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Populärvetenskaplig sammanfattning

Leonhard Euler publicerade redan 1757 ekvationer för att matematiskt beskriva hur
fluider rör sig och de bär därmed namnet Eulers ekvationer. Att fullständigt ana­
lysera konsekvenserna av dessa ekvationer är dock ännu inte ett avslutat problem
inom matematiken. Detta beror dels på att ekvationerna beskriver många olika
fenomen och det finns ingen övergripande teori kan hantera alla dessa samtidigt.
Ett annat problem är inbyggt i själva ekvationernas struktur. Eulers ekvationer är
vad som kallas icke­lineära vilket medför matematiska svårigheter.

I denna avhandling studerar vi speciellt dessa ekvationer i fall när fluiden är en
vätska med vattenlikande egenskaper och nollskild vorticitet. Att beskriva vad vor­
ticitet innebär rent konkret är inte helt enkelt, men en direktöversättning av den
tyska termen för vorticitet ger ordet virvelstyrka vilket är talande. vorticiteten be­
skriver hur mycket vätskan roterar runt varje punkt, inklusive runt vilken axel och
i vilken rikting vätskan roterar.

I den första artikeln utökas teorin om vattenvågor. Då måste själva vattnets rörelse
uppfylla Eulers ekvationer. För vattenvågor ingår det dock också i själva problemet
att hitta ytans form. Detta problem är studerat i både tvådimensionella modeller
och i tre dimensioner ifall vattnet saknar vorticitet. I denna artikel visar vi existens
av tredimensionella lösningar till vattenvågsproblemet med nollskild vorticitet. Vi
antar att vattenflödet är ett Beltramiflöde vilket innebär att rotationsaxeln är pa­
rallell med vattenflödets riktning. Detta resultat täcker dock endast det enklaste
fallet av denna relation vilket är när vattnets hastighet och vorticiteten är relatera­
de genom en konstant. Det betyder att förhållandet mellan vattnets hastighet och
hur mycket det roterar är detsamma överallt. Lösningarna som hittas är dubbel­
periodiska (se figur 1c), vilket inte kan beskrivas i tvådimensionella modeller. En
viktig anledning till att studera problem som detta är att en bättre förståelse av
vattenvågor ökar säkerheten för människor som befinner sig ute på havet.

I den andra artikeln studerar vi problemet att hitta lösningar till Eulers ekvationer
i tre dimensioner i cylinderliknande områden. Detta är en matematisk beskrivning
av vatten som rinner genom ett rör. Även här är nollskild vorticitet någonting vi
lägger stor vikt vid och den tillåts i denna artikel att vara av en mer komplicerad
form än i den första (och den tredje) artikeln. Den största matematiska utmaning­
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en i artikeln är att området har skarpa kanter. I en cylinder finns kanterna precis
där toppen och botten möter manteln. Att lösa differentialekvationer som Eulers
ekvationer i områden med kanter är avsevärt svårare än att lösa dem i områden
utan kanter, som t.ex. i ett klot. Om detta resultat går att utöka till områden med
hörn (kubliknande domäner) så kan det potentiellt användas för att lösa vatten­
vågsproblemet med mer komplicerad vorticitet än i de andra artiklarna i denna
avhandlig.

I den tredje artikeln löser vi återigen vattenvågsproblemet i tre dimensioner. Den­
na gång med ett annat antagande på vorticiteten. Detta antagande kommer från
magnetohydrodynamiken. Det är nämligen så att ekvationerna som beskriver ett
magnetfält i jämvikt inom magnetohydrodynamiken är ekvivalenta med Eulers
ekvationer. Även här hittar vi dubbelperiodiska vågor över ett vattenflöde med
nollskild vorticitet. Det kan dock poängteras att det definitivt är andra lösningar
än de vi hittar i den första artikeln eftersom antagandena i denna artikel är ofören­
liga med de antaganden vi gör i den första.
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1 Background

The history of the mathematical study of fluids in motion stretches back almost
300 years. This field of study is called fluid dynamics as opposed to fluid stat­
ics, which describes fluids at rest. Fluid statics is far older and traces its history
all the way back to Archimedes of Syracuse. Fluid dynamics on the other hand
can arguably be seen as starting with the publication of Hydrodynamica by Daniel
Bernoulli [4]. It did at least lend its name to the field, which was formerly known
as hydrodynamics. Subsequent progress was made through derivation of general
equations governing fluid motion from more fundamental physical principles.
Maybe most notably, the Euler equations for inviscid flow originally derived by
Leonhard Euler [13] and the Navier­Stokes equations for viscous flow originally by
Claude­Louis Navier [27] and later by George Gabriel Stokes [31]. Although these
equations have been the subject of extensive study, many questions regarding their
solutions remain. One reason is that they are mathematically complicated due to
being non­linear. Another reason is that they serve as the equations governing a
wide variety of different physical problems and there exists nomathematical theory
that can be applied to all these different problems.

The equations we are mostly concerned with in this thesis are the Euler equations
for an incompressible flow with constant density. If we let v denote the velocity
field of the fluid, p the pressure and g external forces (in the water wave problem
this is usually only gravity, i.e. g = −ge3) then the equations are given by

∂tv + v · ∇v = −∇p+ g,

∇ · v = 0.

