
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Open Data-driven Usability Improvements of Static Code Analysis and its Challenges

Söderberg, Emma; Church, Luke; Höst, Martin

Published in:
EASE'21: Evaluation and Assessment in Software Engineering

DOI:
10.1145/3463274.3463808

2021

Link to publication

Citation for published version (APA):
Söderberg, E., Church, L., & Höst, M. (2021). Open Data-driven Usability Improvements of Static Code Analysis
and its Challenges. In EASE'21: Evaluation and Assessment in Software Engineering (pp. 272-277)
https://doi.org/10.1145/3463274.3463808

Total number of authors:
3

Creative Commons License:
CC BY

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 22. Jun. 2024

https://doi.org/10.1145/3463274.3463808
https://portal.research.lu.se/en/publications/1a81e98d-3496-4b8e-b40e-a8454bdc5948
https://doi.org/10.1145/3463274.3463808


Open Data-driven Usability Improvements of Static Code
Analysis and its Challenges

Emma Söderberg
emma.soderberg@cs.lth.se

Lund University
Lund, Sweden

Luke Church
luke@church.name

University of Cambridge
Cambridge, United Kingdom

Lund University
Lund, Sweden

Martin Höst
martin.host@cs.lth.se

Lund University
Lund, Sweden

ABSTRACT
Context: Software development is moving towards a place where
data about development is gathered in a systematic fashion in or-
der to improve the practice, for example, in tuning of static code
analysis. However, this kind of data gathering has so far primarily
happened within organizations, which is unfortunate as it tends to
favor larger organizations with more resources for maintenance
of developer tools. Objective: Over the years, we have seen a lot
of benefits from open source and recently there has been a lot of
development in open data. We see this as an opportunity for cross-
organisation community building and wonder to what extent the
views on using and sharing open source software developer tools
carry across to open data-driven tuning of software development
tools. Method: An exploratory study with 11 participants divided
into 3 focus groups discussing using and sharing of static code
analyzers and data about these analyzers. Results: While using
and sharing open-source code (analyzers in this case) is perceived
in a positive light as part of the practice of modern software de-
velopment, sharing data is met with skepticism and uncertainty.
Developers are concerned about threats to the company brand, ex-
posure of intellectual property, legal liabilities, and to what extent
data is context-specific to a certain organisation. Conclusions:
Sharing data in software development is different from sharing data
about software development. We need to better understand how
we can provide solutions for sharing of software development data
in a fashion that reduces risk and enables openness.

CCS CONCEPTS
• Information systems → Open source software; • Software
and its engineering→ Software verification and validation.

KEYWORDS
data-driven software development, open data, static code analysis

ACM Reference Format:
Emma Söderberg, Luke Church, and Martin Höst. 2021. Open Data-driven
Usability Improvements of Static Code Analysis and its Challenges. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EASE 2021, June 21–23, 2021, Trondheim, Norway
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9053-8/21/06.
https://doi.org/10.1145/3463274.3463808

Evaluation and Assessment in Software Engineering (EASE 2021), June 21–
23, 2021, Trondheim, Norway. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3463274.3463808

1 INTRODUCTION
Static code analysis is one approach in software quality assurance,
where code is analyzed by an analyzer program statically without
running the code. These programs compute metrics, check adher-
ence to coding standards, try and locate common mistakes etc. This
checking can be initiated manually, or automatically as part of the
build process. It will generate a report often in terms of errors and
warnings to be taken care of by software engineers in some way
before other activities can proceed.

A number of factors increase the complexity of code analysis. The
variation in software development processes in different projects
is high, which means that there are different needs in different
projects. The quality requirements are different in different projects,
which also means that there are different needs in different projects.
There is further some organisational cost to the deployment of static
analysis including the integration of it into workflows and processes
and the effort needed to address the generated results including false
positives. To decrease the organisational cost of the deployment
analyzers are often tuned as to which issues they report in which
contexts, i.e., an example of data-driven decision making in the
development process. Data-driven software engineering in general
means utilizing data from artifacts and processes to understand
software system development (e.g. [3]), and in this case data comes
from developer usage, and the affected artifact is the analyser. To
some extent it also resembles how data from product usage is used
in decisions about features (e.g., [19]), although the investigated
product is the analyser.

