank K approximation to the obtained ADMM solution if
rank(X#) > K after convergence. We let the ADMM-based methods run until conver-
gence or stalling is achieved for fair comparison. The average log-losses, before and after
refinement, obtained on each dataset are shown in Table 1. The average reconstruction
errors, in millimeters, on each dataset relatively to the provided ground-truth structure
are shown in Table 2. In Figure 3 we also show some qualitative results of the obtained
3D reconstruction of each of the objects in the 5 datasets. More qualitative results are
provided in the supplementary material.

The results show that our method is able to achieve lower energies for all datasets
comparatively with the ADMM baselines. Similarly to Section 5.2, the difference is
more substantial for the perspective model. Furthermore, even though we are not explic-
itly minimizing the reconstruction error expressed in Table 2, we are able to consistently
obtain the lowest reconstruction error for all datasets, sometimes with great improve-
ments compared to the ADMM (see Balloon and Stretch in Figure 3). The same does
not apply for the orthogonal data, where achieving lower energies did not lead to lower
reconstruction errors.
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Figure 3: (Left) Example of the non-rigid objects in the 5 datasets of the NRSfM Challenge.
(Right) Estimation (blue) and ground-truth (red) of the non-rigid 3D structure for the two meth-
ods with weighted nuclear norm regularization.
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6. Conclusions

6 Conclusions

In this paper we show that it is possible to optimize a general class of singular value
penalties using a bilinear parameterization of the matrix. We show that with this pa-
rameterization weighted nuclear norm penalties turn in to smooth objectives that can
be accurately solved with 2nd order methods. Our proposed approach starts by using
ADMM which rapidly decreases the objective the first couple of iterations and switches
to Levenberg–Marquardt when ADMM iterations make little progress. This results in
a much more accurate solution and we showed that we were able to extend the recently
proposed pOSE [21] to handle non-rigid reconstruction problems.

While 2nd order methods offer increased accuracy, our approach is expensive since
iterations require the inversion of a large matrix. Exploring feasible alternatives such as
preconditioning and conjugate gradient approaches is an interesting future direction.

Something that we have not discussed is adding constraints on the factors, which is
possible since these are present in the optimization. This is very relevant for structure
from motion problems and will likely be an fruitful direction to explore.
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Abstract: Low rank inducing penalties have been proven to successfully uncover fundamen-
tal structures considered in computer vision and machine learning; however, such methods
generally lead to non-convex optimization problems. Since the resulting objective is non-
convex one often resorts to using standard splitting schemes such as Alternating Direction
Methods of Multipliers (ADMM), or other subgradient methods, which exhibit slow conver-
gence in the neighbourhood of a local minimum. We propose a method using second order
methods, in particular the variable projection method (VarPro), by replacing the non-convex
penalties with a surrogate capable of converting the original objectives to differentiable equiv-
alents. In this way we benefit from faster convergence.

The bilinear framework is compatible with a large family of regularizers, and we demonstrate
the benefits of our approach on real datasets for rigid and non-rigid structure from motion.
The qualitative difference in reconstructions show that many popular non-convex objectives
enjoy an advantage in transitioning to the proposed framework.1

1 Introduction

Low rank approximation and factorization methods are classical approaches for solving
various computer vision problems, such as structure from motion [5, 11, 18, 24, 25, 38],
photometric stereo [2, 7, 29] image segmentation [15], image restoration [9, 21, 27, 29,
45], background/foreground segmentation [7, 43], etc.

There are two main approaches when it comes to solving these problems, and which
one is used largely depends on properties of the particular problem being addressed. The
classical problem of low rank recovery with missing data

min
rank(X)≤k

‖W � (X −M)‖2
F, (1)

1This work was supported by the Swedish Research Council (grants no. 2015-05639, 2016-04445 and
2018-05375), the strategic research project ELLIIT, the Swedish Foundation for Strategic Research (Semantic
Mapping and Visual Navigation for Smart Robots) and the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
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Figure 1: Top row: Weighted nuclear norm penalty (left) and the corresponding relaxation rh, for
a1 = 0 and a2 = 1, considered in this paper. Bottom row: Level sets, corresponding to the red
lines in the top images.

is a core step in many structure from motion formulations [6]. Here M is a measurement
matrix which is only partially known and W is a binary matrix removing residuals corre-
sponding to unknown elements. The traditional approach, which is typically used when
the rank of the sought matrix is known, enforces a particular rank by restricting the num-
ber of columns of the factors B and C and searches over the bilinear parameterization of
the unknown matrix X = BCT . Since the resulting objective is a least squares problem
in both B and C, alternating updates of B and C can be used. While being extremely
simple, this approach has been shown to be prone to “flatlining: requiring excessive
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numbers of iterations before convergence” [6]. Instead [6] proposed a damped newton
approach and empirically verified that this outperforms the alternation approach. In a
number of recent papers Hong et al . [17–20] showed that the so called VarPro method
is remarkably resilient to local minima. For example [19] reports convergence to the best
solution from random initialization in 94% of the cases on the dinosaur sequence which
is an admittedly difficult dataset with 77% missing data.

