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Figure 1. Feedback system under consideration

1. Introduction

In [J6nsson and Olsson, 1993] stability theorems for the feedback system in
Figure 1 were derived using Lipschitz and Dahlquist constants of the operators
H, and H,, when H; and H; are defined on a Banach space. It was, however,
noted that there are drawbacks with studying stability in a Banach space. For
example, several signals that often appear in practice are not bounded in the
norm of the Banach space, which deny them from consideration. It is possible
to get around this problem by introducing an extended space of the Banach
space. We will in this report define the Lipschitz and the Dahlquist functionals
of operators defined on an extended space and then show that the stability
theorems of [Jénsson and Olsson, 1993] also hold in this case.

2. Extended spaces, existence of a solution and
causality

Classical stability theory results such as the small gain theorem and the pas-
sivity theory were derived in extended spaces, see [Desoer and Vidyasagar,
1975], [Zames, 1966] and [Willems, 1971]. There are several reasons for intro-
ducing extended spaces when studying stability. For example, the conditions
for existence and uniqueness of a solution are very weak in extended spaces.
It is also possible to consider system responses to unbounded signals and to
consider unstable operators in an extended space setting. Furthermore, it is
natural to study causality in extended spaces.

This rather long section will start with a discussion about extended spaces.
Next, the notion of causality will be discussed, and finally some theorems
giving sufficient conditions for existence of a unique solution in extended space
to the feedback system in Figure 1 will be derived.

Good references to the material in this section are [Desoer and Vidyasagar,
1975] and [Willems, 1971].

Extended spaces

In [J6nsson and Olsson, 1993] all stability theorems were derived in Banach
spaces X, specified to be signal spaces of the following type.

DEFINITION 1
The space X is a linear space of functions z of the type

z: TV

where T is a half infinite subset of the real numbers IR, i.e.T=[Tp,00) C IR or
the integers Z, i.e. T=[T;,00) C Z. It is assumed that X is a Banach space
with norm bounded elements, i.e. z € X = ||z|| < oo. )



Examples of signal spaces X are the L}(To, 00) and the I [T6, o) spaces, where
p € [1,00]. This is a very restrictive class of signals, which does not include
several in practice frequently appearing signals. For example, sinusoidal signals
are not in L,[0, c0), when p < oo. One way to get around this problem is to
use modified norms. In the example with sinusoidals we could, for example,

use the norm ||z|| = ‘/{/ o le=2t(z(t))|rdt, with A > 0. The drawback with
this approach is that we must know what signals to expect in order to choose
A. For example if €' is an expected signal then we must take A > 1. A much
more flexible approach is to use extended spaces.

The idea behind extended spaces is to consider the signals only for a finite
interval of time [0, T}, so that the norm of the truncated signal is bounded.

Before we define the extended space X, of the Banach space X, we need
to define the truncation operator Pr.

DEFINITION 2

Let t € T then for every function z : T — V, Pr is the linear projection

defined as
z(t), t<T

0, otherwise

Pr(z)(t) = {

where T and V are defined as in Definition 1. ]

Remark. Note that P} = Pr,i.e. Py is a linear projection operator.

The extended space X, of X is defined as the set of signals whose trun-
cation at any finite time are in X. We have

DEFINITION 3

X.={z:T—->V|Pre € X,VT € T,T < oo}
O

Remark 1. The extended space X, is not a normed space. However, for trun-
cated signals in X, we use the norm in X, i.e. || Prz|| is well defined for every
z€X,andforall T € T.

Remark 2. Since the Banach space X is assumed to contain only bounded
signals, i.e. elements with finite norm, we see that X, is an extension of X,
which contains also unbounded signals with infinite escape time.

Remark 3. The definition above implies that the space X must contain dis-
continuous signals.
We will from now on make the following further assumptions on X

1. Vz € X, we have limy_,, || Prz|| = ||z||, where | - || is the norm of the
Banach space X.

2. The space PrX, = {Prz|z € X.} is a Banach space for all fixed T € T.

3. The space (Pr, — Pr,)X. = {Pr,z — Pr,z|z € X.} is a Banach space for
all fixed T3, T, € T with T, > T3.

4. If z € X, then z is also in X if and only if limy_, || Prz|| < co.



Remark 1. Examples of spaces with these properties are the L%[0,00) and
the I3[0, 00) spaces.

