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To predict the unpredictable

The ability to accurately predict future outcome in
critically ill patients may be considered a holy grail
in modern intensive care. It is a challenging, yet
important task for the clinician to evaluate and
reliably assess the individual patient’s opportunity
for an acceptable neurological and functional
recovery after severe illness such as cardiac
arrest, with only limited information available.
Information that will establish the foundation to
decide whether to continue the treatment and
observation in the intensive care unit (ICU), or
withdraw life-sustaining therapy if prolonged
intensive care is not considered being in the patient’s best interest. There is a
need to better stratify analyses of clinical trials including cardiac arrest patients,
and an ambition to enhance tailored post-resuscitation care in the future.

This thesis aims partly to demonstrate the benefits of specific severity
scoring models designed for cardiac arrest patients undergoing temperature
intervention, but mainly to take a step forward towards improved alternative
models to reliably predict outcome for those patients who survive the initial
resuscitation.

Jesper Johnsson is a senior consultant in anaesthesiology and intensive care,
and also a specialist in emergency medicine working in Helsingborg Hospital,
Sweden. His research focuses on cardiac arrest patients and post-resuscitation
care in the ICU.
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An electrocardiogram (ECG) showing a ventricular fibrillation (VF) successfully
defibrillated into a sinus rhythm (SR) and hopefully the return of spontaneous
circulation (ROSC) with delivery of oxygen to the central nervous system (CNS).
And so it begins...
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Abstract

Background: Primary cardiovascular disease (CVD) leading to cardiac arrest, is a common cause for critical care
admission globally. The risk of severe ischaemic brain injury or death is still considerable. Several factors are known
to influence later functional outcome in comatose, adult out-of-hospital (OHCA) patients with return of spontaneous
circulation (ROSC) and treated with modern post-resuscitation care. Targeted temperature management (TTM) is
still recommended in international guidelines after cardiac arrest. Registries of TTM patients are a valuable source
of data to facilitate comparison between groups of OHCA patients with different baseline characteristics and thereby
identify which variables are important for outcome. It remains, however, challenging to accurately and reliably predict
outcome in this heterogeneous group of patients. Although earlier studies have shown that patients’ background
factors, prehospital circumstances and arrest characteristics are strongly associated with outcome, none of these
variables are taken into account in the current recommended multimodal neurological prognostication algorithm
(ERC/ESICM) of cardiac arrest patients treated and observed in intensive care units (ICU).

Aim: 1) To analyse if varying levels of TTM after OHCA were associated with later functional outcome in an
international observational registry (study 1). 2) To investigate which variables and clinical information that carry the
most predictive information in an OHCA population (study Il). 3) To investigate if a supervised machine learning
algorithm called artificial neural network (ANN) could create reliable predictions of outcome for comatose OHCA
patients using variables available already on hospital admission (study Il), and during the first 3 days of ICU
observation, using cumulative added information including biomarkers of brain injury (study Ill). 4) To compare the
predictive performance of an ANN with another supervised machine learning model called XGBoost, and to
investigate the generalisability of each model (study IV). 5) To demonstrate the hazard of adjustment for SAPS 3
scores in outcome studies on temperature intervention (Letter to the Editor).

Methods: OHCA patients from the INTCAR 1.0 and 2.0-registries, and the TTM trial were included for data analysis.
Background and prehospital data, clinical variables available on admission to hospital and cumulative information
collected from the first three days of intesive care (including different levels of biomarkers for brain injury) were used.
Logistic regression, as well as two supervised machine learning models (ANN and XGBoost), were used for the
analyses. Patient outcome was the dichotomised Cerebral Performance Category scale (CPC) where CPC 1-2
denoted a good functional outcome and CPC 3-5 denoted a poor functional outcome, respectively.

Results: 1) There was no significant association between temperature and outcome (p=0.35) in OHCA patients
included in INTCAR 2.0 2) ANN predicted outcome with an AUC of 0.89 using 54 clinical variables available on
admission to hospital and outperformed a model based on logistic regression (p=0.029). 3) Incorporating biomarkers
such as NSE improved the AUROC over the first 3 days of intensvie care. When adding NFL the prognostic
performance was excellent from day 1. 4) ANN and XGB predicted outcome with equal performance (AUROC of
0.86) (p=0.64). Internal validation showed similar performance in both models, whereas external validation
performed well, but with significantly lower precision (p=0.04). 5) The temperature component used to calculate
SAPS 3 score during the first hour following admission to intensive care, greatly influenced the predicted hospital
mortality rate in a model of simulated cardiac arrest patients undergoing different levels of temperature intervention.
Conclusion: 1) No significant difference in outcome at hospital discharge was found in patients receiving lower- vs
higher TTM, supporting the findings from the TTM trial. 2) ANN predicted long-term functional outcome on hospital
admission well and factors related to the prehospital setting carried most predictive information. 3) Clinically
accessible biomarkers (NSE) and research-grade biomarkers (NFL) increased the prognostic performance in our
ANN. 4) ANN and XGB performed equally well when predicting outcome at hospital discharge using early variables
only. When externally validated, both models performed well, but with lower descrimination. 5) TTM-adjusted
severity scoring models would probably improve the assessment of mortality in TTM treated cardiac arrest patients.
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I know we could live tomorrow,

but I don’t think we should wait

Lahle Pourkarim






Jag talar till mina sdner

Ni ar jagare, krigare, liksom jag

Ni kommer snart att ge er ut

for att nedligga villebrad

Ni kommer att ga ut i strid

Ingen

kan jaga

bara fér doédandets skull

Ingen

kan vinna

bara f6r vinnandets skull

Nagon maste kunna ta emot vad ni nedlagt
Ni maste ha nagon att dela bytet med

Ni maste ha nagot att férsvara

Ensamma &r ni inget

Ni kanske kommer att wvandra ensamma

leva ensamma

men ni kommer alltid att leta efter nagon
som ni kan jaga at

och ni kommer alltid

att vilja ha nagot att foérsvara

Lagg inte bytet i bankfack

Forsvara aldrig det oférsvarliga
dumheten, hyckleriet, framlingshatet

Bli mdn pa era egna villkor

och ifragasédtt alltid makten

En dag ska ni inte langre héra koltrasten
eller kdnna doften av hidgg, av snd

Jag talar till mina sdner

Bli vadnner med livet

med kvinnan

Ni har mycket att léra

och ingen blir nagonsin fulldrd

Ga inte syssloldsa

Bist sover man efter ett bra dagsverke
Tacka inte nej till en kopp kaffe

och bjud alltid pa en sjilva

Hall Déden pa avstand och ljug inte bort era kidnslor
Vidlj och ta ansvar £6r valet och lita pa Gud
Var inte till lags

Lyd inte

Ga egna viagar

Jag talar till mina sdner

Stoérre &dn allt annat &r kadrleken och friheten
Sjung om kdrleken

Sjung om friheten

Gor varje dag till en fest fo6r livet

Jag talar till mina sdéner

Ulf Lundell ’'91.

Reprinted with permission of the author.
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Introduction

To predict the unpredictable

Primary cardiac disease leading to sudden cardiac arrest is a common cause of
critical care admission globally. Despite the last decades of continual progress in
emergency medicine, invasive cardiac interventions and advanced intensive care,
the risk of severe ischaemic brain injury or death is still considerable.
Approximately 50% of the initially resuscitated cardiac arrest patients admitted to
intensive care will never be discharged from hospital due to extensive neurological
damage, and in the majority of these patients, death occurs as the consequence of a
decision to withdraw life-sustaining therapy. But how can we be certain, when
making such a decision, which patients will survive with a good chance of
acceptable functional outcome, and which patients have suffered too severe
neurological damage and thus will not be able to recover?

Several factors are known to influence functional neurological outcome in the
comatose, adult out-of-hospital cardiac arrest (OHCA) patients with return of
spontaneous circulation (ROSC) and who are treated with modern post-resuscitation
care including targeted temperature management (TTM) as recommended in
international guidelines. Patient registries are a valuable source of data to facilitate
comparison between groups of OHCA patients with different baseline
characteristics and thereby identify which variables are important for outcome.
However, it remains challenging to accurately and reliably predict functional
outcome in this highly heterogeneous group of patients, especially on an individual
level. Although previous studies have shown that patients’ background factors,
prehospital circumstances and arrest characteristics are strongly associated with
later outcome, none of these variables are taken into account in the current
recommended multimodal neurological prognostication algorithm (from
ERC/ESICM) of cardiac arrest patients treated and observed in intensive care units
(ICU).

This thesis aims partly to demonstrate the benefits of specific severity scoring
models designed for cardiac arrest patients undergoing temperature intervention, but
mainly to take a step forward towards improved alternative models, to reliably
predict functional outcome for those who survive the initial resuscitation.

Jesper Johnsson
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Background

Cardiac arrest

Cardiac arrest is the cessation of mechanical cardiac activity, which if left untreated
will inevitably, lead to death. Without intervention a cardiac arrest in many cases is
the natural end of the biological process of aging, and should therefore be left
without further resuscitation efforts. However, sometimes the arrest is premature,
sudden and unexpected, and prompt performance of cardiopulmonary resuscitation
(CPR) must be started in order to restore spontaneous cardiac activity and
meanwhile, supply the organs and tissues with oxygenated blood. If the cardiac
arrest is successfully reversed and ROSC is restored, the arrest may nevertheless
have caused anoxic damage to the body. Especially the brain is susceptible to anoxia
due to its low energy stores and high metabolic rate. Varying degree of neurological
damage or even death is therefore sometimes the unavoidable result of a prolonged
cardiac arrest. According to Swedish law and many other legal systems globally,
death has occurred when all brain functions are totally and irreversibly lost' which
can be determined via ‘direct criteria’, including protocolised neurological
examination of the cranial nerves and apnoea test, in patients treated with invasive
ventilatory support in an ICU. But in most cases ‘indirect criteria’, including
confirmed absence of pulse and spontaneous breathing for a sufficient time, are
enough to assume that no brain activity remains and the patient can be declared
deceased.

Physiology and types of cardiac arrest

Aetiology

The majority of all cardiac arrest are of cardiac origin and often the result of an
underlying ischaemic heart disease causing a malignant cardiac arrythmia. Such
arrhythmias include pulseless ventricular tachycardia (VT) or ventricular fibrillation
(VF), both inhibiting an effective pump function of the heart. The sudden onset of
arrythmia can be secondary to an acute plaque rupture and thrombus formation in a
coronary artery causing acute myocardial infarction (MI), or following reperfusion.’
Previous studies on OHCA have documented acute MI in more than 50% of the
patients.* Cardiac arrhythmia can also be primary and arise from areas of chronic
myocardial scarring after previous MI. This is particularly evident in combination
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with chronic heart failure and decreased ejection fraction of the left ventriculus.’
Other, more rare causes of malignant arrhythmia, are cardiomyopathies and genetic
ion-channel abnormalities.” In a minority of cardiac arrest cases, the origin is non-
cardiac. In this group arrests related to drowning or other causes of hypoxia,
intoxications, trauma, sepsis, anaphylaxis, pulmonary embolus or primary cerebral
events are found. Arrests of non-cardiac aetiology represent approximately 18-25%
of all cardiac arrests.®® Even if the word ‘sudden’ often is used as a prefix to describe
the onset of cardiac arrests, studies have shown that more than 50% of all cardiac
arrest patients experience various levels of warning symptoms during the weeks
prior to the arrest. Such symptoms include heart palpitations, dyspnoea, syncope
and chest pain.’

Primary cardiac arrest rhythms

Shockable rhythms

Arrhythmias triggered by acute myocardial ischaemia and infarction or derived
from an arrhythmogenic substrate in myocardial scar tissue, is often classified as
shockable rhythms, including pulseless VT or VF. As the classification indicates,
these rhythms can be converted into sinus rhythm by depolarising the myocardium
simultaneous with an electric shock (defibrillation). Even if cardiac arrest implies
an inactive heart with lack of contractility, an electrocardiogram (ECG) recording
on a monitor or on the defibrillator shows otherwise. A typical VT presents with
wide regular complexes present on the ECG, often with a heart rate over 100 beats
per minute. Despite an ongoing VT, the heart is sometimes still able to produce a
cardiac output and thereby maintain a sufficient circulation with blood flow to
essential organs. But in cases with pre-existing heart disease or in very fast
tachycardia, the cardiac output is dramatically reduced and a circulatory collapse is
inevitable (pulseless). A VF on the other hand, typically results in a sudden loss of
pump function and a total forward failure of the heart. This situation results in a
subsequent unconsciousness due to the immediate discontinuation of oxygen supply
to the brain. An ECG reading would show an erratic trace from disorganised and
turbulent electrical impulses stimulating uncoordinated myocardial twitching. In
approximately 20-25% of cardiac arrest cases the first recorded rhythm is a VF.'*'2

Non-shockable rhythms

Rhythms classified as non-shockable include pulseless electrical activity (PEA) and
asystole and has become the predominant primary arrest rhythm, whereas the
incidence of VF has continued to decline during the last four decades.'* A PEA, also
known as electromechanical dissociation, is characterised by an impaired cardiac
output with an insufficient perfusion or no perfusion at all, despite normal and
regular electric activity on the ECG due to sufficient coordinated electrical
discharges. PEA does not necessarily mean the lack of mechanical activity. There
can be ventricular contractions and detectable pressures in the aorta, which are
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referred to as pseudo-PEA.' A pseudo-PEA could possibly contribute to a state of
low-flow perfusion to some extent, but may be difficult to differentiate from a
preserved cardiac activity in severely shocked patients without palpable pulses.'®
Asystole is defined by undetectable electrical activity on the ECG and the absence
of a palpable pulse, indicating a state of non-existing circulation. PEA and asystole
are more common in cardiac arrest of a non-cardiac aetiology (massive pulmonary
embolus, trauma, hypovolemia, intoxications, electrolyte disturbances, hypothermia
etc.) and represent the majority of first recorded rhythms following a circulatory
collapse.'” Neither PEA nor asystole can be converted into sinus rhythm by
defibrillation. However, if a non-shockable rhythm can be converted into a
shockable, due to effective high-quality CPR and other medical treatment, this is
associated with a better probability of survival.'® The prognosis of asystole is often
worse and more associated with a poor outcome compared to VT/VF. This
association could be related to the fact that asystole sometimes develops from a VF
and thus represents a later stage in the cardiac arrest process.'’