An alternative approach is to optimize directly over the elements of X while applying
penalties to the singular values. This is typically applied to problems of the more general
class

min
X

p(σ(X)) + ‖AX − b‖2. (2)

Here p is some penalty function encouraging a desired distribution of singular values
σi(X) of the matrix X, see e.g. [21, 27, 29]. This way of directly optimizing over
the elements of X has been made popular by the work on nuclear norms [8, 34] and
their generalizations [12–14, 26, 28], which has shown that with an appropriate choice
of regularizer (2) can be made convex. While convex regularizers can be sufficient for
applications such as image restoration, where a relatively high rank is acceptable, they are
typically rather weak and do not give solutions with low enough rank for structure from
motion problems. Consequently, they have to be combined with thresholding schemes
to generate satisfactory solutions [7, 11].

To achieve better results, non-convex penalty functions [9, 16, 25, 29] are also fre-
quently used in (2). Since these formulations are typically not differentiable, optimiza-
tion relies on splitting methods such as ADMM [4]. These are essentially first order
methods and, as such, convergence near the minimum can be slow. Indeed, [4] recom-
mends to use these when an approximate solution is sufficient, but suggests to switch to
second order methods when accuracy is needed.

In this paper, we derive such second order methods for a general class of objectives
of the form (2). Our class covers commonly used regularizers, such as weighted nuclear
norms, soft rank penalties and hard rank constraints. Note that these functions can be
both non-convex and discontinuous. We show how to reformulate these into bilinear
objectives, that can be accurately approximated with quadratic functions, allowing rapid
convergence with second order methods such as VarPro or Levenberg–Marquardt.

1.1 Framework and Contributions

In this paper we consider a general framework of non-separable objectives the form

fh(X) = h(σ(X)) + ‖AX − b‖2, (3)
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where

h(σ(X)) =
rank(X)

∑
i=1

aiσi(X) + bi. (4)

Here the sequences (ai)
k
i=1 and (bi)

k
i=1 are both assumed to be non-decreasing. For

different choices of a and b the general regularizer h reduces to commonly used sin-
gular value penalties. For example, with bi = µ and ai ≡ 0 we get the soft rank
penalty µ rank(X), with ai ≡ 0 if i ≤ k and ∞ otherwise, we get the hard constraint
rank(X) ≤ k. With bi ≡ 0, we get the weighted nuclear norm ∑i aiσi(X), but the
framework is large and several other regularizers are possible. We aim to optimize objec-
tives including all such regularizers using second order methods, such as VarPro. This
requires finding a good approximation—which is two times differentiable—of the objec-
tive function. For this purpose, we propose to use a relaxation rh(σ) of h(σ) developed
in [40] and consider

rh(σ(X)) + ‖AX − b‖2. (5)

This results in a continuous and almost everywhere differentiable objective (see Section 2
for details, Figures 1 and 2 for examples). When introducing the terms γi(B,C) =
(‖Bi‖2+‖Ci‖2)

2 , where Bi and Ci are columns i of B and C, respectively, we obtain the
bilinear formulation

min
B,C

rh(γ(B,C)) + ‖A(BCT)− b‖2. (6)

The main contributions of this paper are:

i) We show that (5) is equivalent to (6) by proving that

rh(σ(X)) = min
X=BCT

rh(γ(B,C)), (7)

see Theorem 1. Furthermore, if ‖A‖ < 1 then the relaxation (5) is guaranteed to
have the same global optimizers as the original (3), see [10].

ii) We show that (6) can be accurately approximated by quadratic functions opening
up the possibility of applying second order methods to the problem.

iii) We propose a modified VarPro algorithm and show that it provides superior per-
formance for difficult objectives common in computer vision applications.
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(a) (b)

(c) (d)

Figure 2: (a): One dimensional example of h(x), with a1 = 0 and b1 = 1. (b): The relaxation
rh(x). Replacing h with rh makes the objective continuous and differentiable everywhere except
in x = 0. In this point rh has several subgradients (red lines) while on any other point has it

unique tangent (e.g. green line). (b): The two dimensional function rh(
b2+c2

2 ). Parametrizing
with squared variables smooths the function around around (b, c) = (0.0) giving an objective
that can be locally well approximated with quadratic functions. (d): The function from (c), sliced
along c = 0, with the quadratic approximations resulting from the subgradients shown in (b).

1.2 Related Work

There are some works that have previously proposed bilinear formulations for problems
of the form (2). It was observed in [34] that

‖X‖∗ = min
BCT=X

‖B‖2
F + ‖C‖2

F
2

. (8)

Thus, when p(σ(X)) = ‖X‖∗ optimization of (2) can be formulated as

min
B,C

µ
‖B‖2

F + ‖C‖2
F

2
+ ‖ABCT − b‖2. (9)
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Interestingly, even though (9) is non-convex, it can be shown that any local minimizer
B,C with rank(BCT) < k, where k is the number of columns in B and C, is globally
optimal [1, 15]. In addition, the objective function is smooth and second order methods
can be employed.