We will next introduce two classes of nonlinear time invariant operators,
H and H,, that operate on the Banach space X and the extended space X,
respectively.

DEFINITION 4
An operator H € H maps X into itself and has the property H(0) = 0. )

DEFINITION 5
An operator H € H, maps X, into itself and has the property H(0)=0. O

Remark 1. The condition H(0) = 0 is not a restriction since an operator can
always be redefined so that H(0) = 0.

Remark 2. The definition of extended spaces and the class of operators H,
allows us to consider unbounded operators.

Remark 3. It is possible to draw conclusions also in X from an stability
analysis in X, as will be shown in Section 4.

Remark 4. It is assumed in this report that all operators are defined on all
of their domain space, i.e. Dom(H) = X or Dom(H) = X,.

Causality

In this subsection we will discuss the concept of causality.

DEFINITION 6
H € H, (H) is causal if and only if PrHPr = PrH, VT €T O

There is also an alternative definition of causality

DEFINITION 7
H € H, (H) is causal if and only if VT € T and Vu,v € X (X.) Pru = Prv=>
PTHU = PTH’U (]

Remark. These definitions imply that the output of a causal operator does
not depend on future inputs.

We will now show that the two definitions of causality are equivalent

THEOREM 1
Definition 6 and Definition 7 are equivalent.

Proof:  Definition 6 => 7: Take arbitrary u,v € X. (X) and an arbitrary
T € T then if Pru = Ppv, we have PrHu = PrH Pru = PrH Prv = PrHv.

Definition 7 = 6: Let u = Prv for an arbitrary v € X, (X), then Pru = Prv,
so by assumption we have Py Hu = PrHv and since u = Ppv, the theorem
follows. O

From now on we will use the following classes of causal operators

DEFINITION 8
The subset of causal operators in H, (H) is denoted HY (HY). m)

The following theorem will be used frequently in this report



THEOREM 2
The composition HyH, of two operators Hy, H, € Hf (H%) is also in H}
(HY).

Proof:
PTH1H2 = PTHl.PTHz = PTH1PTH2PT = PTH1H2PT

where we used Definition 6 in all equalities. The theorem follows since Pr H  H, =
PpH,H, Py for any T € T by Definition 6 implies that H,H, is causal. a

It is obvious that if an operator H is in both H and in H, then H is in
H* if and only if it is in H}. This fact will be used later.

Existence and unicity of solutions in extended space

We will in this subsection give theorems that state conditions under which
there exist a unique solution in the extended space X, to the feedback system in
Figure 1. The solution e;, ez, ¥, and y, will depend causally on the input signals
u,; and u,. Such a solution will be called causal. We start with a theorem from
[Desoer and Vidyasagar| from which we will derive some corollaries that give
conditions that are easy to check in practice. The material in this subsection is
only concerned with signal spaces with continuous time, such as the L7{0, co)-
spaces.
The equations of the feedback system in Figure 1 are

€=U — Y
e =Uz+ 1 (1)
1= Hyey

Y2 = He,

We assume that H,, H, € H}. It should be noted that these equations only
make sense if there exists a solution to the feedback system for the input signals
uy,us € X,. The theorem, which give conditions for existence of a unique and
causal solution to the feedback system in Figure 1 for any u;,u, € X., will
use the following equivalent form of the feedback equations in (1).

e=u+ He
y= He

where e = (ej,€3), u = (u1,uz), and y = (—¥2,¥1), and where the operator
H:X,xX,—» X, x X, is defined as He = (—H,e;, Hie;). We make the
assumption that the operators H; and H, are models of systems with stable
non-controllable and non-observable states. We also assume zero initial con-
ditions or otherwise that we can let the initial conditions response be part of
the input signal vector u.