This indicates that rhythm is not a constant variable throughout the cardiac arrest
situation, but can change as a result of defibrillation or due to other interventions
such as chest compressions and drug administration. Studies have shown that initial
rhythm is strongly associated with possible ROSC and long-term survival, and thus
has evident prognostic implications.'® However, it is important to recognise that the
initial thythm often is represented by the first thythm registered and might differ
from the true initial thythm. Another way to commonly stratify cardiac arrests is by
the location of the arrest; in-hospital cardiac arrest IHCA) or out-of-hospital cardiac
arrest (OHCA), respectively.

In-hospital cardiac arrest

IHCA denotes all cardiac arrests that occur within hospital walls including the
emergency department (ED) where the patient might have been brought prior to the
arrest. [IHCA are more often related to non-cardiac origins such as septic shock,
hypoxia, hypovolemia and bleeding. Only approximately 20% of IHCA patients
present with a shockable rhythm, but in these cases a rapid defibrillation is
associated with improved outcome.' Traditionally, IHCA has been considered a
condition with utterly poor prognosis. Despite the in-hospital location with rapid
access to medical service, the patient could be critically ill with the arrest secondary
to other severe illness. Although outcome still remains poor, IHCA is associated
with improved overall survival over the last two decades according to recent
data,'>** which also supports a better 30-day survival compared to OHCA.*'

Out-of-hospital cardiac arrest

OHCA differs somewhat from IHCA, and the two groups are not entirely
comparable in terms of aetiology, age, arrest characteristics and bystander
proficiency as well as bystander efforts. These patients more often present with an
arrest of cardiac origin and with a shockable rhythm.? The overall survival rate after
OHCA continues to improve due to a variety of factors including advanced
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prehospital care provided by emergency medical services (EMS),”** access to
automated external defibrillators (AED),* laypersons awareness of cardiac arrest
and bystander-CPR,**** along with standardised intensive care bundles and more
early cardiac intervention.**~*°

The studies and analyses included in this thesis will focus on the functional outcome
of comatose patients resuscitated from OHCA and with arrests of a presumed
cardiac cause.

Epidemiology and survival

Cardiovascular disease (CVD) is the leading cause of death in the world, and the
absolute global burden of CVD is continuously increasing since the millennium.!
Approximately 50% of all CVD-related deaths is the result of a cardiac arrest."
Incidence as well as survival and quality of cardiac arrest documentation varies
between reporting countries globally. The world-wide incidence of OHCA patients
treated by EMS was estimated to 62 cases per 100.000 population annually in a
systematic review published in 2010. Approximately 75-85% of these patients
presented with an arrest of a primary cardiac cause.*> Ten years later the same
estimation was 30-97.1 individuals per 100.000 population across the world as
presented in the first report from ILCOR.* In Europe, the corresponding number
was 56 cases per 100.000 population as reported in the EuReCa TWO study,
whereas the average numbers were higher (73 cases per 100.000 population) in the
United States according to the ‘Resuscitation outcome consortium network’ (ROC)-
registry.'? Even if the total burden of CVD is increasing throughout the world, both
overall 30-day survival rates and survival to hospital discharge simultaneously
continue to improve, although the results differ considerably between countries as
displayed in figure 1.
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Figure 1. Overall survival to hospital discharge after OHCA in 21 European countries. Grasner et al. Survival
after out-of-hospital cardiac arrest in Europe - Results from the EuReCa TWO study. Resuscitation 2020 Mar 1;148:
218-226. Reprinted with permission.
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Epidemiology and survival in Sweden

In 2019 approximately 5900 cases of OHCA were treated by EMS which is
relatively unchanged since 2017.%° Previous reports have shown an evident increase
in incidence for about a decade. The majority of patients was male (70%), but the
proportion of women is steadily increasing. Median age was 71 years and age
distribution has been relatively stable over time (unchanged for three decades).
Ischaemic heart disease is the most common cause of OHCA in the age group of
adults over 40 years. OHCA in younger patients is more frequently of non-cardiac
origin including trauma, suicide, intoxication, pulmonary embolus and near-
drowning, whilst ‘sudden infant death syndrome’ was one of the main causes in
infants.

The most common location of arrest was at home, and in the majority of cases first
recorded rhythm was non-shockable (PEA or asystole) which is associated with a
worse outcome.*® This might be related to an increasing proportion of unwitnessed
arrest in the population in general. Shockable rhythms (pulseless VT and VF) tended
to be less frequent in the 2019 report. This applied to both witnessed and
unwitnessed OHCA. The increase in incidence of non-shockable rhythms was also
evident in arrests with an obvious cardiac origin. Despite this, the average survival
after OHCA has increased and nearly doubled during the last two decades, from
4,5% in 2000 to 11% in 2019. The reason for this improvement is multifactorial
including increased availability of acute coronary interventions and modern
intensive care managing the post-cardiac arrest syndrome as later described in this
thesis. But the factors with most favourable influence on outcome are probably the
presence of high-qualitative CPR and early defibrillation performed by bystanders.
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Cardiopulmonary resuscitation

History

There are numerous examples throughout history of more or less successful, yet
legendary, efforts to restore the sudden cessation of breathing and circulation in both
animals and human beings. However, the birth of modern CPR in humans took place
in the 1960’s when mouth-to-mouth ventilation in combination with closed chest
compressions was introduced as an effective method of resuscitation. The closed
chest compression technique was described already in 1878 by Boehm, as a method
to circulate blood in the human body in emergency situations. The concept was then
rediscovered in the 1950’s, and in 1960 “The cardiac pump theory” was released by
Kouwenhoven and colleagues.’’ In 1966 the first CPR guidelines were published
by the American Heart Association,” which in many ways resemble the guidelines
of modern resuscitation. The possibility for treatment with early defibrillation was
introduced in prehospital settings after the implementation of portable defibrillators
in the mid 1960’s followed by extensive availability of public AEDs to be used by
laypeople in the beginning of the 21st century.”

Chain of survival

The concept of “Chain of survival” was first proposed by Cummins et al. in 1991,
and updated in 2005 with a modification to increase focus on interventions and in-
hospital critical care (post resuscitation care) as well as prevention of cardiac arrest
by early recognition of angina and other risk factors.*" Early CPR with focus on
chest compression to buy time, and early defibrillation to restart the heart are the
very foundation of modern resuscitation algorithms. The chain symbolically refers
to the fact that successful resuscitation is only as strong as its weakest link and that
survival from cardiac arrest depends on a sequence of interventions (figure 2). The
chain-concept is a well-established part of both resuscitation science and CPR-
training, and fully adapted in the ERC guidelines and education programs.

Figure 2. The ERC chain of survival. CPR, cardiopulmonary resuscitation. © European Resuscitation Council —
www.erc.edu. Reprinted with permission.
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The International Liaison Committee on Resuscitation (ILCOR) was formed in
1992 and has since then provided a forum for major international organisations of
resuscitation to collaborate and develop guidelines and recommendations which are
renewed every fifth years, with the latest version delayed one year due to the Covid-
19 pandemic and therefore released in 2021.*

Out-of-hospital cardiac arrest care primarily aims to minimise the circulatory no-
flow time which is defined as the time from arrest until start of BLS. The no-flow
time is kept as short as possible by means of an immediate onset of basic CPR by
bystanders as soon as a person is found unconsciousness and not breathing normally.
It is prioritised to alert the emergency dispatch centre for EMS activation, and to
localise a nearby AED for early defibrillation, but without interruption of the
ongoing CPR. The time from onset of CPR (basic CPR or advanced CPR by EMS)
until ROSC is referred to as the low-flow time, and is known to be an important
variable associated with later functional outcome and survival in OHCA
patients.**** An uninterrupted basic CPR is an essential part of resuscitation. In
recent years there has even been a shift in paradigm from prioritising the
maintenance of a free airway and repetitive ventilation (mouth-to-mouth or with a
bag valve mask), to focus on early defibrillation and uninterrupted effective chest
compressions, which are associated with a more favourable outcome.*

The current recommended 2021 ERC algorithm for advanced life support (ALS) in
adults is displayed in figure 3. As soon as a person is found unresponsive and not
breathing normally, uninterrupted CPR should be started with a repeating cycle of
30 chest compressions and 2 breaths (ventilation). A defibrillator should be attached
in order to assess the rhythm while chest compressions temporarily pause.
Depending on whether the initial rhythm is shockable or non-shockable, the
algorithm recommends defibrillation and continued CPR, or continued CPR only.
The rhythm should be reassessed every two minutes throughout the cycle.
According to the algorithm, it is essential to minimise all interruption of the ongoing
CPR, and every defibrillation should be followed by another two-minute CPR-cycle
before rhythm reassessment. If the patient should regain ROSC during CPR,
measures to induce immediate post-resuscitation care should be commenced and are
described in further details later in this chapter. The benefits of administering drugs
during resuscitation to improve outcome have long been discussed but so far there
is no convincing evidence regarding type of drug, dose or time of administration. In
the current guidelines, a standard dose of epinephrine (1 mg) repeated every 3-5
minutes during CPR is recommended. After a third defibrillation in a shock-resistant
VF, amiodarone (a membrane stabilising antiarrhythmic drug) can be administered
once. Drugs included in the algorithm might improve outcome in a short-term
perspective, but evidence is lacking regarding any long-term benefits on functional
outcome.*®
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In addition, the algorithm contains different measures and recommendations to
consider, including advanced airway management, mechanical chest compressions,
identification and treatment of reversable causes (4 H’s and 4 T’s), ultrasound
imaging, coronary angiography/PCI or extracorporeal CPR (ECMO) if indicated

and available.
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Figure 3. The Advanced Life Support (ALS) algorithm in adults. EMS, emergency medical services; CPR,
cardiopulmonary resuscitation; VF/Pulseless VT, ventricular firbrillation/pulseless ventricular tachycardia; PEA,
pulseless electrical activity; ROSC, return of spontaneous circulation; ABCDE, Airway Breathing Circulation Disability
Exposure; SpOg, peripheral capillary oxygen saturation; PaCOz2, partial pressure of carbon dioxide in arterial blood;
ECG, electrocardiogram. © European Resuscitation Council 2021 — www.erc.edu. Reprinted with permission.
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Post-cardiac arrest syndrome

Patients who regain ROSC after successful resuscitation face the consequences of
whole-body ischaemia secondary to the arrest. Injuries that arise during periods of
no-flow (before CPR) and low-flow (during CPR) are in most cases not directly
reversed by the re-establishment of circulation to organs and tissues. The
reperfusion itself may even cause additional damage through a range of complex
inflammatory mechanisms, which are addressed as the post-cardiac arrest syndrome
(PACS).*”** PACS is used to describe the processes and symptoms related to the
post-cardiac arrest situation and that may occur during the first hours or days after
ROSC. The four components of PACS are defined as:

e Post-cardiac arrest brain injury
e Post-cardiac arrest myocardial dysfunction
e Systemic ischaemia/reperfusion response

e Persistent precipitating pathology

Post-cardiac arrest brain injury

This is the most typical manifestation of PACS and includes in the immediate
situation symptoms including impaired consciousness or coma and seizures-
myoclonus due to the brain’s susceptible vulnerability and low tolerance for the
exposure to both ischaemia and reperfusion. The ischaemic-reperfusion response
creates a variety of reactions on a cellular level with activation of cell-death
signalling pathways. Mechanisms include among other, the formation and release
of free radicals, disrupted electrolyte homeostasis, immediate cellular depletion of
energy substrate with a switch to anaerobic metabolism and a subsequent
intracellular acidosis. This will macroscopically manifest in an impaired
cerebrovascular autoregulation, failure of cerebral microcirculation, oedema due to
disruption of the blood-brain barrier and post-ischaemic neurodegeneration. Post-
cardiac arrest brain injuries largely contribute to the high mortality rate in OHCA
patients admitted to ICUs, due to a ‘withdrawal of lift sustaining therapy’ (WLST)
decision during the prognostication process.*’
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Post-cardiac arrest myocardial dysfunction

Another component that contributes to lower survival rates after OHCA, is post-
cardiac arrest myocardial dysfunction.”® Due to myocardial stunning and global
hypokinesia, both systolic and diastolic function is impaired, and further diminished
by dysrhythmias. Severe cases could evolve into a cardiogenic shock situation
including pronounced reduction of cardiac output, irreversible hypotension with
hypoperfusion, and a state of general cardiovascular collapse. In cardiac arrests
related to acute coronary syndrome, early revascularisation of myocardial infarction
could be essential for outcome.’’ However, studies have shown that the clinical
manifestations are more related to stunning than to permanent myocardial damage,
indicating that the dysfunction is transient and full recovery can occur.*

Systemic ischaemia/reperfusion response

The global ischaemia and subsequent reperfusion after ROSC activate a systemic
inflammatory response which resembles the clinical manifestations seen in septic
shock. The hypoxic stress and disruption of metabolic substrate removal initiate a
state of severe shock with endothelial activation and adrenal suppression as well as
activation of coagulation and immunological pathways, similar to the physiological
mechanisms seen in septic shock patients.”” This pan-systemic response appears
within the first hours after ROSC and is clinically manifested with cardiovascular
insufficiency, impaired vasoregulation, tissue hypoxia/ischaemia, high fever,
susceptibility to infections and in severe cases multi organ failure. Mostly, these
pathologies are reversible with early and goal-directed intensive care interventions.

Persistent precipitating pathology

The post-cardiac arrest syndrome is further complicated and aggravated in the
presence of persisting pathology that contributed to, or even caused the arrest itself.
Such pathologies include cardiomyopathies, acute coronary syndrome (ACS),
thromboembolic disorders (pulmonary embolism), chronic obstructive pulmonary
disorder (COPD), sepsis, various toxidromes and trauma-related haemorrhagic
cardiac arrest. All of which manifest clinically according to aetiology and therefore
require different treatment depending on their contribution to the resulting PACS.

Management of PACS

For cardiac arrest patients who do not achieve ROSC very rapidly during initial
resuscitation, and thereby remain comatose, adequate measures should be initiated
to reduce the impact of PACS pathophysiology. Survival to hospital discharge is in
general significantly lower than survival to hospital admission,™ indicating that
these patients are critically ill and requires extensive supportive therapy including
intensive care provided in an appropriate setting. Such specific therapeutic strategies
with protocolised interventions for optimisation and extensive monitoring can be
summarised in the concept of post-resuscitation care.