We are particularly interested in the steady Euler equations, which means that
the velocity field and pressure are time­independent. Hence the time derivative
vanishes. In this thesis we are either working directly under the aforementioned
assumption or what is known as the travelling wave assumption, that is, the assump­
tion that v = v(t,y) = w(y − ct) for some constant c. Performing a Galilean
transformation gives us the steady Euler equations. Physically this means that we
view the problem in a reference frame moving with constant velocity. Mathem­
atically we change coordinates (t,y) 7→ (t,x) = (t,y − ct). In the moving
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Preface

reference frame the velocity field is given by u = u(x) = w(x)− c. Since

u · ∇u = −c · ∇w +w · ∇w = ∂tv + v · ∇v

we find that in the moving frame u satisfies the steady Euler equations

u · ∇u = −∇p+ g,

∇ · u = 0.
(1)

In this thesis we study the water wave problem. Generally speaking this means that
we want to solve a free boundary problem involving these equations, that is, de­
termining the shape of the domain in which equation (1) is satisfied is part of the
problem. We solve equation (1) in a three­dimensional domain Ω. In the vertical
direction Ω is bounded above by the free surface, described by a function η, and
bounded below by some fixed bottom. In the horizontal plane we assume peri­
odicity in two different directions. With these assumptions we get periodic waves.
Another common assumption is that η is localized which gives solitary waves. The
water wave problem has also been studied with a bottom that is not flat but instead
given some fixed shape or at infinite depth which means Ω is unbounded below
in the vertical direction. In some applications it is also impossible to make the
assumption that the surface is described by a function, for example when study­
ing overhanging or breaking waves. The time­dependent problem has also been
studied extensively, see for example [9, 18, 23] and references therein.

For the problem to be well posed we also need some boundary conditions. The
first is the kinematic boundary condition, which simply reads

u · n = 0, (2)

where n denotes a normal vector to the boundary of Ω. The physical meaning of
this boundary condition is that there is no flow through the boundary of Ω. The
second boundary condition is the dynamic boundary condition, which is given by

p− pa + σ∇ ·

(
∇η√

1 + |∇η|2

)
= 0. (3)

Here pa denotes the atmospheric pressure (or the pressure in the medium above
the surface), which is assumed to be constant, while σ is the coefficient of surface
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1. Background

tension. The physical meaning of the dynamic boundary condition is that with
nonzero surface tension the pressure jump at the the surface is proportional to
the mean curvature. Our methods rely on first solving equations (1) and (2) for a
general but fixed η. These equations are not uniquely solvable and some additional
conditions are needed to make this problem well­posed. In this thesis we use
integral conditions of the form

ˆ
Ω0

u · ei = ci, (4)

for either i = 1 or i = 1, 2, some symmetry assumptions, and some assumptions
on the vorticity. The integral conditions determine the total flow in the horizontal
directions through one period Ω0 of the domain Ω. When ci 6= 0 we avoid the
trivial solution (u, p) = (0,−gx3) to equations (1) and (2).

The water wave theory can be divided into three different problems: finding
gravity­capillary waves, gravity waves or capillary waves. In this context gravity
simply means that the external force in equation (1) is given by gravity, that is,
g = −ge3. On the other hand, capillary means that surface tension (cf. capillary
action which is driven by surface tension) is present. Thus gravity­capillary waves
means g = −ge3 and σ 6= 0, gravity waves means g = −ge3 and σ = 0, and
capillary waves means g = 0 and σ 6= 0. Under the physical conditions present
at earth for water both gravity and surface tension are present. However, the effect
of gravity is negligible for waves with small wavelength and the effect of surface
tension is negligible for waves with large wavelength. Mathematically the presence
of surface tension makes the problem of finding doubly periodic waves easier. This
is due to the fact that many standard techniques for non­linear analysis hinge on
the use of the implicit function theorem at some point, which in turn relies on
the fact that some linearised operator has bounded inverse. For example in both
[Paper I, Paper III] we reduce the problem to the surface. The linearised version
of this problem, L, acts on a single Fourier mode ηk(x′) = eik·x

′ through

Lηk(x
′) = ρ(k)ηk(x

′) = (r(k) + g + σ|k|2)ηk(x′),

where x′ denotes the horizontal variables and r(k) = O(|k|) as |k| → ∞. Due
to the σ|k|2­term we have good control over how this operator acts on modes
with sufficiently large |k|. If σ = 0 then we lose this control and can (quite likely)
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find sequences of ki such that ρ(ki) → 0 as i → ∞. This makes the inverse
unbounded since the inverse of L clearly acts on ηk(x) by division with ρ(k).
This is commonly referred to as a small divisor problem. For this reason the results
in [Paper I, Paper III] which prove the existence of gravity­capillary waves can not
be replicated for gravity waves using the same techniques.

Similar problems have been extensively studied in two dimensions. Already in
1847 Stokes [32] formulated a non­linear theory for the two dimensional gravity
wave problem and computed the flow up to third order with the wave amplitude
as the parameter for the expansion. The first rigorous existence results were proven
by Nekrasov [28] and Levi­Civita [24] independently. They both used conformal
mappings known as hodograph transforms to reduce the problem to finding a har­
monic function that satisfies a non­linear boundary condition on a fixed domain.
Later the theory of local bifurcation [8], which we rely on in this thesis (see Sec­
tions 1.2 to 1.4), was also applied to the two dimensional problem for periodic
waves. Another idea, proposed by Kirchgässner [21], is to treat the horizontal
direction as a ‘time’­variable, and to formulate an infinite­dimensional dynam­
ical system. This approach is now known as spatial dynamics and allows results
from dynamical systems to be applied, in particular the center manifold theorem.
For the two dimensional problem there also exists a global theory, starting with
Krasovskii [22]. In the context of water waves the local theory generally refers
to waves of small amplitude while in global theory the amplitude of the waves is
not restricted. However, to actually determine any characteristics of a global solu­
tion is a challenging problem. One notable example where this has been done is
in the case of stokes waves of greatest height. Stokes conjectured that the peri­
odic gravity waves he calculated, which forms a family of waves parametrised by
the amplitude, have a wave of greatest height with sharp crests of included angle
2π/3. This conjecture was confirmed by Amick, Fraenkel & Toland [3], and Plot­
nikov [29]. The two dimensional problem can give useful information about our
three­dimensional world, but it can not account for every phenomenon. It is
suitable to describe waves like the ones depicted in Figure 1a, but clearly has its
shortcomings when it comes to describe waves like the ones in Figures 1b and 1c.

