
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

System-Level Access to On-Chip Instruments

Larsson, Erik; Kiran Gangaraju, Shashi; Murali, Prathamesh

Published in:
Proceedings of the European Test Symposium

DOI:
10.1109/ETS50041.2021.9465415

2021

Link to publication

Citation for published version (APA):
Larsson, E., Kiran Gangaraju, S., & Murali, P. (2021). System-Level Access to On-Chip Instruments. In
Proceedings of the European Test Symposium (pp. 1-6). Article 9465415
https://doi.org/10.1109/ETS50041.2021.9465415

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ETS50041.2021.9465415
https://portal.research.lu.se/en/publications/32530062-c38d-4a24-86bf-ba14d69a955e
https://doi.org/10.1109/ETS50041.2021.9465415


System-Level Access to On-Chip Instruments

Erik Larsson, Shashi Kiran Gangaraju and Prathamesh Murali
Lund University, Lund, Sweden

Email: erik.larsson@eit.lth.se

Abstract—Modern integrated circuits (ICs) contain thousands
of instruments to enable testing, tuning, monitoring, and so on.
These on-chip instruments must be accessed through the ICs’ life-
time. However, when ICs are mounted on Printed Circuit Boards
(PCBs), access from system-level is challenged due to complex
system hierarchies with a multitude of interfaces. In this paper
we enable access from system-level to chip-level instruments by
proposing hardware, protocol, and communication schemes. We
have validated our scheme by implementing a system with two
ICs on a Field-Programmable Gate Array (FPGA) where each IC
includes an IEEE Std. 1687 network, communication between ICs
is with Serial Peripheral Interface (SPI) and communication with
the outside is with Universal Asynchronous Receiver Transmitter
(UART). In experiments we evaluate communication based on
software (polling) and hardware (interrupt) as well as overhead
in terms of transported data and needed area.

Keywords—IEEE Std. P1687.1, IEEE Std. P2654, IEEE Std.
1687

I. INTRODUCTION

While the semiconductor technology development towards
integrated circuits (ICs) with smaller, faster and more tran-
sistors gives advantages such as more functionality, better
performance, and lower power consumption, it is becoming
increasingly challenging to avoid various types of malfunc-
tioning. Smaller and faster transistors lead to tighter margins,
which in combination with more transistors increase the risk of
malfunctioning. To avoid malfunctioning, ICs are increasingly
equipped with embedded (on-chip) instruments for testing, tun-
ing, trimming, configuration and so on [1]. These instruments,
which for a single IC can be in the range of thousands, must
be accessed throughout the life cycle of the system: from
prototype, debug, test and validation to in-field monitoring
and test [2]. However, access from system-level to chip-level
instruments when ICs are mounted on printed circuit boards
(PCBs) is challenging due to complex system hierarchies often
with a multitude of interfaces.

Figure 1 shows three scenarios to access on-chip instru-
ments. In the first scenario, IEEE Std. 1149.1 [3] and IEEE
Std. 1687 [4] are used. The test access port (TAP) of IEEE
Std. 1149.1 is the interface between the outside and the on-
chip IEEE Std. 1687 network and IEEE Std. 1687 is the infras-
tructure connecting instruments. IEEE Std. 1687 includes two
description languages, instrument connectivity language (ICL)
and procedural description language (PDL). ICL describes
how instruments are interconnected and PDL describes how to
operate on instruments. To access instruments, an Electronic
design automation (EDA) tool takes PDL and ICL as inputs
and forms in a retargeting process access (test) patterns.
Several research works exist on analysis and design aspects
of IEEE Std. 1687 networks [5]–[11]. Second scenario shows
the scope of the on-going work of IEEE Std. P1687.1 [12]. A