A similar formulation was tested for structure from motion and photometric stereo
in [7]. In practice, it was, however, observed that the nuclear norm is too weak to give
low rank solutions when the data is noisy. Therefore, a “continuation” approach, where
the size of the factorization is gradually reduced, is proposed. In [15] the above results
where extended to a general class of 2-homogeneous factor penalties θ(B,C). Interest-
ingly, this formulation allows to add constraints such as non-negativity to the factors B
and C. Their results show that minBCT=X θ(B,C) is equivalent to a convex regulariza-

tion function Ω(X). The property that a local minimizer B, C with rank(BCT) < k
is global, is also extended to this class of functions.

Similar approaches to non-convex formulations have also been proposed. Shang
et al .[36] showed that penalization with the Schatten semi-norms ‖X‖q =

q
√

∑N
i=1 σi(X)q, for q = 1/2 and 2/3, can be achieved using a convex penalty

on the factors B and C. A generalization to other values of q is given in [44]. A separable
regularizer of the form p(σ(X)) = ∑n

i=1 p̃(σi(X)) was considered in [41]. It was
shown that when p̃(σ) is concave and non-decreasing on σ ≥ 0 then

p(σ(X)) = min
BCT=X

n

∑
i=1

p̃(γi(B,C)). (10)

Separable penalties, such as the once mentioned above, are limited in the sense that
they only consider the singular values separately. The penalty can therefore only be
based on the magnitude of the singular values. As a consequence, they cannot count the
number of non-zero singular values, thus making it impossible to penalize all matrices
with rank larger than a predefined threshold. A non-separable formulation has very
recently been addressed in [22]. Here (10) was generalized to weighted nuclear norms,
that is p(σ(X)) = ∑n

i=1 aiσi(X). Note that, in contrast to the original nuclear norm,
these are not convex since they are able to penalize smaller singular values harder (when
(ai)

n
i=1 is increasing).

One of the main benefits of our framework is that there are provably fewer local
minima [10], compared to using the unrelaxed penalty used in [22]. Valtonen Örn-
hag et al . [33] considered a special case of our framework, where the rank is known a
priori. They did, however, not show equivalence between the proposed bilinear regular-
izer and the corresponding original formulation.
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2 Overview of the Approach

In this section we present our general framework and explain and motivate our algorith-
mic approach.

2.1 A Continuous Relaxation

Objective (3) is typically discontinuous, and, therefore, local approximation (linear or
quadratic) is not directly feasible. To circumvent this issue, we consider the quadratic
envelop [10] rh(x) of h(x)

rh(x) =
(

h(x) + ‖x‖2
)∗∗
− ‖x‖2, (11)

that is, we add a quadratic term to h, compute the convex envelope of the result, and
subtract the quadratic term. Throughout the paper we will use the function g(x) :=

rh(x) − ‖x‖2 =
(

h(x) + ‖x‖2
)∗∗

. In general, rh and g do not have closed form

expressions, but are obtained from

g(x) = max
z∈Rn

(
2〈x, z〉 −

n

∑
i=1

[[
|z[i]| − ai

]2

+
− bi

]
+

)
, (12)

where [·]+ := max(·, 0) and z[i] denotes the element with the i:th largest magnitude in
z. The optimization over z is convex and can be solved efficiently, as outlined in [40].

Note that in (3) the function h always takes sorted non-negative vectors σ(X). For
a general vector x we therefore think of h as being permutation and sign invariant, that
is

h(x) =
card(x)

∑
i=1

ai

∣∣∣x[i]∣∣∣+ bi, (13)

where card(x) is the number of non-zero elements in x. Figure 1 shows an example of rh
and h with bi = 0, i.e. h(σ(X)) is a weighted nuclear norm of X. Both functions are
permutation invariant; however, rh is additionally continuous and differentiable almost
everywhere, except where one of the variables is equal to zero. Figure 2a shows a one
dimensional example where a1 = 0 and b1 = 1. In this case the function h is discon-
tinuous, which is generally the case when any of the bi variables are non-zero. Figure 2b
shows the relaxation rh for the choice of h in 2a.

Replacing h with rh gives us the relaxation (5) which in terms of regularity is signifi-
cantly better behaved than (3). There are, of course, many ways of approximating the h
function. The reason for choosing this particular relaxation is that it can be shown [10]
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that if ‖A‖ < 1 it has the same global minimizer as (3). In addition it has been shown
that if RIP [34] holds, then, under moderate noise, (5) only has one stationary point for
some choices of h [30, 31].

2.2 Bilinear Parameterization

The regularity of our formulation improves even further when we introduce the bilinear

terms γi(B,C) =
(‖Bi‖2+‖Ci‖2)

2 and consider (6). Here we have replaced X with a

factorization BCT and instead of penalizing the singular values of X we penalize the vec-
tor γ(B,C) containing the elements γi(B,C). Note that the regularizer rh(γ(B,C))

depends on which particular factorization BCT = X of X that we chose. The main
theoretical result of this paper states that for any fixed matrix X we have

min
BCT=X

rh(γ(B,C)) = rh(σ(X)), (14)

hence, minimization over factorizations BCT of X will result in the same penalty as the
singular value vector σ(X). Furthermore, since the second term ‖A(BCT)− b‖2 =

‖AX − b‖2, regardless of which factorization we choose, it is clear that minimization
of (6) is equivalent to (5).