26



Post-resuscitation care

The majority of resuscitated OHCA patients require advanced post-resuscitation
care after ROSC, which means ICU admission and intensive care. However, the
patient spectrum is wide within the heterogenic OHCA population and treatment
strategies must accommodate a variety of illness severity with different risk profile
related to patient’s background (age, comorbidities, medical history), arrest
characteristics, prehospital circumstances and the impact of PACS components. The
recommended post-resuscitation care algorithm is displayed in figure 4.

Due to post-cardiac arrest brain injury, the patients might be deeply unconscious on
hospital admission or present with generalised seizures or myoclonus. This situation
commonly demands immediate intubation to secure the airway, enable mechanical
ventilation and to ensure adequate gas exchange. Sedation and analgesia might be
necessary to control seizures and to lower the sympathetic stress and overall cerebral
metabolism. Ventilation strategies should aim for normoventilation with a
peripheral saturation level of 94-98% and with normal values on arterial blood gases
including normocarbia to avoid harmful cerebral vasoconstriction.”* To secure
sufficient oxygen delivery and reduce oxygen demands, early goal-directed therapy
and meticulous haemodynamic optimisation is essential and needs to be closely
monitored with ECG, invasive blood pressure, urinary output, echocardiography
and metabolic monitoring.” Circulatory instability is common due to myocardial
dysfunction and the systemic ischaemic/reperfusion state earlier described.
Haemodynamic support includes intravenous fluids, vasopressors, inotropes and
occasionally the use of circulatory support devices. Dysrhythmias should be treated
with medication or cardioversion and with narrow preventive normalisation of any
electrolyte disturbance. Since coronary artery disease is present in the majority of
OHCA patients and the arrest is often caused by an acute myocardial infarction, the
diagnosis and management of any underlying acute coronary syndrome is of crucial
importance.® All resuscitated cardiac arrest patients with suspected ST-elevation
myocardial infarction should undergo immediate coronary angiography with
percutaneous coronary intervention (PCI) if indicated, or with thrombolytic therapy
if PCI is not available.

Due to the multiplied increase in cerebral metabolism during ongoing seizures, anti-
convulsive and sedative drugs should frequently be used to prevent further cerebral
injury caused by status epilepticus.’® However, the diagnosis might be difficult due
to sedation and muscle relaxation therapy. The ERC recommends intermittent EEG
recordings (to detect epileptic activity) and continuous simplified amplitude EEG
as well as pharmacological treatment to control seizure. Myoclonus is common after
cardiac arrest, especially in patients who remain comatose. It is associated with a
poor outcome if early onset and it might be particularly difficult to treat. In addition
to providing standard intensive care in resuscitated comatose OHCA patients with
ventilatory, circulatory and cerebral support, the use of targeted temperature
management (TTM) to prevent secondary brain injury is an implemented but
somewhat controversial intervention in the post-resuscitation care.
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Figure 4. The post-resuscitation care algorithm. SpO2, peripheral capillary oxygen saturation; ECG, electro-
cardiogram; SBP, systolic blood pressure; PCI, percutaneous coronary intervention; CT, computed tomography; CTPA,
computed tomography pulmonary angiogram; ICU, intensive care unit; EEG, electroencephalography; ICD, implanted
cardioverter defibrillator. © European Resuscitation Council guidelines 2021 — www.erc.edu. Reprinted with permission.

28



Targeted temperature management

Reduction of body core temperature in animal experimental models is known to
influence the pathophysiological pathways involved in ischaemic brain damage
resulting in a reduction of neurological injury.””*® The exact mechanisms are
however not completely understood. From retrospective clinical studies we know
the converse relation, where hyperthermia is shown to be associated with more
unfavourable neurological outcome due to an increase in brain metabolism and
cerebral excitotoxity.””*® This scientific background combined with several case
reports describing cardiac arrest victims surviving prolonged resuscitations with
accidental hypothermia,”"** has led to a belief in the beneficial neuroprotective
properties of induced hypothermia to reduce brain injury in OHCA patients.

In 2002 two smaller randomised controlled trials reported improvement in mortality
and neurological function with mild induced hypothermia after cardiac arrest.>**
Both studies included OHCA patients with initial shockable rhythm and provided
mild induced hypothermia (MIH) with targeted temperatures between 32-34°C for
12-24h. Treatment with hypothermia as an intervention for neuroprotection was
then widely adopted and recommended in international guidelines in 2005, even if
the evidence was of low quality according to GRADE-classification.®> The Target
Temperature Management (TTM) trial was published in 2013 and showed no
difference in mortality or long-term neurological outcome between the two
temperature groups compared (33°C vs 36°C) and is further described in the
methods section.®® The results from the TTM trial have later been confirmed in
several sub-studies following the publication of the original study.®’-"*

In the 2021 ERC post-resuscitation care guidelines, a constant targeted temperature
management (TTM) between 32°C-36°C for at least 24h is recommend,’ as well as
avoidance of fever (>37.6°C) which is common within 48h following cardiac arrest.
TTM is a potent treatment that may prevent secondary brain damage, but many
questions remain to be answered. The optimal post-resuscitation care, including
controlling body temperature, still remains controversial and questions regarding
which temperature to target, how long to deliver temperature control, the optimal
way of rewarming and whether different target temperatures might be more
appropriate for different patients or in different risk-groups are still unanswered. In
the near future we will have the results from the TTM2 trail, which started in
December 2017 and has randomised 1900 OHCA patients with a presumed cardiac
or unknown cause, to compare TTM at 33°C with targeted normothermia and early
treatment of fever (defined as >37.8°C).”
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Prediction of ICU patients in general

The ability to reliably, and as early as possible, predict future outcome in patients
may be considered a holy grail and a cornerstone of modern medicine. In an ICU
perspective, the matter is more complicated with patients that are often unconscious,
and with a wide spectrum of comorbidities and varying clinical status. The case-mix
(the composition of the ICU cohort) of admitted patients is highly heterogeneous
and challenging in terms of assessment, treatment and prediction of later outcome.
The problem involving case-mix heterogeneity was recognised already in the
1980’s, when it became obvious that hospital mortality in ICU patients, varied
considerably between hospitals. These differences and variations were of course
multifactorial and could have many explanations including level of training in ICU-
staff, different infrastructure (i.e. availability of advanced medical equipment or
ICU design) and aspects of organisation (i.e. management strategies or patient-nurse
ratios). Many of these variables and their possible association to quality and
outcome are still important to identify due to the fact that they can be influenced
and changes in the overall quality of care can be achieved. But even more important,
from an outcome assessment and evaluating perspective, is the possibility of
adjustment for differences in case-mix in order to ensure that cohorts with different
characteristics and attributes are correctly compared with each other.

A variety of different scoring models have been developed over the years to predict
outcome in critically ill patients and the most common measurement of outcome is
the risk of in-hospital mortality. Other purposes can be to characterise illness
severity and level of organ dysfunction, or to assess resource use. The first ICU
scoring systems available in a scientific context enabled correction for differences
in cohort characteristics (gender, age, time spent in hospital before ICU admission
etc.), physiological measures (body temperature, vital parameters etc.) and selected
biomarkers in blood tests (lactate, electrolytes, blood-gas analyses etc.) and they
were carefully chosen using rigid statistical processes. Eventually, combinations of
variables with high impact on outcome (survival) were identified and collected in
standardised sets to be used clinically. This standardised way of describing ICU
cohorts has gained general acceptance, and most ICUs today use one or more
scoring systems to describe their patients as well as estimating mortality. The term
often used in these scores, to describe predicted probability of dying, is the estimated
mortality rate (EMR), whereas the corresponding outcome is called the observed
mortality rate (OMR). The standardised mortality ratio (SMR) is the ratio between
OMR and EMR (or the predicted mortality rate - PMR).”

The Acute Physiology and Chronic Health Evaluation (APACHE), the Mortality
Probability Model (MPM) and the Simplified Acute Physiology Score (SAPS) are
all examples of implemented and widely used scoring systems to group patients
according to severity of illness,”” whereas the Sequential Organ Failure Dysfunction
(SOFA) score, is designed to describe organ dysfunction.’
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Over the years, the scoring systems have continued to develop and continuously
been re-evaluated by recurrent calibrations. The rationale behind the need for
calibration, is changes in case-mix of ICU patients over time and the adoption of
new treatment alternatives that may influence outcome. Modern implemented
scores do not only collect physiological variables, but also use data presented on
hospital and ICU admission, including patient’s background information, previous
and existing comorbidities, clinical status on admission etc.

The different scores have different characteristics and collect data at different time
points before or during the ICU stay. The SAPS score is commonly used for ICU
prognostication in adults (=16 years of age) admitted to a general ICU. The first
version of SAPS was designed already in 1984 and has since then undergone
transitions and updates using larger cohorts from various geographical regions to
calibrate the score and better reflect the current ICU population. In the latest version
— SAPS 3, three different categories or boxes of data, are collected: patient
characteristics before ICU admission (box 1), circumstances of ICU admission (box
2) and presence and degree of physiologic derangement at ICU admission (box 3)”’
as shown in figure 5.
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Figure 5. The Simplified Acute Physiology Score version 3 (SAPS 3). SAPS 3 consists of three boxes with sets of
clinical variables related to ICU admission. Each variable is transformed into a numeric value and summed up to a
SAPS 3 score and then transformed into a probability of death (EMR — Estimated Mortality Rate). Ventilatory support
includes invasive ventilation and non-invasive mechanical ventilation. Oxygenation is derived from the ratio beween the
partial pressure of oxygen in arterial blood and the fraction of inhaled oxygen (PaO./FiOz). ICU, intensive care unit;
GCS, Glasgow coma scale; BP, blood pressure.

Each variable from the three boxes is transformed into a numeric value and summed
up to a final SAPS 3 score and then transformed into EMR. In Sweden, the SAPS 3
model has been calibrated to predict *30-day mortality’, i.e. the probability to die
within 30 days after ICU admission, instead of ’in-hospital mortality’, as in the
original SAPS 3 model. This model has shown a good capability to discriminate
with an area under the receiver operating characteristic curve (AUROC) of 85%,
% and continues to perform well when calibrated for prediction of long-term
mortality (90-days and 180-days, respectively). Model performance and the
interpretation of AUROC is further described in the Methods section of this thesis.
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However, there are challenges when using severity scoring models in clinical
practice. They can still not be recommended for bedside predictions to guide
medical decision, due the model’s uncertainties on the individual patients level."!
Situations where the current models perform poorly include conditions with very
high mortality, and where mortality prediction based on variables available already
at admission could optimise treatment decisions. Such conditions include OHCA in
patients regaining ROSC and who are admitted to ICU for post-resuscitation care
with neurological prognostication. Mortality in these patients appears to be
independently associated to factors and variables not taken into account in the
APACHE or in the SAPS 3 scores, indicating the need for alternative scores adapted
for cardiac arrest patients to improve prediction.**

Knowledge and understanding of case-mix are crucial when assessing and
comparing ICU cohorts and their outcome. The use of a reliable and well-calibrated
prognostic model is important for description, design and analysis of observational
studies in ICU patients. The now established generic severity scoring models are
not ideal for mortality prediction of OHCA patients undergoing TTM, due to pitfalls
related to the temperature variable that might require special considerations. In the
modern era of big data and increased computational power, it may be worth
reconsidering the current prognostic scores and develop new models with the ability
to handle large amounts of routinely collected clinical information.
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Prognostication of post-cardiac arrest patients in the I[CU

Cardiac arrest patients are challenging to prognosticate and require special
consideration during outcome assessment due to heterogeneity. The most common
severity scoring models, such as APACHE and SAPS 3, tend to offer only moderate
accuracy when predicting outcome.®™ Instead, there are other instruments
recommended to assess functional neurologic prognosis in comatose survivors after
cardiac arrest treated in the ICU. These instruments include (with variation between
hospitals) four main modalities: clinical neurological examinations, prognostic
serum bio markers of brain injury, neurophysiology (EEG and SSEPs) and
neuroimaging (CT and MRI). Combined they constitute a multimodal neurological
prognostication tool-box which aims to evaluate the extent of brain injury by
assessing different aspects of the pathophysiological scenario (figure 6).

Neurophysiology Clinical examination
@& @ ¢
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Figure 6. Multimodal neurological prognostication in comatose survivors after cardiac arrest. EEG,
electroencephalography; SSEPs, somatosensory evoked potentials; NSE, Neuron-specific enolase: CT, computed
tomography; MRI, magnetic resonance imaging. © European Resuscitation Council guidelines 2021 — www.erc.edu.
Reprinted with permission.

Albeit demographic and clinical variables carry important prognostic information,
none of them are included in the current recommended algorithms.® The
multimodal prognostication should be performed not earlier than 72h after the arrest
to avoid any confounding impact of prolonged sedation, hypothermia or metabolic
derangement following TTM treatment during the acute phase immediate post-
arrest.
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Neurological prognostication primarily aims to avoid false-positive predictions
(predicted poor outcome, observed good outcome), and secondarily to minimise
false-negative predictions (predicted good outcome, observed poor outcome). The
strategy for prognostication has constantly evolved since the first systematic
approach published in 2006 by the American Academy of Neurology (AAN).* The
initial model was based on studies from before the TTM-era and differs extensively
from the present ERC/ESICM algorithm which is implemented in clinical practice
and presented in figure 7. Prognostic tools, including chemical biomarkers, electro-
physiological tests and neuroimaging, have improved greatly since the first
algorithms and the present multimodal protocolised approach has improved the
overall post-resuscitation care.
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Figure 7. Neuroprognostication algorithm for the comatose patient after resuscitation from cardiac arrest. The
algorithm is entered 272h after ROSC if the patient remains unconscious with a Glasgow coma motor score <3 and
confounders are excluded. ROSC, return of spontaneous circualtion; M, motor response score on the Glasgow coma
scale; SSEP, somatosensory evoked potentials; EEG, electroencephalography; NSE, Neuron-specific enolase; CT,
computed tomography; MRI, magnetic resonance imaging. © European Resuscitation Council guidelines 2021 —
www.erc.edu. Reprinted with permission.
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Clinical neurological examination

Evaluation of consciousness

Coma or various levels of decreased consciousness despite ROSC, is a common
manifestation in cardiac arrets patients and an indication for post-resuscitation care
in the ICU. The Glasgow coma scale (GCS) is a commonly used quantitative scale
that assesses decreased consciousness of various aetiology including the post-
cardiac arrest scenario. The GCS-scale consists of three subcategories (eye, motor
and verbal response) which are scored depending on how the patient reacts and
responds to stimuli (table 1). A fully awake, alert and lucid patient would be
assigned the top score of 15, whereas a deeply unconscious and unresponsive patient
would gain the lowest score of 3. In the updated ERC prognostication guidelines, a
GCS motor response <3 after 72h post ROSC indicates a likely poor outcome.*®

A prolonged comatose state is a marker of poor outcome and a major basis for
unfavourable neurological prognostication. However, ICU treatment with TTM
includes the use of continuous sedation and sometimes neuromuscular blocking
agents for several days, which will affect evaluation of consciousness if
prognostication is performed too early after the discontinuation of these drugs.
Metabolic derangements and other organ dysfunctions may also complicate the
assessment and need to be excluded as confounders. The majority of post-cardiac
arrest survivors will wake up within the first week,*” but late awakenings are not
uncommon and may involve the risk of an inaccurate false prediction of a poor
outcome.™

Table 1. The Glasgow Coma Scale (GCS).