The three dimensional theory is not quite as old but there exist a number of results,
most of which are from the last twenty years. The first existence result, though, is
by Reeder & Shinbrot [30] from 1981. They prove the existence of doubly periodic
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1. Background

gravity­capillary waves with respect to a diamond lattice (see Figure 1c). The waves
are called doubly periodic if η is periodic with respect to two linearly independent
vectors defining a lattice in the horizontal plane. A diamond lattice means that
these two vectors are of the same length. This result was improved by Craig &
Nicholls [6] who proved the existence of doubly periodic gravity­capillary waves
with respect to a general lattice. In their method of proof they used a Hamilto­
nian formulation due to Zakharov [37] expressed in a more convenient form by
Craig & Sulem [7], together with a variational argument. The variational prob­
lem obtained in [6] is reduced to a finite­dimensional problem using a Lyapunov
Schmidt reduction. The approach of spatial dynamics has also been successfully
applied to the three dimensional problem. Here one of the horizontal directions
has to be chosen to take the role of a ‘time’­variable. This approach has the benefit
of not being solely focused on seeking doubly periodic solutions. If the solutions
are assumed to be periodic in a transverse direction to the ‘time’­direction, then
the special case of periodic solutions to the dynamical system introduced gives rise
to doubly periodic waves. However, these solutions can for example also be local­
ised, which then shows the existence of waves that are solitary in one direction and
periodic in another (see Figure 1b). The use of this approach for the three dimen­
sional problem was introduced by Groves & Mielke [16] and Haragus­Courcelle
& Kirchgässner [17], and generalized by e.g. Groves & Haragus [14]. These results
contain the existence of doubly periodic gravity­capillary waves. There also exist
results for doubly periodic gravity waves. The existence of these waves which are
periodic with respect to a diamond shaped lattice was proved by Iooss & Plot­
nikov [20]. The result for a more general lattice was later proven by the same
authors [19]. Both of these results rely on Nash­Moser type theorems, which are
in essence generalized implicit function theorems that are applicable despite the
small divisor problem that occurs due to the lack of surface tension. There are
currently no global results for the three dimensional problem.

All the three dimensional results mentioned above only treat irrotational flows, i.e.
flows with zero vorticity

w := ∇× u = 0.

In this thesis we are in particularly interested in flows with nonzero vorticity. In the
irrotational case the velocity field is given by a scalar potential. Thus the problem
can be simplified to a scalar problem, which is not possible in the case of nonzero
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(a) A periodic­constant wave. (b) A periodic­solitary wave.

(c) A doubly periodic wave.

Figure 1: Three different types of waves.

vorticity. It can also be noted that in two dimensions the problem can be reduced
to a scalar problem even in the case of nonzero vorticity due to what is known
as a stream function. This can be seen as a consequence of the fact that a three
dimensional divergence free field can be written as the curl of a vector potential

u = ∇×A.

Assuming that u = (u1, 0, u3) and independent of x2, that is, for all intents and
purposes two dimensional, leaves us with

−∂x3A2 = u1, ∂x1A2 = u3.

HereA2 is the stream function. Reformulation with the help of a vector potential
is still a useful tool in the (truly) three dimensional case, but it does not reduce the
problem to finding a scalar stream function. We also note that there are several
recent results for two­dimensional steady water waves with vorticity. Constantin
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1. Background

& Strauss [5] proved a global result for two­dimensional gravity waves with a gen­
eral vorticity distribution. The properties of these have been further studied in e.g.
[1, 11, 10, 12]. Two­dimensional gravity­capillary waves have also been studied for
a class of vorticity functions in e.g. [33, 35, 36]. For the three­dimensional problem
with nonzero vorticity the results are yet very scarce. One of the few results is a
non­existence result for constant vorticity [34]. There also exists variational formu­
lations for waves over a three­dimensional Beltrami flows [15, 25]. A Beltrami flow
means that the velocity field is a Beltrami field, that is, the velocity and vorticity
are parallel. In other words there exists a function α such that

w = ∇× u = αu.

This is usually divided into the two cases of constant α, which we will refer to
as a linear Beltrami field, and non­constant α, which we will refer to as a non­
linear Beltrami field. The first existence result is given in [Paper I]. There we show
the existence of doubly periodic waves over a linear Beltrami flow. Another result
for doubly periodic waves with non­vanishing vorticity is shown in [Paper III].
There the vorticity is assumed to have the form proposed by Lortz in [26]. The
observant reader will note that [26] is not a paper on water waves, but instead treats
what is called magnetohydrodynamics. In particular Lortz shows the existence of a
magnetohydrostatic equilibrium in a toroidal region. The governing equations are

J ×B = ∇P,

J = ∇×B,

∇ ·B = 0,

whereB is the magnetic fieldJ is the current density andP is the plasma pressure.
By identifying B = u and P = p + gx3 + 1

2 |u|
2 we can recover the steady

Euler equations under the influence of gravity with vorticity ω = J . Thus the
assumption that Lortz makes for the current density can be directly applied for the
vorticity. That the problem is studied in a toroidal region is also precisely what we
need to obtain solutions with the periodicity we seek.