Figure 2c shows rh(
b2+c2

2 ) as a function of (b, c). Note that introducing the squared
variables makes the resulting function smooth at (b, c) = (0, 0). To illustrate our
main result, we also plot red curves on the surface corresponding to all points where
bc = 0.25. While the regularization term can take many values over bc = 0.25,
the two minimizers (b, c) = ±(0.5, 0.5), shown as black dots, both give the value

rh

(
0.52+0.52

2

)
= rh(0.25).

2.3 Quadratic Approximation and Optimization

The basis for our algorithm is the ability to accurately approximate rh(γ(B,C)) with
a quadratic relaxation. The principle can be illustrated by considering a general smooth
function r(γ) with the first order Taylor approximation around η

r(γ) ≈ r(η) + 〈∇r(η),γ− η〉. (15)

When inserting γ = γ(B,C) we obtain (ignoring the constants r(η) and−〈∇r(η), η〉)
the quadratic approximation

〈∇r(η),γ(B,C)〉 =
n

∑
i=1

r′i(η)
‖Bi‖2 + ‖Ci‖2

2
, (16)
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Table 1: Log-loss for the Door, Back, Heart, and Paper datasets, for η = 0.05 and K = 8, for
Rh for Nuclear Norm (NN) regularization, Weighted Nuclear Norm (WNN) regularization, and
with linearly-increasing weights (LI) and singular value based (SV) weights. For our proposed
method, we also show in red the relative loss improvement compared to the ADMM solution,

i.e. 100× lossADMM−lossOurs
lossADMM

.

Method NN WNN LI SV

Cathedral (Rank 4)
ADMM -0.4528 -2.4548 — —

Ours -0.4528
(0%)

-3.8110
(95.6%)

— —

Door (Rank 4)
ADMM -1.1946 -1.6247 — —

Ours -1.1946
(0%)

-4.6275
(99.9%)

— —

École (Rank 4)
ADMM -0.8747 -1.6869 — —

Ours -0.8747
(0%)

-4.4264
(99.8%)

— —

Back (Rank 7)
ADMM -1.3495 -4.8123 -5.2560 -5.2133

Ours -1.3536
(0.93%)

-4.8129
(0.14%)

-5.2863
(6.74%)

-5.2471
(7.49%)

Heart (Rank 7)
ADMM -1.3166 -4.1767 -5.0829 -5.0182

Ours -1.3338
(3.88%)

-4.1783
(0.36%)

-5.1153
(7.19%)

-5.0426
(5.46%)

Paper (Rank 7)
ADMM -1.3298 -5.3847 -5.8484 -5.8509

Ours -1.3839
(11.71%)

-5.3910
(1.44%)

-5.8964
(10.46%)

-5.9023
(11.17%)

where r′i is the partial derivative with respect to the i:th entry of r. Since our particular
regularizer rh is not differentiable everywhere (when parametrized with x) we make use of
the so called subdifferential ∂rh(x) of rh. For a convex function g we have 2z ∈ ∂g(x)
if and only if

g(y) ≥ g(x) + 〈2z, y− x〉, (17)

for all y. For the g defined in (12) it can be shown that (17) holds if and only if z
is a minimizer in (12). At a point where the function is differentiable the gradient is
the only element in the subdifferential, and the right hand side of (17) is the Taylor
approximation. However, in general it can contain several vectors and these can be seen
as lower bounding linear approximations, as in (17).

If, as in our case, rh(x) = g(x) − ‖x‖2 we have that 2(z − x) ∈ ∂rh(x) when
2z ∈ ∂g(x). For a non-convex function the above inequality becomes approximate
around x (up to higher order terms). Figure 2b shows examples of subgradients at two
points. At x = 0 (red point) where the function is not differentiable there are several
such linear bounds, while at x = 0.5 there is only one tangent. For our class of functions,
an element of zi is only non-unique when xi = 0.
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Suppose now that we want to approximate rh(γ(B,C)) around a point
η = γ(B̄, C̄). Up to higher order terms, we then have

rh(γ) ≥ rh(η)− 2〈z− η, η〉+ 2
n

∑
i=1

(zi − ηi)
‖Bi‖2 + ‖Ci‖2

2
. (18)

Since 2z ∈ ∂g(η) it can be shown that zi can only take one value when ηi 6= 0, see
also Figure 2 (we also give a proof of this in the supplementary material). Therefore the
terms rh(η) and 〈z − η, η〉 are constants. In addition, it can be shown that for any i
where ηi = 0, zi can be chosen freely as long as its magnitude is smaller than a certain

number Mi. Since (‖Bi‖2+‖Ci‖2)
2 is non-negative it is clear that selecting zi as large as

possible gives a vector z that maximizes the right hand side of (18) for all possible (B,C).
At iteration t we therefore use

r(t)h (γ(B,C)) ≈
n

∑
i=1

w(t)
i
‖Bi‖2 + ‖Ci‖2

2
(19)

where w(t)
i = 2(zi − ηi) and z ∈ ∂g(η) with zi = Mi when ηi = 0. Figure 2d

shows rh(
b2

2 ) and the quadratic approximations obtained from the subgradients plotted
in 2b. Note that, in contrast to 2b, where we would have to use several subgradients to
approximate the functions behaviour around x = 0, in 2d it is enough with the one that
corresponds to the largest permissible value of z.