Subcategory Points Criteria

Eye response (E) 4 Eye open spontaneously
3 Eye opening to verbal command
2 Eye opening to pain

-

No eye opening

Motor response (M) Obeys commands

Localising pain

Withdrawal from pain

Flexion response to pain

N[(fw|~|o|o®

Extension response to pain

-

No motor response

Verbal response (V) Oriented

Confused

Inappropriate words

N[fw ||

Incomprehensible words

=

No verbal respons
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Brainstem reflexes

The brainstem is the least susceptible area to anoxic injury and affected brainstem
reflexes have potential to recover. Patients with poor outcome may present with a
fully or partially intact brainstem, whereas clinical signs of brainstem dysfunction
commonly reflect more severe brain injuries. To assess brainstem functions in
unconsciousness patients pupillary (light) reflexes and corneal reflexes are
examined routinely. The pupillary reflex is used to investigate sensory and motor
functions of the eye, and the corneal reflex is used to test the fifth and seventh cranial
nerve (the trigeminal and facial nerves), respectively. Sedatives and neuromuscular
blockage may falsely reflect absent brainstem reflexes in patients with a good
outcome.*”* However, absent corneal reflexes combined with bilaterally absent
pupillary reflexes, predicted poor functional outcome with no false positive
predictions and with narrow 95% confidence intervals in a TTM-material.” These
examinations are therefore recommended in the prognostication algorithm.

Presence of post-anoxic clinical seizures

About one third of cardiac patients present with clinical seizures,” varying from
generalised tonic-clonic convulsions to very subtle twitching of extremities or small
parts of the face. Clinical seizures may be masked by sedation or neuromuscular
blockage and thereby requiring neurophysiological tests to be detected. The same
applies for non-convulsive seizures and status epilepticus (SE). Clinical seizures can
often be treated with increased doses of sedatives or with anti-convulsive
medication, including benzodiazepines and specific antiepileptic drugs.
Electrographic seizures can be associated to a more unfavourable outcome,” but if
readily responsive to treatment the prognosis for recovery is improved.”> The
presence of electrographic SE, and also its treatment, may contribute to prolonged
unconsciousness and thereby constitute a confounding factor in cardiac arrest
patients with late awakening.

Myoclonus

Myoclonus are brief, frequent, repetitive and involuntary muscle jerks or twitching,
often located in extremities, chest musculature or small parts of the face,”® and
with an early onset after anoxic cerebral insults. The exact pathophysiological
mechanism is still unclear. Status myoclonus indicates generalised myoclonic
seizures for >30 minutes independent of electrographic findings and are associated
with a poor neurological outcome if occurring within <48h post-arrest.”>*>
Myoclonus can be either epileptic or non-epileptic depending on the localisation of
brain injury. A specific form of persistent action myoclonus is the Lance-Adams
syndrome which is rare condition sometimes seen after hypoxic brain injury and is
associated with overall good neurological recovery.”®?” This condition emphasises
the importance of a multimodal approach in post-cardiac arrest prognostication.
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Prognostic serum biomarkers of brain injury

Prognostic biomarkers, not only used for the specific assessment of anoxic brain
injury, are a growing field in modern medicine. Biomarkers can be used to detect
and monitor the course of illness, but also to evaluate treatment effect and to tailor
further therapy for the individual patient. Biomarkers are biochemical components
from the cells, often released after cell damage to the blood, where they can be
quantified and measured with serological tests. The absolute concentration of brain
injury biomarkers can also be measured directly in the cerebrospinal fluid, where
the concentrations may also be higher compared to serum levels. However, liquor
analyses require lumbar puncture (spinal tap), which is an invasive and far more
complicated procedure compared to peripheral blood tests.

Biomarkers reflecting the entire spectra of post-cardiac arrest syndrome include not
only biomarkers related to brain injury, but also to cardiac injury and to systemic
inflammation (table 2). Each biomarker varies in predictive capability and little is
known about their prognostic values when combined.”® For prognostication of
neurological outcome in cardiac arrest patients, only one serum biomarker related
to brain injury (NSE) is recommended to be used in combination with other
prognostication modalities according to current guidelines.’® The quality and
characteristics of the different ‘clinically accessible’ and ‘research-grade’
prognostic biomarkers of brain injury, will be briefly described later in this section.

Table 2. Biomarkers reflecting the post-cardiac arrest syndrome and categorised after their main origin.

Lo P Systemic
Brain injury Cardiac injury inflammation
NSE (Neuron-specific enolase) TnT (Troponin T) PCT (Procalcitonin)

BNP (N-terminal pro-B-type
natriuretic protein)

S$100B (S100 calcium-binding protein B) Copeptin (CT-proAVP)
Tau (Tau protein/MAPT))
GFAP (Glial fibrillary acidic protein)

NFL (Neurofilament light) IL-6 (Interleukin-6)

UCH-L1 (Ubiquitin carboxy-terminal hydrolase L1)

Biomarkers of neurological injury are unaffected by sedative and muscle relaxant
drugs, but has a major disadvantage in the lack of distinct and clear definitions of
normal ranges (by age if applicable) and cut-off values related to outcome. Another
important limitation is that cardiac arrest patients may die from other causes than
brain injury, which are not always identified and will influence the association
between biomarker levels and outcome. Efforts have been made to also add
biomarkers associated with cardiac injury and systemic inflammation to the
prognostication process, but none of these are included in the current guidelines at
this point.**
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Biomarkers of brain injury can be categorised according to their neuro-anatomical
origin (neuronal body, axon and glial cell) as illustrated in figure 8, or according to
their temporal appearance-profile in serum related to ROSC following OHCA
(acute, delayed and sustained) as illustrated in figure 9.

Neuron

NSE
UCH-L1

NFL

S100B Tau

Astrocyte

Figure 8. Biomarkers of brain injury. The figure is a schematic illustration of a nuron and an astrocyte (glial cell) with
the primary structural location of biomarkers related to brain injury. Some of these are implemented as clinically
accessible biomarkers whereas others are considered research-grade biomarkers, as described in paper Ill. Tau, Tau
protein; NF-L, Neurofilament light; NSE, Neuron-specific enolase; UCH-L1, Ubiquitin carboxy-terminal hydrolase L1;
GFAP, Glial fibrillary acidic protein; S100B, S100 calcium-binding protein B.

Acute biomarkers of neurological

injury
Delayed biomarkers of neurological

injury l Sustained biomarkers of neurological
[ \ injury |
[ \

Serum biomarker

Oh 24h 48h 72h 96h
Time after return of spontaneouscirculationin hours
CT-proAVP, UCH-L1, =— S1008B, NF-L,
NSE, Tau, GFAP, NF-H

Figure 9. Schematic temporal profile of biomarkers of brain injury after OHCA. The picture is a schematic overview
of the temporal trend of selected biomarkers devided in acute, delayed or sustained, by their relation to time after ROSC.
CT-proAVP, Copeptin; UCH-L1, Ubiquitin carboxy-terminal hydrolase L1; S100B, S100 calcium-binding protein B, NF-
L, Neurofilament light; NSE, Neuron-specific enolase; Tau, Tau protein; GFAP, Glial fibrillary acidic protein; NF-H,
Neurofilament heavy; lllustration by Florian Ebner. Reprinted with permission.
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NSE

Neuron-specific enolase is a 78 kDa intracellular glycolytic enzyme with a variety
of neuroprotective properties.'” It is present in neurons and neuroendocrine cells,
but also in oligodendrocytes, erythrocytes and platelets. This is a source of error and
an important limitation in situations of haemolysis, which is common in cardiac
arrest patients, and a reason for the sample to be contaminated.'®' The same applies
to numerous cancer types where NES serve as a marker, including small-cell lung
cancer, renal cancer, liver cancer and colorectal cancer. This complicates the use of
NSE as a prognostic marker for brain injury, even if several studies have indicated
that elevated serum levels of NSE from 24-48h post arrest is associated with poor
neurological outcome.'”'” NSE is currently the only serum biomarker
recommended to aid neurological prognostication after cardiac arrest according to
ERC/ESICM guidelines. However, specific cut-off values are not defined and
should therefore be established locally due to a lack of a calibration standards.

NFL

Neurofilaments are CNS specific structural proteins highly expressed in large-
calibre myelinated axons and may also play a role in intracellular transport to axons
and dendrites.'”" Five different neurofilaments are identified and three of them are
labeled after their molecular weight — heavy chain, medium chain and light chain
(NFL, 68 kDa). After neuroaxonal injury, neurofilaments are released into the
extracellular space and subsequently into the bloodstream, where it can be
quantified and measured. Other locations for NFL include peripheral nerves and it
can also be expressed in renal cancer. NFL has shown promising results in detecting
the level of axonal injury in various neurological disorders.'® It is a novel biomarker
of neuronal injury and a robust predictor of poor outcome after cardiac arrest already
at 24h.'” As a single biomarker NFL present the most promising predictive
capability among currently available biomarkers with an excellent discriminating
capability when predicting poor neurological outcome already at 24h post-cardiac
arrest.'”!% In a post hoc analysis of the COMACARE trial, NFL predicted poor
outcome with an AUROC of 0.98 at 24h, and continued to perform similarly at 48h
and 72h, respectively.'® In a prospective study evaluating data from the TTM trial,
NFL was significantly elevated at 24, 48 and 72h in patients with a poor functional
outcome following cardiac arrest and in the ROC analysis NFL was superior to
serum tau, NSE and S100B.'*

S100B

S100 proteins are a multigenetic family of several human calcium binding subtypes,
including S100B which has been extensively studied as a prognostic biomarker of
cardiac arrest and traumatic brain injury. These proteins are not CNS specific but
present in most tissues with a large variety of different tissue-specific regulating
effects. S100B are located in astrocytes, Schwann cells and dendritic cells, and acts
as an extracellular signalling substance and a intracellular regulator.'®® S100 was
elevated in patients with poor outcome after cardiac arrest compared to those with

39



good outcome, until approximately 72h post-arrest.'””''° Highest prognostic
accuracy was at 24-48h. S100B is not part of the ERC/ESICM recommendations for
prognostication but is mentioned in the AHA’s guidelines for post-resuscitation care
as a possible predictor of functional outcome. Cut-off values are however not
defined in these guidelines.'"

Tau

Tau protein is a microtubule-associated stabilising marker with a weight varying
between 48-67 kDa and is predominantly localised in the plasma membrane and
nucleus of unmyelinated axons of the cortex, astrocytes and oligodendrocytes. Other
locations include kidneys, liver, testis, muscles and peripheral nerves. Tau is
enhanced in numerous cancers including glioma, breast cancer, renal cancer and
prostate cancer. It is also expressed in a variety of different neurodegenerative
disorders including parkinsonism and dementia as well as in traumatic brain injury.
Increased serum tau values have been found to be significantly associated with poor
outcome after OHCA. Tau has shown to be more robust to haemolysis than NSE,
and intervention with TTM does not affect the accuracy of outcome prediction.''

GFAP

Glial fibrillary acidic protein is a 50kDa monomeric intermediate-filament
component of the astrocytic cytoskeleton mainly expressed in the CNS. Other
locations include Schwann cells of the peripheral nervous system, osteocytes,
keratinocytes. Chondrocytes and Leydig cells of testis. GFAP has been extensively
studied solitarily, and in combination with UCH-L1, as a prognostic marker of
traumatic brain injury.'"> GFAP is also known to increase in both paediatric and
adult post-arrest populations, but with varying predictive ability.''*!!¢

UCH-L1

Ubiquitin carboxy-terminal hydrolase-L1 is a 26kDa neuronal deubiquitinase
mainly localised in the neuron’s cell body (in nucleoplasm and cytoplasm), in axons
and synapses, where it is important for neuron-axonal stability and repair after brain
damage. Other locations include neuroendocrine cells, the peripheral nervous
system, endothelial and smooth muscle cells. It is enhanced in various cancer forms
like urothelial and endothelial cancer. UCH-L1 combined with GFAP has been
studied after traumatic brain injury, as described above. In terms of a prognostic
biomarker following cardiac arrest, the scientific substrate is rather sparse. A pilot-
study found the association between elevated UCH-L1 and poor outcome in a
paediatric cardiac arrest population,''* and in adult cardiac arrest patients UCH-L1
is not investigated.
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Biomarkers in a future perspective

Prognostic serum biomarkers of brain injury possess enormous potential to
revolutionise future post-resuscitation management, and especially to improve the
prognostication process in the ICU. However, the expectations of an optimal
biomarker related to cerebral injury for clinical use, are demanding: it must be easily
accessible, be objectively measurable with clear definitions of range by age and
gender, be stable ex-vivo, be able to discriminate between various degrees of brain
injury with high accuracy and distinct cut-off values for outcome prediction, be
highly specific for the CNS, be unaffected by haemolysis and finally, be cheap to
analyse. So far, no available biomarker fulfils all of these criteria.