However, this kind of data gathering for analyzers has so far
primarily happened within single organizations [16, 25], and limits
the application of the data to centralised development organisations.
This raises the question if it is possible to build communities of
companies and professionals who contribute data to each other for
tuning analyzers, in a way that corresponds to how Open Source
Software (OSS) communities collaborate providing much broader
access to the potential benefits that such systems provide.

In OSS development, there are accepted ways of sharing results
in communities [9], and the term “open data” [8] denotes a trend
in which for example public organizations provide data to other
organizations. In this paper, we analyse to what extent the view
on OSS and open data carry across to data for open data-driven
tuning of software development tools. Analyzers and similar tools

https://doi.org/10.1145/3463274.3463808
https://doi.org/10.1145/3463274.3463808
https://doi.org/10.1145/3463274.3463808


EASE 2021, June 21–23, 2021, Trondheim, Norway Söderberg, Church and Höst

are normally obtained from external sources, either as commer-
cially licensed products or OSS tools. If static code analysis systems
depend on data for tuning, and not only on the source code of the
software, the traditional models of OSS sharing no longer feel suffi-
cient. This represents a broad challenge in the open construction of
modern socio-technical infrastructure that depends on both source
code and data. We investigate this challenge in the context of the
development and tuning of analyzers.

We observe an openness from companies to engage with OSS
for software development tools, like the Gerrit code review tool,
which are often seen as commodity [18], but despite this openness
it is not as clear to what extent data is shared between companies
for software developer tools. An initial hypothesis was that many
organizations use the same analysis tools, and, for example, pat-
terns of false positives could be seen as a non strategic type of
information and shared with other organizations, since handling
of false positives is a well known industrial problem (e.g., [10, 21]).

In the specific context of static code analysis, we investigate
the benefits and challenges perceived by professionals. The con-
crete example we used to motivate this work was the Tricorder
System [25] used by Google, which tackles some of the usability
problems of static code analysis by construction of a feedback loop
built on usability data gathered from its group of software develop-
ers, but has limited applicability outside of Google. To shed more
light on challenges in trying to expand on this approach beyond
one organisation, we present results from an exploratory study
with practitioners conducted via three focus groups. We report on
trends we see in the gathered data, and outline directions for future
work.

We see the sharing of data about analyzers as an interesting
direction for the software development community, allowing or-
ganizations to collaborate, and especially smaller businesses to
reap some of the rewards available to larger organisations with
a large population of developers contributing data internally. In
this study, analyzers act as an exemplar for modern socio-technical
infrastructure.

2 BACKGROUND AND RELATEDWORK
In this section we provide some background and related work for
the two main areas relevant for work presented in the paper; data-
driven usability improvements of static code analysis, open and
shared data.

2.1 Data-driven Tuning of Static Code Analysis
Use of static code analysis is prevalent in software development.
Vassalo et al. report static code analyzers like FindBugs [2] (now
SpotBugs), Checkstyle 1, PMD [7], SonarQube2, and Error Prone [1]
to be used on a daily basis for quality assurance [28]. Analyzer
frameworks like these typically provide a list of checks connected
to how a programming language is used (e.g., use of Java), but can
then be extended to provide custom checks. Checks beyond general
language use may, for instance, be of interest to the specific needs
of an organisation (e.g., a style guide check), or the specific needs

1https://checkstyle.sourceforge.io/
2https://www.sonarqube.org/

of an API (e.g., checking for anti-patterns in API use). Altogether,
this results in an ever-growing list of analyzers.

At the same time as the adoption of analyzers is increasing, so
are reports of issues with analyzer use. Ayewah et al. report on
the use of FindBugs [2], where they see benefits using the tool
but also see problems with low impact warnings and developers
suppressing warnings. Johnson et al. [13] later further highlighted
these issues in a study where they investigate why developers are
not using static analysis tools to find bugs. In this study, they also
mention additional issues with lack of integration of analyzers
into the developer workflow and issues with lack of precision in
analyzer results (false positives). In a recent qualitative study of
StackOverflow posts about static analysis, Imtiz et al. [12] found
that the most common question about static analysis was about
how to ignore the results.