2.4 Overview of Algorithm

In this section we give a rough overview of the algorithm we propose (a detailed descrip-
tion is given in the supplementary material). Our algorithm is based on the Variable
Projection (VarPro) approach which has been shown to be highly efficient for computer
vision problems [17–20]. Our approximation

r(t)h (γ(B,C)) + ‖A(BC)T − b‖2, (20)

is bi-quadratic meaning that given B we can solve for C in closed form (and vice versa).
The optimal C∗(B) as a function of the unknown B can now be inserted back into (20)
to give an objective in B alone. VarPro essentially optimizes this new objective locally
using a damped Gauss-Newton approach. This is the core routine of our algorithm
which consists of the following four main steps:

1. Given (B(t),C(t)) compute the maximal subgradient z ∈ ∂g(γ(B(t),C(t))),
using the algorithm proposed in [40].
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2. Compute the approximation r(t)h (γ(B,C)), as in (19).

3. Run one iteration of VarPro on (20) to obtain (B(t+1),C(t+1)).

4. Optional: Compute the SVD X(t+1) = UΣV T , where X(t+1) =

B(t+1)(C(t+1))T , and set

B(t+1) := U
√

Σ,

C(t+1) := V
√

Σ .
(21)

The two first steps give the approximation which is used in VarPro in the third step.
The fourth step is optional and is added to help avoid local minima that may occur
when ai = 0. In this case the regularizer is typically constant above a certain thresh-
old, as in Figure 2a, and in such cases one may get stuck in suboptimal factorizations.
Empirically, we have found that when ai 6= 0 the SVD step can be omitted.

3 Main Theoretical Result

In this section we give the main technical result that makes our algorithmic approach
possible.

Theorem 1. If the sequences (ai)
n
i=1 and (bi)

n
i=1 are non-negative and non-decreasing then

rh(σ(X)) = min
X=BCT

rh(γ(B,C)) . (22)

The proof builds on the results of [22] which establishes a similar result but with the
function rh(σ(x)) replaced by weighted nuclear norm penalties vTσ(X), where the
elements of v are non-negative and increasing.

3.1 Theoretical Background

Before we proceed to the proof we recall some of the theory from [22]. Here the optimiza-
tion problem on the right hand side of (22) was studied by writing X = BV HTCT and
varying V and H such that V HT = I. It was shown that the an equivalent formulation
is

min
γ, M∈S

rh(γ)

s.t. γ = Mσ,
(23)
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where

S =

{
1
2
(V T � V T + HT � HT) | V HT = I

}
. (24)

The set S is difficult to handle since it is non-convex, but it turns out that it is contained
in the set of doubly superstochastic matrices SW [3] which is convex. Moreover, the ex-
treme points of SW are the permutation matrices which are also contained in S . There-
fore optimization of a linear function (weighted nuclear norm) vTγ over S is equivalent
to optimization over the convex relaxation SW . Moreover, their results show that if the
elements vi of v are (strictly) increasing the unique global minimizer is M = I.

3.2 Proof of Theorem 1

Our proof relies on the observation that local approximations of rh(γ) are equivalent to
weighted nuclear norms with with coefficients vi = 2(zi − γi), where 2z ∈ ∂g(γ).
We will show that these elements are increasing and invoke the results of [22]. For
this purpose we need some knowledge about the subgradients z at γ. Note that since
γ(B,C) has non-negative elements we can assume the same for z. Furthermore, because
of the permutation invariance of rh, we also assume that γ and z are non-increasing.

Let si = ai + max{γi,
√

bi}. The results of [40] show that if 2z ∈ ∂g(γ). Then
z∗i fulfills

z∗i =


si si ∈ [zi+1, zi−1]

zi−1 si ≥ zi−1

zi+1 si ≤ zi+1

(25)

for all i where γi 6= 0. Note also that the values of these element are the same for all z
with 2z ∈ ∂g(γ). For any i where γi = 0, the element zi can take any value in [0, si]
as long as the elements of z are non-increasing. In our case we will use the vector z
that has the largest possible elements and these fulfill (25) for all i. We will now present
a fundamental property related to these sequences. A detailed proof is available in the
supplementary material.

Lemma 1. If z∗ = argmax2z∈∂g(γ) vTz, where vi > 0 for all i = 1, ..., n then the

sequence (z∗i − γi)
n
i=1 is non-decreasing.

We now come to the main result.

Proof of Theorem 1. We consider the relaxation of problem (23), namely

min
γ, M∈SW

rh(γ)

s.t. γ = Mσ.
(26)
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We will show that minimization of rh(γ) over the set SW is achieved when γ = σ.
Since σ = Iσ and I ∈ S this will also be the solution to the original problem.