Future serum biomarkers of brain injury should not only be able to detect or to
stratify ongoing neurological injury, but also its recovery and repair. They should
provide valid and actionable real-time information to the clinician that reflects both
injury progression and intervention response, in short-term and long-term
perspectives. In this way, appropriate initial treatment can be defined, as well as
tailored and modifiable therapy during critical post-resuscitation care and in later
neurorehabilitation.
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Neurophysiology

Electroencephalography

EEG is a non-invasive real-time recording of cortical electrical activity, and is the
most commonly used method for prognostication after cardiac arrest.''” It can be
performed as an isolated examination, typically 20-30 minutes of recording,
including full-montage of multichannel scalp electrodes (routine-EEG). Or
alternatively as a continuous recording over time, but with fewer channels (cEEG).
The full-montage offers a more detailed registration of the cerebral cortex in terms
of background activity, discharges and electrographic reactivity from stimuli, but is
to be considered a snapshot of brain activity. Recordings with cEEG provide
information with lower resolution, but over a longer time period and the ability to
detect intermittent findings and to assess the effect of sedation or antiepileptics.

EEG is strongly indicated for seizure detection in critical ill patients and is also
recommended for prognostication in comatose survivors after cardiac arrest.*
Comatose cardiac arrest patients often display a supressed (flat) background activity
with low voltage pattern on the EEG, which can persist for hours or days after
ROSC. During the recovery process intermittent discontinuous cortical activity is
followed by more continuous activity. ‘Highly malignant patterns’ including burst-
suppression background with or without discharges, suppressed background without
discharges and suppressed background with continuous periodic discharges, are all
reliable predictors of poor functional outcome.''® The ERC/ESICM guidelines
include two EEG patterns considered indicative of poor neurological outcome;

‘unreactive burst-suppression’ and ‘unreactive status epilepticus’.*

The main limitation of EEG as a prognostic tool, is that it is influenced by sedative
drugs commonly used during intensive care. There is also significant inter-rater
variability between interpreters when assessing EEG recordings.'” Historically,
there have been significant challenges to report EEGs in both clinical practice and
in prognostication studies, due to the lack of international standardised
nomenclature. However, the suggested classification and terminology from the
American Clinical Neuro-physiology Society (ACNS) has increasingly been used
for critical care patients in recent years.'?’

A study by Attia et al. published in Lancet 2019 showed that an ECG algorithm
based on machine learning could be trained to identify atrial fibrillation in patients
with normal sinus rhythm with excellent accuracy.'?! This methodology could
possibly be used in future clinical studies to detect associations between complex
patterns in high-resolution EEG-recordings and later outcome.

EEG-recordings were not included as a predictive variable in this thesis as this
modality was performed only on indication and in a minority of the analysed
patients from the TTM trial, and thereby not optimal for machine learning models.
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Short-latency somatosensory evoked potentials

SSEPs include bedside non-invasive tests with an electrical stimulus of an afferent
sensor nerve, typically the median, and the registering of the responses that
propagates to the contralateral somatosensory cerebral cortex. The bilateral absence
of a cortical response indicates loss of integrity of thalamocortical projections
(N20)'* and is a reliable predictor of a poor neurological outcome with very high
specificity (0-2% FPR). SSEP is recommended for post-cardiac arrest
prognostication according to the ERC/ESICM guidelines.”® Sensitivity is however
low and reduces the method’s utility.*” In contrast to EEG, SSEP is not influenced
by sedative drugs in moderate doses and is reliable regardless of TTM.

SSEP were not included as a predictive variable in this thesis as this modality was
performed only on indication and in a minority of the analysed patients from the
TTM trial, and thereby not optimal for machine learning models.

Neuroimaging

Computed tomography

CT is an easily accessible and commonly used modality for imaging in clinical
practice. It is often performed early after hospital admission to exclude major
intracranial haemorrhage, extensive ischaemic stroke and other cerebral pathologies
leading to unconsciousness. A CT scanning of the brain within 24h after cardiac
arrest is recommended by the ERC/ESICM guidelines.”® Global cerebral oedema
post-arrest is an indicator of hypoxic ischaemic brain injury and associated with
poor neurological outcome.** The level of evidence is however low. Generalised
oedema on CT is manifested as decreased cortical grey matter attenuation with a
loss of normal grey-white differentiation and decreased attenuation in the bilateral
basal ganglia. There is also effacement of the cerebrospinal fluid-containing spaces
and of cortical sulci as seen in figure 10.

Normal CT CT post cardiac arrest

Figure 10. Computed tomography of the brain illustrating generalised cerebral oedema after cardiac arrest.
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Magnetic resonance imaging

MRI has the advantage over CT in that it provides more detailed images with better
spatial definition and with structured information regarding oedema and other
manifestations of anoxic brain injury. Disadvantages include the need for logistical
planning and that cardiac arrest patients may be severely unstable and therefore not
able to undergo the investigation. Current ERC/ESICM guidelines suggest MRI
within 2 to 5 days, in cardiac arrest patients who remain comatose and where a CT
scanning did not reveal any significant injury.’® The apparent diffusion coefficient
(ADC) is a measure of the magnitude of diffusion (of water molecules) within
tissues and its values are known to be significant predictors of poor outcome with
very high specificity after cardiac arrest.'’” CT and MRI are not influenced by
sedative medication or by TTM, but the presence of electrolyte derangements
(hyponatremia), hypoglycaemia or epileptic seizures may mimic cytotoxic oedema
on MRL'*

Neither CT nor MRI were included as predictive variables in this thesis as they were
performed only on indication and in a minority of the analysed patients from the
TTM trial, and thereby not optimal for machine learning models. However, machine
learning is a powerful tool with the ability to analyse large amounts of data and also
detect patterns in complex images. It should therefore be an ideal technique to
develop reliable computer-assisted tools to aid MRI interpretation in future outcome
studies as well as in clinical practice.
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Assessment of cerebral functional outcome

Survival including long term functional neurological status is the most common
outcome measure used to assess comatose OHCA patients who survive the initial
resuscitation and treated with post-resuscitation care in an ICU. Neurological
sequelae in OHCA survivors range from completely asymptomatic to an
unresponsive vegetative state. Neither the optimal time to perform the assessment,
nor the ideal reliably modalities to use, have been established in clinical practice.
Neurological recovery caused by anoxic brain injury often continue for at least 6
months, even if the most evident recovery occur within the initial 3 months after the
arrest.'”> However, for the individual patient the long-term effect and later potential
improvement in functional outcome is unknown.'?*!?” One recently published study
indicated neurological improvement until 18 months post-OHCA, even if most
recovery occurred within the initial 6 months.'?®*

The Glasgow-Pittsburgh Cerebral Performance Category (CPC) scale is a widely
used clinician-rated tool, designed to classify neurological status following brain
damage (table 3)."’ It is commonly used to assess functional status after cardiac
arrest. The CPC scale is divided into five categories of performance, in which CPC
1 indicates good cerebral performance with normal function or minor disability;
CPC 2 indicates moderate cerebral disability, independent in activities of daily life;
CPC 3 indicates severe cerebral disability and dependent on others for daily
activities; CPC 4 indicates a patient in a coma or a vegetative state; and CPC 5
indicates death according to the Utstein guidelines.**!*! The CPC scale can be
transformed into a dichotomised CPC scale, where CPC1-2 is regarded as ‘good’
cerebral functional outcome including patients independent for daily activities but
may have a minor disability, and CPC 3-5 is regarded as ‘poor’ cerebral functional
outcome including patients dependent on others, in a coma, a vegetative state or
with unresponsive wakefulness syndrome, and dead. This binary classification
simplifies both outcome reporting and statistical analysis but also results in a loss
of granularity. The dichotomised CPC-scale was used as primary outcome measure
for the studies included in this thesis.

Table 3. The Cerebral Performance Category Scale.

Definition of binary
outcome in this thesis
Good outcome CPC 1 - Good cerebral performance. Might have mild neurologic or psychologic
deficit. Conscious, alert, able to work.

CPC 2 - Moderate cerebral disability. Conscious, sufficient cerebral function for
independent activities of daily life. Able to work in a sheltered environment.

Poor outcome CPC 3 - Severe cerebral disability: Wide range of neurolgical conditions where
the patient is dependent on others in activities of daily life.

CPC 4 - Coma or vegetative state: Any degree of coma without the presence of all
brain death criteria. No interaction with the environment. Unresponsive wakefulness
syndrome (may have spontaneous eye-opening and sleep/awake cycles).

CPC 5 - Brain death: Certified brain dead or death by traditional criteria.

Cerebral Performance Category Scale
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The CPC-scale is relatively simple to use in a clinical context but have been
criticised for being poorly defined and for using subjective criteria not suitable for
current clinical environment.'”* The scale has a relative insensitivity for mild
disabilities with a subsequent tendency for survivors to be categorised as CPC 1 (the
ceiling effect). An alternative scale used for assessment of cerebral functional
outcome in cardiac arrest patients is the modified Rankin Scale (mRS) which was
originally developed for stroke. The mRS is more detailed than the CPC-scale, it
assesses both body functions and activity/participation, and is considered more
suitable for the post-OHCA population (table 4).

Table 4. The Modified Rankin Scale.

Definition of binary
outcome in this thesis

Good outcome mRS 0 - No symptoms
mRS 1 - No significant disability. Able to carry out all usual activities desoite som
symptoms.

mRS 2 - Slight disability. Able to look after affairs without assistance, but unabel to
carry out all previous activities.

Modified Rankin Scale

mRS 3 — Moderate disability. Requires some help, but able to walk unassisted.

Poor outcome mRS 4 — Moderately severe disability. Unable to walk without assistance and
unable to attend own bodily needs without assistance.

mRS 4 - Severe disability. Bedridden, incontinent and requring constant nursing
care and attention.

mRS 5 - Dead

Determination of CPC and mRS categories can be done by clinical examination,
face-to-face interviews or by patient chart review using standardised instruments.'**
Variation in inter- and intra-reviewer agreement may however influence reliability
and generalisability of these scores.'** There have also been discussions whether
these scales are valid in both short-term and long-term follow-up. However, the
TTM trial showed that the difference in neurological function between hospital
survival and 180-day survival was limited.®® Other studies have also indicated that
CPC at hospital discharge is a useful surrogate measure of long-term survival.'*’
Survival and the recovery to an acceptable neurological status is important aspects
of outcome, from both a medical profession’s, and the individual patient’s
perspective. However, impairment in cognitive and executive functions, including
attention, memory, abstract reasoning, verbal fluency, motor and process skills, is
common in TTM-treated OHCA patients."**"*® These cognitive dysfunctions, as
well as fatigue, are not taken into account in crude scales such as CPC or mRS, but
may affect patient’s quality of life and societal participation.'*”'** The extent of
these cognitive disabilities is predominantly mild, but may affect the activities of
daily living and further complicate the rehabilitation process. Nevertheless, many
OHCA survivors report an acceptable quality of life 12 months post-arrest,
particularly in comparison with population norms.'*
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Anxiety and depressive symptoms are reported in approximately 25% of cardiac
arrest survivors,'*! and this percentage is doubled when patients are assessed by
more detailed neuropsychological investigations.'** These are circumstances with
potential, not only to negatively influence the course of patient’s rehabilitation and
recovery, but to reduce their quality of life'** and increase caregiver strains.'** There
is a significant association between cognitive impairment and lower participation,
together with depression, fatigue and restricted mobility in OHCA survivors.'*

In accordance with ILCOR’s recommendations regarding evaluation of post-cardiac
arrest outcome, different aspects should be considered including survival,
neurological function and health related quality of life measures.'*® This indicates
the need for even more nuanced outcome measures designed for the post-cardiac
arrest population.
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Stratification of illness severity in OHCA patients

The post-cardiac arrest syndrome is a heterogeneous condition with involvement of
multiple organ systems, which causes substantial morbidity and mortality even after
successful CPR.*” The neurological injury, in terms of primary anoxic brain damage
and secondary post-cardiac arrest brain injuries, is a significant determinant of later
functional outcome.'*’ It contributes not only to a substantial portion of in-hospital
morbidity and death,*” but also to a significant impact on quality of life for those
who survive and can be discharged from hospital,'*”'* as earlier described in this
chapter. The idea that patients with different severities of neurologic injury require
different types of treatment may appear evident, but there have only been sparse
efforts to overcome this problem in post-resuscitation care. Possibly as a remnant
from an era where there was very little or no therapy to offer these patients. Beside
the brain damage itself, there are other aspects of cardiac arrest to address including
the link between systemic pathophysiologic post-arrest changes and neurological
recovery.

Accurate prognostication post-cardiac arrest is crucial to avoid pursuing futile
intensive care interventions when poor outcome is inevitable, but primarily to avoid
inappropriate WLST in patients who may otherwise have a chance of achieving
meaningful and acceptable neurological recovery. Risk stratification can also be
used in the OHCA population for purposes other than bedside outcome prediction
including selection of patients for early coronary angiography,'* rapid transport to
cardiac arrest centres'” or to guide decision-making to intervene with more
advanced high-risk invasive therapies, such as ECMO.

Numerous attempts have been made to create robust, yet straight forward scoring
systems to classify severity of illness in OHCA patients already on admission to
hospital or the ICU, and with greater precision than the traditional classification
models (APACHE and SAPS 3) which are known to underperform in this
population.®*™ Several models using logistic regression statistics have been
proposed and typically show moderate to good accuracy, including the ‘CAHP
(Cardiac Arrest Hospital Prognosis) risk score’,'* the ‘RACA (ROSC after cardiac
arrest) score’,’””! the ‘OHCA risk score’,’”* the ‘MIRACLE, score’,'” and a
prediction model published by Eertmans et al. in 2018.'** The ‘TTM-risk score’
based on data from the TTM trial, using ten independent predictors associated with
a poor outcome including death at six months after OHCA, managed to achieve
good discrimination of outcome* and was compared to an alternative model based
on machine learning and included in this thesis (paper II). So far, none of these
models have been precise enough to be used for the prediction of individual patients.

The application for an ideal scoring system would be to serve as a clinical tool to
improve risk-adjusted outcome prediction and reliably assess individual risk of a
poor functional outcome. This could have valid clinical implications for early
allocation to specific interventions (tailored therapy) and later in the clinical course
to inform prognosis and optimise continued life support. Risk-classification also has
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advantages in a strictly scientific perspective, not least when performing clinical
outcome-studies in OHCA cohorts. Inaccurate neurological prognostication leading
to WLST and premature deaths, may significantly bias clinical studies with a
subsequent failure in detecting the true study outcomes. Validated cardiac arrest-
specific severity scoring model could also facilitate comparison between groups
with different baseline characteristics.