Despite the differences in the vorticity assumptions, both these existence results
are proven in a similar way. First the pressure is written as a function of the velo­
city. Then the problem given by equations (1), (2) and (4) are solved for a given
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function η. This gives a solution (u[η], p[u[η]]), which we can substitute in equa­
tion (1.8c) to obtain an equation for η, which determines the free boundary. This
problem is in both cases solved through a Lyapunov­Schmidt reduction together
with two different extensions of the classical local bifurcation result by Crandall
& Rabinowitz [8]. A summary of these results is presented below. The final paper
included in this thesis [Paper II] is concerned with only the first part, that is, solv­
ing equations (1), (2) and (4) for a given function η. The result does need some
improvement though if it is to be applied to the three dimensional water wave
problem.

1.1 Lyapunov­Schmidt Reduction

Let X , Y and C be Banach spaces and let F ∈ C1(X × C,Y). Here C denotes
a finite­dimensional parameter space. The problem we are interested in is finding
(x, c) ∈ X × C that is the solution to

F [x, c] = 0. (5)

Assuming that we have some trivial solution (0, c∗) to (5) and that D1F [0, c∗] :
X → Y is an isomorphism then the implicit function theorem gives us a solution
(x(c), c) for every c in some neighbourhood of c∗. Here Di denotes the Fréchet
derivative with respect to the i:th argument.

However, if we relax the assumption to D1F [0, c∗] : X → Y is a Fredholm op­
erator, then we can no longer in general apply the implicit function theorem. Let
us describe it briefly. What we can do is perform a Lyapunov­Schmidt reduction
to reduce (5) to a finite­dimensional problem. Recall the definition of a Fredholm
operator.

Definition 1.1. A bounded linear operator T : X → Y is said to be a Fredholm
operator if:

(i) The kernel of T is finite­dimensional.

(ii) The cokernel of T is finite­dimensional.

(iii) The range of T is closed.
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1. Background

Morover the index of a Fredholm operator is defined as

indT = dimkerT − dim cokerT.

Condition (iii) is usually included in the definition, but is actually redundant.
If D1F [0, c∗] is a Fredholm operator then we can write X = X1 ⊕ X̃ and
Y = Y1 ⊕ Ỹ , where X1 = kerD1F [0, c∗] and Ỹ = ranD1F [0, c∗]. The
spaces X̃ and Y1 are isomorphic to the quotient spaces X/ kerD1F [0, c∗] and
cokerD1F [0, c∗] = Y/ranD1F [0, c∗] respectively. This decomposition of X
and Y defines the projections Q on X with range X1 and kernel X̃ and P on Y
with rangeY1 and kernel Ỹ . By applying P and (I−P ) to equation (5) we obtain
the equivalent system of equations

(I − P )F [x, c] = 0, (6)
PF [x, c] = 0. (7)

Writing x = x1+x̃, where x1 = Qx and x̃ = (I−Q)x, we can view the left hand
side in equation (6) as an operator (I−P )F : X1×X̃ ×C → Ỹ . Differentiating
this operator with respect to x̃ at (0, 0, c∗) gives (I − P )D1F [0, c∗] : X̃ → Ỹ ,
which is an isomorphism. By the implicit function theorem there exists a solution
x̃[x1, c] to equation (6). Substituting this solution in equation (7) we obtain the
equation

PF [x1 + x2[x1, c], c] = 0,

which is equivalent to the original problem (5). This is a finite­dimensional prob­
lem because the left hand side is an operator that maps X1 × C to Y1. This com­
pletes the Lyapunov­Schmidt reduction. To solve the finite­dimensional problem
that we obtained requires some additional assumptions. An example of such as­
sumptions are given in the local bifurcation theorem of Crandall &Rabinowitz [8].

1.2 Local Bifurcation

We keep the notation from Section 1.1 and continue studying equation (5). In this
section we assume that C = R.
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Theorem 1.2 (Crandall & Rabinowitz). If F ∈ Ck(X × C,Y), with k ∈ Z such
that k ≥ 2, k = ∞ or k = ω (i.e. F is analytic), is an operator with the following
properties:

(i) F [0, c] = 0 for all c ∈ C and there exists c∗ ∈ C such that D1F [0, c∗] is a
Fredholm operator of index 0.

(ii) The kernel of D1F [0, c∗] is one dimensional, i.e. there exists some x1 ∈ X \
{0} such that kerD1F [0, c∗] = span{x1}.

(iii) PD1D2F [0, c∗]x1 6= 0.

Then there exists some ϵ such that for every s ∈ (−ϵ, ϵ) equation (5) has a solution
(x[s], c[s]). Moreover, (x[·], c[·]) ∈ Ck−1((−ϵ, ϵ),X × C) (if k is equal to ∞ or
ω then k − 1 is also equal to∞ or ω respectively) and

x[s] = sx1 + o(s), c[s] = c∗ +O(s).

Remark 1.3. Condition (iii) is known as the transversality condition and it is a
sufficient condition to apply the implicit function theorem after performing a
Lyapunov­Schmidt reduction.

Proof. By the assumptions of the theorem we can immediately perform a
Lyapunov­Schmidt reduction. Writing Qx = sx1 we obtain the equation

K(s, c) := PF [sx1 + x̃[s, c], c] = 0.

