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Abstract

3D human body reconstruction from monocular images has wide applications in our life,
such as movie, animation, Virtual/Augmented Reality, medical research and so on. Due to
the high freedom of human body in real scene and the ambiguity of inferring 3D objects
from 2D images, it is a challenging task to accurately recover 3D human body models from
images. In this thesis, we explore the methods for estimating 3D human body models from
images based on parametric model and deep learning.

In the first part, the coarse 3D human body models are estimated automatically from multi-
view images based on a parametric human body model called SMPL model. Two routes
are exploited for estimating the pose and shape parameters of the SMPL model to obtain
the 3D models: (1) Optimization based methods; and (2) Deep learning based methods.
For the optimization based methods, we propose the novel energy functions based on some
prior information including the 2D joint points and silhouettes. Through minimizing the
energy functions, the SMPL model is fitted to the prior information, and then, the coarse
3D human body is obtained. In addition to the traditional optimization based methods,
a deep learning based method is also proposed in the following work to regress the pose
and shape parameters of the SMPL model. A novel architecture is proposed to put the
optimization into a training loop of convolutional neural network (CNN) to form a self-
supervision structure based on the multi-view images. The proposed methods are evaluated
on both synthetic and real datasets to demonstrate that they can obtain better estimation
of the pose and shape of 3D human body than previous approaches.

In the second part, the problem is shifted to the detailed 3D human body reconstruction
from multi-view images. Instead of using the SMPL model, implicit function is utilized to
represent 3D models because implicit representation can generate continuous surface and
has better flexibility for arbitrary topology. Firstly, a multi-scale features based method is
proposed to learn the implicit representation for 3D models through multi-stage hourglass
networks from multi-view images. Furthermore, a coarse-to-fine method is proposed to
refine the 3D models from multi-view images through learning the voxel super-resolution.
In this method, the coarse 3D models are estimated firstly by the learned implicit function
based on multi-scale features from multi-view images. Afterwards, by voxelizing the coarse
3D models to low resolution voxel grids, voxel super-resolution is learned through a multi-
stage 3D CNN for feature extraction from low resolution voxel grids and fully connected
neural network for predicting the implicit function. Voxel super-resolution is able to re-
move the false reconstruction and preserve the surface details. The proposed methods are
evaluated on both real and synthetic datasets in which our method can estimate 3D model
with higher accuracy and better surface quality than some previous methods.
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Popular Scientific Summary

In many scenes like movie, Virtual/Augmented Reality, and video games, 3D human body
models play important roles to model the motion and shape of the real human body. There-
fore, obtaining the 3D human body model is a practical task for many applications. Al-
though there are many imaging systems for 3D human body reconstruction, people still
would like to obtain the 3D human body from single- or multi-view 2D images because
2D images can be captured easily through many mobile devices. However, reconstructing
3D models from 2D images is a quite challenging task in computer vision because this is
an ill-posed problem. In addition, human body in real life has very high degree of free-
dom, which makes it more difficult to reconstruct 3D human body model from 2D images
accurately and efficiently.

This dissertation focuses on the methods to reconstruct 3D human body models from 2D
images through parametric human body model and deep learning. The dissertation at-
tempts to estimate 3D human body models from images from two aspects: coarse 3D hu-
man body model and detailed 3D human body model. The coarse 3D human body model
mainly focuses the 3D human pose through estimating the parametric human body, while
the detailed 3D human body model contains the details of the appearance of the human
body including clothes and shape.

For the coarse 3D human body model reconstruction, the dissertation proposes three meth-
ods based on parametric human body models and deep learning. The first two methods
mainly reconstruct the coarse 3D human body model through fitting the parametric hu-
man body model, SMPL model, to the prior information including joint points and silhou-
ettes. In addition, another method based on deep learning is also proposed. This method
estimates the pose and shape parameters of SMPL model through learning collaborating
multi-view model-fitting. These methods can reconstruct the coarse 3D human body with
good performance for the pose estimation.

For the detailed 3D human body model reconstruction, two methods through multi-view
2D images based on deep learning are proposed in the dissertation. In order to obtain
the 3D surface better, the implicit function is learned in the two methods to represent 3D
models. The first method learns the implicit function through multi-scale features extracted
by multi-stage hourglass network from multi-view images. The second method, which
is a coarse-to-fine manner, adds the voxel super-resolution which is also implemented by
learning implicit function to the first method. These two methods can reconstruct the 3D
human body model with detailed appearance from multi-view images.

This dissertation discusses the problem of 3D human body reconstruction from 2D images
and provides some possible solution to the problem. This practical research could be used
in many fields like animation and VR/AR.
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Contribution: Zhongguo Li came up with the idea, developed the theory, imple-
mented the algorithm and did all the experiments. Zhongguo Li wrote the most
texts of the paper. Anders Heyden and Magnus Oskarsson revised the paper and
gave some comments about the experiemts.

ii Zhongguo Li, Magnus Oskarsson, Anders Heyden, ”A Novel Joint Points and
Silhouette-based Method to Estimate 3D Human Pose and Shape”, In: the 25th
International Conference on Pattern Recognition Workshop (ICPR Workshop 2020), 3D
Human Understanding (3DHU),p.41-56, selected to submit to Journal of Imaging,
major revision.

Contribution: Zhongguo Li came up with the idea, developed the theory, imple-
mented the algorithm and did all the experiments. Zhongguo Li wrote the most
texts of the paper. Anders Heyden and Magnus Oskarsson revised the paper and
gave some comments about the experiments.

iii Zhongguo Li, Magnus Oskarsson, Anders Heyden, ”3D Human Pose and Shape
Estimation Through Collaborative Learning and Multi-view Model-fitting”, In:
2021 Winter Conference on Applications of Computer Vision (WACV 2021), p.1888-
1897, Best Paper Award: Applications.

Contribution: Zhongguo Li came up with the idea and developed the theory with
Magnus Oskarsson. Zhongguo Li implemented the algorithm, did all the experi-
ments and wrote the most texts of the paper. Anders Heyden and Magnus Oskars-
son revised the paper and gave some comments about the experiments.

iv Zhongguo Li, Magnus Oskarsson, Anders Heyden, ”Learning to Implicitly Repre-
sent 3D Human Body From Multi-scale Features and Multi-view Images”, In: the
25th International Conference on Pattern Recognition (ICPR 2020), p.8968-8975.

Contribution: Zhongguo Li came up with the idea, developed the theory, imple-
mented the algorithm, did all the experiments and wrote the most texts of the paper.
Anders Heyden and Magnus Oskarsson revised the paper, discussed the theory and
gave some comments about the experiments.

xiii



v Zhongguo Li, Magnus Oskarsson, Anders Heyden, ”Implicit Function Based
3D Human Body Reconstruction Through Multi-view Images and Voxel Super-
Resolution”, submitted to Applied Intelligence, under review.

Contribution: Zhongguo Li came up with the idea, developed the theory, imple-
mented the algorithm, did all the experiments and wrote the most texts of the paper.
Anders Heyden and Magnus Oskarsson revised the paper, discussed the theory and
gave some comments about the experiments.

The following paper is not included in the thesis:

vi Zhongguo Li, Anders Heyden, Magnus Oskarsson, ”Template Based Human Pose
and Shape Estimation From a Single RGB-D Image”, In:the 8th International Con-
ference on Pattern Recognition Applications and Methods (ICPRAM 2019), p.574-581,
Prague, Czech Republic.

Contribution: Zhongguo Li came up with the idea, developed the theory, imple-
mented the algorithm, did all the experiments and wrote the most texts of the paper.
Anders Heyden and Magnus Oskarsson revised the paper and gave some comments
about the experiments.

xiv



Acknowledgements

This thesis marks the end of four and a half years chapter of my life. There are so many
people who gave me much support for my PhD career. First of all, I would like to express my
deepest appreciation to my supervisors Prof. Anders Heyden and Dr. Magnus Oskarsson
for your guidance, patience, fruitful discussion and encouragement during the past four
years. I did not know much about the beautiful country when I arrived at Sweden first
time four years ago, but you provided me much assistance on the life and work in Sweden
so that I could start my study as soon as possible. Besides, I would like to thank my
colleagues at the Center for Mathematical Sciences and in particular the Computer Vision
Group for your support and help. They are Erik Bylow, Gabrielle Flood, Maria Priisalu,
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Chapter 1

Introduction

In this chapter, the background of the thesis is introduced to state the significance and
importance of our work. In the first part, the motivation and the challenges of the research
are presented to show the wide applications of 3D human body and the difficulties of es-
timating 3D human body from images. Then, the mathematical problems of estimating
3D human body from images are stated according to different methods and ideas. In the
following part, from several aspects, we fully summarize the related work on the problem
of 3D pose and shape estimation of human body including the advantage and drawbacks
of the different approaches. Finally, the contributions and the structure of the thesis are
presented.

1 Motivation

In the modern life, with the development of the Internet, mobile devices and artificial in-
telligence, enormous human-centered applications and services are playing more and more
important roles, which brings great convenience and is changing the way of our life. Be-
sides, although you might not notice it, as an important way to communicate, body lan-
guage accounts for at least 60 for the information exchange [146]. Therefore, if the com-
puter can better understand human body motion, it will bring significant progress for the
intelligent life and make it possible to build better human-computer interaction system.
Image is one of the most important media for computer to understand the world, espe-
cially for the human body in the world. It is necessary and important to analyze images
containing human bodies in computer vision because this is the basis for the services and
communication of the Internet. There are many tasks to analyze humans based on im-
ages such as instance and part segmentation [125], pose and shape estimation [155], human

1



(a) Movie (b) Game

(c) Animation (d) Virtual try-on

Figure 1.1: Several examples of 3D human body model: (a) Movie1; (b) Game2; (c) Animation3; (d) Virtual try-on4.

action recognition [149], 3D reconstruction [158] and so on. Among these tasks, estimat-
ing 3D human body including pose and shape from images is one of the most interesting
problems. Given some 2D images containing human body, the goal of the problem is to
build a 3D model which has the same pose and shape with the human body in the original
images. Since the 3D human body has wide application in practical fields and the problem
of inferring 3D objects from 3D images is ill-posed, this topic has attracted much attention
during past several decades.

The 3D human body model can be widely seen in many practical applications such as the
movie industry, the animation, the video games, the e-commerce fashion, biomedical re-
search and so on [123]. It has no doubt that 3D human body model has become an essential
role in our daily life, from entertainment to health, because of these applications. In the
modern movie industry, the special effects of simulating 3D human body of actors could
produce many scenes which may be dangerous for real actors or impossible to achieve in
real life such as movies about space and Sic-fi movies. Especially for many commercial
blockbusters, the special effect in the movie plays a very important role on the final box

1https://www.youtube.com/watch?v=1wK1Ixr-UmM
2https://www.pes-patch.com/pes-2020-of-changer-tool-by-nesa24/
3https://en.wikipedia.org/wiki/Visual_effects
4https://herinkheart.com/fashion-and-technology/
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office income because it can bring amazing visual experience for the audience, which will
attract more people to watch. In the animation and video games, accurate and realistic
human body is a crucial factor to provide us better experience and entertainment. For ex-
ample, in many Disney animation movies, researchers and animators need to capture 3D
annotations of a real human body and transfer them to the cartoon characters, especially
for the facial expression and body motion. The carton charactors with realistic facial ex-
pression and body motion can attract more audiences. Many video games, especially for
sports games like PES, require to create virtual athletic stars so that players can enjoy the
games better. The motion and action like running, jumping for the virtual athletic need
to be generated in those sport games. Besides, 3D human body model can also be used
for Virtual/Augment Reality in the e-commerce fashion so that we can shopping on-line
without worrying about the size and style too much, which may be useful to reduce the
rate of returning. In the biomedical fields, it is also a new trend to build 3D human body
to measure our body index like weight and BMI so that the status of our body can be pre-
dicted, which is possible to prevent some diseases. Figure 1.1 shows some examples about
the above mentioned applications in our life including movie, animation, video games and
e-commerce. Therefore, capturing and building 3D human body model accurately and
efficiently has good prospect considering its wide applications in real life, which makes it
become one of the most important and active fields in computer vision and graphics during
past decades.

2 Challenges

Although 3D human body model plays an important role in many fields, it is a challenging
task to build accurate 3D human body model from 2D images. Two factors make the
problem difficult: (1) Inferring 3D model from 2D images is an ill-posed problem; (2)
Human body in the real scene has very high degree of freedom. As human beings, it is easy
to understand and figure out 3D pose and shape only from 2D images because people have
seen various and enormous human body motions in the daily life of growing and people
even act similar poses in real scene, which accumulates a lot of experience for us. However,
this is impossible for a computer to infer accurate 3D objects only from 2D images without
any other prior information. It has inherent ambiguity to infer 3D model only from 2D
images and the human bodies in real scenes have many complicated motions and various
appearance. The examples of human bodies which has challenging properties in real scenes
are shown in Figure 1.2. The technical difficulties to estimate 3D human body model from
2D images are summarized in the following paragraphs.

Firstly, the depth information is lost when a 3D model is projected onto 2D image plane
by a camera. Recovering 3D objects from 2D images has some degrees of freedom and this
is a classic camera calibration problem in computer vision. For example, Structure from
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(a) Self-occlusion (b) Shape (c) Articulated pose

(d) Covered by chair (e) Outdoor (f) Clothes

Figure 1.2: The examples of human body in real scenes. The high uncertainty in human pose, shape, environment and appear-
ance makes the problem extremely challenging.

Motion (SfM) can reconstruct the 3D structure of a scene or object from a series of 2D im-
ages which can be used for estimating camera matrix through registering the feature points
in the images [110]. SfM can produce sparse or dense point clouds for the rigid objects
very well through estimating the camera matrix which can be used for computing depth
information. However, human body always has non-rigid motion and the dense 3D model
is often needed. Traditional SfM algorithm does not have good performance to recover a
moving 3D human body from a limited number of 2D images. In general, recovering 3D
model from 2D images faces high ambiguity due to the lack of depth information.

Secondly, human body always shows occlusion or self-occlusion in 2D photograph, which
results in that some parts of a human body cannot be seen directly from the 2D photograph.
The occlusion means that some parts of the human body are covered by other objects,
while the self-occlusion results from the human body itself if the human is performing
some actions or is not oriented to the camera. This leads to difficulty of estimating human
pose and shape directly from images through some traditional approaches. Estimating the
2D and 3D human body pose is a very important task in computer vision because human
pose estimation is an important step for motion tracking and human action recognition.
Considering that the pose of human body can be always represented as the locations of the
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joint points, there will be high uncertainty and freedom to estimate the accurate locations of
joint points only relying on images if some parts cannot be seen in the image. In addition,
if some parts cannot be seen in the image, inferring the shape of those covered parts of
human body is also a very difficult task.

Thirdly, a human body has internal high-dimension searching space. As we all know, a
human body has 206 bones, which is a high dimensional problem to model the motion
and deformation of the bones. In practice, different tasks will require different searching
space to model the human body motion. More specifically, for the human pose estimation,
20 to 60 joint angles which are defined by a skeleton are the most common situation for
the searching space of pose estimation. Although only about 20 joint points are usually
used in pose estimation, this is still a quite high dimension. Therefore, the optimization on
the problem of pose estimation alway requires highly computational efficiency to obtain
the optima.

Besides, human bodies in real life usually have various appearance. Inherently, different
people always show different height, weight, hair style, shape of muscles or even different
skins for different ages. These variation should be considered when 3D human body is
reconstructed from images because these are important to guarantee the realism. Further-
more, since people in ordinary life wear the different clothes both for male and female, it is
also crucial to depict the wear in the reconstructed 3D human models. However, there are
so many different styles on the clothes like tight clothes, loose clothes, hat, skirts and so on.
Obviously, the high degree of freedom of the appearance leads that modeling human body
is difficult and it will have great effect on the accuracy of the estimated 3D human body.
Therefore, the modeling of clothes is also a key problem for human body reconstruction.
On one hand, the very detailed model might be useful for specific problem but might not
be general for other scenes. On the other hand, inaccurate body model is not enough to
produce realism. The problem on balancing the accuracy and the generalization need to be
considered.

Finally, the environment around human body is also an important factor to affect the 3D
human body reconstruction from 2D image. There are many different scenarios in our real
world, for instance, indoor scene and outdoor scene. For different scenarios, many fac-
tors including the lighting, albedo, shadow and the color of background vary significantly,
which will affect the quality of 2D images. For many tasks, for example, the segmentation
of human body, the background may have great influence on the complexity of segmen-
tation. If the environment results in noise or artifacts in the images, extracting complete
human body from the background may be a hard task for many existing algorithms.

Since there are many challenges for the problem, it is an impossible task to tackle all the
problems in the thesis. For those human bodies with complicated poses, the thesis mainly
focuses on the estimation of the human pose and obtains the coarse human body mod-
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els. For those human bodies with simple pose and background, the detailed appearance
including the clothes is obtained in the final reconstruction. In the following section, the
mathematical problems of the coarse and detail reconstruction are discussed.

3 Problem statement

The goal of the dissertation is to reconstruct 3D human body model from 2D images,
which is an important field of research in computer vision. It involves many different sub-
problems, for instance, tracking [16], segmentation[125], 2D/3D skeleton estimation [155],
facial expression recognition [176] and hand gesture recognition [150]. Each of the small
topics plays important role for human-centered problems and has attracted enormous re-
search. It is impossible to involve and tackle all these problems in one thesis. In this disser-
tation, two cases are discussed and explored: images based coarse reconstruction and images
based detailed reconstruction of 3D human body. Given a series of 2D images containing
a human body from multiple views, the task is to estimate a coarse or detailed 3D human
body based on the images. For the coarse reconstruction, the details of the clothes and hair
are not considered. The most important task for the problem is to estimate 3D joint points
and modeling the human body. For the detailed reconstruction, the appearance of human
body like clothes and hair should be shown in the final 3D model. This is more complicated
than the coarse reconstruction, but the pose for the problem is usually simple. Figure 1.3
gives an example of the goal of this thesis. The coarse reconstruction is obtained based on
some parametric human body. It does not have details on the appearance of the human
body, but it can handle complicated poses. By contrast, detailed reconstruction displays
the clothes on the 3D model with simple pose.

3.1 Coarse reconstruction

Currently, there are two routes for the coarse 3D reconstruction from images: optimization
based methods and deep learning based methods. Traditionally, the optimization based
methods for the coarse reconstruction obtain the 3D models through fitting a human body
template to some prior cues extracted from images. The basic idea for the methods is shown
in Figure 1.4. Given 2D images, the prior information like joint points and silhouettes is
extracted. Then, defining the parametric human body model, the final reconstruction can
be obtained through fitting the parametric model to the extracted prior cues.

There are two problems in the methods: (1) prior information extraction and (2) the para-
metric human body model. The prior information can be extracted manually by experts
or automatically through some methods. The common prior information includes 2D/3D
joint points, silhouettes, depth image, video and so on. In addition, the research about
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(a) 2D images (b) Corase Reconstruction (c) Detailed Reconstruc-
tion

Figure 1.3: Given a series of 2D images (a), the goal of the thesis is to obtain the coarse reconstruction of human body (b) or
the detailed reconstruction of human body (c).

building the parametric human body model is also an important problem in computer
graphics. There are many classic parametric body models during past decades from simple
geometric primitives to linear skinning deformation. Recently, learning from some human
body datasets to build the parametric human body model is more popular. In general,
the parametric model is a set of 3D vertices and faces and is often defined as a function of
pose and shape, i.e., the parametric human body model is defined as M(θ, β) where θ is
the pose parameters and β is the shape parameters. After defining the M(θ, β), the prior
cues of the parametric model can also be denoted as a function of θ and β, i.e., PM (θ, β).
Then, an energy function can be defined based on the prior information of images and the
corresponding information of the parametric human body model PM as:

E(θ, β) = LP(PM (θ, β) , P(I)) + Lθ(θ) + Lβ(β), (1.1)

where LP measures the difference between PM and P. P(I) is the prior cues extracted from
given images I. Lθ and Lβ are the regularization terms for the pose and shape, respectively.
Through minimizing the energy function, the parametric human body model will fit to the
observation of the images because PM will be close to the observation P. The minimization
process is to estimate the pose θ and shape β through optimizing the energy function, i.e.,
the objective function is

{θ̂, β̂} = argmin
(θ,β)

E(θ, β) (1.2)

Some existing optimization library can be adapted to implement the above problem. After
obtaining the estimated parameters θ̂ and β̂, the coarse human body model can be produced
by M(θ̂, β̂).
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Figure 1.4: Optimization based methods for the coarse reconstruction of 3D human body model from images.

In addition to the optimization based methods, another idea for the coarse reconstruction
is to estimate the pose and shape of parametric human body model through Deep Neu-
ral Networks (DNN). In pattern recognition and machine learning, neural network is a
mathematical structure inspired by the biological neural networks to estimate nonlinear
function. In the beginning, neural network only had limited layers due to the restric-
tion of computation and memory of the computer. After 2000, with the development of
computer and GPU, researchers started to increase the layers of neural network to depict
complex nonlinear function. The classic structure of DNN is shown in Figure 1.5. Cur-
rently, DNN, especially for the Convolutional Neural Network (CNN), has become one
of the most popular tools in computer vision and has achieved significant success for many
tasks. There are many different network structure and many of them have been used for
the image classification problem [96, 162, 165, 62]. Here the application of CNN on the
coarse human body reconstruction is the main research field. Given a series of 2D images
xi, i = 1, ...,N and its corresponding labels yi, i = 1, ...,N, the goal of a CNN is to fit a
function f(·) which takes xi as input and exports the prediction, i.e.,

f(xi) = Wxi + b, i = 1, ...,N, (1.3)
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Figure 1.5: An example of deep neural network.

where W and b are the weights and bias of the neurons. For the CNN based methods,
the most important task is to estimate the proper W and b. The objective function for the
problem is

{Ŵ, b̂} = arg min
(W,b)

L(Wxi + b, yi), (1.4)

where L(·, ·) is the loss function between the predication and the ground truth. This can be
realized through gradient descent algorithm or some improved optimization algorithm. In
order to obtain the estimated weights and bias with good generalization, it requires enor-
mous data to train the network sufficiently. In the real implementation of CNN, there are
many tricks like nonlinear active function, pooling, normalization and data augmentation
to improve the generalization of the learned models. Many open-source machine learning
frameworks including Pytorch [37] and Tensorflow [50] have provided good API functions
to implement the CNN and to train the CNN, which has promoted the application of ma-
chine learning research. As long as proper Ŵ and b̂ are estimated, we can get the estimated
results from the input images.

In terms of the coarse human body reconstruction, the goal is to estimate the pose and shape
parameters of parametric human body from images. As shown in Figure 1.6, the CNN
encodes the input images as the parameters of human body models. Then, the estimated
parametric human body and annotations from the training dataset are used for building
the loss function. Through minimizing the loss function, the W and b of CNN can be
updated to fit a function which exports the parameters of parametric human body according
to the input images. Many public datasets for human pose estimation are available now
like LSP [76], MPII [9], Human3.6M [72], COCO [107]. These datasets contain various
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Figure 1.6: Deep learning based methods for coarse human body reconstruction.

poses and scenarios to mainly provide 2D and 3D joint points as annotations for the poses.
There are many methods attempting to improve the accuracy of pose estimation through
developing novel structure of network or advocating additional cues.

3.2 Detailed reconstruction

For the detailed reconstruction, the goal is to obtain the 3D model with detailed appearance
like clothes, wrinkle and so on. This is a more difficult task because both the pose and the
appearance of human body need to be considered. Traditionally, methods based on the
depth sensor have achieved success on the problem. However, we explore to estimate 3D
model from monocular images because monocular images are easier to capture than depth
images. As we mentioned above, recovering 3D objects from 2D images is an ill-posed
problem, so it is not easy to solve the problem efficiently. Recently, it starts becoming a
good idea to estimate 3D objects through learning an implicit function from a deep neural
network and the methods based on learning an implicit function are discussed in this sec-
tion. Implicit function is a function that is defined implicitly by an implicit equation. For
example, a surface can be defined by a function z = f(x, y) explicitly. It also can be equally
written as an implicit function F(x, y, z) = z − f(x, y), i.e., a surface can be represented
by a level set defined by F(x, y, z) = 0. Figure 1.7 demonstrates the explicit function and
implicit function to represent surface. Considering that the human body has high degree
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(a) Explicit representation (b) Implicit representation

Figure 1.7: Two ways to represent surface: Explicit representation VS Implicit representation.

of freedom, implicit function to represent 3D human body has two advantages: (1) easy
topology modification; (2) easy point classification on inside or outside.

The implicit function to represent 3D model is often defined as signed distance function
or binary occupancy value. Given a 3D point X, the signed distance function is defined as
the distance of X to 3D model,i.e.,

f(X) = SDF(X) ∈ R, X ∈ R3. (1.5)

The sign of f(X) represents that the point lies whether inside of the model (−) or outside of
the model (+). For the occupancy value, f(X) is 0 (inside of the model) or 1 (outside of the
model). If all the points in a 3D volume are assigned implicit values, the 3D model can be
then extracted by the iso-surface through marching cubes algorithm [115]. Considering its
good performance to represent 3D model with flexible topology, many researchers attempt
to explore 3D shape representation combining implicit function and deep learning recently.
The implicit function based on learning has been used for 3D objects reconstruction from
images in many research [30, 195]. In order to learn an implicit function from images to
represent 3D human body, there are two problems in this process. The first one is feature
extraction from the input and the second one is to estimate a proper implicit function to
classify the features.

As shown in Figure 1.8, input images are encoded as features by the CNN and a DNN
is used for classification of the features. Those features can be corresponding to the pixels
which are projected from the 3D points around the ground truth 3D model. For a spatial
3D point X, the corresponding 2D pixel x can be obtained through projected onto image
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Figure 1.8: The route of learning to implicitly represent 3D human body.

planes. Using fully convolutional network g(·), we can extract a spatially aligned feature
map from images. Through training a classifier f(·) to querying the feature, the point can
be decided inside or outside of the 3D model. Therefore, the problem is to train a good
feature extraction network g(·) and a classifier network f(·), i.e.,

{ĝ, f̂} = argmin
(f,g)

L(f(g(x)), o(X)), (1.6)

where o(X) is the occupancy value or signed distance of X to the ground truth 3D model.
L(·, ·) is loss function of prediction f(g(x)) and the ground truth o(X). As long as there
are enough images and the corresponding ground truth 3D models, it would be possible to
train the network to estimate an implicit function with good performance to present 3D
human body model. However, the datasets of accurate 3D human bodies are not common.
Even though there are some such datasets, many of them are not free and similar datasets
are often difficult to capture, which is a challenge for the research.

4 Related work

Image based 3D human body reconstruction is a classic but challenging task in compute
vision. Considering 3D human body model is strongly demanded in many applications,
there are enormous previous work to tackle the problem during past several decades. In
the beginning, the parametric human body model was one of the most important topic
in this field because it could provide strong prior information for motion tracking and re-
construction. From simple geometric primitives to learning based models, the parametric
human body model are becoming better to represent realistic human body. Since depth
sensor became affordable, many researches started to use depth sensor to reconstruct 3D
objects because the depth information can provide additional assistance for the reconstruc-
tion. With the emergence of deep learning and its significant success in many computer
vision tasks, more researchers turned to advocate this tool to explore 3D vision and they
made some progress on the problem in the recent years.
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In the following, some related work on the topic of 3D human body reconstruction from
images is summarized. The work can be divided into three parts: the parametric human
body model, the model-based methods for human body reconstruction including optimiza-
tion based methods and regression based methods, and the model-free methods for human
body reconstruction.

