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Figure 1. The 2 x 2-process, defined by Equation (1), is controlled by two
PI-controllers.

1. Introduction

Controller design methods for SISO-systems based on relay technics are treated
in e.g. [Astrom and Hagglund, 1984]. These are simple methods for tuning PID-
regulators, and has been successfully used in practice. This report treats the
problem of using relay experiments for MIMO-systems. There has been some
heuristic tries to do this extension, see e.g. [Vasnani and Loh, 1993],(Zhuang,
1992], and [Zhuang and Atherton, 1992], but the understanding in the area
is far from complete. In this report we will show what difficulties that can
arise and try to explain them. We will also use a design method based on the
relative gain array (RGA).

Notice that our primary intention is not to design controllers that will
give as good step responses as possible. We choose our controller parameters
based on Ziegler-Nichols rule. Thus we will get a poorly damped closed-loop
system, which will lead to the problem this report discusses.

In Section 2 we describe the artificial process and the design problem we
are considering throughout the report. The relay design method is described
in Section 3 together with the results from our design. Section 4 includes some
analysis which state when a limit cycle for a relay system will be locally stable
or not. In Section 5 we will use an approximate controller design method based
on the RGA which is due to McAvoy [McAvoy, 1983]. Some conclusions are
given in Section 6.

2. The Design Problem

Our goal is to design the two PI-controllers in the system in Figure 1. The
Pl-controllers are defined by the transfer function

1

Gpr(s) = K.(1+ Tos

)

We will consider a process slightly different from Rosenbrock’s system, Exam-
ple 6.8 in [Astrom, 1983),
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Figure 2. Step responses for the uncontrolled process. To the left is the response
from u; to y1 and v, respectively, and to the right is ditto from u;.

We notice that separately, the four processes defined by the elements in G(s)
are easy to control. But because of a transmission zero at +1, the 2 X 2-system
will not be minimum-phase and is therefore hard to control.

If we let each of the inputs to the uncontrolled process be a step, we get
the responses in Figure 2. To the left are the step responses from u; to y, and
¥y, Tespectively, and to the right are the responses from u,. We notice the large
cross-coupling in the process; u; affects y, and u, affects y;.

3. Pl-design Based on Relay Experiments

In this section we will try to design the two PI-controllers via open-loop and
closed-loop relay experiments. The system is open-loop if one loop is closed
by a relay, while the other is open. In the same way, the system is closed-loop
when one loop is closed by a relay and the other is closed by a PI-controller.
Out of these relay experiments, we will derive the parameters K, and 7; in
the PI-controllers based on Ziegler-Nichols rules.

Relay Feedback

We will now shortly discuss relay feedback, see e.g. [Holmberg, 1991].

The characteristics for a relay with input m and output u is defined by
Figure 3, where d is the gain and ¢ is the hysteresis. The arrows mark the
allowed directions.

In Figure 4 we exemplify an arrangement of an open-loop relay exper-
iment. We are doing an experiment for the u;—y;-loop. Let this loop by as-
sumption have a limit cycle and let the closed loop begin to oscillate with a
frequency close to the ultimate frequency. From describing functions theory,
e.g. [Astrém, 1971], we know that the frequency and the amplitude of the limit
cycles are given by the points where the describing function intersects with
the Nyquist curve. If a denotes the amplitude of the first harmonic of the relay
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Figure 3. The relay with input m and output u is defined by its gain d and
hysteresis . The arrows mark the allowed directions.
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Figure 4. A block diagram for an open-loop relay experiment for the u;-y1-loop.

input, we will in our case have a describing function N(a) given by

1 T .TE
= 2 _g2_ 42"

“N(a) ad * ad
We notice that for a given relay gain and hysteresis, the reciprocal of the
negative describing function will be a line parallel to the real axis, see Figure 5.
For the special case of no hysteresis (¢ = 0) this line will be the negative real
axis.
The ultimate gain K, and the ultimate frequency w, are defined by the

equations
1

K, = Gliwy)] arg G(iw,) = -7«
K, and w, will be given by an experiment with a relay without hysteresis; this
will give the intersection marked ‘1’ in Figure 5. If we choose the hysteresis
€ > 0, e.g. because there is noise at the relay input, we will have an intersection
that is below the negative real axis. This case is marked ‘2’ in the figure. If € is
small, we can use hysteresis in the relay and let the given gain and frequency
be a good approximation for K, and w,.