Here we view K as a function R2 → R. Strictly speaking it maps into Y1, but
this is a one dimensional space so we can identify it with R. Similarly we identify
X1 with R to view x̃ as an operator R2 → X̃ . x̃[0, c] is the unique solution to

F [x̃[0, c], c] = 0,

which means that x̃[0, c] = 0 because F [0, c] = 0. Moreover we have that
∂sx̃[0, c

∗] = 0 because it solves the equation

(I − P )D1F [0, c∗]∂sx̃[0, c
∗] + (I − P )D1F [0, c∗](x1) = 0,
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where the second term is 0 because x1 ∈ kerD1F [0, c∗]. Define the function

H(s, c) :=


K(s, c)

s
if s 6= 0,

∂sK(0, c) if s = 0.

We obtain
H(0, c) = PD1F [0, c](x1 +D1x̃[0, c](x1))

which means that H(0, c∗) = 0 and

∂cH(0, c) = PD1D2F [0, c](x1 +D1x̃[0, c](x1), 1)

+ PD1F [0, c](D1D2x̃[0, c](x1, 1)),

so
∂cH(0, c∗) = PD1D2F [0, c∗](x1, 1) 6= 0

because D1x̃[0, c
∗](x1) = 0 and PD1F [0, c∗] = 0. Hence we can apply the

implicit function theorem to obtain a function c[s] that solves H(s, c[s]) = 0.
Tracing the argument backwards gives us the solution we seek. It is given by c[s]
and

x[s] = sx1 + x̃[sx1, c[s]].

The differentiability of the solutions follows from the implicit function theorem
and that x̃[sx1, c[s]] = o(s) follows from the fact that

x̃[0, c∗] = D1x̃[0, c
∗] = D2x̃[0, c

∗] = 0.

1.3 Multi Parameter Bifurcation

The result in Theorem 1.2 is not sufficient for either of the papers that rely on a
bifurcation argument in this thesis. Below we show a modified version used in
[Paper I]. In this section we let C = Rn (the version used in [Paper I] is in fact the
special case when n = 2). Moreover, let Xi = span{xi} and Yi = span{yi},
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i = 1, . . . , n be one dimensional subspaces of X and Y respectively. This means
that we can write

X =

(
n⊕

i=1

Xi

)
⊕ X̃ ,

Y =

(
n⊕

i=1

Yi

)
⊕ Ỹ,

where X̃ and Ỹ are closed subspaces. This decomposition allows us to define the
projectionsQi and Pi, i = 1, . . . , n, which are projections onto Xi and Yi along

X̂i ⊕ X̃ :=

 n⊕
j=1
j ̸=i

Xj

⊕ X̃

and

Ŷi ⊕ Ỹ :=

 n⊕
j=1
j ̸=i

Yj

⊕ Ỹ

respectively. Moreover, in this section we let P =
∑n

i=1 Pi and Q =
∑n

i=1Qi.

Theorem 1.4. If F ∈ Ck(X ×C,Y) (with k as in Theorem 1.2) is an operator with
the following properties:

(i) F [0, c] = 0 for all c ∈ C and there exists c∗ ∈ C such that D1F [0, c∗] :
X → Y is a Fredholm operator of index 0

(ii) The kernel of D1F [0, c∗] is n­dimensional and given by
⊕n

i=1Xi.

(iii) If PiD1Dj+1F [0, c∗](xi, cj − c∗j ) = νij(cj − c∗j )yi, then the matrix ν
given by

(ν)i,j = νij

is invertible.
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(iv) There exist closed subspaces X̃i of X̃ and Ỹi of Ỹ for each i = 1, . . . , n such
that

F (X̂i ⊕ X̃i, c) ⊆ Ŷi ⊕ Ỹi,

and

(I − Pi)D1F [0, c∗]|X̂i⊕X̃i
: X̂i ⊕ X̃i → Ŷi ⊕ Ỹi

is a Fredholm operator of index 0 with kernel X̂i.

Then there exists an ϵ such that for every s = (s1, . . . , sn) ∈ Bϵ(0) = {s ∈
Rn : |s| < ϵ} equation (5) has a solution (x[s], c[s]). Moreover, (x[·], c[·]) ∈
Ck−1(Bϵ(0),X × C) and

x[s] =
n∑

i=1

sixi + o(|s|), c[s] = c∗ +O(|s|).

Remark 1.5. The conditions (i),(ii), and (iii) are clear analogues to the standard
local bifurcation theorem by Crandall & Rabinowitz. Condition (iv) has no ana­
logue because it is superfluous if n = 1. In the case when n ≥ 2 it separates the
domain and codomain of the operators into in a way that makes the proof of the
theorem quite straightforward.

Proof. We begin by performing a Lyapunov Schmidt reduction. Writing x =∑n
i=1 sixi + x̃ where sixi = Qix and x̃ = (I −Q)x we obtain the equations

(I − P )F

 n∑
j=1

sjxj + x̃, c

 = 0,

PiF

 n∑
j=1

sjxj + x̃, c

 = 0 i = 1, . . . , n.