For simplicity we will first consider the function r̃h(γ) = rh(γ) + 〈2w,γ〉, where
w = (ε, 2ε, 3ε, . . .) for ε > 0. The directional derivatives of this function are given by

(r̃h)
′
d(γ) = g′d(γ)− 〈2γ, d〉+ 〈2w, d〉

= max
2z∈∂g(γ)

〈2(z− γ + w), d〉. (27)

As previously noted, g is convex, which guarantees the existence of the directional deriva-
tive. Now consider a point γ∗ = Mσ, where in M ∈ SW . Since rh is invariant
to permutations we may assume that the elements of γ∗ are non-increasing. We let
2z∗ ∈ ∂g(γ∗) with the maximal elements as in Lemma 1. This makes the sequence
z∗i −γ∗i non-decreasing. Therefore the sequence z∗i −γ∗i +wi will be strictly increasing.
The results of [22] now show that the (unique) minimum of

minη,M∈SW 〈z∗ − γ∗ + w, η〉, (28)

s.t. η = Mσ, (29)

is given by η = Iσ. By selecting d = σ − γ∗ we see that there is a direction such that

〈z∗ − γ∗ + w, d〉 = 〈z∗ − γ∗ + w,σ〉 − 〈z∗ − γ∗ + w,γ∗〉 < 0. (30)

Furthermore, for any other choice z ∈ ∂g(γ∗) we have 〈z∗,σ〉 ≥ 〈z,σ〉 since the
elements of σ are non-negative and 〈z∗,γ∗〉 = 〈z,γ∗〉 since z∗i = zi when γi 6= 0.
Therefore

〈z∗ − γ∗ + w, d〉 ≥ 〈z− γ∗ + w, d〉, (31)

which shows that z∗ is the maximizer in (27).

We can thus conclude that, as long as γ∗ 6= σ, there is a direction (feasible in SW )
with strictly negative directional derivative. Hence σ is the minimizer of r̃h(γ) over SW .
Since I ∈ S it also optimizes r̃h(γ) over S for any ε > 0.

We now let ε → 0 to show that σ is a (not necessarily unique) minimizer of (26).
To see this we note that since 〈w,γ〉 > 0 for all feasible γ we have

rh(σ) < rh(σ) + 2〈w,σ〉 ≤ rh(γ) + 2〈w,γ〉. (32)

Taking the (pointwise) limit of the right hand side shows that rh(σ) ≤ rh(γ).
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4. Experiments

Table 2: Average log-loss and reconstruction errors (mm) on each dataset over the 6 camera paths
relatively to the provided ground-truth structure.

Artic. Balloon Paper Stretch Tearing

Log-loss
ADMM -2.221 -2.529 -2.338 -2.395 -1.471
Ours -2.415 -2.657 -2.560 -2.622 -2.053

Rec. error
ADMM 14.55 9.29 6.95 7.83 29.90
Ours 16.10 8.29 6.70 7.66 11.26

4 Experiments

4.1 Matrix Recovery

In this section, the convergence and accuracy of the proposed method, using bilinear
formulation, are compared to the ADMM approach [40]. For the data term, we use the
pseudo Object Space Error (pOSE) defined in Hong et al . [18], which fuse the Object
Space Error (OSE)

`OSE := ∑
(i,j)∈Ω

‖Pi,1:2x̃j − (pT
i,3x̃j)mi,j‖2

2, (33)

and the error of an affine camera model

`Affine := ∑
(i,j)∈Ω

‖Pi,1:2x̃j −mi,j‖2
2, (34)

where Pi,1:2 and pi,3 are, respectively, the first two and the third rows of the camera ma-
trix Pi, with i = 1, . . . , F. Furthermore, x̃j is a 3D point in homogeneous coordinates,
with j = 1, . . . , P, and mi,j is the 2D observation of the j:th point on the i:th camera.
The set of observable data is denoted Ω. The two terms are weighted by η ∈ [0, 1],
resulting in the loss

`pOSE := (1− η)`OSE + η`Affine. (35)

In Iglesias et al . [22], the possibility of extending this framework to non-rigid struc-
ture from motion is described by replacing Pix̃j by a linear combination of K shape

basis, i.e. ΠiŜj. These factors are structured as Πi =
[
ci,1Ri · · · ci,KRi ti

]
∈

R
3×(3K+1) and Ŝj =

[
ST

1,j · · · ST
K,j 1

]T
∈ R

3K+1. The pOSE objective can

now be written in a more compact form as

`pOSE(X) = ‖A(X)− b‖2 , (36)
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Figure 4: Qualitative results for the Cathedral, Door, and École datasets. In green we show the
input image measurements, and in red the reprojected image points. (Left): ADMM, and (Right):
Our method.

where X = ΠŜ, and Π and Ŝ are the vertical and horizontal concatenations of Πi and
Ŝj, respectively. For the ADMM formulation we consider the optimization problem

min
X

Rh(X) + `pOSE(X), (37)

while, for our proposed method, we have the equivalent problem

min
B,C

R̃h(B,C) + `pOSE(BCT). (38)
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Figure 5: Convergence history for the Door dataset.