Fig. 1. Access to instrument using interplay with different IEEE standards

limitation of the first scenario is that all ICs must be equipped
with an IEEE Std. 1149.1 TAP. Instead of being dependent on
an IEEE Std. 1149.1 TAP, which due to pin limitation may not
be available on all ICs, IEEE Std. P1687.1 proposes to make
use of existing functional ports, like Serial Peripheral Interface
(SPI), Inter-Integrated Circuit (I2C) and so, to interface IEEE
Std. 1687 networks. There are some prior work on IEEE Std.
P1687.1 [13]–[15]. The third scenario shows the scope of
the on-going work in IEEE Std. P2654 [16]. The objective is
to enable access when there is a multitude of interfaces in a
system. For example in Figure 1, one interface, let say SPI, is
used to connect IC A to the outside, and another, let say I2C,
is used to connect IC A and IC B. If one wants to make access
to instrument i1 and i3 in IC B there is a need to use the path:
SPI ↔ IEEE Std. 1687 in IC A ↔ I2C ↔ IEEE Std. 1687 in
IC B. This access path crosses different interfaces. There are
some overview paper [17].

A key to enable access from system-level to on-chip in-
struments is to enable communication passing through one IC
with different interfaces, for example IC A in Figure 1. When
this access is solved, the solution can be scaled to hierarchies
with several ICs. However, it is important to ensure that
individual ICs can be designed independently from each other,
for example in respect to protocol (the way transported data is
formatted). In this respect, it should also be noted that current
line of thinking in the IEEE Std. P1687.1 working group is to
allow flexibility in what hardware that is implemented between
the functional port and the IEEE Std. 1687 network. A result
of this flexibilityy is that the protocol might differ between
IEEE Std. P1687.1 compliant ICs. In this paper we propose
hardware, protocol, and communication schemes meeting these
requirements and we explore both software-based (polling) and
hardware-based (interrupt) communication at an individual IC.

The paper is organized as follows. In Section II we give a
brief background to hardware and protocol where a functional



TABLE I. TRANSPORTED DATA FOR SOME COMBINATIONS OF
HARDWARE AND PROTOCOL [14]

Instruments Full-featured No dummy No ILM Naive Bit-banging
50 4832 7122 6432 29302 222128
100 9632 14218 12832 96060 765232
150 14432 21336 19232 201110 1628848

port, instead of the TAP of IEEE Std. 1149.1, is used to in-
terface IEEE Std. 1687 networks [14]. In Section III we detail
proposed hardware, protocol and communication schemes, that
is polling and interrupt, needed to enable exchange of infor-
mation between ICs. We have validated proposed scheme by
implementing a system with two ICs on a Field-Programmable
Gate Array (FPGA) where each IC includes an IEEE Std. 1687
network of instruments, communication between ICs is with
SPI and communication with the outside is with Universal
Asynchronous Receiver Transmitter (UART), Section IV. For
experiments, we make use of IEEE Std 1687 networks with
50, 100, and 150 instruments. We evaluate the overhead in
terms of data and area. We compare proposed system hierarchy
(two levels - two ICs) against single level (one IC) [14]
and we compare software-based (polling) against hardware-
based (interrupt) for communication. The paper is concluded
in Section V.

II. BACKGROUND

IEEE Std. 1149.1 specifies the interface from the outside
to the TAP, including protocol for communication. A major
advantage is that ICs from different vendors compliant to IEEE
Std. 1149.1 easily can be integrated into the same system
(PCB). However, as not all ICs have an IEEE Std. 1149.1
TAP, the IEEE Std. P1687.1 is working towards a standard
where functional ports can be used to access IEEE Std. 1687
networks. The current idea is to propose a more flexible
solution in respect to hardware than the one used in IEEE
Std. 1149.1. We have for an IEEE Std. P1687.1 environment
investigated the impact of flexible hardware and protocol in
respect to the amount of data that is needed to be transported
and the area of the hardware [14]. Table I shows for some
different combinations of hardware and protocol the amount
of data that needs to be transported. Important to note is that
different hardware impacts what is included in a protocol.