By assumption (i) we can apply the implicit function theorem to obtain x̃[s, c]
that solves the first equation. We note that x̃[0, c] = 0 and ∂si x̃[0, c

∗] = 0, i =
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1, . . . , n. Moreover, by assumption (iv) we can consider the restricted operator
F : X̂i ⊕ X̃i → Ŷi ⊕ Ỹi and perform a Lyapunov­Schmidt reduction. It follows
that x̃[s, c]|si=0 ∈ X̂i ⊕ X̃i. Due to this fact and assumption (iv) we get that

PiF

 n∑
j=1

sjxj + x̃[s, c], c

∣∣∣∣∣∣
si=0

= 0

This means that we can write

PiF

 n∑
j=1

sjxj + x̃[s, c], c

 = siHi(s, c)

and solve
Hi(s, c) = 0, i = 1, . . . , n. (8)

instead. The functions Hi are differentiable and

Hi(0, c
∗) = PiD1F [0, c∗](xi + ∂si x̃[0, c

∗]) = 0,

∂cjHi(0, c
∗)(cj − c∗j ) = PiD1F [0, c∗](∂si∂cj x̃[0, c

∗](cj − c∗j ))

+ PiD1Dj+1F [0, c∗](xi + ∂ti x̃(0, c
∗), cj − c∗j )

= PiD1Dj+1F [0, c∗](xi, cj − c∗j )

= νij(cj − c∗j )yi.

Since ν is invertible this means we can apply the implicit function theorem to
obtain a differentiable function c(t) defined in Bϵ(0) that solves equation (8).

We end by noting that we do not obtain uniqueness due to the fact that if si = 0
then PiF (x, c) = 0 is not equivalent to Hi(s, c) = 0.

1.4 Bifurcation with a Small Perturbation

In this section we return to C = R to consider the problem that appears in
[Paper III]. There we have a problem like the one in equation (5) but the op­
erator F is not differentiable, at least not in the usual sense. This naturally leads
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to some difficulties because we cannot apply the implicit function theorem as in
the two previous examples. Not even the Lyapunov­Schmidt reduction can be per­
formed in the same manner. The actual result used in [Paper III] is very technical
in nature. We will not repeat all the details here but show a result with weaker
assumptions (and conclusions) that could have been used instead.

Theorem 1.6. Let G ∈ C(X × C,Y) be the mapping

G = F + αR, (9)

where F ∈ C2(X × C,Y) satisfies the same assumptions as in Theorem 1.2 and
R ∈ Lip(X × C,Y) satisfies R[0, c] = 0 for all c ∈ C. Then there exists an ϵ such
that for every s ∈ (−ϵ, 0)∪ (0, ϵ) there exists a nonempty open interval I(s) around
0 such that for every α ∈ I(s) there exists (x[s], c[s]), which is a nontrivial solution
to

G[x, c] = 0.

Proof. We begin in the same manner as if performing a Lyapunov­Schmidt reduc­
tion and write the problem as the two equations

(I − P )(F [sx1 + x̃, c] + αR[sx1 + x̃, c]) = 0 (10)
P (F [sx1 + x̃, c] + αR[sx1 + x̃, c]) = 0 (11)

Consider first equation (10). Since L := D1F [0, c∗] is invertible as an operator
X̃ → Ỹ we can instead consider

L−1(I − P )(F [sx1 + x̃, c] + αR[sx1 + x̃, c]) = 0.

SinceD1L
−1(I−P )F [0, 0](x̃) = x̃ we get that x̃ 7→ x̃−L−1(I−P )F [sx1+

x̃, c] is a contraction for (s, c) close to (0, c∗). Moreover, adding
L−1(I −P )αR[sx1 + x̃, c] with a sufficiently small α does not change that fact.
Hence we get that x̃ 7→ x̃−L−1(I−P )(F [x̃, s, c]+αR[x̃, s, c]) is a contraction
(for small (s, c − c∗, α)). By Banach’s fixed point theorem this operator has a
unique fixed point x̃[s, c, α] satisfying

x̃[s, c, α] = x̃[s, c, α]− L−1(I − P )(F [x̃[s, c], s, c] + αR[x̃[s, c], s, c]),
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which is equivalent to (10). It follows from the Lipschitz continuity of F and R
that x̃ is Lipschitz continuous. Indeed, if C[x̃, s, c, α] = x̃−L−1Q[F [x̃, s, c] +
αR[x̃, s, c]], then

‖x̃[s1, c1, α1]− x̃[s2, c2, α2]‖X
= ‖C[x̃[s1, c1, α1], s1, c1, α1]− C[x̃[s2, c2, α2], s2, c2, α2]‖X
≤ ‖C[x̃[s1, c1, α1], s1, c1, α1]− C[x̃[s2, c2, α2], s1, c1, α1]‖X

+ ‖C[x̃[s2, c2, α2], s1, c1, α1]− C[x̃[s2, c2, α2], s2, c2, α2]‖X
≤ b‖x̃[s1, c1, α1]− x̃[s2, c2, α2]‖X

+ CL(|s1 − s2|+ |c1 − c2|+ |α1 − α2|),

where 0 < b < 1 and CL is the Lipschitz constant of C. Rearranging proves the
claim. Before we proceed, note that x̃[s, c, 0] is the same x̃ as in the Crandall &
Rabinowitz theorem. Define the function

K(s, c, α) := P (F [sx1 + x̃[s, c, α], c] + αR[sx1 + x̃[s, c, α], c]),

which means that equation (11) can be written as

K(s, c, α) = 0.

For a small fixed s and α = 0 the right hand side is a monotone function with
respect to c in some neighbourhood of c∗. This follows from the fact that if we
divideK(s, c, 0) by s we obtain H(s, c) from the proof of Theorem 1.2 and

∂cH(0, c∗) 6= 0.