We have the following theorem from [Desoer and Vidyasagar, 1975]

THEOREM 3
Define the projection operator
Pt.A =Pyar—-P, tt+A€T

Then the feedback system in Figure 1 has a unique causal solution in extended
space, if Hy, H, € H}, and if for all compact intervals I C T, there are

e
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numbers ¥(I) < 1 and A(I) > 0 such that Vt € I and Ve, e’ € X, subject to
Pge = Pte’, . .
|1 Peay(He — He')l| < v(I)l[Paye — €.

Remark. The space 13,, aX, is a Banach space according to our assumptions
above.

The proof is adopted from [Desoer and Vidyasagar, 1975].

Proof: Assume that we have computed e € X, x X, up to time ¢ > 0. We will
show how the solution can be extended to all of T. Let I be a compact interval
including ¢ such that I N (t,00) is nonempty. If A corresponds to I, then we
can define é, = P, ae = P, pe— P,e and i, similarly. Let P, A operate on the
system equation e = u — He, then we get.

EA = ﬁ.A - (PH_AHC - PtHe)
= iip — (PoyaHPyne — P,HPse) @
= '&A — (P,+AH(P¢e + éA) - P,HPt(Pte + éA))
= iip — B aH(Pe+ép)

where the second equality follows from the causality of H, the third equality
follows from the definition of é, and the properties of the projection operator
P,, and the last equality follows from the causality of H and the definition of
P, a. Equation (2) is on the form é5 = f(é,). This follows since i, is given
and P,e is by assumption known. We will next show that f(-) is a contraction,
which imply that we can find the unique extension of the solution e up to
time ¢ + A, by using the iteration extl = f(én),n = 1,2,3..... We have for all
€nr,€p € Pt,AX X Pt,AXea

1£(8a) = F(EL)Il = | Poa(H (Pre + &) — H(Pee + &)
<Y(DIIFal8a = &)l
<y(D)lléa - &l

so f(-) is a contraction. Note that we used that e was assumed to be known
up to time ¢, i.e. P,e is known. We can now find the solution to the feedback
system by dividing T into a countable number of compact intervals and then
piece by piece construct the solution by using iterations as above. Causality
follows since the fixed point iterations involve only casual operators. |

This theorem is not very nice to use in practice since we need to compute
the gains v(I) for the composite operator H. In the following corollary condi-
tions for existence and unicity of a solution in extended space will be stated
in terms of the product of the gains of the two operators H, and H,.

COROLLARY 1
f H,,H, ¢ H:, and if for all compact intervals I € T, there are numbers
A(I) and gains v,(I), 72(I) defined such that V¢ € I and Ve, e’ € X, subject
to P,e = P,e,

| B, ary(Hie — Hie')|| < 11(D)||Pracn(e — €)|l-
and ) )
| Pe.aqry(Hae — Hae')|| < v2(I)|| Bryany(e =€)

respectively, then there exists a unique causal solution in X, to the feedback
system in Figure 1 if v,(I)v2(I) < 1, for all compact intervals I € T.



Proof: Inspiration for this proof is taken from [Willems, 1971]. We can define
the norm on P, o X, X P a(r)X. as

~ ~ ~ de
I, amyell = (Poamer Poawyea)l E BullPoamerll + Bal| Peacryeall

where 8; = Bi(I) and B; = B2(I), i.e. they depend on the interval I. Since
y1(I)y2(I) < 1 it is possible to choose B8;,8; > 0 and v € (0,1) such that
P9 (I)7" > 98P > 1o(I). I 41 > 1 then choose Y?1;(I)~! > v4:6;" >
¥1(I). We get

|1Poacry(He — HE')|| = Bull P aqry(Haez — Hzeh)|| + Bal| Proacry (Hier — Hyel)|
< BN P ary(e2 — )l + Bavi(DN Proagy(er — €l
< 1Bl Poacy(er — )| + 18:l| Proay(ez — )]
<Y Poagpe =€)

and hence the proof follows from Theorem 3. Note that 8,, 8, and v depend
on I. O

The following two corollaries are easy to apply in practice

COROLLARY 2

If Hy, H, € H*, and if either of H, or H, delays all inputs then there exist a
unique and causal solution in extended space to the feedback system in Figure
1.