PI-design

A design procedure and the results from applying it will now be discussed.
Let us consider the system given by Equation (1) and Figure 1. The ultimate
gain K, and the ultimate frequency w, for the u;-y;-loop can be determined
in the way illustrated in Figure 4. This is an open-loop experiment. Out of
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Figure 5. The Nyquist curve is interconnected with two describing functions,
one is dashed and one is the negative real axis. The intersection is marked ‘1’ for
the case of no hysteresis and ‘2’ for positive hysteresis.

K, and w,, we can derive the parameters of the PI-controllers based upon
Ziegler-Nichols choice, i.e.

2
K, = 04K, T, = 0.8T, = o.sw—7r

(3

There are four different loops to close by the relay. These are given by the
pairs u;-vy;, U;—¥z, Us—Y;, and uy;—y;. Thus we can design four different PI-
controllers. Further by using each of these PI-controllers, it is possible to do
four closed-loop relay experiments. In Figure 6 we show an experiment, where
we have used the Pl-controller designed by an open-loop relay experiment
in the uy—y,-loop. From experiments like the one shown in Figure 6, we can
derive PI-controllers for the second loop. The connection in the figure will give
a controller for the u;-y;-loop.

The algorithm for our PI-controller design based on relay experiments
will be as follows.

1. Do the four possible open-loop relay experiments.

2. Derive the parameters for the PI-controllers given by the open-loop ex-
periments.

3. Do the four possible closed-loop relay experiments, i.e. use a controller
derived in 2 to close one loop while doing relay experiment in the other.

4. Derive new PI-parameters given by the closed-loop experiments.

It would be reasonable to iterate 3 and 4, if the algorithm converges.

Simulations

We will now try the algorithm given above on our system in Equation (1). In
all our simulations we have used a discrete time relay with sampling period
0.01 s and hysteresis € = 0.01. When we do an open-loop relay experiment for
the u,—y;-loop, the typical relay oscillations appear as is shown in Figure 7.

4
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Figure 6. A block diagram for a closed-loop relay experiment for the u;—yi-loop.
The u3-y2-loop is controlled by a PI-controller.
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Figure 7. Results from the simulated relay experiment shown in Figure 4.

Out of these oscillations we can determine the ultimate gain K, the ultimate
cross gain K; (the ultimate gain calculated for the opposite output), and the
ultimate frequency w, for the u;—y;-loop. The results from the four possible
open-loop relay experiments are given by the following table.

loop | K, | K, | wa

u;—-y; | 16.3|16.3| 9.0

Uz—Y1 12.3 | 25.5| 10.9

U1—Y2 16.3 | 16.3 9.0

u;~y | 16.3 | 8.9 | 9.0

K, is not used in our design, but could be considered as a measurement of
the cross-coupling. The values above will give the following PI-designs based
on Ziegler-Nichols rules.

loop | K. | T;
U1—Y1 6.5 | 0.56
u,—y; | 4.9 | 0.46
u;—y, | 6.5 | 0.56
uy—y, | 6.5 | 0.56
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Figure 8. Results from the simulated relay experiment shown in Figure 6. We
see that the signals are changing behaviour after about 15 s.

If we try to use two PI-controllers, e.g. connected as in Figure 1, and designed
the way described above, we will get an unstable system. The design method
has not taken care of the cross-couplings in the process.

We now use one of the PI-controllers above to control one process loop,
while doing a closed-loop relay experiment in the other. Figure 6 illustrates
such a relay experiment. We are interested in examining if it is possible to
use this experiment to design controllers like in the open-loop case described
above.