We will briefly describe our full-featured solution, which
results in least amount of transported data [14]. For the
protocol, each iApply group becomes retargeted (translated)
into one or more control commands, which resembles a header,
followed by one or more data commands, like a payload.
The hardware is based on a Finite State Machine (FSM)
that is complemented with a segment insertion bit (SIB)
control register (SCR), an instrument control register (ICR),
and an instrument length memory (ILM). Control commands
set current values for SIBs in SCR and current operation for
each instrument in ICR. The length in bits of each instrument
is stored in ILM, which is fixed at design time.

Figure 2 shows an example with an iApply group to write
data to instrument i1 and to read1 data from instrument i3.
The iApply group is retargeted into two control commands and
one data command, in total 7 bytes. The control commands set

1iGetReadData (iGet) reads information from an instrument

Fig. 2. Hardware translator and protocol [14]

required values in SCR and ICR. The first control command
makes SIB 1 active and sets instrument i1 in write mode,
that is SCR(1) = 1 and ICR(1) = W (index is instrument
number). The details are as follows. Bit b7 = 0 in the first
byte indicates that current byte and the following byte form a
control command. Bit b6 = 1 indicates that a write operation
should be performed. The following 14 bits, which hold the
value 1, indicate that SIB 1 should be active so that instrument
i1 is included in the active scan-path. The next two bytes are
also forming a control command, which will make SIB 3 active
and set instrument i3 in read mode, that is SCR(3) = 1 and
ICR(3) = R. The following 3 bytes form a data command as
b7 = 1 in byte 5. The remaining 15 bits are used to specify the
number of bytes with data that follows. In this example, the 15
bits specify the value 1, meaning that one byte of data follows.
Byte 7 holds the data that should be written to instrument i1.

When the first control command arrives, the FSM is
resetting the registers and setting SCR and ICR according
to control commands. When data commands arrive, the FSM
begins operating the IEEE Std. 1687 network. First, the active
scan path is set by traversing SCR and shifting the content
to the IEEE Std. 1687 network. Second, the shift sequence
for the active scan path is created, see Figure 2. The FSM
begins checking SCR at its highest value, in this example
3 (SCR(3)), and includes that bit in the shift-in sequence.
As SCR(3) = 1 instrument i3 is included and corresponding
command (ICR(3)) is checked to learn that a read operation
should be performed, which means data needs to be shifted
in such that the content of instrument i3 is shifted-out. This
additional (dummy) shift-in data is created by the FSM. The
number of bits to shift for an instrument is given by the
instrument length memory (ILM(3)). Then, the FSM proceeds
with SCR(2). As SCR(2) = 0 instrument i2 is not in the
active scan-path, the FSM adds a 0 to the shift-in sequence and
focuses on next bit in SCR, which is SCR(1). SCR(1) = 1,

2



which means instrument i1 is included in the active scan-path
and as ICR(1) = W a write operation should be performed.
The FSM finds the length of instrument i1 from ILM(1) and
takes data from the UART buffer and adds it to the shift-in
sequence. Figure 2 shows the created shift-in sequence.

The FSM can with help of SCR, ICR, and ILM (in a similar
process as for the shift-in sequence) remove all unwanted
(dummy) bits from the shift-out sequence such that only useful
information is transported out from the IC. Applying the PDL
in Figure 2 results in that the only information returned is the
eight bits from the read of instrument i3.

III. PROPOSED SCHEME

In this section we detail proposed scheme, which includes
hardware, protocol and communication schemes to handle the
transfer of information through an IC (crossing interfaces). We
include two alternatives to handle communication; software-
based (polling-driven) and a hardware-based (interrupt-driven).
We use the system in Figure 3 as a working example.

A. Protocol

The protocol in Section II is extended to make it possible
to pass information through a chain of ICs connected to each
other with different interfaces. The PDL in Figure 3, same as
in Figure 2, should set the active scan-path of the IEEE Std.
1687 network in IC B (level i+1) such that data is written to
instrument i1 and data is read from instrument i3. Different
from Figure 2 is the need to pass data through IC A (level i).
The principle is that data sent to IC A is formed as control
commands (similar to a header) followed by data commands
(similar to payload). In IC A (level i), the data (payload) is
sent to IC B (level i+1) where the payload is interpreted as
control commands (header) and data commands (payload).