Software development has a wide range of techniques for build-
ing feedback mechanisms using empirical data. However many of
these such as user studies are fairly expensive, difficult to scale, and
difficult to gather contextually sensitive data on relatively infre-
quently occurring events. An alternative strategy is to incorporate
gathering of user feedback into the developer workflow where
static analysis results are used [6]. This later strategy reduces the
qualitative depth of the analysis but scales to many users. This
approach is the one used by Tricorder, where analyzer results are
presented as robot comments next to human comments in code
review at Google. Each presented robot comment is equipped with
a “not useful“ button where users can click if they find a comment
to not be useful.

This data gathering creates a feedback loop to the maintainers
of analyzers who can react quickly to tune analyzers to reduce, for
instance, false positives or improve incomprehensible messages.
Ljungberg et al. recently re-implemented the Tricorder approach
as open-source on an open-tools stack in order to experiment with
data-driven deployment of static code analysis [16]. The latter study
reaffirmed the usefulness of creating this kind of feedback loop
between maintainers and users, especially as new analyzer func-
tionality is rolled out where there is more need for tuning, however
the work didn’t address how this tuning might be shared between
organisations in an open manner.

2.2 Open Source and Open Data
When it comes to OSS software (e.g. [9]), much research has been
presented on how to use it as components in software development
projects, for example, Höst et al. [11] present a review of research
on open source as part of commercial software development. Today,
inclusion of OSS components in products is seen as a natural and
to some extent necessary part of product development.

Shahrivar et al. [26] investigate what the characteristics of a com-
mercial OSS business model are in a systematic literature review.
They find that business models include products and complemen-
tarities, clients and users, and competitive strategies, which shows
that sharing of OSS is part of many organizations’ business.

The question of sharing OSS systems with organizations outside
the creating organization has also been studied in different research
studies. For example, Linåker et al. [15] present objectives and
“complexities” of sharingOSSwith other organizations are identified



Open Data-driven Usability Improvements of Static Code Analysis and its Challenges EASE 2021, June 21–23, 2021, Trondheim, Norway

in a multiple case study involving three organizations. Examples of
objectives include objectives related to reputation, and objectives to
standardize or build eco-systems. Examples of complexities include
misalignment between internal and external agendas, sensitive
IPR, security threats, and cost. Munir et al. [18] presents a case
study highlighting how participation in OSS for software developer
tools, in this case the code review tool Gerrit and the continuous
integration tool Jenkins, can facilitate innovation with outcomes
such as free features and quality improvements to development
tools. This significant amount of research about the commercial
use and sharing of OSS can be seen as a basis, or inspiration, for
research on commercial sharing and usage of open data, perhaps
especially for software development tools.

The questions about open data is relevant for several domains
and topics as seen in a recent systematic mapping study [8]. Even
if the most common domain is “infomediaries”, i.e. “workers, com-
panies and investors who work in identifying and leveraging the
market value of consuming information” [8] primary studies from
a wide spectrum of domains, such as health, education, and culture,
are identified. The topic of Software Engineering is one identified
topic out of 11 with 19% of the identified primary studies. Within
that topic the most common domain is infomediaries but there are
also studies related to e.g., “geospatial” and education.

One area, related to Software Engineering, where there are more
mature procedures for sharing data is in the security domain. For ex-
ample, in [24] a framework and standard for sharing cybersecurity
information is presented, with the intention to allow for sharing at
a global scale. A more recent example is presented in [27] where
award strategies for cybersecurity information sharing are studied
with game theory. Related to this is the will to share vulnerabilities
in an organisation’s own products with other companies using the
company’s products, where at least some organizations are willing,
but actual practice is more reactive than proactive [20].

Even if there are examples of areas where data is shared, like se-
curity described above, it is not extensively investigated in research.
However, when Capilla et al. [5] recently investigated opportunities
for reuse in Software Engineering, open data reuse was identified as
one topic. Runeson [22] argues that data in Software Engineering
can be divided into commodity, differentiating, and innovative, and
proposes a research agenda for open collaborative data in Software
Engineering. Beyond the division, infrastructure, licensing, gover-
nance, and privacy of open collaborative data are also presented as
important topics.