In Figure 8 the results from a simulation of a relay experiment in the
u;—y;-loop while controlling the u;-y, is shown. The output y; shows that
we initially are having an almost stable sinusoidal oscillation, but after about
20 s it is changing its appearance drastically. The reason for this behaviour
is that the transfer function u;-y; has two complex conjugate poles with low
damping. If we assume that the u,—y,-loop is perfectly controlled, the damping
(¢) of the two poles will be 0.18. Poorly damped poles give an oscillating step
response. Since the relay output can be viewed as consecutive positive and
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Figure 9. Results from a simulated relay experiment. We have closed the
u;~y2-loop with a relay, while a Pl-controller closes the u;—y;-loop. As in Fig-
ure 8 we can see that the signals are changing behaviour after about 20 s. This
time the inputs and the outputs of the process reach constant steady-state values.

negative steps, the process output y, will for each step have an increasing
oscillation. This will give the signals in Figure 8. The poorly damped poles
are due to that the Ziegler-Nichols rules were used. A behaviour similar to
Figure 8 is shown in [Vasnani and Loh, 1993] for a 4 X 4-system.

Another interesting behaviour appears when we do relay experiments in
the u;—y;-loop while controlling the u;—y;-loop. In Figure 9 the results of a
simulation are shown. The slowly drift of the process outputs, will drive the
system in about 15 s into a state with constant outputs. Easy calculations for
the steady-state system, i.e. considering G(0), gives the same final values as
in Figure 9.

The results given above from the closed-loop relay experiments are not
easy to use for design based on the Ziegler-Nichols rules; we do not have a
stable limit cycle. In the next section, we will give some explanations on why
the relay oscillations above go unstable.



A reasonable way to avoid the strange behaviour of the closed-loop exper-
iments is to use a more conservative tuning rule than Ziegler-Nichols. Then the
controlled loop will affect the loop closed by the relay less, and we will have
stable oscillations. A drawback with this approach is that the final system will
be slow.

Summary

We cannot design a PI-controller for the process defined by Equation (1) us-
ing Ziegler-Nichols closed-loop method in the way described by the algorithm
above. The cross coupling in the process G(s) is too strong, so when we are do-
ing closed-loop relay experiments, the controlled loop will influence the other
loop too much. Hence, we cannot allow us to use relay design methods for
SISO-systems in a straight forward way on a MIMO-system. There are how-
ever possibilities to use more conservative tuning rules, but these give a slow
system.

4. Stability of Relay Oscillations

In this section we will use our process knowledge to show that the oscillations
for the closed-loop experiment above will be unstable. The theory we will use
are due to [Astrdm, 1993], but the basic theory is also included in [Astrém
and Wittenmark, 1989).

An Algorithm for Analyzing Stability of Relay Oscillations

Consider the system

dz
E—A$+BU (2)
y=Cz

Let the system output be fed back via a relay with amplitude d and hysteresis
€. The control signal u will be given by

[ d if e>e or e>—¢ and u(t—-)=4d
wt) = { -d if e<—¢ or e<e and u(t—)=—d (3)
where e = r — y = —y, if the reference signal » = 0.
THEOREM 1

Consider the system (2) with the feedback law (3). Assume that there exists
a periodic solution with period 2Ah. Then the following conditions hold.

€

h
O + ety /0 ettdsB = < (4)

t
y(t) = C(e**z(0) - / e**dsBd) > —¢ for 0<i<h
0

The periodic solution is the solution with the initial condition

h
a22z(0)=({T+ e“”‘)—l/ e**dsBd

0



A proof is given in [Astrom, 1993].
Now define v as the velocity of the state vector at time ¢t = 0—, i.e.

dz

= —(0) = Aa+ Bd (5)

v

Then we have the following theorem.

THEOREM 2
Consider the system (2) with the feedback (3). Assume that there is a sym-
metric periodic solution. Let a be the initial state that generates the periodic
motion, and

vC
=(I-—=-)®
w=( C'v)
where & = e#* and v is given by (5). The limit cycle is locally stable if and
only if W has all its eigenvalues inside the unit disk. a

A proof is given in [Astrom, 1993].
We define a function f = f(h) as the left part of (4), thus

f(hy=C(I+ e“”‘)'l/oh e**dsB (6)

Then Theorem 1 and 2 give the following short algorithm for analyzing a
system.

1. Find h such that f(h) = ¢/d.
2. Compute a, v, and W and check the conditions

dy

E(O) =Cv>0
[A(W)| < 1

y(t) > —efor0<t<h

Stability Analysis for the Considered Process

Now let us use this algorithm for our process. We will especially look at two
different relay loops.