Proof: Assume H, delays all inputs T, time units, where T; > 0. If we choose
A(I) such that 0 < A(I) < T, for all I, then Vt € I and all e,e’ € X, subject
to PTC = PTe’, N

| Pe,aqry(Hie — Hie)|| = 0

This means that 4; = 0. Hence, the condition 9,7, < 1 is satisfied and the
corollary follows from Corollary 1. The case when H, delays all inputs is
similar. a

For the next result we will consider feedback systems where the operators
H, and H, are state space systems on the form

z; = fi(z:) + gi(zi)w
¥i = hi(z:) + Di(w), 1=1,2

where f; : R* » R™, g; : R™ » R™, h; : R™ — IR™ and D, : R™ — IR™
are Lipschitz continuous and such that there exists a solution to (3) in extended
space. We will also assume that f;(0) = 0, k;(0) = 0 and D;(0) = 0. Then it
follows that the systems above are causal operators, which map zero into
zero, i.e they are in H}. We have the following corollary that gives sufficient
conditions for existence of a unique causal solution in extended space to the
feedback system in Figure 1.

(3)

COROLLARY 3

If H, and H, are state space operators as in (3), then there exists a unique
causal solution in extended space if L[{D,|L[D;] < 1, where the Lipschitz
constant L[D] is defined as

1D] = sup 12(2) = (&I

, z,z' ¢ R"
T e



uq el Y1._

Figure 2. The feedback system of Example 1.

For the proof of the corollary we need the following lemma.

LEMMA 1

If H is a state space system as defined above, then the gain of H, y(I), defined
as in Corollary 1 is bounded above by ¥(I) < L[D]+ O(A(I)) on each interval
I with corresponding A(I).

Proof: With the notations in Corollary 1 and with P,u = Pu/, we get

1P (Hu ~ Hu')|| = || P, al(A(2(u)) + D(u)) - (h(z()) + D))
< NP (h(2(u) = h(z(w))] + [|Pe,a(D(w)) - D(w))]|
= |(a(Py,a2(w)) — h(Praz(w)))]| + |(D(P, au)) — D(Pav))]
< I{h]l|Pr,a(2(w)) ~ 2(u))]| + L[D][| Pra(u — o)

where the second equality follows since A and D are memoryless nonlinear
functions which map zero into zero. Since we assume zero initial conditions it
follows that P,u = P,u’' = P,z(u) = P,z(u'). Therefore we have || P, a(z(u) -
z(u))]| = O(A)|| P, a(u — w')||, when A is small. Hence we get

1P a(Hu - H')|| < (Z[D] + L{R]O(A)| Pra (1 — )]

0
Proof: [of Corollary 3] We have for each interval I with corresponding A(I)

(Ir2(I) < (L[D4] + O(A(I)))(LIDS] + O(A(I))) = L[D1]L[D;] + O(A(T))

Since L[D,]L[D;] < 1 there must be a § > 0 such that L[D,]L[D,] <1 - 6.
Hence, by taking A(I) small enough, we can get v;(I)y2(I) < L[D]L[D,] +
O(A(I)) < 1 and the Corollary follows from Corollary 1. o

Corollary 3 essentially says that for a feedback interconnection of state
space systems satisfying the assumptions above, we can guarantee existence
and uniqueness of a causal solution in extended space when the direct feedthrough
in the system is less that one. We will now give an example that discuss what
may happen when the direct feedthrough is larger that one. This example is
adopted from [Willems, 1971) and it also appeared in [Jonsson and Olsson,
1993].