3 METHODOLOGY
In order to understand potential routes to broaden the range of
contexts in which data-driven tuning approaches can be used to im-
prove analysers we seek to explore the following research question
(RQ1): How do the views of using and sharing open source software
developer tools carry across to open data-driven tuning of software
development tools? Given the exploratory nature of our study, we
gathered opinions via focus groups, a method that has been deemed
suitable for trying to gauge the state of mind among participants
in an area with not yet established views [14]. Our assessment is
that the views on how to engage with open data is such an area,
with few established views.

Using the specific case of data-driven improvement of program
analysis, we constructed a protocol for the focus groups with ques-
tions focusing on benefits and challenges when: (Q1)Using shared
program analyzers? (as in using program analyzers shared by oth-
ers as open source). (Q2) Sharing program analyzers? (as in shar-
ing their own program analyzers as open source, or contributing to
existing such open source projects). (Q3) Using shared program
analyzer data? (as in using data about program analyzer use, with
focus on ’not useful’ feedback, from another organisation), (Q4)
Sharing program analyzer data? (as in sharing your organisa-
tion’s data about program analyzer use, with focus on ’not useful’
feedback, to other organisations).

Data gatheringAll focus groups were carried out in connection
to one university outreach workshop connecting the university
with a network of companies in the same region. The workshop
ran over two hours, with presentations during the first hour and
focus groups during the second. The presentations were all centered
around data-driven program analysis deployment similar to the
approach in the Tricorder system [25], and recently MEAN [16].
The final part of the presentation concluded with an introduction
of the questions to be asked in the focus groups.

After the presentations, the workshop participants who opted
to participate in the focus groups were divided into 3 parallel focus
groups carried out in video chat rooms (Zoom breakout rooms). The
authors of this paper chaired one focus group each.We had a total of
11 participants representing 8 companies and 1 university, excluding
facilitators, divided between the focus groups. The composition of
the focus groups was primarily based on an even size distribution,
but care was taken to spread participants from the same company
between groups. Each focus group was recorded after informed
consent from participants, and transcribed by the author leading
each group. One group was held in Swedish and subsequently
translated, the other two were held in English. We will refer to
participants using an identifier P, for a person mentioned in a
focus group, followed by a number. That is, P0-P14 were present or
mentioned in the focus groups, and of those P1-P11 and P13-P14
were participants, P10 was a non-participant mentioned, and the
authors leading the focus groups were P0, P8, and P12. We will
refer to companies mentioned in a focus group using an identifier
C followed by a number.

In the group of participants, there were 8 developers (P1, P2, P3,
P4, P6, P8, P9, P11, and P13) and 3 managers (P5, P7, and P14). Sev-
eral of the participants have experience of working with static code
analyzers, some as engineers and others as managers responsible for
development processes and related tools. Experience of developers
ranged from junior developers to senior developers and architects
with several years of experience. Managers were rather senior, with
roles as product managers and architect and department managers.

Analysis We analysed the study to produce two categories of
results; the first is a summary of the overall opinion space of the
participants with respect to the using and sharing of analysers
and data, and the second to produce a richer substantive dataset
where we could use the coding scheme as an index into the data
to locate discussions of interest. In order to do this, we used two
separate coding schemes. In the summary analysis we coded for
each participant (e.g. P1) and topic (e.g. Use of Analyzers), whether
the participant expressed positive benefits that could be gained or



EASE 2021, June 21–23, 2021, Trondheim, Norway Söderberg, Church and Höst

Table 1: Defined codes

Code area Codes
Situational Using other analyzer, Sharing analyzer, Using data from others,

Sharing data with others
Software Software Functionality, Non-Functional Property of Software (Se-

curity), Non-Functional Property of Software (Other)
Business Cost (Software), Ecosystem & Collaboration, Team, Innovation,

Standards, Competition, Legal issues, IPR, Brand, Other challenge
(business), Other benefit (business)

Data Cost (Data), Value proposition (Data), Privacy, Other challenge
(data), Other benefits (data)

made a statement that they were already engaged in the activity
(coded “Benefit“), or a statement of a problem or a statement that
they would not engage in the activity (coded “Challenge“), or ex-
pressed both benefit and challenge (coded “Both“). Any participant
that did not express any of the above about a topic was coded as
“No Opinion“.