First we consider the open-loop relay experiment, when there is a relay
in the u,-y;-loop. Since u; and y; do not affect the behaviour of the system,
we can treat it as a SISO-system. We determine a state space realization (2)
for this SISO-system and calculate f as in (6). The equation

f(h)=¢/d

where ¢ = 0.01 and d = 1, will have one solution: A = 0.33. This solution
corresponds to an oscillation with period T = 2h = 0.66 s, which equals the
period in the simulation in the previous section. Since

d
d—":(o) = Cv=0.70 >0
A(W) = {—0.24,0,0.00,0.04,0.04, 0.37,0.72}



Figure 10. The condition y(2) > —e = 0.01 for 0 < ¢ < h = 0.33 for stable
oscillation is fulfilled.

and y(t) > —e = —0.01 for 0 < t < h = 0.33 (see Figure 10), the three
conditions in Step 2 in the algorithm are fulfilled. Thus the oscillation is stable.

We now consider the closed-loop relay experiment when there is a relay in
the u,—¥,-loop, and the u,—y,-loop is controlled by a PI-controller designed as
in the previous section. From the input u; to the output y;, we can treat the
system as a SISO-system and determine a state space realization as above.
This time f(h) = ¢/d will have three solutions: h; = 0.31, h; = 0.66, and
hs = 2.02.

T, = 2h, = 0.62 s is the period of the unstable oscillation in Figure 8.
The eigenvalues of W are in this case

{-0.53,0,0.00 £ 0.03,0.03,0.57,0.95 + 0.48¢}

Thus there are two eigenvalues outside the unit disc, and the oscillation should
be unstable.

For the solution h; = 0.66 the first condition in Step 2 in the algorithm
is contradicted:

dy
—(0)=-255<0

For the third solution all the three conditions in the algorithm are fulfilled.
Hence there could be a stable oscillation with period T3 = 2h; = 4.04 5. As is
shown in Figure 8, the stable oscillation that appear after about 20 s has this
period.

5. Modified SISO Approach

We will now turn to another approach to design the two PI-controllers in
Figure 1. We will use a method that is described in [McAvoy, 1983]. We will in
this section for simplicity, exemplify the idea of the method with a discussion
around the design of a PI-controller for the u,—y;-loop.

The idea of McAvoy is to determine the ultimate gain K, and the ultimate
frequency w, for the open u;—y;-loop as we did in the previous section. Out of
these values we calculate the ultimate gain and frequency for the interacting
system K,; and w,r, respectively. Further, K,; and w,; are used to determine
the parameters of the PI-controller in the u;-y,-loop via Ziegler-Nichols pro-
posals, as in the previous sections. By this way, we will get a PI-controller that

10



is better suited for the multivariable process than if we had used the original
PI-controller determined by K, and w,.

In the first subsection we will introduce the dynamic relative gain array,
and in the second we will design PI-controllers and show the performance of
the closed-loop system.

Dynamic Relative Gain Array
The calculation of K,; and w,; are based upon a dynamic generalization of
the relative gain array. It is common to define the relative gain array A as

A = G(0) x (G(0O)™)T

where X denotes the element-by-element product and G(0) the stationary gain
of the process G, see e.g. [Astrém et al., 1990]. We define the dynamic relative
gain array by

Ap = G(s) x (G(s)71)" (7)

Thus, for the process given by Equation (1), Ap can be written as

_ [)‘11(5) 1\12(3)] (8)

b= A21(8) Azz(S)
or
1 s+3 -2(s+1)
AD =
—s+1{-2(s+1) s+3
Hence
3 -2
Ap - A= [ ] w—0
-2 3
and _
Ap — [ _2 4 ] w — 00

The dynamic relative gain array matrix gives a hint of what control loops
that should be chosen. A diagonal Ap is preferable. The different limit signs
of the elements above indicate that the system might be hard to control; the
behaviour of the system changes with the frequency.