4.1 Parametric human body model

As the above description, human body in real scene demonstrates high freedom of poses
and appearance. Therefore, defining a parametric human body model as template is useful
for many tasks like motion tracking, 2D/3D pose estimation as well as 3D reconstruction.
Early work presented human body model mainly through simple geometric primitives, for
instance, cylinder for limbs. Hanavan did a pioneering work in which a mathematical hu-
man body model was proposed thorough using 15 simple 3D polygonal shapes [59]. Some
2D human bodies were also proposed based on several 2D ellipses and they had been used
for human gait analysis [66, 45, 56]. Besides, 3D human body model based on its kinematic
chain received much attention for 3D pose tracking [121, 153, 49]. For more complicated
case, some other 3D human body models were formed by using simple sphere [133] or
cylinder [121, 153]. Due to the limitation of geometric primitives on describing the shape of
human body, some complex human body models were introduced at the same time. For
example, Barr et al. proposed a synthetic 3D human body through more complex geomet-
ric shape called superquadrics [14]. Through introducing local or global deformation on
superquadrics, the synthetic model was able to simulate simply flexible motions and there
were some applications based on the superquardric model [141, 43, 80, 168, 145].

Driven by the quest of real applications like animations, researchers sought more realism for
modeling the human body instead of only using geometric primitives. Artist-driven mod-
els [21] were developed and the models could represent simple bones, muscles, and skin
of human body. However, obtaining the models was time-consuming and computation-
consuming, which limited the application in the early time when the performance of com-
puters was insufficient. Then, Linear Blend Skinning (LBS) method was introduced to
build parametric human body model with the better realism [98]. The techniques assigned
transformations of skeleton of a human body model to the vertices on the skin. The para-
metric human body model produced by LBS could depict the deformation and blends of
the skin, which produced better realism. Since than, some improved skinning methods
were proposed to produce better human body models including dual quaternion blend
skinning, spherical skinning, etc. [124, 84, 85, 183]. Although LBS methods and its im-
provements were used widely, the deformation at joints of the model was still suffering
from some unrealistic effects.

Another route to produce 3D human body model through learning from large datasets of
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real 3D human scans received more attention after 2000. The basic idea of the method
was to deform a template shape to match as many as human bodies with various pose and
shape from a dataset of 3D scans through learning algorithm like PCA. The pioneering
approach was proposed by Kakadiaris et al. [79] who built a body model through identify-
ing human body parts from a list of deformable models based on three orthogonal views.
Another important work was proposed in [6] where range data of a human body with 250
different poses was used for learning to model the upper body motion including the torso
and arms. They also extended their work to the whole human body [7] for shape variation.
The output of the above two models was the global positions of vertices in space, which
cannot represent the surface deformation. In [10], a method call SCAPE was proposed to
model human pose and shape from many dense 3D scans of different persons with differ-
ent poses. The pose and shape deformation models were learned from the set of 3D scans,
which was able to synthesize muscle deformation automatically to obtain more realism. The
learned models can represent pose and shape based on mesh triangle deformation rather
than vertices position, which attracted more attention. Then, some improved methods
based on learning from enormous 3D scans were proposed to overcome some visual arti-
facts of SCAPE [184, 61, 40, 65, 23, 143]. In [61], 550 3D scans of full body were utilized to
learn a unified model that described both human pose and body shape. Hirshberg et al. [65]
proposed a BlendSCAPE in which each mesh triangle face in the model was a linear combi-
nation of different body parts. Chen et al. [23] used tensor decomposition to build a model
preserving the dependency between body shape and pose. Aiming at the motion tracking
of the human bodies with soft-tissue deformations, a model called DYNA was built based
on SCAPE [147] from more than 40, 000 scans of 10 subjects. DYNA predicted the soft-
tissue deformation through learning a second-order human body model. In order to make
the model consistent with existing animation software, Loper et al. [113] proposed a popu-
lar statistical human body model called Skinned Multi-person Linear (SMPL) model. This
model was learned from CAESAR dataset [152] which had more than 2000 3D scans for
each gender. The novelty was that the pose-dependent blend shapes of this model were lin-
ear function of pose rotation, which enabled to learn the model from a large number of 3D
scans. They also extended SMPL to model the soft-tissue deformation and formed a model
called DMPL. For the real-time application of human body with soft-tissue, Bogo et al. [19]
proposed a method called Dynamic FAUST. Considering its advantage, SMPL model had
been widely used for motion tracking, 3D pose estimation, shape recovery etc. Consider-
ing SMPL model only focused on the body shape and pose motion, Romero et al. [154]
proposed SMPL-H which integrated hands motion into SMPL to model the hand gesture.
Furthermore, face expressions were considered in SMPL-X [139] to produce better realism.
Since the above models were learned from dressing-less 3D scans, they cannot model a
person with various clothes. In [148], the authors segmented part clothes and added the
to SMPL, but the clothes had no deformation with the variation of pose, which affected
its realism in real scene. It had been a popular method to integrate the learned clothes
model by DNN and human body to simulate human body with dressing [91, 54, 136]. Be-
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sides, generative models on 3D meshes started attracting attention. For example, a novel
method called CAPE was proposed to learn the clothing deformation according to the pose
of SMPL [116]. In Figure 1.9, several parametric human body models are shown including
superquadric model [43], SCAPE [10], SMPL [113] and SMPL-X [139].

(a) Superquadric model (b) SCAPE (c) SMPL (d) SMPL-X

Figure 1.9: Some parametric human body models: (a) Superquadric model; (b) SCAPE; (c) SMPL and (d) SMPL-X.

4.2 Model-based methods for human body reconstruction

The parametric human body model could provide strong prior information for the esti-
mation of 3D human body. Therefore, there are many approaches based on the paramet-
ric human body to tackle human-related problems including human motion tracking and
3D human body reconstruction. Since the problem of 3D human body reconstruction
from images is the main topic of the thesis, the model-based methods for human body
reconstruction are summarized in the section. In general, two routes for the problem can
be summarized for the 3D human body reconstruction: optimization-based methods and
regression-based methods. Traditionally, it is popular to fit the parametric human body
to some cues like joint points through minimizing a cost function, which belongs to the
optimization based methods. With the successful application of deep learning in many
computer vision tasks, more researchers attempt to estimate the 3D human body from im-
ages through regressing the parameters of parametric human body, which belongs to the
regression based methods. The survey on the two routes are presented in the following
sections.
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Optimization-based methods

Early work for 3D human body reconstruction was implemented through fitting the para-
metric human body model to prior information like silhouettes and joint points because
of the advantage of the parametric model. In the beginning, many methods based on
the parametric human body and optimization were solving the problem of motion track-
ing [32, 144, 67]. In terms of the shape estimation, early work mainly solved it for the
human body with fixed pose. They estimated the human body shape through fitting the
parametric human body to the silhouettes of single or multi-view images. The reason was
that the parametric human body models at early time were often too simple to recover the
complicated pose deformation[64, 51], which also resulted in that the estimated 3D human
body models were still very coarse. After the SCAPE model which could represent human
body with better realism was proposed, Balan et al. [13] proposed to utilize the SCAPE as
human body template to track human motion in 3D space. They firstly extracted skeleton
from the silhouettes and initialized the SCAPE with the skeleton. Then, they fitted the ini-
tialized SCAPE model to the silhouettes extracted from images. This method could handle
rich pose and achieved a 3D model with better realism. Similar idea was used for estimat-
ing naked 3D human body from images with clothed human [12]. Besides, Guan et al. [53]
introduced manually labeled 2D joint points as well as silhouettes to build energy function
and fitted the SCAPE model to these cues through minimizing the energy function. With
the emergence of consumer depth cameras, for example, Kinect, depth images were also
used as a prior cue to build energy function for fitting the SCAPE model [186, 17, 108].
Bogo et al. [17] proposed an improved SCAPE model called Delta and used this model to
fit joints and silhouettes and refined the appearance and remove displacements of depth im-
age through optimization. In addition, many methods also used pre-scanned human body
model from laser sensors as a template to track the human body motion [31, 42]. For in-
stance, the authors used segmented image and estimated skeleton to track motion through
fitting an articulated template in [42]. Aiming at the problem of optimization based on
pre-scanned model, the novel non-rigid optimization algorithm was proposed [101, 100]
to achieve better fits. In these methods, the template was non-rigidly registered to the ob-
served 3D scans to track the human body model or some other nonrigid objects. Since
the paper [90] was published, deep learning started to play an important role in many
computer vision tasks. Human pose estimation and semantic segmentation based on deep
learning achieved the state-of-the-art performance [171, 142, 109, 22]. An automatic method
for 3D human pose and shape estimation was proposed in [18]. The 2D joint points were
autometically estimated by Deepcut [142], and then, the SMPL model was fitted to the
2D joint points to get the 3D human body model. The output of this method was de-
formed SMPL model and it was a flexible method. Based on this method, silhouettes,3D
joint points from depth image, and multi-view images were added to improve the results
in some methods [68, 104, 103]. Alldieck et al. [3] proposed a novel method to unprojected
the SMPL model to improve the shape estimation. They built an energy function between
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multi-view silhouettes and unprojected SMPL model to fit the shape. This method can es-
timate some simple clothes of human body because the unprojected SMPL model relaxed
the constraints of the original SMPL model. In [78], the key points of face, hand and body
were used and an unified deformation model called ”Frank” was fitted to build a 3D mod-
els including facial expression, hand gesture and body motion. Besides, there were some
other methods in which pre-scanned template was used instead of SMPL model [196, 58].
Xu et al. [196] automatically obtained the 2D and 3D joint points and silhouettes though
deep neural networks firstly. The skeleton of the pre-scanned model was extracted and was
fitted to both the estimated 2D/3D joint points and silhouettes. The method called Live-
cap [58] tracked the accurate 3D human body in real-time based on single-view RGB video.
In general, optimization-based methods rely on the parametric human body model which
is used for fitting to the limited information extracted from images such as joint points
and silhouettes to reconstruct 3D human body. It is a classic and useful route for human
body tracking and reconstruction during past decades. Although the above methods have
achieved some success, they are heavily dependent on the accuracy of prior information,
which limits its application in practice.

Regression-based methods

Deep learning techniques have achieved great progress to tackle many tasks in computer
vision and image processing such as classification [90], detection [47], segmentation [109]
etc. In the fields of human-related tasks, 2D or 3D human pose estimation is one of the
most impressive application of deep learning. There have been enormous work on 2D and
3D human pose estimation based on DNN [171, 185, 117, 119, 20, 193]. The work in [171]
was the pioneer idea to estimate 2D joint points based on CNN. Now these methods have
achieved great progress on many public datasets for human pose estimation. Besides, previ-
ous work on human body segmentation including full and partial body also had impressive
results [130, 190, 63] based on deep learning. Therefore, the impressive performance of the
deep learning on human pose estimation and segmentation can automatically provide prior
information like joint points and silhouettes. The deep learning can be used for predicting
prior cues for the optimization-based methods [18, 3, 78, 196]. However, compared to the
whole images, these cues are still quite sparse. Therefore, many researchers have started
to use the DNN, more specifically, CNN to regress the human body pose and shape pa-
rameters directly from the whole images. At early stages after the emergence of deep neural
network, silhouettes were often used for defining the loss function to learn the human body
shape through CNN. In [33], a CNN model regressed the silhouettes to learn human body
shape based on SCAPE. There was improved method in which the augmented silhouettes
with different scales and multiple views were used for cross correlating the model shape [35].
However, the methods in [33] and [35] only handled human body with very simple pose
like ”A” pose, and thus, they cannot be used for more complicated cases. In [166], the
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authors proposed to infer parameters of SMPL model through silhouettes re-projection
loss. This work increased the flexibility of the pose. Lassner et al. [92] used 91 2D joints
obtained by SMPLify and they built loss function based on this to regression the pose and
shape parameters of SMPL model. Kanazawa et al. [81] proposed an end-to-end 3D hu-
man body recovering method. They used CNN to regress the pose and shape parameters
of SMPL model from single image. The loss function for training was based on the joint
points of image and the joint points of the regressed SMPL model. They achieved impres-
sive performance for 3D pose estimation and 3D human body reconstruction only from
one single image. Inspired by this method, some novel methods for 3D human pose and
shape estimation based on SMPL model and CNN were proposed in the following years.
Image sequence was used in [175] to train the CNN for motion capture. In [131], the idea
was similar, but the semantic segmentation of a human body was also used as input of
the CNN. Pavlakos et al. [138] integrated silhouettes and predicted mesh to improve the
shape performance during building the loss function for training. Kolotouros et al. [88]
put optimzation-based SMPLify into a training loop to form a self-supervised framework.
There were still many literatures based on CNN and SMPL to obtain the 3D model through
regressing the pose and shape parameters [82, 201, 140, 89, 87]. Since the parametric human
body model do not represent appearance like clothes and wrinkles, the above methods can
only built coarse 3D human body model without detailed appearance. In order to model
the appearance, Varol et al [178] proposed a coarse-to-fine method in which the authors
firstly regressed SMPL model, and then, used a volumetric representation to fine-tune the
details of the appearance of the SMPL model. This coarse-to-fine framework inspired many
other approaches [4, 2, 203, 15] . These methods added the appearance to SMPL models
to represent clothes. Although the model-based methods have achieved impressive results,
they had poor ability to present the details of the appearance because many parametric
human body models do not consider the appearance like clothes or hair.

4.3 Model-free methods for human body reconstruction

In contrast to the model-based methods, model-free methods do not depend on the para-
metric human body model and attempt to directly reconstruct 3D human body model from
image based on some other information. Since the human body in real scene always wears
various clothes and has different hair style, model-based methods fail to parse these appear-
ance on the parametric model. In order to tackle the problem, model-free methods could
be a possible option to recover the detailed 3D human body including the dressing, hair,
facial expression, etc. Due to the high freedom, detailed 3D human body reconstruction
is quite challenging. Multi-view images based reconstruction, for example, visual hull, was
proposed very early because it was an intuitive idea. In addition, depth sensor like Kinect
can be used for detailed reconstruction and using depth sensor to reconstruct accurate 3D
objects has achieved impressive performance. Recently, benefiting from the deep learning
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in 3D vision, there are some approaches which have achieved some success to reconstruct
3D objects from RGB images. The route attracts much attention due to its impressive re-
sults. In the following sections, the previous methods based on the above three routes are
summarized.

It is an intuitive way to reconstruct 3D human body based on multi-view images. Visual-
Hull was a classic concept to estimate 3D objects from multi-view silhouettes [93, 39, 111,
34]. These methods estimated a volume occupancy through fusing silhouettes from multi
views and refined the volume by stereo matching or some other optimizations. The 3D
model estimated by these methods often had very coarse appearance.

Another route to reconstruct detailed 3D human body is to use depth camera which pro-
vides depth information for common RGB images. Although commercial depth scan-
ner [86] had been produced very early and it had been used for building 3D objects, it was
hard to be deployed due to its reliance on environments and was expensive for common
users. In 2000, Microsoft released a consumer-grade depth sensor called Kinect which is
affordable and convenient for many researchers [122]. Since than, many approaches based
on RGB-D images captured by Kinect for reconstructing 3D shapes have been proposed.
KinectFusion was a classic method to build rigid 3D objects based on Kinect [73, 127].
This method took multi-view RGB-D images and produced the point cloud by Kinect.
Then, the Iterative Closet Point (ICP) was utilized to register these multi-view point clouds.
Through fusing the point clouds, the full 3D objects or 3D scene can be obtained. Although
KinectFusion achieved impressive results, it only focused on the rigid object reconstruc-
tion, which was not suitable for nonrigid human body. Aiming at nonrigid reconstruc-
tion, many improved fusion algorithms were developed [205, 128, 71, 163]. These methods
mainly explored to reconstruct general non-rigid objects. Since human body was an im-
portant subject in computer vision, there were also literature only for 3D human body
reconstruction [28, 170, 102, 198, 199, 99]. Recent work [105] even can generate detailed
3D human body with extremely loose clothes in seconds based on the Kinect.

Although depth camera is a useful tool to reconstruct 3D objects, it is still inaccessible
for common people compared to the RGB images. During past years, learning based 3D
reconstruction gained popularity because of the successes of deep learning in 3D vision. In
the early stage, the 3D model was represented as explicit volumetric grids. These methods
used 3D CNN to operate on voxel grids based on single image [189, 27, 174, 188] or multi-
view images [83, 52, 135]. However, the volume resolution of these methods was quite low
(e.g. 323 or 643) because explicit volumetric representation took too much memory. Some
improved methods to store the grids as octree structure and they increased the resolution
to 5123 [151, 167, 60]. In addition to the explicit volume representation, generating point
cloud from images was also an application of deep learning in 3D vision [38, 1, 57]. These
methods mainly focus on general objects and they generated discrete 3D model, which may
miss some details on the surface. In order to generate 3D human body with high resolution,
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some work proposed a coarse-to-fine manner to solve the problem. They firstly generated
discrete voxel grids, and then refined it to a mesh [182, 187, 48]. In contrast to explicit
representation or point cloud, implicit function based 3D reconstruction based on deep
learning shows some advantages. Implicit function for 3D model is a memory efficient way
for the training of CNN and it can produce continuous 3D topology. Instead of storing
the x-y-z positions of voxels, 3D model can be represented by the level set which is defined
by an implicit function. Based on the idea, some researchers had proposed to reconstruct
3D shape from images through learning an implicit function [120, 134, 24, 26]. In [120],
the implicit function was defined by occupancy value, while signed distance function was
used in [134]. These methods showed good efficiency on the memory and demonstrated
competitive performance on the accuracy of the 3D reconstruction.

Although the above work focus on general simple objects, it still inspired to build 3D human
body from images based on deep learning. In [46], the authors fed a coarse 3D model es-
timated by visual hull into an end-to-end deep neural network to obtain the refined 3D
model. Silhouettes were also used in [164] to obtain accurate 3D human body shape.
Gabeur et al. [41] estimated hidden depth and visible depth from given images through
deep neural networks and combined the two depths to generate 3D model. Alldieck et
al. [5] extracted texture UV maps from images through DeepPose and translate the UV
maps to a 3D model. Their results had detailed appearance of human body including the
wrinkles of clothes, hair, and facial expression. The approach in [95] had similar idea, but
it introduced garment segmentation in the method. In [126], synthetic multi-view silhou-
ettes generated by 2D human pose were used for visual hull to generate 3D model. In [69],
a CNN extracted multi-scale features from multi-view images and the features were used
for classifying the occupancy value. Satio et al. [156] proposed a high-resolution 3D human
body reconstruction method from images. They used hourglass network [129] to extract
spatial aligned feature grids. They also proposed a refined method by combing the normal
of images to improve the details of the appearance [157]. In [132], a novel tetrahedral signed
distance function was learned to reconstruct 3D human body from single-view image. Im-
plicit function based 3D human body reconstruction in deep learning is demonstrating
competitive detailed 3D human body models from images and it will attract much atten-
tion in next years.

5 Contribution

In this thesis both model-based methods and model-free methods are proposed for 3D hu-
man body reconstruction from multi-view images. The goal of these methods is to get
coarse 3D human body based on parametric human body and to get detailed 3D human
body based on learned implicit function. For all of these methods, the inputs of our meth-
ods are multi-view images and the output is the estimated coarse or detailed 3D human
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body model. In general, the contributions of the thesis are summarized below: (1) Some
novel energy functions based on joint points and silhouettes are defined to estimate coarse
3D human body models; (2) An improved architecture collaborating the training of CNN
and the multi-view fitting is proposed to use multi-view images to estimate the coarse 3D
models; (3) Multi-scale features are extracted to learning the implicit function for detailed
3D model reconstruction; (4) A coarse-to-fine method combining multi-view images based
reconstruction and voxel super-resolution is proposed based on learning implicit function;
(5) The results of the proposed methods on some datasets achieve competitive performance.
The proposed methods are shown from the Chapter 2 to Chapter 6 and the main contri-
butions of each chapter are briefly summarized in the following sections.

Parametric Model-based 3D Human Shape and Pose Estimation from Multiple Views

In this paper an optimization based method for human body reconstruction is proposed.
In this method we propose to establish a novel energy function based on the joint points
of multi-view images and the parametric human body model, SMPL [113]. During the
optimization, the energy function is minimized over through all the multi-view images
simultaneously. Not only the pose and shape parameters of SMPL, but also the rotations
of multi-view cameras are updated during the optimization. Since the energy function is
build based on the multi-view images, the pose and shape estimation of SMPL model can
be more accurate and robust. The output of this method is a coarse 3D human body based
on the SMPL model. The results of this method achieve better pose estimation on the final
3D human body model than traditional method based on the single-view image.

Joint Points and Silhouette-based Method to Estimate 3D Human Pose and Shape

In this paper a novel method is proposed to estimate the pose and shape parameters of he
SMPL model. Both joint points and silhouettes of multi-view images are used to build the
energy function for the optimization. Firstly, the energy function for pose fitting is built
based on images from sparse views. Afterwards, the silhouettes and the SMPL model after
pose fitting are built correspondence in 2D and 3D space, which can be used for defining
the energy function of shape fitting. Through minimizing the energy functions of pose and
shape fitting, the SMPL model can be fitted to pose and silhouettes and the final 3D model
has better pose and shape estimation. Comparing to previous work based on the image
sequence, this method can estimate a 3D human body model only from limited number of
images and the final model has better shape estimation. The experiments demonstrate that
our method can better recover the 3D model from multi-view images than some previous
methods.
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3D Human Pose and Shape Estimation Through Learning Collaborating Multi-view
Model-fitting

In this paper we put optimization based method into a training loop of a CNN model
based on multi-view images to estimate 3D human body model. The novelty of the paper
is that multi-view images are used during the training instead of only relying on single
image. This training strategy can be implemented because some public datasets for human
pose estimation are capture from multi-view cameras system. The CNN takes the multi-
view images to regress the pose and shape parameters of SMPL model. Then, the regressed
SMPL model is used as the initialization for the optimization. During the optimization,
the pose, shape as well as the body orientation are optimized simultaneously based on
the multi-view images so that the SMPL model achieves the best fit on all the multi-view
image planes. Finally, the optimized SMPL model is used for constructing loss functions
to supervise the training of CNN. The regression and optimization form a collaborative
learning process based on multi-view images, which better uses the relation between the
multi-view images. Experiments on several public datasets demonstrate that our method
achieves higher accuracy on the 3D pose and the final 3D models also have good shape.

Learning to Implicitly Represent 3DHuman Body FromMulti-scale Features andMulti-
view Images

In this paper a model-free method for 3D human body reconstruction is proposed. This
method reconstructs 3D human body model through learning implicit function from multi-
view images. In general, the method consists of feature extraction and feature querying.
Feature extraction is implemented by multi-stage hourglass networks which can encode
the multi-view images as multi-scale features, which is the key novelty of the method. The
feature querying is implemented by a fully connected network which classifies the features
to decide the corresponding pixel if inside or outside of the ground truth 3D mesh. The
multi-scale features encode both local and global spatial information, and thus, can better
reconstruct the 3D human body model with details. The experiments on public dataset
demonstrate that the proposed method can reconstruct detailed 3D human body model
from images and surpasses the previous work.

Detailed 3D Human Body Reconstruction From Multi-view images Combining Voxel
Super-Resolution Through Learning Implicit Representation

In this paper we propose a coarse-to-fine method for the detailed 3D human body model
reconstruction based on learning the implicit function for 3D representation and voxel
super-resolution. The novelty of the method is that the 3D reconstruction and voxel super-
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resolution are combined. We firstly use the method in the above paper to estimate 3D
human body from multi-view images. Then, the estimated 3D model is voxelized to low
resolution voxel grid. Using the low resolution voxel grids as input, we design a multi-stage
3D CNN to extract multi-scale features. Again, a fully neural network is used for classify-
ing the features. The whole 3D model is also implicitly represented during the voxel super-
resolution. The voxel super-resolution based on multi-scale features not only preserves the
detailed of the appearance, but also removes those incorrect reconstruction of the first step.
Therefore, this two steps compose a coarse-to-fine process to reconstruct detailed 3D hu-
man body from multi-view images. Experiments on the pubic dataset valid the promising
performance of our method. The quantitative and qualitative results demonstrate that our
method achieves higher accuracy on the 3D reconstruction than some previous approaches.

6 Thesis outline

The thesis proposes several methods to reconstruct the 3D human body model from im-
ages. In Chapter 2, 3 and 4, the SMPL model is used as the template, while optimization-
based and regression-based methods are proposed in the three chaptes, respectively. The
three chapters mainly focus on the coarse 3D human body reconstruction and the methods
achieve good performance on the human pose estimation. In Chapter 5 and 6, learning
implicit function is a main tool to reconstruct detailed 3D human body model from im-
ages. The experiments on two datasets demonstrates that the proposed methods have better
performance.

Overall, this thesis is organized as follows: In the first chapter, the introduction of the thesis
is presented including the motivation, challenges, problem statement and the related work
summery. Chapter 2 to 6 are the corresponding published papers I to V and we also list the
contributions of each paper in the above section. Finally, the conclusion, the discussion
about the achieved results and the possible directions of future work are summarized in
Chapter 7. The structure of this thesis can be summarized as Figure 1.10.

Figure 1.10: The structure of our thesis. The Chapter 2 to Chapter 6 are the main proposed methods corresponding coarse
reconstruction and detailed reconstruction.
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Chapter 2

Parametric Model-Based 3D Human
Shape and Pose Estimation from
Multiple Views

Abstract

Human body pose and shape estimation is an important and challenging task in computer
vision. This paper presents a novel method for estimating 3D human body pose and shape
from several RGB images, using detected joint positions in the images and based on a para-
metric human body model. Firstly, the 2D joint points of the RGB images are estimated
using a deep neural network, which provides a strong prior on the pose. Then, an energy
function is constructed based on the 2D joint points in the RGB images and a paramet-
ric human body model. By minimizing the energy function, the pose, shape and camera
parameters are obtained. The main contribution of the method over previous work, is
that the optimization is based on several images simultaneously using only estimated joint
positions in the images. We have performed experiments on both synthetic and real im-
age datasets, which demonstrates that our method can reconstruct 3D human bodies with
better accuracy than previous single-view methods.

1 Introduction

A 3D model of the human body is required in many applications, such as video games,
e-commerce, virtual reality, biomedical research, etc. It is, therefore, important to have
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robust and accurate methods for recovering models of humans from one or several RGB-
images. This is, however, a difficult problem, due to non-rigid motion, different clothing
and complex articulation. This makes 3D body reconstruction a very challenging and in-
teresting task in computer vision.

Aiming at effectively acquiring a realistic and personalized 3D human body, many methods
have been proposed during the past decades, many using expensive active reconstruction
equipment or improving the performance of reconstruction algorithms based on structure
from motion methods. Using 3D scanners or multiple calibrated cameras in a controlled
environment can obtain 3D models with very high accuracy [77]. The disadvantage of such
methods is that these systems are very expensive and relatively complicated to build.

Besides these scanning systems, another line of research is to obtain 3D models from images
acquired by ordinary cameras or depth sensors by stereo reconstruction algorithms or fusion
algorithms [73, 159, 28]. These methods do not require expensive equipment or complicated
set-ups, but are instead based on computationally expensive computer vision algorithms.
Structure from motion (SfM) can reconstruct the 3D model of a person with static pose
from a moving camera. Using depth sensors, for instance the Kinect, one can also obtain
a 3D model through fusion of the geometries obtained from different view-points. These
methods do not require any prior information, such as human shape.

Although these ideas have achieved a lot of progress on effectively obtaining 3D reconstruc-
tions, there is still a need for simpler methods to reconstruct 3D human body model. With
the remarkable progress of human pose estimation based on deep learning, 2D/3D joint
points have been the useful information for the reconstruction. Therefore, other methods
based on strong prior information are proposed to reconstruct 3D models and have shown
good performance. These methods can estimate a 3D human body model from one monoc-
ular RGB image by fitting the statistical human body model to the human pose predicted
by a DNN [18, 68]. However, only one image is not sufficient to accurately reconstruct 3D
models in many cases, due to self-occlusion and complicated articulated motion.