The datasets chosen for this experiment are Cathedral, École, and Door [32] (rigid
scenes), Back [35], Heart [37], and Paper [42] (deformable objects). We use four dif-
ferent sets of sequences (ai) and (bi): (i) nuclear norm (NN), with ai = aNN , and
bi = 0, (ii) weighted nuclear norm (WNN), with ai =

aWNN
(σi(X0)+δ)

, and bi = 0,

where δ > 0, (iii) linearly increasing (LI) weights with ai = bi = 0, 0 ≥ i ≥ 4,
and ai = 10bi = aLI(i − 4), i ≥ 5, and (iv) singular value (SV) based sequences
ai = 2bi =

aSV
(σi(X0)+δ)

. The singular values σ(X0) are obtained from the solution X0

of ‖A(X)− b‖2 (with no regularization). We set k = 8 and the parameters for the
sequences are chosen such that the methods converge to rank 4 and 7 solutions for the
rigid and deformable datasets, respectively. The values of the parameters used to define
the sequences for each of the datasets are shown in the supplementary material. For
increased stability regarding parameter choice across datasets, we normalize the measure-
ment matrix M to have unit Frobenius norm.

In Table 1 we show the losses obtained by both methods, where the advantages of
using our bilinear formulation become clear. In Figure 4 we also show qualitative results
of the estimated reprojections on the Cathedral, Door, and École datasets. A convergence
plot for the Door dataset is shown in Figure 5, and for the remaining datasets we refer
to the supplementary material. The results show the improvement in accuracy that can
be obtained by using the bilinear formulation. The difference in terms of loss after
convergence, and how it affects the reprojection errors, is more noticeable in the rigid
datasets. However, in the next section we show that even a small improvement in the
reprojection errors can lead to significantly better 3D reconstructions.

4.2 Application to Non-Rigid SfM

We apply our method to the perspective datasets in the Non-Rigid Structure from Mo-
tion Challenge [23]. Each of the five datasets—Articulated, Balloon, Paper, Stretch and
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Tearing—have six different sequences, consisting of six different camera paths—circle,
flyby, line, semi-circle, tricky and zigzag. To deal with perspective projections, we again
use the pseudo Object Space Error `pOSE(X) described in Section 4.1, where X is now

parameterized as RU (CB]) + t, with t being the vector of translations. Similarly to Igle-
sias et al . [22], we assume that the rotations are known, and that the image measurements
are calibrated. The rotation matrices are recovered from 2D observations for the orthog-
onal camera model, while the intrinsic camera matrix is estimated using the provided
ground-truth 3D structure for one of the frames of the sequences. The optimization
problem can be written as

min
X, t

Rh(X]) + `pOSE(RX + t), (39)

and with our bilinear formulation we solve

min
C, B], t

R̃h(C,B]) + `pOSE(RU (CB]) + t). (40)

In our comparison, we employ the same initialization heuristic for the weights wi on the
singular values as in [24], namely

wi =
ξ

σi(X]
0) + δ

, (41)

where δ > 0 is added to avoid division by zero, and ξ > 0. The matrix X]
0 = R+M,

where R+ is the pseudo-inverse of R, which is a common initialization scheme for
NRSfM [11, 24, 39].

We use η = 0.05 and K = 3, while for the sequences, we choose ai = wi and
bi = wi/2, where wi is defined in (41) with ξ = 5× 10−3 and δ = 10−8. We refine
the solution obtained with ADMM formulation (after convergence) by performing 100
iterations of our method. The results are summarized in Table 2, with the average log-
losses and 3D reconstruction errors, respectively, over the 6 different sequences of each
dataset. In Figure 3 we show qualitative results for one the sequences of each dataset, as
well as examples of the convergence plots of the two methods. Our method was always
able to achieve a better loss than the ADMM solution, and in 4 out of the 5 datasets that
improvement in loss led to a more accurate 3D reconstruction.

5 Conclusions

In this paper we have provided a bilinear optimization framework compatible with a wide
range of penalty functions. Furthermore, we have shown that the proposed regularizer
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is equivalent with the linear counterpart, making the transition from a splitting scheme
based methodology to our differentiable bilinear framework easier.
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A Proof of Lemma 1

We present the omitted proof from the main paper, but first we establish the following
property.

Lemma 2. The sequence (si − γi)
n
i=1 is non-decreasing.

Proof. We choose k such that γi ≥
√

bi for i ≤ k and γi <
√

bi for i > k. Then, for
i < k

si − γi = ai + max(γi,
√

bi)− γi

= ai ≤ ai+1 = si+1 − xi+1,
(42)

and, for i = k

sk − xk = ak ≤ ak+1 ≤ ak+1 +
√

bk+1 − xk+1

= sk+1 − xk+1.
(43)

For i > k we have

si − γi = ai +
√

bi − γi, (44)

which is non-decreasing since both of (ai +
√

bi)
n
i=1 and (−γi)

n
i=1 are.

Now, we turn our attention to the original statement.

Proof of Lemma 1. First we note that since the elements of v are positive the elements of
z∗ that can take multiple values should be taken as large as possible. As stated above this
means that (25) holds for all elements of z∗. If z∗i = z∗i+1 then

z∗i − γi = z∗i+1 − γi+1 + γi+1 − γi︸ ︷︷ ︸
≤0

≤ z∗i+1 − γi+1 (45)

If z∗i > z∗i+1 then according to (25) we have z∗i ≤ si and z∗i+1 ≥ si+1 which, together
with Lemma 2, gives

z∗i − γi ≤ si − γi ≤ si+1 − γi+1 ≤ z∗i+1 − γi+1. (46)
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Figure 6: Convergence plots for the remaining sequences.