PI-design

We will now develop a design method for the PI-controllers via the dynamic
relative gain array. Figure 11 defines the considered system and illustrates the
cross-couplings in the process.
Let us consider the u;—y;-loop when the u,—y,-loop is perfectly controlled,
ie.
Y2(s) = g21(s)Us(s) + g22(8)Ua(s) = 0

The characteristic equation for the u;—y;-loop will then be (if we exclude the
transform argument s)

14 ge1911 + 9c2922 + ge19c2(g11922 — 912921) = 0

which can be written as

Je19119:2922 -0 (9)

14 9:1911 + ge2g22 + 3
11

11



-1
= s Eaes e e e e ey |
ul Iy
c1 i gll -T-} ;
I |
| g |
| 12 |
I |
I |
| . |
l |
uZ} I Y
gc? | 1 gzz ~ i 2
e S J
P | -1

Figure 11. The four transfer functions g11, g12, g21, and g2z characterize the
coupling between the two inputs and the two outputs. The controllers are g.; and
Gge2.

We recall from Equation (1) that for our process g;;(s) = g22(8). To get a
simple and approximate analysis we do the rough assumption that g.(s) =
9gc2(8), due to the almost symmetric process. Then we can rewrite Equation (9)
as

9:1(8)g11(8) 14 ge1(8)g11(s) )=0

Au(s) + VAL (s) - )‘11(3 Au(s) — VAL(s) — Au(s)

In the frequency band around the ultimate frequency for the interacting system
Wyr, it is reasonable to think of A;;(s) as a complex constant, i.e. Aj;(s) =
A11(iwy ). Furthermore, let us do the assumption that Ay;(iwyr) = Ayi(iwy)-
Then theoretically the ultimate gain for the interacting system for the u;—y;-
loop becomes

(1+

0.42

All(iw’uf) + \/A%I(zwul) == All(iwul) ~
|§11(3'wu1)|

gll(iwul)

K-uI .

where the ultimate frequency for the interacting system is given by

e ERv o s

Since for our process

arg

arg{A11(tw,r) + \//\fl(iw“) — A11(fwyr)} = 0.052 = 0
we have approximately
arg{gi(wur)} = -7 > wyrRw,
From the calculations above, we finally get the following rough proposals
K,r = 042K, Wyl = Wy

12
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Figure 12. The step responses from u.; to 3; and ya, together with the control
signals u; and uz, when we used the design method following McAvoy’s idea. We
notice that the step responses are oscillating a lot.
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Figure 13. The step responses from uc to y1 and y2, together with the control
signals u; and w;. The circumstances are the same as in Figure 12, but the
integrator times (Ti) are tripled in the PI-controllers. (Notice that the time axes
are different in Figure 12.)

We now use these proposals to design a PI-controller for the u;—y;-loop
and repeat the design procedure for the uy;—y,-loop. This will lead to two PI-
controllers, both with K, = 2.46 and T; = 0.56. The step responses from u,,
to y; and y, are shown in Figure 12 together with the control signals u; and
uz. We notice that the step responses are oscillating.

An interesting observation is illustrated in Figure 13, where we have
tripled the integration time T; in both PI-controllers. The step responses are

13



then much better and about as fast as those of the open loop system, see
Figure 2, but the steady state values of y, and y, are the desired ones in
Figure 13.

Summary

The idea by McAvoy to calculate the two controller design parameters, the
ultimate gain and the ultimate frequency for the interacting system, out of
the open loop system feels intuitively correct. However, these PI-designs are
not satisfactory for our process. This is due to the large cross-coupling in the
process, which gives too large ultimate frequencies and thus to small integrator
times Tj.

6. Conclusions

We have tried to design PI-controllers for a 2X2-process in two different ways,
both based on Ziegler-Nichols closed-loop method. We have also done some
analysis of the stability of relay oscillations.

First we considered the idea of doing closed-loop relay experiments, i.e.
doing relay experiment in one loop while controlling the other. This gave
outputs of the system that we could not use for a design based on Ziegler-
Nichols closed-loop method. We did some analysis, which stated that the relay
oscillations for our process would have the observed behaviour.

As another approach for the PI-design, we made an analysis due to
McAvoy [McAvoy, 1983]. Probably because of the rough assumptions made,
e.g. that the controllers are identical, this design was not acceptable. We made
a small modification to this design, to show that it is possible to control the
process.
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