In this chapter a method is proposed to use several (e.g. a sequence of ) RGB images which
are acquired from different viewpoints to reconstruct the 3D human body based on a
skinned multi-person linear shape model (SMPL) [113]. An energy function is defined
tp measure the difference between the 2D joint points of the RGB images and the 2D joint
points of the projected SMPL model. The 2D joint points of the RGB images are predicted
by OpenPose [20]. The difference between our method and SfM-based methods is that we
only use the estimated joint positions to reconstruct the 3D model. At the same time, the
camera orientations are also regarded as parameters when the energy function is minimized.
The advantage is that several images from different viewpoints can provide more accurate
3D information and the number of the images used in our method is in general fewer com-
pared with SfM-based methods. Experiments on synthetic data and Human3.6M [72]
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show that our method obtains more accurate pose estimation and 3D shape, than similar
methods based on a single image.

2 Related work

As shown in [3], related work is basically divided into two categories: methods that do not
use parametric models and methods based on parametric models.

Non-parametric model based methods typically reconstruct 3D models from images ac-
quired by a camera from different viewpoints or from the fusion of depth sensors. The
results of the methods can be obtained accurately without using any strong prior informa-
tion. However, the person should stand still to capture the data and the computation is
quite complex and time-consuming. The most well-known algorithm is KinectFusion [73]
which creates 3D models in real time by incrementally fusing the partial scans from a
moving RGB-D sensor. It has good performance for rigid objects, but is not designed
for articulated motion. Therefore, for the 3D reconstruction of a static person, some ap-
proaches [159, 28] inspired by KinectFusion are proposed. These methods cannot achieve
satisfying result for the dynamic person since the human body typically is moving non-
rigidly between different views. DynamicFusion [128], which is the pioneering work for
the reconstruction of non-rigid objects, can reconstruct the 3D geometry in real time for a
slowly moving person. Other methods such as KillingFusion [163] and BodyFusion [198]
are proposed to improve the results based on DynamicFusion. However, these approaches
are only suitable for slow motion and have high computational complexity. In order to
obtain more accurate results, multiple Kinect sensors or several calibrated cameras can be
utilized to create 3D human body models. In [36], the authors propose to use eight Kinects
to obtain the 3D model with high accuracy. Multiple cameras are also used in [77, 97] to
reconstruct the 3D human body. However, there are technical challenges and it is expen-
sive to build a system with eight Kinects or to build the indoor environment like [77] for
many practical applications.

Parametric model-based methods often rely on a template which provides strong prior in-
formation during the reconstruction. The template can be reconstructed from depth data or
using a pre-computed human body model. In [101, 202, 55], a novel non-rigid registration
algorithm is proposed to register a pre-scanned model to other partial depth data acquired
by Kinect. In [202], a template is obtained through registering several high quality partial
scans and then a personalized 3D model is reconstructed by fitting to the template. Some
other algorithms [196, 205] have similar ideas but they use more complicated information
or hardware to improve the accuracy and efficiency. Besides pre-scanning the template, a
number of statistical human body models have been proposed based on training of a hu-
man body set, such as SCAPE [10], SMPL [113] and so on [147]. In [186] the authors use
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Figure 2.1: The overview of our method.

the SCAPE model to fit the depth image to obtain a 3D model. The improved SCAPE
model, Delta, is proposed in [17] and a detailed body reconstruction algorithm is presented
in this paper. In [18], the authors propose to fit the SMPL model by using 2D joint points
predicted by a DNN-based method. Huang et al. [68] use a similar idea but they focus on
the video problem, using temporal information. In [81], an end-to-end adversarial learn-
ing method is used to estimate the human pose and shape parameters by fitting the SMPL
model. Alldieck et al. [3] propose an algorithm to obtain the consensus shape and then use
both pose and consensus shape to fit the SMPL model in order to obtain better result.

3 Method

The aim of this chapter is to obtain the 3D model of a human body from several RGB
images taken from different view-points. Our approach is inspired by the the work in [18]
where the 3D human body model is estimated from only one RGB image. Although the
method in [18] has achieved some accuracy, the error is still noticeable in many cases since
one RGB image cannot supply enough information. As an improvement, we propose to
use several RGB images taken from different view-points to reconstruct the 3D model.
This leads to a more challenging optimization problem, since the motion of the cameras is
unknown, and we need to introduce the parameters of the cameras as variables to estimate.
Firstly, we estimate the positions of the 2D joint points of the person in the images through
OpenPose. Then, the SMPL model is fitted to the pose of the person in different views
by optimizing an energy function in which the camera parameters are included. Finally,
the pose, shape and the camera parameters are estimated to obtain the 3D model of the
human. The pipeline of our method is summarized in Figure 2.1. In the following, we
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firstly introduce SMPL model, then the energy function and finally the optimization that
gives the estimation of the camera parameters as well as the pose and shape parameters of
the 3D human model.

3.1 SMPL model

The SMPL model encodes both pose and shape parameters [18]. The pose is defined from
the parameter θ, which represents the relative rotations of the 23 joint points with respect
to the root joint. The shape is represented by the parameter β, which describes the strength
of each mode in a shape space obtained from a principal component analysis (PCA) from
a registered training set. The pose parameters are represented as a vector θ ∈ R72 and the
shape parameters as a vector β ∈ R10.

The output of the SMPL model after introducing pose and shape is a mesh with N = 6890
vertices and F = 13776 faces, M(θ, β) ∈ RN×3. In this model, the 3D joints are obtained
by linear regression from the surface mesh vertices, i.e., a function of the pose and shape
coefficients. Therefore, the pose and shape parameters can be estimated by optimizing an
energy function based on the joint points.

3.2 Energy function

The approach in [18] is called SMPLify, in which the projection of the 3D joints of the
SMPL model is fitted to the 2D joint points predicted by a CNN-based method. The ad-
vantage of this method is that only one image is utilized to obtain the 3D model. However,
one disadvantage of SMPLify is that in some situations one image does not contain enough
information for obtaining an accurate 3D reconstruction (due to self-occlusion, articulated
motion and ambiguous pose). Other methods based on traditional SfM pipelines, require
a lot of images from different views and are computationally intensive. Therefore, we pro-
pose to use several images from different views into SMPLify because more images will
provide more regularization and it is convenient to not use too many images. The problem
of this idea is that the parameters of the cameras from different views are unknown, which
makes the projection of the joint points of the SMPL model difficult. The solution to this
problem is to use the parameters of the cameras together with the pose and shape of the
SMPL model as the variables of an energy function during the optimization. The advantage
of this method is that we can obtain not only the estimation of the pose and shape but also
an estimate of the cameras parameters (position and orientation).

The energy function contains three parts: the pose-fitting term, the shape parameter regu-
larization term and the pose parameter regularization term. The energy function is defined
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as:
E(θ, β, Ri) = EJ(θ, β, Ri) + λθEθ(θ) + λβEβ(β), (2.1)

where EJ(θ, β,Ri) is the pose fitting term, Eθ(θ) is the pose parameters regularization term,
Eβ(β) is the shape parameters regularization term and λθ and λβ are weights. In the energy
function, the pose θ, the shape β and the rotation of the camera Ri can be estimated through

{θ̂, β̂, R̂i} = argminE(θ, β,Ri). (2.2)

The most important term is EJ in our method and it is defined as

EJ(θ, β, Ri) =

N∑
i=1

K∑
k=1

ρ(Πi(JS,k) − J(i)2d,k), (2.3)

where N is the number of images, K is the number of joint points, JS,k is the k-th 3D
joint points of the SMPL model, Πi is the i-th camera, J(i)2d,k is the k-th 2D joint point
estimated by OpenPose for the i-th image and Ri is the rotation for i-th camera. The error
ρ is measured by the Geman-McClure function [44] which gives robustness to large noise
and outliers. This function is defined as

ρ(x) =
x2

σ2 + x2 , (2.4)

where x is the absolute errors of 2D joint points and σ is a constant. The projection of the
3D joint points of the SMPL model in the i-th camera is

Πi(JS) = RiJS + ti,

where ti is the translation of the i-th camera. The translation is calculated separately using
the shoulders and hips, which implies that we can assume that the person is standing parallel
to the image plane. Because the projection is linear, the derivatives of the error function
can be computed easily during the optimization.

The pose regularization is needed for avoiding the knees and elbows bending unnaturally
and it is defined as

Eθ(θ) = α
∑
i

exp(θi), (2.5)

where θi denotes the pose of the joint points of elbows and knees and α is a constant that
controls the penalization. The shape regularization term is defined as

Eβ(β) =
∑

βi, (2.6)

i.e. as the sum of the elements of β.
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3.3 Optimization

The optimization is performed in two steps. In the first step the camera translation is
estimated. Here the focal length of the camera is assumed to be known. The camera
translation can be estimated through fitting the shoulders and hips in the SMPL model
and the predicted 2D pose.

In the second step the model is fitted through minimization of (2.1). The parameters λθ and
λβ are decreased gradually during the optimization. The minimization method is based on
Powell’s dogleg method, which is provided by the python modules, OpenDR [114] and
Chumpy [112]. For four-view images with 320× 240 size, it takes about 2 minutes for the
minimization on a desktop machine.

4 Experiments

In this section some experiments are presented to illustrate the performance of our method.
In the first experiment, a small synthetic dataset is generated based on SURREAL [177] in
which a large amount of synthetic human bodies with different poses and shapes are created
based on the SMPL model. Since the SURREAL only provides videos from one view, we
generate three more images from the other views. Then, for the real images, our method is
evaluated on the Human3.6M which is for the evaluation of human pose estimation.

In order to quantitatively compare the results, the metric for evaluation is defined as:

Error =
1
N

N∑
i=1

||Jgti − Jesti ||2, (2.7)

where Jgti is the ground truth of the 3D joint points and Jesti is the estimated 3D joint points.
In this part, there are a total of 24 joint points for the SMPL model.

In our experiments, the parameters (λθ, λβ) decrease as (404,100), (404,50), (58,5), (4.78,1).
The σ is set to 100 and α is 10. The maximum number of iterations is 100 for every stage
and the stopping criteria is that the error of the energy function is smaller than 10−3. The
experiments are implemented in Python and our desktop machine has a 4 core Intel i5-6500
CPU @ 3.20GHz with 8 GB RAM.

Table 2.1: The mean errors of SMPLify compared with our method using respectively 2, 3 and 4 images.

SMPLify Ours- Ours- Ours-
Mean error 0.0177 0.0113 0.0108 0.00525
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Figure 2.2: The errors of the 100 samples for multi-view images. We compare the results from one image (blue), two images
(Green), three images (Black) and four images (Red).

4.1 Results on synthetic data

The synthetic images are generated based on SURREAL. SUREAL dataset is generated by
the SMPL model through giving different pose and shape parameters to the SMPL model.
It contains more than 10, 000 small videos and each small video consist of 100 frames.
In each video, the human body performs a continuous action like walking and jumping.
Since this is a very large dataset, it is difficult to evaluate all the image sequences. We
decide to extract a small syntheic dataset based on SURREAL. This small dataset consists
of the first 100 videos from the training set of SURREAL. Considering that some videoes
in SURREAL have the same pose and shape parameters, we only take the first 100 videos
who have different poses and shapes. Only the parameters in the first frame of the 100
videos are taken out. We utilize 100 pose and shape parameters from the training data of
SURREAL into the SMPL model to generate 100 different 3D human bodies. Then, four
images whose sizes are 320 × 240 are rendered by cameras from different view-points for
each human body model. The multi-view images have black backgrounds and white body,
which can be seen in Figure 2.4. By doing this, we can also get the ground truth of 2D joint
points from all views. In following experiments on the synthetic dataset, we implement our
method to get the 3D models from two, three and four views respectively. As comparison,
we use the method called SMPLify in which only one single image is used.

The errors for the 100 samples and the mean error using different number of images are
given in Figure 2.2 and Figure 2.3, respectively. Figure 2.2 is the errors of the 100 examples
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Figure 2.3: The mean errors of the 100 samples for mulltiview images.

when different number of images is utilized, while Figure 2.3 shows the mean errors of the
100 examples when the number of used images is different. It is shown from Figure 2.2
that the error is smaller when more images are used in the method for most samples. In
some cases, the error of our method with two or three images is greater. This is because
images from two different views may influence each others since the camera at the side
position cannot capture all of the joint points. Besides, we can see from this figure that the
results of our method are more stable. For the Figure 2.3, it clearly illustrates that the mean
error decreases when more images are used. The images from more views can provide more
information for the estimation and this will reduce the ambiguity of the 2D joint points
in the image planes. In general, the estimation will be more accurate if multi-view images
can be acquired.

The mean error of the 100 samples is also given in Table 2.1. We can see that the mean
error decreases when more images are utilized and that the performance of our method
surmounts that of SMPLify, which shows that more images indeed can provide more useful
information. The mean error of SMPLify on the small synthetic dataset is 0.0177, while
the mean errors of our method from 2, 3, and 4 images are 0.0113, 0.0108 and 0.00525,
respectively. This table is consistent with Figure 2.2 and Figure 2.3.

In order to better demonstrate the results, Figure 2.4 gives qualitative results from the syn-
thetic dataset. In this figure, we only give the results of SMPLify and the results obtained
by our method from four-view images. We give four examples in this figure and the white
bodies in each row are the multi-view images used in our method. Since SMPLify only uses
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Figure 2.4: The figure shows results on synthetic data. Each row corresponds to one person with some unknown shape and
pose. For each row the left hand image in each column is the input image for frame one to four. The middle image
in column one is the result from SMPLify using only the input image from frame one. The right hand image in each
column is the result of our method using all four input frames.

one single image, only the first view image is used for comparison. The middle image in
column one is the result from SMPLify using only the input image from the first view. The
right hand image in each column is the result of our method using all four input frames.
We can see from the first image that our method has better performance, especially the last
one. The images from other views show that the estimation of the cameras by our method
is very correct, which demonstrates the effectiveness of our method.
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4.2 Results on Human3.6M

Table 2.2: The mean errors of SMPLify and our method based on four views for the eight actions of S1.

Directions Discussion Eating Greeting
SMPLify [] 0.4866 0.4205 0.7401 0.6624

Ours- . . . .
Phoning Posing Purchasing Sitting

SMPLify 0.7270 0.6746 0.5410 0.4784
Ours- . . 0.5471 .

Table 2.3: The mean errors of SMPLify and our method based on four views for the eight actions of S6.

Directions Discussion Eating Greeting
SMPLify [] 0.4880 0.3870 0.3597 0.4895

Ours- . . . .
Phoning Posing Purchasing Sitting

SMPLify 0.4543 0.5815 0.5530 0.4291
Ours- . . . .

There are total of 11 subjects ( 6 males, 5 females ) in Human3.6M and every person has
15 actions. In order to test our method sufficiently, we choose S1 which is a female and
S6 which is a male to evaluate our method on 8 actions: Directions, Discussion, Eating,
Greeting, Phoning, Posing, Purchasing and Sitting. For each action, we sample the video
every five frames and take total of 100 frames. The results of SMPLify and our method
with four images are compared. The metric for the comparison is also computed according
to (2.7). In this part there are 16 joint points because the number of joints in Human3.6M
is 16. Similarly, the errors of every frame in the different actions for S1 and S6 are shown
in Figure 2.5 and Figure 2.6. The mean errors of the 100 frames in each action for S1 and
S2 are shown in Table 2.2 and Table 2.3. It is shown in these results that our method can
obtain more accurate estimation in most cases.

In addition, some images from the dataset are shown in Figure 2.7 and Figure 2.8. We can
see from Figure 2.7 and Figure 2.8 that SMPLify has obvious errors such as the occlusion of
the arms and bodies. Our method sometimes also have unexpected errors because of having
a side-view such as the first sample in Figure 2.8. The reason is that our method relies on
all of the observed images. Therefore, if one camera translation is not estimated correctly,
it will affect the images from other views, and then, the final results may be incorrect after
the optimization. However, SMPLify only uses one image and if this image is not captured
from the side view, the result is sometimes better than ours. In general, our method can
achieve better estimation than SMPLify.
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(a) Directions (b) Discussion

(c) Eating (d) Greeting

(e) Phoning (f) Posing

(g) Purchasing (h) Sitting

Figure 2.5: The errors of every frame of the eight actions for S1.
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(a) Directions (b) Discussion

(c) Eating (d) Greeting

(e) Phoning (f) Posing

(g) Purchasing (h) Sitting

Figure 2.6: The errors of every frame of the eight actions for S6.
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Figure 2.7: Some samples from S1. The first images are given the results of SMPLify and our method from left to right.
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Figure 2.8: Some samples from S6. The first images are given the results of SMPLify and our method from left to right.
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5 Conclusion

We have proposed a method to reconstruct a 3D human body model from several RGB
images taken from different view-points. Our approach starts by estimating the 2D joint
points of the images by using a DNN-based method called OpenPose. Then, a statisti-
cal human body model, SMPL, is utilized to fit the predicted 2D joint points from the
images by minimizing an energy function over all images simultaneously. Finally, our
method estimates both the pose and shape parameters of the human body as well as the
camera parameters. Experiments on synthetic and real data quantitatively and qualitatively
demonstrate that the results of our method are better regarding the pose error compared to
the previous method based on only one image .

Our method also has some limitation. If the images are captured from the side view, the
joint points will be very close to each other or even at the same position, which makes our
method unstable. Also, we mainly focus on the estimation of the pose and this implies that
the shape of the reconstruction is less accurate. However, this is a fundamental limitation
of all methods that only use the joint positions and disregard the contours of the body.
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Chapter 3

A Novel Joint Points and
Silhouette-based Method to Estimate
3D Human Pose and Shape

Abstract

This paper presents a novel method for 3D human pose and shape estimation from images
with sparse views, using joint points and silhouettes, based on a parametric model. Firstly,
the parametric model is fitted to the joint points estimated by deep learning-based human
pose estimation. Then, we extract the correspondence between the parametric model of
pose fitting and the ground-truth silhouettes in 2D and 3D space. A novel energy function
based on the correspondence is built and minimized to fit the posed parametric model to
the silhouettes. Our approach uses comprehensive shape information because the energy
function of silhouettes is built from both 2D and 3D space. This also means that our
method only needs images from sparse views, which balances data used and the required
prior information. Results on synthetic data and real data demonstrate the competitive
performance of our approach on 3D pose and shape estimation of the human body with
medium detailed appearance.

1 Introduction

Estimation of 3D human body models from images is an important but challenging task in
computer vision. In many practical fields, for instance, video games, VR/AR, E-commerce
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and biomedical research, 3D human body models are needed and play vital roles. How-
ever, the human body in real scenes naturally exhibits many challenging properties, such as
non-rigid motion, clothes and occlusion. These factors make it difficult to accurately and
efficiently estimate the 3D human body model from images, and many approaches have
been proposed to obtain 3D human body models during the past decades.

Time-of-flight cameras, and other types of hardware solutions, can provide depth infor-
mation and have been one of the solutions to the reconstruction of 3D human bodies
[73, 128, 163, 199, 194]. More specifically, depth cameras are utilized to capture RGB im-
ages and the corresponding depth images of the scenes. The 3D meshes of each view can
be computed from the RGB-D images and the complete 3D model can be estimated by
fusing the 3D meshes of each view. The process of fusion is often implemented using the
Iterated Closest Point (ICP) algorithm [73] or other similar improved algorithm, which
are often computation-consuming. Since these methods only can handle rigid scenes well,
research on dynamic scenes has been explored [128, 163, 199, 194]. However, compared to
ordinary cameras, the cameras with depth sensors are still expensive and calibration of the
depth camera can also be complicated.

With the development of deep learning architectures, 3D human body models can be es-
timated by optimization- [18, 3] or regression-based methods [81, 88]. For these methods
based on optimization, prior information, for example, human poses and silhouettes can
be estimated by deep neural networks. The 3D model can, then, be obtained by fitting the
parametric human body model to the prior information. The regression-based methods use
deep neural networks, for example, convolutional neural network (CNN), to directly esti-
mate the parameters of the given parametric human body model from images, by training
the deep neural networks[81, 178, 88]. Both approaches have been explored extensively and
have achieved good performance in 3D human body reconstruction. However, regression-
based methods require a large amount of data to train the neural network. This often
requires much work and it is difficult, and sometimes expensive, to generate the dataset.
Compared to regression-based methods, the human pose estimation and semantic segmen-
tation based on deep neural networks have been well developed and many pre-trained mod-
els can be utilized directly. This means that prior information in optimization-based meth-
ods can be more easily estimated through deep neural networks. For these reasons, our
choice of method, proposed in this paper, is also optimization-based.

In this paper, the goal is to estimate the 3D human body from images. Since this is a
very complex problem and one single image can only provide limited prior information,
a number of images taken from different view-points are used in our paper. The human
pose estimation based on deep neural network [192] is adopted to estimate the joint points
of the human body in the multiple-view images. The Skinned multi-person linear model
(SMPL) [113], which is widely used in the methods based on optimization, is the parametric
human body model also used in our paper. Then, an energy function is established based
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on the predicted joint points and the joint points of the SMPL model. By minimizing
the energy function, we can achieve an estimated 3D human body model which has a pose
consistent to the observed images. In addition, the silhouettes are exploited to improve
the shape of the estimated human body model. Through building the correspondence
edges between the estimated human body model and the given silhouettes from 2D and
3D space, the energy function for the silhouettes is constructed. The shape parameters of
the human body model are obtained by optimizing the energy function. Therefore, the
final 3D human body model is generated by the estimated pose and shape parameters after
pose fitting and shape fitting. The experiments on synthetic data and a public real dataset
validate the performance of our method. The 3D models obtained by our method have
medium detailed appearance.

In summary, the contribution of our method consists of two parts. Firstly, an improved
energy function for silhouettes is constructed from 2D and 3D perspectives to estimate the
parameters of shape. Secondly, a small number of images (four in our experiments) from
different views are applied in our method, which balances the number of images and the
prior information.

The article is organized as follows: Section 2 contains a review of related work. Section
3 presents the idea of our method. Then, the experiments on synthetic and real data are
described in Section 4. Finally, Section 5 concludes the whole work and discusses possible
future work of this paper.

2 Related work

In order to obtain 3D human body model from images, researchers have explored a lot of
methods from hardware and software during the past decades. These work can be basically
categorized according to whether a parametric human body model is adopted in the meth-
ods. For the approaches which do not depend on any parametric human body model, the
3D reconstruction of human body is mainly implemented from RGB-D images captured
by depth cameras. In contrast to the above methods, the approaches based on a parametric
human body model often attempt to estimate the pose and shape from common RGB im-
ages. We call the two categories parametric model-free and parametric model based methods,
respectively.

Parametric model-free methods often reconstruct 3D human body models from RGB-D
images, which means that these methods often require depth cameras. KinectFusion [73]
was the typical work which used a Kinect depth camera to reconstruct the 3D meshes of an
indoor scene with static objects. However, KinectFusion was mainly aiming at reconstruct-
ing rigid objects rather than dynamic scene like a moving human body. In order to tackle
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non-rigid reconstruction, DynamicFusion [128], VolumeDeform [71], KillingFusion [163]
were proposed over the next several years. These methods can handle reconstruction of
non-rigid and moving objects, but they typically only obtain good performance for partial
body or small slow moving objects. Yu et al. proposed BodyFusion [198] and DoubleFusion
[199] to reconstruct the whole 3D human body model for moving persons with high accu-
racy. One common thing in all of the above work is that they utilize one single Kinect to
recover the 3D human body model. In order to improve the accuracy more, some methods
based on multiple Kinects [197, 36] were proposed to reconstruct 3D geometry, which was
more complicated to set than single a Kinect. Besides, commercial depth cameras [194] was
also a tool to reconstruct 3D models. The core idea of the parametric-model free methods
is that they utilized depth cameras to capture RGB-D images and fused the meshes of each
view to obtain the final 3D model. Although the work has achieved good performance
for 3D reconstruction of human body, cameras with depth sensor are still inconvenient in
many applications.

Parametric model based methods often tackle the problem through fitting a parametric
human body model to prior information of the given images. The parametric human body
model is often trained by a dataset and is defined as a function of variables which can
represent prior information like pose and shape. The parametric models such as SCAPE
[10] and SMPL [113] have been used in many methods. Recently, an improved model
called SMPL-X was proposed by considering the motion of face and hands [139]. With the
development of deep learning, some methods exploited deep neural networks to regress
the parameters of the parametric model, hence we call them regression based methods. In
[81], the pose and shape parameters of the SMPL model were estimated by training a deep
encoder network. In [178], the loss function of mesh was added to further finetune the mesh
of the 3D model. In [138], the pose and shape parameters were separately trained in two
pipelines to make the result better. Kolotouros et al. [88] used the output of deep neural
network to initialize the SMPL model and then supervise the training process of deep neural
networks through the SMPL model. In [140], texture was utilized to capitalizes on the
appearance constancy of images from different viewpoints. Although these methods have
achieved competitive results, collecting datasets for training is still cumbersome work and
training the network is also time-consuming. Another way to solve the problem is to fit the
parametric human body model to prior information through optimizing an error function
(optimization based methods). Early work [161] used SCPAE to estimate the articulated
pose and non-rigid shape. In [53], silhouettes and joint points were manually obtained and
the SCAPE model was fitted to the priori clues to estimate the parameters of SCAPE. In
[186, 17], RGB-D images were utilized to estimate the parameters of SCAPE model. Xu et
al.[196] scanned a template as the parametric model and used it to fit the prior information
through optimizing an energy function. Bogo et al. [18] proposed a method called SMPLify
in which the joint points were predicted by human pose estimation based on a deep neural
network, and then SMPL was fitted to the estimated joint points. Moreover, silhouettes
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Figure 3.1: The overview of our method. 2D joint points of multi-view images are extracted by CNN. Then, pose fitting are
proposed to fit the SMPL model based on the 2D joint points. Finally, the deformed SMPL model are fitted to the
silhouettes to obtain the final results.

[3] and multiple images with different views [68, 103] were introduced as prior information
for the SMPL model. Overall, optimization based methods are often easier to implement,
since it is unnecessary to create datasets and to do training.

3 Method

In this section we present the method to obtain a 3D human body model from a small
number of images taken from different view-points, using the joint points and silhouettes
based on the SMPL model. The overview of the proposed method is shown in Figure 3.1.
Here we use four images as the example. The pipeline of our method consists of two stages:
pose fitting based on joint points and shape fitting based on silhouettes. For the pose
fitting, the joint points of images from multiple viewpoints are estimated firstly using a
CNN-based human pose estimation. The parametric human body model SMPL is fitted
to the predicted joints through minimizing an energy function. Furthermore, we need to
establish the correspondence between the pose-fitted SMPL model obtained by the first step
and the silhouettes of the multiple-view images. The energy function can be built based
on the correspondence from 2D and 3D space. Through minimizing the energy function,
SMPL is fitted to the silhouettes of the four images to estimate the shape of the human
body.
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3.1 Parametric human body model

The parametric human body model in our method is called SMPL which is learned from
an aligned human body dataset [113]. SMPL is defined as a function of pose θ⃗ ∈ R3×24 and
shape β⃗ ∈ R1×10 of the human body. The output of the function is a mesh with V = 6890
vertices and F = 13776 faces. This means that we can generate different 3D human bodies
as long as we can get proper parameters of θ⃗ and β⃗. There are 24 joint points in SMPL and
each of them is represented as the rotation vector in terms of the root point, i.e., the i-th
joint point is represented as θi ∈ R3. The shape parameters β⃗ are the first 10 coefficients
of the principle components of the training dataset.