The PDL (iApply group) is formed as control and data
commands as follows. One control command is needed to
set up the IEEE Std. 1687 network in IC A (level i). That
is to include instrument iA in our hardware (the hardware is
described below). After the control command, there is one data
command. In this example, the data command specifies that
there are seven bytes of data. These seven bytes of data are
sent to IC B (level i+1) (see Figure 2). When IC B receives
these seven bytes of data, IC B interprets them as control and
data commands. The first control command is to include i1
and make a write. The second control command is to include
i3 and make a read. Then, a data command follows, indicating
that one byte of data follows, which is the data to be written in
i1. While the example shows a case with two ICs, the scheme
is general such than an arbitrary number of ICs can be passed.

B. Hardware

The hardware to control communication between two IEEE
Std. 1687 networks at different ICs is formed as IEEE Std.
1687 compliant instruments, see Figure 4. The hardware con-
sists of two parts; one for sending data and one for receiving
data. The hardware for sending data from IC i to IC i+1
consists of an instrument of length 9 bits where 8 bits are
for the data that is to be sent and one control bit to inform
the functional port when data is available such that sending
can be initiated. The instrument for sending data from IC i

to IC i+1 is named iA in Figure 4. The hardware to receive
data from IC i+1, that is to move data from IC i+1 to IC i,
consists of three instruments, named iB, iC, and iD in Figure
4. The actual data is kept in iB, and iC is a single flag bit.
The flag is set by the functional inteface when data has arrived
completely in instrument iB. Instrument iD is a single bit to
acknowledge to the functional interface when data in iB has
been read (consumed).

C. Communication

The controller in IC B is described in Section II, marked
as ITC’19 in Figure 3. The controller in IC A is based on
the one described in Section II but extended with two alterna-
tives to handle communication; polling-based (software-based)
and interrupt-driven (hardware-based), marked as ITC’19+ in
Figure 3.

The software-based scheme uses polling initiated from the
outside to check iC, which is set when data is available in iB,
see Figure 4. The PDL to perform polling of iC is:

iGet iC;
iApply;

The polled bit is packaged into a byte, the smallest unit to be
transported. As soon as iC indicates that data is available, the
data can be read from instrument iB by using:

iGet iB;
iApply;

As soon as data has been read, iD is automatically set by the
controller to indicate that data has been consumed. Each of
the iApply groups above translates into one control command
of 2 bytes and one data command of 2 bytes.

Instead of having externally initiated polling, hardware in
the on-chip controller can implement the checking (polling)
function in an interrupt-driven manner. The hardware in IC i
automatically checks iC and when new data is available, data
is read from iB and sent (returned) to the outside and iD is set
to inform the functional interface that data is consumed.

IV. EXPERIMENTAL RESULTS

The objective of the experiments is to validate our scheme,
evaluate the impact of system hierarchy and compare software-
based (polling) with hardware-based (interrupt) communica-
tion in terms of transported data and area utilization.

We used an FPGA (Nexys 4 DDR with an Artix-7
(XC7A100T-1CSG324C)) to implement a system with two
ICs, IC A and IC B. The interface between IC A and IC B
is with SPI and the interface between IC A and the outside is
with UART. We set SPI and UART to transport data in sizes
(packets) of one byte at a time. There is one IEEE Std. 1687
network in IC A and one in IC B. The IEEE Std. 1687 network
in IC A consists of proposed hardware and the IEEE Std. 1687
network in IC B contains 50, 100, and 150 instruments. The
instruments in IC B are connected in a flat manner with one
SIB per instrument. Instruments are of length of 8, 16, and
32 bits. That is, instrument 1 is of length 8 bits, instrument
2 is of length 16 bits, and instrument 3 is of length 32, and

3



Fig. 3. A system with two ICs (IC A and IC B) and corresponding hardware and protocol for system-level access to on-chip instruments

Fig. 4. The IEEE Std. 1687 compliant hardware to interface IC i and IC i+1

instrument 4 is of length 8, and so on. We made use of four
trivial PDL descriptions with one iApply group each, iGet from
instrument 1, iWrite to instrument 1, iGet from all instruments,
and iWrite to all instruments. We also made use of the PDL
scheme used in the BASTION benchmarks [18]. The PDL
scheme in BASTION is to first perform one iApply group
with write to all instruments, followed by one iApply group
with read from all instruments, and finally, for each individual
instrument, an iApply group with a write followed by an iApply
group with a read. For the benchmark with 50 instruments the
PDL scheme results in 102 iApply groups.