ExaMmpPLE 1
Consider the feedback system in Figure 2. If a mathematical point of view is
taken when analyzing the response of the system, then y(t) = HLKul(t) when

K # —1. However, in practice we will always have some slight delay in the
system. This follows since the transmission speed of the signals in the system

7



is finite. A simple calculation shows that the response to a unit pulse at t =1
(i.e. the response to u,(t) = 6(t) — 8(t — 1) at t = 1) when a delay e=*T« is
inserted in the feedback system is

kY

T,

y(1) = Ki(—K)", where n, = |

where |-| denotes the truncation operator, which gives the integer part of
its argument. It follows that when K| > 1, y(1) — oo as T, — 0, i.e. the
output may be come extremely large when the transmission time is small.
The conclusion is that the system in Figure 2 makes no sense from a practical
point of view when |K| > 1. It is also easy to see that the case K = —1 gives
a system response that tend to infinity as 7, — 0 and the case when K =1
gives a system response, which during the pulse oscillates with a frequency
that tend to infinity as T, — 0. OQur conclusion is that from a practical point
of view, a solution to the feedback system in Figure 2 exists only if |[K| < 1. O

We will from now on use the following definition of well posedness of the
feedback system in Figure 1

DErINITION 9
The feedback system in Figure 1 is called well posed if there exists a unique
and causal solution to it in extended space. O

Remark. Well posedness has nothing to do with stability since it only as-
sure that there exists a unique solution to the feedback system that depends
causally on the inputs u; and u;. A well posed system may very well give
output signals in X, that are unbounded in the norm of the Banach space X,
even though the input signals are in X. Such systems are not stable.

A good model of a physical feedback system should be well posed, since
otherwise either the model or the physical system makes no practical sense.
So why bother about well posedness? One reason why we should be aware of
well posedness of a mathematical model of a feedback system is that there are
reduction methods and design methods that may affect the direct feedthrough
of the system. One example is model reduction based on balanced state space
realizations of a system, see for example [Johansson, 1993].

3. Lipschitz and Dahlquist functionals in extended
space

The Lipschitz and the Dahlquist functionals presented in [Soderlind, 1984],
[Soderlind, 1986] and [Soderlind, 1992] will be defined for operators in extended
space in this section.

Lipschitz functionals
The upper and lower Lipschitz functionals of an operator H € H are defined
as, see [Soderlind, 1992]

L) — sup VEQ = HON o ()~ H)|
e P e o]

(4)




where u,v € X.

The definition of these functionals for operators defined on an extended
space is not obvious since an extended space is not a normed space. Inspired
by [Willems, 1971], we say that an operator H € H} is Lipschitz continuous
in an extended space X, with Lipschitz constant L,[H] if

L.[H]= sup Ly[H] < o0
TeT

where

|| Pr(Hu— Ho)| :
Ly[H]= su , with w,ve X,
= 1Pr(u—)]

It follows from the assumptions on the space X in Section 2 that Ly[H] is a
non-decreasing function of T, and therefore L,[H] = limy_, o Lr[H]. It should
be intuitively clear that L.[H]| = L[H],i.e. H is Lipschitz continuous in X, if
it is Lipschitz continuous in X with the same Lipschitz constant. We actually

have the theorem [Willems, 1971].

THEOREM 4

If H € HY is Lipschitz continuous, then H is also a Lipschitz continuous
operator in H* and the Lipschitz constants of H on X, and X are equal.
Conversely, if H € H is Lipschitz continuous on X, then H is also Lipschitz
continuous in H} and the Lipschitz constants of H on X and X, are equal.

Proof:  See [Willems, 1971]. ]

Note also that every Lipschitz continuous operator H in H, is causal, i.e.
is in H}. This follows since if H is Lipschitz continuous, then VT' € T and all
u,u' € X, we have

|| Pr(Hu— Hu')|| < L{H]||Pr(u — v}

Therefore Pru = Ppu' = PpHu = PrHv/', and causality follows from Defini-
tion 7. It is of course also the case that a Lipschitz continuous operator H € H
is causal.

Theorem 4 essentially says that Lipschitz continuity in H is equivalent
to Lipschitz continuity in H*. We will therefore from now on only use the
notation L[-] regardless of if we are considering Lipschitz continuous operators
in H* or in H. It should also be noted that we can compute L[] for a
Lipschitz continuous operator in H} by considering only signals in X. This
means that the formulas, derived in [Jonsson and Olsson, 1993], for computing
the Lipschitz functionals of certain linear time invariant operators and static
diagonal nonlinearities also hold in extended space.