3.2 Pose fitting

In the following, we explain the pose fitting in our method between SMPL and estimated
joint points. For given multiple-view RGB images, the joint points are predicted by a
CNN-based human pose estimation method [192]. In order to ensure the accuracy of
human pose estimation, we firstly use CornerNet [94] to detect the bounding box of the
person, and then use the image with bounding box into [192] to predict the joint points.
Note that the order of the output of [192] is different from the order of joints of SMPL. For
given N images from different views, the joint points are defined as J(i)2d , i = 0, ...,N − 1.
For the SMPL model, the joint points JS are in 3D space and JS is a function of pose θ⃗

and shape β⃗. Suppose that the camera transformation matrix is Πi = (Ri, ti) for the i-th
camera. The projected 2D joint points of the SMPL model on the image plane can be
represented as Πi(JS(θ⃗, β⃗)). Therefore, the energy function to fit the SMPL model using
joint points is defined as

E(θ⃗, β⃗,R, t) = Ejt(θ⃗, β⃗,R, t) + ωθEθ(θ⃗) + ωβEβ(β⃗) , (3.1)

where Ejt is the joint points term and Eθ(θ⃗),Eβ(β⃗) are the regularization term for θ⃗, β⃗. ωθ

and ωβ are the weights of the regularization terms. R is {R1,R2,R3} and t is {t1, t2, t3}.
The joint points term Ejt measures the difference between all of the joint points J(i)2d and
Πi(JS(θ⃗, β⃗))

Ejt(θ⃗, β⃗,R, t) =
N−1∑
i=0

ρ
(
J(i)2d −Πi(JS(θ⃗, β⃗))

)
, (3.2)

where ρ is the Geman-McClure function [44] and is defined as ρ(x) = x2/(σ2 + x2). σ is
a constant and it is set as 100. Geman-McClure function can better deal with large noise
and outliers. The regularization term for θ⃗ is defined as

Eθ(θ⃗) = α
∑

i=55,58,15,12

exp(θi) , (3.3)
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Figure 3.2: An example of correspondence between silhouette and SMPL model in 2D and 3D space. The left is the 3D corre-
spondence and the right is the 2D correspondance between SMPL and silhouettes. The red points are SMPL vertices
and the blue points are the corresponding points on silhouettes.

where α is a constant which is set as 10 and the 55-th, 58-th, 15-th, and 12-th elements in
θ⃗ are the joint points on the left and right elbows and keens. This can avoid the arms and
legs to exhibit strange bending. The regularization term of β⃗ is defined as

Eβ(β⃗) =
9∑

i=0

βi . (3.4)

The advantage of our method is that the camera parameters are also regarded as variables.
After the optimization, the rotation and translation of the cameras will also be estimated.
Therefore, through the minimization of the energy function, the pose, shape parameters of
the SMPL model and the camera parameters can be obtained.

3.3 Shape fitting

The following section will describe the progress of shape fitting in our method. Since joint
points mainly provide information about human pose in the first step, the silhouettes are
used in this part to improve the estimation of shape. Here we assume that the silhouettes
have been given. Now let us revisit the SMPL model about the vertex position. As shown
in [113], the vertex of SMPL is transformed as

ti =
K∑

k=1

ωk,iG′
k(θ⃗, J(β⃗))

(̄
t+ BS(β⃗) + BP(θ⃗)

)
. (3.5)

In addition, since the rotation R and translation t of the camera are estimated after pose
fitting, the positions of the cameras can be computed as c = −RTt. Thus, we can define
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a ray from the camera c to the vertex ti of the transformed SMPL model as r⃗, as shown in
Figure 3.2. Then, for the untransformed SMPL model, the corresponding ray is

r⃗′ =

[
K∑

k=1

ωk,iG′
k(θ⃗, J(β⃗))

]−1

r⃗− BP(θ⃗) . (3.6)

We would like to find the correspondence between r⃗′ and the boundary points of the ob-
served silhouette. This ray can be decomposed using Plücker coordinates (⃗r′m, r⃗′n). Given
the silhouette of the image, we can find the boundary points v of the silhouette and then
backproject v to V in the camera coordinates since we have estimated the camera parame-
ters. Then, the distance from the points to the ray can be computed as d = V × r⃗′n − r⃗′m.
Those points and rays whose distance is smaller then a threshold are regarded as correspond-
ing pairs. These pairs are defined as a set P which is the correspondence in 3D space. On
the other hand, the vertices of SMPL model intersected by ray r⃗′ can be projected to the
image plan as v′ using camera parameters. The point set v and v′ are defined as Q, which is
the correspondence in 2D space. Figure 3.2 shows one example of the correspondence on
the SMPL vertices and the silhouettes in 2D and 3D space. We can see that the correspon-
dence in this case seems to be correct and can provide additional information for the shape
fitting. Overall, the energy function using silhouettes is defined as

E(β⃗) = Esilh(β⃗) + Ereg(β⃗) . (3.7)

The silhouette term Esilh(β⃗) is constructed by using the set P and Q and is defined as

Esilh(β⃗) =
∑

(V,⃗r)∈P

ρ(V× r⃗′n − r⃗′m) +
∑

(v,v′)∈Q

ρ(v− v′) , (3.8)

where V × r⃗′n is the cross product of V and r⃗′n, ρ is the Geman-McClure function as
Eq.(2). The first part of Esilh measures the difference of 3D points of backprojected sil-
houette boundary and rays, while the second part shows the difference of 2D silhouette
points and projected SMPL vertices. Therefore, the silhouette term considers the silhou-
ette information from both 3D and 2D perspective in contrast to the paper [3].

The regularization term is defined based on the SMPL model with zero pose, i.e., θ⃗ = 0⃗.
This is because this part only focuses on the shape estimation. Then, the SMPL model is
computed as t(β⃗,D) = t̄+BSβ⃗+D, where D is the offset given by the SMPL model. The
regularization term contains the Laplacian term EL as well as the body model term EB and
it is represented as in [3]

Ereg(β⃗) = ωLEL + ωBEB, (3.9)

where ωL and ωB are the weights. The Laplacian term EL is defined as

EL =
N∑
i=1

||L(ti)− δi||2 , (3.10)
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where L is the Laplace operator and δi = L(ti(β⃗, 0)). This term enforces smooth deforma-
tion. The body model term EB is represented as

EB =
N∑
i=1

||ti(β⃗,D)− ti(β⃗, 0)||2 . (3.11)

Through minimizing (3.7), the shape parameters can be estimated and the final results are
obtained.

3.4 Optimization

After building the energy functions based on joint points and silhouettes, we need to opti-
mize the energy functions. We have used Python to implement our optimization method.
The energy functions in (3.1) and (3.7) are minimized by Powell’s dogleg method which
is provided in the Python modules called OpenDR [114] and Chumpy [112]. For four im-
ages with different views, it takes about 2 minutes to obtain the final estimation of the 3D
human body.

Table 3.1: The values of relating parameters for the optimization.

Synthetic dataset Real dataset
Pose fitting Shape fitting Pose fitting Shape fitting

k ωθ ωβ σ ωL ωB σ ωθ ωβ σ ωL ωB σ

1 91.0 100 100 6.5 0.9 0.05 91.0 100 100 6.5 0.9 0.08
2 91.0 50 100 5.25 0.75 0.03 91.0 50 100 5.25 0.75 0.04
3 47.4 10 100 4 0.6 0.01 47.4 10 100 4 0.6 0.03
4 4.78 5 100 4.78 5 100

The parameters used during the optimization are shown in Table 3.1. In the following
experiments, we mainly used a synthetic dataset and a real dataset to evaluate our approach.
Table 3.1 gives the parameters that we used in the experiments for the two datasets. For pose
fitting, we assume that the focal length of the camera is known, but the translation and
rotation of the camera are unknown. We initialize the rotation matrix as the identity matrix.
The translation vector is initialized according to the torso length of SMPL model and the
torso length of human body in the images. The weights ωθ and ωβ in the energy function
are decreased gradually after some iterations or when the value of the energy function is
smaller than a threshold. For the silhouettes based energy function, we assume that the
ground truth of the silhouettes are given. The weights ωL, ωB and the parameter σ in
Geman-McClure function are decreased gradually after some iterations or when the value of
the function is smaller than a threshold. The pseudo-code for the procedure of optimization
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is demonstrated in the Algorithm 1.

Algorithm 1: Procedure of optimization
Pose fitting:
Input: Images from different views, 2D joint points, and SMPL model
Output: θ⃗, β⃗,R, t
for k=0:3 do

update: ωθ, ωβ and σ according to Table 3.1
iter = 0
while E > 1e-3 in (3.1) or iter> 100 do

iter += 1;
compute derivative of E in (3.1);
update {θ⃗, β⃗,R, t}

Shape fitting:
Data: Silhouettes, θ⃗ and β⃗ after pose fitting
Output: β⃗
for k=0:2 do

update: ωL, ωB and σ according to Table 3.1
iter = 0
while E > 1e-3 in (3.7) or iter> 100 do

iter += 1;
compute derivative of E in (3.7);
update β⃗

4 Experiments

In this section, the experiments to evaluate our proposed method are presented. We firstly
introduced the datasets which were used in the experiments. Then, we discussed the effect
of joint points on pose fitting and the influence of silhouettes on shape fitting, respectively.
Besides, we also evaluated the pose fitting and shape fitting on the final estimation. Finally,
we compared our method to several previous approaches on the datasets to validate the
advantage of our approach.

4.1 Datasets

To evaluate our approach for a variety of poses and shapes, we generated a synthetic dataset
and also used a public real dataset. The synthetic dataset consisted of 50 male and 50 female
3D human bodies which were created by the SMPL model. We set all the human bodies as
”A” pose through giving the same pose parameters of the SMPL model, while the shape of
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each human bodies was different by varying the shape parameters of the SMPL model. For
each 3D human body, we used four cameras from different views to project the 3D model
into four 2D images. Since the 3D joint points of SMPL model relied on the pose and
shape parameters, the ground truth of 2D joint points and silhouettes can also be obtained
when we projected the SMPL model. The samples of male and female human body models
are shown in Figure 3.3. For the experiments based on the synthetic dataset, the values of
parameters in pose fitting and shape fitting for optimization are set according to Table 3.1.
The procedure of optimization is shown in Algorithm 1.

Figure 3.3: Some samples in the synthetic dataset.

Figure 3.4: Example of joint points and silhouettes from the real dataset.

In terms of the real dataset, we used the public data from [179] which consisted of ten image
sequences. Each sequence was captured from eight different views by eight cameras in an
indoor scene. Four images which are taken by the 2-nd, 4-th, 6-th and 8-th cameras are
adopted in our experiments. Note that there are two marches and squats in the dataset, so
we evaluate the results of march1 and squat2, i.e, the experiments are implemented based on
8 image sequences. For the joint points, we predicted the bounding box the person through
CornerNet [94], and then estimated the joint points of the dataset through CNN-based
human pose estimation in [192] using the cropped images by the bounding boxes. In terms
of the silhouettes, the ground truth was given in this dataset. However, the silhouettes
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(a) Joint points on pose fitting (b) Silhouettes on shape fitting

Figure 3.5: The effect of joint points and silhouettes on pose fitting and shape fitting for the synthetic dataset.

can be extracted through threshold and filter since the background can be easily removed.
In practice, semantic segmentation can be used for silhouettes extraction. Silhouette seg-
mentation is not the key problem in our method, so we directly use the ground truth of
silhouettes like [3]. One example of joint points and silhouette is shown in Figure 3.4. Sim-
ilarly, the values of parameters for optimization are shown in Table 3.1 and the procedure
of optimization is shown in Algorithm 1. If the final estimation was not good under the
weights, these parameters can be adjusted to make the results better.

The metric for quantitatively comparing to other methods is the intersection over union
(IoU) between the ground truth of silhouettes and the estimated silhouettes. Since the
experiments are based on images from four views, the IoU is also computed using four
silhouettes from four views. The higher of IoU means the better of the final estimation on
the shape.

4.2 Evaluation of pose fitting and shape fitting

Figure 3.5(a) shows the mean IoU over 100 samples in the synthetic dataset when the joint
points of the human body are added different levels of noise. The noise is the standard
normal distribution N(0, 1) and it can be added to the joint points by J2d + N(0, 1)× k,
where k is the level of noise and is set as 2, 3, 4 and 5. After pose fitting for each human body
based on the joint points with the k-th noise, we can obtain the pose and shape parameters
of SMPL model as well as the parameters of four cameras. Then, four estimated images
can be generated by projecting the estimated SMPL model to 2D images using four camera
parameters. The IoU of the four images can be computed by using the ground truth of
silhouettes. Finally, the mean IoU over the 100 samples in the synthetic dataset can be
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computed. Note that the first data in Figure 3.5(a) is the result when we use the ground
truth of joint points in pose fitting. Figure 3.5(a) shows that the accuracy of pose fitting
decreases when the joint points are added larger noise. This means that the joint points
should be as accurate as possible if we want to obtain better results.

Figure 3.5(b) shows the mean IoU over 100 samples in the synthetic dataset when we use
image dilation with different size of structure to process the silhouettes. We varied the size
of structure of image dilation as 3, 5, 7 and 9 to change the silhouettes. For each human
body, we firstly used the ground truth of joint points to fit the pose, and then used the
silhouettes after image dilation with different size of structure to implement shape fitting.
The IoU of the human body can be computed and the mean IoU in the synthetic data can
be obtained under the size of structure of image dilation. We can see from the figure that
the size of structure will affect the accuracy of the final results. Generally, the larger the
size of structure is, the worse the final results are. When the size of structure is larger than
5, the accuracy will keep stable because distance between the points on SMPL model and
points on the edge of silhouettes is too large to find the correspondence.

Figure 3.6: Comparison of pose fitting and shape fitting of our method for the real dataset of Bouncing.

We use the real data to evaluate the performance of pose fitting and shape fitting on the
final results. The results after pose fitting and shape fitting from Bouncing are shown in
Figure. 3.7. We can see from the figure that pose fitting can recover the pose of human
body correctly and shape fitting can improve the 3D model on the shape details. In order
to quantitatively demonstrate the performance of pose fitting and shape fitting, the IoU of
silhouettes from four views of the image sequence Bouncing are calculated and shown in
Figure 3.6. It is shown from the figure that the IoU after silhouette fitting is higher than
the IoU only using pose fitting for most frames in the sequence. The mean IoU after shape
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Figure 3.7: Comparison of pose fitting and shape fitting of our method for the examples from Bouncing. From top to down:
Original images, results after pose fitting and results after shape fitting.

fitting is 0.78, while the mean IoU only using pose fitting is 0.74, which shows that shape
fitting is a step to improve the accuracy of human body reconstruction.

4.3 Comparison to previous approaches

In this section we evaluate our method on both the synthetic and real dataset. To show
the performance of our method, we compared to three previous approaches: SMPLify [18],
SMPLify4 [103] and VideoAvatar [3]. Figure 3.8 qualitatively shows the comparison of two
examples from the synthetic data. We can see from this figure that our method can better
recover the shape of human body model than the other three methods. Since the pose of
the human body is quite simple, these methods can estimate the pose well. However, our
method can better recover the waist part of the human body. The estimated 3D models
obtained by the other previous methods were not good on the waist parts. Especially for
VideoAvatar, since our method established the energy function of silhouettes in 2D and
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Figure 3.8: Two results on the synthetic data of one view. From left to right: the original images, SMPLify [18], SMPLify4 [103],
VideoAvatar [3] and our method.

3D space, the results using four images are better than VideoAvatar which used 120 images
from different view-points to obtain the 3D human body model. Figure 3.9 shows the
results of our method from the other three view-points of the male and female model in
Figure 3.8. The figure demonstrates that our method can recover the shape of human body
model not only for the single view-point but also for the other view-points, which means
that the 3D model estimated by our method is satisfying.

Figure 3.10 shows the IoU of silhouette overlap of our methods compared to other three
methods on the synthetic dataset. The IoU of silhouette overlap is computed based on the
silhouette of the projected 3D human body model and the corresponding ground truth of
silhouette. The IoU for SMPLify is calculated based on one view-point, while the IoU of
the other methods is based on four view-points. Although the results of some samples for
SMPLify are better, the accuracy of our method is still higher than the results of the other
three methods for the most samples in the dataset. Since SMPLify only adopts one image,
the optimization is not sensitive to the initialization, which is the reason that the results
of SMPLify on some samples are better. Compared to the SMPLify4 [103], our method
introduced silhouette after the pose optimization, and thus, the results of our method are
better on the synthetic dataset. In addition, for VideoAvatar [3] which also uses silhouettes,
our results are still better. The reason could be that the energy function of silhouette in
VideoAvatar was only built from 3D space. In VideoAvatar, the 3D model was acquired
from a video stream containing 120 frames from multiple viewpoints. By contrast, the
improved energy function of silhouettes in our method considers both 2D and 3D, which
ensures that our method has good performance only using four images.
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Figure 3.9: The results of the other three views obtained by our method.

Figure 3.10: The comparison of IoU of silhouette overlap between our method and other methods on the synthetic dataset.

In the following, we evaluate our method on the real dataset in [179]. Firstly, we show the
IoU of silhouette overlap for image sequence Crane in Figure 3.11. It shows the IoU of the
results of SMPLify [18], SMPLify4 [103], VideoAvatar [3] and our method. Note that the
IoU of SMPLify is also computed based on four images because the pose in the real data
is much more complicated than the human body in synthetic dataset. The four images are
the projection of SMPL model generated by SMPLify using the cameras estimated by our
method. This can better reflect the accuracy of 3D model. We can see that our methods
obtains higher accuracy than the other three methods for the most samples in this image
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sequence. The results of SMPLify are the worst because only joint points from one single
image are used as prior information. The results of SMPLify4 and VideoAvarta are almost
the same because VideoAvatar requires enough number of images from different views.
Furthermore, we also give the average of IoU of silhouettes overlap for the 8 different actions
in the real dataset in Table 2. It is shown from this table that our method achieves the best
performance comparing to other three previous methods because the IoU of our method is
the highest. The results of SMPLify are worst, while the SMPLify4 and VideoAvatar have
almost the same performance and they are better than SMPLify. The results of Handstand
are not good because the pose estimation for the images in the sequence is not good. The
pretrained model in human pose estimation of [192] cannot achieve good estimation for
human body with handstand. Even in this case our results are sill the best comparing to
other methods. Overall, our method has competitive performance among these approaches
according to Table 3.2.

Figure 3.11: The comparison of IoU of silhouette overlap between our method and other methods on the Crane image sequence
in the real dataset.

Table 3.2: The mean IoU of silhouette overlap of the 8 image sequence for different methods in the real dataset.

Frames SMPLify [] SMPLify [] VideoAvatar [] Our
Swing 150 0.5649 0.7570 0.7573 .
Crane 175 0.5558 0.7425 0.7296 .

Bouncing 175 0.5660 0.7367 0.7337 .
Jump 150 0.5664 0.7078 0.7035 .
Samba 175 0.5255 0.7544 0.7559 .

Handstand 175 0.5384 0.6131 0.6118 .
March 250 0.5224 0.6930 0.6887 .
Squat 250 0.5256 0.7316 0.7304 .
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Several images from Swing, Crane, Samba and Bouncing are shown in Figure 3.12. In the
figure, we illustrate one frame from each above sequence and give the qualitative results of
the three previous methods and our method from one view. We can see from the figure
that the shape of our method gives a better fit to the original images, which can be seen
from the parts that are zoomed in. More specifically, the Bouncing results of SMPLify are
not correct. This is because using only a single RGB image gives a too high uncertainty
concerning the spatial information. Compared to SMPLify4 and VideoAvatar, which are
shown in the second and third columns in Figure 3.12, the shapes of our method provides
a better fit to the original images. This demonstrates the effectiveness to use the energy
function based on silhouettes from 2D and 3D space. Therefore, our method achieves a
good estimation not only for the pose but also for the shape of the human body. We also
provide the results obtained by our method from the other three views in Figure 3.13. It
demonstrates that the results from other views are correct, which means that the 3D model
estimated by our method has better accuracy.

5 Conclusion

We have proposed a novel method for human pose and shape estimation using joint points
and silhouettes based on SMPL model from multi-view images. SMPL model provides
better representation about the 3D human body and the prior information including joint
points and silhouettes gives strong cues for human body estimation. Our method consists
of two steps: joint points based fitting and silhouettes based fitting. The joint points of
the images were firstly predicted by deep learning-based human pose estimation. Then,
the pose and shape parameters of SMPL model were estimated by fitting the SMPL model
to the joint points of the four images simultaneously. Furthermore, we identified the cor-
responding points on the edge of silhouettes and SMPL model to build a novel energy
function from 2D and 3D space. The shape parameters of SMPL were improved by mini-
mizing the novel energy function. Our method not only estimated the pose of the human
body, but also obtained better shape appearance of the human body. The experiments
on synthetic dataset and real dataset indicated that our approach can obtain better human
body shape comparing to the previous methods. The limitation of our method is that we
strongly depends on the estimated joint points and silhouettes, which may result in that
the estimation of pose and shape is not correct when the joint points or silhouettes are not
predicted correctly. Besides, the texture of the images is not mapped to the 3D model,
which makes the appearance is not realistic enough. Overall, our method can be used in
many practical fields such as VR video games or biomedical research.
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(a) Original (b) SMPLify [18] (c) SMPLify4 [103] (d) VideoAvatar [3] (e) Proposed

Figure 3.12: The results of Swing, Crane, Samba and Bouncing from top to down. The original images and the results of SMPLify
[18], SMPLify4 [103], VideoAvatar [3] and proposed method are shown in (a), (b), (c), (d) and (e).
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Figure 3.13: The results of Swing, Crane, Samba and Bouncing from other three views obtained by our method.
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Chapter 4

3D Human Pose and Shape
Estimation Through Learning
Collaborating Multi-view
Model-fitting

Abstract

3D human pose and shape estimation plays a vital role in many computer vision applica-
tions. There are many deep learning based methods attempting to solve the problem only
relying on single RGB image for training the network. However, since some public datasets
are captured from multi-view cameras system, we propose a novel method to tackle the
problem by putting optimization-based multi-view model-fitting into a regression-based
learning loop from multi-view images. Firstly, a convolutional neural network (CNN) re-
gresses the pose and shape of a parametric human body model (SMPL) from multi-view
images. Then, utilizing the regressed pose and shape as initialization, we propose an im-
proved multi-view optimization method based on the SMPLify method (MV-SMPLify)
to fit the SMPL model to the multi-view images simultaneously. Subsequently, the opti-
mized parameters can be adopted to supervise the training of the CNN model. This whole
process forms a self-supervising framework which can combine the advantages of the CNN
approach and the optimization-based approach through a collaborative process. Besides,
the multi-view images can provide more sufficient supervision for the training. Exper-
iments on public datasets qualitatively and quantitatively demonstrate that our method
outperforms previous approaches in a number of ways.
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1 Introduction

Human pose and shape estimation has many applications in virtual/augmented reality and
computer games. However, this is a challenging problem since human bodies typically
exhibit various motions and shapes in real scenes. Aiming at the problem, there are usu-
ally two routes to estimate 3D human pose and shape: optimization-based methods and
regression-based methods [88]. Both of the approaches have achieved some success for the
problem recently.

Traditionally, through defining a parametric human body model [10, 53, 113, 18, 17] or pre-
scanning a 3D model as template [101, 55, 198, 196, 199], optimization-based approaches use
some prior information including joint points [18], skeleton[53], silhouettes [17] and RGB-
D images [186] to build an energy function. Some work adopt more than one cues in order
to achieve better results [68, 3, 196] or propose novel optimization algorithms [101, 55]. By
minimizing the energy function, the pre-defined human body model will fit to the prior
information, and then, the estimated human pose and shape can be obtained. Although
optimization based methods can be used to estimate 3D human body models in many
different situations, it is often difficult to automatically extract accurate prior information
due to the complexity of real human bodies. In addition, the optimization is often time-
consuming.

On the other hand, regression-based methods for human pose and shape estimation have at-
tracted much research with the significant achievements of deep neural networks in many
image processing problems [171, 185, 119, 172, 137, 173, 169]. Regression-based methods
[81, 178, 138, 131, 11] use deep neural networks that take all or subsets of pixels in the im-
ages and regress the human body and shape parameters based on training on large datasets.
Many novel frameworks have been proposed to improve on accuracy of 3D human body
estimation [69, 106, 140]. A dataset containing a large number of images and correspond-
ing annotations is required for the methods to train the networks. Both the development of
datasets and the time for training are serious drawbacks of regression-based methods. Re-
cently, Kolotouros et al. put an optimization-based method into the loop of the regression-
based framework and achieved good performance [88]. However, they only used one single-
view image during the training.

Considering that some public datasets are captured from multi-view cameras, we propose
a novel method for 3D human pose and shape estimation through a collaboration between
learning and multi-view model fitting based on multi-view images in this paper. Firstly, a
convolutional neural network (CNN) is advocated to regress the pose and shape parame-
ters of a skinned multi-person linear model (SMPL) from multi-view images. Then, we fit
the regressed SMPL model to all the multi-view images simultaneously through optimiz-
ing an energy function which is defined according to the joint points of the SMPL model
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and the ground-truth joint points of the human body in the multi-view images. During
the optimization, unlike the single view case in which only pose and shape parameters are
optimized, we also optimize the orientation (i.e. the camera view) of the SMPL model for
different views to reflect the relation of multi-view images. Finally, in addition to the typical
2D joint points supervision for training, the optimized pose and shape parameters as well as
the optimized SMPL model are also adopted to supervise the training of the CNN. There-
fore, the CNN can provide initialization of the SMPL model for optimization, while the
optimized results can supervise the training process of the CNN, which builds a tight col-
laboration between the two parts. In addition to this, the multi-view optimization consid-
ers the inner relations of the given multi-view images, which can supply more accurate and
complete information for the estimation. An overview of our method is shown in Figure 4.1.
The code of our method is public at https://github.com/leezhongguo/MVSPIN.

The main contributions of our work have three parts. Firstly, a novel multi-view images
based training strategy is used for the training of network, which better explores the infor-
mation of the multi-view datasets. Besides, we propose a multi-view model-fitting, merged
into a multi-view learning loop to form a novel framework for 3D human pose and shape
estimation. Since multi-view model-fitting has better performance than single-view fitting,
this provides reliable supervision for training the CNN and the results of our method sur-
pass several recent methods. Finally, our framework can be used for 3D human pose and
shape estimation from both single-view image and multi-view images after training the
network with multi-view images. The experiments on some public datasets show that our
method can better estimate 3D human pose and shape than some previous methods.

2 Related work

There are a large number of previous studies on the problem of human pose and shape
estimation aiming at different tasks like joint points estimation, silhouette segmentation,
part segmentation and so on. Here we mainly describe those relevant approaches for 3D
human pose and shape estimation.

Parametric human body models have been widely used in the estimation of pose and shape.
Anguelov et al. proposed a data-driven method called SCAPE to generate a deformable hu-
man body model [10]. It contained two models which were functions of pose and shape,
respectively. They could be combined to create a 3D mesh with realistic muscle defor-
mation. Some improvements based on SCAPE were proposed over the next several years
[186, 184]. A new parametric human body was proposed by Loper et al. and it was skinned
multi-person linear model (SMPL) [113]. It can model various body shapes with natural
human poses by defining a function of pose and shape parameters, which made the model
be widely used in human pose and shape estimation tasks. Pavlakos et al. extended SMPL
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to SMPL-X by adding more key points on the face, hands and feet [139]. In [147], a dy-
namic human body model was proposed for modeling human body motion. The above
human body models were all learned from a large human body dataset.

Optimization-based methods have traditionally been used to estimate human pose and
shape parameters. In [53], a 3D human body model was estimated by fitting SCAPE to the
manually acquired joint points and silhouettes. With the development of depth sensors,
range data acquired by Kinect was used as prior information and an improved SCAPE
model was fitted to the range data in [186, 17]. In addition to the use of prior cues, novel
optimization methods were also explored by many researchers [101, 55, 198, 199]. It was
also popular to use several different cues to estimate 3D human body [196, 58]. With the
success of human pose estimation by deep neural networks, an automatic approach called
SMPLify was proposed to estimate the parameters of the SMPL by using 2D joint points
predicted by deep neural networks [18]. Inspired by the method, some approaches based
on multi-view images [68, 103] and video [3] were proposed to improve the estimation.