B Proof of the Claim in Section 2.3

We formulate the claim as a lemma.

Lemma 3. Let 2z ∈ ∂g(η). Then zi can only take one value when ηi 6= 0, for all
i = 1, . . . , n.

Proof. By Danskin’s Theorem (see e.g. [1]) it follows that ∂g(η) = 2 argmaxz `(η, z),
where

`(η, z) := 2〈η, z〉 −
n

∑
i=1

[[
|z[i]| − ai

]2

+
− bi

]
+
, (47)

such that g(η) = maxz `(η, z). Partition η = (η′, 0), where all elements of η′ ∈ Rk,
k ≤ n, has a positive magnitude. It is clear that we may choose any value |z[i]| ≤
ai +

√
bi for the last n− k elements of the maximizing vector, as long as (|z[i]|)n

i=1 is
non-increasing. Furthermore, the first k elements are obtained by

`(η′, z′) := 2〈η′, z′〉 −
k

∑
i=1

[[
|z′[i]| − ai

]2

+
− bi

]
+
, (48)

where z′ ∈ Rk are the first k elements of z. The objective in (48) is strictly concave
in z′, since all η′i > 0, and, consequently, has a unique maximizer. In turn, the elements
of the maximizing vector z, can only take a single value when η 6= 0.

C Detailed Algorithm

In this section we present a more detailed description of the algorithm. First we approxi-
mate the regularization term, as described in Section 2.3, then apply the Ruhe Wedin 2
approximation (see [2] for details) and take one step of VarPro. Since VarPro uses Jaco-
bians, w.r.t. B and C, we must linearize the contribution from the regularizer. As the
regularization term becomes

‖diag(w(t))B‖2
F + ‖diag(w(t))C‖2

F, (49)
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where diag(w(t)) is a diagonal matrix with the weights w(t)
i in the diagonal, a natural

linearization emerges by simply column stacking the variables B and C, respectively.
With b = vec(B) and c = vec(CT), we may write (49) as

‖Jreg
B b‖2 + ‖Jreg

C c‖2. (50)

Note that Jreg
B and Jreg

C are diagonal matrices.

Given a current iterate (b(t), c(t)) we write the regularization term as ‖Jreg
B δb +

rB‖2 + ‖Jreg
C δc + rC‖2, where rB = Jreg

B b(t), rC = Jreg
C c(t), b = b(t) + δb and

c = c(t) + δc.
For the data term, the residuals ABCT − b around (b(t), c(t)) can be linearized,

resulting in

Jdata
B δb + Jdata

C δc + rdata. (51)

The full objective can therefore be written as

‖JBδb + JCδc + r‖2, (52)

where

JB =

 Jreg
B
0

Jdata
B

 , JC =

 0
Jreg
C

Jdata
C

 , r =

 rB
rC

rdata

 . (53)

Lastly, an optional refactorizing of the current iterate using SVD can be performed,
as discussed in the main paper. We summarize these steps in Algorithm 1.

D Parameters Used in Experiments

The values of the parameters used to define the sequences for each of the datasets are
shown in Table 3. In all experiments we use δ = 10−6.

E Convergence Plots

We display the convergence plots that were omitted in the main paper, see Figure 6. As
was noted in the main text, the difference in loss is substantially larger for rigid objects;
however, even small differences in loss can have a significant impact on 3D reconstruc-
tions.
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Input: Robust penalty function f , linear operator A and regularization parameter µ,
damping parameter λ.

Initialize B and C with random entries
while not converged do

Compute weights w(t) from current iterate (B,C)

Compute the vectorizations b = vec(B), c = vec(CT)

Compute residuals rB rC , and Jacobians Jdata
B and Jdata

B depending on A
Compute residual rreg, and Jacobians Jreg

B and Jreg
C

Create full residual r and Jacobians JB and JC

Compute J̃T J̃ + λI = JT
B(I − JC J+C )JB + λI

Compute b′ = b− ( J̃T J̃ + λI)−1 JBr and reshape into matrix B′

Compute C′ by minimize the full objective (52) with fixed B′

ifR(B′C′
T
) + ‖A(B′C′

T
)− b‖2 < R(BCT) + ‖A(BCT)− b‖2 then

[U, Σ, V ] = svd(B′C′
T
)

Update B = U
√

Σ and C = V
√

Σ

Decrease λ

else
Increase λ

end
end

Algorithm 1: Outline of the bilinear method.

Table 3: Parameters used for defining the sequences {ai} and {bi} in the matrix recovery

experiments.†For the Cathedral, École, and Door datasets with WNN regularization we set ai = 0
for the first four singular values and a high value for the remaining ones (truncated nuclear norm).

aNN aWNN aLI aSV
Cathe. 7.5× 10−3 0/10† - -
École 2.5× 10−3 0/10† - -
Door 1.5× 10−3 0/10† - -
Back 5× 10−4 1× 10−6 5× 10−6 5× 10−9

Heart 4.5× 10−4 5× 10−6 5× 10−6 1× 10−8

Paper 2.6× 10−4 2.5× 10−7 1× 10−6 5× 10−10
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