Thus the sign of ∂cH(s, c) is is constant in some rectangle (−ϵ, ϵ) × (c1, c2)
around (0, c∗). This means that ∂cK(s, c, 0) = s∂cH(s, c) has the same sign
s for all s ∈ (−ϵ, 0) and the opposite sign for all s ∈ (0, ϵ). Moreover, if ϵ is
small enough there exists a c̃[s] ∈ (c1, c2) for every s ∈ (−ϵ, 0) ∪ (0, ϵ) such
that K(s, c̃[s], 0) = 0 (the solution in Theorem 1.2). Hence K(s, c1, 0) and
K(s, c2, 0) must have opposite signs. For all sufficiently small α the same is true
forK(s, c1, α) andK(s, c2, α) becauseK(s, c, α) is continuous with respect to
α. BecauseK(s, c, α) also is continuous with respect to c there must exist a c[s] ∈
(c1, c2) such that K(s, c[s], α) = 0 by the intermediate value theorem.
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2 Summary of the Research Papers

2.1 Paper I

In the first paper in this thesis we prove the existence of doubly periodic waves
over a Beltrami flow. Assuming that u is a linear Beltrami field is the simplest
assumption that gives nonzero vorticity, aside from constant vorticity which has
been proven to yield no solutions [34]. Since this is the first three dimensional
existence result for the water wave problem with nonzero vorticity, making the
simplest possible assumption is reasonable. Another good reason for choosing a
Beltrami flow is that a divergence free Beltrami field always solves equation (1),
with

p = −1

2
|u|2 − gx3 + C. (12)

This can be seen through the vector calculus identity

1

2
∇|u|2 = (u · ∇)u+ u× (∇× u), (13)

where the last term is always 0 for a Beltrami field. This allows us to replace
equation (1) with

∇× u = αu

∇ · u = 0
(14)

inΩ, simplifying the problem because we have replaced a non­linear equation with
a linear one. Since we want to find doubly periodic waves we study these equations
under the assumption that the solutions are periodic with respect to some lattice

Λ = {λ ∈ R2 : λ = mλ1 + nλ2, m, n ∈ Z}. (15)

We also define the dual lattice

Λ′ = {k ∈ R2 : k = mk1 + nk2, m, n ∈ Z},

where λi · kj = 2πδij . By solving equations (2), (4) and (14) we obtain a velo­
city field u[η, c1, c2]. Through (12) we can substitute this in (1.8c) to obtain the
equation

F [η, c1, c2] := −1

2
|u[η, c1, c2]|2+gη+σ∇·

(
∇η√

1 + |∇η|2

)
−Q(c1, c2) = 0.
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on the boundary x3 = η. This is an equation of the same form as equation (5)
with η taking the role of x. The solution is obtained by showing thatF satisfies the
assumptions of Theorem 1.4. For the appropriate choice of constantQ(c1, c2) we
obtain F [0, c1, c2] = 0 for all (c1, c2) ∈ R. Checking the rest of the conditions
mainly boils down to studying the dispersion equation

ρ(c,k) := g + σ|k|2 − (c · k)2

|k|2
κ(|k|) + α

(c · k)(c · k⊥)

|k|2
= 0,

where k ∈ Λ′ and k⊥ · k = 0 (our convention is k rotated 90◦ counterclock­
wise), because D1F [0, c1, c2]e

ik·x′
:= L(eik·x

′
) = ρ(c,k)eik·x

′ for such k.
This means that kerL is the span of all eik·x′ such that k solves the dispersion
equation and ranL is the span of all eik·x′ such that k does not solve the disper­
sion equation (here we mean the span in the appropriate function space). Through
a geometric argument we show that we can find c = c∗ such that ±k1 and ±k2

are the only solutions to the dispersion equation, which means we get a four di­
mensional kernel and cokernel. By additional symmetry assumptions we reduce
the kernel to two dimensions and get kerL = span{cos(k1 ·x′), cos(k2 ·x′)}.
This means that assumptions (i) and (ii) of Theorem 1.4 are satisfied. The trans­
versality condition (assumption (iii) ofTheorem 1.4) is equivalent to∇cρ(c

∗,k1)
and∇cρ(c

∗,k1) being linearly independent. This turns out to always be true for
the choice of c∗ we make. The final condition follows from the fact that F maps
functions independent of kj · x′ to functions independent of kj · x′. Thus we
can choose X̃i and Ỹi as the subspaces that are independent of kj · x′, j 6= i.

2.2 Paper II

The results in Sections 1.2 to 1.4 together with the results from [Paper I, Paper III]
show that as long as we can solve equations (1), (2) and (4) for a general η it is
likely that we can solve the full water wave problem given by equations (1), (2), (4)
and (1.8c). One approach to the problem given by equations (1), (2) and (4) for
doubly periodic waves is to study it in a reduced domain given by one period

Ω0 = {x = (x′, x3) ∈ R : x′ = aλ1 + bλ2, −d < x3 < η, a, b ∈ (0, 1)}.

In a bounded domain like this, though, it is reasonable to drop the assumption
of periodicity and the integral condition given by equation (4), and extend equa­
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tion (2) to the entire boundary by

u · n = ϕ,

where ϕ = 0 at x3 = −d and x3 = η. This problem has been solved by Alber
in smooth domains [2]. However, the results are not immediately applicable to
the problem in Ω0 because the domain has both edges and corners. Corners are
more problematic than edges so instead of attempting to solve the problem in the
domain Ω0 we restricted ourselves to a domain with edges. The results are given
in [Paper II] where we solve the problem in domains that are based on a cylinder.
Consider the domain

D = {x = (x′, x3) ∈ R : 0 < x3 < L, |x′| < η(x3)},

where η > 0 and ∂x3η|x3=0,L = 0 (more general domains are considered in
[Paper II] but this is sufficient for the discussion below). Note that in the case
η = const this is a cylinder. By assuming ϕ < 0 at the piece of the boundary
at x3 = 0, referred to as the inflow set, and ϕ > 0 at the piece of the boundary
at x3 = L, referred to as the outflow set, we restrict ourselves to finding solutions
which describes a flow through D.