The experimental results on transported data are collected
in Table III, which is organized as follows. The number of
instruments is in column one, the applied PDL is in column
two and the amount of useful data bits is in column three.
Column four lists the types of data, including total overhead
and the amount of useful data in relation to the total amount
of data. The three approaches we compare are listed in
columns five, six and seven. Column five includes the approach
from ITC’19 (system hierarchy with one IC, one-level IC),
column six includes proposed scheme (system hierarchy with
two ICs, two-level IC) with hardware-based (interrupt-driven)
communication, and column seven includes proposed two-level
IC with software-based (polling-driven) communication.

Transported data is divided into the following categories;
useful bits and overhead bits where overhead is divided into
dummy, control and data. These categories are illustrated with
two PDL examples:

iWrite i1 0b11110000;
iApply;

and

iGet i1;
iApply;

For a one-IC setup (Section II [14]), in the case of iWrite
i1, eight bits will be written to i1, this is useful data. And in
the case of iGet i1, eight bits will be read from i1, this is useful
data. For both cases, there will be one active instruments, so
there will be one control command, which is of size 16 bits.
Hence, control overhead is 16 bits. There will be one data
command, size 16 bits. Hence, data overhead is 16 bits. There
is no dummy overhead. Total overhead becomes 32 bits. In total
40 bits are transported, overhead plus useful data, which gives
that the ratio of useful data over total data is 20%.

For a two-IC setup (IC A and IC B) there is in addition
to the transported data from the one-IC case, additional data
overhead due to the path between the two ICs. We have two
cases. First, sending data from the outside via IC A to IC B
and, second, sending data from IC B via IC A to the outside.

For the first case, sending data from the outside, the effort
is the same for both cases (iWrite i1 and iGet i1). The path is
set by one control command to iA in IC A, size 16 bits, which
means control overhead is 16 bits. One data command, which
includes control and data commands for IC B, adds another
16 bits, data overhead. For both PDL cases, 32 additional bits
are needed, giving that the overhead becomes 64 bits. In total
72 bits are transported, overhead plus useful data, which gives
that the ratio of useful data over total data 11%.

The second case, sending data from IC B via IC A to the
outside, applies only to iGet i1 as then there is data (bits)
from instrument i1 that should be transported to the outside.
Instrument iC (in IC A) needs to be checked to determine if
data is ready/available and if data is available the data should
taken from iB (in IC A). In the case of a software-based
solution (polling), the activity is handled from the outside
by using one control command to set the active scan-path to
include iC and one data command to apply the check (poll).
In total, 16 additional bits of control overhead and another 16
additional bits for data overhead. To report the status bit, 8
bits are needed as 8 bits is the smallest unit to be transported.
This is called dummy overhead. If the status bit indicates that
information is not available, a new poll must be made. If

4



TABLE II. AREA IN CONFIGURABLE LOGIC BLOCKS (CLBS)

Instruments Software Hardware CTRL@IC B IEEE Std. 1687
CTRL@IC A CTRL@IC A network@IC B

50 120 158 90 371
100 120 158 113 749
150 120 158 134 1123

Fig. 5. Data overhead for the BASTION benchmark for 1-level (one IC)
and 2-level (two ICs) with hardware (interrupt-driven) communication and
software (polling-driven) communication

information is available, a read operation can take place, which
means iB should be on the active scan-path, which is achieved
by using one control command, 16 bits control overhead, and
one data command, 16 bits of data overhead. This gives that
the total overhead is 136 (64+64+8) bits. In total 144 bits are
transported, overhead plus useful data, which gives that the
ratio of useful data over total data is 6%. In the experiments
we report the best polling case, which means that data is
available at the first poll attempt. In the case of hardware-
based handling, our controller in IC A performs the checking
activity without any involvement from the outside; hence, no
additional overhead.