Regression-based methods have also been developed and achieved significant success on the
2D [171, 185, 20] and 3D [137, 172, 8, 173, 169] human pose estimation. Most regression-
based work used deep neural networks as encoders to estimate the pose and shape param-
eters directly from images. The training of the networks often relied on the annotation of
2D/3D joint points [88, 81], dense pose [95], multi-view images [106], silhouettes [33, 138],
texture [140, 5] and part segmentation [131]. In [33], silhouettes were used to train a network
to estimate the shape of a human body in a simple pose. For human bodies with compli-
cated poses, Kanazawa et al. proposed an end-to-end framework using 2D joint locations
[81]. In this method, the pose and shape parameters of the SMPL model were learned by the
deep neural networks, using the reprojection loss which was defined by ground truth of 2D
joint points and the projection of skeleton joints from the SMPL model. Inspired by this
framework, many approaches were proposed by designing new routes to acquire various
information to better supervise the network. Even for multiple people in images, Zanfir
et al. [200] proposed a regression-based method to solve the problem. In addition to 2D
CNN, some papers use 3D CNN to regress a volume and use a signed distance function to
represent a detailed 3D model [69, 156]. In the above methods, Kolotouros et al. incorpo-
rated SMPLify into the training loop of the CNN, which was the first attempt to combine
optimized-based method and regression-based method [88]. This made the training of the
CNN self-supervised and achieved competitive performance.

3 Method

The details of our method are presented in this section. We will first introduce the learning-
based parametric human body model used in our method. Then, the regression part and
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Figure 4.1: Overview of the proposed method. The CNN regresses the parameters Θreg from multi-view images. Then, using
Θreg as initialization, multi-view SMPLify optimizes the parameters to obtain Θopt. The optimized parameters Θopt of
the multi-view images are used to supervise the training of CNN.

the optimization part of our approach are presented, respectively. Based on these two parts,
we define the collaboration of them to complete our whole method. Finally, we present the
implementation details of our method.

3.1 The SMPL model

The SMPL model is a parametric human body model learned from a very large number
of aligned human body shapes. It is a triangulated mesh with N = 6890 vertices and the
position of each vertex is a linear function M(θ, β) of the pose parameters θ ∈ R72 and
the shape parameters β ∈ R10. The pose θ encodes the rotation angle of each skeleton
joint point in terms of the root point. The shape β contains the coefficients of the ten
most significant PCA vectors of the human body models extracted from the human body
shape space. In addition, the skeleton joint points J of the SMPL model are also a linear
function of pose θ and shape β. Since it is a linear model, a CNN is expected to perform
well, when estimating a regression function to infer the pose and shape parameters. The
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skeleton joint points of the SMPL model can also be used for the optimization on joint
points in order to estimate the pose and shape parameters. Therefore, the SMPL model
can be used for both regression and optimization.

3.2 The architecture of our regression CNN

In this section the architecture of the CNN to regress the human body parameters from
images is introduced. The design of the network is based on the structure in [88]. Instead
of using single view image for one training loop as in [88], we propose to form the multi-
view images as a small batch and fed the small batch into the network for one training
loop. Given the multi-view images, the network encodes the body in each single view
image as a R85 vector containing the pose θ, shape β of the SMPL model and the camera
Π as shown in Figure 4.1. The camera Π is a weak perspective model and is represented
by a 3 × 1 vector (s, tx, ty) where s denotes the scale parameter and it can be converted
to camera translation. This can be done because the rotation of the camera is assumed
to be the identity. Then, the relative rotation between the human body and the camera
is encoded in the root orientation of the body model. Suppose we have several images
from different view-points, denoted Ii, i = 1, ...,N along with the corresponding camera
parameters Πi ∈ R3×1. Since the multi-view images are from the same human body (pose
and shape) from different view-points, the multi-view images have the same ground truth
for the pose and shape parameters Θ = {θ, β}. For the i-th image Ii passing through the
networks, the regressed parameters are defined as Θ(i)

reg = {θ(i)reg , β(i)
reg} and Π

(i)
reg. Then, the

predicted 2D joint points can be obtained by projecting the skeleton joint points of the
SMPL model through the estimated cameras, i.e., J(i)reg = Π

(i)
reg(J (Θ

(i)
reg)), where J (Θ

(i)
reg)

are the skeleton joint points of the regressed SMPL model. In addition, the predicted mesh
of the SMPL model can also be generated by M(i)

reg(Θ
(i)
reg). Therefore, the loss function of

the 2D joint points on the multi-view images can be defined as:

L2D =

N∑
i=1

||J(i)reg − J(i)gt || , (4.1)

where J(i)gt denotes the ground truth of 2D joint points of the i-th input image Ii. Compared
to [88], this loss function considers the 2D joint points from all of the views, which can
reduce the ambiguity of 2D joint points from a single-view image and provide stronger
supervision of the CNN model. In addition to the loss function on 2D joint points, loss
function for pose and shape will be discussed in the following sections.
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Figure 4.2: Illustration of the cameras, body orientations and projected SMPL models on the image planes. The four images
share the same pose and shape parameters, while the camera translations and body orientations are different.

3.3 Multi-view SMPLify

In this section we apply an improved SMPLify method based on multi-view images in order
to perform the optimization. SMPLify was proposed in [18] and it fitted the SMPL model
to a set of 2D joint points predicted by a deep neural networks from a single image. In order
to extend SMPLify from single-view image to multi-view images, an improved method was
described in [103]. However, the results of [103] are often not robust enough since they
initialize the camera rotation as the identity matrix, which may result in the optimization
process ending in local optima. In our method, we optimize the body orientation instead
of camera rotation because we have assumed that the camera is oriented to human body.
According to the definition of the pose θ of the SMPL, the first three elements represent the
body orientation denoted by ζ ∈ R3. Then, we define θ̃ = θ\ζ as the pose of the rest joint
points. Since the multi-view images share the same pose and shape, we initialize θ̃ as the
mean of θ̃(i)reg and β as the mean of β(i)

reg , over all images i = 1, . . . ,N. The body orientations
ζ(i) for different views are initialized as ζ(i)reg . We convert the weakly perspective camera
Π

(i)
reg to the camera translation T(i)

reg and define the camera rotation as the identity matrix.
Then, the camera matrix for the projection can be represented as P(i)reg = {I,T(i)

reg}. Using
this camera matrix, the reprojected 2D joint points of the regressed SMPL model can be
obtained as P(i)(J (i)). Figure 4.2 illustrates an example of the cameras, body orientations
and the corresponding projected regressed SMPL models on the image planes. Based on
the above definition, the energy function of the multi-view SMPLify is defined as:

E(θ̃, β, ζ(i)) = EJ(J
(i)
gt , P(i)(J (i))) + λθEθ̃(θ̃) + λβEβ(β) , (4.2)
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where EJ measures the errors between Jgt and P(i)(J (i)) on all views. Eθ(θ) and Eβ(β)
are the regularization terms for pose and shape parameters, respectively. For a detailed
description of these regularization terms, see [103]. For the energy function above, the
minimization is an important step to get the optimized parameters. Similar to [88], fixing
the pose and shape parameters, the camera translations of all the images and the orientation
of the SMPL model were estimated first. This is implemented by using similar triangles
defined by the torso length of regressed SMPL and the ground truth. The initialization
of the camera translation T and the body model orientation ζ were obtained from the
output of the CNN model. Then, fixing the camera translation, we minimize (4.2) to
obtain the optimized pose θ̃opt, shape βopt and multi-view body orientation ζ

(i)
opt . Adam

with 0.01 learning rate is used for the optimization and the maximum number of iterations
is 100 in our experiments. Therefore, the complete optimized pose for the i-th image is
θ
(i)
opt = {ζ(i)opt , θ̃opt}.

3.4 Collaborative learning

In this section we combine the CNN and the multi-view SMPLify into one route in a new
training loop. As shown in Figure 4.1, the regressed pose and shape parameters Θ(i)

reg and
camera translationT(i)

reg are obtained after the images have passed through the networks. The
loss function based on the 2D joint points is defined as in (4.1), and we use the regressed
parameters to initialize the multi-view SMPLify. Through minimizing (4.2), the optimized
parameters can be obtained as Θ(i)

opt = {θ(i)opt, βopt}. Then, using the optimized Θ
(i)
opt, the

optimized SMPL models and the corresponding skeleton joint points with different body
orientations can be generated as M(i)

opt and J (i)
opt .

Now we can define additional contributing losses to train the CNN by using the above
results. The loss for the pose and shape parameters is defined as

LΘ =

N∑
i=1

||Θ(i)
reg −Θopt|| . (4.3)

Further, the loss function for the mesh of the SMPL model is defined as

LM =
N∑
i=1

||M(i)
reg −Mopt|| . (4.4)

If the ground truth of 3D joint points are provided in the training dataset, we can also
define the loss function of the 3D joint points as

L3D =
N∑
i=1

||J(i)3D − J (i)
opt || , (4.5)
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where J (i)
opt denote the skeleton joint points of the i-th optimized SMPL model. Therefore,

the complete loss function for training the network is defined as:

L = ω1L2D + ω2L3D + ω3LΘ + ω4LM , (4.6)

where (ω1, . . . , ω4) is the weighting of the terms. Intuitively, our proposed approach has
some advantages compared to other methods. Firstly, multi-view images reduce the am-
biguity of inferring 3D human pose from 2D joint points. Both in the regression and
optimization process, multi-view images can obtain better results than a single view image.
Besides, the CNN and the multi-view SMPLify form a tight collaboration during the train-
ing loop. The output of the CNN model can initialize the optimization problem, while the
optimized results could supervise the training of the CNN model through the loss function
defined by optimized parameters.

3.5 Implementation details

Training. In terms of the number of view points, we use four views in our experiments
because the training public datasets that we used were acquired from four or eight views.
For each training batch, the real number of images is 4×N where N is the batch-size used
in the code. The CNN in our model is trained by Adam with 3×10−5 learning rate for 20
epochs. In the total loss function of (4.6), the weights of each sub-loss (ω1, ω2, ω3, ω4) are
(5.0, 5.0, 1.0, 0.001). We train our model on two datasets: Human3.6M [72] and MPI-
INF-3DHP [118]. In each batch, we use 90 images from Human3.6M and 10 images
from MPI-INF-3DHP. All of the images are cropped to 224×224. The network is trained
on an NVIDIA TITAN X (Pascal) GPU with 12 GB. The batch-size is set to 16 and each
batch takes about 5.5 seconds for one iteration. The total number of iteration is 2441 for
one epoch and the whole training takes about 3 days.

Inference. For the inference, we use single-view image to evaluate our method. Note
that the optimization part is not used in the inference because 2D joint points should
be unknown for the inference in practice. More specifically, Three datasets are used for
inference including the S1 and S9 of Human3.6M, the validation dataset of MPI-INF-
3DHP and the test set of 3DPW [180]. These testing images contains various poses and
shapes under both indoor and outdoor scenarios.

4 Experiments

In this section some experiments are described to evaluate the performance of our method.
We will briefly introduce the datasets used in the experiments for training and evalua-
tion. Then, quantitative and qualitative results are demonstrated to compare the previous
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methods based on both single-view image and multi-view image, respectively. Finally, an
ablation study is given to show the advantage of our method comparing to method only
relying on deep learning.

The metric for quantitative comparison in our experiments contains the reconstruction er-
ror, Mean Per Joint Position Error (MPJPE), Percentage of Correct Keypoints with thresh-
old 150 mm (PCK@150 mm) and Area Under Curve (AUC) of 3D joint points. The lower
of the first two metrics means better results, while the higher of the last two metric means
better results. The reconstruction error is the MPJPE after Procrustes post-processing to
remove scale ambiguity. PCK and AUC have the same definition as [119].

4.1 Dataset

Human3.6M. The first dataset in our experiments is the Human3.6M [72]. It contains 11
different subjects and each subject performs 15 different actions indoors. All of the data is
acquired from four views and the corresponding 2D/3D joint points and part segmentation
are also captured. Similar to previous work [81] which used the protocol 1, the video of the
S1, S5, S6, S7 and S8 are used as training dataset, while the video S9 and S11 are used for
evaluation. For the training set, we extract images from the video every ten frames, while
evaluation images are extracted from S9 and S11 every five frames as in [88]. The training
set contains 39066 × 4 images and the evaluation set has 109867 images.

MPI-INF-3DHP. The second dataset is the MPI-INF-3DHP [118]. It contains eight sub-
jects for training and two subjects for testing. For each subject, eight videos from different
views are captured and we choose video_0, video_2, video_7 and video_8 as training data.
Only those images with a complete human body in all views are extracted from the videos
every ten frames. The testing dataset can be used directly. Totally, the training set has
9452 × 4 images and the testing set has 2929 images.

3DPW. Since the above datasets are indoor scenario, we use the test set of 3DPW to evaluate
our method on the outdoor scenario case. 3DPW is captured mostly in outdoor conditions
using IMU which can provide ground truth 3D pose in the wild. There are 25 test image
sequences in 3DPW. After removing some invalid frames, we can obtain totally 35515
images which are used for evaluation.

4.2 Comparison to single-view methods

We compare to some previous approaches which train the network using single-view image
to estimate 3D pose and shape of human body. Table 4.1, Table 4.2 and Table 4.3 show
the quantitative results of some previous work on the Human3.6M, 3DPW and MPI-INF-

76



3DHP, respectively. Note that we use the same testing dataset as the previous methods so
that they are comparable. The results of the SPIN [88] are obtained through performing the
SPIN using the trained model in the original paper by ourselves, while the results of other
methods come from the corresponding paper. We can see from the two tables that our
method outperforms most previous approaches on the three datasets. For the SPIN which
trains the network using single-view image, our method achieved almost the same perfor-
mance on Human3.6M. This is because SPIN use four different datasets to train the net-
work, which makes their network more generalization. However, since our method trains
the network based on multi-view images, the results of our method outperform SPIN on
3DPW and MPI-INF-3DHP even though we only use Human3.6M and MPI-INF-3DHP
to train the network. Therefore, the two tables demonstrate that our method achieves better
performance than those approaches trained from single-view image.

Table 4.1: Quantitative comparison to previous work trained by single-view image on Human3.6M.

Methods Rec.Err. ↓ MPJPE ↓
Pavlakos et al. [] 75.9 -
Omran et al. [] 59.9 -
HMR [] 56.8 87.97
Kolotouros et al. [] 51.9 74.7
SPIN [] 44.2 .
Ours . 64.8

Table 4.2: Quantitative comparison to previous work trained by single-view image on 3DPW.

Methods Rec.Err. ↓ MPJPE ↓
HMR [] 76.7 130.0
Kanazawa et al. [] 72.6 116.5
Arnab et al. [] 72.2 -
Kolotouros et al. [] 70.2 -
SPIN [] 59.2 96.5
Ours . .

Table 4.3: Quantitative comparison to previous work trained by single-view image of MPI-INF-3DHP.

Methods PCK↑/AUC↑/Rec.Err.↓ PCK↑/AUC↑/MPJPE↓
VNect [] 83.9/47.3/98.0 76.6/40.4/124.7
HMR [] 86.3/47.8/89.8 72.9/36.5/124.2
SPIN [] 92.1/55.0/68.4 75.3/35.3/109.4
Ours ././. ././.
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Table 4.4: Quantitative comparison to previous work based on multi-view images on S9 and S11 of Human3.6M.

Methods Rec. Error ↓ MPJPE ↓ Known Camera? Parametric Model?
PVH-TSP [] - 87.3 Yes No
Trumble et al. [] - 62.5 Yes No
Pavlakos et al. [] - 56.89 Yes No
Tome et al. [] - 52.8 Yes No
Liang et al. [] 45.13 79.85 No Yes
Ours . 64.8 No Yes

4.3 Comparison to multi-view methods

There are some approaches which also used multi-view images to train the network to
regress human pose and shape. Table 4.4 gives the results of some previous methods based
on multi-view images on the test data of Human3.6M. Note that the first four methods did
not rely on parametric model to estimate 3D human pose. They assumed that the cameras
were known so that the 2D joint points can be reprojected to 3D space. Therefore, the
MPJPE of the three methods was calculated without any ambiguity with the ground truth
on the scale or rotation. However, for Liang et al. and our method, the 3D poses are the
deformed SMPL model and they have different scale with the ground truth due to the un-
known cameras, so the MPJPE of the two methods are worse. After Procrustes Alignment
on the 3D pose of the deformed SMPL model, the effects of ambiguity can be removed and
the reconstruction error is more suitable to compare with the MPJPE of the other methods.
We can see from the Table 4.4 that our method achieves the smallest reconstruction error,
which demonstrates that our method outperforms the previous methods based on multi-
view images on the Human3.6M. Since both Liang et al. and our method rely on SMPL
model, we also compare to Liang et al. on the 3DPW and MPI-INF-3DHP which contain
the images in the outdoor scene in Table 4.5 and Table 4.6. Although the method in [106]
also use multi-view image to regress the pose and shape parameters of SMPL, our method
still outperforms the method because the MV-SMPLify fully explores the relations between
the multi-view images and provides better supervision on the training of the CNN. There-
fore, our method achieves the satisfying performance on the three datasets even comparing
to methods based on multi-view images for training.

Table 4.5: Quantitative comparison to previous work based on multi-view images on 3DPW.

Methods Rec.Err. ↓ MPJPE ↓
Liang et al. [] - 96.86
Ours . .
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Table 4.6: Quantitative comparison to previous work based on multi-view images on MPI-INF-3DHP.

Methods PCK↑/AUC↑/Rec.Err.↓ PCK↑/AUC↑/MPJPE↓
Liang et al. [] 86.0/49.0/89.0 66.0/29.0/137.0
Ours ././. ././.

4.4 Qualitative results

In this section, we give some qualitative results of SPIN [88], Liang et al. [106] and our
method on the datasets of Human3.6M, MPI-INF-3DHP and 3DPW. SPIN is the method
based on single-view image, while Liang et al. [106] is the method based on multi-view
images. Figure 4.3, Figure 4.4 and Figure 4.5 demonstrate the several examples from Hu-
man3.6M, MPI-INF-3DHP and 3DPW, respectively. In each figure, the results of SPIN [88],
Liang et al. [106] and our method are shown from the second column to fourth column.
The examples shown in the three figures contain various human poses and are captured
both in indoor and outdoor scenes.

We can see that the human bodies in the images shown in the Figure 4.3∼ 4.5 have com-
plicated poses with different backgrounds. The figures demonstrate that our method can
recover the 3D human body model with better pose and shape estimation than the other
two methods. For the examples from the three datasets, our method has better performance
on the pose and shape estimation. The results of SPIN [88] are also better than the results of
Liang et al. [106], which shows that putting optimization on training loop is more useful.
For the images with indoor condition, our method achieved almost the same performance
as the SPIN [88] on most images, especially for the Human3.6M. However, for the images
with outdoor condition, our method clearly outperforms the SPIN. For example, the last
column in Figure 4.5, SPIN [88] has the error on the left and right of the body estimation
and the results of [106] are also false. For some complicated scene and pose in 3DPW,
for example, the third row in Figure 4.5, our method also has errors but it still looks better
than the two other methods. Since our method uses multi-view images and optimization
in the training loop, the results on the fencing of our method are correct. The figures are
also consistent with the quantitative results.
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(a) Images (b) SPIN [88] (c) Liang et al. [106] (d) Ours (e) Novel view

Figure 4.3: The qualitative results from Human3.6M. From left to right: The original images, the results of SPIN [88], Liang et
al. [106] and the results of our method from two views.

(a) Images (b) SPIN [88] (c) Liang et al. [106] (d) Ours (e) Novel view

Figure 4.4: The qualitative results from MPI-INF-3DHP. From left to right: The original images, the results of SPIN [88], Liang et
al. [106] and the results of our method from two views.
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(a) Images (b) SPIN [88] (c) Liang et al. [106] (d) Ours (e) Novel view

Figure 4.5: The qualitative results from 3DPW. From left to right: The original images, the results of SPIN [88], Liang et al. [106]
and the results of our method from two views.

4.5 Comparison to training without optimization

We discuss the effect of multi-view SMPLify on the final estimation on the three datasets.
The network was trained with multi-view SMPLify and without multi-view SMPLify, re-
spectively. Table 4.7 shows the reconstruction error and MPJPE of the two cases on the
three datasets. Our method with L2D+L3D in the table stands for the results withour multi-
view SMPLify. We can see that the accuracy has been improved after multi-view SMPLify
is used in our training loop. Since the training datasets in our method are Human3.6M
and MPI-INF-3DHP, the improvements are not significant. By contrast, the results on the
3DPW shows that our full method achieves more clear improvements. Figure 4.6 shows
the qualitative results of our method without and with multi-view SMPLify from the three
datasets, respectively. We can see that the results without multi-view SMPLify are worse,
especially for the example from 3DPW (the last row in Figure 4.6). From the results of
Human3.6M (the first row in Figure 4.6), we can see that the final 3D human body is not
natural even though the pose is accurate. The wrist and the arm of the 3D model have
unnatural blend and rotation. Therefore, the supervision of 2D and 3D joint points cannot
guarantee the correct 3D model. After adding the supervision of multi-view SMPLify, our
method can achieve the good estimation on the poses and the natural 3D bodies.
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Table 4.7: The evaluation of the effect of multi-view SMPLify on our method for the three datasets.

Human.M MPI-INF-DHP DPW
Rec.Err.↓ MPJPE↓ Rec.Err.↓ MPJPE↓ Rec.Err.↓ MPJPE ↓

Ours(L2D + L3D) 46.4 65.8 66.8 100.8 61.7 99.0
Ours(Full) . . . . . .

(a) Original images (b) Ours(L2D + L3D) (c) Ours(Full)

Figure 4.6: Qualitative results of our method without and with multi-view SMPLify in training loop from the three datasets.

4.6 The results of multi-view SMPLify

We first compare the performance of multi-view SMPLify and SMPLify in [18] to demon-
strate the advantage of using multi-view images. Taking 100 × 4 images from S1 in Hu-
man3.6M as an example, these images were fed into the CNN with the pre-trained pa-
rameters in [88]. Using the output of the CNN as initialization, we optimized the energy
functions of the multi-view SMPLify and SMPLify to get the optimized pose and shape,
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Figure 4.7: The results from SMPLify [18] and multi-view SMPLify. From top to bottom: original image, SMPLify [18] and multi-
view SMPLify.

respectively. Some examples from the 100× 4 images are shown in Figure 4.7. The second
row in Figure 4.7 shows the results of SMPLify, while the third row shows the result from
the multi-view SMPLify. We can see that the results from the multi-view SMPLify better
fit the ground truth and reduce the ambiguity of limbs in 3D space. Especially for the feet
and body orientations, multi-view SMPLify has more robust performance than SMPLify
which only relies on a single image. We also compute the reconstruction error, PCK and
AUC of 3D joint points of the 100×4 images. The results are shown in Table 4.8 and Fig-
ure 4.8. We can see from Table 4.8 that multi-view SMPLify can achieve higher PCK and
AUC, while the reconstruction error is lower than when using a single image. Figure 4.8
gives the curve of PCK with different thresholds and it also shows that multi-view SMPLify
had higher AUC and PCK with 150 mm as threshold. Therefore, the multi-view SMPLify
is more stable and reliable for our method and could provide better supervision for training
CNN.

Table 4.8: Comparison of the results from using single image and multi-view images.

PCK↑ AUC↑ Rec.Err.↓
SMPLify [] 93.9 54.9 70.0
MV SMPLify . . .
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Figure 4.8: The AUC of SMPLify and multi-view SMPLify for different joints. To the left SMPLify and to the right multi-view
SMPLify.

Figure 4.9: The comparison between regressed and optimized SMPL model. The pink models are the results after regression.
The white models are the the results after multi-view SMPLify.
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In addition, Figure 4.9 shows the comparison of the regressed SMPL model and optimized
SMPL model obtained by multi-view SMPLify. In the figure, the pink models are the
results of the CNN and the white models are the results after multi-view SMPLify for the
multi-view images. We can see that the results after multi-view SMPLify are better because
the limbs of the optimized SMPL model are closer to the ground truth, especially for the
results of the 3-rd and 4-th rows. This also demonstrates that it is advantageous to use the
results of multi-view SMPLify to supervise the network.

4.7 More results

Extra results of our method from the Human3.6M, MPI-INF-3DHP and 3DPW are shown
in Figure 4.10. These images show various poses and are captured under both indoor and
our scenarios. The first three rows are from Human3.6M, the middle three rows are from
MPI-INF-3DHP and the last three rows are from 3DPW. The original image and the 3D
model of our method from different view are given for each image. We can see that our
method achieve promising 3D pose and shape estimation on the these images. Even for
the 3DPW which is only used for testing, the estimated 3D models of our method are also
satisfying. This figure demonstrates the effectiveness of our method.

5 Conclusion

In this paper we propose a method to estimate 3D human pose and shape from multi-view
images by collaboration between a regression model, a CNN, and an optimization model,
multi-view SMPLify. Instead of training the network only relying on single-view image,
multi-view images provided by some public datasets are utilized for training. The multi-
view images are firstly processed by a CNN to regress the pose and shape parameters of
the SMPL model as well as the camera parameters. Then, the multi-view SMPLify takes
the output of the CNN as initialization to fit the SMPL model to the multi-view images
based on 2D joint points. Multi-view SMPLify achieves better optimized results than single
SMPLify, which provides stronger supervision of the training than single-view image. On
one hand, our approach sufficiently explores the relations of multi-view images in some
public datasets like Human3.6M for the network training. On the other hand, the CNN
and multi-view SMPLify form a tight self-supervised framework. We validate our method
on three public datasets through comparing to previous work and the results of our method
indicate the advantage of using multiple views throughout the training process.
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Figure 4.10: The results of our method on the three datasets. The first three rows are from Human3.6M, the middle three
rows are from MPI-INF-3DHP and the last three rows are from 3DPW. For each example, the original image, the 3D
model and the 3D model from anther view are given.
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Chapter 5

Learning to Implicitly Represent 3D
Human Body From Multi-scale
Features and Multi-view Images

Abstract

Reconstruction of 3D human bodies, from images, faces many challenges, due to it gen-
erally being an ill-posed problem. In this paper we present a method to reconstruct 3D
human bodies from multi-view images, through learning an implicit function to represent
3D shape, based on multi-scale features extracted by multi-stage end-to-end neural net-
works. Our model consists of several end-to-end hourglass networks for extracting multi-
scale features from multi-view images, and a fully connected network for implicit function
classification from these features. Given a 3D point, it is projected to multi-view images
and these images are fed into our model to extract multi-scale features. The scales of fea-
tures extracted by the hourglass networks decrease with the depth of our model, which
represents the information from local to global scale. Then, the multi-scale features as well
as the depth of the 3D point are combined to a new feature vector and the fully connected
network classifies the feature vector, in order to predict if the point lies inside or outside of
the 3D mesh. The advantage of our method is that we use both local and global features in
the fully connected network and represent the 3D mesh by an implicit function, which is
more memory-efficient. Experiments on public datasets demonstrate that our method sur-
passes previous approaches in terms of the accuracy of 3D reconstruction of human bodies
from images.
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1 Introduction

In various fields like animation, games and medical research, 3D human body models are
needed, and hence the task of acquiring such 3D human body models is a crucial task.
However, capturing and reconstructing detailed 3D human body models from monocular
images is a quite challenging task in computer vision and graphics, due to the diversity and
complexity of the human body in real scenes. In order to conveniently build accurate 3D
human body models from images or other 3D input, a large number of approaches have
been proposed during the past several decades.