We find the solution by perturbing an irrotational solution u0. In the paper the
perturbation is given as the fixed point of a contraction. To describe the contrac­
tion we consider an iterative scheme starting with u0. un+1 is obtained from un

by solving a transport equation for the vorticity wn along the stream lines of un.
The vorticity is determined by additional boundary conditions given on the inflow
set. Then un+1 = u0 + vn, where vn is the solution to

∇× vn = wn,

∇ · vn = 0,

in D and

v · n = 0,

on ∂D. We show that the mapping un 7→ un+1 is a contraction. Hence it
converges to a fixed point u. We also show that this fixed point indeed gives the
desired solution. Aside from the fact that the problem has to be solved in the
domain Ω0 instead of D to be applicable to the water wave problem two other
issues also remain:
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(i) The edges impose some restrictions on the boundary condition for the vor­
ticity on the inflow set. These are not optimal in [Paper II].

(ii) The solutions are not necessarily periodic and there is no known condition
that can be imposed to make sure that we obtain periodic solutions.

To shed some more light on these issues consider the boundary conditions that
determine w on the inflow set

w · n = h,

wT =
h

ϕ
uT − 1

ϕ
n×∇T g,

where g and h are given functions and the subscript T denotes the part tangen­
tial to the inflow set. With no regard for the additional conditions that h and g
have to satisfy, we see that setting h = αϕ and g = 0 gives the same relations as
for a Beltrami field. It can be proven independently that we have Beltrami field
solutions that are periodic, i.e. u|x=0 = u|x=L. Similarly, using the method
from [26, Paper III], we can find periodic solutions where the vorticity satisfies
these boundary conditions with h = 0 and appropriately chosen ϕ and g. Due to
uniqueness this shows that certainly some of the solutions in [Paper II] are peri­
odic, but it is unknown if these are all the periodic solutions or if there exist more.
The other thing we find is that we can obtain solutions that break the restrictions
put on g and h. This clearly shows that these conditions are non­optimal and pos­
sibly even redundant in the periodic case. Another reason to believe they might
be redundant is that in the periodic case the domain can be viewed as an infinite
domain with smooth boundary.

2.3 Paper III

For the the third paper we use the ansatz from [26] to solve equations (1), (2)
and (4) with nonzero vorticity. The assumption is that the vorticity takes the form

w = ∇H ×∇τ

for some potentials H and τ . These potentials satisfy

u · ∇H = 0, u · ∇τ = 1, (16)
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which means that we get u × w = ∇H . Using equation (13) we see that a
divergence free field with vorticity of this form solves equation (1) if

p = H − 1

2
|u|2 − gx3 + C.

If we also let τ |x1=0 = 0, then τ is uniquely determined by u if u1 > a > 0 in
our domain. The function τ gives the time it takes for a particle to travel along
the streamlines from the surface x1 = 0 to the point it is evaluated at. From τ
we can define q(x) := τ(x + λ1) − τ(x), where λ1 is the generator of some
lattice like the one in equation (15). However in this paper we assume that we have
a rectangular lattice so λi = λiei. The function q clearly satisfies u · ∇q = 0.
Hence we can make the assumptionH = βh(q) for some function h. This means
we can replace equation (1) with

∇× u = βh′(q)∇q ×∇τ,

∇ · u = 0.

Through a fixed point argument we find a solution to this equation and equa­
tions (2) and (4). The problem can be rewritten as u = βT [u] and for sufficiently
small β we can apply Banach’s fixed point theorem. This gives us a solutionu[η, c].
However, due to the nature of equation (16) the solution is not differentiable with
respect to η and c. This complicates the bifurcation argument that is used to solve
equation (1.8c). More or less immediately, though, by substituting the solution
u[η, c] in equation (1.8c) we obtain an equation that satisfies the assumptions of
Theorem 1.6. For β = 0 this is the problem for irrotational flows which can be
treated using Theorem 1.2, so F satisfies the needed assumptions. It is also not
difficult to check that the perturbation R that appears when β is nonzero satisfies
the needed assumptions. This means that there definitely are some solutions to
this problem, but the conclusion of Theorem 1.6 is very weak. To strengthen the
results we consider the properties of u. Let

Xs ⊂ Xt, Ys ⊂ Yt, t < s

Be scales of Banach spaces (based on Hölder spaces in this paper). While u :
Ys × R 7→ Xs, is not differentiable in the regular sense, there exists a linear
operator Du : Ys × R → L(Ys × R, Xs) such that

lim
∥(η,c)∥Yr×R→0

‖u[η0 + η, c∗ + c]− u[η0, c
∗]−Du[η0, c

∗](η, c)‖Xt

‖(η, c)‖Yr×R
= 0
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for (η, c) ∈ Ys × R and some r ≤ s, t < s. Through some technical calcu­
lations using derivatives of this form we can prove a bifurcation result more akin
to Theorem 1.2 which gives a curve of solutions. This curve is also differentiable
in a sense similar to u, which allows us to expand the solution in terms of the
parameter of the curve. The main reason for doing this is to make sure that the
expression βh′(q)∇q × ∇τ 6= 0, which proves we indeed have solutions with
nonzero vorticity.
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