Figure 5 shows the overhead for the BASTION benchmark.
The ITC’19 results for a system with one IC serves as a
reference. The overhead increase for systems with two ICs as
more work is needed to set the longer access pass. One should
note that the overhead for the hardware-based (interrupt-
driven) case is rather modest.

Table II reports the area of the controller in the software-
based (polling-driven) case (IC A), the controller in the
hardware-based (interrupt-driven) case (IC A), the controller
in IC B (which is the same as in ITC’19) and the IEEE Std.
1687 network in IC B. As the controllers in the software-based
case (IC A) and the hardware-based (IC A) case are extensions
of the controller in IC B (ITC’19) their area is higher.
The hardware-based controller is larger than the software-
based controller for the reason that the work corresponding to
polling is completely handled. The size of the hardware-based
controller and the software-based controller in IC B remains
constant when the number of instruments increase in IC A.

V. CONCLUSIONS

Access to on-chip instruments is difficult when ICs are
mounted on PCBs due to complex system hierarchies with
a multitude of interfaces. We developed protocol, hardware
and communication to handle communication between ICs
crossing different interfaces. There are two key learnings.
First, protocols describing data must be formed such that
ICs can be developed independently from each other. Second,
communication (data transport) crossing different interfaces
can result in high data overhead if a software-based (polling)
scheme is used instead of a hardware-based (interrupt) scheme.

REFERENCES

[1] “Embedded Instrumentation: Its Importance and Adoption in the Test
and Measurement Marketplace, Frost and Sullivan, Whitepaper, 2010.”

[2] K. Posse, “Component manufacturer perspective,” in 2015 International
Test Conference, 2015, pp. 1–10.

[3] “IEEE standard test access port and boundary-scan architecture,” IEEE
Std 1149.1-2001, 2001.

[4] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, 2014.

[5] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Scan pattern
retargeting and merging with reduced access time,” in European Test
Symposium (ETS), 2013, pp. 39–45.

[6] M. Portolan, B. Van Treuren, and S. Goyal, “Executing IJTAG: are
vectors enough?” IEEE Design & Test, vol. 30, no. 5, pp. 15–25, Oct
2013.

[7] J. Rearick and A. Volz, “A case study of using IEEE P1687 (IJTAG)
for high-speed serial I/O characterization and testing,” in International
Test Conference (ITC), 2006.

[8] F. G. Zadegan et al., “Reusing and Retargeting On-Chip Instrument
Access Procedures in IEEE P1687,” Design & Test of Computers, IEEE,
vol. 29, no. 2, pp. 79 –88, april 2012.

[9] Y. Fkih, P. Vivet, B. Rouzeyre, M.-L. Flottes, G. Di Natale, and
J. Schloeffel, “2D to 3D test pattern retargeting using IEEE P1687
based 3D DFT architectures,” in Computer Society Annual Symposium
on VLSI (ISVLSI), 2014, pp. 386–391.

[10] R. Krenz-Baath, F. Ghani Zadegan, and E. Larsson, “Access time
minimization in IEEE 1687 networks,” in International Test Conference
(ITC), 2015.

[11] Z. Zhong, G. Li, Q. Yang, and K. Chakrabarty, “Access-time mini-
mization for the ijtag network using data broadcast and hardware par-
allelism,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 1, pp. 185–198, 2021.

[12] IEEE P1687.1, “Standard for the Application of Interfaces and Con-
trollers to Access 1687 IJTAG Networks Embedded Within Semicon-
ductor Devices,” Dec. 2016.

[13] A. Crouch, M. Laisne, and M. Keim, “Generalizing access to instrumen-
tation embedded in a semiconductor device,” IEEE Computer, vol. 50,
no. 7, pp. 92–95, 2017.