Large pragmatic clinical trials have often been criticised for being too
heterogeneous and possibly dilute any intervention effect that theoretically may be
relevant for subgroups of patients.'””> The recent rapid development of
computational power and the increasing interest in machine learning-based
algorithms as an alternative to conventional regression models, have shown benefits
when analysing large high-resolution data registers.'**'>” A machine learning
algorithm can be developed and trained to capture non-linear feature correlations
and patterns in big-data collections where a classic statistical approach would fail
or at least have more difficulties in detecting dependencies between variables. To
be able to detect subgroups in an OHCA population with an increased risk of a poor
outcome, or subgroups that may benefit from a specific intervention or need
extensive rehabilitation, further studies based on large high-resolution data sets from
heterogeneous clinical trials are necessary to demonstrate significant associations.

This may be an important area of cardiac arrest research and a future utility for
machine learning to create reliable scoring models for early classification of illness
severity and thereby reinforce those currently used in clinical practice and clinical
trials. The results from one of the studies (paper 1I) included in this thesis showed
that a supervised machine learning model could be used as a statistical tool to stratify
a heterogenous trial population in risk classes and help determine intervention effect
across subgroups. Artificial intelligence and the use of machine learning models will
be further described in the following section of this chapter.
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Artificial intelligence and machine learning models

Artificial neural networks (ANN)

Artificial intelligence (Al) is a branch of computer science devoted to the
performance of tasks that normally require human intelligence. The theory is
complex and will not be fully explained in this thesis. A major subbranch of Al is
machine learning in which computers learn to perform tasks by analysing data rather
than requiring specific programming instructions, i.e. they generate their own
decision-making algorithms.'>®

Most machine learning algorithms used in medicine are trained by means of a
process called supervised learning which have given rise to the concept of
supervised machine learning. This means that the computer is presented with
‘examples’ that have been labelled using an external standard that serves as the
“ground truth”. During development of the machine learning models used in our
studies, this labelling was achieved by exposing the computer to numerous of
‘examples’ from OHCA registries, i.e. patients with different combinations of
variable values and the corresponding outcome of each patient. By repeating this
training process over and over in order to learn, and punishing the computer when
making incorrect predictions, an algorithm is eventually developed with an ability
to categorise between good or poor outcome. As described in further detail in the
‘Methods’ section, the training set (a patient registry) is split and a randomly chosen
test set is set aside for later testing. The process when a trained algorithm is exposed
to the test set is called internal validation, and is crucial to assess accuracy of the
algorithm but also its generalisability. The trained algorithm can also be exposed to
a completely separate test set (a different patient registry) which is called external
validation, and provides further assessment of the algorithm’s generalisability.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

Input 1
Input 2 —
— Output

Input 3 —

Input 4

Figure 11. Artificial neural network (ANN). A schematic ANN with an input layer with four nodes, two hidden layers
with five and four nodes and an output layer with one node. All nodes are connected to the previous and next layers by
weights which resemble the connection between neurons in the human central nervous system. In total, an ANN as
illustrated above will have 54 weights when the bias nodes (not shown) are included. The input layer in our studies was
clinical variables (background, prehospital, admission, biomarker-data) whereas the output layer was the binary
outcome variable (dichotomised CPC-scale into good or poor outcome). CPC, Cerebral performance category.
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ANNSs is a type of supervised machine learning model, inspired by the biological
network of connected and communicating neurons in the human brain as illustrated
in figure 11. ANNs can be seen as learning algorithms that model input-output
relationships and replicate the way humans learn. The algorithms are functions or
approximators created through advanced statistical techniques and designed to
acquire their own knowledge. By extracting useful patterns from a data set, the
models are mapping inputs to outputs and model non-linear relationships between
them. The ability to detect more complex dependencies and patterns between
variables in data compared to conventional regression models, has led to the
application of ANNS in pattern recognition and prediction. Due to the numerous
connections (weights) between nodes in the network, they can receive, transform
and send information forward throughout the layers. The ANN strives during
training to minimise the difference between the prediction and the actual outcome
(i.e. the error) by slightly adjusting the weights by means of two key elements,
‘gradient descent’ and ‘back-propagation‘. Gradient descent is an optimisation
algorithm used to find the values of a function's parameters (coefficients) that
minimise a cost function. First the initial parameter's values are defined and from
there gradient descent uses calculus to iteratively adjust the values to minimise the
error. One type of gradient descent is ‘Stochastic gradient descent’, an extension of
the gradient descent optimisation algorithm for minimising a loss function of a
predictive model on a training dataset. Stochastic gradient descent can be used to
train (optimise) many different models, including linear regression and logistic
regression, and is the most efficient algorithm discovered for ANNs. Back-
propagation refers to the method for computing the gradient, for the weights in a
neural network graph structure, starting from the output layer and moving
backwards.

Fundamental for machine learning models is, that weights connecting the nodes are
only adjusted by the algorithm itself and are not changed by the user. This auto-
adjustment process is the way the computer recognises and learns patterns between
the input and output variables. However, the user can control some parameters
(hyperparameters) in the search for the best possible prediction model.
Hyperparameters include; number of nodes in each layer, numbers of hidden layers,
how each node handle information from the previous layer (activation function) and
how many times the data set pass through the network (number of epochs) and more.
To select the optimal hyperparameters is essential to create the best training
conditions for the algorithm to perform and can be done manually or be automated
by using a random search, a grid search or Bayesian optimisation. ANN was used
in paper II-1V to predict functional outcome in registries of OHCA patients.
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eXtreme gradient boost (XGBoost)

XGBoost is another machine learning algorithm based on gradient boosted decision
trees which are designed and known for their speed and performance.'*’ This highly
effective and widely used model has shown to be very successful in outperforming
other machine learning algorithms in a multitude of different types of problem-
solving. This is especially evident when analysing small to medium-sized and
tabulated data sets where ANN models might encounter difficulties and possibly
perform worse. The XGBoost algorithm has recently been dominating applied
machine learning and Kaggle competitions for structured or tabular data, and the
algorithm goes by lots of different names such as gradient boosting, multiple
additive regression trees, stochastic gradient boosting or gradient boosting
machines. Boosting is an ensemble learning technique where new models are added
to correct the errors made by existing models. Models are added sequentially until
no further improvements can be made. A popular example is the AdaBoost
algorithm that weights data points that are hard to predict. Gradient boosting is an
approach where new models are created that predict the residuals or errors of prior
models and then added together to make the final prediction. It is called gradient
boosting because it uses a gradient descent algorithm to minimise the loss when
adding new models. Sometimes, it may not be sufficient to rely upon the results of
just one machine learning model. Ensemble learning offers a systematic solution to
combine the predictive power of multiple learners. The resultant is a single model
which gives the aggregated output from several models. The models that form the
ensemble, also known as base learners, could be either from the same learning
algorithm or different learning algorithms. Bagging and boosting are two widely
used ensemble learners. Though these two techniques can be used with several
statistical models, the most predominant usage has been with decision trees.
XGBoost was used in paper IV to predict functional outcome in registries of OHCA
patients and to compare its performance and accuracy to an ANN model.

Machine learning in modern medicine

During the last decade, the increased computational power and constantly
improving algorithms have led to a renaissance for machine learning to analyse large
data sets. Machine learning has also been found valuable in various medical areas
and clinical settings including interpretation of ECG-patterns and MRI, detection of
cardiac arrest in emergency calls or in the emergency department, prediction of
outcome in traumatic brain injury and prediction of the need for critical care as an
alternative to conventional triage and early warning scores.'?"'%-1* It has also been
suggested for risk and mortality prediction in patients admitted for intensive care as
an alternative to SAPS 3.7 Recently, machine learning models have been used to
predict the outcome in OHCA cohorts with high accuracy early in the chain of
survival, where overall mortality is above 80%,'%41%5 but these models are not
applicable to patients admitted to ICUs after OHCA.
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Machine learning has a great deal of promise and is undoubtedly an enormous
potential for future big data analysis. Models with ability to reliably stratify risk and
classify illness severity in heterogenic patient groups to improve prognostic
performance and enhance tailored care would be a great progress. These techniques
will hopefully be implemented in future clinical contexts to increase the speed and
consistency of diagnostic procedures and develop prediction models as the
algorithms continue to improve in accuracy.
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Ethical considerations

Patients admitted to hospital after being resuscitated from cardiac arrest are
predominantly in a comatose state and unable to provide informed consent for
intensive care treatment or approve participation in clinical trials.

It is a challenging, yet important task for the clinician to evaluate and reliably assess
the individual patient's opportunity for an acceptable neurological and functional
recovery after severe illness such as cardiac arrest, with only limited information
available. There are also some important ethical considerations to address when
treating comatose cardiac arrest patients in an ICU. These considerations combined
with clinical information based on the multimodal prognostication process, will
establish the foundation for a clinical decision-making to continue the treatment, or
withdraw life-sustaining therapy if prolonged intensive care is not considered being
in the patient’s best interest.

Ethical considerations should be used, not only in strict clinical contexts during
treatment of cardiac arrest patients or in decision-makings on level of care, but also
when recruiting patients for clinical trials. They can be defined in four principles of
biomechanical ethics to balance and regard during post-resuscitation care.'*

e Autonomy — to obtain informed consent if possible and respect the patient’s
expressed or presumed wishes.

e Beneficence — to act in the best interest of the patient and provide treatment for
the possibility of a good neurological outcome.

e Non-maleficence — to not intentionally injure the patient or to provide life-
saving treatment in patients with obvious risk of extensive brain injuries and
poor quality of life.

e Justice — to avoid utilisation of public resources in the treatment of patients
with no benefit of the provided care and to strive for a fair distribution of
available hospital resources.

Accurate prognostication methods to be used for early reliable outcome prediction
in the heterogenic cardiac patient population with high mortality rates, are crucial
to identify patients who will benefit the most of resource-intensive, invasive and
potential perilous interventions. From an ethical perspective, it is important to
withdraw intensive care as soon as possible, in patients for whom further treatment
is deemed futile. Robust prognostication methods as well as elaboration of
international standardised processes for WLST, are important to minimise the risk
of premature use of WLST as part of a self-fulfilling prophecy. The effect of early
withdrawal of life sustaining therapies (eWLST) on outcome is considerable as
reported in observational studies on comatose OHCA patients.*'¢7-'¢
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Aims of thesis

The overall aim of this thesis is to take a step forward towards improved and more
reliable prediction of functional outcome for out-of-hospital cardiac arrest patients
who survive the initial resuscitation and is observed and treated with post-
resuscitation care in the ICU during the prognostication phase. It also aims to
demonstrate the need for specific severity scoring models designed for cardiac arrest
patients undergoing temperature intervention to better stratify analyses of clinical
trials and to enhance tailored post-resuscitation care in the future.

e To analyse if varying levels of TTM after OHCA were associated with later
functional outcome in an international observational registry (INTCARZ2.0).

e To investigate which variables and clinical data that carry the most
predictive information in an OHCA population.

e Touse ANNSs to create a model for early prediction of long-term functional
outcome in comatose OHCA patients admitted to ICU, and use this model
to investigate the intervention effect in cardiac arrest patients treated with
TTM.

e To investigate whether cumulative information obtained during the first
three days of intensive care of comatose OHCA patients, increased the
predictive performance of ANNSs, with and without clinically accessible and
research-grade biomarkers.

e To compare the predictive performance of an ANN with another machine
learning model called eXtreme Gradient Boost (XGBoost).

e To investigate the generalisability of two different machine learning
models, by internal validation on the development cohort, and external
validation on a separate OHCA cohort.

e To demonstrate the hazard of adjustment for SAPS 3 scores in outcome-
studies on temperature interventions.
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Methods and materials

The first paper in this thesis is a retrospective analysis of prospective data in the
International Cardiac Arrest Registry 2.0 (INTCAR 2.0) while the second and third
papers are post hoc analyses of the Target Temperature Management trial (TTM
trial).®® The fourth paper are post hoc analyses of a merged data set based on the
INTCAR 1.0 and 2.0, and the TTM trial data set. This chapter summarises the
materials and methods described in papers [-IV. Finally, the last publication V
(Letter to the Editor) is the result of an observation, based on the analysis of a
simulated data set with created cardiac arrest cases. Detailed descriptions of the
materials and methods used in the four studies are presented in each paper. The
materials and methods used are summarised in table 5, which also includes the
number of participants for the final analyses.

Table 5. Overview of the four studies included in the thesis.

Intensive care unit (ICU), Cerebral Performance Category scale (CPC). *Participants for final analysis. **The number

of participants in study Il varied based on the time point and biomarkers of interest.

presumed cardiac
cause

cause

Paper | ] 1 v
Post hoc analysis of
A retrospective Post hoc analysis Post hoc analysis of an international
Do analysis of a of an international an international cardiac arrest registry
9 prospective randomised randomised and an international
international registry multicentre trial multicentre trial randomised
multicentre trial
Consecutive collected
SpeclﬂrT IQU Specific ICU out—of—hos_pltal cardiac
population: ooulation: arrest patients and a
Consecutive collected Comatose pop ’ . specific ICU
- A . Comatose survivors . .
out-of-hospital cardiac | survivors of out-of- . population with
. . ; of out-of-hospital .
arrest patients treated hospital cardiac . comatose survivors of
LG in the ICU arrest of a cardiac arrest of a out-of-hospital cardiac
population presumed cardiac P

arrest from a
presumed cardiac
cause

networks

networks

Adults Adults Adults Adults
2008-2017 2010-2013 2010-2013 2001-2017
Participants* | n=1710* n = 932* n = 932** n =4431*, n=931*
Background, pre- .
. Back_ground, .pre.' hospital and Similar to study Il Variables available on
Variables hospital, admission, L and atday 1,2 and 3 . -
. . ) admission o hospital admission
in-hospital variables . after ICU admission
variables
Binary hospital Binary 180 days . Binary hospital
out discharge functional functional Esgtri)c/)r::looﬂ?g:me' discharge functional
utcome outcome: CPC 1-2 or outcome: CPC 1-2 CPC 1-2 or CPC 3'_5 outcome: CPC 1-2 or
CPC 3-5 or CPC 3-5 CPC 3-5
Atrtificial neural
- . Atrtificial neural Atrtificial neural networks and
Method Logistic regression

eXtreme gradient
boost
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The Utstein-style reporting of cardiac arrest data

The term “Utstein-style” is synonymous with consensus reporting guidelines for
resuscitation and originated from an international multidisciplinary meeting of the
European Society of Cardiology, the European Academy of Anaesthesiology, the
European Society for Intensive Care Medicine, and related national societies, held
at the Utstein Abbey near Stavanger, Norway in June 1990. The purpose of this
initial meeting was to develop, by consensus, uniform terms and definitions for
OHCA resuscitation.'” Since then, a standardised reporting style has also been
introduced for IHCA and for paediatric cardiac arrest.'”"'”> We chose to report data
from the registries according to the Utstein-style template in this thesis. The Utstein
reporting template establishes a standard framework for comparing systems of care
for cardiac arrest. The Utstein template was completed in 2004 for both out-of-
hospital and in-hospital cardiac arrest. The updated template for in-hospital cardiac
arrest was developed by an international committee between 2013 and 2018 and
follows the style of the prior 2015 update for out-of-hospital cardiac arrest. Essential
elements were classified as core. Others were classified as supplemental. Core
variables should enable reasonable comparisons between systems and are
considered essential for quality improvement programs. Together with core
variables, supplementary variables are considered useful for research. The six
classes of data elements are hospital factors, patient variables, pre-event factors,
cardiac arrest processes, post-resuscitation processes, and outcomes.