We will not use a lower Lipschitz functional in extended space but the
truncated lower Lipschitz functional defined as

lT[H] — inf ”PT(HUHHU)”

ith X
prugprv ”PT(U. _ 1-’)|| , Wl u,v € X,

will be used in the proof of the next lemma and the main theorem of this sec-
tion. The results in [S6derlind, 1992] relating the lower and the upper Lipschitz
functionals to each other are also valid for the truncated Lipschitz functionals.
If H,H,, H;, € H then

1. Ly[H] >0



LrlaH] = |a|Lr[H]
Ly[H,] — Ly[H;]) < Ly[Hy + H;) < Le[H,) + Ly[H,]
Ilp[H,]|Ly[H,y] < Ly[H3Hq] < Ly[H;)Lr[H,]
0 <Iz[H] < Lr[H]
lr[aH] = |a|lp[H]
lp[H,]| — Lp[H,] < lp[H, + H) < Ip[H,y| + Ly[H,)
8. Ip[Ho|lr[Hy) < Ip[H,H,) < Lo[Hy)lp[H,y
The first four results involving only Lr[:] are of course also valid for L[] of
operators in the extended space X,.

The following Lemma is useful when considering stability of feedback
systems.

SRR

LEMMA 2

If H € H with L[H] <1, then (I + H)™' € H} with L[(I + H) '] < i
Proof:  The proof follows if we can show that for any T € T, and for any
¥y € X., the equation Pr(I + H)z = Pry has a unique solution z ¢ X,

that depend causally and Lipschitz continuously on y. The equation can be

rewritten as Prz = Pry — PrH Prz = f(y,z), where f(y,z) easily can be

shown to be a contraction in PrX, for any y € X, and any T € T. This follows
since for arbitrary z,z2’ € PrX, we have ||f(y,z) - f(y,2')|| = ||PrH Prz —
PrHPr2'|| < Ly(H)||Pre — Pp2'|| < L(H)||Prz — Prz'||, and from the fact
that L(H) < 1. Hence, it follows from Banach’s fixed point theorem that
Prz = Pry— Pr H Prz has a unique solution in PrX,, for any y € X, and any
T € T. This solution is also in X,. Causality follows since the solution can be
obtained by a fixed point iteration involving only causal operators.

It remains to show the Lipschitz bound on (I + H)~'. For any y,¥' € X,
with corresponding z = (I + H) 'y € X, and 2’ = (I + H) 'y’ € X., we have

1Pe(y = ) = [|Po((I + H)z — (I + H)2')|| 2 el + H)|[ Po(z - 2')|
> (1 - Lo[H)||Po( — )] > (1 - LU Pr(z - o))

Hence

. Ppz — P2'|| 1
LI+ H)Y =1 IPrz = Piz'll
W+ H)) = 0, 222 Py = Payll < T= 2]

Dahlquist functionals

The upper and lower Dahlquist functionals of a Lipschitz continuous operator
H € H are defined as, see [S6derlind, 1992]

MH] =t DAL L[HZH]_l

e—0+ E e—0—

()

As remarked in [Soderlind, 1992], it is easy to show that these functionals are
well defined. If we take 0 < £, < &5, then

S+l - 1) = Z(EEU +am) + (- D1-1)

< (LT +eH) - 1)

2
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were we used the properties of L[] and that L[I] = 1. So ﬂ@'—l is monotone
non-increasing, as € \, 0+, and bounded below by —L[H]. Hence, it follows
that the limit exists, and M[H] is well defined. It is now obvious that m[H] =
—M|[—H] is also well defined.

We take the following definitions for the Dahlquist functionals of a Lips-
chitz continuous operator H € HY.

Lyl I+eH|-1
M.[H) = sup Myp[H], where My[H]= lim aff +eh]

7eT =0y £
and
Lp[I+€eH] -1
m,[H] = inf mr[H], where my[H]= lim zll + eH]
TET e—0— E
respectively.