For the second thematic signposting approachwe first carried out
an informal survey to build a tentative coding frame. To do this we
gathered a pool of papers found based on our knowledge in the field
and an informal search following of references. From this initial pool
we picked three papers (focusing especially on adopting OSS [17],
sharing OSS [15], and open data in SE [23]) which all of the authors
read and each separately extracted codes from, which were then
merged and reduced until a final list of codes was reached, presented
in Table 1. The codes are divided into the areas of situational, i.e.
the situations relating to the research questions Q1–Q4 above, and
substantive codeswith respect to software, business, and data. Codes
were assigned using the Coda [4] tool originally designed for rapid
interpretation of short excerpts of qualitative data. The translated
transcripts of the text were coded one sentence at a time, and each
time a code was given, both a situational code and a substantive
code were applied.

For the overall summary analysis the transcripts were coded by
the first and second author and an inter-rater reliability test was
performed, giving a Cohen’s Kappa of 0.931 (95% confidence inter-
val, 0.839 to 1.000). The remaining differences were discussed and a
consensus view agreed. For the substantive signpost coding all three
authors coded each of the three transcripts. We did a consistency
check of codes after a synchronous pilot coding session up to 200
and then we checked for consistency and discussed any differences.
This check resulted in a small number of changes around behavior
concerning not relevant messages. We proceeded by increasing the
number of codes we could give a single message,

Considering the threats to validity, this approach is insuffi-
ciently rigorous to make quantitative claims about the data, but
it does allow us to use the assigned codes as signposts into the
data to locate example messages and to observe the absence of
some codes. The method by which the sample of participants was
recruited means that it consists of developers located in Sweden.
The combination of these means that our analysis is focused on
statements that we can be confident represent the opinion of one or
more developers, and we will avoid making statements about the
absence of claims. Further research would be needed to be confident
that the claims generalise to other contexts.

Figure 1: Summary of benefits and challenges as mentioned
per situational code and participant.

4 RESULTS
The discussions from the participants show a substantial difference
in the attitudes towards sharing open source code for analysers
and data associated with the analysers. We have summarized the
discussions in Figure 1, as a summary for situational code and
participants and then how they responded with regard to mention
of benefits, challenges, or both.

Using shared analyzers Participants were generally positive
about using shared analyzers:

“pretty much everything we run here is OSS“ (P7)
“Absolutely. We use rather many open source tools and OSS in
general. So I don’t see that as a problem“ (P11)

but also mentioned that they consider aspects of security, licenses,
maturity, and liability before they start to use open source tools:

“There is certainly a security aspect here ... either complex
source or not that widely adopted” (P1)
“we are using open-source tools, always there is a concern
about the licensing for that open-source“ (P2)
“a popular well organized project, yeah it would make me feel
more confident“ (P3)
“OSS is a little more new to them, sort of a question of liability“
(P13)

Sharing analyzersThe developerswere generally positive about
the prospect of sharing analysers:

“we at C1 love open-source ... we try to open-source our internal
tools and I can certainly see that we contribute images or
whatever format for existing checkers, I see no problem with
that“ (P1)

with one exception:
“currently legal question. We have not as a company come to
any conclusion about contributing with code to OSS projects.“
(P9)

They saw this in broad and general terms associated with profes-
sional practice, rather than in seeking specific advantages either
for themselves or for the companies they worked for:

“For me it is modern software development, culture. Open
source is a natural part of our ecosystem. And if that should
flourish we need to give back too“ (P9)
“I don’t know if I would write my own, I see that as there a
lots of them already, but it would be great fun to contribute to
something ... I would like to contribute, if I could“ (P3)



Open Data-driven Usability Improvements of Static Code Analysis and its Challenges EASE 2021, June 21–23, 2021, Trondheim, Norway

“I would contribute if it seems useful to someone else“ (P4)
They were mostly concerned that the companies they worked for
might impede their efforts to share in these ways, either through
conservatism or bureaucracy:

“Contribution is a tough word in C2“ - (P2)
The description organisations that were not willing to contribute
had a pejorative tone:

“C2 is still a little in the old fashion way, why should we give
away something for free ... they are a bit immature compared
to C1“ (P13)
“I can say something about the worries we have and why we do
not always contribute. Obviously disclosing company secrets.
And also some licenses ... a risk that you lose a patent if you
contribute in the wrong way“ (P5)

The organisations that were more structurally supportive of open
source similarly saw the commercial advantage of open source
sharing of code in similarly broad terms:

“We share costs, effort, ideas“ (P11)
“a good idea to contribute yourself too. Then you get more to
say as a company, if you are participating. Otherwise you are
completely dependent on everyone else that contribute.“ (P9)

The advantages they saw in the construction and sharing of open
source code was to influence the direction of projects and as a
mechanism to recruit and retain development talent:

“The other large advantage is that OSS is an effectivemarketing
channel towards developers. So you build a reputation by being
active in the open source community ... Good developers – then
it is very effective to go through open source channels“ (P5)
“it is fun to work with OSS, and of course, it’s branding thing“
(P7)

Using shared analyzer data The notion of receiving data about
analyzers to tune them was perceived as positive in that analyzer
could become more useful:

“whatever data that can make the analyzer more useful ... I
think that would be great“ (P3)
“Data about usage can be useful ... then you can get early
information about what checks do not work, and which that
do work“ (P6)

but there were also concerns of the potential challenges with use-
fulness due to data generated in one context might not apply in
another:

“a false positive for me may not be that for someone else. A
risk with that too“ (P9)
“The skeptic inside me says ’what use should that be, that they
have used the tool ...?’ A completely different system than my
system“. (P9)

and the possibility of bad actors tampering with the data (in a
setting where it is anonymous):

“if it is totally anonymous, how do you know that it is real data,
so that you don’t disable a check that has actually been the
... government wants everyone to disable the buffer overflow
check“ (P13)

Sharing analyzer data Participants generally expressed con-
cern about sharing analyzer data, mentioning the risk of revealing
information about sensitive projects within the organisation, or
information about the presence of security vulnerabilities:

“Defect data we would never disclose“ (P9)
“if we share data about checkers we have disabled, what does
that tell other projects about our products, or hackers“ (P7)
“it might give more information than you actually want from
your code“ (P13)

and discussed prerequisites for sharing data, such as anonymity
and a sufficient level of aggregation of the data:

“I guess if it is anonymized it should be safe to share ... if it is
only one company reporting, or only one user reporting for one
checker, then you might be able to deduct what company it is,
so I guess it is also a question of scale of the complete system“
(P1)

The developers further expressed an expectation of significant or-
ganisational opposition

“Initially it might be sensitive to share information I think“
(P1)
“Especially bureaucratic companies like ours, it may take time“
(P2)
“I believe that they would not basically not do it“ (P13)

A number of the developers further saw the question on sharing
data as being decided on a case by case basis, with an inclination
towards the negative:

“Impossible to give a general answer“ (P11)
“to contribute it to everyone I would say no“ (P9)
“depends on who is asking. If P5 asked and we had a dialogue
about how to tune ... that would be possible“ (P9)

5 DISCUSSION
As one developer in the focus groups put it “Sharing is caring, but
not in all cases“ (P2). When the developers we spoke to shared
code, they did so with broad, unspecific aims. They ranged from a
general belief that in doing so they assisted the profession, that it
carried little risk to their organisation, andwould help in supporting
recruitment. In other words, sharing code and using others code is a
part of the modern professional software development culture, and
companies that didn’t understand this were at best conservative
and at worse regressive in nature.

Whilst this broad, non-instrumental approach to development
practice benefits the open source community, it presents challenges
when transferred to sharing of data. Here, there are no such norms
and practices, as the possibility of using data to adjust development
practices is a new phenomena. In the absence of these norms, the
lack of clarity of the organisational logic in making the decision
around whether to contribute or not to open source, suggests that
it is not possible to use the structure to reason by analogy about
sharing data. Consequently, all that is left is the sense of risk and
expected institutional resistance. Figure 1 highlights the magnitude
of this effect, moving from a broad optimism about sharing code to
a broad concern about sharing data.