These Utstein-style template facilitate comparison of cardiac arrest registries
throughout the world. However, in a recent validation study, the Utstein factors
explained only 51% of the variation in survival to hospital discharge in an
international material evaluating OHCA registries from 12 countries, for the period
1* of January 2006 through 31% of December 2011. The authors concluded that
modifiable Utstein factors should be targeted to improve survival but that the
observed variability in outcome is incompletely explained by the Utstein-style
templates and that further studies are needed to identify the ideal constituents of
cardiac arrest data registration.'”?
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Registries and data sources

The International Cardiac Arrest Registry (INTCAR)

INTCAR is a multinational, internet-based registry of consecutive cardiac arrest
patients (both in-hospital and out-of-hospital) admitted to large volume cardiac
arrest centres and treated in intensive care unit (ICU) settings in the United States
and Northern Europe.

The INTCAR 1.0 registry started in 2006 and was a collaborative effort between
members of the North-American Neurocritical Care Society and a European
network originated from the Hypothermia Network Registry.'™ In 2011 the registry
was updated and revised into the INTCAR 2.0, which reflects more current practices
than the original data set and it continued to enrol patients until 2017. INTCAR 2.0
contains even more “core” data points with additional resolution including
demographic characteristics, pre-arrest condition, resuscitation characteristics, post-
resuscitation therapies including targeted temperature management (TTM) and
post-arrest outcomes including survival to discharge and long-term functional
outcome after hospital discharge. It predominantly encompasses a prospectively
registered sample of consecutive patients of all ages with cardiac arrest of both in-
hospital and out-of-hospital origin admitted to intensive care, and where each
participating centre treated patients according to local protocols. Data were derived
from ambulance charts, admission journals, ICU observation charts and medical
records from hospitals and rehabilitation centres. Prehospital data were defined
according to the Utstein guidelines'” and in-hospital data according to the extended
Utstein guidelines for reporting post-resuscitation care.'” Besides the main
INTCAR 2.0 basic data set including patient and cardiac arrest characteristics,
treatment methods and prognostication, the database also collected information
regarding imaging, hemodynamic variables, cardiology studies and interventions,
EEG and seizures, neurological short-term and long-term functional outcome as
well as treatment methods and complications.

Ethics

The regional ethical review board in Lund, Sweden approved the registry (Protocol
2007/7 Dnr 272/2007) and local ethical approval was granted as per regulations of
each participating hospital. Information about the study was provided to patients
who regained consciousness or to next-of-kin if required by legal statute in each
country.
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The Target Temperature Management (TTM) trial registry

The TTM trial recruited a total of 950 patients from 2010 to 2013 in 36 ICUs in
Europe and Australia. The trial included comatose (Glasgow Coma Scale (GCS) <
8) adults (=18 years of age) with a sustained return of spontaneous circulation
(ROSC) after successful resuscitation from OHCA of presumed cardiac cause.
Patients were admitted to ICUs and randomised to TTM at 33°C or 36°C using a
web-based application.®® Exclusion criteria were unwitnessed cardiac arrest with
asystole on the initial ECG, >4h from ROSC to screening, limitations in therapy
including do-not-resuscitate orders or known illness making survival to 180 days
unlikely, previous bleeding diathesis, known or suspected intracranial haemorrhage
or stroke, body temperature <30°C on admission, pregnancy, persistent cardiogenic
shock despite medical interventions and mechanical assist, and pre-existing
neurological disability (CPC3-4)."”” The primary outcome of the TTM trial was all-
cause mortality until the end of the trial, defined as 180 days after the last participant
was included (survival analysis). Secondary outcomes were a composite outcome
of all-cause mortality and poor neurologic function according to CPC at hospital
discharge and at 6 months, all-cause mortality at hospital discharge and at 180 days,
neurologic function at hospital discharge and at 180 days, quality of life at 180 days,
best neurologic outcome during the trial period, and safety measures.®

Figure 12 illustrates the trial study timeline from the cardiac arrest to assessment of
neurological outcome after 180 days. The trial protocol was approved by ethical
committees in each participating country, and informed consent was waived or
obtained from all participants or relatives according to national legislation, in line
with the Helsinki declaration.'”” Patient data were entered in an online electronic
case record form and externally monitored on site.

Normothermia
36h post-arrest

TTM intervention Daily evaluation on Hospital discharge
4h cooling the ICU CPC
24h targeted temperature
8h active rewarming

4h 24h 8h 72h 6 months
Sedation
Neurological Outcome assessment
prognostication 180 days

108h post-arrest

Figure 12. The TTM trial study timeline from cardiac arrest to assment of neurological outcome after 180 days.
lllustration by Sofia Backman. Reprinted with permission.
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The results of the main trial were subjected to sensitivity analyses for time, study
centre, and other possible biases and have been elaborated in post-hoc analyses and
sub-studies. All have shown similar outcomes in both temperature groups.®”’%"!78
Therefore, the pooled TTM data set was used for the analysis in paper II, III and IV.

Ethics

Ethical consent was obtained by the ethics board of each participating country and
followed the principles of the Declaration of Helsinki and its amendments.'”” The
regional ethical review board in Lund, Sweden approved the registry (Protocol
2009/6 Dnr 324/2009). Informed consent was obtained from surviving patients. A
patient’s next of kind was informed of the inclusion in the study during the first
contact with the hospital.
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Variable selection and strategy

Paper 1

In paper I we investigated whether the results from the TTM trial could be
demonstrated in OHCA patients included in the INTCAR 2.0 registry containing
cardiac arrest data where baseline variables allow for adjusted analyses. We chose
to exclude variables with missing values of >5% and thus no imputation was
performed.'” INTCAR 2.0 data were derived from ambulance charts, admission
journals, ICU observation charts and medical records from hospitals and
rehabilitation centres. Prehospital data were defined according to the Utstein
guidelines'” and in-hospital data according to the extended Utstein guidelines for
reporting post-resuscitation care.'” Comorbidities were registered if they were
pharmacologically or previously surgically treated, or subject to continuous
monitoring at the time of the cardiac arrest. ROSC was defined as time from collapse
until return of spontaneous circulation, leading to stable circulation without the need
for CPR for at least 20 minutes. Temperature management was defined as an active
attempt to keep the patient’s body temperature within a prescribed target range.
TTM at 32-34°C was defined as TTM-low and TTM at 35-37°C as TTM-high.
Adverse events during ICU care were recorded according to a predefined protocol.
The primary outcome variable was survival with good neurological function at
hospital discharge, using the CPC-scale. The secondary outcome was adverse events
related to TTM during ICU care.

Paper 11

In paper II baseline comorbidities, demographics, prehospital data, arrest
characteristics, physiological variables, as well as admission data, were
systematically collected according to the Utstein criteria'”'’® and categorised as
background-, prehospital and admission variables. Time from cardiac arrest to
initiation of BLS and ALS was recorded. No-flow and low-flow times were defined
as the time from cardiac arrest to the start of CPR (BLS or ALS) and the time from
the start of CPR to ROSC, respectively. Time to ROSC was defined as the time from
cardiac arrest to the first recorded time point of sustained (>20 min) spontaneous
circulation. "No flow" (indicating the time from arrest until the start of
cardiopulmonary resuscitation (CPR) and "low flow" (indicating the time from the
start of CPR until the return of spontaneous circulation (ROSC)) are often used to
describe the circumstances of the CPR treatment. Primary outcome of this study was
6 months functional outcome including survival using a dichotomised CPS-scale.
Analyses were performed using all 54 variables available at admission to hospital
to compare performance in predicting long-term outcome with a previous model
based on logistic regression (the TTM risk score) as well as a compact 15-variable
model designed to rank the 15 most important variables based on their individual
importance.
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Paper 111

In paper III all variables from the TTM trial up to day three were included;
background information, prehospital and hospital admission records along with data
obtained at 24h (day 1), 48h (day 2), 72h (day 3). CT, MRI, EEG and SSEP were
not included as these modalities were performed only on indication and in a minority
of patients. Variables with >20% missing values were excluded. The TTM trial
biobank collected blood samples from 29 of the 36 trial sites on day 1, 2 and 3 and
comprised approximately 70% of the total TTM trial patient population. Biomarkers
analysed in the biobank were grouped by whether they were considered clinically
accessible or research-grade. Three models (A, B and C) were developed for each
of the three days studied (a total of nine datasets):

e Level A: Clinical variables only

e Level B: A & clinically accessible biomarkers: NSE, S100B, TnT, BNP,
and PCT

e Level C: B & research-grade biomarkers: NFL, copeptin, IL-6, tau, GFAP,
and UCH-L1

To ensure that the prognostic value of the biomarkers would not be weakened by
the imputation technique, we excluded patients with missing values corresponding
to the exact day the data was missing for NSE and NFL in level B and C,
respectively, which resulted in level B and C having approximately 30% fewer
patients in each dataset. The outcome variable was a dichotomised CPC-scale
graded by a blinded assessor after an interview face-to-face or by telephone at the
six-month follow-up.®

Paper 1V

In paper IV we used a combined data set from INTCAR 1.0 and INTCAR 2.0 to
identify variables at the time of admission and registered in both data sets. To build
a data set suitable for model training and to harmonise with the TTM data set, all
patients under 18 years and those with arrest sites other than out-of-hospital were
excluded. The variables registered in the INTCAR1+2 registry and in the TTM trial
registry, slightly differed due to different registry structure. Some variables
therefore had to be aligned and re-coded to enable the algorithms to perform the
training and testing processes on both registries. The two final data sets included 29
comparable predicting variables available on time for hospital admission. The
outcome variable was good or poor functional status at hospital discharge according
to a dichotomised CPC-scale.
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Statistics

Continuous variables are presented as mean with the corresponding standard
deviation (SD) if normally distributed and as median and interquartile range (IQR)
if non-normally distributed. Binary and categorical variables are presented as
numbers and percentages. For all studies the null hypothesis (H,) testing was
performed using two tailed tests and a two-sided significance level of p<0.05 was
considered statistically significant.

In paper I categorical data was compared using Chi-square tests, continuous
normally distributed data were compared using Student’s #-test and non-normally
distributed data by the Wilcoxon-Mann-Whitney test. A univariate logistic
regression was performed and presented as odds ratios (OR) with 95% confidence
intervals (CI) indicating the association of the variable with a good outcome and
OR-values >1 indicating a favourable association. A multivariate analysis was also
performed using logistic regression with adjustment for important covariables with
a potential to influence outcome after cardiac arrest. Missing values in selected
covariates was below 5% and thus no imputation was performed. Goodness of fit
was tested using the Hosmer-Lemeshow test. Propensity score analysis and sub-
class matching to compensate for differences in background characteristics between
intervention groups was not performed in study I due to unfulfilled positivity
assumption. This is mandatory to remove treatment bias, but was not possible since
the probability of receiving any of the two targeted temperatures was not equal due
to country-specific treatment regime (treatment with 33°C more common in the US
and 36°C more common in Europe).

In paper II-IV the Mann-Whitney U test was used for continuous data and Fisher’s
exact test for categorical data when comparing groups. Missing values were imputed
by using a simple mean or mode substitution (paper Il and IV) and a median or mode
imputation based on the statistics of the training sets (paper III). To evaluate
performance of ANN and XGBoost models, we examined area under the receiver
operating characteristics curve (AUROC) described in the ‘To measure model
performance’ section of this chapter. Difference between AUC-curves and their
corresponding Cls were calculated using bootstrapping and DeLong’s method.'**'®!
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Sensitivity and specificity

‘Sensitivity’ and ‘specificity’ are terms commonly used to demonstrate how well
different tests or diagnostic methods perform in detecting disease in ill patients and
ruling out disease in healthy patients. The corresponding rationale in this thesis is
the ambition to create prediction models with best possible performance to identify
variables associated with clinical outcome.

The meaning of sensitivity and specificity can sometimes be a bit confusing and is
easily mixed up and misunderstood. The following scenarios are possible examples
when a patient undergoes an examination or test for prognostication, and the
corresponding result is related to later clinical outcome.

e A ‘true negative’ assessment denotes a negative/normal assessment in a
patient with a good outcome.

e A ‘true positive’ assessment denotes a positive/pathological assessment in
a patient with a poor outcome.

e A ‘false negative’ assessment denotes a negative/normal assessment in a
patient with a poor outcome.

e A ‘false positive’ assessment denotes a positive/pathological assessment in
a patient with a good outcome.

Regarding neurological prognostication after cardiac arrest, it is crucial to conduct
assessments with as high precision as possible. Primarily to eliminate the risk of
withdrawing intensive care in patients with a possibility of later recovery, but also
to minimise futile interventions in patients who are unrecoverable due to the extent
of neurological injury. By combining various examinations and tests during the
multimodal prognostication process, we try to rule out false positive predictions and
avoid false negative predictions.

Sensitivity

The sensitivity of an assessment describes how well it identifies poor outcome
patients, i.e. the probability of a positive/pathological assessment to result in
patients with a true poor outcome. Only poor outcome patients are included when
calculating sensitivity. For example, if the sensitivity of an assessment is 90%, it
will identify 90% of patients with later poor outcome and miss 10%.

True positives

Sensitivity = — -
Y True positives + False negatives
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Specificity

The specificity of an assessment describes how well it identifies good outcome
patients, i.e. the probability of a negative/normal assessment to result in patients
with a true good outcome. Only good outcome patients are included when
calculating specificity. For example, if the specificity of an assessment is 90%, it
will misidentify 10% of patients with a later good outcome as unrecoverable.