It is easy to see that M.[-] and m,[-] are well defined. For example,
My [H] is a monotone non-decreasing function of 7' with upper bound M|[H].
Hence, it follows that M .[H] = limy_ o, Mr[H] = M[H]. Similarly, m.[H] =
limg_,o, mq[H| = m[H]. This means that the Dahlquist functionals of a Lips-
chitz continuous operator in H! can be computed by considering only signals
in X. This means that the formulas derived in [Jénsson and Olsson, 1993],
for computing the Dahlquist functionals of certain linear time invariant oper-
ators and static diagonal nonlinearities also hold in extended space. We can
therefore from now on skip the index on the Dahlquist functionals of opera-
tors in H} and simply denote them M[-] and m][-] respectively. The truncated
Dahlquist functionals are related to the lower and upper Lipschitz functionals
as, see [Sdderlind, 1992].

L. ~lz[H] < My[H] < Lr[H]
Myr[H + zI]| = Mr[H] + Rez
MT[GH]:QMT[H], a 20
my[H,] + Mp[H,] < Mr[H, + Hp) < Mr[H,) + Mr[H,]
— Ly [H] < maH] < Iy ]
my[H + 2I] = mp[H] + Rez
my(aH] = amp[H], a>0
8. mg[Hy] + mp[H,} < myp[H, + Hy) < Myp[Hy] + me[H,)

Note that the results above not involving Ir[-] also hold for the functionals
L[],M[-] and m[-] of operators in H}.

The stability theorems of the next section are based on the following result

SR AN

THEOREM 5
If H € H] is Lipschitz continuous, and if m[H] > —1 then (I + H)™' € H;
and L[(I+ H) '] < 1+T1[H]

Proof:  The truncated lower Lipschitz functional satisfy
where the inequalities follows from properties of the truncated functionals

stated above and the fact that my[:] is monotonically decreasing to m[-] as

11



T — oo.Since m[H] > —1 wehave lp[H] > 0, VT € T,andhenceVz,z' € X,
and VT € T we have

|1Pr((I+ H)z — (I + H)2')|| 2 (1 + m[h])|| Pr(z — =)

This implies that I + H is injective on X,. However, we have not proved that
the inverse is defined on all of X,. Before we do this we need to prove the
bound on the Lipschitz functional of the inverse (I + H)~'. From the above
result we easily derive

|1 Pr((I + H) 'y — (I + H)™'y')||

Le[(I + H)™'] = sup 1Pr(y - v)l]
(s ||(PT((I+H)z—(I+H)z')||)“
Pra#Pra! || Pr(z — )|
1 1

LIt H S TfmA]

where in the first equality y,y" € (I + H)X,. Since this result holds for all
T € T, we have )

1+ m[H]

It remains to prove that the inverse of I + H is causal and defined on all
of X,. Introduce the operator F(a) = I + aH, for a € [0,1]. It is clearly
true that F(0) = I is causally invertible with the inverse defined on all of
X.. We want to show that F(1) = I + H has the same property. Assume
that F(a) is invertible, then the following identity holds F(a') = (I + (a' -
a)H(I+aH)")F(a). If |o'—a| < %, where 8 = max(;#Els, L[H]) < oo, then
Li(a/ —a)H(I+aH) ] < 1,Va € [0,1], and it follows from Lemma 2 that the
first factor on the right hand side of the identity above is causally invertible
on all of X,. Divide [0,1] into N intervals {a;, a;y1] each of length smaller
than 1/8,i.e. [f] < N < o0, where [-] denote the smallest integer larger than
the argument. Then causal invertibility of F(a;) on all of X, implies causal
invertibility of F(a;4,) on all of X, and since F(0) is invertible on all of X,
the theorem follows from an induction type argument. O

LT+ H)™'] <

Remark. Note that it is by no means obvious that an inverse is causal. We
know from the proof above that m{H] > -1 implies that Iz[I + H| > 0, i.e.
that the system is injective and therefore invertible on Im(I + H). However
Ir(I+ H) > 01is not enough to ensure causality of the inverse. A simple counter
example is when H = e~*T¢ — 1, where e~*T¢ is the linear operator that delay
a signal T} time units, where T; > 0. We have I (I + H) = lp(e™*T) > 0, when
T > Tp. The inverse is (I+ H)~* = ’T, which is noncausal. Note for example,
that when we use the space L,.[0,00), we get m;[e~*T¢] = —1, which does not
imply causal invertibility.