Consumer depth camera based methods have achieved progress in building 3D human body
models [186, 17]. The problem is that the depth image is often sensitive to noise with the
changing of environment, while some high quality depth camera systems are expensive and
difficult to deploy. Therefore, many attempts to estimate 3D human body from monoc-
ular images have been done in research. With the success of deep learning in computer
vision, learning to estimate 3D human body models from monocular images has achieved
remarkable progress recently. In general, two different approaches can be summarized: (1)
parametric model based [10, 113] and (2) model-free based [156, 26]. In the first category,
a parametric human body is adopted to provide strong prior information and is fitted to
e.g. joint points through optimization to estimate the 3D model. This can result in good
pose estimation even for bodies partially covered by objects. However, the detailed ap-
pearance of human bodies like clothes and hair are typically not be preserved [18, 68, 3].
Recently, model-free based methods try to reconstruct 3D objects from monocular images
or 3D point clouds directly, which has shown promising performance on preserving the
shape details of the human body as well as the pose [5, 156, 26].

One way to learn to reconstruct 3D human bodies from images is based on fully-convolutional
networks that can extract feature maps spatially aligned with the monocular images [178].
The 3D mesh, which is represented as its x-y-z locations directly, can be applied in the fully
convolutional manner. The disadvantage is that it requires large amounts of memory to
store the features of each voxel in the 3D mesh. By contrast, implicit function representa-
tion of 3D models [29] has shown advantages. It is a memory efficient way and it has been
used in 3D deep learning for shape completion and reconstruction from incomplete 3D ob-
jects and so does the 3D human body reconstruction [120, 24, 134, 26]. Such methods based
on learning implicit functions for shape reconstruction often use deep neural networks to
extract features from 3D points and define a classifier network to infer if a given 3D point
locates in or out of the surface. Recently, a method for voxel super-resolution and shape
completion from various 3D inputs proposed a multi-scale feature extraction structure [26]
based on an implicit representation 3D model.

Inspired by the above research, we propose a multi-scale features based method to learn
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an implicit function for 3D human body reconstruction from multi-view images in this
paper. After sampling some 3D points near the boundary of the ground-truth mesh, we
firstly project them to the multi-view images. Then, the multi-view images are fed into
our model to extract multi-scale features and query the occupancy values. The model for
feature extraction contains several stages of end-to-end fully convolutional neural networks
(hourglass networks). Instead of keeping the size of feature maps of each hourglass network
the same, we downsample the feature map of each hourglass network, which produces
multi-scale feature maps that encode both global and local information of the given multi-
view images. Since we use hourglass networks, the feature map can be spatially aligned to
the original images, which can choose the features of those 3D points from the mesh. The
multi-scale features as well as depth information are combined as a new feature. Finally, we
feed the new feature into a fully connected classifier network which gives the value of an
implicit function to the corresponding point. Therefore, through querying enough points
of a 3D grid, the 3D model can be inferred by a threshold from the 3D grid. The overview
of our method is shown in Figure 5.1.

Figure 5.1: The overview of our method. Multi-view images are fed into our model. Fi is the feature grids extracted by the
hourglass network shown as the orange ”▶◀”. For the point in the images (yellow ”•”), the corresponding features
can be extracted from multi-scale features. The features are passed to a classifier to decide the value of the implicit
function representation. After training the model, we can reconstruct the 3D mesh from the implicit function.

Our method has two main contributions. Firstly, it is a model-free implicit function based
method which can better estimate the shape details in a memory efficient way. Secondly,
the novel multi-scale features encode local and global information of the query points,
which leads to better performance than approaches based on single scale features. In order
to demonstrate the effectiveness of our method, we compare to previous work on synthetic
and real clothed human body datasets quantitatively and qualitatively.

91



2 Related work

Approaches for 3D human body reconstruction can be divided into two categories accord-
ing to whether a template is used for reconstruction. We call them model-based and model-
free methods.

Model-based methods require the use of a template to fit some prior information. The
template is often defined by a parametric human body model like SCAPE [10] or SMPL
[113] that can provide strong prior information on the pose and shape. Then, various prior
cues mainly including silhouettes [13], 2D/3D joint points [53, 25], and depth images [186]
were utilized and the parametric human body model was fitted to the cues through opti-
mization. In order to improve the accuracy of prediction, it was common to use more than
one prior cue, see e.g. [53, 17]. For the fitting problem, novel optimization algorithms were
also discussed and explored [101, 55]. However, the prior information was always manu-
ally obtained to ensure the accuracy. With the emergence and success of deep learning on
computer vision tasks, 2D/3D joint points can be automatically predicted by training deep
neural networks [142, 185, 129], which has become one of the most popular prior cues for
fitting. Many automatic methods based on 2D/3D joint points obtained by deep neural
networks were proposed [18, 68, 196, 3] since the success on human pose estimation based
on learning. Additional cues like silhouettes [68, 196, 3], video [68, 3], and depth infor-
mation [199] were also added to improve the results. Deep learning can not only predict
prior information from images, but also regress the parameters of parametric human bod-
ies directly from images. In [81], an end-to-end structure was proposed to regress the pose
and shape parameters of SMPL, obtaining more robust results than fitting-based meth-
ods. Recently, many novel approaches based on deep neural networks have been proposed
through improving the architecture of networks or defining new loss functions for training
[138, 89, 140, 88]. In [88], a weakly self-supervised method combining fitting and regression
was proposed and achieved competitive performance. In [5], detailed 3D human body ge-
ometry was estimated by translating texture maps obtained by DensePose [8] to augmented
SMPL models from a single image. Although these methods have achieved extraordinary
performance on human pose and shape estimation, they fail in detailed estimation of hu-
man bodies with loose clothes.

Model-free methods for 3D shape reconstruction from images or 3D input like point clouds
and low-resolution voxel grids have also made impressive progress recently. Instead of re-
lying on a template, the methods mainly regress 3D volumes explicitly or implicitly, giving
better ability to represent detailed shape including clothes and hair. In the beginning,
some research [74, 178, 203, 126] proposed to regress the 3D volume containing the com-
plete human body model through explicitly representing 3D shape. In [74], a method for
face reconstruction from a single image was proposed by regressing the vertices of a vol-
ume using a CNN. Then, Varol et al. [178] proposed to extend to the full body, and a
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3D volume was fed into the network directly. These methods require large amounts of
memory for representing the 3D volume during training. By contrast, learning an implicit
function for 3D shape reconstruction and completion is memory efficient and has also ob-
tained some progress recently [69, 120, 24, 134, 156, 26, 132]. The methods only took into
those points sampled around the 3D mesh to regress the value of implicit function, and
thus, can reduce the memory footprint during training. In [134], the Truncated Signed
Distance Function (TSDF) [29] was used for implicitly representing the 3D mesh and the
authors proposed a CNN-based method to learn the continuous TSDF for shape comple-
tion and interpolation. Instead of using TSDF, binary occupancy was used in [120, 24]
and they can reconstruct 3D shape from single image. These methods have inspired 3D
human body reconstruction without the use of templates. In [69], the authors trained a
CNN for feature extraction and a classifier for implicit function from multi-view images.
Satio et al. proposed to use an end-to-end method to extract features and depth to learn
the implicit function and they can estimate a 3D mesh from both single and multi-view
images [156]. Chibane et al. proposed an implicit network which extracted multi-scale fea-
tures to reconstruct 3D human body from low-resolution volume and partial point cloud
[26]. In [132], the authors proposed a novel tetrahedral TSDF method for 3D human body
reconstruction which built the TSDF between an inflated SMPL model and a deformed
ground truth 3D mesh. Model-free methods based on implicit function do not rely on a
template, which can better estimate the clothed human body. Therefore, the problem has
attracted much attention since the success of the implementation of deep learning. Our
method also belongs to the model-free methods.

3 Proposed Method

This section presents the details of our method to reconstruct 3D human bodies from multi-
view images, which is shown in Figure 5.1. Firstly, the background on the implicit function
representation of surfaces is introduced in section 3.1. Then, we describe the the multi-
scale feature extraction and querying in section 3.2. Finally, the loss function for training
is defined in section 3.3.

3.1 3D Model Using an Implicit Function

Implicit representation is a memory efficient way to represent 3D models because we do not
need to store all voxels of a 3D volume. Given a watertight mesh S and its corresponding
dense grid points X, the implicit function gives a value of those point around the surface
instead of storing the x-y-z locations of the points in the volume. The value is usually
represented in two forms: the signed distance from points to mesh or binary occupancy.
The surface can be decided by a threshold in the grid as long as all the points in the gird
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are given values to decide whether points are outside or inside of the mesh. The two forms
have similar performance to represent 3D surfaces implicitly. In our method we use the
occupancy values to define the implicit function. In general, the implicit function can be
defined as:

f(X) : R3 → [0, 1], (5.1)

where X is the 3D point around the given 3D mesh S. If the point is inside the surface, the
value of f is 0. Otherwise, the value of f for the point is 1. As a result, the surface can be
decided by a decision boundary with a threshold 0.5.

Based on the definition of the implicit function, the mesh can be reconstructed as long as the
implicit function f(·) can be learned correctly. The advantage is that the implicit function
can represent the 3D mesh with any resolution since any points in a 3D volume containing
the mesh could be given its corresponding occupancy value through the estimated f̂(·). It is
also a memory-efficient representation because we do not use all voxels in the 3D volume.
Then, the mesh can be reconstructed through algorithms such as marching cubes on the
signed occupancy grid, which enables detailed 3D shape reconstruction. Therefore, the key
problem is to learn the implicit function f(·) for our method.

3.2 Multi-scale Features Extraction and Querying

Figure 5.2 shows the projection from sampled 3D points of mesh to 2D multi-view im-
age planes, feature extraction from multi-view images and query of the features. In the
following, we describe the details of each step.

The first problem is how the 3D mesh and 2D multi-view images build the correspondence.
Similar to previous work [156, 26], we uniformly sample N 3D points Xi, i = 1, ...,N
on the ground truth of 3D mesh instead of using all the vertices, which can reduce the
consumption of memory. This can be done through an efficient ray tracing algorithm
[181]. Note that the mesh should be water-tight to use [181]. Then, random displacements
are generated by normal distribution ni ∼ N (0, σ) where σ is the standard deviation and
they are added to the 3D points Xi, i.e., X̂i = Xi+ni. This ensures that those points far from
the mesh are not selected, which can reduce unnecessary predictions. The corresponding
occupancy value f(X̂i) of X̂i can be obtained according to the outside or inside of X̂i. As
shown in Figure 5.2, the green points are outside of the mesh, while the red points are inside
of the mesh. Given the camera matrices of M views Πj, j = 1, ...,M, these 3D points X̂i
can be projected to the M image planes through Πj(X̂i) and we denote these 2D points as
xij for the i-th point X̂i and j-th camera Πj.

Then, we need to get the features of xij from the multi-view images. We form the multi-view
images as a small batch and compute the features of each image. As shown in Figure 5.1, for
the j-th view image Ij, n hourglass networks are utilized to create multi-scale feature grids
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Figure 5.2: The example of projection from 3D points to multi-view images, the multi-scale features extraction and query the
multi-scale features.

F(j)1 , ..., F(j)n . The hourglass network has two convolution layers and two deconvolution
layers and a max pooling layer is followed after each hourglass. Therefore, for the k-th
feature grid F(j)k , its resolution is RHk×Wk×C where Hk and Wk will decrease as 2k−1 for the
k-th hourglass network. C is the number of convolution kernels and we set it as 256 in our
model. This will make the feature grid Fk at early stage capture the local information, while
Fk at the last stage encodes global information. Then, we can extract features from Fk at the
corresponding position of point xij in the image plane through interpolation since hourglass
network extract network through a fully convolutional way. We denote the feature vector
at the k-th stage as F(j)k (xij) ∈ R256. Totally, the features from all the stages as well as the
depth z(j) of xij at the j-th image are formed as the final feature for the point xij and we
denote it as:

F(j)(xij) = {F(j)1 (xij), ..., F(j)n (xij), z(j)(xij)} (5.2)

Comparing to PIFu in which features at each stage Ff are the same scale and are queried
separately, we classify the new feature F(j)(xij) which is formed by multi-scale feature grid
and contains local, global and depth information. This feature can better encode spa-
tial information of the image. For the M view images, there will be M feature vectors
F(j)(xij), j = 1, ...,M for points xij, j = 1, ...,M. These new features are fed into the clas-
sifier in Figure 5.1 which is a fully-connected network, respectively. This fully-connected
network has four layers as (1024, 512, 128, 1). We denote it f̂ and the output of this clas-
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sifier is the [0, 1] indicating whether the point is outside or inside of the mesh:

f̂(F(j)(xij)) : R1 × ...× Rn × R1 → [0, 1] (5.3)

Since we have M view images, the feature vectors of each image will be classified separately,
leading to better localization of the 3D points. In this classifier, not only local and global
information is contained in the input feature vector, but the depth information is also given.
This enables the whole learning process to better recover the details.

3.3 Training

According to the above multi-scale extraction and querying process, the loss function for
training can be established. For given multi-view images Ii, i = 1, ...,M and its correspond-
ing 3D mesh S, we sample N 3D points from S and add displacements on these points to
get X̂i, i = 1, ...,N. The loss function for learning the implicit function to represent the
3D human body model is defined as:

Lf =

N∑
i=1

M∑
j=1

L(̂f(F(j)(xij)), o(X̂i)), (5.4)

where xij is the 2D projection on the j-th image for point X̂i. o(X̂i) is the ground truth of
occupancy value for X̂i. L(·) is the standard mean square error loss between f̂(F(j)(xij)) and
o(X̂i). Through minimizing Lf, the multi-stage hourglass networks and the classifier fully
connected network are trained.

After training the multi-stage hourglass network for feature extraction and the fully con-
nected network for classifying, we can query any 3D dense grid. As long as the points
in the dense grid is given occupancy values, the 3D model can be extract through classi-
cal marching cubes algorithm. Therefore, this method will not be limited by parametric
human bodies and is more flexible to process complex human bodies.

4 Experiments

Several experiments are designed to evaluate our method on two dataset: Articulated dataset
[179] and clothed auto person encoding (CAPE) dataset [116]. The Articulated dataset
contains ten subjects and each subject is captured from eight views. The ground truth of
3D meshes and the camera parameters of the eight views are also given. Totally, there are
2000 frames in this data and we split them 80 for training and 20 for testing. Another
dataset is called CAPE which is a synthetic clothed human body dataset. It contains 15
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subjects and every subject performs many different actions. In this dataset, 3D meshes of
the frames are given, and thus, this dataset is very large. We extract a small subset from the
original CAPE. For every action of each subject, the frames at 80, 85, 90, 95, 100 are taken
out if the action has more than 100 frames. Then, we render the mesh into 512 × 512
images using four cameras: front, right, back and left. The examples from the small CAPE
dataset can be seen in the last two rows of Figure 5.5. Totally, there are 2910 frames in the
small CAPE and we also split it 80 for training and 20 for testing.

In our experiments we used four-view images to estimate the 3D model and the features
were extracted by four stages hourglass networks. All input images were cropped and resized
to 256×256 tightly containing the human body in the images. Firstly, a convolution layer
and max pooling layer processed the input images and the output features are 128×128×
64. Then, the four-stage hourglass networks were advocated to extract multi-scale features
and the size of each feature grids were 128 × 128 × 256, 64 × 64 × 256, 32 × 32 × 256
and 16 × 16 × 256, respectively. In order to train our model, we sampled 10, 000 points
from the ground truth mesh and the random displacements generated by N (0, 0.05) were
added to the 3D points. These 3D points with random displacements were projected to the
corresponding four-view images and the features of these points were interpolated from the
feature grids. The four-view images were formed as a small batch to input our model. The
batchsize in our code was set to two due to the limitation of the GPU, i.e., the true number
of input images was 2 × 4. We trained our model on the Articulated dataset and CAPE
dataset, respectively. For the two datasets, the model was trained for 12 epochs, which took
about 7 hours for each dataset on a NVIDIA TITAN X GPU with 12 GB.

For qualitative and quantitative comparison, we compared to three previous methods:
SPIN [88], DeepHuman [203] and PIFu [156]. SPIN [88] reconstructed 3D model through
estimating the pose and shape of the SMPL model. DeepHuman [203] regressed the 3D
volume based on an estimated SMPL model. PIFu [156] learned an implicit function to
reconstruct the 3D human body model. Note that the results of SPIN and DeepHuman in
our experiments were obtained by using the trained model in the original paper, while PIFu
was trained by our training datasets and was evaluated on our testing dataset because the
dataset used in PIFu was not free. The metrics for comparison contain point-to-surface Eu-
clidean distance (P2S) from the vertices on the predicted mesh to the ground truth mesh
(Lower is better), volumetic intersection over union (IoU) measuring how well the pre-
dicted mesh (Higher is better) and Chamfer-L2 which shows the accuracy and complete-
ness of the surface (Lower is better). All of them are measured as cm and the definition of
these metrics can be referred to [26].
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4.1 Quantitative results

Table 5.1 and 5.2 showed the P2S, Chamfer-L2 and IoU of the testing dataset of Articulated
and CAPE obtained by SPIN [88], DeepHuman [203], PIFu [156] and our method, respec-
tively. Since SPIN and DeepHuman relied on the parametric human body model SMPL
[88] which may have different coordinates with the ground truth of 3D meshes, we firstly
normalized the predicted 3D model and true 3D model. Then, the predicted 3D model was
registered to the ground truth meshes through the iterative closest point (ICP) algorithm.
Through normalization and rigid registration, the estimated 3D mesh was well registered
to the ground truth, which ensured that the metrics are calculated correctly. We can see
from the two tables that the P2S, Chamfer-L2 obtained by our method were the lowest on
the two datasets, while the IoU of our method was the highest on the two datasets. This
demonstrated that our method achieves the best 3D reconstruction on both Articulated
dataset and CAPE dataset comparing to the previous methods. In order to clearly show the
quantitative results, Figure 5.3 shows the P2S of the four methods on the testing samples
of the Articulated and CAPE. We can see that our method achieves the lowest P2S on the
most samples of the two datasets. This demonstrates the same conclusion as the Table 5.1
and Table 5.2.

Table 5.1: Quantitative evaluation on Articulated dataset for four-view reconstruction

PS ↓ Chamfer-L2 ↓ IoU ↑
SPIN [] 3.5206 0.2679 0.3506

DeepHuman [] 3.9448 0.2675 0.3742
PIFu [] 0.8194 0.0210 0.8255

Our . . .

Table 5.2: Quantitative evaluation on CAPE dataset for four-view reconstruction

PS ↓ Chamfer-L2 ↓ IoU ↑
SPIN [] 2.2134 0.1271 0.4044

DeepHuman [] 3.4028 0.1850 0.3861
PIFu [] 1.0330 0.0212 0.7571

Our . . .

For SPIN [88] and DeepHuman [203] which estimated 3D model from single image based
on SMPL model, their results were easily affected by the given image. If some parts of
the human body can not be seen in the image because of self-occlusion, the two methods
may obtain incorrect estimation. PIFu [156] and our method estimated the 3D human
body model through an implicit function and could improve the accuracy significantly.
However, PIFu [156] used features with the same scale, which cannot fully reflect the spatial
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(a) The P2S of the testing dataset of the Articulated dataset for different methods.

(b) The P2S of the testing dataset of the CAPE dataset for different methods.

Figure 5.3: The P2S of each sample in the testing data of the two datasets for different methods. The y axis stands for the
accuracy of P2S. The x axis is the number of samples in the testing data.

information. In our method, we proposed to use multi-scale features to fully use local and
global information, and thus, our method can achieve better results.

In Figure 5.4, several examples from Articulated and CAPE are shown to demonstrate the
errors from points of predicted mesh to the ground truth mesh. The first two rows are from
Articulated and the last two rows are from CAPE. The higher errors are shown as red, while
the blue means lower errors. It shows that the results of PIFu [156] and our method have
smaller errors. SPIN [88] had better results on CAPE than the results on Articulated because
the human pose in CAPE was simple. DeepHuman [203] regressed 3D models based on
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the results of SPIN, but the results were not good because this model was not retrained by
our dataset, which meant that this method had poor generalization. Our method achieved
smaller error than PIFu [156] on the given examples, which was consistent with Table 5.1
and 5.2.

(a) SPIN [88] (b) DeepHuman [203] (c) PIFu [156] (d) Our

Figure 5.4: The errors from points of predicted 3D models to the ground truth 3D meshes. The first two rows are from Artic-
ualted [179] and the last two rows are from CAPE [116]. From left to right columns: SPIN [88], DeepHuman [203],
PIFu [156], Our Method.

4.2 Qualitative results

In Figure 5.5, some qualitative results of SPIN [88], DeepHuman [203], PIFu [156] and
our method from Articulated and CAPE dataset are demonstrated. The first three rows
are examples from the Articulated dataset and the last two rows are examples from the
CAPE dataset. We can see from the figure that the estimated 3D models of SPIN [88] and
DeepHuman [203] have the correct pose compared with the original 3D models. However,
the two methods cannot obtain the details about the clothes. Although DeepHuman [203]
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tried to infer the clothes, the original trained model of DeepHuman cannot achieve good
estimation on our testing dataset due to its poor generalization. For the results of PIFu [156]
and our method, the areas indicated by red circles showed that our method achieves better
estimation on the clothes because our estimated 3D human body showed more details on
the wrinkles of the clothes. Especially for the second row in which the human body wore
a skirt, our method achieved more details on the wrinkles of the skirt.

(a) Images (b) GT (c) SPIN [88] (d) DeepHuman
[203]

(e) PIFu [156] (f) Our

Figure 5.5: The qualitative results of previous methods and our method. The first three rows are from Articulated and the last
two rows are from CAPE. From left to right columns: the original four-view images, the ground truth of 3D model,
the results of SPIN [88], DeepHuman [203], PIFu [156] and our method.
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4.3 Discussion on the Number of Views

In our method the number of views is an important factor to the final reconstruction. In
order to demonstrate the effect of the number of views, we also trained our model using
eight-view images to compare the results of four views on the Articulated dataset. Table 5.3
lists the quantitative results of four views and eight views on the testing data. The table
demonstrates that the accuracy of the estimated 3D model is higher when eight-view im-
ages are utilized to train the model. The P2S reduces to 0.43 cm, Chamfer-L2 reduces to
0.052 cm, while the IoU increases to 88.75. This is understandable because eight-view
images provide more prior information for the learning. Therefore, it is useful to get better
results by using more images in our method.

Table 5.3: Quantitative evaluation on Articulated dataset for four-view and eight-view reconstruction

PS ↓ Chamfer-L2 ↓ IoU ↑
four-view 0.7332 0.0194 0.8484
eight-view . . .

In Figure 5.6, several examples from the Articulated dataset on the 3D reconstruction errors
are also shown. This figure clearly demonstrates that the estimated 3D meshes from eight-
view images have smaller errors. The 3D model from eight-view images can reduce some
incorrect parts which existed in the 3D models four-view images, for example, the second
example in the figure. Besides, The details of the clothes indicated by the red circle are
better recovered from the eight views. The wrinkles of the clothes are better shown in the
eight-view results as shown in the first example of Figure 5.6.

5 Conclusion

In this paper we proposed a method to reconstruct detailed 3D human bodies from multi-
view images based on an implicit function learned from multi-scale features. Our model
consists of multi-stage hourglass networks to extract multi-scale features and a fully con-
nected network to classify the features. The hourglass networks extract the feature grids
which are spatially aligned to the original images so that the features of the corresponding
points in the images can be obtained. The multi-scale features as well as the depth form
a new feature which contains both local and global spatial information. The fully con-
nected network then classifies the new feature as inside or outside of the 3D mesh. Through
querying those points around the 3D mesh, we can implicitly represent the 3D models. The
experiments demonstrate that our methods can reconstruct detailed 3D models from multi-
view images with higher accuracy. The drawback of our method is that the training dataset
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(a) GT (b) Four views (c) Eight views

Figure 5.6: The examples of 3D models and errors of four-view images and eight-view images on Articulated dataset.

in our method is limited, and thus, our method does not show good generalization. In the
future we will introduce more human bodies to improve our method.
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Chapter 6

Detailed 3D Human Body
Reconstruction From Multi-view
Images Combining Voxel
Super-Resolution and Learned
Implicit Representation

Abstract

The task of reconstructing detailed 3D human body models from images is interesting but
challenging in computer vision due to the high freedom of human bodies. In order to
tackle the problem, we propose a coarse-to-fine method to reconstruct a detailed 3D hu-
man body from multi-view images combining voxel super-resolution based on learning the
implicit representation. Firstly, the coarse 3D models are estimated by learning an implicit
representation based on multi-scale features which are extracted by multi-stage hourglass
networks from the multi-view images. Then, taking the low resolution voxel grids which are
generated by the coarse 3D models as input, the voxel super-resolution based on an implicit
representation is learned through a multi-stage 3D convolutional neural network. Finally,
the refined detailed 3D human body models can be produced by the voxel super-resolution
which can preserve the details and reduce the false reconstruction of the coarse 3D models.
Benefiting from the implicit representation, the training process in our method is mem-
ory efficient and the detailed 3D human body produced by our method from multi-view
images is the continuous decision boundary with high-resolution geometry. In addition,
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the coarse-to-fine method based on voxel super-resolution can remove false reconstruc-
tions and preserve the appearance details in the final reconstruction, simultaneously. In
the experiments, our method quantitatively and qualitatively achieves the competitive 3D
human body reconstructions from images with various poses and shapes on both the real
and synthetic datasets.

1 Introduction

Recovering detailed 3D human body models from images attracts much attention because
of its wide applications in movie industry, animations, and Virtual/Augmented Reality.
However, inferring 3D objects from 2D images is a challenging task in computer vision due
to the ambiguity of reprojection from 2D to 3D space. The high freedom of the human body
in real scenes further increases the difficulty of the task. Although multi-view systems [77]
and laser scanning systems [194] are now able to reconstruct accurate 3D human bodies,
these systems remain inconvenient for common users because they are often hard to deploy
and expensive. Thus, estimating 3D human bodies from images is more attractive and
many approaches have provided possible directions to tackle the problem from advocating
the pre-defined parametric human body as template to recent deep learning based route.

Traditionally, 3D human body reconstruction from RGB images mainly depends on the
pre-defined parametric human body models. From simple geometric primitives [160] to
data-driven models [10, 113], parametric human body models play important roles in human
related research. The main idea of the route is to fit the parametric human body model to
some prior information including the skeleton, 2D joint points and the silhouettes [13,
18, 3]. Such methods have been used for human motion tracking and 3D pose estimation
successfully. However, due to the missing detailed appearance on the most parametric
human bodies such as clothes and facial expression, the results of these methods are often
unclothed, which cannot satisfy the requirements of the realism in many applications.

Benefiting from the great success of deep learning in many computer vision tasks, 3D
human body reconstruction from images based on deep learning has also achieved some
progress recently. During the past several years, convolutional neural networks (CNN)
have shown impressive performance on 2D/3D human pose estimation [142, 129, 8] and
human body segmentation [191, 63]. Therefore, some methods automatically estimated
3D human body model from images by fitting the parametric human body to prior cues
like the 2D or 3D joint points of human body and silhouettes which can be estimated by
the CNN [18, 68, 3, 196]. Since the poses and silhouettes comprise sparse information,
directly inferring the pose and shape of a parametric human body model from the full
image through the CNN becomes another useful route and has achieved impressive per-
formance [81, 138, 140, 89, 88]. However, the 3D human body models obtained by these
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methods are still unclothed. Recently, many approaches came up with a refining process
based on CNN on the parametric human body to add clothes on the naked 3D human
body model. The refining process includes in the image texture translation [5], inferring
the surface normal [157] and volumetric regression [203]. Through refining the parametric
human body model, these methods can obtain some details including the clothes and hair
on the final 3D model. However, these methods require that the parametric human body
model has the accurate pose with the observed human body because the final estimation
will be affected seriously if the prior information is not predicted correctly.