[14] E. Larsson, P. Murali, and G. Kumisbek, “IEEE Std. P1687.1: Translator
and Protocol,” in International Test Conference, 2019, pp. 1–10.

[15] M. Laisne, H. von Staudt, A. Crouch, M. Portolan, M. Keim, M. Ab-
dalwahab, B. Van Treuren, and J. Rearick, “Modeling Novel Non-JTAG
IEEE 1687- Like Architectures,” in International Test Conference (ITC),
2020, pp. 1–10.

[16] IEEE P2654, “Standard for System Test Access Management (STAM)
to Enable Use of Sub-System Test Capabilities at Higher Architectural
Levels,” Oct. 2018.

[17] M. Portolan, J. Rearick, and M. Keim, “Linking chip, board, and system
test via standards,” in 2020 IEEE European Test Symposium (ETS),
2020, pp. 1–8.

[18] A. Tšertov et al., “A suite of IEEE 1687 benchmark networks,” in
International Test Conference (ITC), 2016.

5



TABLE III. AMOUNT OF DATA TRANSPORTED

Benchmark PDL Useful data Type of data ITC’19 Hardware-based Software-based

50

iGet 1 8

Control overhead 16 32 64
Data overhead 16 32 64
Dummy overhead 0 0 8
Total overhead 32 64 136
Useful data (%) 20 11 6

iWrite 1 8

Control overhead 16 32 32
Data overhead 16 32 32
Dummy overhead 0 0 0
Total overhead 32 64 64
Useful data (%) 20 11 11

iGet all 920

Control overhead 800 816 4496
Data overhead 16 32 3712
Dummy overhead 0 0 920
Total overhead 816 848 9128
Useful data (%) 53 52 9

iWrite All 920

Control overhead 800 816 0
Data overhead 16 32 32
Dummy overhead 0 0 0
Total overhead 816 848 848
Useful data (%) 53 52 52

BASTION 3680

Control overhead 3200 4832 12192
Data overhead 1632 3264 10624
Dummy overhead 0 0 1848
Total overhead 4832 8096 24656
Useful data (%) 43 31 13

100

iGet 1 8

Control overhead 16 32 64
Data overhead 16 32 64
Dummy overhead 0 0 0
Total overhead 32 64 128
Useful data (%) 20 11 6

iWrite 1 8

Control overhead 16 32 32
Data overhead 16 32 32
Dummy overhead 0 0 0
Total overhead 32 64 64
Useful data (%) 20 11 11

iGet all 1856

Control overhead 1600 1616 9040
Data overhead 16 32 7456
Dummy overhead 0 1856
Total overhead 1616 1648 18352
Useful data (%) 53 53 9

iWrite All 1856

Control overhead 16 32 32
Data overhead 1600 1616 1616
Dummy overhead 0 0 0
Total overhead 1616 1648 1648
Useful data (%) 53 53 53

BASTION 7424

Control overhead 6400 9632 24480
Data overhead 3232 6464 21312
Dummy overhead 0 0 3712
Total overhead 9632 16096 49504
Useful data (%) 43 32 13

150

iGet 1 8

Control overhead 16 32 64
Data overhead 16 32 64
Dummy overhead 0 0 8
Total overhead 32 64 136
Useful data (%) 20 11 6

iWrite 1 8

Control overhead 16 32 32
Data overhead 16 32 32
Dummy overhead 0 0 0
Total overhead 32 64 64
Useful data (%) 20 11 11

iGet all 2800

Control overhead 2400 2416 13616
Data overhead 16 32 11232
Dummy overhead 0 0 2800
Total overhead 2416 2448 27648
Useful data (%) 54 53 9

iWrite All 2800

Control overhead 2400 2416 2416
Data overhead 16 32 32
Dummy overhead 0 0 0
Total overhead 2416 2448 2448
Useful data (%) 54 53 53

BASTION 11200

Control overhead 9600 14432 36832
Data overhead 4832 9664 32064
Dummy overhead 0 0 5600
Total overhead 14432 24096 74496
Useful data (%) 44 32 13

6