We are now in a position to derive stability theorems in extended space.
This is the topic of the next section.

4. Stability Theorems using Dahlquist functionals
We will in this section show that the stability theorems of [Jonsson and Ols-
son, 1993] also hold in extended space. The following theorem correspond to

Theorem 12 in [J6nsson and Olsson, 1993].
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THEOREM 6

If the feedback system in Figure 1 is well posed with H; = G; € H linear and
with H; € HY, then a sufficient condition for the solution e, ez, 31,72 € X.
to depend Lipschitz continuously and causally on u;,u; € X, is that H; and
G, are Lipschitz continuous with m[G;H,] > —1. Further, if u,,u; € X then
€1,€2,¥1,Y2 € X.

Proof: From the feedback equations (1) we have for any T € T
PT€1 = PT'u,l - PTGZ('UQ + H1€1) (6)

which is well defined by the well posedness assumption. Adding PrG,H,e; on
both sides of this equation gives

Pr(I + GyH,)Prey = Pruy + PrGyH Pre, — PrGo( Prus + PrHy Prey)
= PTU1 et PTGz.PTUz
From Theorem 5 we know that m(G;H;) > —1 is a sufficient condition for

the operator on the left hand side to be causally invertible in extended space.
Hence, we get

PTel = PT(I + G2H1)_1(PTu1 - PTG2PT'U,2)
It is now easy to obtain the bound

1
N —m
<17 m(Gng)(”PT(ul

where e; and e} are the solutions to (6) when the inputs are u;,u; € X, and
u!,u, € X, respectively. Since Pry, = PrH,Pre,, Pre; = Pru, + Pry, and
Pry, = PrGyPre,, and since G, and H; are Lipschitz continuous it follows
that all the signals in the feedback system depend Lipschitz continuously and
causally on u; and u,. Further if we take u} = u;, = 0 and u,,u, € X then we
can let T — oo on the right hand side of (7). We get

1
P < —
” Tel” - 1+m(G2H1)

This means that e; € X and it is easy to see that e;,y, and y, are also in

X. i

The following two theorems are also easily proven

|| Pr(er — e1) —uy)|| + L(G2)|| Pr(uz — wp)ll  (7)

(luall + L(G2)llwell, VT €T

THEOREM 7

If the feedback system in Figure 1 is well posed with H; = G; and with
H, € H}, then a sufficient condition for the solution ey, ez, y1,y2 € X, to
depend Lipschitz continuously and causally on u;,u, € X, is that G; and
H, are Lipschitz continuous with m[G,H;| > —1. Further, if u;,u; € X then
e1,€2,91,Y: € X.

THEOREM 8

If u; = 0 and if the feedback system in Figure 1 is well posed with H,, H; € H
then a sufficient condition for a solution ey, ez, y1,¥2 € X, to depend Lipschitz
continuously and causally on u;,u; € X, is that H; and H, are Lipschitz
continuous with m[H,H,] > —1. Further, if u;,u, € X then e,,e3,¥1,%. € X.

Remark 1. The causality is actually guaranteed by the well posedness as-
sumption.

The well posedness assumption in the theorems above is essential to sort
out pathological cases such as the following.
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EXAMPLE 2
In Example 1 we have a feedback system were both operators H; = K and
H; =1 are linear and Lipschitz continuous. Further, we have that m[H, H,] =
m[K] = K. Therefore the conditions for Lipschitz continuity of Theorem 6
are fulfilled when K > —1. However, if K > 1 then the analysis in Example
1 shows that the system is unstable when a practical point of view is taken.
The system should be regarded as not being well posed when K > 1.

a

5. Conclusions

We have in this report discussed extended spaces, causality of operators and
well posedness of feedback systems. Further we have shown that the stability
theorems involving Dahlquist functionals in [J6nsson and Olsson, 1993] also
hold in extended space. This allows us to consider stability of a feedback
system when the input-signals are not in a Banach space.
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