Recently, deep learning on 3D reconstruction like point clouds or voxels from images for
some general objects has gained popularity. Explicit volumetric representations are straight-
forward for learning to infer 3D objects from RGB images [27, 83, 182, 38]. Due to the
limitation of memory, these methods can only produce low-resolution 3D objects (e.g.
323 or 643 number of voxels). Even though some methods reduce the memory footprint
through adaptive representations such as octrees, the final resolutions are sill relatively low
(e.g. 2563) [151]. In addition, these results are always discrete, which results in the missing
of many details on the surface. In contrast to explicit representations, implicit function for
3D model representation in deep learning shows impressive performance [134, 120, 24, 26]
and is attracting much attention. Compared to learn the explicit volumetric representa-
tion, learning an implicit function to represent 3D shape can be implemented in a memory
efficient way, especially for the training process. Another advantage of implicit represen-
tation is that the 3D model can be decided by the continuous decision boundary, which
allows a high-resolution 3D model. Considering the advantages, there are some meth-
ods based on learning implicit function to reconstruct detailed 3D human body from im-
ages [69, 156, 157]. However, these methods may still produce some false reconstruction on
the final 3D model.

In this paper we propose a novel method to estimate a detailed 3D human body model
from multi-view images, through learning an implicit representation. Our method works
in a coarse-to-fine manner, and thus, consists of two parts: (1) inferring the 3D human
body model from multi-view images, and (2) voxel super-resolution from low-resolution
voxel grids obtained by (1). In both of the two parts, we attempt to learn an implicit
function to represent the 3D models. For the reconstruction of a 3D human body from
multi-view images in (1), the structure of multi-stage hourglass networks is designed to
produce multi-scale features and a fully connected neural network predicts the occupancy
values of the features to implicitly represent 3D models. Through training the above model,
the coarse 3D models can be estimated from multi-view images. Then, low-resolution grids
can be generated by voxelizing the coarse models. Taking the low-resolution grids as input,
a multi-stage 3D CNN is built to produce multi-scale features and a fully connected neural
network is also utilized to predict the occupancy values of the features. The final 3D model
is generated by the implicit representation through refining the coarse model by voxel super-
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resolution. Our method is summarized in Figure 6.1.

Our method differs from previous work in three aspects. Firstly, it is a coarse-to-fine
method combining 3D reconstruction from multi-view images and voxel super-resolution
into one route to infer 3D human body models. The 3D reconstruction from images pro-
duces a coarse result and the voxel super-resolution refines the coarse result to generate a
final detailed 3D model. Secondly, the implicit representation for the 3D model is used both
in image based 3D reconstruction and voxel super-resolution, which is memory efficient for
training and can produce high resolution geometry through extracting a continuous deci-
sion boundary. Finally, the multi-scale features are extracted from multi-view images and
low-resolution voxel-grids for coarse reconstruction and refining the models, respectively.
The multi-scale features are able to fully encode the local and global spatial information of
the pixels in the images and the voxels in the low resolution voxel grids.

The paper is organized as follows. The introduction and related work of our method are
presented in Section 1 and Section 2, respectively. The following Section 3 describes the de-
tailed coarse-to-fine structure of our method and the implementation details including the
3D model reconstruction from multi-view images and voxel super-resolution. In Section 4,
some quantitative and qualitative experiments are illustrated to evaluate the performance
of our method. Finally, the conclusion and future work are stated in Section 5.

2 Related Work

We summary the related work on 3D human body reconstruction from images and 3D
vision based on deep learning in this section. There are three parts in the section: (1)
Optimization based methods; (2) Parametric human body model based regression, and (3)
Non-parametric human body model based regression.

Optimization basedmethods. The classic route to recover 3D human body models from an
image is to fit a template such as SCAPE [10] or SMPL [113] to prior cues. SCAPE, which
was a data-driven parametric human body model to represent human pose and shape, was
learned from 3D human body scans [10]. Some methods fitted SCAPE to the silhouettes
and joint points from observed images to recover human pose and shape [13, 161, 53]. With
the emergence of Kinect, the depth images were also used for fitting the SCAPE [186, 17,
108]. With the success of deep learning on human pose estimation [129, 117, 8, 20], the joint
points can be obtained automatically with high accuracy. In [18], an automatic method for
3D human body estimation was proposed through fitting a novel parametric human body
model called SMPL [113] to the 2D joint points predicted by deep learning [142]. Then,
more methods turned to use SMPL or pre-scanning models for human body reconstruction
based on 3D joint points, multi-view images, video and silhouettes[68, 3, 196, 103, 58].
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These methods tried to build better energy function based on various prior cues and the 3D
human body was estimated by optimizing the energy function. Although the optimization
based methods were classic, the estimated 3D human body was always unclothed due to
the limitation of parametric human body, which limited its realism.

Parametric human body model based regression. Since deep learning has achieved im-
pressive performance on many computer vision tasks, it also attracts much attention on 3D
human body estimation through regressing the parametric human body model. In the be-
ginning, the shape parameters of SCAPE were regressed from silhouettes to estimate 3D hu-
man body model in [33, 35], which can only handle the standing pose or very simple poses.
In [166], the shape and pose of the SMPL model were regressed through the images and
the corresponding SMPL silhouettes. Instead of using silhouettes, the authors proposed to
take the whole image as the input of the CNN to regress the pose and shape parameters
of the SMPL model through building the loss function about the joint points [81]. Since
then, many improved methods were proposed through designing novel network structure
or using more constraints on the loss function [138, 89, 140, 88, 82, 106, 87]. Pavlakos et
al. [138] combined joint points and silhouettes in the loss function to better estimate the
shape. There were some other approaches in which various cues were used for building
sufficient loss function to train the network including the mesh [89], the texture [140],
the multi-view images [106], the optimized SMPL model [88] and the video [82, 87]. Al-
though these methods can infer the pose and shape of SMPL model very well, they still
obtained unclothed human body models. In order to model the detailed appearance,
some methods attempted to refine the regressed SMPL model to obtain the detailed 3D
model [2, 178, 204, 95, 5, 203, 132, 70]. In [2], after estimating the pose and shape of SMPL
model, the authors used shape from shading and texture translation to add the details to
SMPL like face, hairstyle, and clothes with garment wrinkles. They also proposed some
improved methods to obtain better results [95, 5]. In addition to the texture, the explicit
representation of 3D human body model was also used in detailed reconstruction. Bo-
dyNet [178] added the volume loss function to better estimate the pose and shape of SMPL.
DeepHuman [203] refined the appearance of volumetric SMPL model through transferring
the image normal to the volumetric SMPL. In [132], a novel tetrahedral representation for
SMPL model was used and the detailed model was obtained by learning the signed distance
function of tetrahedral representation. Another recent work also refined the normal and
color of image to the estimated SMPL model from single image [70].

Non-parametric human bodymodel based regression. Recently, deep learning also achieved
some success on reconstruction of 3D objects from images without relying on any paramet-
ric models. Some methods tried to extract coarse 3D information from 2D images and at-
tempted to refine the 3D information through deep neural network such as volume, visual
hull, depth images [75, 69, 46, 41, 126]. Jackson et al. [75] reconstructed 3D geometry of
humans through training an end-to-end CNN to regress the volumes which were provided
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in the training dataset. In [46], a coarse model was obtained though Visual Hull from
sparse view images and the coarse model was refined by a deep neural network. Natsume et
al. [126] generated multi-view silhouettes through deep learning from single image and pro-
posed a deep visual hull to infer the detailed 3D models based on the estimated silhouettes.
Huang et al. [69] estimated detailed models by deciding if a spatial point inside or outside
of 3D mesh through classifying the features extracted by the CNN. Gabeur et al. [41] esti-
mated the visible and invisible point clouds of the human body from image through deep
learning and the full detailed body can be formed by the point clouds. Instead of inferring
3D information from images, some other methods gained popularity to reconstruct gen-
eral 3D models directly from images with explicit representation such as voxels and point
cloud [27, 83, 182, 38]. Due to limitation of resolution of explicit representation, implicit
representation for 3D model based on deep learning has been used for reconstruction of
general objects [83, 120, 24, 26]. Inspired by the idea, some methods only for detailed 3D
human body reconstruction also proposed based on learning implicit representation. Saito
et al. [156] extracted the pixel-aligned features from images through end-to-end networks.
Associating the depth of pixel, the implicit representation can be learned from the features.
The method can produce the high-resolution detailed 3D human body including the facial
expression, clothes and hair can be estimated from by the above methods. However, there
existed many errors on the estimation because only 2D images were used. An improved
method called PIFuHD [157] was proposed to reconstruct high-resolution detailed 3D hu-
man body from images through introducing image normal to PIFu. The coarse-to-fine
methods could obtained more accurate reconstruction because more cues were used for the
reconstruction.

Figure 6.1: The pipeline of our method. It consists of 3D reconstruction from images and voxel super-resolution from low-
resolution grids. The 3D reconstruction from images estimates a coarse 3D human body model. After voxelizing to
a low-resolution grid, the super-resolution refines the low-resolution grid to obtain detailed model.
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3 Method

In this section the details of our method are described. We firstly introduce the background
of implicit function to represent the 3D shape. Then, we present the 3D human body recon-
struction from multi-view images through learning the implicit representation. Afterwards,
an implicit representation based network for voxel super-resolution is presented to refine
the 3D human body model obtained from the multi-view images. Finally, the implemen-
tation details of our method are introduced.

3.1 Learning an implicit function for 3D models

For 3D reconstruction based on deep learning, implicit function to represent 3D shape is
memory efficient for training. Instead of storing all voxels of the volume in an explicit
volumetric representation, an implicit function for 3D representation assigns the signed
distance or occupancy probability to a spatial point to decide if the point lies inside or
outside of the 3D mesh. Thus, the 3D mesh can be extracted by a level set surface. In
our method, we use occupancy probability as the output of the implicit function. Given a
spatial point and a water-tight mesh, the occupancy function is defined as:

f(X) := x,X ∈ R3, x ∈ {0, 1}, (6.1)

where X is the 3D point and x is the value of occupancy function for X. The value of x
indicates if X lies inside (0) or outside (1) of the mesh. The 3D mesh can be implicitly
represented and generated by the level set of f(X) = 0.5.

For 3D reconstruction based on learning implicit representation, the key problem is to learn
the occupancy function f(·). More specifically, a deep neural network encodes 3D shape
as a vector v ∈ V ⊂ Rm, and then, the occupancy function takes the vector as input to
decide the value of the 3D point, i.e.,

f(v,X) : V × R3 7→ [0, 1]. (6.2)

As long as f(·) can be learned, the continuous occupancy probability field of a 3D model
can be predicted and the 3D model can be extracted by the iso-surface of the field through
the classic Marching Cubes algorithm.

In PIFu [156], the authors presented a pixel-aligned implicit function for high-resolution
3D human body reconstruction. It is defined as:

f(F(π(X)), z(X)) : V × R 7→ [0, 1], (6.3)

where F(·) is the feature grids of CNN, π(X) is the projection of X on the image plane by
π and z(X) is the depth of X. PIFu showed impressive performance on detailed reconstruc-
tion of human bodies for fashion poses, for instance, walking and standing. However, the
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features extracted by multi-stage networks from input images have the same scale, which
may result in the missing of some details. In addition, for some complicated poses, only
using 2D images may result in false reconstructions. Aiming at the above two drawbacks,
we propose two improvements. On one hand, the multi-scale features are extracted in both
3D reconstruction from images and voxel super-resolution. On the other hand, the voxel
super-resolution refines the coarse 3D models to reduce false reconstructions.

The outline of our method is shown as Figure 6.1. It has two parts: (1) 3D reconstruction
from images; and (2) Voxel super-resolution from low-resolution grids. The details of the
two parts are presented in the following sections.

3.2 MF-PIFu

The method for 3D reconstruction from multi-view images is inspired by PIFu [156]. The
difference is that we extract Multi-scale Features from multi-view images through multi-
stage hourglass networks. Therefore, we call our method as MF-PIFu and the architecture
of MF-PIFu is shown in Figure 6.2.

Figure 6.2: The structure of MF-PIFu to learn the implicit representation of 3D human body model. Multi-stage hourglass
networks are used for multi-scale feature extraction and a fully connected neural network predicts the occupancy
value of the feature.

Given images with N views Ii, i = 1, ...,N, multi-stage hourglass networks encode the
images as feature grids F(j)

R , j = 1, ...,M where M is the number of hourglass networks.
The multi-stage hourglass networks are denoted as gR(·). Then, for the i-th image Ii, its
multi-scale feature grids are defined as:

gR(Ii) := F
(i,1)
R , ...,F

(i,M)
R , (6.4)
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where the feature gridsF(i,1)
R , ...,F

(i,M)
R have different scales and the j-th gridF

(i,j)
R belongs

to feature space FC×K×K
j . C is the depth of feature grid and K is the width and height of

the feature grid. In our method, C is kept constant (e.g. 256) and K deceases as 2j−1 for the
j-th hourglass network. Before the F(i,j−1)

R is fed into the j-th hourglass nwtwork, we use
a max-pooling layer to downsample F(i,j−1)

R . Through this max-pooling layer, the multi-
scale feature grids can be generated by the multi-stage hourglass networks. For the pixel x
in the image Ii, the feature vector in F

(i,j)
R can be obtained at the corresponding location

through interpolation, which is denoted as F(j,1)
R (x) ∈ FC

j .

After getting the multi-scale features, we need to query the multi-scale features, i.e., predict
the occupancy value. The prediction is defined by a fully connected neural network which
is defined as fR(·). Similar to PIFu, not only the features are used for prediction, but also
the depth of the corresponding pixel is also used. The multi-scale features and the depth
form new feature vector for prediction. For the pixel x in the image Ii, we define the new
feature vector as F(i)

R (x) = {F(i,1)
R (x), ...,F(i,M)

R (x), z(x)} ∈ FC
1 × ... × FC

M × R. The
fully connected neural network takes into the feature vector to predict the occupancy value
of x:

fR(F
(i)
R (x)) : FC

1 × ...×FC
M × R 7→ [0, 1]. (6.5)

In contrast to PIFu, we form the features from each stage and the depth as a new feature
vector. This new feature encodes both the local and global information of the pixels. The
feature grids at an early stage encode more local information, while the feature grids at
the last stage represent the global information. Associating the depth information, the
new features encode more information than the features used in PIFu, and thus, it is more
reliable for prediction of occupancy value.

Figure 6.3: Sampling 3D points from 3D model and projecting the points to multi-view images.

To train gR(·) and fR(·) from multi-view images Ii, i = 1, ...,N, the pairs {Ii,S} are re-
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quired in whichS is the corresponding ground truth of 3D model for the multi-view images
Ii. As shown in Figure 6.3, 3D spatial points Xi, i = 1, ...,K are sampled from the 3D model
S and are added random displacements with normal distribution N (0, σ) on the points.
This means that the points to be queried are X̂i = Xi+ni where ni ∼ N (0, σ). The binary
occupancy values of the points o(X̂i) can be obtained according to the location of X̂i. If X̂i
lies in S, o(X̂i) = 0. Otherwise, o(X̂i) is 1. The points X̂i are projected onto the multi-view
images through the given camera parameters. The corresponding pixel of point X̂j on the
i-th image is xij = πi(X̂j). Then, the loss function for the pair {Ii,S} can be defined as:

LR =
N∑
i=1

K∑
j=1

∥fR(F(i)
R (xij))− o(Xj)∥. (6.6)

In the above loss function, F(i)
R (xij) is the multi-scale features of pixel xij which is the

projection of 3D point X̂j on the i-th view image. This loss function is defined based on
the multi-view images jointly, which can predict the occupancy values more accurately.
Through minimizing the loss function, gR(·) and fR(·) can be trained end-to-end.

3.3 Voxel Super-Resolution

The 3D models recovered by MF-PIFu are still coarse because MF-PIFu only relies on 2D
images. We observe two problems in the estimated 3D models by MF-PIFu. The first
one is that the surface of the 3D model is not smooth due to the multi-view effect. The
second one is that some extra unnecessary parts are reconstructed on the models due to
the false classification of some voxels. In order to overcome the problems, we propose the
voxel super-resolution (VSR) to refine the coarse 3D models of MF-PIFu. As shown in
Figure 6.4, our VSR method also uses a multi-scale structure for feature extraction and
implicit representation for the 3D model. In contrast to MF-PIFu which uses images as
input, the input of VSR is a low resolution voxel grid which is produced by the voxelization
of the 3D model of MF-PIFu.
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Figure 6.4: The structure of voxel super-resolution based on learning implicit representation. Multi-stage 3D convolutional layers
are used for extracting the multi-scale features from low-resolution grid. A fully connected neural network is used
for predicting occupancy value of features.

Suppose that the 3D model estimated by MF-PIFu is Ŝ which is stored as the voxel po-
sitions. The voxelization of Ŝ can produce a low resolution grid as V ∈ RN×N×N (e.g.
N = 128). Then, as shown in Figure 6.4, 3D convolution kernels are utilized to extract
3D feature grids from V . We recursively use n 3D convolution layers to generate the multi-
scale feature grids F(1)

V , ...,F
(n)
V . The resolution of the k-th feature grid is N/(2k−1), i.e.,

F
(k)
V ∈ FK×K×K

k where K = N/(2k−1). The resolution of the feature grids decreases with
the depth of the network. We denote the 3D convolutional neural network for VSR as
gV(·) and the multi-scale features can be generated as:

gV(V) := F
(1)
V , ...,F

(n)
V . (6.7)

The feature grid at the early stage encodes more local information such as the shape details,
while the feature grid at the late stage captures the global information of the voxel grid
because of the large receptive fields at the late stage.

For a voxel v ∈ V , its corresponding multi-scale feature is formed by the features from
F
(1)
V , ...,F

(n)
V . Since the feature grid is discrete, the feature of voxel v in F

(k)
V is extracted

by trilinear interpolation and is denoted as F(k)
V (v). The multi-scale feature for the voxel

v is
FV(v) = {F(1)

V (v), ...,F
(n)
V (v)}, (6.8)

where FV(v) ∈ F1 × ... × Fn. After obtaining the multi-scale feature for a voxel v, we
also use a fully connected network to classify the multi-scale feature and and we denote it
fV(·). The fully connected network predicts the occupancy value of the multi-scale feature
of FV(v):,

fV(Fv(v)) : F1...×Fn 7→∈ [0, 1] (6.9)
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This fully connected neural network classifies the voxel based on the multi-scale feature
if the corresponding point lies inside or outside of 3D mesh. The implicit representation
enables to produce a continuous surface. Besides, since multi-scale feature encodes both
the local and global information, the 3D model after super-resolution can keep the global
shape and preserve details of the shape.

Figure 6.5: Sampling 3D points from 3Dmodel estimated by MF-PIFu and the voxelization of the 3Dmodel estimated by MF-PIFu
(The resolution is 1283). The 3D points can be indexed by the grid coordinates in the low-resolution grid.

In order to train the gV(·) and fV(·) from low-resolution voxel grids V , the 3D model Ŝ
estimated by MF-PIFu and its ground truth S are given as a pair {Ŝ,S}. The input low-
resolution voxel grids are generated by voxelizing Ŝ . Instead of sampling points from S, we
sample N pointsvi, i, ...,N on the surface of Ŝ and add random displacements with normal
distribution ni ∼ N(0, σ) to these points, i.e., v̂i = vi+ni. Here we take the same strategy
as [26] to generate points to be queried, i.e., 50 points vi are added random displacements
with small σmin and the other 50 points vi are added random displacements with large
σmax. During the voxelization, the grid coordinates of the points v̂i in the low-resolution
voxel grids V can be indexed and we denote it as ρ(v̂i). One example of sampling points
and voxelization to a 1283 grid is shown in Figure 6.5. According to whether the point lies
inside or outside of the ground truth 3D model S , the binary occupancy value of the points
v̂i can also be obtained as o(v̂i). We can do this because the estimated 3D model by MF-
PIFu has been close to the ground truth. Through sampling the points on the estimated
3D model, the occupancy values of the points are reliable to do the voxel super-resolution.
After getting the occupancy value of the points, the loss function for training the model of
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voxel super-resolution can be defined as:

LVSR =
N∑
i=1

∥fV(gV(ρ(v̂i)))− o(v̂i)∥

=
N∑
i=1

∥fV(FV(ρ(v̂i)))− o(v̂i)∥.

(6.10)

In the loss function, multi-scale features are used, and thus, the local and global information
of the low-resolution voxel gird are encoded, which can preserve the details and the global
shape simultaneously. We use standard cross-entropy loss function to measure the loss
between the prediction and ground truth. Through minimizing the loss function LVSR, the
multi-stage 3D convolutional neural networks and the fully connected network are trained.

3.4 Implementation Details

As shown in Figure 6.1, our model is a coarse-to-fine architecture in which MF-PIFu re-
constructs coarse 3D models from multi-view image and VSR refines the coarse models to
produce models with high accuracy. In this section the implementation details about the
network structure, training and testing of our method are presented.

Network structure of MF-PIFu. We use four stages of hourglass networks to generate
multi-scale features and four layers in the fully connected neural network for prediction
of occupancy value. For the extraction of multi-scale features, the input of the networks
is the multi-view images (e.g. four views in the most of our experiments) which have
removed backgrounds and are cropped to 256 × 256. The hourglass network consists of
two convolutional layers and two deconvolutional layers to generate pixel-aligned feature
maps. Max pooling is used for downsampling the feature maps. The output feature grids of
each hourglass network has the size of 256×128× 128, 256×64× 64, 256×32× 32, and
256×16× 16. The fully connected network has four convolutional layers and the number
of neurons in each layer is (1024, 512, 128, 1). The input feature of the fully connected
layer has size 1025 because the multi-scale features also consider the depth of queried pixel.

Training for MF-PIFu. During the training, the batch size of input images is 4 and the
model is trained for 12 epochs. In addition, 10, 000 points are sampled from the ground
truth of 3D mesh and they are added normally random noise with σ = 5 cm. These points
are used for prediction of the occupancy value to build the loss function. The Mean Square
Error (MSE) is used for building the loss function. The RMSProp algorithm with initial
learning rate 0.001 is used for updating the weights of the networks and the learning rate
decreases by a factor of 0.1 after 10 epochs. It takes about 7 hours for training on our
dataset.
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Network structure of VSR. The architecture for VSR has the multi-stage 3D convolu-
tional layers for generating multi-scale features from low resolution voxel grids and the
fully connected neural network to predict the occupancy value of the multi-scale features.
The input of the 3D convolution neural network is the low resolution voxel grids which
have the size 1283. We use 5 stage 3D convolutional layers and the max pooling is used
for downsampling the feature maps. The output feature grid of each convolution block
has size of 16 × (128 × 128 × 128), 32 × (64 × 64 × 64), 64 × (32 × 32 × 32),
128 × (16 × 16 × 16), 128 × (8 × 8 × 8). Therefore, the input feature vector of the
fully connected neural network has 368 elements. The fully connected neural network for
predicting the occupancy value consists of four convolutional layers and the number of
neurons in each layer is (256, 256, 256, 1).

Training for VSR. The low-resolution voxel grids for training the VSR is generated by the
coarse 3D models estimated by MF-PIFu through voxelization. The input low-resolution
voxel grids have resolution 1283. We sample 10, 000 points from the coarse 3D models, in
which 50 of the points are added normal distribution displacements with σmax = 15 cm
and the other 50 of the points are added normal distribution displacements with σmin =
5 cm. We use standard cross-entropy loss as the loss function. The batch size of input voxel
grids is 4 and the network is trained for 30 epochs. The Adam optimizer with learning rate
0.0001 is used for updating the weights of the networks. This will take about 12 hours for
training on our dataset.

Testing. During the testing process, multi-view images are fed into the trained model of
MF-PIFu to generate occupancy predictions for a volume. Then, the predicted 3D human
bodies are extracted by an iso-surface through marching cubes from the volume. After
voxelizing the predicted 3D model to low-resolution with 1283, the low-resolution voxel
grid is fed into the trained model of VSR to refine the occupancy predictions of the volume.
Through using of the march cubes again, the final 3D human body model is extracted
from the iso-surface of the volume. Therefore, this process is an image-based coarse-to-
fine 3D human body reconstruction method. We firstly obtain a coarse 3D reconstruction
from multi-view image through learning the implicit function. Then, based on the coarse
3D prediction, the VSR can refine the coarse results through learning another implicit
function. After the VSR, the false reconstructed parts can be removed and the details of
the appearance can be preserved.

4 Experimental Results

In this section some experiments are presented to evaluate our method. We firstly introduce
the datasets and metrics for training and testing. Then, several previous methods are used
for comparison on the quantitative and qualitative results. Finally, we discuss several factors
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which may affect the performance of our methods.

4.1 Datasets and Metrics

Datasets. To train and test our method, two datasets are used in our experiments: Articu-
lated dataset [179] and CAPE dataset [116]. Articulated dataset is captured by 8 cameras and
it contains 10 indoor scenarios. Two male subjects have four scenarios, respectively, and
one female subject performs two scenarios. For each scenario, RGB images, silhouettes,
camera parameters as well as 3D meshes are given. Totally, there are 2000 frames with
eight-view images and 3D meshes. We split the dataset as 80 frames (1600) for training
and 20 frames (400) for testing. The CAPE dataset is a 3D dynamic dataset of clothed hu-
mans generated by learning the clothing deformation from the SMPL body model. There
are 15 generative clothed SMPL models with various poses. Since it has a large number of
frames, we extract a small dataset from the original CAPE dataset. For each actions of each
subject, we take the 80-th, 85-th, 90-th, 95-th, and 100-th frames if the action has more
than 100 frames. Totally, the small CAPE dataset has 2910 frames with 3D meshes. Since
the dataset only provides 3D meshes, we render each mesh to four-view images from front,
left, back and right side. Figure 6.6 gives an example of four-view images and 3D mesh
from the small CAPE dataset. We also split the dataset as 80 for training and 20 for
testing in our experiments.

Metrics. In order to evaluate our method quantitatively, we choose three metrices to mea-
sure the estimated 3D models: Euclidean distance from points on the estimated 3D models
to surface of ground truth 3D mesh (P2S), Chamfer-L2 and intersection over union be-
tween estimated 3D model and ground truth 3D model (IoU). For P2S and Chamfer-L2,
the lower value means the estimated 3D model is more accurate and complete. For IoU, the
higher value means the estimated 3D model better match the ground truth. The detailed
definition can be referred to [26].

4.2 The results of the two steps

In order to demonstrate the performance of MF-PIFu and VSR, we evaluate the results
of the two parts on the two datasets. Figure 6.6 gives the examples of the CAPE and
Articulated dataset, respectively. The first row is an example from CAPE and the second
row is an example from Articulated. The figure from left to right column shows (a) original
multi-view images, (b) the ground truth of 3D mesh from two views, (c) the corresponding
estimated 3D meshes by the MF-PIFu and (d) the final results of VSR. We can see that
the estimated 3D models by MF-PIFu are almost the same as the ground truth. However,
there are still some false reconstruction and the details of appearance are not fully recovered,
which can be seen from the two examples in Figure 6.6 (c). For instance, the arms of the 3D
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(a) Multi-view images (b) GT (c) MF-PIFu (d) VSR

Figure 6.6: The 3D models frommulti-view images and the 3D model after voxel super-resolution. From the left to right column:
The original images (a), the ground truth of 3D model from two views (b), the estimated 3D models of MF-PIFu (c),
and the final 3D model after VSR (d).

model from the CAPE dataset are not fully reconstructed by MF-PIFu and there are some
extra reconstructed parts around the legs of the 3D models from the Articulated dataset.
From Figure 6.6 (d), it shows that the results of VSR are refined. Those extra reconstruction
in the estimated 3D models of MF-PIFu are removed and the details of the appearance are
preserved, especially for the arms of the 3D model for the CAPE example and the neck
part of the 3D model for the Articulated example. Therefore, the refined models look more
smooth and natural. This figure demonstrates that MF-PIFu can produce the coasrse 3D
models from multi-view images and VSR can generate better results through refining the
coarse 3D models.

Table 6.1: The quantitative results of the CAPE and Articulated datasets by the two steps of our method.