However if we accept the hypothesis that the ability to share
data about development practices will have a positive beneficial
effect on developer effectiveness, as the Tricorder system demon-
strates, then this is a concerning finding. It means that this benefit
will only be available to larger, centralised organisations which
operate at sufficient scale to utilise data that they internally gather,
in order to benefit their own development practice. This further



EASE 2021, June 21–23, 2021, Trondheim, Norway Söderberg, Church and Höst

will competitively disadvantage smaller, and public, development
organisations who rely on open source development practices.

Given the lack of perceived benefit, the limits of analogical ar-
guments from open source, and the perceived risks, we suggest
this requires a considerable rethink. The discussion in the focus
group showed a strong sense of solidarity amongst developers, we
suggest that a positive route forward for building data-driven de-
velopment is to explore mechanisms where this solidarity can be
used to share behaviour and non-site specific learnings about code
analysis, rather than a straight-forward mapping from either open
source or the practices of centralised institutions.

We note that previous work focuses on data used in software
engineering (e.g., map data [22]) and mention a need for technical
solutions, licences, governance, and privacy for individuals, while
in the case studied here the data is about software engineering, and
the primary challenge discussed was that of confidentiality on an
organisational level. Even though developer tools (and analyzers)
often are seen as a space where it is beneficial to engage with OSS,
when we discussed the notion of sharing data in the same space
the main focus was on risks prohibiting sharing.

6 CONCLUSIONS
We have explored how sharing of open source and sharing of data
relate to each other in the setting of data-driven development, using
the specific case of tuning of static code analyzers as a driver for
our exploration. We gathered data via 3 focus groups with a total of
11 participants (representing 8 companies), and then analyzed the
material using codes from the literature to identify beacons in the
material. Our results suggest that sharing of data is different from
sharing code, to an extent where it can not ride successfully on the
existing organisational OSS support. We further see a difference in
sharing data about software development, as opposed to data used
in software development, in that the risk to the brand increases
significantly. We see this as prohibitive when trying to implement
data-driven development across organisations.

Future Work. We several possible ways to continue this explo-
ration: 1) explore mechanisms that build on the sense of a shared
professional practice among developers to share behavioral data
in a non-organisational specific manner, 2) explore possibilities for
knowledge transfer from the security community where there is a
process for sharing of vulnerabilities, and 3) study other cases in
open data-driven tuning of software development tools to pinpoint
how they differ from tuning of static code analyzers.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
valuable comments and helpful suggestions. This work is supported
by the Swedish Foundation for Strategic Research under Grant No.
FFL18-0231, the Swedish Research Council under Grant No. 2019-
05658, and Vinnova under Grant No. 2018-03965.

REFERENCES
[1] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan. 2012. Building Useful Program

Analysis Tools Using an Extensible Java Compiler. In SCAM’12. 14–23.
[2] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix. 2008. Using

Static Analysis to Find Bugs. IEEE Software 25, 5 (2008), 22–29.
[3] C. Bird, B. Murphy, N. Nagappan, and T. Zimmermann. 2011. Empirical Software

Engineering at Microsoft Research. In CSCW’11.

[4] A. Blackwell, L. Church, M. Jones, R. Jones, M. Mahmoudi, M. Marasoiu, S. Makins,
D. Nauck, K. Prince, A. Semrov, A. Simpson, M. Spott, A. Vuylsteke, and X. Wang.
2018. Computer says ‘don’t know’ – interacting visually with incomplete AI
models. InWorkshop on Designing Technologies to Support Human Problem Solving
- VL/HCC. 5–14.

[5] R. Capilla, B. Gallina, C. Cetina, and J. Favaro. 2019. Opportunities for software
reuse in an uncertain world: From past to emerging trends. Journal of Software:
Evolution and Process 31, 8 (2019).

[6] L. Church and E. Söderberg. 2019. Probes and Sensors: The Design of Feedback
Loops for Usability Improvements. In PPIG’19.

[7] T. Copeland. 2005. PMD applied. Vol. 10. Centennial Books Arexandria, Va, USA.
[8] R. Enríquez-Reyes, S. Cadena-Vela, A. Fuster-Guilló, J. N. Mazón, L. D. Ibáñez,

and E. Simperl. 2021. Systematic Mapping of Open Data Studies: Classification
and Trends From a Technological Perspective. IEEE Access 9 (2021), 12968–12988.