True negatives

Specificity =
pectficity True negatives + False positives

False positive rate (FPR) is sometimes used and denotes the rate of false positives
among all cases that ought to be negative. This can also be expressed as 1—
specificity. Occasionally the terms ‘Positive predictive value’ (PPV) and ‘Negative
predictive value’ (NPV) are referred to in context of diagnostic tests.

Positive predictive value

PPV indicates the probability that the patient with a positive/pathological
assessment truly will have a poor outcome. Only positive/pathological assessment
results are included when calculating PPV. For example, if the assessment is
positive/pathological with a PPV of 90%, there is on average 90% chance that
outcome is poor and 10% that outcome is good.

True positives
PPV =

True positives + False positives

Negative predictive value

NPV indicates the probability that the patient with a negative assessment truly will
not have a poor outcome. Only negative/normal assessment results are included
when calculating NPV. For example, if the assessment is negative/normal with a
NPV of 90%, there is on average 90% chance that outcome is good and 10% that
outcome is poor.

True negatives

NPV = - -
True negatives + False negatives

Accuracy
Accuracy is the number of corrected assessments divided by all assessments.

True positives + True negatives

Accuracy =
Y All assessments
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To measure model performance

Prediction of two possible outcome is called binary classification. We used a
dichotomised CPC-scale (good or poor functional status) as the binary outcome
variable in all studies included in this thesis. The prediction models were trained to
distinguish between the two outcomes, i.e. discrimination. The ability to perform in
discrimination is measured using the AUROC and has a value between 0 and 1. The
better the model can classify which outcome a patient will have, the closer the
AUROC will come to 1 (maximum discrimination) and vice versa. An AUROC of
0.5 indicates a model with no ability to discriminate and not better than a completely
random selection. There are no established definitions for the discriminatory
accuracy of AUROC and the label of the ranges vary in the literature.'®* The
following ranges were used in this thesis: AUROC 0.5-0.7 as poor performance,
0.7-0.8 as fair performance, 0.8-0.9 as good performance and 0.9-1.0 as excellent
performance.

True Positive Rate (Sensitivity)

False Positive Rate (1-Specificity)

Figure 13. The receiver operating characteristic (ROC) curve visualised in blue color. The sensitivity is plotted on
the y-axis (true-positive rate), and the 1-specificity (false-positive rate) is plotted on the x-axis. The area under the
receiver operating characteristics curve (AUROC-curve) in this example is 0.891 (model from study II), i.e. an ANN
model trained to a performance to predict functional outcome in cardiac arrest patients (destinguished between good or
poor outcome) with an almost 90% accuracy. The dashed black line represents a model with an AUC of 0.5 indicating
that the model will be right or wrong in 50% of cases which is not better than a random selection. The red and green
dashed lines represent perfect tests with an AUC of 1 and -1, respectively, indicating that both models can descriminate
between two outcomes in 100% of the cases. ANN, artificial neural network; AUC, area under the curve.

The ROC-curve is a technique for visualising, organising and selecting classifiers
based on their performance. They are commonly used in medical decision making,
and in recent years have been used increasingly in machine learning and data mining
research.'™ The curve describes the model’s capability to classify at different
thresholds and offers a more comprehensive assessment including all possible
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decision thresholds from a diagnostic test compared to the computing of sensitivity
and specificity treating each value of the predictor as a possible cut-point. This is
especially evident in the event of continuous or ordinal predictors. The true-positive
rate (TPR) and the false-positive rate (FPR) are calculated at various thresholds and
plotted as in figure 13. The TPR is also named sensitivity and is plotted on the y-
axis. The FPR plotted on the x-axis is named 1 - specificity. In some models the 1-
FPR is instead plotted on the x-axis corresponding to specificity. This presentation
simplifies the visual interpretation of the interaction between specificity and
sensitivity.

An overall ROC-curve is mostly useful in the early stages of evaluation of a new
diagnostic test. Once the diagnostic ability of a test is established, only a portion of
the ROC-curve (partial AUROC) is usually of interest, i.e. regions with high
specificity (100-95%) and not the average specificity over all sensitivity values.
This strategy is used to minimise the FPR in a specific diagnostic test and is highly
prioritised in tests used for neurological prognostication since the result could lead
to WLST and the death of a patient.'™ ROC-curves are also useful for assessing the
predictive ability of two or more biomarkers for the same disease or for comparing
performance between two prediction models as in paper Il and IV. In general, the
test with the higher AUC may be considered better, However, in cases where
specific values of sensitivity and specificity are only clinically relevant for the
comparison, then partial AUROCS are compared as described above.'*

Both FPR and TPR are calculated based on the confusion matrix for the chosen
threshold. The confusion matrix for a binary classification problem is a 2x2 table

which displays the performance of a prediction model at a specific threshold (e.g.
0.5).

Table 6. The confusion matrix. The rows represent the predicted outcome, and the columns represent the observed
outcome.

Observed Observed
Positive Negative
: True False
P;zg;zt,id positives positives
() (FP)
Predicted False True
Negative Negatives negative
(FN) (TN)

As seen in table 6, each prediction can be either a true positive (TP), a false positive
(FP), a false negative (FN) or a true negative (TN). These four measures are the
foundation for calculating numerous performance measures of a model, such as the
accuracy, precision (positive predictive value ) and negative predictive value.
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Calibration

Calibration describes the level of agreement between the predicted probability and
the observed outcome in a model and is important to measure its performance. The
calibration is often described in a calibration plot, with the predicted probability on
the x-axis and the observed outcome on the y-axis. As the outcome is binary, the
predictions are usually plotted by decile on the x-axis, with the corresponding
observations on the y-axis.'® A perfect calibration is represented by the diagonal of
the calibration plot, where the prediction on the x-axis correlates perfectly with the
corresponding observations on the y-axis. This measure was even further developed
by Finazzi et al. when adding a calibration belt with confidence intervals (80% and
95%, respectively)'® in the plot as seen in figure 14. The calibration belts also
indicate if the prediction model is underestimating or overestimating the risk (over
or under the bisector). To create precise calibration curves (narrow Cls), a minimum
of 200 patients with and without the studied outcome is required.'*’

Other examples of calibration measures include goodness-of-fit tests, such as the
Hosmer-Lemeshow test and Pearson’s chi-squared test. A commonly used overall
measure is the standardised mortality rate (SMR), which is the ratio between
observed mortality rate (OMR) and the expected mortality rate (EMR).™

1.0

Observed neurological outcome
0.4

0.2

Confidence Under Over
level the bisector the bisector

80% NEVER NEVER
W 5% NEVER NEVER
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.0

ANN predicted probability

Figure 14. Calibration plot. An example of a calibration plot with the GiViTi calibration belts. This plot displays the
ANN external validation model from study IV, which was well calibrated and with good level of agreement between
predicted probability and observed outcome, i.e. the model did not overestimate or underestimate the risk of a poor
outcome. The diagonal red line represents a perfect calibration. GiViTi, Italian Group for Evaluationof Interventions in
Intensive Care Medicine; ANN, artificial neural network
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Using machine learning to predict functional outcome

The very basics of machine learning and ANN is described in the ‘Background’
chapter. In this section the development of algorithms and the training/testing
processes will be briefly explained and illustrated followed by detailed information
regarding model development in study II-IV.

An ANN differs from logistic regression models by being highly adaptable when
finding patterns, even in subsets of the data. The ANN can be trained to capture non-
linear feature correlations in big-data collections where a classic statistical approach
would fail, or at least have more difficulties in detecting dependencies between
different variables. This adaptive attribute of the algorithms is a strength, but also a
weakness due to the risk of overfitting. An overfitted model does not perform well
when being tested in a different patient population or on a new data set, i.e. the
generalisability of the model is low. There are several methods to avoid the problem
of overfitting where splitting of the data set is a fundamental one.

The dataset is divided into a training set (used for model development) and
randomly selected test set to provide an unbiased internal evaluation of the final
model as illustrated in figure 15. A part of the training set can be allocated as a
validation set to test the model performance during training. Changing the validation
set during training based on predefined splits is called cross-validation (k-fold cross-
validation). After finishing the training, the test set earlier removed, is used for
internal validation of model performance but also to assess its generalisability. To
implement the model as a prediction model, external validation should be performed
in which a trained model is tested on a new data set as done in study IV.

Total Data Set
o Test
Training Data Set
1K
—

Validation, Iteration

Fold 1 Set 1

K-Folds

Validation Iteration

Set K

Figure 15. Training, validation and test sets. The figure illustrates how the data is split into training set and a test set
(internal or external), and how the training set can be split into different validation sets (k-fold cross-validation).
lllustration by Ola Bjérnsson. Reprinted with permission.
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Model development

Study I

A prediction model was created to predict long-term functional outcome in
comatose OHCA survivors using information available on ICU admission
(background, prehospital and admission data), in 54 variables from the TTM trial
registry. We also created a simplified prediction model by ranking all variables after
their individual performance adding one variable at the time according to their
relative importance.

A test set, corresponding to 10% of the data was randomly chosen and set aside to
test the performance of the final ANN model. The remaining data (90%) was used
for training and development. The training set was randomly divided into five equal-
sized groups, to allow for cross-validation during model development.

Our ANN consisted of one input layer, a number of hidden layers and one output
layer. A Bayesian optimisation approach, based on the Tree-structured Parzen
Estimator (TPE), was used to find the best possible network architecture.'® The
search for optimal hyperparameters was performed with limits presented in table 7.
The final model was chosen based on the AUROC of the cross-validations. The
AUROC was reported using the test set data and was then compared to a logistic
regression-based model’s AUROC (after removing patients who originally had
missing values)* using the method of DeLong’s.'!#!

Table 7. Hyperparameters during model development in study Il. The predifined limits for hyperparameter tuning
during development to find the best possible model using Bayesian optimisation.

Hyperparameters Limits during model development

Number of hidden layers 1-4

Nodes in each layer 5-400

Batch size 1-128

Drop-out rate 0-0.3 for the input layer and 0-0.5 for the hidden layers

Norm regularisation L4, L2 or Max-norm

Activation function for the hidden layers Rectified linear unit (ReLU) or hyperbolic tangent function

Optimisation g\_dam implementation of stochastic gradient descent or a slightly
ifferent version called Adam AMSgrad

The final model was also used to investigate the effect of TTM of 33°C vs 36°C
based on patients’ risk stratification and to see if any of the two temperatures was
associated to outcome. Our aim was to investigate if TTM would be beneficial in
any of the risk classes. This was presented as logarithmic diagnostic odds in risk
class 0-20%, 20-40%, 40-60%, 60-80% and 80-100%, respectively.

71



Study I

Similar to study II a prediction model was created to predict long-term functional
outcome in comatose OHCA survivors. However, in this study we used cumulative
clinical variables along with clinically accessible and research-grade biomarkers
collected during the first three days of ICU observation. We used biomarkers from
the TTM trial biobank, which collected blood samples from 29 of the 36 trial sites,
to create additional levels of biomarkers in addition to the clinical variables already
available from the TTM trial registry.

An ANN model was developed for each of the nine datasets with three levels of
biomarkers from 24h (day 1), 48h (day 2) and 72h (day 3) after ICU admission. This
is further described in the ‘Variable selection and strategy’ section earlier in this
chapter.

The data sets were randomly divided into a training set for model development
(80%) and a test set for internal validation (20%). The randomisation key was
created at the time of hospital admission; hence the split was the same for all models.
The number of variables was reduced in each dataset by using a correlation
threshold of 98%, a missing values threshold of 20%, a minimum incidence of 2%
for unique binary variable events, and a wrapper variable selection method which
combined the feature selection algorithm with Shapley values. As in study II a five-
fold cross-validation was used and a Bayesian optimisation algorithm to find the
optimal hyperparameter values as presented in table 8.

Table 8. Hyperparameters during model development in study lll. The predifined limits for hyperparameter tuning
during development to find the best possible model using Bayesian optimisation.

Hyperparameters Limits during model development

Number of hidden layers 1-3

Nodes in each layer 5-250

Batch size 4-128

Drop-out rate 0-0.5 for the input layer and 0-0.5 for the hidden layers
Norm regularisation L4, L2 or Max-norm

Activation function for the hidden layers ReLU or hyperbolic tangent function

Model performance was reported by calculating the AUROC for the test set data
and displaying the ROC for all models. To find the optimal probability threshold for
cardiac arrest prognostication, we based the threshold on 100% specificity in the
training set. The distribution of the confusion matrix of the test set was then
reported.
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Study IV

A prediction model was created to predict functional outcome on hospital discharge
in comatose OHCA survivors using early information available on hospital
admission from 29 selected variables in the merged INTCAR1+2 registry which . A
random selection of 90% of the patients in the data sets was allocated for
development and training of the models whereas the remaining 10% were used for
internal testing to validate model performance. The TTM data set was used for
independent external testing to validate the models’ performance when exposed to
a juvenile data set. Similar to study II and III the training set was randomly divided
into five equal-sized groups, to allow for k-fold cross-validation during model
development. Performing cross-validation entailed that each configuration of a
model resulted in five “sub-models” trained on partially different data. This allowed
for an ensemble-prediction on the test set and for this two metrics were used. The
first metric denoted cross-validated (AUC) was used to determine the best model
and was defined as the average of the AUC from each sub-model on the respective
cross-validation set. The second metric denoted ensemble AUC was defined as the
resulting AUC after averaging the prediction patient-wise from each sub-model on
the test set. The ensemble AUC then was used to test the generalisability of the best
model. A Bayesian optimisation approach was used to find the best possible
hyperparameters as presented in table 9.

Table 9. Hyperparameters during ANN-model development in study IV. The predifined limits for hyperparameter
tuning during development to find the best possible model using Bayesian optimisation.

Hyperparameters Limits during model development

Number of hidden layers 1-4

Nodes in each layer 5-500

Batch size 1-256

Drop-out rate 0-0.5 for the input layer and 0-0.5 for the hidden layers
Norm regularisation L1, L2, both Liand L2 (elastic net) or Max-norm

Rectified linear unit (ReLU), exponential linear unit (ELU) or
hyperbolic tangent function

Standard batched gradient descent, Adam implementation of
Optimisation stochastic gradient descent or a slightly different version called
Adam AMSgrad

Activation function for the hidden layers

Similar to study II and III, the ANN in this study consisted of one in