PS ↓ Chamfer-L2 ↓ IoU ↑

CAPE MF-PIFu 0.9482 0.0196 0.7829
VSR 0.4954 0.0062 0.8440

Articulated MF-PIFu 0.7332 0.0194 0.8484
VSR 0.3754 0.0032 0.9051

The quantitative results of the two steps on the two datasets are also shown in Table 6.1.
The results of P2S, Chamfer-L2 and IoU of the coarse 3D models by MF-PIFu and the
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refined 3D models of VSR are given in this table. We can see from the table that the P2S
and Chamfer-L2 of the VSR are smaller and the corresponding IoU is higher on both the
two datasets. For the CAPE dataset, the P2S and Chamfer-L2 after VSR decrease from
0.9428 cm to 0.4954 cm and from 0.0196 cm to 0.0062 cm, respectively. The IoU after
VSR increases from 78.29 to 84.40. For the Articulated dataset, the P2S and Chamfer-
L2 after VSR reduce from 0.7332 cm to 0.3754 cm and from 0.0194 cm to 0.0032 cm,
respectively. The IoU after VSR increases from 84.29 to 90.51. Therefore, the refined
3D models on the two datasets are more accurate and complete than the coarse 3D models.
The VSR is useful to refine the models and can obtain better 3D models. The conclusion
of this table is consistent with Figure 6.6.

(a) Image (b) GT (c) SPIN [88] (d) DeepHu-
man [203]

(e) PIFu [156] (f) Our

Figure 6.7: The comparison between our method and several previous methods on the CAPE dataset. Three examples are shown
from top to down rows. The multi-view images, the ground truth of 3D models from two views, the estimated 3D
models of SPIN [88], DeepHuman [203], PIFu [156] and our method are shown from the left to row column.
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(a) Image (b) GT (c) SPIN [88] (d) DeepHu-
man [203]

(e) PIFu [156] (f) Our

Figure 6.8: The comparison between our method and several previous methods on the Articulated dataset. Three examples
are shown from top to down rows. The multi-view images, the ground truth of 3D models from two views, the
estimated 3D models of SPIN [88], DeepHuman [203], PIFu [156] and our method are shown from the left to row
column.

4.3 Qualitative results

We qualitatively compare our method with several previous approaches for 3D human body
reconstruction from images including SPIN [88], DeepHuman [203] and PIFu [156]. For
the SPIN and DeepHuman, we used the trained model provided by the authors to obtain
the results. The two methods rely on the SMPL model [113] to reconstruct 3D human body
from single images. For the PIFu, we trained and tested it on the same training dataset of
Articulated and CPAE as our method from four-view images. The SPIN estimated the pose
and shape parameters of SMPL model through collaborating regression and optimization.
The estimated 3D models of SPIN are naked because the results of SPIN are the SMPL
models parameterized by the estimated pose and shape parameters. The DeepHuman used
encoder-decoder on the volume of deformed SMPL model and used normal image to refine
the deformed SMPL model. This method can produce detailed SMPL model because the
normal image could refine the appearance of SMPL model. In Figure 6.7 and Figure 6.8,
some examples from the two datasets and the results of SPIN [88], DeepHuman [203],
PIFu [156] and our method are demonstrated, respectively. For each dataset, we give three
examples which cover various poses and clothes to compare the performance of the meth-
ods. We can see that the estimated 3D models of SPIN and DeepHuman are not good
enough but the results of PIFu and our method are better. Since the SPIN and DeepHu-
man rely on the SMPL model, they cannot handle the detailed appearance like clothes and
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wrinkles on the 3D models. Although DeepHuman attempts to recover the clothes on the
3D model, the results are not satisfying because the trained model of DeepHuman in the
original paper is based on a different dataset. The results of PIFu are better than SPIN and
DeepHuman because of learning an implicit representation, but there are some false parts
in the results since the features in PIFu are at the same scales. By contrast, our method
uses a coarse-to-fine manner to better reconstruct 3D human body models. The MF-PIFu
estimates the coarse 3D models based on multi-scale features and implicit representation,
and the VSR refines the coarse models to generate final results also based on multi-scale
features and implicit representation. Our method can recover the 3D human body models
from multi-view images with plausible pose and surface quality.

In Figure 6.9, we visualize the P2S between the reconstructed 3D models in Fiugre 6.7 and
Figure 6.8 by the different methods and the ground truth. We use Meshlab to visualize the
P2S to show the accuracy of the estimated 3D models by different methods. In Meshlab,
the P2S is computed through the Hausdorff Distance. The distances are shown by the
heatmaps and are mapped to the reconstructed 3D models. For every sample, the color
range of different methods is based on the value of the P2S of our method. The red parts
stand for high errors and the blue parts mean small distance. The figure clearly shows that
the estimated 3D human bodies of our method have higher accuracy than the other three
previous methods.
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(a) SPIN [88] (b) DeepHuman [203] (c) PIFu [156] (d) Our

Figure 6.9: Visualization of the P2S between the estimated 3D models in Figure 6.7 and Figure 6.8 and the ground truth for
different methods. The distance are represented by the heatmaps in Meshlab and mapped to the estimated 3D
models.
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4.4 Quantitative results

In addition to the qualitative comparison, we also quantitatively compare to previous meth-
ods through computing the P2S, Chamfer-L2 and IoU of results by different methods on
the testing datasets of CAPE and Articulated. Table 6.2 and Table 6.3 demonstrate the
mean values of the above metrics of different methods on the testing dataset of CAPE and
Articulated, respectively. For the CAPE, the results of DeepHuman [203] are the worst be-
cause the CAPE is a synthetic dataset, but the trained model of DeepHuman is based on a
real dataset. The SPIN [88] is better than DeepHuman, but it is still worse than PIFu [156]
and our method because the estimated 3D models of SPIN are naked and the poses of the
estimated 3D models might not be accurate. Comparing to SPIN and DeepHuman, the
results of PIFu are better because PIFu uses four-view images and represents the 3D model
through learning implicit function. Our method achieves the best performance among
these methods because VSR can refine the coarse results of MF-PIFu. Both MF-PIFu and
VSR in our method extract multi-scale features and learn the implicit function from multi-
view images. The coarse-to-fine manner is an efficient way to obtain better models. The
P2S and Chamfer-L2 are the smallest in our method, which means that the results of our
method are more accurate. The IoU of our method is the highest, which means that the
estimated 3D models are more complete. For the Articulated dataset, Table 6.3 shows sim-
ilar conclusion. The SPIN and DeepHuman achieve similar level on the real dataset and
PIFu is better than the above two methods. However, our method also achieves the small-
est P2S and Chamfer-L2 and the highest IoU on the Articulated dataset. The two tables
demonstrate that our method had good performance on both synthetic and real datasets.

Table 6.2: The quantitative results of SPIN [88], DeepHuman [203], PIFu [156] and our method on the testing dataset of the
CAPE. Our method achieves better performance.

Method PS ↓ Chamfer-L2 ↓ IoU ↑
SPIN [] 2.2134 0.1271 0.4044
DeepHuman [] 3.4028 0.1850 0.3861
PIFu [] 1.0330 0.0212 0.7571
Ours . . .

Table 6.3: The quantitative results of SPIN [88], DeepHuman [203], PIFu [156] and our method on the testing dataset of the
Articulated. Our method achieves better performance.

Method PS ↓ Chamfer-L2 ↓ IoU ↑
SPIN [] 3.5206 0.2679 0.3506
DeepHuman [] 3.9448 0.2675 0.3742
PIFu [] 0.8194 0.0210 0.8255
Ours . . .
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In order to clearly show the metric on the testing datasets, the P2S of each sample in the
two testing data of the CAPE and Articulated dataset is shown in Figure 6.10. There are 582
samples in the testing dataset of CAPE and 400 samples in the testing dataset of Articulated,
respectively. Our method (the blue line) has the lowest errors on the two datasets comparing
to the other methods. Besides, for the testing samples, our method is more stable and robust
because the blue lines do not have serious fluctuation.

(a) The P2S of the testing dataset of the CAPE for different methods.

(b) The P2S of the testing dataset of the Articulated for different methods.

Figure 6.10: The P2S of each sample in the testing data of the two datasets for different methods. The y axis stands for the
accuracy of P2S. The x axis is the number of samples in the testing data.

4.5 Discussion on the PIFu

As shown above, PIFu [156] is a similar approach which also learns an implicit represen-
tation for 3D model from images. Therefore, we discuss more about the performance of
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PIFu in this section. The results of PIFu, MF-PIFu, PIFu+VSR and our method are evalu-
ated to demonstrate the advantage of MF-PIFu and our method on the Articulated dataset.
Table 6.4 gives the quantitative results of PIFu, MF-PIFu, PIFu+VSR and our method on
the testing dataset of the Articulated. PIFu+VSR means that PIFu is trained by the same
Articulated dataset as MF-PIFu, and the testing results of PIFu is refined by the VSR which
was trained by the low-resolution voxel grids obtained by MF-PIFu. This table shows that
MF-PIFu achieves better results than PIFu and the VSR can refine the coasrse models ob-
tained by PIFu and MF-PIFu. Our method combines the MF-PIFu and VSR, and thus,
our method achieves the best performance on the dataset. Figure 6.11 gives the the P2S of
the four cases on the testing dataset of the Articulated. We can see from the figure that the
accuracy of our method on most samples is the highest. For the MF-PIFu, it has smaller
P2S on the most samples than the original PIFu, which provides more reliable inputs for
the voxel super-resolution. Therefore, our method combining MF-PIFu and VSR achieves
the smallest P2S on most samples. This is consistent with Table 6.4.

Table 6.4: The qualitative results of PIFu, MF-PIFu, PIFu+VSR and our method.

View PS ↓ Chamfer-L2 ↓ IoU ↑
PIFu 0.8194 0.0210 0.8255
MF-PIFu 0.7332 0.0194 0.8484
PIFu+VSR 0.4322 0.0041 0.8865
Our 0.3754 0.0032 0.9051

Figure 6.11: The P2S of each sample in the testing data of the Articulated for PIFu, MF-PIFu, PIFu+VSR, and our method. The y
axis stands for the accuracy of P2S. The x axis is the number of samples in the testing data.

The qualitative examples from the Articulated dataset are shown in Figure 6.12. From the
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figure, it is clearly shown that the results of PIFu, MF-PIFu and PIFu+VSR have some false
reconstruction, especially for the first example. The 3D models estimated by our method are
the best because the false reconstruction is removed and the surface quality is improved by
VSR, which can be demonstrated by the areas indicated by the red circles. The visualization
of the errors on the 3D models is also given in the figure, which clearly shows that the 3D
models of our method have the smallest distance to the ground truth among the four cases.

(a) GT (b) PIFu (c) MF-PIFu (d) PIFu+VSR (e) Our

Figure 6.12: The qualitative results of PIFu, MF-PIFu, PIFu+VSR, and our method on the Articulated dataset.

4.6 Spatial sampling

Spatial sampling is used in both MF-PIFu and VSR to generate the ground truth of the
implicit value of spatial 3D points. It is an important factor in the sharpness of the final
3D model. In the two parts of our method, we use the same sampling strategy. Firstly,
the points are uniformly sampled from the surface of the 3D model. Then, the random
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displacements with normal distribution N (0, σ) are added to the points. The σ defines
the distance of the points to the surface. The larger σ makes the points further from the
3D mesh. For the MF-PIFu, we choose σ = 5 cm for the random displacements because
the paper of PIFu [156] has demonstrated that σ = 5 cm can achieve the best perfor-
mance for the 3D reconstruction from images. Here we evaluate the effects of σ on the
voxel super-resolution on the Articulated dataset. As shown in the implementation details,
the 3D points are added random displacements with large σmax and small σmin during
training the VSR. In order to discuss the effect of σmax and σmin, we choose five pairs of
(σmax, σmin) and compare the corresponding performance under the five cases. Table 6.5
shows the quantitative values of the P2S, Chamfer-L2 and IoU for different (σmax, σmin)
on the testing dataset of the Articulated. Figure 6.13 shows the mean P2S of different σmax

for the testing dataset of the Articulated. The table and the figure demonstrate that the
performance is almost the same for (σmax, σmin) = (15, 1.5), (25, 2.5), (35, 3.5). The
P2S and IoU of the results for (σmax, σmin) = (15, 1.5) are the best, but it does not
have too much difference with (25, 2.5) and (35, 3.5). This is the reason that we use
(σmax, σmin) = (15, 1.5) in the quantitative and qualitative comparison to the previous
methods.

Table 6.5: Quantitative results of different (σmax, σmin) on the Articulate dataset.

(σmax, σmin) (cm) PS ↓ Chamfer-L2 ↓ IoU ↑
(5, 0.5) 1.0874 0.1151 0.9006
(10, 1.0) 0.5953 0.0110 0.8466
(15, 1.5) . 0.0032 .
(25, 2.5) 0.3856 0.0030 0.8986
(35, 3.5) 0.3848 . 0.8984

Figure 6.13: The mean P2S on the testing dataset of the Articulated for different σmax. The y axis stands for the mean P2S.
The x axis is the σmax.
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Figure 6.14 shows two examples for different σ from the Articulated dataset. We also give
the visualization of the errors for the 3D models. From the figure, we can see that the
estimated models of σmax = 5 have extra unnecessary parts. The errors of σmax = 10
are also relatively high from the visualization map, while the results of σmax = 15, 25, 35
are almost the same level. However, as shown in the areas indicated by the red circles, the
surface details of the estimated 3D models of σmax = 15 are better preserved, especially
for the neck part of the first example. Therefore, according to the above observation, the
best choice for (σmax, σmin) is (15, 1.5) for the Articulated dataset. It is also acceptable
to use larger (σmax, σmin), for instance, (25, 2.5) and (35, 3.5). However, this does not
mean that σmax can be too large because the results may not be good if σmin is larger than
5 cm. The reasonable range for (σmax, σmin) is (15, 1.5) ∼ (35, 3.5) according to the
experiments.

(a) GT (b) σmax = 5 (c) σmax = 10 (d) σmax = 15 (e) σmax = 25 (f) σmax = 35

Figure 6.14: The comparison for differen σmax on the Articulated dataset. From (a) to (f), two examples from the testing dataset
are shown for σmax = 5, 10, 15, 25, 35. For each σmax, the visualization of the error between estimated result
and the ground truth is given.

4.7 Voxel grid resolution

The resolution of input voxel grids for VSR will also affects the refinement of VSR to
generate 3D models. In order to demonstrate the effects, we compare the results of VSR
with the input resolution of 323 and 1283 for the Articulated dataset. The voxel grids with
different resolutions are generated from the estimated 3D models of MF-PIFu. Using the
VSR which is trained by voxel grids with 1283, the final results are generated from voxel
grids with 323 and 1283, respectively. Table 6.6 shows the P2S, Chamfer-L2 and IoU of the
results on the testing dataset of the Articulated for the input low-resolution voxel grids with
323 and 1283 resolution. We can see that the quantitative values of the results for 1283

resolution are better than 323. It is reasonable because higher resolution can provide more
details for the voxel super-resolution. Figure 6.15 shows some examples of the 323 and 1283

resolution. The 3D models after voxel super-resolution and the corresponding visualization
of errors are shown in the figure. It also demonstrates that the results of VSR with 1283

resolution voxel grids have better details on the shape, especially for those areas indicated
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by the red circles. Therefore, the resolution of input voxel grid for voxel super-resolution
should be as high as possible. In our observation, the resolution 1283 is reasonable to obtain
good 3D model estimation considering the limitation of memory footprint.

Table 6.6: Quantitative results of 323 and 1283 resolutions on the Articulate dataset.

voxel res. PS ↓ Chamfer-L2 ↓ IoU ↑
Ours(323) 1.9322 0.1626 0.6902
Ours(1283) . . .

(a) GT (b) 323 (c) Results (d) 1283 (e) Results

Figure 6.15: The comparison between 323 and 1283 resolution on the Articulated dataset. (a) is the ground truth of 3D models;
(b) is the voxel grids with 323; (c) is the results of super resolution trained by 323 voxel grids; (d) is the voxel grids
with 1283; (e) is the results of super resolution trained by 1283 voxel grids.
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4.8 The number of images

Since we estimate 3D human body from multi-view images, the effect of the number of
views on the final estimation also needs to be discussed. We evaluate the performance
of our method for four images and eight images on the Articulated dataset. Note that
the MF-PIFu is trained by the four-view images and eight-view images, respectively. For
the VSR, it is only trained by the voxel grids with 1283 resolution generated by the four-
view images. Table 6.7 shows the quantitative results on the Articulated dataset when the
four-view and eight-view images are used. Figure 6.16 is the P2S of each sample in the
testing dataset of Articulated for the four-view and eight-view cases. We can see that the
results of eight-view case are a little better than the four-view case. Since eight-view images
could provide more information for the MF-PIFu than the four-view images, the coarse
3D models obtained by MF-PIFu are more accurate, which ensures the coarse 3D models
can provide more information for VSR to obtain better refined 3D models. During the
voxel super-resolution, the training on the 3D space can help to reduce the ambiguity of
four-view and eight-view cases. The final estimation does not have too much difference in
the two cases.

Table 6.7: Quantitative results for the four-view and eight-view images on the Articulated dataset.

View PS ↓ Chamfer-L2 ↓ IoU ↑
Ours(Four views) 0.3754 0.0032 0.9051
Ours(Eight views) 0.3606 0.0021 0.9042

Figure 6.16: The P2S of each sample in the testing data of the Articulated for four-view and eight-view images. The y axis stands
for the accuracy of P2S. The x axis is the number of samples in the testing data.
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Two examples from the Articulated dataset are shown in Figure 6.17 for the four-view and
eight-view images. The figure gives the results of MF-PIFu (b), the results of VSR (c) for
the four-view images and the results of MF-PIFu (d), the results of VSR (e) for the eight-
view images. We can see that there exists some error reconstruction on the 3D models of
MF-PIFu for the four views, especially for the areas indicated by the red circles. The results
of MF-PIFu of eight-view images looks better than four-view images. After voxel super-
resolution, the coarse 3D models are refined to more accurate models, but the errors are not
removed completely for the four-view. By contrast, the results of eight-view images look
more smooth and accurate. Therefore, it is useful to obtain better estimation if there are
more views. In this paper, it has been enough to obtain satisfying 3D models by four-view
images.

(a) GT (b) 4-view 1 (c) 4-view 2 (d) 8-view 1 (e) 8-view 2

Figure 6.17: The results of four-view and eight-view images on the Articulated dataset. From left ot right columns: ground
truth, the results of MF-PIFu of four-view images, the final results of four-view images, the results of MF-PIFu of
eight-view images, and the final results of eight-view images.

5 Conclusion

Detailed 3D human body reconstruction from RGB images is a challenging task because
of the high number of degrees of the freedom of human body and the ambiguity of in-
ferring 3D objects from 2D images. In this paper we propose a coarse-to-fine method for
detailed 3D human body reconstruction from multi-view images through learning an im-
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plicit representation. The coarse 3D models are estimated from multi-view images through
learning implicit representations based on multi-scale features which encode both local and
global information. Then, generating the low-resolution voxel grids through voxelizing the
coarse 3D models, we use voxel super-resolution to refine the coarse 3D models. For the
voxel super-resolution, multi-stage 3D convolutional layers are used to extract multi-scale
features from low-resolution voxel grids. The implicit representation is also learned based
on the multi-scale features for voxel super-resolution. Benefiting from the voxel super-
resolution, the coarse 3D models can be refined to have higher accuracy and better surface
quality because the false reconstruction on the coarse 3D models can be removed and the
details on the shape can be preserved. The experiments on the public datasets demonstrate
that our method can recover detailed 3D human body models from multi-view images with
higher accuracy and completeness than previous approaches.

Some work needs to be done in the future. Firstly, we need to increase the variety of the
training dataset. The models in the two datasets of our paper mostly have the same color
clothes. If there is a new model with colorful clothes, our method will fail to obtain good
results. However, the high-quality 3D human body models are not easy to be acquired
and many datasets are not free, which increases the difficulty for the research. Besides, the
texture of the detailed model is not considered in our method which should be done in the
future. Finally, single-view image based reconstruction is needed in the future to increase
the convenience of our method.
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Chapter 7

Conclusions and Outlook

In the thesis, we present several methods for 3D human body reconstruction from images
including the estimation of coarse human body models, especially for the human poses
and shapes, and the estimation of detailed human body models, especially for the detailed
appearance like clothes. This chapter revisits and summarizes the key idea and contribution
of the proposed methods in the thesis. In addition to the conclusion, we also give an outlook
for future research direction and possible enhancements.

1 Conclusion

This thesis aims at the problem of 3D human pose and shape estimation from images.
Considering the 3D human body model is needed in many applications, five methods are
proposed to tackle the problem in different aspects from Chapter 2 to Chapter 6. In the five
methods, some of them use parametric models based on optimization, and some of them
advocate deep neural network to learn to represent 3D models from images. We obtain both
the coarse and detailed 3D human body models from the five methods. Those methods
obtaining coarse 3D models mainly focus on the estimation of various poses and shapes,
while those methods obtaining detailed 3D models pay more attention on the appearance
details.

In Chapter 2, a method for 3D human pose and shape estimation is proposed based on a
parametric model from multi-view 2D images. The key idea is to fit a parametric human
body called SMPL to the 2D joint points of the multi-view images simultaneously. The
SMPL model can be parametrized by its pose and shape parameters, which is convenient
to estimate 3D model through optimizing pose and shape parameters. Another important
problem is to extract the accurate 2D joint points from image. Benefiting from the advance
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of deep learning, we can use OpenPose to estimate the 2D joint points of the multi-view
images automatically. During the fitting, the pose, shape as well as the camera rotation are
optimized in order to reflect the relations between the multi-view images. We evaluate the
method on the subsets of two subjects (S1 and S6) in Human3.6M and the experiments
demonstrate that our method outperforms the single-view image based method, SMPLify,
on the estimation of 3D human pose.

In Chapter 3, we introduce silhouettes to improve the estimation of the shape of the SMPL
model. Firstly, the SMPL model was fitted to the joint points of the multi-view images,
which makes the SMPL model have the same pose with the observed human body. Since
joint points mainly provide pose information, the shape parameters of the SMPL are not
estimated well. Then, in the second part, silhouettes are used to enhance the results. We
build the correspondence between the boundary of the silhouettes and the SMPL model
after pose fitting over the multi-view images. The energy function for silhouettes fitting is
defined on both 2D and 3D space, which gives more constrains on the shape estimation.
The synthetic datasets and public real datasets are advocated to evaluate our method and the
results demonstrate that our method achieves the better accuracy on the shape of human
body than previous methods.

In Chapter 4, we address the 3D human pose and shape estimation through putting opti-
mization based on multi-view images into the training loop of deep neural network. Since
some popular public datasets for human pose estimation are captured from multi-view im-
ages, we could use this advantage during the training. The multi-view images are fed into
the CNN model to regress the pose and shape parameters of SMPL. Then, an energy func-
tion is built by the 2D joint points of the multi-view images and the SMPL model. In order
to minimize the function, the pose, shape of SMPL model as well as the body orientations
of multi-view images are optimized by using the regressed parameters as initialization. Af-
terwards, The optimized SMPL model can be used to supervise the training of CNN. The
experiments on several public datasets demonstrate the 3D pose and shape estimation by
our method outperforms the previous methods.

In Chapter 5, we shift to the detailed 3D human body reconstruction from images through
learning implicit representation for 3D models. The contribution in this chapter is that
multi-stage hourglass networks are used to extract multi-scale features from multi-view im-
ages, which encodes both local and global information of images. Then, a fully connected
neural network predicts the occupancy value of the multi-scale features to decide the cor-
responding 3D point lies inside or outside of the 3D mesh. The feature maps extracted
by hourglass networks are spatially aligned with the multi-view images, so we can predict
the occupancy value of enough number of spatial points. Finally, the 3D models can be
represented implicitly and extracted by marching cubes algorithm. Unlike the previous
chapters, the method in this chapter does not depend on any parametric models, and thus,
the method can estimate 3D human body models with detailed appearance. Results on the
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public synthetic and real datasets show that the estimated 3D model by our method has
higher accuracy and better details on the appearance.

In Chapter 6, we also focus on the detailed 3D human body reconstruction from multi-
view images. Instead of only relying on the images, a refined process based on voxel super-
resolution is introduced to better estimate 3D models. In general, the method in this chap-
ter is a coarse-to-fine manner to estimate detailed 3D human body model from multi-view
images. The coarse 3D models are firstly estimated from multi-view images through learn-
ing implicit 3D representation based on multi-scale features. The refined process is imple-
mented by learning the voxel super-resolution from low-resolution voxel grids generated by
the coarse 3D models. The low-resolution voxel grids are fed into multi-stage 3D convolu-
tional layers to extract multi-scale features and the fully connected neural network predicts
the occupancy values of the multi-scale features to obtain the implicit representation. The
final 3D models are extracted by marching cubes algorithm from the implicit volume. The
voxel super-resolution can both remove the false parts of coarse models and preserve the
details of appearance. The experiments on synthetic and real dataset demonstrate that our
method can recovery 3D human body with higher accuracy and better surface details than
previous methods. The method in this chapter is also better than the method in Chapter
5.

2 Future work

Although the works in the thesis estimate the both coarse and detailed 3D human body
models from images, there are still many problems of 3D human body reconstruction which
are not involved in our works, for example, texture, facial expression, hand gesture and
multiple persons. Therefore, this leaves much room for future work, which is summarized
below.

Since our methods in Chapter 2, Chapter 3, and Chapter 4 rely on a parametric human
body model, SMPL, it is an important factor to obtain reasonable and natural 3D human
body models. The SMPL model mainly focuses on the pose and shape representation, but
the other human body elements like hands and facial expression are not considered in this
model. Recently, some researches started to recover the full human body including hand
gesture, feet, and facial expression. However, these works are still far from obtaining accu-
rate results. The topic to parameterize hands, feet and facial expression in the parametric
human body model is an interesting problem. In addition, fitting the parametric model to
prior information containing face and hand is another direction for the research. Therefore,
considering the requirement of realism, adding face and hand on the parametric model is
an important direction.
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Another direction is to infer the texture on the 3D human body. As shown in results of
all the chapters, we do not add the texture on the 3D human body, which affects on the
realism of the final 3D model. Recently, some methods learn to infer the color of voxels
from images through deep neural networks. Some other methods also infer the UV space
and add them on the parametric human body. However, we still face the challenges to
infer the texture of voxels accurately, especially for those invisible parts of human body.
The first problem is that the high-resolution 3D human body dataset is hard to acquire.
For some recent works, the datasets they used are not free and public, which is not easy
and convenient for research. Therefore, predicting the color of voxels by deep learning is
difficult due to the limitation of dataset. Another problem is that only front side can be
seen in the 2D image. Inferring the texture of the invisible part on the 3D human body
model is a challenging problem. Therefore, the future work on inferring the texture of 3D
human body is an interesting topic.

Computation efficient is also an issue for 3D human body reconstruction from images no
matter for optimization and deep learning. The optimization based methods often fit the
parametric model to prior information, which is computation-consuming and always falls
into local minimization. The methods based on deep learning often require enormous
dataset for training. Even for the inference, due to that the network is often very deep, it
is also take some time to obtain the final results. For some real application, for example,
motion capture of human body, reducing the computation and the complexity of deep
neural network is also important.

Recovering 3D human body model with more challenging conditions are also attracting
much attention. In real life, there might be multiple people in one scenario, various illu-
mination in the wild, and self-occlusion of human body or occlusion by other objects. The
high freedom of environment and human motion in real life leaves many research topics
on 3D human body reconstruction from images. These problems are far from achieving
satisfying results now.

In this chapter, the conclusion of the thesis is presented and some possible directions are
summarized. Since 3D human body estimation is a very practical task and has high demand
in many applications, it is very important and has significance to solve the problem. This
thesis only contributes several methods for the topic and many work still need to be done
in the future.
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