[9] J. Feller and B. Fitzgerald. 2002. Understanding open source software development.
Addison-Wesley.

[10] S. Heckman and L. Williams. 2011. A systematic literature review of actionable
alert identification techniques for automated static code analysis. Information
and Software Technology 53, 4 (2011), 363–387.

[11] M. Höst and A. Orucevic-Alagic. 2011. A systematic review of research on open
source software in commercial software product development. Information and
Software Technology 53, 6 (2011), 616–624.

[12] N. Imtiaz, A. Rahman, E. Farhana, and L. Williams. 2019. Challenges with Re-
sponding to Static Analysis Tool Alerts.. In MSR’19. 245–249.

[13] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. 2013. Why don’t software
developers use static analysis tools to find bugs?. In ICSE’13. 672–681.

[14] J. Kontio, J. Bragge, and L. Lehtola. 2008. The Focus Group Method as an Em-
pirical Tool in Software Engineering. In Guide to Advanced Empirical Software
Engineering, Sjøberg D.I.K. Shull F., Singer J. (Ed.). Springer, 93–116.

[15] J. Linåker and B. Regnell. 2020. What to share, when, and where : balancing the
objectives and complexities of open source software contributions. 25, 5 (2020),
3799–3840.

[16] A. Ljungberg, D. Åkesson, E. Söderberg, J. Sten, G. Lundh, and L. Church. 2021.
Case Study of Data-driven Deployment of Program Analysis on an Open Tools
Stack. In ICSE-SEIP’21. IEEE.

[17] L. Morgan and P. Finnegan. 2007. How Perceptions of Open Source Software
Influence Adoption: An Exploratory Study. In ECIS’07. 973–984.

[18] H. Munir, J. Linåker, K. Wnuk, P. Runeson, and B. Regnell. 2018. Open innova-
tion using open source tools: a case study at Sony Mobile. Empirical Software
Engineering 23 (2018), 186–223. Issue 1.

[19] H. H. Olsson and J. Bosch. 2014. From Opinions to Data-Driven Software R&D:
A Multi-case Study on How to Close the ’Open Loop’ Problem. In SEAA’14.

[20] T. Olsson, M. Hell, M. Höst, U. Franke, and M. Borg. 2019. Sharing of Vulnerability
Information Among Companies – A Survey of Swedish Companies. In SEAA’19).
284–291.

[21] Z. P. Reynolds, A. B. Jayanth, U. Koc, A. A. Porter, R. R. Raje, and J. H. Hill. 2017.
Identifying and Documenting False Positive Patterns Generated by Static Code
Analysis Tools. In SER&IP’17. 55–61.

[22] P. Runeson. 2019. Open collaborative data: using OSS principles to share data in
SW engineering. In ICSE-NIER’19. 25–28.

[23] P. Runeson and T. Olsson. 2020. Challenges and Opportunities in Open Data
Collaboration – a focus group study. In SEAA’20. 205–212.

[24] A. Rutkowski, Y. Kadobayashi, I. Furey, D. Rajnovic, R. Martin, T. Takahashi,
C. Schultz, G. Reid, G. Schudel, M. Hird, and S. Adegbite. 2010. CYBEX: The
Cybersecurity Information Exchange Framework (x.1500). SIGCOMM Comput.
Commun. Rev. 40, 5 (2010), 59–64.

[25] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter. 2015. Tricorder:
Building a Program Analysis Ecosystem. In ICSE’15. 598–608.

[26] S. Shahrivar, S. Elahi, A. Hassanzadeh, and G. Montazer. 2018. A business model
for commercial open source software: A systematic literature review. Information
and Software Technology 103 (2018), 202–214.

[27] I. Vakilinia and S. Sengupta. 2019. Fair and private rewarding in a coalitional
game of cybersecurity information sharing. IET Information Security 13, 6 (2019),
530–540.

[28] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman.
2020. How developers engage with static analysis tools in different contexts.
Empirical Software Engineering 25 (2020), 1419–1457. Issue 2.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Data-driven Tuning of Static Code Analysis
	2.2 Open Source and Open Data

	3 Methodology
	4 Results
	5 Discussion
	6 Conclusions
	Acknowledgments
	References

